1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 71 { 72 struct nfs_inode *nfsi = NFS_I(dir); 73 struct nfs_open_dir_context *ctx; 74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 75 if (ctx != NULL) { 76 ctx->duped = 0; 77 ctx->attr_gencount = nfsi->attr_gencount; 78 ctx->dir_cookie = 0; 79 ctx->dup_cookie = 0; 80 ctx->cred = get_rpccred(cred); 81 spin_lock(&dir->i_lock); 82 list_add(&ctx->list, &nfsi->open_files); 83 spin_unlock(&dir->i_lock); 84 return ctx; 85 } 86 return ERR_PTR(-ENOMEM); 87 } 88 89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 90 { 91 spin_lock(&dir->i_lock); 92 list_del(&ctx->list); 93 spin_unlock(&dir->i_lock); 94 put_rpccred(ctx->cred); 95 kfree(ctx); 96 } 97 98 /* 99 * Open file 100 */ 101 static int 102 nfs_opendir(struct inode *inode, struct file *filp) 103 { 104 int res = 0; 105 struct nfs_open_dir_context *ctx; 106 struct rpc_cred *cred; 107 108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 109 110 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 111 112 cred = rpc_lookup_cred(); 113 if (IS_ERR(cred)) 114 return PTR_ERR(cred); 115 ctx = alloc_nfs_open_dir_context(inode, cred); 116 if (IS_ERR(ctx)) { 117 res = PTR_ERR(ctx); 118 goto out; 119 } 120 filp->private_data = ctx; 121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 122 /* This is a mountpoint, so d_revalidate will never 123 * have been called, so we need to refresh the 124 * inode (for close-open consistency) ourselves. 125 */ 126 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 127 } 128 out: 129 put_rpccred(cred); 130 return res; 131 } 132 133 static int 134 nfs_closedir(struct inode *inode, struct file *filp) 135 { 136 put_nfs_open_dir_context(filp->f_path.dentry->d_inode, filp->private_data); 137 return 0; 138 } 139 140 struct nfs_cache_array_entry { 141 u64 cookie; 142 u64 ino; 143 struct qstr string; 144 unsigned char d_type; 145 }; 146 147 struct nfs_cache_array { 148 int size; 149 int eof_index; 150 u64 last_cookie; 151 struct nfs_cache_array_entry array[0]; 152 }; 153 154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 155 typedef struct { 156 struct file *file; 157 struct page *page; 158 struct dir_context *ctx; 159 unsigned long page_index; 160 u64 *dir_cookie; 161 u64 last_cookie; 162 loff_t current_index; 163 decode_dirent_t decode; 164 165 unsigned long timestamp; 166 unsigned long gencount; 167 unsigned int cache_entry_index; 168 unsigned int plus:1; 169 unsigned int eof:1; 170 } nfs_readdir_descriptor_t; 171 172 /* 173 * The caller is responsible for calling nfs_readdir_release_array(page) 174 */ 175 static 176 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 177 { 178 void *ptr; 179 if (page == NULL) 180 return ERR_PTR(-EIO); 181 ptr = kmap(page); 182 if (ptr == NULL) 183 return ERR_PTR(-ENOMEM); 184 return ptr; 185 } 186 187 static 188 void nfs_readdir_release_array(struct page *page) 189 { 190 kunmap(page); 191 } 192 193 /* 194 * we are freeing strings created by nfs_add_to_readdir_array() 195 */ 196 static 197 void nfs_readdir_clear_array(struct page *page) 198 { 199 struct nfs_cache_array *array; 200 int i; 201 202 array = kmap_atomic(page); 203 for (i = 0; i < array->size; i++) 204 kfree(array->array[i].string.name); 205 kunmap_atomic(array); 206 } 207 208 /* 209 * the caller is responsible for freeing qstr.name 210 * when called by nfs_readdir_add_to_array, the strings will be freed in 211 * nfs_clear_readdir_array() 212 */ 213 static 214 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 215 { 216 string->len = len; 217 string->name = kmemdup(name, len, GFP_KERNEL); 218 if (string->name == NULL) 219 return -ENOMEM; 220 /* 221 * Avoid a kmemleak false positive. The pointer to the name is stored 222 * in a page cache page which kmemleak does not scan. 223 */ 224 kmemleak_not_leak(string->name); 225 string->hash = full_name_hash(name, len); 226 return 0; 227 } 228 229 static 230 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 231 { 232 struct nfs_cache_array *array = nfs_readdir_get_array(page); 233 struct nfs_cache_array_entry *cache_entry; 234 int ret; 235 236 if (IS_ERR(array)) 237 return PTR_ERR(array); 238 239 cache_entry = &array->array[array->size]; 240 241 /* Check that this entry lies within the page bounds */ 242 ret = -ENOSPC; 243 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 244 goto out; 245 246 cache_entry->cookie = entry->prev_cookie; 247 cache_entry->ino = entry->ino; 248 cache_entry->d_type = entry->d_type; 249 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 250 if (ret) 251 goto out; 252 array->last_cookie = entry->cookie; 253 array->size++; 254 if (entry->eof != 0) 255 array->eof_index = array->size; 256 out: 257 nfs_readdir_release_array(page); 258 return ret; 259 } 260 261 static 262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 263 { 264 loff_t diff = desc->ctx->pos - desc->current_index; 265 unsigned int index; 266 267 if (diff < 0) 268 goto out_eof; 269 if (diff >= array->size) { 270 if (array->eof_index >= 0) 271 goto out_eof; 272 return -EAGAIN; 273 } 274 275 index = (unsigned int)diff; 276 *desc->dir_cookie = array->array[index].cookie; 277 desc->cache_entry_index = index; 278 return 0; 279 out_eof: 280 desc->eof = 1; 281 return -EBADCOOKIE; 282 } 283 284 static bool 285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 286 { 287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 288 return false; 289 smp_rmb(); 290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 291 } 292 293 static 294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 295 { 296 int i; 297 loff_t new_pos; 298 int status = -EAGAIN; 299 300 for (i = 0; i < array->size; i++) { 301 if (array->array[i].cookie == *desc->dir_cookie) { 302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 303 struct nfs_open_dir_context *ctx = desc->file->private_data; 304 305 new_pos = desc->current_index + i; 306 if (ctx->attr_gencount != nfsi->attr_gencount || 307 !nfs_readdir_inode_mapping_valid(nfsi)) { 308 ctx->duped = 0; 309 ctx->attr_gencount = nfsi->attr_gencount; 310 } else if (new_pos < desc->ctx->pos) { 311 if (ctx->duped > 0 312 && ctx->dup_cookie == *desc->dir_cookie) { 313 if (printk_ratelimit()) { 314 pr_notice("NFS: directory %pD2 contains a readdir loop." 315 "Please contact your server vendor. " 316 "The file: %.*s has duplicate cookie %llu\n", 317 desc->file, array->array[i].string.len, 318 array->array[i].string.name, *desc->dir_cookie); 319 } 320 status = -ELOOP; 321 goto out; 322 } 323 ctx->dup_cookie = *desc->dir_cookie; 324 ctx->duped = -1; 325 } 326 desc->ctx->pos = new_pos; 327 desc->cache_entry_index = i; 328 return 0; 329 } 330 } 331 if (array->eof_index >= 0) { 332 status = -EBADCOOKIE; 333 if (*desc->dir_cookie == array->last_cookie) 334 desc->eof = 1; 335 } 336 out: 337 return status; 338 } 339 340 static 341 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 342 { 343 struct nfs_cache_array *array; 344 int status; 345 346 array = nfs_readdir_get_array(desc->page); 347 if (IS_ERR(array)) { 348 status = PTR_ERR(array); 349 goto out; 350 } 351 352 if (*desc->dir_cookie == 0) 353 status = nfs_readdir_search_for_pos(array, desc); 354 else 355 status = nfs_readdir_search_for_cookie(array, desc); 356 357 if (status == -EAGAIN) { 358 desc->last_cookie = array->last_cookie; 359 desc->current_index += array->size; 360 desc->page_index++; 361 } 362 nfs_readdir_release_array(desc->page); 363 out: 364 return status; 365 } 366 367 /* Fill a page with xdr information before transferring to the cache page */ 368 static 369 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 370 struct nfs_entry *entry, struct file *file, struct inode *inode) 371 { 372 struct nfs_open_dir_context *ctx = file->private_data; 373 struct rpc_cred *cred = ctx->cred; 374 unsigned long timestamp, gencount; 375 int error; 376 377 again: 378 timestamp = jiffies; 379 gencount = nfs_inc_attr_generation_counter(); 380 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 381 NFS_SERVER(inode)->dtsize, desc->plus); 382 if (error < 0) { 383 /* We requested READDIRPLUS, but the server doesn't grok it */ 384 if (error == -ENOTSUPP && desc->plus) { 385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 387 desc->plus = 0; 388 goto again; 389 } 390 goto error; 391 } 392 desc->timestamp = timestamp; 393 desc->gencount = gencount; 394 error: 395 return error; 396 } 397 398 static int xdr_decode(nfs_readdir_descriptor_t *desc, 399 struct nfs_entry *entry, struct xdr_stream *xdr) 400 { 401 int error; 402 403 error = desc->decode(xdr, entry, desc->plus); 404 if (error) 405 return error; 406 entry->fattr->time_start = desc->timestamp; 407 entry->fattr->gencount = desc->gencount; 408 return 0; 409 } 410 411 static 412 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 413 { 414 if (dentry->d_inode == NULL) 415 goto different; 416 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0) 417 goto different; 418 return 1; 419 different: 420 return 0; 421 } 422 423 static 424 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 425 { 426 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 427 return false; 428 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 429 return true; 430 if (ctx->pos == 0) 431 return true; 432 return false; 433 } 434 435 /* 436 * This function is called by the lookup code to request the use of 437 * readdirplus to accelerate any future lookups in the same 438 * directory. 439 */ 440 static 441 void nfs_advise_use_readdirplus(struct inode *dir) 442 { 443 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 444 } 445 446 /* 447 * This function is mainly for use by nfs_getattr(). 448 * 449 * If this is an 'ls -l', we want to force use of readdirplus. 450 * Do this by checking if there is an active file descriptor 451 * and calling nfs_advise_use_readdirplus, then forcing a 452 * cache flush. 453 */ 454 void nfs_force_use_readdirplus(struct inode *dir) 455 { 456 if (!list_empty(&NFS_I(dir)->open_files)) { 457 nfs_advise_use_readdirplus(dir); 458 nfs_zap_mapping(dir, dir->i_mapping); 459 } 460 } 461 462 static 463 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 464 { 465 struct qstr filename = QSTR_INIT(entry->name, entry->len); 466 struct dentry *dentry; 467 struct dentry *alias; 468 struct inode *dir = parent->d_inode; 469 struct inode *inode; 470 int status; 471 472 if (filename.name[0] == '.') { 473 if (filename.len == 1) 474 return; 475 if (filename.len == 2 && filename.name[1] == '.') 476 return; 477 } 478 filename.hash = full_name_hash(filename.name, filename.len); 479 480 dentry = d_lookup(parent, &filename); 481 if (dentry != NULL) { 482 if (nfs_same_file(dentry, entry)) { 483 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 484 status = nfs_refresh_inode(dentry->d_inode, entry->fattr); 485 if (!status) 486 nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label); 487 goto out; 488 } else { 489 if (d_invalidate(dentry) != 0) 490 goto out; 491 dput(dentry); 492 } 493 } 494 495 dentry = d_alloc(parent, &filename); 496 if (dentry == NULL) 497 return; 498 499 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 500 if (IS_ERR(inode)) 501 goto out; 502 503 alias = d_materialise_unique(dentry, inode); 504 if (IS_ERR(alias)) 505 goto out; 506 else if (alias) { 507 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 508 dput(alias); 509 } else 510 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 511 512 out: 513 dput(dentry); 514 } 515 516 /* Perform conversion from xdr to cache array */ 517 static 518 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 519 struct page **xdr_pages, struct page *page, unsigned int buflen) 520 { 521 struct xdr_stream stream; 522 struct xdr_buf buf; 523 struct page *scratch; 524 struct nfs_cache_array *array; 525 unsigned int count = 0; 526 int status; 527 528 scratch = alloc_page(GFP_KERNEL); 529 if (scratch == NULL) 530 return -ENOMEM; 531 532 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 533 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 534 535 do { 536 status = xdr_decode(desc, entry, &stream); 537 if (status != 0) { 538 if (status == -EAGAIN) 539 status = 0; 540 break; 541 } 542 543 count++; 544 545 if (desc->plus != 0) 546 nfs_prime_dcache(desc->file->f_path.dentry, entry); 547 548 status = nfs_readdir_add_to_array(entry, page); 549 if (status != 0) 550 break; 551 } while (!entry->eof); 552 553 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 554 array = nfs_readdir_get_array(page); 555 if (!IS_ERR(array)) { 556 array->eof_index = array->size; 557 status = 0; 558 nfs_readdir_release_array(page); 559 } else 560 status = PTR_ERR(array); 561 } 562 563 put_page(scratch); 564 return status; 565 } 566 567 static 568 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 569 { 570 unsigned int i; 571 for (i = 0; i < npages; i++) 572 put_page(pages[i]); 573 } 574 575 static 576 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 577 unsigned int npages) 578 { 579 nfs_readdir_free_pagearray(pages, npages); 580 } 581 582 /* 583 * nfs_readdir_large_page will allocate pages that must be freed with a call 584 * to nfs_readdir_free_large_page 585 */ 586 static 587 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 588 { 589 unsigned int i; 590 591 for (i = 0; i < npages; i++) { 592 struct page *page = alloc_page(GFP_KERNEL); 593 if (page == NULL) 594 goto out_freepages; 595 pages[i] = page; 596 } 597 return 0; 598 599 out_freepages: 600 nfs_readdir_free_pagearray(pages, i); 601 return -ENOMEM; 602 } 603 604 static 605 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 606 { 607 struct page *pages[NFS_MAX_READDIR_PAGES]; 608 void *pages_ptr = NULL; 609 struct nfs_entry entry; 610 struct file *file = desc->file; 611 struct nfs_cache_array *array; 612 int status = -ENOMEM; 613 unsigned int array_size = ARRAY_SIZE(pages); 614 615 entry.prev_cookie = 0; 616 entry.cookie = desc->last_cookie; 617 entry.eof = 0; 618 entry.fh = nfs_alloc_fhandle(); 619 entry.fattr = nfs_alloc_fattr(); 620 entry.server = NFS_SERVER(inode); 621 if (entry.fh == NULL || entry.fattr == NULL) 622 goto out; 623 624 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 625 if (IS_ERR(entry.label)) { 626 status = PTR_ERR(entry.label); 627 goto out; 628 } 629 630 array = nfs_readdir_get_array(page); 631 if (IS_ERR(array)) { 632 status = PTR_ERR(array); 633 goto out_label_free; 634 } 635 memset(array, 0, sizeof(struct nfs_cache_array)); 636 array->eof_index = -1; 637 638 status = nfs_readdir_large_page(pages, array_size); 639 if (status < 0) 640 goto out_release_array; 641 do { 642 unsigned int pglen; 643 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 644 645 if (status < 0) 646 break; 647 pglen = status; 648 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 649 if (status < 0) { 650 if (status == -ENOSPC) 651 status = 0; 652 break; 653 } 654 } while (array->eof_index < 0); 655 656 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 657 out_release_array: 658 nfs_readdir_release_array(page); 659 out_label_free: 660 nfs4_label_free(entry.label); 661 out: 662 nfs_free_fattr(entry.fattr); 663 nfs_free_fhandle(entry.fh); 664 return status; 665 } 666 667 /* 668 * Now we cache directories properly, by converting xdr information 669 * to an array that can be used for lookups later. This results in 670 * fewer cache pages, since we can store more information on each page. 671 * We only need to convert from xdr once so future lookups are much simpler 672 */ 673 static 674 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 675 { 676 struct inode *inode = file_inode(desc->file); 677 int ret; 678 679 ret = nfs_readdir_xdr_to_array(desc, page, inode); 680 if (ret < 0) 681 goto error; 682 SetPageUptodate(page); 683 684 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 685 /* Should never happen */ 686 nfs_zap_mapping(inode, inode->i_mapping); 687 } 688 unlock_page(page); 689 return 0; 690 error: 691 unlock_page(page); 692 return ret; 693 } 694 695 static 696 void cache_page_release(nfs_readdir_descriptor_t *desc) 697 { 698 if (!desc->page->mapping) 699 nfs_readdir_clear_array(desc->page); 700 page_cache_release(desc->page); 701 desc->page = NULL; 702 } 703 704 static 705 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 706 { 707 return read_cache_page(file_inode(desc->file)->i_mapping, 708 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 709 } 710 711 /* 712 * Returns 0 if desc->dir_cookie was found on page desc->page_index 713 */ 714 static 715 int find_cache_page(nfs_readdir_descriptor_t *desc) 716 { 717 int res; 718 719 desc->page = get_cache_page(desc); 720 if (IS_ERR(desc->page)) 721 return PTR_ERR(desc->page); 722 723 res = nfs_readdir_search_array(desc); 724 if (res != 0) 725 cache_page_release(desc); 726 return res; 727 } 728 729 /* Search for desc->dir_cookie from the beginning of the page cache */ 730 static inline 731 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 732 { 733 int res; 734 735 if (desc->page_index == 0) { 736 desc->current_index = 0; 737 desc->last_cookie = 0; 738 } 739 do { 740 res = find_cache_page(desc); 741 } while (res == -EAGAIN); 742 return res; 743 } 744 745 /* 746 * Once we've found the start of the dirent within a page: fill 'er up... 747 */ 748 static 749 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 750 { 751 struct file *file = desc->file; 752 int i = 0; 753 int res = 0; 754 struct nfs_cache_array *array = NULL; 755 struct nfs_open_dir_context *ctx = file->private_data; 756 757 array = nfs_readdir_get_array(desc->page); 758 if (IS_ERR(array)) { 759 res = PTR_ERR(array); 760 goto out; 761 } 762 763 for (i = desc->cache_entry_index; i < array->size; i++) { 764 struct nfs_cache_array_entry *ent; 765 766 ent = &array->array[i]; 767 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 768 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 769 desc->eof = 1; 770 break; 771 } 772 desc->ctx->pos++; 773 if (i < (array->size-1)) 774 *desc->dir_cookie = array->array[i+1].cookie; 775 else 776 *desc->dir_cookie = array->last_cookie; 777 if (ctx->duped != 0) 778 ctx->duped = 1; 779 } 780 if (array->eof_index >= 0) 781 desc->eof = 1; 782 783 nfs_readdir_release_array(desc->page); 784 out: 785 cache_page_release(desc); 786 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 787 (unsigned long long)*desc->dir_cookie, res); 788 return res; 789 } 790 791 /* 792 * If we cannot find a cookie in our cache, we suspect that this is 793 * because it points to a deleted file, so we ask the server to return 794 * whatever it thinks is the next entry. We then feed this to filldir. 795 * If all goes well, we should then be able to find our way round the 796 * cache on the next call to readdir_search_pagecache(); 797 * 798 * NOTE: we cannot add the anonymous page to the pagecache because 799 * the data it contains might not be page aligned. Besides, 800 * we should already have a complete representation of the 801 * directory in the page cache by the time we get here. 802 */ 803 static inline 804 int uncached_readdir(nfs_readdir_descriptor_t *desc) 805 { 806 struct page *page = NULL; 807 int status; 808 struct inode *inode = file_inode(desc->file); 809 struct nfs_open_dir_context *ctx = desc->file->private_data; 810 811 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 812 (unsigned long long)*desc->dir_cookie); 813 814 page = alloc_page(GFP_HIGHUSER); 815 if (!page) { 816 status = -ENOMEM; 817 goto out; 818 } 819 820 desc->page_index = 0; 821 desc->last_cookie = *desc->dir_cookie; 822 desc->page = page; 823 ctx->duped = 0; 824 825 status = nfs_readdir_xdr_to_array(desc, page, inode); 826 if (status < 0) 827 goto out_release; 828 829 status = nfs_do_filldir(desc); 830 831 out: 832 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 833 __func__, status); 834 return status; 835 out_release: 836 cache_page_release(desc); 837 goto out; 838 } 839 840 static bool nfs_dir_mapping_need_revalidate(struct inode *dir) 841 { 842 struct nfs_inode *nfsi = NFS_I(dir); 843 844 if (nfs_attribute_cache_expired(dir)) 845 return true; 846 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 847 return true; 848 return false; 849 } 850 851 /* The file offset position represents the dirent entry number. A 852 last cookie cache takes care of the common case of reading the 853 whole directory. 854 */ 855 static int nfs_readdir(struct file *file, struct dir_context *ctx) 856 { 857 struct dentry *dentry = file->f_path.dentry; 858 struct inode *inode = dentry->d_inode; 859 nfs_readdir_descriptor_t my_desc, 860 *desc = &my_desc; 861 struct nfs_open_dir_context *dir_ctx = file->private_data; 862 int res = 0; 863 864 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 865 file, (long long)ctx->pos); 866 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 867 868 /* 869 * ctx->pos points to the dirent entry number. 870 * *desc->dir_cookie has the cookie for the next entry. We have 871 * to either find the entry with the appropriate number or 872 * revalidate the cookie. 873 */ 874 memset(desc, 0, sizeof(*desc)); 875 876 desc->file = file; 877 desc->ctx = ctx; 878 desc->dir_cookie = &dir_ctx->dir_cookie; 879 desc->decode = NFS_PROTO(inode)->decode_dirent; 880 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0; 881 882 nfs_block_sillyrename(dentry); 883 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode)) 884 res = nfs_revalidate_mapping(inode, file->f_mapping); 885 if (res < 0) 886 goto out; 887 888 do { 889 res = readdir_search_pagecache(desc); 890 891 if (res == -EBADCOOKIE) { 892 res = 0; 893 /* This means either end of directory */ 894 if (*desc->dir_cookie && desc->eof == 0) { 895 /* Or that the server has 'lost' a cookie */ 896 res = uncached_readdir(desc); 897 if (res == 0) 898 continue; 899 } 900 break; 901 } 902 if (res == -ETOOSMALL && desc->plus) { 903 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 904 nfs_zap_caches(inode); 905 desc->page_index = 0; 906 desc->plus = 0; 907 desc->eof = 0; 908 continue; 909 } 910 if (res < 0) 911 break; 912 913 res = nfs_do_filldir(desc); 914 if (res < 0) 915 break; 916 } while (!desc->eof); 917 out: 918 nfs_unblock_sillyrename(dentry); 919 if (res > 0) 920 res = 0; 921 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 922 return res; 923 } 924 925 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 926 { 927 struct inode *inode = file_inode(filp); 928 struct nfs_open_dir_context *dir_ctx = filp->private_data; 929 930 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 931 filp, offset, whence); 932 933 mutex_lock(&inode->i_mutex); 934 switch (whence) { 935 case 1: 936 offset += filp->f_pos; 937 case 0: 938 if (offset >= 0) 939 break; 940 default: 941 offset = -EINVAL; 942 goto out; 943 } 944 if (offset != filp->f_pos) { 945 filp->f_pos = offset; 946 dir_ctx->dir_cookie = 0; 947 dir_ctx->duped = 0; 948 } 949 out: 950 mutex_unlock(&inode->i_mutex); 951 return offset; 952 } 953 954 /* 955 * All directory operations under NFS are synchronous, so fsync() 956 * is a dummy operation. 957 */ 958 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 959 int datasync) 960 { 961 struct inode *inode = file_inode(filp); 962 963 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 964 965 mutex_lock(&inode->i_mutex); 966 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 967 mutex_unlock(&inode->i_mutex); 968 return 0; 969 } 970 971 /** 972 * nfs_force_lookup_revalidate - Mark the directory as having changed 973 * @dir - pointer to directory inode 974 * 975 * This forces the revalidation code in nfs_lookup_revalidate() to do a 976 * full lookup on all child dentries of 'dir' whenever a change occurs 977 * on the server that might have invalidated our dcache. 978 * 979 * The caller should be holding dir->i_lock 980 */ 981 void nfs_force_lookup_revalidate(struct inode *dir) 982 { 983 NFS_I(dir)->cache_change_attribute++; 984 } 985 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 986 987 /* 988 * A check for whether or not the parent directory has changed. 989 * In the case it has, we assume that the dentries are untrustworthy 990 * and may need to be looked up again. 991 * If rcu_walk prevents us from performing a full check, return 0. 992 */ 993 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 994 int rcu_walk) 995 { 996 int ret; 997 998 if (IS_ROOT(dentry)) 999 return 1; 1000 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1001 return 0; 1002 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1003 return 0; 1004 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1005 if (rcu_walk) 1006 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir); 1007 else 1008 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir); 1009 if (ret < 0) 1010 return 0; 1011 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1012 return 0; 1013 return 1; 1014 } 1015 1016 /* 1017 * Use intent information to check whether or not we're going to do 1018 * an O_EXCL create using this path component. 1019 */ 1020 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1021 { 1022 if (NFS_PROTO(dir)->version == 2) 1023 return 0; 1024 return flags & LOOKUP_EXCL; 1025 } 1026 1027 /* 1028 * Inode and filehandle revalidation for lookups. 1029 * 1030 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1031 * or if the intent information indicates that we're about to open this 1032 * particular file and the "nocto" mount flag is not set. 1033 * 1034 */ 1035 static 1036 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1037 { 1038 struct nfs_server *server = NFS_SERVER(inode); 1039 int ret; 1040 1041 if (IS_AUTOMOUNT(inode)) 1042 return 0; 1043 /* VFS wants an on-the-wire revalidation */ 1044 if (flags & LOOKUP_REVAL) 1045 goto out_force; 1046 /* This is an open(2) */ 1047 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 1048 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 1049 goto out_force; 1050 out: 1051 return (inode->i_nlink == 0) ? -ENOENT : 0; 1052 out_force: 1053 if (flags & LOOKUP_RCU) 1054 return -ECHILD; 1055 ret = __nfs_revalidate_inode(server, inode); 1056 if (ret != 0) 1057 return ret; 1058 goto out; 1059 } 1060 1061 /* 1062 * We judge how long we want to trust negative 1063 * dentries by looking at the parent inode mtime. 1064 * 1065 * If parent mtime has changed, we revalidate, else we wait for a 1066 * period corresponding to the parent's attribute cache timeout value. 1067 * 1068 * If LOOKUP_RCU prevents us from performing a full check, return 1 1069 * suggesting a reval is needed. 1070 */ 1071 static inline 1072 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1073 unsigned int flags) 1074 { 1075 /* Don't revalidate a negative dentry if we're creating a new file */ 1076 if (flags & LOOKUP_CREATE) 1077 return 0; 1078 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1079 return 1; 1080 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1081 } 1082 1083 /* 1084 * This is called every time the dcache has a lookup hit, 1085 * and we should check whether we can really trust that 1086 * lookup. 1087 * 1088 * NOTE! The hit can be a negative hit too, don't assume 1089 * we have an inode! 1090 * 1091 * If the parent directory is seen to have changed, we throw out the 1092 * cached dentry and do a new lookup. 1093 */ 1094 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1095 { 1096 struct inode *dir; 1097 struct inode *inode; 1098 struct dentry *parent; 1099 struct nfs_fh *fhandle = NULL; 1100 struct nfs_fattr *fattr = NULL; 1101 struct nfs4_label *label = NULL; 1102 int error; 1103 1104 if (flags & LOOKUP_RCU) { 1105 parent = ACCESS_ONCE(dentry->d_parent); 1106 dir = ACCESS_ONCE(parent->d_inode); 1107 if (!dir) 1108 return -ECHILD; 1109 } else { 1110 parent = dget_parent(dentry); 1111 dir = parent->d_inode; 1112 } 1113 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1114 inode = dentry->d_inode; 1115 1116 if (!inode) { 1117 if (nfs_neg_need_reval(dir, dentry, flags)) { 1118 if (flags & LOOKUP_RCU) 1119 return -ECHILD; 1120 goto out_bad; 1121 } 1122 goto out_valid_noent; 1123 } 1124 1125 if (is_bad_inode(inode)) { 1126 if (flags & LOOKUP_RCU) 1127 return -ECHILD; 1128 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1129 __func__, dentry); 1130 goto out_bad; 1131 } 1132 1133 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1134 goto out_set_verifier; 1135 1136 /* Force a full look up iff the parent directory has changed */ 1137 if (!nfs_is_exclusive_create(dir, flags) && 1138 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1139 1140 if (nfs_lookup_verify_inode(inode, flags)) { 1141 if (flags & LOOKUP_RCU) 1142 return -ECHILD; 1143 goto out_zap_parent; 1144 } 1145 goto out_valid; 1146 } 1147 1148 if (flags & LOOKUP_RCU) 1149 return -ECHILD; 1150 1151 if (NFS_STALE(inode)) 1152 goto out_bad; 1153 1154 error = -ENOMEM; 1155 fhandle = nfs_alloc_fhandle(); 1156 fattr = nfs_alloc_fattr(); 1157 if (fhandle == NULL || fattr == NULL) 1158 goto out_error; 1159 1160 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 1161 if (IS_ERR(label)) 1162 goto out_error; 1163 1164 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1165 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1166 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1167 if (error) 1168 goto out_bad; 1169 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1170 goto out_bad; 1171 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1172 goto out_bad; 1173 1174 nfs_setsecurity(inode, fattr, label); 1175 1176 nfs_free_fattr(fattr); 1177 nfs_free_fhandle(fhandle); 1178 nfs4_label_free(label); 1179 1180 out_set_verifier: 1181 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1182 out_valid: 1183 /* Success: notify readdir to use READDIRPLUS */ 1184 nfs_advise_use_readdirplus(dir); 1185 out_valid_noent: 1186 if (flags & LOOKUP_RCU) { 1187 if (parent != ACCESS_ONCE(dentry->d_parent)) 1188 return -ECHILD; 1189 } else 1190 dput(parent); 1191 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1192 __func__, dentry); 1193 return 1; 1194 out_zap_parent: 1195 nfs_zap_caches(dir); 1196 out_bad: 1197 WARN_ON(flags & LOOKUP_RCU); 1198 nfs_free_fattr(fattr); 1199 nfs_free_fhandle(fhandle); 1200 nfs4_label_free(label); 1201 nfs_mark_for_revalidate(dir); 1202 if (inode && S_ISDIR(inode->i_mode)) { 1203 /* Purge readdir caches. */ 1204 nfs_zap_caches(inode); 1205 /* 1206 * We can't d_drop the root of a disconnected tree: 1207 * its d_hash is on the s_anon list and d_drop() would hide 1208 * it from shrink_dcache_for_unmount(), leading to busy 1209 * inodes on unmount and further oopses. 1210 */ 1211 if (IS_ROOT(dentry)) 1212 goto out_valid; 1213 } 1214 dput(parent); 1215 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1216 __func__, dentry); 1217 return 0; 1218 out_error: 1219 WARN_ON(flags & LOOKUP_RCU); 1220 nfs_free_fattr(fattr); 1221 nfs_free_fhandle(fhandle); 1222 nfs4_label_free(label); 1223 dput(parent); 1224 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1225 __func__, dentry, error); 1226 return error; 1227 } 1228 1229 /* 1230 * A weaker form of d_revalidate for revalidating just the dentry->d_inode 1231 * when we don't really care about the dentry name. This is called when a 1232 * pathwalk ends on a dentry that was not found via a normal lookup in the 1233 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1234 * 1235 * In this situation, we just want to verify that the inode itself is OK 1236 * since the dentry might have changed on the server. 1237 */ 1238 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1239 { 1240 int error; 1241 struct inode *inode = dentry->d_inode; 1242 1243 /* 1244 * I believe we can only get a negative dentry here in the case of a 1245 * procfs-style symlink. Just assume it's correct for now, but we may 1246 * eventually need to do something more here. 1247 */ 1248 if (!inode) { 1249 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1250 __func__, dentry); 1251 return 1; 1252 } 1253 1254 if (is_bad_inode(inode)) { 1255 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1256 __func__, dentry); 1257 return 0; 1258 } 1259 1260 error = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1261 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1262 __func__, inode->i_ino, error ? "invalid" : "valid"); 1263 return !error; 1264 } 1265 1266 /* 1267 * This is called from dput() when d_count is going to 0. 1268 */ 1269 static int nfs_dentry_delete(const struct dentry *dentry) 1270 { 1271 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1272 dentry, dentry->d_flags); 1273 1274 /* Unhash any dentry with a stale inode */ 1275 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 1276 return 1; 1277 1278 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1279 /* Unhash it, so that ->d_iput() would be called */ 1280 return 1; 1281 } 1282 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1283 /* Unhash it, so that ancestors of killed async unlink 1284 * files will be cleaned up during umount */ 1285 return 1; 1286 } 1287 return 0; 1288 1289 } 1290 1291 /* Ensure that we revalidate inode->i_nlink */ 1292 static void nfs_drop_nlink(struct inode *inode) 1293 { 1294 spin_lock(&inode->i_lock); 1295 /* drop the inode if we're reasonably sure this is the last link */ 1296 if (inode->i_nlink == 1) 1297 clear_nlink(inode); 1298 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; 1299 spin_unlock(&inode->i_lock); 1300 } 1301 1302 /* 1303 * Called when the dentry loses inode. 1304 * We use it to clean up silly-renamed files. 1305 */ 1306 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1307 { 1308 if (S_ISDIR(inode->i_mode)) 1309 /* drop any readdir cache as it could easily be old */ 1310 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1311 1312 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1313 nfs_complete_unlink(dentry, inode); 1314 nfs_drop_nlink(inode); 1315 } 1316 iput(inode); 1317 } 1318 1319 static void nfs_d_release(struct dentry *dentry) 1320 { 1321 /* free cached devname value, if it survived that far */ 1322 if (unlikely(dentry->d_fsdata)) { 1323 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1324 WARN_ON(1); 1325 else 1326 kfree(dentry->d_fsdata); 1327 } 1328 } 1329 1330 const struct dentry_operations nfs_dentry_operations = { 1331 .d_revalidate = nfs_lookup_revalidate, 1332 .d_weak_revalidate = nfs_weak_revalidate, 1333 .d_delete = nfs_dentry_delete, 1334 .d_iput = nfs_dentry_iput, 1335 .d_automount = nfs_d_automount, 1336 .d_release = nfs_d_release, 1337 }; 1338 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1339 1340 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1341 { 1342 struct dentry *res; 1343 struct dentry *parent; 1344 struct inode *inode = NULL; 1345 struct nfs_fh *fhandle = NULL; 1346 struct nfs_fattr *fattr = NULL; 1347 struct nfs4_label *label = NULL; 1348 int error; 1349 1350 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1351 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1352 1353 res = ERR_PTR(-ENAMETOOLONG); 1354 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1355 goto out; 1356 1357 /* 1358 * If we're doing an exclusive create, optimize away the lookup 1359 * but don't hash the dentry. 1360 */ 1361 if (nfs_is_exclusive_create(dir, flags)) { 1362 d_instantiate(dentry, NULL); 1363 res = NULL; 1364 goto out; 1365 } 1366 1367 res = ERR_PTR(-ENOMEM); 1368 fhandle = nfs_alloc_fhandle(); 1369 fattr = nfs_alloc_fattr(); 1370 if (fhandle == NULL || fattr == NULL) 1371 goto out; 1372 1373 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1374 if (IS_ERR(label)) 1375 goto out; 1376 1377 parent = dentry->d_parent; 1378 /* Protect against concurrent sillydeletes */ 1379 trace_nfs_lookup_enter(dir, dentry, flags); 1380 nfs_block_sillyrename(parent); 1381 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1382 if (error == -ENOENT) 1383 goto no_entry; 1384 if (error < 0) { 1385 res = ERR_PTR(error); 1386 goto out_unblock_sillyrename; 1387 } 1388 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1389 res = ERR_CAST(inode); 1390 if (IS_ERR(res)) 1391 goto out_unblock_sillyrename; 1392 1393 /* Success: notify readdir to use READDIRPLUS */ 1394 nfs_advise_use_readdirplus(dir); 1395 1396 no_entry: 1397 res = d_materialise_unique(dentry, inode); 1398 if (res != NULL) { 1399 if (IS_ERR(res)) 1400 goto out_unblock_sillyrename; 1401 dentry = res; 1402 } 1403 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1404 out_unblock_sillyrename: 1405 nfs_unblock_sillyrename(parent); 1406 trace_nfs_lookup_exit(dir, dentry, flags, error); 1407 nfs4_label_free(label); 1408 out: 1409 nfs_free_fattr(fattr); 1410 nfs_free_fhandle(fhandle); 1411 return res; 1412 } 1413 EXPORT_SYMBOL_GPL(nfs_lookup); 1414 1415 #if IS_ENABLED(CONFIG_NFS_V4) 1416 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1417 1418 const struct dentry_operations nfs4_dentry_operations = { 1419 .d_revalidate = nfs4_lookup_revalidate, 1420 .d_delete = nfs_dentry_delete, 1421 .d_iput = nfs_dentry_iput, 1422 .d_automount = nfs_d_automount, 1423 .d_release = nfs_d_release, 1424 }; 1425 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1426 1427 static fmode_t flags_to_mode(int flags) 1428 { 1429 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1430 if ((flags & O_ACCMODE) != O_WRONLY) 1431 res |= FMODE_READ; 1432 if ((flags & O_ACCMODE) != O_RDONLY) 1433 res |= FMODE_WRITE; 1434 return res; 1435 } 1436 1437 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1438 { 1439 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1440 } 1441 1442 static int do_open(struct inode *inode, struct file *filp) 1443 { 1444 nfs_fscache_open_file(inode, filp); 1445 return 0; 1446 } 1447 1448 static int nfs_finish_open(struct nfs_open_context *ctx, 1449 struct dentry *dentry, 1450 struct file *file, unsigned open_flags, 1451 int *opened) 1452 { 1453 int err; 1454 1455 if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) 1456 *opened |= FILE_CREATED; 1457 1458 err = finish_open(file, dentry, do_open, opened); 1459 if (err) 1460 goto out; 1461 nfs_file_set_open_context(file, ctx); 1462 1463 out: 1464 return err; 1465 } 1466 1467 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1468 struct file *file, unsigned open_flags, 1469 umode_t mode, int *opened) 1470 { 1471 struct nfs_open_context *ctx; 1472 struct dentry *res; 1473 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1474 struct inode *inode; 1475 unsigned int lookup_flags = 0; 1476 int err; 1477 1478 /* Expect a negative dentry */ 1479 BUG_ON(dentry->d_inode); 1480 1481 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1482 dir->i_sb->s_id, dir->i_ino, dentry); 1483 1484 err = nfs_check_flags(open_flags); 1485 if (err) 1486 return err; 1487 1488 /* NFS only supports OPEN on regular files */ 1489 if ((open_flags & O_DIRECTORY)) { 1490 if (!d_unhashed(dentry)) { 1491 /* 1492 * Hashed negative dentry with O_DIRECTORY: dentry was 1493 * revalidated and is fine, no need to perform lookup 1494 * again 1495 */ 1496 return -ENOENT; 1497 } 1498 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1499 goto no_open; 1500 } 1501 1502 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1503 return -ENAMETOOLONG; 1504 1505 if (open_flags & O_CREAT) { 1506 attr.ia_valid |= ATTR_MODE; 1507 attr.ia_mode = mode & ~current_umask(); 1508 } 1509 if (open_flags & O_TRUNC) { 1510 attr.ia_valid |= ATTR_SIZE; 1511 attr.ia_size = 0; 1512 } 1513 1514 ctx = create_nfs_open_context(dentry, open_flags); 1515 err = PTR_ERR(ctx); 1516 if (IS_ERR(ctx)) 1517 goto out; 1518 1519 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1520 nfs_block_sillyrename(dentry->d_parent); 1521 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened); 1522 nfs_unblock_sillyrename(dentry->d_parent); 1523 if (IS_ERR(inode)) { 1524 err = PTR_ERR(inode); 1525 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1526 put_nfs_open_context(ctx); 1527 switch (err) { 1528 case -ENOENT: 1529 d_drop(dentry); 1530 d_add(dentry, NULL); 1531 break; 1532 case -EISDIR: 1533 case -ENOTDIR: 1534 goto no_open; 1535 case -ELOOP: 1536 if (!(open_flags & O_NOFOLLOW)) 1537 goto no_open; 1538 break; 1539 /* case -EINVAL: */ 1540 default: 1541 break; 1542 } 1543 goto out; 1544 } 1545 1546 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened); 1547 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1548 put_nfs_open_context(ctx); 1549 out: 1550 return err; 1551 1552 no_open: 1553 res = nfs_lookup(dir, dentry, lookup_flags); 1554 err = PTR_ERR(res); 1555 if (IS_ERR(res)) 1556 goto out; 1557 1558 return finish_no_open(file, res); 1559 } 1560 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1561 1562 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1563 { 1564 struct inode *inode; 1565 int ret = 0; 1566 1567 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1568 goto no_open; 1569 if (d_mountpoint(dentry)) 1570 goto no_open; 1571 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1572 goto no_open; 1573 1574 inode = dentry->d_inode; 1575 1576 /* We can't create new files in nfs_open_revalidate(), so we 1577 * optimize away revalidation of negative dentries. 1578 */ 1579 if (inode == NULL) { 1580 struct dentry *parent; 1581 struct inode *dir; 1582 1583 if (flags & LOOKUP_RCU) { 1584 parent = ACCESS_ONCE(dentry->d_parent); 1585 dir = ACCESS_ONCE(parent->d_inode); 1586 if (!dir) 1587 return -ECHILD; 1588 } else { 1589 parent = dget_parent(dentry); 1590 dir = parent->d_inode; 1591 } 1592 if (!nfs_neg_need_reval(dir, dentry, flags)) 1593 ret = 1; 1594 else if (flags & LOOKUP_RCU) 1595 ret = -ECHILD; 1596 if (!(flags & LOOKUP_RCU)) 1597 dput(parent); 1598 else if (parent != ACCESS_ONCE(dentry->d_parent)) 1599 return -ECHILD; 1600 goto out; 1601 } 1602 1603 /* NFS only supports OPEN on regular files */ 1604 if (!S_ISREG(inode->i_mode)) 1605 goto no_open; 1606 /* We cannot do exclusive creation on a positive dentry */ 1607 if (flags & LOOKUP_EXCL) 1608 goto no_open; 1609 1610 /* Let f_op->open() actually open (and revalidate) the file */ 1611 ret = 1; 1612 1613 out: 1614 return ret; 1615 1616 no_open: 1617 return nfs_lookup_revalidate(dentry, flags); 1618 } 1619 1620 #endif /* CONFIG_NFSV4 */ 1621 1622 /* 1623 * Code common to create, mkdir, and mknod. 1624 */ 1625 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1626 struct nfs_fattr *fattr, 1627 struct nfs4_label *label) 1628 { 1629 struct dentry *parent = dget_parent(dentry); 1630 struct inode *dir = parent->d_inode; 1631 struct inode *inode; 1632 int error = -EACCES; 1633 1634 d_drop(dentry); 1635 1636 /* We may have been initialized further down */ 1637 if (dentry->d_inode) 1638 goto out; 1639 if (fhandle->size == 0) { 1640 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1641 if (error) 1642 goto out_error; 1643 } 1644 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1645 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1646 struct nfs_server *server = NFS_SB(dentry->d_sb); 1647 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL); 1648 if (error < 0) 1649 goto out_error; 1650 } 1651 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1652 error = PTR_ERR(inode); 1653 if (IS_ERR(inode)) 1654 goto out_error; 1655 d_add(dentry, inode); 1656 out: 1657 dput(parent); 1658 return 0; 1659 out_error: 1660 nfs_mark_for_revalidate(dir); 1661 dput(parent); 1662 return error; 1663 } 1664 EXPORT_SYMBOL_GPL(nfs_instantiate); 1665 1666 /* 1667 * Following a failed create operation, we drop the dentry rather 1668 * than retain a negative dentry. This avoids a problem in the event 1669 * that the operation succeeded on the server, but an error in the 1670 * reply path made it appear to have failed. 1671 */ 1672 int nfs_create(struct inode *dir, struct dentry *dentry, 1673 umode_t mode, bool excl) 1674 { 1675 struct iattr attr; 1676 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1677 int error; 1678 1679 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1680 dir->i_sb->s_id, dir->i_ino, dentry); 1681 1682 attr.ia_mode = mode; 1683 attr.ia_valid = ATTR_MODE; 1684 1685 trace_nfs_create_enter(dir, dentry, open_flags); 1686 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1687 trace_nfs_create_exit(dir, dentry, open_flags, error); 1688 if (error != 0) 1689 goto out_err; 1690 return 0; 1691 out_err: 1692 d_drop(dentry); 1693 return error; 1694 } 1695 EXPORT_SYMBOL_GPL(nfs_create); 1696 1697 /* 1698 * See comments for nfs_proc_create regarding failed operations. 1699 */ 1700 int 1701 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1702 { 1703 struct iattr attr; 1704 int status; 1705 1706 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1707 dir->i_sb->s_id, dir->i_ino, dentry); 1708 1709 if (!new_valid_dev(rdev)) 1710 return -EINVAL; 1711 1712 attr.ia_mode = mode; 1713 attr.ia_valid = ATTR_MODE; 1714 1715 trace_nfs_mknod_enter(dir, dentry); 1716 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1717 trace_nfs_mknod_exit(dir, dentry, status); 1718 if (status != 0) 1719 goto out_err; 1720 return 0; 1721 out_err: 1722 d_drop(dentry); 1723 return status; 1724 } 1725 EXPORT_SYMBOL_GPL(nfs_mknod); 1726 1727 /* 1728 * See comments for nfs_proc_create regarding failed operations. 1729 */ 1730 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1731 { 1732 struct iattr attr; 1733 int error; 1734 1735 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1736 dir->i_sb->s_id, dir->i_ino, dentry); 1737 1738 attr.ia_valid = ATTR_MODE; 1739 attr.ia_mode = mode | S_IFDIR; 1740 1741 trace_nfs_mkdir_enter(dir, dentry); 1742 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1743 trace_nfs_mkdir_exit(dir, dentry, error); 1744 if (error != 0) 1745 goto out_err; 1746 return 0; 1747 out_err: 1748 d_drop(dentry); 1749 return error; 1750 } 1751 EXPORT_SYMBOL_GPL(nfs_mkdir); 1752 1753 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1754 { 1755 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1756 d_delete(dentry); 1757 } 1758 1759 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1760 { 1761 int error; 1762 1763 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1764 dir->i_sb->s_id, dir->i_ino, dentry); 1765 1766 trace_nfs_rmdir_enter(dir, dentry); 1767 if (dentry->d_inode) { 1768 nfs_wait_on_sillyrename(dentry); 1769 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1770 /* Ensure the VFS deletes this inode */ 1771 switch (error) { 1772 case 0: 1773 clear_nlink(dentry->d_inode); 1774 break; 1775 case -ENOENT: 1776 nfs_dentry_handle_enoent(dentry); 1777 } 1778 } else 1779 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1780 trace_nfs_rmdir_exit(dir, dentry, error); 1781 1782 return error; 1783 } 1784 EXPORT_SYMBOL_GPL(nfs_rmdir); 1785 1786 /* 1787 * Remove a file after making sure there are no pending writes, 1788 * and after checking that the file has only one user. 1789 * 1790 * We invalidate the attribute cache and free the inode prior to the operation 1791 * to avoid possible races if the server reuses the inode. 1792 */ 1793 static int nfs_safe_remove(struct dentry *dentry) 1794 { 1795 struct inode *dir = dentry->d_parent->d_inode; 1796 struct inode *inode = dentry->d_inode; 1797 int error = -EBUSY; 1798 1799 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1800 1801 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1802 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1803 error = 0; 1804 goto out; 1805 } 1806 1807 trace_nfs_remove_enter(dir, dentry); 1808 if (inode != NULL) { 1809 NFS_PROTO(inode)->return_delegation(inode); 1810 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1811 if (error == 0) 1812 nfs_drop_nlink(inode); 1813 } else 1814 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1815 if (error == -ENOENT) 1816 nfs_dentry_handle_enoent(dentry); 1817 trace_nfs_remove_exit(dir, dentry, error); 1818 out: 1819 return error; 1820 } 1821 1822 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1823 * belongs to an active ".nfs..." file and we return -EBUSY. 1824 * 1825 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1826 */ 1827 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1828 { 1829 int error; 1830 int need_rehash = 0; 1831 1832 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1833 dir->i_ino, dentry); 1834 1835 trace_nfs_unlink_enter(dir, dentry); 1836 spin_lock(&dentry->d_lock); 1837 if (d_count(dentry) > 1) { 1838 spin_unlock(&dentry->d_lock); 1839 /* Start asynchronous writeout of the inode */ 1840 write_inode_now(dentry->d_inode, 0); 1841 error = nfs_sillyrename(dir, dentry); 1842 goto out; 1843 } 1844 if (!d_unhashed(dentry)) { 1845 __d_drop(dentry); 1846 need_rehash = 1; 1847 } 1848 spin_unlock(&dentry->d_lock); 1849 error = nfs_safe_remove(dentry); 1850 if (!error || error == -ENOENT) { 1851 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1852 } else if (need_rehash) 1853 d_rehash(dentry); 1854 out: 1855 trace_nfs_unlink_exit(dir, dentry, error); 1856 return error; 1857 } 1858 EXPORT_SYMBOL_GPL(nfs_unlink); 1859 1860 /* 1861 * To create a symbolic link, most file systems instantiate a new inode, 1862 * add a page to it containing the path, then write it out to the disk 1863 * using prepare_write/commit_write. 1864 * 1865 * Unfortunately the NFS client can't create the in-core inode first 1866 * because it needs a file handle to create an in-core inode (see 1867 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1868 * symlink request has completed on the server. 1869 * 1870 * So instead we allocate a raw page, copy the symname into it, then do 1871 * the SYMLINK request with the page as the buffer. If it succeeds, we 1872 * now have a new file handle and can instantiate an in-core NFS inode 1873 * and move the raw page into its mapping. 1874 */ 1875 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1876 { 1877 struct page *page; 1878 char *kaddr; 1879 struct iattr attr; 1880 unsigned int pathlen = strlen(symname); 1881 int error; 1882 1883 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 1884 dir->i_ino, dentry, symname); 1885 1886 if (pathlen > PAGE_SIZE) 1887 return -ENAMETOOLONG; 1888 1889 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1890 attr.ia_valid = ATTR_MODE; 1891 1892 page = alloc_page(GFP_HIGHUSER); 1893 if (!page) 1894 return -ENOMEM; 1895 1896 kaddr = kmap_atomic(page); 1897 memcpy(kaddr, symname, pathlen); 1898 if (pathlen < PAGE_SIZE) 1899 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1900 kunmap_atomic(kaddr); 1901 1902 trace_nfs_symlink_enter(dir, dentry); 1903 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1904 trace_nfs_symlink_exit(dir, dentry, error); 1905 if (error != 0) { 1906 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 1907 dir->i_sb->s_id, dir->i_ino, 1908 dentry, symname, error); 1909 d_drop(dentry); 1910 __free_page(page); 1911 return error; 1912 } 1913 1914 /* 1915 * No big deal if we can't add this page to the page cache here. 1916 * READLINK will get the missing page from the server if needed. 1917 */ 1918 if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0, 1919 GFP_KERNEL)) { 1920 SetPageUptodate(page); 1921 unlock_page(page); 1922 /* 1923 * add_to_page_cache_lru() grabs an extra page refcount. 1924 * Drop it here to avoid leaking this page later. 1925 */ 1926 page_cache_release(page); 1927 } else 1928 __free_page(page); 1929 1930 return 0; 1931 } 1932 EXPORT_SYMBOL_GPL(nfs_symlink); 1933 1934 int 1935 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1936 { 1937 struct inode *inode = old_dentry->d_inode; 1938 int error; 1939 1940 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 1941 old_dentry, dentry); 1942 1943 trace_nfs_link_enter(inode, dir, dentry); 1944 NFS_PROTO(inode)->return_delegation(inode); 1945 1946 d_drop(dentry); 1947 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1948 if (error == 0) { 1949 ihold(inode); 1950 d_add(dentry, inode); 1951 } 1952 trace_nfs_link_exit(inode, dir, dentry, error); 1953 return error; 1954 } 1955 EXPORT_SYMBOL_GPL(nfs_link); 1956 1957 /* 1958 * RENAME 1959 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1960 * different file handle for the same inode after a rename (e.g. when 1961 * moving to a different directory). A fail-safe method to do so would 1962 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1963 * rename the old file using the sillyrename stuff. This way, the original 1964 * file in old_dir will go away when the last process iput()s the inode. 1965 * 1966 * FIXED. 1967 * 1968 * It actually works quite well. One needs to have the possibility for 1969 * at least one ".nfs..." file in each directory the file ever gets 1970 * moved or linked to which happens automagically with the new 1971 * implementation that only depends on the dcache stuff instead of 1972 * using the inode layer 1973 * 1974 * Unfortunately, things are a little more complicated than indicated 1975 * above. For a cross-directory move, we want to make sure we can get 1976 * rid of the old inode after the operation. This means there must be 1977 * no pending writes (if it's a file), and the use count must be 1. 1978 * If these conditions are met, we can drop the dentries before doing 1979 * the rename. 1980 */ 1981 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1982 struct inode *new_dir, struct dentry *new_dentry) 1983 { 1984 struct inode *old_inode = old_dentry->d_inode; 1985 struct inode *new_inode = new_dentry->d_inode; 1986 struct dentry *dentry = NULL, *rehash = NULL; 1987 struct rpc_task *task; 1988 int error = -EBUSY; 1989 1990 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 1991 old_dentry, new_dentry, 1992 d_count(new_dentry)); 1993 1994 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 1995 /* 1996 * For non-directories, check whether the target is busy and if so, 1997 * make a copy of the dentry and then do a silly-rename. If the 1998 * silly-rename succeeds, the copied dentry is hashed and becomes 1999 * the new target. 2000 */ 2001 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2002 /* 2003 * To prevent any new references to the target during the 2004 * rename, we unhash the dentry in advance. 2005 */ 2006 if (!d_unhashed(new_dentry)) { 2007 d_drop(new_dentry); 2008 rehash = new_dentry; 2009 } 2010 2011 if (d_count(new_dentry) > 2) { 2012 int err; 2013 2014 /* copy the target dentry's name */ 2015 dentry = d_alloc(new_dentry->d_parent, 2016 &new_dentry->d_name); 2017 if (!dentry) 2018 goto out; 2019 2020 /* silly-rename the existing target ... */ 2021 err = nfs_sillyrename(new_dir, new_dentry); 2022 if (err) 2023 goto out; 2024 2025 new_dentry = dentry; 2026 rehash = NULL; 2027 new_inode = NULL; 2028 } 2029 } 2030 2031 NFS_PROTO(old_inode)->return_delegation(old_inode); 2032 if (new_inode != NULL) 2033 NFS_PROTO(new_inode)->return_delegation(new_inode); 2034 2035 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2036 if (IS_ERR(task)) { 2037 error = PTR_ERR(task); 2038 goto out; 2039 } 2040 2041 error = rpc_wait_for_completion_task(task); 2042 if (error == 0) 2043 error = task->tk_status; 2044 rpc_put_task(task); 2045 nfs_mark_for_revalidate(old_inode); 2046 out: 2047 if (rehash) 2048 d_rehash(rehash); 2049 trace_nfs_rename_exit(old_dir, old_dentry, 2050 new_dir, new_dentry, error); 2051 if (!error) { 2052 if (new_inode != NULL) 2053 nfs_drop_nlink(new_inode); 2054 d_move(old_dentry, new_dentry); 2055 nfs_set_verifier(new_dentry, 2056 nfs_save_change_attribute(new_dir)); 2057 } else if (error == -ENOENT) 2058 nfs_dentry_handle_enoent(old_dentry); 2059 2060 /* new dentry created? */ 2061 if (dentry) 2062 dput(dentry); 2063 return error; 2064 } 2065 EXPORT_SYMBOL_GPL(nfs_rename); 2066 2067 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2068 static LIST_HEAD(nfs_access_lru_list); 2069 static atomic_long_t nfs_access_nr_entries; 2070 2071 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2072 module_param(nfs_access_max_cachesize, ulong, 0644); 2073 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2074 2075 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2076 { 2077 put_rpccred(entry->cred); 2078 kfree_rcu(entry, rcu_head); 2079 smp_mb__before_atomic(); 2080 atomic_long_dec(&nfs_access_nr_entries); 2081 smp_mb__after_atomic(); 2082 } 2083 2084 static void nfs_access_free_list(struct list_head *head) 2085 { 2086 struct nfs_access_entry *cache; 2087 2088 while (!list_empty(head)) { 2089 cache = list_entry(head->next, struct nfs_access_entry, lru); 2090 list_del(&cache->lru); 2091 nfs_access_free_entry(cache); 2092 } 2093 } 2094 2095 static unsigned long 2096 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2097 { 2098 LIST_HEAD(head); 2099 struct nfs_inode *nfsi, *next; 2100 struct nfs_access_entry *cache; 2101 long freed = 0; 2102 2103 spin_lock(&nfs_access_lru_lock); 2104 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2105 struct inode *inode; 2106 2107 if (nr_to_scan-- == 0) 2108 break; 2109 inode = &nfsi->vfs_inode; 2110 spin_lock(&inode->i_lock); 2111 if (list_empty(&nfsi->access_cache_entry_lru)) 2112 goto remove_lru_entry; 2113 cache = list_entry(nfsi->access_cache_entry_lru.next, 2114 struct nfs_access_entry, lru); 2115 list_move(&cache->lru, &head); 2116 rb_erase(&cache->rb_node, &nfsi->access_cache); 2117 freed++; 2118 if (!list_empty(&nfsi->access_cache_entry_lru)) 2119 list_move_tail(&nfsi->access_cache_inode_lru, 2120 &nfs_access_lru_list); 2121 else { 2122 remove_lru_entry: 2123 list_del_init(&nfsi->access_cache_inode_lru); 2124 smp_mb__before_atomic(); 2125 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2126 smp_mb__after_atomic(); 2127 } 2128 spin_unlock(&inode->i_lock); 2129 } 2130 spin_unlock(&nfs_access_lru_lock); 2131 nfs_access_free_list(&head); 2132 return freed; 2133 } 2134 2135 unsigned long 2136 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2137 { 2138 int nr_to_scan = sc->nr_to_scan; 2139 gfp_t gfp_mask = sc->gfp_mask; 2140 2141 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2142 return SHRINK_STOP; 2143 return nfs_do_access_cache_scan(nr_to_scan); 2144 } 2145 2146 2147 unsigned long 2148 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2149 { 2150 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2151 } 2152 2153 static void 2154 nfs_access_cache_enforce_limit(void) 2155 { 2156 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2157 unsigned long diff; 2158 unsigned int nr_to_scan; 2159 2160 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2161 return; 2162 nr_to_scan = 100; 2163 diff = nr_entries - nfs_access_max_cachesize; 2164 if (diff < nr_to_scan) 2165 nr_to_scan = diff; 2166 nfs_do_access_cache_scan(nr_to_scan); 2167 } 2168 2169 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2170 { 2171 struct rb_root *root_node = &nfsi->access_cache; 2172 struct rb_node *n; 2173 struct nfs_access_entry *entry; 2174 2175 /* Unhook entries from the cache */ 2176 while ((n = rb_first(root_node)) != NULL) { 2177 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2178 rb_erase(n, root_node); 2179 list_move(&entry->lru, head); 2180 } 2181 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2182 } 2183 2184 void nfs_access_zap_cache(struct inode *inode) 2185 { 2186 LIST_HEAD(head); 2187 2188 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2189 return; 2190 /* Remove from global LRU init */ 2191 spin_lock(&nfs_access_lru_lock); 2192 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2193 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2194 2195 spin_lock(&inode->i_lock); 2196 __nfs_access_zap_cache(NFS_I(inode), &head); 2197 spin_unlock(&inode->i_lock); 2198 spin_unlock(&nfs_access_lru_lock); 2199 nfs_access_free_list(&head); 2200 } 2201 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2202 2203 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2204 { 2205 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2206 struct nfs_access_entry *entry; 2207 2208 while (n != NULL) { 2209 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2210 2211 if (cred < entry->cred) 2212 n = n->rb_left; 2213 else if (cred > entry->cred) 2214 n = n->rb_right; 2215 else 2216 return entry; 2217 } 2218 return NULL; 2219 } 2220 2221 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2222 { 2223 struct nfs_inode *nfsi = NFS_I(inode); 2224 struct nfs_access_entry *cache; 2225 int err = -ENOENT; 2226 2227 spin_lock(&inode->i_lock); 2228 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2229 goto out_zap; 2230 cache = nfs_access_search_rbtree(inode, cred); 2231 if (cache == NULL) 2232 goto out; 2233 if (!nfs_have_delegated_attributes(inode) && 2234 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2235 goto out_stale; 2236 res->jiffies = cache->jiffies; 2237 res->cred = cache->cred; 2238 res->mask = cache->mask; 2239 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2240 err = 0; 2241 out: 2242 spin_unlock(&inode->i_lock); 2243 return err; 2244 out_stale: 2245 rb_erase(&cache->rb_node, &nfsi->access_cache); 2246 list_del(&cache->lru); 2247 spin_unlock(&inode->i_lock); 2248 nfs_access_free_entry(cache); 2249 return -ENOENT; 2250 out_zap: 2251 spin_unlock(&inode->i_lock); 2252 nfs_access_zap_cache(inode); 2253 return -ENOENT; 2254 } 2255 2256 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2257 { 2258 /* Only check the most recently returned cache entry, 2259 * but do it without locking. 2260 */ 2261 struct nfs_inode *nfsi = NFS_I(inode); 2262 struct nfs_access_entry *cache; 2263 int err = -ECHILD; 2264 struct list_head *lh; 2265 2266 rcu_read_lock(); 2267 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2268 goto out; 2269 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2270 cache = list_entry(lh, struct nfs_access_entry, lru); 2271 if (lh == &nfsi->access_cache_entry_lru || 2272 cred != cache->cred) 2273 cache = NULL; 2274 if (cache == NULL) 2275 goto out; 2276 if (!nfs_have_delegated_attributes(inode) && 2277 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2278 goto out; 2279 res->jiffies = cache->jiffies; 2280 res->cred = cache->cred; 2281 res->mask = cache->mask; 2282 err = 0; 2283 out: 2284 rcu_read_unlock(); 2285 return err; 2286 } 2287 2288 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2289 { 2290 struct nfs_inode *nfsi = NFS_I(inode); 2291 struct rb_root *root_node = &nfsi->access_cache; 2292 struct rb_node **p = &root_node->rb_node; 2293 struct rb_node *parent = NULL; 2294 struct nfs_access_entry *entry; 2295 2296 spin_lock(&inode->i_lock); 2297 while (*p != NULL) { 2298 parent = *p; 2299 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2300 2301 if (set->cred < entry->cred) 2302 p = &parent->rb_left; 2303 else if (set->cred > entry->cred) 2304 p = &parent->rb_right; 2305 else 2306 goto found; 2307 } 2308 rb_link_node(&set->rb_node, parent, p); 2309 rb_insert_color(&set->rb_node, root_node); 2310 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2311 spin_unlock(&inode->i_lock); 2312 return; 2313 found: 2314 rb_replace_node(parent, &set->rb_node, root_node); 2315 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2316 list_del(&entry->lru); 2317 spin_unlock(&inode->i_lock); 2318 nfs_access_free_entry(entry); 2319 } 2320 2321 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2322 { 2323 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2324 if (cache == NULL) 2325 return; 2326 RB_CLEAR_NODE(&cache->rb_node); 2327 cache->jiffies = set->jiffies; 2328 cache->cred = get_rpccred(set->cred); 2329 cache->mask = set->mask; 2330 2331 /* The above field assignments must be visible 2332 * before this item appears on the lru. We cannot easily 2333 * use rcu_assign_pointer, so just force the memory barrier. 2334 */ 2335 smp_wmb(); 2336 nfs_access_add_rbtree(inode, cache); 2337 2338 /* Update accounting */ 2339 smp_mb__before_atomic(); 2340 atomic_long_inc(&nfs_access_nr_entries); 2341 smp_mb__after_atomic(); 2342 2343 /* Add inode to global LRU list */ 2344 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2345 spin_lock(&nfs_access_lru_lock); 2346 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2347 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2348 &nfs_access_lru_list); 2349 spin_unlock(&nfs_access_lru_lock); 2350 } 2351 nfs_access_cache_enforce_limit(); 2352 } 2353 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2354 2355 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2356 { 2357 entry->mask = 0; 2358 if (access_result & NFS4_ACCESS_READ) 2359 entry->mask |= MAY_READ; 2360 if (access_result & 2361 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2362 entry->mask |= MAY_WRITE; 2363 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2364 entry->mask |= MAY_EXEC; 2365 } 2366 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2367 2368 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2369 { 2370 struct nfs_access_entry cache; 2371 int status; 2372 2373 trace_nfs_access_enter(inode); 2374 2375 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2376 if (status != 0) 2377 status = nfs_access_get_cached(inode, cred, &cache); 2378 if (status == 0) 2379 goto out_cached; 2380 2381 status = -ECHILD; 2382 if (mask & MAY_NOT_BLOCK) 2383 goto out; 2384 2385 /* Be clever: ask server to check for all possible rights */ 2386 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2387 cache.cred = cred; 2388 cache.jiffies = jiffies; 2389 status = NFS_PROTO(inode)->access(inode, &cache); 2390 if (status != 0) { 2391 if (status == -ESTALE) { 2392 nfs_zap_caches(inode); 2393 if (!S_ISDIR(inode->i_mode)) 2394 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2395 } 2396 goto out; 2397 } 2398 nfs_access_add_cache(inode, &cache); 2399 out_cached: 2400 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2401 status = -EACCES; 2402 out: 2403 trace_nfs_access_exit(inode, status); 2404 return status; 2405 } 2406 2407 static int nfs_open_permission_mask(int openflags) 2408 { 2409 int mask = 0; 2410 2411 if (openflags & __FMODE_EXEC) { 2412 /* ONLY check exec rights */ 2413 mask = MAY_EXEC; 2414 } else { 2415 if ((openflags & O_ACCMODE) != O_WRONLY) 2416 mask |= MAY_READ; 2417 if ((openflags & O_ACCMODE) != O_RDONLY) 2418 mask |= MAY_WRITE; 2419 } 2420 2421 return mask; 2422 } 2423 2424 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2425 { 2426 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2427 } 2428 EXPORT_SYMBOL_GPL(nfs_may_open); 2429 2430 int nfs_permission(struct inode *inode, int mask) 2431 { 2432 struct rpc_cred *cred; 2433 int res = 0; 2434 2435 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2436 2437 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2438 goto out; 2439 /* Is this sys_access() ? */ 2440 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2441 goto force_lookup; 2442 2443 switch (inode->i_mode & S_IFMT) { 2444 case S_IFLNK: 2445 goto out; 2446 case S_IFREG: 2447 break; 2448 case S_IFDIR: 2449 /* 2450 * Optimize away all write operations, since the server 2451 * will check permissions when we perform the op. 2452 */ 2453 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2454 goto out; 2455 } 2456 2457 force_lookup: 2458 if (!NFS_PROTO(inode)->access) 2459 goto out_notsup; 2460 2461 /* Always try fast lookups first */ 2462 rcu_read_lock(); 2463 cred = rpc_lookup_cred_nonblock(); 2464 if (!IS_ERR(cred)) 2465 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2466 else 2467 res = PTR_ERR(cred); 2468 rcu_read_unlock(); 2469 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2470 /* Fast lookup failed, try the slow way */ 2471 cred = rpc_lookup_cred(); 2472 if (!IS_ERR(cred)) { 2473 res = nfs_do_access(inode, cred, mask); 2474 put_rpccred(cred); 2475 } else 2476 res = PTR_ERR(cred); 2477 } 2478 out: 2479 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2480 res = -EACCES; 2481 2482 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2483 inode->i_sb->s_id, inode->i_ino, mask, res); 2484 return res; 2485 out_notsup: 2486 if (mask & MAY_NOT_BLOCK) 2487 return -ECHILD; 2488 2489 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2490 if (res == 0) 2491 res = generic_permission(inode, mask); 2492 goto out; 2493 } 2494 EXPORT_SYMBOL_GPL(nfs_permission); 2495 2496 /* 2497 * Local variables: 2498 * version-control: t 2499 * kept-new-versions: 5 2500 * End: 2501 */ 2502