1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/time.h> 21 #include <linux/errno.h> 22 #include <linux/stat.h> 23 #include <linux/fcntl.h> 24 #include <linux/string.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/nfs_fs.h> 30 #include <linux/nfs_mount.h> 31 #include <linux/pagemap.h> 32 #include <linux/smp_lock.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/sched.h> 37 38 #include "nfs4_fs.h" 39 #include "delegation.h" 40 #include "iostat.h" 41 42 /* #define NFS_DEBUG_VERBOSE 1 */ 43 44 static int nfs_opendir(struct inode *, struct file *); 45 static int nfs_readdir(struct file *, void *, filldir_t); 46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *); 47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *); 48 static int nfs_mkdir(struct inode *, struct dentry *, int); 49 static int nfs_rmdir(struct inode *, struct dentry *); 50 static int nfs_unlink(struct inode *, struct dentry *); 51 static int nfs_symlink(struct inode *, struct dentry *, const char *); 52 static int nfs_link(struct dentry *, struct inode *, struct dentry *); 53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t); 54 static int nfs_rename(struct inode *, struct dentry *, 55 struct inode *, struct dentry *); 56 static int nfs_fsync_dir(struct file *, struct dentry *, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 59 const struct file_operations nfs_dir_operations = { 60 .llseek = nfs_llseek_dir, 61 .read = generic_read_dir, 62 .readdir = nfs_readdir, 63 .open = nfs_opendir, 64 .release = nfs_release, 65 .fsync = nfs_fsync_dir, 66 }; 67 68 const struct inode_operations nfs_dir_inode_operations = { 69 .create = nfs_create, 70 .lookup = nfs_lookup, 71 .link = nfs_link, 72 .unlink = nfs_unlink, 73 .symlink = nfs_symlink, 74 .mkdir = nfs_mkdir, 75 .rmdir = nfs_rmdir, 76 .mknod = nfs_mknod, 77 .rename = nfs_rename, 78 .permission = nfs_permission, 79 .getattr = nfs_getattr, 80 .setattr = nfs_setattr, 81 }; 82 83 #ifdef CONFIG_NFS_V3 84 const struct inode_operations nfs3_dir_inode_operations = { 85 .create = nfs_create, 86 .lookup = nfs_lookup, 87 .link = nfs_link, 88 .unlink = nfs_unlink, 89 .symlink = nfs_symlink, 90 .mkdir = nfs_mkdir, 91 .rmdir = nfs_rmdir, 92 .mknod = nfs_mknod, 93 .rename = nfs_rename, 94 .permission = nfs_permission, 95 .getattr = nfs_getattr, 96 .setattr = nfs_setattr, 97 .listxattr = nfs3_listxattr, 98 .getxattr = nfs3_getxattr, 99 .setxattr = nfs3_setxattr, 100 .removexattr = nfs3_removexattr, 101 }; 102 #endif /* CONFIG_NFS_V3 */ 103 104 #ifdef CONFIG_NFS_V4 105 106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *); 107 const struct inode_operations nfs4_dir_inode_operations = { 108 .create = nfs_create, 109 .lookup = nfs_atomic_lookup, 110 .link = nfs_link, 111 .unlink = nfs_unlink, 112 .symlink = nfs_symlink, 113 .mkdir = nfs_mkdir, 114 .rmdir = nfs_rmdir, 115 .mknod = nfs_mknod, 116 .rename = nfs_rename, 117 .permission = nfs_permission, 118 .getattr = nfs_getattr, 119 .setattr = nfs_setattr, 120 .getxattr = nfs4_getxattr, 121 .setxattr = nfs4_setxattr, 122 .listxattr = nfs4_listxattr, 123 }; 124 125 #endif /* CONFIG_NFS_V4 */ 126 127 /* 128 * Open file 129 */ 130 static int 131 nfs_opendir(struct inode *inode, struct file *filp) 132 { 133 int res; 134 135 dfprintk(VFS, "NFS: opendir(%s/%ld)\n", 136 inode->i_sb->s_id, inode->i_ino); 137 138 lock_kernel(); 139 /* Call generic open code in order to cache credentials */ 140 res = nfs_open(inode, filp); 141 unlock_kernel(); 142 return res; 143 } 144 145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int); 146 typedef struct { 147 struct file *file; 148 struct page *page; 149 unsigned long page_index; 150 __be32 *ptr; 151 u64 *dir_cookie; 152 loff_t current_index; 153 struct nfs_entry *entry; 154 decode_dirent_t decode; 155 int plus; 156 int error; 157 unsigned long timestamp; 158 int timestamp_valid; 159 } nfs_readdir_descriptor_t; 160 161 /* Now we cache directories properly, by stuffing the dirent 162 * data directly in the page cache. 163 * 164 * Inode invalidation due to refresh etc. takes care of 165 * _everything_, no sloppy entry flushing logic, no extraneous 166 * copying, network direct to page cache, the way it was meant 167 * to be. 168 * 169 * NOTE: Dirent information verification is done always by the 170 * page-in of the RPC reply, nowhere else, this simplies 171 * things substantially. 172 */ 173 static 174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page) 175 { 176 struct file *file = desc->file; 177 struct inode *inode = file->f_path.dentry->d_inode; 178 struct rpc_cred *cred = nfs_file_cred(file); 179 unsigned long timestamp; 180 int error; 181 182 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n", 183 __FUNCTION__, (long long)desc->entry->cookie, 184 page->index); 185 186 again: 187 timestamp = jiffies; 188 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page, 189 NFS_SERVER(inode)->dtsize, desc->plus); 190 if (error < 0) { 191 /* We requested READDIRPLUS, but the server doesn't grok it */ 192 if (error == -ENOTSUPP && desc->plus) { 193 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 194 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode)); 195 desc->plus = 0; 196 goto again; 197 } 198 goto error; 199 } 200 desc->timestamp = timestamp; 201 desc->timestamp_valid = 1; 202 SetPageUptodate(page); 203 spin_lock(&inode->i_lock); 204 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME; 205 spin_unlock(&inode->i_lock); 206 /* Ensure consistent page alignment of the data. 207 * Note: assumes we have exclusive access to this mapping either 208 * through inode->i_mutex or some other mechanism. 209 */ 210 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) { 211 /* Should never happen */ 212 nfs_zap_mapping(inode, inode->i_mapping); 213 } 214 unlock_page(page); 215 return 0; 216 error: 217 SetPageError(page); 218 unlock_page(page); 219 nfs_zap_caches(inode); 220 desc->error = error; 221 return -EIO; 222 } 223 224 static inline 225 int dir_decode(nfs_readdir_descriptor_t *desc) 226 { 227 __be32 *p = desc->ptr; 228 p = desc->decode(p, desc->entry, desc->plus); 229 if (IS_ERR(p)) 230 return PTR_ERR(p); 231 desc->ptr = p; 232 if (desc->timestamp_valid) 233 desc->entry->fattr->time_start = desc->timestamp; 234 else 235 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR; 236 return 0; 237 } 238 239 static inline 240 void dir_page_release(nfs_readdir_descriptor_t *desc) 241 { 242 kunmap(desc->page); 243 page_cache_release(desc->page); 244 desc->page = NULL; 245 desc->ptr = NULL; 246 } 247 248 /* 249 * Given a pointer to a buffer that has already been filled by a call 250 * to readdir, find the next entry with cookie '*desc->dir_cookie'. 251 * 252 * If the end of the buffer has been reached, return -EAGAIN, if not, 253 * return the offset within the buffer of the next entry to be 254 * read. 255 */ 256 static inline 257 int find_dirent(nfs_readdir_descriptor_t *desc) 258 { 259 struct nfs_entry *entry = desc->entry; 260 int loop_count = 0, 261 status; 262 263 while((status = dir_decode(desc)) == 0) { 264 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n", 265 __FUNCTION__, (unsigned long long)entry->cookie); 266 if (entry->prev_cookie == *desc->dir_cookie) 267 break; 268 if (loop_count++ > 200) { 269 loop_count = 0; 270 schedule(); 271 } 272 } 273 return status; 274 } 275 276 /* 277 * Given a pointer to a buffer that has already been filled by a call 278 * to readdir, find the entry at offset 'desc->file->f_pos'. 279 * 280 * If the end of the buffer has been reached, return -EAGAIN, if not, 281 * return the offset within the buffer of the next entry to be 282 * read. 283 */ 284 static inline 285 int find_dirent_index(nfs_readdir_descriptor_t *desc) 286 { 287 struct nfs_entry *entry = desc->entry; 288 int loop_count = 0, 289 status; 290 291 for(;;) { 292 status = dir_decode(desc); 293 if (status) 294 break; 295 296 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n", 297 (unsigned long long)entry->cookie, desc->current_index); 298 299 if (desc->file->f_pos == desc->current_index) { 300 *desc->dir_cookie = entry->cookie; 301 break; 302 } 303 desc->current_index++; 304 if (loop_count++ > 200) { 305 loop_count = 0; 306 schedule(); 307 } 308 } 309 return status; 310 } 311 312 /* 313 * Find the given page, and call find_dirent() or find_dirent_index in 314 * order to try to return the next entry. 315 */ 316 static inline 317 int find_dirent_page(nfs_readdir_descriptor_t *desc) 318 { 319 struct inode *inode = desc->file->f_path.dentry->d_inode; 320 struct page *page; 321 int status; 322 323 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n", 324 __FUNCTION__, desc->page_index, 325 (long long) *desc->dir_cookie); 326 327 /* If we find the page in the page_cache, we cannot be sure 328 * how fresh the data is, so we will ignore readdir_plus attributes. 329 */ 330 desc->timestamp_valid = 0; 331 page = read_cache_page(inode->i_mapping, desc->page_index, 332 (filler_t *)nfs_readdir_filler, desc); 333 if (IS_ERR(page)) { 334 status = PTR_ERR(page); 335 goto out; 336 } 337 338 /* NOTE: Someone else may have changed the READDIRPLUS flag */ 339 desc->page = page; 340 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 341 if (*desc->dir_cookie != 0) 342 status = find_dirent(desc); 343 else 344 status = find_dirent_index(desc); 345 if (status < 0) 346 dir_page_release(desc); 347 out: 348 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status); 349 return status; 350 } 351 352 /* 353 * Recurse through the page cache pages, and return a 354 * filled nfs_entry structure of the next directory entry if possible. 355 * 356 * The target for the search is '*desc->dir_cookie' if non-0, 357 * 'desc->file->f_pos' otherwise 358 */ 359 static inline 360 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 361 { 362 int loop_count = 0; 363 int res; 364 365 /* Always search-by-index from the beginning of the cache */ 366 if (*desc->dir_cookie == 0) { 367 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n", 368 (long long)desc->file->f_pos); 369 desc->page_index = 0; 370 desc->entry->cookie = desc->entry->prev_cookie = 0; 371 desc->entry->eof = 0; 372 desc->current_index = 0; 373 } else 374 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n", 375 (unsigned long long)*desc->dir_cookie); 376 377 for (;;) { 378 res = find_dirent_page(desc); 379 if (res != -EAGAIN) 380 break; 381 /* Align to beginning of next page */ 382 desc->page_index ++; 383 if (loop_count++ > 200) { 384 loop_count = 0; 385 schedule(); 386 } 387 } 388 389 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res); 390 return res; 391 } 392 393 static inline unsigned int dt_type(struct inode *inode) 394 { 395 return (inode->i_mode >> 12) & 15; 396 } 397 398 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc); 399 400 /* 401 * Once we've found the start of the dirent within a page: fill 'er up... 402 */ 403 static 404 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 405 filldir_t filldir) 406 { 407 struct file *file = desc->file; 408 struct nfs_entry *entry = desc->entry; 409 struct dentry *dentry = NULL; 410 u64 fileid; 411 int loop_count = 0, 412 res; 413 414 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n", 415 (unsigned long long)entry->cookie); 416 417 for(;;) { 418 unsigned d_type = DT_UNKNOWN; 419 /* Note: entry->prev_cookie contains the cookie for 420 * retrieving the current dirent on the server */ 421 fileid = entry->ino; 422 423 /* Get a dentry if we have one */ 424 if (dentry != NULL) 425 dput(dentry); 426 dentry = nfs_readdir_lookup(desc); 427 428 /* Use readdirplus info */ 429 if (dentry != NULL && dentry->d_inode != NULL) { 430 d_type = dt_type(dentry->d_inode); 431 fileid = NFS_FILEID(dentry->d_inode); 432 } 433 434 res = filldir(dirent, entry->name, entry->len, 435 file->f_pos, fileid, d_type); 436 if (res < 0) 437 break; 438 file->f_pos++; 439 *desc->dir_cookie = entry->cookie; 440 if (dir_decode(desc) != 0) { 441 desc->page_index ++; 442 break; 443 } 444 if (loop_count++ > 200) { 445 loop_count = 0; 446 schedule(); 447 } 448 } 449 dir_page_release(desc); 450 if (dentry != NULL) 451 dput(dentry); 452 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 453 (unsigned long long)*desc->dir_cookie, res); 454 return res; 455 } 456 457 /* 458 * If we cannot find a cookie in our cache, we suspect that this is 459 * because it points to a deleted file, so we ask the server to return 460 * whatever it thinks is the next entry. We then feed this to filldir. 461 * If all goes well, we should then be able to find our way round the 462 * cache on the next call to readdir_search_pagecache(); 463 * 464 * NOTE: we cannot add the anonymous page to the pagecache because 465 * the data it contains might not be page aligned. Besides, 466 * we should already have a complete representation of the 467 * directory in the page cache by the time we get here. 468 */ 469 static inline 470 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 471 filldir_t filldir) 472 { 473 struct file *file = desc->file; 474 struct inode *inode = file->f_path.dentry->d_inode; 475 struct rpc_cred *cred = nfs_file_cred(file); 476 struct page *page = NULL; 477 int status; 478 unsigned long timestamp; 479 480 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 481 (unsigned long long)*desc->dir_cookie); 482 483 page = alloc_page(GFP_HIGHUSER); 484 if (!page) { 485 status = -ENOMEM; 486 goto out; 487 } 488 timestamp = jiffies; 489 desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie, 490 page, 491 NFS_SERVER(inode)->dtsize, 492 desc->plus); 493 spin_lock(&inode->i_lock); 494 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME; 495 spin_unlock(&inode->i_lock); 496 desc->page = page; 497 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 498 if (desc->error >= 0) { 499 desc->timestamp = timestamp; 500 desc->timestamp_valid = 1; 501 if ((status = dir_decode(desc)) == 0) 502 desc->entry->prev_cookie = *desc->dir_cookie; 503 } else 504 status = -EIO; 505 if (status < 0) 506 goto out_release; 507 508 status = nfs_do_filldir(desc, dirent, filldir); 509 510 /* Reset read descriptor so it searches the page cache from 511 * the start upon the next call to readdir_search_pagecache() */ 512 desc->page_index = 0; 513 desc->entry->cookie = desc->entry->prev_cookie = 0; 514 desc->entry->eof = 0; 515 out: 516 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 517 __FUNCTION__, status); 518 return status; 519 out_release: 520 dir_page_release(desc); 521 goto out; 522 } 523 524 /* The file offset position represents the dirent entry number. A 525 last cookie cache takes care of the common case of reading the 526 whole directory. 527 */ 528 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 529 { 530 struct dentry *dentry = filp->f_path.dentry; 531 struct inode *inode = dentry->d_inode; 532 nfs_readdir_descriptor_t my_desc, 533 *desc = &my_desc; 534 struct nfs_entry my_entry; 535 struct nfs_fh fh; 536 struct nfs_fattr fattr; 537 long res; 538 539 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n", 540 dentry->d_parent->d_name.name, dentry->d_name.name, 541 (long long)filp->f_pos); 542 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 543 544 lock_kernel(); 545 546 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping); 547 if (res < 0) { 548 unlock_kernel(); 549 return res; 550 } 551 552 /* 553 * filp->f_pos points to the dirent entry number. 554 * *desc->dir_cookie has the cookie for the next entry. We have 555 * to either find the entry with the appropriate number or 556 * revalidate the cookie. 557 */ 558 memset(desc, 0, sizeof(*desc)); 559 560 desc->file = filp; 561 desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie; 562 desc->decode = NFS_PROTO(inode)->decode_dirent; 563 desc->plus = NFS_USE_READDIRPLUS(inode); 564 565 my_entry.cookie = my_entry.prev_cookie = 0; 566 my_entry.eof = 0; 567 my_entry.fh = &fh; 568 my_entry.fattr = &fattr; 569 nfs_fattr_init(&fattr); 570 desc->entry = &my_entry; 571 572 while(!desc->entry->eof) { 573 res = readdir_search_pagecache(desc); 574 575 if (res == -EBADCOOKIE) { 576 /* This means either end of directory */ 577 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) { 578 /* Or that the server has 'lost' a cookie */ 579 res = uncached_readdir(desc, dirent, filldir); 580 if (res >= 0) 581 continue; 582 } 583 res = 0; 584 break; 585 } 586 if (res == -ETOOSMALL && desc->plus) { 587 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode)); 588 nfs_zap_caches(inode); 589 desc->plus = 0; 590 desc->entry->eof = 0; 591 continue; 592 } 593 if (res < 0) 594 break; 595 596 res = nfs_do_filldir(desc, dirent, filldir); 597 if (res < 0) { 598 res = 0; 599 break; 600 } 601 } 602 unlock_kernel(); 603 if (res > 0) 604 res = 0; 605 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n", 606 dentry->d_parent->d_name.name, dentry->d_name.name, 607 res); 608 return res; 609 } 610 611 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 612 { 613 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex); 614 switch (origin) { 615 case 1: 616 offset += filp->f_pos; 617 case 0: 618 if (offset >= 0) 619 break; 620 default: 621 offset = -EINVAL; 622 goto out; 623 } 624 if (offset != filp->f_pos) { 625 filp->f_pos = offset; 626 ((struct nfs_open_context *)filp->private_data)->dir_cookie = 0; 627 } 628 out: 629 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex); 630 return offset; 631 } 632 633 /* 634 * All directory operations under NFS are synchronous, so fsync() 635 * is a dummy operation. 636 */ 637 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync) 638 { 639 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n", 640 dentry->d_parent->d_name.name, dentry->d_name.name, 641 datasync); 642 643 return 0; 644 } 645 646 /* 647 * A check for whether or not the parent directory has changed. 648 * In the case it has, we assume that the dentries are untrustworthy 649 * and may need to be looked up again. 650 */ 651 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 652 { 653 unsigned long verf; 654 655 if (IS_ROOT(dentry)) 656 return 1; 657 verf = dentry->d_time; 658 if (nfs_caches_unstable(dir) 659 || verf != NFS_I(dir)->cache_change_attribute) 660 return 0; 661 return 1; 662 } 663 664 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf) 665 { 666 dentry->d_time = verf; 667 } 668 669 /* 670 * Return the intent data that applies to this particular path component 671 * 672 * Note that the current set of intents only apply to the very last 673 * component of the path. 674 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT. 675 */ 676 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask) 677 { 678 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT)) 679 return 0; 680 return nd->flags & mask; 681 } 682 683 /* 684 * Inode and filehandle revalidation for lookups. 685 * 686 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 687 * or if the intent information indicates that we're about to open this 688 * particular file and the "nocto" mount flag is not set. 689 * 690 */ 691 static inline 692 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd) 693 { 694 struct nfs_server *server = NFS_SERVER(inode); 695 696 if (nd != NULL) { 697 /* VFS wants an on-the-wire revalidation */ 698 if (nd->flags & LOOKUP_REVAL) 699 goto out_force; 700 /* This is an open(2) */ 701 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 && 702 !(server->flags & NFS_MOUNT_NOCTO) && 703 (S_ISREG(inode->i_mode) || 704 S_ISDIR(inode->i_mode))) 705 goto out_force; 706 } 707 return nfs_revalidate_inode(server, inode); 708 out_force: 709 return __nfs_revalidate_inode(server, inode); 710 } 711 712 /* 713 * We judge how long we want to trust negative 714 * dentries by looking at the parent inode mtime. 715 * 716 * If parent mtime has changed, we revalidate, else we wait for a 717 * period corresponding to the parent's attribute cache timeout value. 718 */ 719 static inline 720 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 721 struct nameidata *nd) 722 { 723 /* Don't revalidate a negative dentry if we're creating a new file */ 724 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0) 725 return 0; 726 return !nfs_check_verifier(dir, dentry); 727 } 728 729 /* 730 * This is called every time the dcache has a lookup hit, 731 * and we should check whether we can really trust that 732 * lookup. 733 * 734 * NOTE! The hit can be a negative hit too, don't assume 735 * we have an inode! 736 * 737 * If the parent directory is seen to have changed, we throw out the 738 * cached dentry and do a new lookup. 739 */ 740 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd) 741 { 742 struct inode *dir; 743 struct inode *inode; 744 struct dentry *parent; 745 int error; 746 struct nfs_fh fhandle; 747 struct nfs_fattr fattr; 748 unsigned long verifier; 749 750 parent = dget_parent(dentry); 751 lock_kernel(); 752 dir = parent->d_inode; 753 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 754 inode = dentry->d_inode; 755 756 /* Revalidate parent directory attribute cache */ 757 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 758 goto out_zap_parent; 759 760 if (!inode) { 761 if (nfs_neg_need_reval(dir, dentry, nd)) 762 goto out_bad; 763 goto out_valid; 764 } 765 766 if (is_bad_inode(inode)) { 767 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 768 __FUNCTION__, dentry->d_parent->d_name.name, 769 dentry->d_name.name); 770 goto out_bad; 771 } 772 773 /* Force a full look up iff the parent directory has changed */ 774 if (nfs_check_verifier(dir, dentry)) { 775 if (nfs_lookup_verify_inode(inode, nd)) 776 goto out_zap_parent; 777 goto out_valid; 778 } 779 780 if (NFS_STALE(inode)) 781 goto out_bad; 782 783 verifier = nfs_save_change_attribute(dir); 784 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 785 if (error) 786 goto out_bad; 787 if (nfs_compare_fh(NFS_FH(inode), &fhandle)) 788 goto out_bad; 789 if ((error = nfs_refresh_inode(inode, &fattr)) != 0) 790 goto out_bad; 791 792 nfs_set_verifier(dentry, verifier); 793 out_valid: 794 unlock_kernel(); 795 dput(parent); 796 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 797 __FUNCTION__, dentry->d_parent->d_name.name, 798 dentry->d_name.name); 799 return 1; 800 out_zap_parent: 801 nfs_zap_caches(dir); 802 out_bad: 803 NFS_CACHEINV(dir); 804 if (inode && S_ISDIR(inode->i_mode)) { 805 /* Purge readdir caches. */ 806 nfs_zap_caches(inode); 807 /* If we have submounts, don't unhash ! */ 808 if (have_submounts(dentry)) 809 goto out_valid; 810 shrink_dcache_parent(dentry); 811 } 812 d_drop(dentry); 813 unlock_kernel(); 814 dput(parent); 815 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 816 __FUNCTION__, dentry->d_parent->d_name.name, 817 dentry->d_name.name); 818 return 0; 819 } 820 821 /* 822 * This is called from dput() when d_count is going to 0. 823 */ 824 static int nfs_dentry_delete(struct dentry *dentry) 825 { 826 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 827 dentry->d_parent->d_name.name, dentry->d_name.name, 828 dentry->d_flags); 829 830 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 831 /* Unhash it, so that ->d_iput() would be called */ 832 return 1; 833 } 834 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 835 /* Unhash it, so that ancestors of killed async unlink 836 * files will be cleaned up during umount */ 837 return 1; 838 } 839 return 0; 840 841 } 842 843 /* 844 * Called when the dentry loses inode. 845 * We use it to clean up silly-renamed files. 846 */ 847 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 848 { 849 nfs_inode_return_delegation(inode); 850 if (S_ISDIR(inode->i_mode)) 851 /* drop any readdir cache as it could easily be old */ 852 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 853 854 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 855 lock_kernel(); 856 drop_nlink(inode); 857 nfs_complete_unlink(dentry, inode); 858 unlock_kernel(); 859 } 860 iput(inode); 861 } 862 863 struct dentry_operations nfs_dentry_operations = { 864 .d_revalidate = nfs_lookup_revalidate, 865 .d_delete = nfs_dentry_delete, 866 .d_iput = nfs_dentry_iput, 867 }; 868 869 /* 870 * Use intent information to check whether or not we're going to do 871 * an O_EXCL create using this path component. 872 */ 873 static inline 874 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd) 875 { 876 if (NFS_PROTO(dir)->version == 2) 877 return 0; 878 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0) 879 return 0; 880 return (nd->intent.open.flags & O_EXCL) != 0; 881 } 882 883 static inline int nfs_reval_fsid(struct inode *dir, const struct nfs_fattr *fattr) 884 { 885 struct nfs_server *server = NFS_SERVER(dir); 886 887 if (!nfs_fsid_equal(&server->fsid, &fattr->fsid)) 888 /* Revalidate fsid using the parent directory */ 889 return __nfs_revalidate_inode(server, dir); 890 return 0; 891 } 892 893 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 894 { 895 struct dentry *res; 896 struct inode *inode = NULL; 897 int error; 898 struct nfs_fh fhandle; 899 struct nfs_fattr fattr; 900 901 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 902 dentry->d_parent->d_name.name, dentry->d_name.name); 903 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 904 905 res = ERR_PTR(-ENAMETOOLONG); 906 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 907 goto out; 908 909 res = ERR_PTR(-ENOMEM); 910 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 911 912 lock_kernel(); 913 914 /* 915 * If we're doing an exclusive create, optimize away the lookup 916 * but don't hash the dentry. 917 */ 918 if (nfs_is_exclusive_create(dir, nd)) { 919 d_instantiate(dentry, NULL); 920 res = NULL; 921 goto out_unlock; 922 } 923 924 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 925 if (error == -ENOENT) 926 goto no_entry; 927 if (error < 0) { 928 res = ERR_PTR(error); 929 goto out_unlock; 930 } 931 error = nfs_reval_fsid(dir, &fattr); 932 if (error < 0) { 933 res = ERR_PTR(error); 934 goto out_unlock; 935 } 936 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr); 937 res = (struct dentry *)inode; 938 if (IS_ERR(res)) 939 goto out_unlock; 940 941 no_entry: 942 res = d_materialise_unique(dentry, inode); 943 if (res != NULL) { 944 struct dentry *parent; 945 if (IS_ERR(res)) 946 goto out_unlock; 947 /* Was a directory renamed! */ 948 parent = dget_parent(res); 949 if (!IS_ROOT(parent)) 950 nfs_mark_for_revalidate(parent->d_inode); 951 dput(parent); 952 dentry = res; 953 } 954 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 955 out_unlock: 956 unlock_kernel(); 957 out: 958 return res; 959 } 960 961 #ifdef CONFIG_NFS_V4 962 static int nfs_open_revalidate(struct dentry *, struct nameidata *); 963 964 struct dentry_operations nfs4_dentry_operations = { 965 .d_revalidate = nfs_open_revalidate, 966 .d_delete = nfs_dentry_delete, 967 .d_iput = nfs_dentry_iput, 968 }; 969 970 /* 971 * Use intent information to determine whether we need to substitute 972 * the NFSv4-style stateful OPEN for the LOOKUP call 973 */ 974 static int is_atomic_open(struct inode *dir, struct nameidata *nd) 975 { 976 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0) 977 return 0; 978 /* NFS does not (yet) have a stateful open for directories */ 979 if (nd->flags & LOOKUP_DIRECTORY) 980 return 0; 981 /* Are we trying to write to a read only partition? */ 982 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE))) 983 return 0; 984 return 1; 985 } 986 987 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 988 { 989 struct dentry *res = NULL; 990 int error; 991 992 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n", 993 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 994 995 /* Check that we are indeed trying to open this file */ 996 if (!is_atomic_open(dir, nd)) 997 goto no_open; 998 999 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) { 1000 res = ERR_PTR(-ENAMETOOLONG); 1001 goto out; 1002 } 1003 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1004 1005 /* Let vfs_create() deal with O_EXCL */ 1006 if (nd->intent.open.flags & O_EXCL) { 1007 d_add(dentry, NULL); 1008 goto out; 1009 } 1010 1011 /* Open the file on the server */ 1012 lock_kernel(); 1013 /* Revalidate parent directory attribute cache */ 1014 error = nfs_revalidate_inode(NFS_SERVER(dir), dir); 1015 if (error < 0) { 1016 res = ERR_PTR(error); 1017 unlock_kernel(); 1018 goto out; 1019 } 1020 1021 if (nd->intent.open.flags & O_CREAT) { 1022 nfs_begin_data_update(dir); 1023 res = nfs4_atomic_open(dir, dentry, nd); 1024 nfs_end_data_update(dir); 1025 } else 1026 res = nfs4_atomic_open(dir, dentry, nd); 1027 unlock_kernel(); 1028 if (IS_ERR(res)) { 1029 error = PTR_ERR(res); 1030 switch (error) { 1031 /* Make a negative dentry */ 1032 case -ENOENT: 1033 res = NULL; 1034 goto out; 1035 /* This turned out not to be a regular file */ 1036 case -EISDIR: 1037 case -ENOTDIR: 1038 goto no_open; 1039 case -ELOOP: 1040 if (!(nd->intent.open.flags & O_NOFOLLOW)) 1041 goto no_open; 1042 /* case -EINVAL: */ 1043 default: 1044 goto out; 1045 } 1046 } else if (res != NULL) 1047 dentry = res; 1048 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1049 out: 1050 return res; 1051 no_open: 1052 return nfs_lookup(dir, dentry, nd); 1053 } 1054 1055 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd) 1056 { 1057 struct dentry *parent = NULL; 1058 struct inode *inode = dentry->d_inode; 1059 struct inode *dir; 1060 unsigned long verifier; 1061 int openflags, ret = 0; 1062 1063 parent = dget_parent(dentry); 1064 dir = parent->d_inode; 1065 if (!is_atomic_open(dir, nd)) 1066 goto no_open; 1067 /* We can't create new files in nfs_open_revalidate(), so we 1068 * optimize away revalidation of negative dentries. 1069 */ 1070 if (inode == NULL) 1071 goto out; 1072 /* NFS only supports OPEN on regular files */ 1073 if (!S_ISREG(inode->i_mode)) 1074 goto no_open; 1075 openflags = nd->intent.open.flags; 1076 /* We cannot do exclusive creation on a positive dentry */ 1077 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 1078 goto no_open; 1079 /* We can't create new files, or truncate existing ones here */ 1080 openflags &= ~(O_CREAT|O_TRUNC); 1081 1082 /* 1083 * Note: we're not holding inode->i_mutex and so may be racing with 1084 * operations that change the directory. We therefore save the 1085 * change attribute *before* we do the RPC call. 1086 */ 1087 lock_kernel(); 1088 verifier = nfs_save_change_attribute(dir); 1089 ret = nfs4_open_revalidate(dir, dentry, openflags, nd); 1090 if (!ret) 1091 nfs_set_verifier(dentry, verifier); 1092 unlock_kernel(); 1093 out: 1094 dput(parent); 1095 if (!ret) 1096 d_drop(dentry); 1097 return ret; 1098 no_open: 1099 dput(parent); 1100 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ)) 1101 return 1; 1102 return nfs_lookup_revalidate(dentry, nd); 1103 } 1104 #endif /* CONFIG_NFSV4 */ 1105 1106 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc) 1107 { 1108 struct dentry *parent = desc->file->f_path.dentry; 1109 struct inode *dir = parent->d_inode; 1110 struct nfs_entry *entry = desc->entry; 1111 struct dentry *dentry, *alias; 1112 struct qstr name = { 1113 .name = entry->name, 1114 .len = entry->len, 1115 }; 1116 struct inode *inode; 1117 1118 switch (name.len) { 1119 case 2: 1120 if (name.name[0] == '.' && name.name[1] == '.') 1121 return dget_parent(parent); 1122 break; 1123 case 1: 1124 if (name.name[0] == '.') 1125 return dget(parent); 1126 } 1127 name.hash = full_name_hash(name.name, name.len); 1128 dentry = d_lookup(parent, &name); 1129 if (dentry != NULL) { 1130 /* Is this a positive dentry that matches the readdir info? */ 1131 if (dentry->d_inode != NULL && 1132 (NFS_FILEID(dentry->d_inode) == entry->ino || 1133 d_mountpoint(dentry))) { 1134 if (!desc->plus || entry->fh->size == 0) 1135 return dentry; 1136 if (nfs_compare_fh(NFS_FH(dentry->d_inode), 1137 entry->fh) == 0) 1138 goto out_renew; 1139 } 1140 /* No, so d_drop to allow one to be created */ 1141 d_drop(dentry); 1142 dput(dentry); 1143 } 1144 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR)) 1145 return NULL; 1146 if (name.len > NFS_SERVER(dir)->namelen) 1147 return NULL; 1148 /* Note: caller is already holding the dir->i_mutex! */ 1149 dentry = d_alloc(parent, &name); 1150 if (dentry == NULL) 1151 return NULL; 1152 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1153 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 1154 if (IS_ERR(inode)) { 1155 dput(dentry); 1156 return NULL; 1157 } 1158 1159 alias = d_materialise_unique(dentry, inode); 1160 if (alias != NULL) { 1161 dput(dentry); 1162 if (IS_ERR(alias)) 1163 return NULL; 1164 dentry = alias; 1165 } 1166 1167 out_renew: 1168 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1169 return dentry; 1170 } 1171 1172 /* 1173 * Code common to create, mkdir, and mknod. 1174 */ 1175 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1176 struct nfs_fattr *fattr) 1177 { 1178 struct inode *inode; 1179 int error = -EACCES; 1180 1181 /* We may have been initialized further down */ 1182 if (dentry->d_inode) 1183 return 0; 1184 if (fhandle->size == 0) { 1185 struct inode *dir = dentry->d_parent->d_inode; 1186 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1187 if (error) 1188 return error; 1189 } 1190 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1191 struct nfs_server *server = NFS_SB(dentry->d_sb); 1192 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1193 if (error < 0) 1194 return error; 1195 } 1196 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1197 error = PTR_ERR(inode); 1198 if (IS_ERR(inode)) 1199 return error; 1200 d_instantiate(dentry, inode); 1201 if (d_unhashed(dentry)) 1202 d_rehash(dentry); 1203 return 0; 1204 } 1205 1206 /* 1207 * Following a failed create operation, we drop the dentry rather 1208 * than retain a negative dentry. This avoids a problem in the event 1209 * that the operation succeeded on the server, but an error in the 1210 * reply path made it appear to have failed. 1211 */ 1212 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode, 1213 struct nameidata *nd) 1214 { 1215 struct iattr attr; 1216 int error; 1217 int open_flags = 0; 1218 1219 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1220 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1221 1222 attr.ia_mode = mode; 1223 attr.ia_valid = ATTR_MODE; 1224 1225 if ((nd->flags & LOOKUP_CREATE) != 0) 1226 open_flags = nd->intent.open.flags; 1227 1228 lock_kernel(); 1229 nfs_begin_data_update(dir); 1230 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd); 1231 nfs_end_data_update(dir); 1232 if (error != 0) 1233 goto out_err; 1234 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1235 unlock_kernel(); 1236 return 0; 1237 out_err: 1238 unlock_kernel(); 1239 d_drop(dentry); 1240 return error; 1241 } 1242 1243 /* 1244 * See comments for nfs_proc_create regarding failed operations. 1245 */ 1246 static int 1247 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) 1248 { 1249 struct iattr attr; 1250 int status; 1251 1252 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1253 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1254 1255 if (!new_valid_dev(rdev)) 1256 return -EINVAL; 1257 1258 attr.ia_mode = mode; 1259 attr.ia_valid = ATTR_MODE; 1260 1261 lock_kernel(); 1262 nfs_begin_data_update(dir); 1263 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1264 nfs_end_data_update(dir); 1265 if (status != 0) 1266 goto out_err; 1267 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1268 unlock_kernel(); 1269 return 0; 1270 out_err: 1271 unlock_kernel(); 1272 d_drop(dentry); 1273 return status; 1274 } 1275 1276 /* 1277 * See comments for nfs_proc_create regarding failed operations. 1278 */ 1279 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1280 { 1281 struct iattr attr; 1282 int error; 1283 1284 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1285 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1286 1287 attr.ia_valid = ATTR_MODE; 1288 attr.ia_mode = mode | S_IFDIR; 1289 1290 lock_kernel(); 1291 nfs_begin_data_update(dir); 1292 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1293 nfs_end_data_update(dir); 1294 if (error != 0) 1295 goto out_err; 1296 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1297 unlock_kernel(); 1298 return 0; 1299 out_err: 1300 d_drop(dentry); 1301 unlock_kernel(); 1302 return error; 1303 } 1304 1305 static int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1306 { 1307 int error; 1308 1309 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1310 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1311 1312 lock_kernel(); 1313 nfs_begin_data_update(dir); 1314 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1315 /* Ensure the VFS deletes this inode */ 1316 if (error == 0 && dentry->d_inode != NULL) 1317 clear_nlink(dentry->d_inode); 1318 nfs_end_data_update(dir); 1319 unlock_kernel(); 1320 1321 return error; 1322 } 1323 1324 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry) 1325 { 1326 static unsigned int sillycounter; 1327 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2; 1328 const int countersize = sizeof(sillycounter)*2; 1329 const int slen = sizeof(".nfs")+fileidsize+countersize-1; 1330 char silly[slen+1]; 1331 struct qstr qsilly; 1332 struct dentry *sdentry; 1333 int error = -EIO; 1334 1335 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n", 1336 dentry->d_parent->d_name.name, dentry->d_name.name, 1337 atomic_read(&dentry->d_count)); 1338 nfs_inc_stats(dir, NFSIOS_SILLYRENAME); 1339 1340 /* 1341 * We don't allow a dentry to be silly-renamed twice. 1342 */ 1343 error = -EBUSY; 1344 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1345 goto out; 1346 1347 sprintf(silly, ".nfs%*.*Lx", 1348 fileidsize, fileidsize, 1349 (unsigned long long)NFS_FILEID(dentry->d_inode)); 1350 1351 /* Return delegation in anticipation of the rename */ 1352 nfs_inode_return_delegation(dentry->d_inode); 1353 1354 sdentry = NULL; 1355 do { 1356 char *suffix = silly + slen - countersize; 1357 1358 dput(sdentry); 1359 sillycounter++; 1360 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter); 1361 1362 dfprintk(VFS, "NFS: trying to rename %s to %s\n", 1363 dentry->d_name.name, silly); 1364 1365 sdentry = lookup_one_len(silly, dentry->d_parent, slen); 1366 /* 1367 * N.B. Better to return EBUSY here ... it could be 1368 * dangerous to delete the file while it's in use. 1369 */ 1370 if (IS_ERR(sdentry)) 1371 goto out; 1372 } while(sdentry->d_inode != NULL); /* need negative lookup */ 1373 1374 qsilly.name = silly; 1375 qsilly.len = strlen(silly); 1376 nfs_begin_data_update(dir); 1377 if (dentry->d_inode) { 1378 nfs_begin_data_update(dentry->d_inode); 1379 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1380 dir, &qsilly); 1381 nfs_mark_for_revalidate(dentry->d_inode); 1382 nfs_end_data_update(dentry->d_inode); 1383 } else 1384 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1385 dir, &qsilly); 1386 nfs_end_data_update(dir); 1387 if (!error) { 1388 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1389 d_move(dentry, sdentry); 1390 error = nfs_async_unlink(dir, dentry); 1391 /* If we return 0 we don't unlink */ 1392 } 1393 dput(sdentry); 1394 out: 1395 return error; 1396 } 1397 1398 /* 1399 * Remove a file after making sure there are no pending writes, 1400 * and after checking that the file has only one user. 1401 * 1402 * We invalidate the attribute cache and free the inode prior to the operation 1403 * to avoid possible races if the server reuses the inode. 1404 */ 1405 static int nfs_safe_remove(struct dentry *dentry) 1406 { 1407 struct inode *dir = dentry->d_parent->d_inode; 1408 struct inode *inode = dentry->d_inode; 1409 int error = -EBUSY; 1410 1411 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1412 dentry->d_parent->d_name.name, dentry->d_name.name); 1413 1414 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1415 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1416 error = 0; 1417 goto out; 1418 } 1419 1420 nfs_begin_data_update(dir); 1421 if (inode != NULL) { 1422 nfs_inode_return_delegation(inode); 1423 nfs_begin_data_update(inode); 1424 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1425 /* The VFS may want to delete this inode */ 1426 if (error == 0) 1427 drop_nlink(inode); 1428 nfs_mark_for_revalidate(inode); 1429 nfs_end_data_update(inode); 1430 } else 1431 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1432 nfs_end_data_update(dir); 1433 out: 1434 return error; 1435 } 1436 1437 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1438 * belongs to an active ".nfs..." file and we return -EBUSY. 1439 * 1440 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1441 */ 1442 static int nfs_unlink(struct inode *dir, struct dentry *dentry) 1443 { 1444 int error; 1445 int need_rehash = 0; 1446 1447 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1448 dir->i_ino, dentry->d_name.name); 1449 1450 lock_kernel(); 1451 spin_lock(&dcache_lock); 1452 spin_lock(&dentry->d_lock); 1453 if (atomic_read(&dentry->d_count) > 1) { 1454 spin_unlock(&dentry->d_lock); 1455 spin_unlock(&dcache_lock); 1456 /* Start asynchronous writeout of the inode */ 1457 write_inode_now(dentry->d_inode, 0); 1458 error = nfs_sillyrename(dir, dentry); 1459 unlock_kernel(); 1460 return error; 1461 } 1462 if (!d_unhashed(dentry)) { 1463 __d_drop(dentry); 1464 need_rehash = 1; 1465 } 1466 spin_unlock(&dentry->d_lock); 1467 spin_unlock(&dcache_lock); 1468 error = nfs_safe_remove(dentry); 1469 if (!error) { 1470 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1471 } else if (need_rehash) 1472 d_rehash(dentry); 1473 unlock_kernel(); 1474 return error; 1475 } 1476 1477 /* 1478 * To create a symbolic link, most file systems instantiate a new inode, 1479 * add a page to it containing the path, then write it out to the disk 1480 * using prepare_write/commit_write. 1481 * 1482 * Unfortunately the NFS client can't create the in-core inode first 1483 * because it needs a file handle to create an in-core inode (see 1484 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1485 * symlink request has completed on the server. 1486 * 1487 * So instead we allocate a raw page, copy the symname into it, then do 1488 * the SYMLINK request with the page as the buffer. If it succeeds, we 1489 * now have a new file handle and can instantiate an in-core NFS inode 1490 * and move the raw page into its mapping. 1491 */ 1492 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1493 { 1494 struct pagevec lru_pvec; 1495 struct page *page; 1496 char *kaddr; 1497 struct iattr attr; 1498 unsigned int pathlen = strlen(symname); 1499 int error; 1500 1501 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1502 dir->i_ino, dentry->d_name.name, symname); 1503 1504 if (pathlen > PAGE_SIZE) 1505 return -ENAMETOOLONG; 1506 1507 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1508 attr.ia_valid = ATTR_MODE; 1509 1510 lock_kernel(); 1511 1512 page = alloc_page(GFP_HIGHUSER); 1513 if (!page) { 1514 unlock_kernel(); 1515 return -ENOMEM; 1516 } 1517 1518 kaddr = kmap_atomic(page, KM_USER0); 1519 memcpy(kaddr, symname, pathlen); 1520 if (pathlen < PAGE_SIZE) 1521 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1522 kunmap_atomic(kaddr, KM_USER0); 1523 1524 nfs_begin_data_update(dir); 1525 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1526 nfs_end_data_update(dir); 1527 if (error != 0) { 1528 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1529 dir->i_sb->s_id, dir->i_ino, 1530 dentry->d_name.name, symname, error); 1531 d_drop(dentry); 1532 __free_page(page); 1533 unlock_kernel(); 1534 return error; 1535 } 1536 1537 /* 1538 * No big deal if we can't add this page to the page cache here. 1539 * READLINK will get the missing page from the server if needed. 1540 */ 1541 pagevec_init(&lru_pvec, 0); 1542 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1543 GFP_KERNEL)) { 1544 pagevec_add(&lru_pvec, page); 1545 pagevec_lru_add(&lru_pvec); 1546 SetPageUptodate(page); 1547 unlock_page(page); 1548 } else 1549 __free_page(page); 1550 1551 unlock_kernel(); 1552 return 0; 1553 } 1554 1555 static int 1556 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1557 { 1558 struct inode *inode = old_dentry->d_inode; 1559 int error; 1560 1561 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1562 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1563 dentry->d_parent->d_name.name, dentry->d_name.name); 1564 1565 lock_kernel(); 1566 nfs_begin_data_update(dir); 1567 nfs_begin_data_update(inode); 1568 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1569 if (error == 0) { 1570 atomic_inc(&inode->i_count); 1571 d_instantiate(dentry, inode); 1572 } 1573 nfs_end_data_update(inode); 1574 nfs_end_data_update(dir); 1575 unlock_kernel(); 1576 return error; 1577 } 1578 1579 /* 1580 * RENAME 1581 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1582 * different file handle for the same inode after a rename (e.g. when 1583 * moving to a different directory). A fail-safe method to do so would 1584 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1585 * rename the old file using the sillyrename stuff. This way, the original 1586 * file in old_dir will go away when the last process iput()s the inode. 1587 * 1588 * FIXED. 1589 * 1590 * It actually works quite well. One needs to have the possibility for 1591 * at least one ".nfs..." file in each directory the file ever gets 1592 * moved or linked to which happens automagically with the new 1593 * implementation that only depends on the dcache stuff instead of 1594 * using the inode layer 1595 * 1596 * Unfortunately, things are a little more complicated than indicated 1597 * above. For a cross-directory move, we want to make sure we can get 1598 * rid of the old inode after the operation. This means there must be 1599 * no pending writes (if it's a file), and the use count must be 1. 1600 * If these conditions are met, we can drop the dentries before doing 1601 * the rename. 1602 */ 1603 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1604 struct inode *new_dir, struct dentry *new_dentry) 1605 { 1606 struct inode *old_inode = old_dentry->d_inode; 1607 struct inode *new_inode = new_dentry->d_inode; 1608 struct dentry *dentry = NULL, *rehash = NULL; 1609 int error = -EBUSY; 1610 1611 /* 1612 * To prevent any new references to the target during the rename, 1613 * we unhash the dentry and free the inode in advance. 1614 */ 1615 lock_kernel(); 1616 if (!d_unhashed(new_dentry)) { 1617 d_drop(new_dentry); 1618 rehash = new_dentry; 1619 } 1620 1621 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1622 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1623 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1624 atomic_read(&new_dentry->d_count)); 1625 1626 /* 1627 * First check whether the target is busy ... we can't 1628 * safely do _any_ rename if the target is in use. 1629 * 1630 * For files, make a copy of the dentry and then do a 1631 * silly-rename. If the silly-rename succeeds, the 1632 * copied dentry is hashed and becomes the new target. 1633 */ 1634 if (!new_inode) 1635 goto go_ahead; 1636 if (S_ISDIR(new_inode->i_mode)) { 1637 error = -EISDIR; 1638 if (!S_ISDIR(old_inode->i_mode)) 1639 goto out; 1640 } else if (atomic_read(&new_dentry->d_count) > 2) { 1641 int err; 1642 /* copy the target dentry's name */ 1643 dentry = d_alloc(new_dentry->d_parent, 1644 &new_dentry->d_name); 1645 if (!dentry) 1646 goto out; 1647 1648 /* silly-rename the existing target ... */ 1649 err = nfs_sillyrename(new_dir, new_dentry); 1650 if (!err) { 1651 new_dentry = rehash = dentry; 1652 new_inode = NULL; 1653 /* instantiate the replacement target */ 1654 d_instantiate(new_dentry, NULL); 1655 } else if (atomic_read(&new_dentry->d_count) > 1) 1656 /* dentry still busy? */ 1657 goto out; 1658 } else 1659 drop_nlink(new_inode); 1660 1661 go_ahead: 1662 /* 1663 * ... prune child dentries and writebacks if needed. 1664 */ 1665 if (atomic_read(&old_dentry->d_count) > 1) { 1666 if (S_ISREG(old_inode->i_mode)) 1667 nfs_wb_all(old_inode); 1668 shrink_dcache_parent(old_dentry); 1669 } 1670 nfs_inode_return_delegation(old_inode); 1671 1672 if (new_inode != NULL) { 1673 nfs_inode_return_delegation(new_inode); 1674 d_delete(new_dentry); 1675 } 1676 1677 nfs_begin_data_update(old_dir); 1678 nfs_begin_data_update(new_dir); 1679 nfs_begin_data_update(old_inode); 1680 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1681 new_dir, &new_dentry->d_name); 1682 nfs_mark_for_revalidate(old_inode); 1683 nfs_end_data_update(old_inode); 1684 nfs_end_data_update(new_dir); 1685 nfs_end_data_update(old_dir); 1686 out: 1687 if (rehash) 1688 d_rehash(rehash); 1689 if (!error) { 1690 d_move(old_dentry, new_dentry); 1691 nfs_set_verifier(new_dentry, 1692 nfs_save_change_attribute(new_dir)); 1693 } 1694 1695 /* new dentry created? */ 1696 if (dentry) 1697 dput(dentry); 1698 unlock_kernel(); 1699 return error; 1700 } 1701 1702 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1703 static LIST_HEAD(nfs_access_lru_list); 1704 static atomic_long_t nfs_access_nr_entries; 1705 1706 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1707 { 1708 put_rpccred(entry->cred); 1709 kfree(entry); 1710 smp_mb__before_atomic_dec(); 1711 atomic_long_dec(&nfs_access_nr_entries); 1712 smp_mb__after_atomic_dec(); 1713 } 1714 1715 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask) 1716 { 1717 LIST_HEAD(head); 1718 struct nfs_inode *nfsi; 1719 struct nfs_access_entry *cache; 1720 1721 restart: 1722 spin_lock(&nfs_access_lru_lock); 1723 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) { 1724 struct inode *inode; 1725 1726 if (nr_to_scan-- == 0) 1727 break; 1728 inode = igrab(&nfsi->vfs_inode); 1729 if (inode == NULL) 1730 continue; 1731 spin_lock(&inode->i_lock); 1732 if (list_empty(&nfsi->access_cache_entry_lru)) 1733 goto remove_lru_entry; 1734 cache = list_entry(nfsi->access_cache_entry_lru.next, 1735 struct nfs_access_entry, lru); 1736 list_move(&cache->lru, &head); 1737 rb_erase(&cache->rb_node, &nfsi->access_cache); 1738 if (!list_empty(&nfsi->access_cache_entry_lru)) 1739 list_move_tail(&nfsi->access_cache_inode_lru, 1740 &nfs_access_lru_list); 1741 else { 1742 remove_lru_entry: 1743 list_del_init(&nfsi->access_cache_inode_lru); 1744 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 1745 } 1746 spin_unlock(&inode->i_lock); 1747 spin_unlock(&nfs_access_lru_lock); 1748 iput(inode); 1749 goto restart; 1750 } 1751 spin_unlock(&nfs_access_lru_lock); 1752 while (!list_empty(&head)) { 1753 cache = list_entry(head.next, struct nfs_access_entry, lru); 1754 list_del(&cache->lru); 1755 nfs_access_free_entry(cache); 1756 } 1757 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 1758 } 1759 1760 static void __nfs_access_zap_cache(struct inode *inode) 1761 { 1762 struct nfs_inode *nfsi = NFS_I(inode); 1763 struct rb_root *root_node = &nfsi->access_cache; 1764 struct rb_node *n, *dispose = NULL; 1765 struct nfs_access_entry *entry; 1766 1767 /* Unhook entries from the cache */ 1768 while ((n = rb_first(root_node)) != NULL) { 1769 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1770 rb_erase(n, root_node); 1771 list_del(&entry->lru); 1772 n->rb_left = dispose; 1773 dispose = n; 1774 } 1775 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 1776 spin_unlock(&inode->i_lock); 1777 1778 /* Now kill them all! */ 1779 while (dispose != NULL) { 1780 n = dispose; 1781 dispose = n->rb_left; 1782 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node)); 1783 } 1784 } 1785 1786 void nfs_access_zap_cache(struct inode *inode) 1787 { 1788 /* Remove from global LRU init */ 1789 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) { 1790 spin_lock(&nfs_access_lru_lock); 1791 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 1792 spin_unlock(&nfs_access_lru_lock); 1793 } 1794 1795 spin_lock(&inode->i_lock); 1796 /* This will release the spinlock */ 1797 __nfs_access_zap_cache(inode); 1798 } 1799 1800 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 1801 { 1802 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 1803 struct nfs_access_entry *entry; 1804 1805 while (n != NULL) { 1806 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1807 1808 if (cred < entry->cred) 1809 n = n->rb_left; 1810 else if (cred > entry->cred) 1811 n = n->rb_right; 1812 else 1813 return entry; 1814 } 1815 return NULL; 1816 } 1817 1818 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 1819 { 1820 struct nfs_inode *nfsi = NFS_I(inode); 1821 struct nfs_access_entry *cache; 1822 int err = -ENOENT; 1823 1824 spin_lock(&inode->i_lock); 1825 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 1826 goto out_zap; 1827 cache = nfs_access_search_rbtree(inode, cred); 1828 if (cache == NULL) 1829 goto out; 1830 if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + NFS_ATTRTIMEO(inode))) 1831 goto out_stale; 1832 res->jiffies = cache->jiffies; 1833 res->cred = cache->cred; 1834 res->mask = cache->mask; 1835 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 1836 err = 0; 1837 out: 1838 spin_unlock(&inode->i_lock); 1839 return err; 1840 out_stale: 1841 rb_erase(&cache->rb_node, &nfsi->access_cache); 1842 list_del(&cache->lru); 1843 spin_unlock(&inode->i_lock); 1844 nfs_access_free_entry(cache); 1845 return -ENOENT; 1846 out_zap: 1847 /* This will release the spinlock */ 1848 __nfs_access_zap_cache(inode); 1849 return -ENOENT; 1850 } 1851 1852 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 1853 { 1854 struct nfs_inode *nfsi = NFS_I(inode); 1855 struct rb_root *root_node = &nfsi->access_cache; 1856 struct rb_node **p = &root_node->rb_node; 1857 struct rb_node *parent = NULL; 1858 struct nfs_access_entry *entry; 1859 1860 spin_lock(&inode->i_lock); 1861 while (*p != NULL) { 1862 parent = *p; 1863 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 1864 1865 if (set->cred < entry->cred) 1866 p = &parent->rb_left; 1867 else if (set->cred > entry->cred) 1868 p = &parent->rb_right; 1869 else 1870 goto found; 1871 } 1872 rb_link_node(&set->rb_node, parent, p); 1873 rb_insert_color(&set->rb_node, root_node); 1874 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1875 spin_unlock(&inode->i_lock); 1876 return; 1877 found: 1878 rb_replace_node(parent, &set->rb_node, root_node); 1879 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1880 list_del(&entry->lru); 1881 spin_unlock(&inode->i_lock); 1882 nfs_access_free_entry(entry); 1883 } 1884 1885 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 1886 { 1887 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 1888 if (cache == NULL) 1889 return; 1890 RB_CLEAR_NODE(&cache->rb_node); 1891 cache->jiffies = set->jiffies; 1892 cache->cred = get_rpccred(set->cred); 1893 cache->mask = set->mask; 1894 1895 nfs_access_add_rbtree(inode, cache); 1896 1897 /* Update accounting */ 1898 smp_mb__before_atomic_inc(); 1899 atomic_long_inc(&nfs_access_nr_entries); 1900 smp_mb__after_atomic_inc(); 1901 1902 /* Add inode to global LRU list */ 1903 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) { 1904 spin_lock(&nfs_access_lru_lock); 1905 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list); 1906 spin_unlock(&nfs_access_lru_lock); 1907 } 1908 } 1909 1910 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 1911 { 1912 struct nfs_access_entry cache; 1913 int status; 1914 1915 status = nfs_access_get_cached(inode, cred, &cache); 1916 if (status == 0) 1917 goto out; 1918 1919 /* Be clever: ask server to check for all possible rights */ 1920 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 1921 cache.cred = cred; 1922 cache.jiffies = jiffies; 1923 status = NFS_PROTO(inode)->access(inode, &cache); 1924 if (status != 0) 1925 return status; 1926 nfs_access_add_cache(inode, &cache); 1927 out: 1928 if ((cache.mask & mask) == mask) 1929 return 0; 1930 return -EACCES; 1931 } 1932 1933 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd) 1934 { 1935 struct rpc_cred *cred; 1936 int res = 0; 1937 1938 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 1939 1940 if (mask == 0) 1941 goto out; 1942 /* Is this sys_access() ? */ 1943 if (nd != NULL && (nd->flags & LOOKUP_ACCESS)) 1944 goto force_lookup; 1945 1946 switch (inode->i_mode & S_IFMT) { 1947 case S_IFLNK: 1948 goto out; 1949 case S_IFREG: 1950 /* NFSv4 has atomic_open... */ 1951 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 1952 && nd != NULL 1953 && (nd->flags & LOOKUP_OPEN)) 1954 goto out; 1955 break; 1956 case S_IFDIR: 1957 /* 1958 * Optimize away all write operations, since the server 1959 * will check permissions when we perform the op. 1960 */ 1961 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 1962 goto out; 1963 } 1964 1965 force_lookup: 1966 lock_kernel(); 1967 1968 if (!NFS_PROTO(inode)->access) 1969 goto out_notsup; 1970 1971 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0); 1972 if (!IS_ERR(cred)) { 1973 res = nfs_do_access(inode, cred, mask); 1974 put_rpccred(cred); 1975 } else 1976 res = PTR_ERR(cred); 1977 unlock_kernel(); 1978 out: 1979 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 1980 inode->i_sb->s_id, inode->i_ino, mask, res); 1981 return res; 1982 out_notsup: 1983 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1984 if (res == 0) 1985 res = generic_permission(inode, mask, NULL); 1986 unlock_kernel(); 1987 goto out; 1988 } 1989 1990 /* 1991 * Local variables: 1992 * version-control: t 1993 * kept-new-versions: 5 1994 * End: 1995 */ 1996