xref: /openbmc/linux/fs/nfs/dir.c (revision 77a55a1fe8f26f7d022986a599b68002e21d968a)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 
42 /* #define NFS_DEBUG_VERBOSE 1 */
43 
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 		      struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.readdir	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_release,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 const struct inode_operations nfs_dir_inode_operations = {
69 	.create		= nfs_create,
70 	.lookup		= nfs_lookup,
71 	.link		= nfs_link,
72 	.unlink		= nfs_unlink,
73 	.symlink	= nfs_symlink,
74 	.mkdir		= nfs_mkdir,
75 	.rmdir		= nfs_rmdir,
76 	.mknod		= nfs_mknod,
77 	.rename		= nfs_rename,
78 	.permission	= nfs_permission,
79 	.getattr	= nfs_getattr,
80 	.setattr	= nfs_setattr,
81 };
82 
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 	.create		= nfs_create,
86 	.lookup		= nfs_lookup,
87 	.link		= nfs_link,
88 	.unlink		= nfs_unlink,
89 	.symlink	= nfs_symlink,
90 	.mkdir		= nfs_mkdir,
91 	.rmdir		= nfs_rmdir,
92 	.mknod		= nfs_mknod,
93 	.rename		= nfs_rename,
94 	.permission	= nfs_permission,
95 	.getattr	= nfs_getattr,
96 	.setattr	= nfs_setattr,
97 	.listxattr	= nfs3_listxattr,
98 	.getxattr	= nfs3_getxattr,
99 	.setxattr	= nfs3_setxattr,
100 	.removexattr	= nfs3_removexattr,
101 };
102 #endif  /* CONFIG_NFS_V3 */
103 
104 #ifdef CONFIG_NFS_V4
105 
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 	.create		= nfs_create,
109 	.lookup		= nfs_atomic_lookup,
110 	.link		= nfs_link,
111 	.unlink		= nfs_unlink,
112 	.symlink	= nfs_symlink,
113 	.mkdir		= nfs_mkdir,
114 	.rmdir		= nfs_rmdir,
115 	.mknod		= nfs_mknod,
116 	.rename		= nfs_rename,
117 	.permission	= nfs_permission,
118 	.getattr	= nfs_getattr,
119 	.setattr	= nfs_setattr,
120 	.getxattr       = nfs4_getxattr,
121 	.setxattr       = nfs4_setxattr,
122 	.listxattr      = nfs4_listxattr,
123 };
124 
125 #endif /* CONFIG_NFS_V4 */
126 
127 /*
128  * Open file
129  */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 	int res;
134 
135 	dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 			inode->i_sb->s_id, inode->i_ino);
137 
138 	lock_kernel();
139 	/* Call generic open code in order to cache credentials */
140 	res = nfs_open(inode, filp);
141 	unlock_kernel();
142 	return res;
143 }
144 
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146 typedef struct {
147 	struct file	*file;
148 	struct page	*page;
149 	unsigned long	page_index;
150 	__be32		*ptr;
151 	u64		*dir_cookie;
152 	loff_t		current_index;
153 	struct nfs_entry *entry;
154 	decode_dirent_t	decode;
155 	int		plus;
156 	int		error;
157 	unsigned long	timestamp;
158 	int		timestamp_valid;
159 } nfs_readdir_descriptor_t;
160 
161 /* Now we cache directories properly, by stuffing the dirent
162  * data directly in the page cache.
163  *
164  * Inode invalidation due to refresh etc. takes care of
165  * _everything_, no sloppy entry flushing logic, no extraneous
166  * copying, network direct to page cache, the way it was meant
167  * to be.
168  *
169  * NOTE: Dirent information verification is done always by the
170  *	 page-in of the RPC reply, nowhere else, this simplies
171  *	 things substantially.
172  */
173 static
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
175 {
176 	struct file	*file = desc->file;
177 	struct inode	*inode = file->f_path.dentry->d_inode;
178 	struct rpc_cred	*cred = nfs_file_cred(file);
179 	unsigned long	timestamp;
180 	int		error;
181 
182 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 			__FUNCTION__, (long long)desc->entry->cookie,
184 			page->index);
185 
186  again:
187 	timestamp = jiffies;
188 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 					  NFS_SERVER(inode)->dtsize, desc->plus);
190 	if (error < 0) {
191 		/* We requested READDIRPLUS, but the server doesn't grok it */
192 		if (error == -ENOTSUPP && desc->plus) {
193 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
195 			desc->plus = 0;
196 			goto again;
197 		}
198 		goto error;
199 	}
200 	desc->timestamp = timestamp;
201 	desc->timestamp_valid = 1;
202 	SetPageUptodate(page);
203 	spin_lock(&inode->i_lock);
204 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
205 	spin_unlock(&inode->i_lock);
206 	/* Ensure consistent page alignment of the data.
207 	 * Note: assumes we have exclusive access to this mapping either
208 	 *	 through inode->i_mutex or some other mechanism.
209 	 */
210 	if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
211 		/* Should never happen */
212 		nfs_zap_mapping(inode, inode->i_mapping);
213 	}
214 	unlock_page(page);
215 	return 0;
216  error:
217 	SetPageError(page);
218 	unlock_page(page);
219 	nfs_zap_caches(inode);
220 	desc->error = error;
221 	return -EIO;
222 }
223 
224 static inline
225 int dir_decode(nfs_readdir_descriptor_t *desc)
226 {
227 	__be32	*p = desc->ptr;
228 	p = desc->decode(p, desc->entry, desc->plus);
229 	if (IS_ERR(p))
230 		return PTR_ERR(p);
231 	desc->ptr = p;
232 	if (desc->timestamp_valid)
233 		desc->entry->fattr->time_start = desc->timestamp;
234 	else
235 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
236 	return 0;
237 }
238 
239 static inline
240 void dir_page_release(nfs_readdir_descriptor_t *desc)
241 {
242 	kunmap(desc->page);
243 	page_cache_release(desc->page);
244 	desc->page = NULL;
245 	desc->ptr = NULL;
246 }
247 
248 /*
249  * Given a pointer to a buffer that has already been filled by a call
250  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
251  *
252  * If the end of the buffer has been reached, return -EAGAIN, if not,
253  * return the offset within the buffer of the next entry to be
254  * read.
255  */
256 static inline
257 int find_dirent(nfs_readdir_descriptor_t *desc)
258 {
259 	struct nfs_entry *entry = desc->entry;
260 	int		loop_count = 0,
261 			status;
262 
263 	while((status = dir_decode(desc)) == 0) {
264 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
265 				__FUNCTION__, (unsigned long long)entry->cookie);
266 		if (entry->prev_cookie == *desc->dir_cookie)
267 			break;
268 		if (loop_count++ > 200) {
269 			loop_count = 0;
270 			schedule();
271 		}
272 	}
273 	return status;
274 }
275 
276 /*
277  * Given a pointer to a buffer that has already been filled by a call
278  * to readdir, find the entry at offset 'desc->file->f_pos'.
279  *
280  * If the end of the buffer has been reached, return -EAGAIN, if not,
281  * return the offset within the buffer of the next entry to be
282  * read.
283  */
284 static inline
285 int find_dirent_index(nfs_readdir_descriptor_t *desc)
286 {
287 	struct nfs_entry *entry = desc->entry;
288 	int		loop_count = 0,
289 			status;
290 
291 	for(;;) {
292 		status = dir_decode(desc);
293 		if (status)
294 			break;
295 
296 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
297 				(unsigned long long)entry->cookie, desc->current_index);
298 
299 		if (desc->file->f_pos == desc->current_index) {
300 			*desc->dir_cookie = entry->cookie;
301 			break;
302 		}
303 		desc->current_index++;
304 		if (loop_count++ > 200) {
305 			loop_count = 0;
306 			schedule();
307 		}
308 	}
309 	return status;
310 }
311 
312 /*
313  * Find the given page, and call find_dirent() or find_dirent_index in
314  * order to try to return the next entry.
315  */
316 static inline
317 int find_dirent_page(nfs_readdir_descriptor_t *desc)
318 {
319 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
320 	struct page	*page;
321 	int		status;
322 
323 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
324 			__FUNCTION__, desc->page_index,
325 			(long long) *desc->dir_cookie);
326 
327 	/* If we find the page in the page_cache, we cannot be sure
328 	 * how fresh the data is, so we will ignore readdir_plus attributes.
329 	 */
330 	desc->timestamp_valid = 0;
331 	page = read_cache_page(inode->i_mapping, desc->page_index,
332 			       (filler_t *)nfs_readdir_filler, desc);
333 	if (IS_ERR(page)) {
334 		status = PTR_ERR(page);
335 		goto out;
336 	}
337 
338 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
339 	desc->page = page;
340 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
341 	if (*desc->dir_cookie != 0)
342 		status = find_dirent(desc);
343 	else
344 		status = find_dirent_index(desc);
345 	if (status < 0)
346 		dir_page_release(desc);
347  out:
348 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
349 	return status;
350 }
351 
352 /*
353  * Recurse through the page cache pages, and return a
354  * filled nfs_entry structure of the next directory entry if possible.
355  *
356  * The target for the search is '*desc->dir_cookie' if non-0,
357  * 'desc->file->f_pos' otherwise
358  */
359 static inline
360 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
361 {
362 	int		loop_count = 0;
363 	int		res;
364 
365 	/* Always search-by-index from the beginning of the cache */
366 	if (*desc->dir_cookie == 0) {
367 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
368 				(long long)desc->file->f_pos);
369 		desc->page_index = 0;
370 		desc->entry->cookie = desc->entry->prev_cookie = 0;
371 		desc->entry->eof = 0;
372 		desc->current_index = 0;
373 	} else
374 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
375 				(unsigned long long)*desc->dir_cookie);
376 
377 	for (;;) {
378 		res = find_dirent_page(desc);
379 		if (res != -EAGAIN)
380 			break;
381 		/* Align to beginning of next page */
382 		desc->page_index ++;
383 		if (loop_count++ > 200) {
384 			loop_count = 0;
385 			schedule();
386 		}
387 	}
388 
389 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
390 	return res;
391 }
392 
393 static inline unsigned int dt_type(struct inode *inode)
394 {
395 	return (inode->i_mode >> 12) & 15;
396 }
397 
398 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
399 
400 /*
401  * Once we've found the start of the dirent within a page: fill 'er up...
402  */
403 static
404 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
405 		   filldir_t filldir)
406 {
407 	struct file	*file = desc->file;
408 	struct nfs_entry *entry = desc->entry;
409 	struct dentry	*dentry = NULL;
410 	u64		fileid;
411 	int		loop_count = 0,
412 			res;
413 
414 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
415 			(unsigned long long)entry->cookie);
416 
417 	for(;;) {
418 		unsigned d_type = DT_UNKNOWN;
419 		/* Note: entry->prev_cookie contains the cookie for
420 		 *	 retrieving the current dirent on the server */
421 		fileid = entry->ino;
422 
423 		/* Get a dentry if we have one */
424 		if (dentry != NULL)
425 			dput(dentry);
426 		dentry = nfs_readdir_lookup(desc);
427 
428 		/* Use readdirplus info */
429 		if (dentry != NULL && dentry->d_inode != NULL) {
430 			d_type = dt_type(dentry->d_inode);
431 			fileid = NFS_FILEID(dentry->d_inode);
432 		}
433 
434 		res = filldir(dirent, entry->name, entry->len,
435 			      file->f_pos, fileid, d_type);
436 		if (res < 0)
437 			break;
438 		file->f_pos++;
439 		*desc->dir_cookie = entry->cookie;
440 		if (dir_decode(desc) != 0) {
441 			desc->page_index ++;
442 			break;
443 		}
444 		if (loop_count++ > 200) {
445 			loop_count = 0;
446 			schedule();
447 		}
448 	}
449 	dir_page_release(desc);
450 	if (dentry != NULL)
451 		dput(dentry);
452 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
453 			(unsigned long long)*desc->dir_cookie, res);
454 	return res;
455 }
456 
457 /*
458  * If we cannot find a cookie in our cache, we suspect that this is
459  * because it points to a deleted file, so we ask the server to return
460  * whatever it thinks is the next entry. We then feed this to filldir.
461  * If all goes well, we should then be able to find our way round the
462  * cache on the next call to readdir_search_pagecache();
463  *
464  * NOTE: we cannot add the anonymous page to the pagecache because
465  *	 the data it contains might not be page aligned. Besides,
466  *	 we should already have a complete representation of the
467  *	 directory in the page cache by the time we get here.
468  */
469 static inline
470 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
471 		     filldir_t filldir)
472 {
473 	struct file	*file = desc->file;
474 	struct inode	*inode = file->f_path.dentry->d_inode;
475 	struct rpc_cred	*cred = nfs_file_cred(file);
476 	struct page	*page = NULL;
477 	int		status;
478 	unsigned long	timestamp;
479 
480 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
481 			(unsigned long long)*desc->dir_cookie);
482 
483 	page = alloc_page(GFP_HIGHUSER);
484 	if (!page) {
485 		status = -ENOMEM;
486 		goto out;
487 	}
488 	timestamp = jiffies;
489 	desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
490 						page,
491 						NFS_SERVER(inode)->dtsize,
492 						desc->plus);
493 	spin_lock(&inode->i_lock);
494 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
495 	spin_unlock(&inode->i_lock);
496 	desc->page = page;
497 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
498 	if (desc->error >= 0) {
499 		desc->timestamp = timestamp;
500 		desc->timestamp_valid = 1;
501 		if ((status = dir_decode(desc)) == 0)
502 			desc->entry->prev_cookie = *desc->dir_cookie;
503 	} else
504 		status = -EIO;
505 	if (status < 0)
506 		goto out_release;
507 
508 	status = nfs_do_filldir(desc, dirent, filldir);
509 
510 	/* Reset read descriptor so it searches the page cache from
511 	 * the start upon the next call to readdir_search_pagecache() */
512 	desc->page_index = 0;
513 	desc->entry->cookie = desc->entry->prev_cookie = 0;
514 	desc->entry->eof = 0;
515  out:
516 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
517 			__FUNCTION__, status);
518 	return status;
519  out_release:
520 	dir_page_release(desc);
521 	goto out;
522 }
523 
524 /* The file offset position represents the dirent entry number.  A
525    last cookie cache takes care of the common case of reading the
526    whole directory.
527  */
528 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
529 {
530 	struct dentry	*dentry = filp->f_path.dentry;
531 	struct inode	*inode = dentry->d_inode;
532 	nfs_readdir_descriptor_t my_desc,
533 			*desc = &my_desc;
534 	struct nfs_entry my_entry;
535 	struct nfs_fh	 fh;
536 	struct nfs_fattr fattr;
537 	long		res;
538 
539 	dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
540 			dentry->d_parent->d_name.name, dentry->d_name.name,
541 			(long long)filp->f_pos);
542 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
543 
544 	lock_kernel();
545 
546 	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
547 	if (res < 0) {
548 		unlock_kernel();
549 		return res;
550 	}
551 
552 	/*
553 	 * filp->f_pos points to the dirent entry number.
554 	 * *desc->dir_cookie has the cookie for the next entry. We have
555 	 * to either find the entry with the appropriate number or
556 	 * revalidate the cookie.
557 	 */
558 	memset(desc, 0, sizeof(*desc));
559 
560 	desc->file = filp;
561 	desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie;
562 	desc->decode = NFS_PROTO(inode)->decode_dirent;
563 	desc->plus = NFS_USE_READDIRPLUS(inode);
564 
565 	my_entry.cookie = my_entry.prev_cookie = 0;
566 	my_entry.eof = 0;
567 	my_entry.fh = &fh;
568 	my_entry.fattr = &fattr;
569 	nfs_fattr_init(&fattr);
570 	desc->entry = &my_entry;
571 
572 	while(!desc->entry->eof) {
573 		res = readdir_search_pagecache(desc);
574 
575 		if (res == -EBADCOOKIE) {
576 			/* This means either end of directory */
577 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
578 				/* Or that the server has 'lost' a cookie */
579 				res = uncached_readdir(desc, dirent, filldir);
580 				if (res >= 0)
581 					continue;
582 			}
583 			res = 0;
584 			break;
585 		}
586 		if (res == -ETOOSMALL && desc->plus) {
587 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
588 			nfs_zap_caches(inode);
589 			desc->plus = 0;
590 			desc->entry->eof = 0;
591 			continue;
592 		}
593 		if (res < 0)
594 			break;
595 
596 		res = nfs_do_filldir(desc, dirent, filldir);
597 		if (res < 0) {
598 			res = 0;
599 			break;
600 		}
601 	}
602 	unlock_kernel();
603 	if (res > 0)
604 		res = 0;
605 	dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
606 			dentry->d_parent->d_name.name, dentry->d_name.name,
607 			res);
608 	return res;
609 }
610 
611 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
612 {
613 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
614 	switch (origin) {
615 		case 1:
616 			offset += filp->f_pos;
617 		case 0:
618 			if (offset >= 0)
619 				break;
620 		default:
621 			offset = -EINVAL;
622 			goto out;
623 	}
624 	if (offset != filp->f_pos) {
625 		filp->f_pos = offset;
626 		((struct nfs_open_context *)filp->private_data)->dir_cookie = 0;
627 	}
628 out:
629 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
630 	return offset;
631 }
632 
633 /*
634  * All directory operations under NFS are synchronous, so fsync()
635  * is a dummy operation.
636  */
637 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
638 {
639 	dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
640 			dentry->d_parent->d_name.name, dentry->d_name.name,
641 			datasync);
642 
643 	return 0;
644 }
645 
646 /*
647  * A check for whether or not the parent directory has changed.
648  * In the case it has, we assume that the dentries are untrustworthy
649  * and may need to be looked up again.
650  */
651 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
652 {
653 	unsigned long verf;
654 
655 	if (IS_ROOT(dentry))
656 		return 1;
657 	verf = dentry->d_time;
658 	if (nfs_caches_unstable(dir)
659 			|| verf != NFS_I(dir)->cache_change_attribute)
660 		return 0;
661 	return 1;
662 }
663 
664 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
665 {
666 	dentry->d_time = verf;
667 }
668 
669 static void nfs_refresh_verifier(struct dentry * dentry, unsigned long verf)
670 {
671 	nfs_set_verifier(dentry, verf);
672 }
673 
674 /*
675  * Return the intent data that applies to this particular path component
676  *
677  * Note that the current set of intents only apply to the very last
678  * component of the path.
679  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
680  */
681 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
682 {
683 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
684 		return 0;
685 	return nd->flags & mask;
686 }
687 
688 /*
689  * Inode and filehandle revalidation for lookups.
690  *
691  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
692  * or if the intent information indicates that we're about to open this
693  * particular file and the "nocto" mount flag is not set.
694  *
695  */
696 static inline
697 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
698 {
699 	struct nfs_server *server = NFS_SERVER(inode);
700 
701 	if (nd != NULL) {
702 		/* VFS wants an on-the-wire revalidation */
703 		if (nd->flags & LOOKUP_REVAL)
704 			goto out_force;
705 		/* This is an open(2) */
706 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
707 				!(server->flags & NFS_MOUNT_NOCTO) &&
708 				(S_ISREG(inode->i_mode) ||
709 				 S_ISDIR(inode->i_mode)))
710 			goto out_force;
711 	}
712 	return nfs_revalidate_inode(server, inode);
713 out_force:
714 	return __nfs_revalidate_inode(server, inode);
715 }
716 
717 /*
718  * We judge how long we want to trust negative
719  * dentries by looking at the parent inode mtime.
720  *
721  * If parent mtime has changed, we revalidate, else we wait for a
722  * period corresponding to the parent's attribute cache timeout value.
723  */
724 static inline
725 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
726 		       struct nameidata *nd)
727 {
728 	/* Don't revalidate a negative dentry if we're creating a new file */
729 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
730 		return 0;
731 	return !nfs_check_verifier(dir, dentry);
732 }
733 
734 /*
735  * This is called every time the dcache has a lookup hit,
736  * and we should check whether we can really trust that
737  * lookup.
738  *
739  * NOTE! The hit can be a negative hit too, don't assume
740  * we have an inode!
741  *
742  * If the parent directory is seen to have changed, we throw out the
743  * cached dentry and do a new lookup.
744  */
745 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
746 {
747 	struct inode *dir;
748 	struct inode *inode;
749 	struct dentry *parent;
750 	int error;
751 	struct nfs_fh fhandle;
752 	struct nfs_fattr fattr;
753 	unsigned long verifier;
754 
755 	parent = dget_parent(dentry);
756 	lock_kernel();
757 	dir = parent->d_inode;
758 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
759 	inode = dentry->d_inode;
760 
761 	/* Revalidate parent directory attribute cache */
762 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
763 		goto out_zap_parent;
764 
765 	if (!inode) {
766 		if (nfs_neg_need_reval(dir, dentry, nd))
767 			goto out_bad;
768 		goto out_valid;
769 	}
770 
771 	if (is_bad_inode(inode)) {
772 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
773 				__FUNCTION__, dentry->d_parent->d_name.name,
774 				dentry->d_name.name);
775 		goto out_bad;
776 	}
777 
778 	/* Force a full look up iff the parent directory has changed */
779 	if (nfs_check_verifier(dir, dentry)) {
780 		if (nfs_lookup_verify_inode(inode, nd))
781 			goto out_zap_parent;
782 		goto out_valid;
783 	}
784 
785 	if (NFS_STALE(inode))
786 		goto out_bad;
787 
788 	verifier = nfs_save_change_attribute(dir);
789 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
790 	if (error)
791 		goto out_bad;
792 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
793 		goto out_bad;
794 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
795 		goto out_bad;
796 
797 	nfs_refresh_verifier(dentry, verifier);
798  out_valid:
799 	unlock_kernel();
800 	dput(parent);
801 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
802 			__FUNCTION__, dentry->d_parent->d_name.name,
803 			dentry->d_name.name);
804 	return 1;
805 out_zap_parent:
806 	nfs_zap_caches(dir);
807  out_bad:
808 	NFS_CACHEINV(dir);
809 	if (inode && S_ISDIR(inode->i_mode)) {
810 		/* Purge readdir caches. */
811 		nfs_zap_caches(inode);
812 		/* If we have submounts, don't unhash ! */
813 		if (have_submounts(dentry))
814 			goto out_valid;
815 		shrink_dcache_parent(dentry);
816 	}
817 	d_drop(dentry);
818 	unlock_kernel();
819 	dput(parent);
820 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
821 			__FUNCTION__, dentry->d_parent->d_name.name,
822 			dentry->d_name.name);
823 	return 0;
824 }
825 
826 /*
827  * This is called from dput() when d_count is going to 0.
828  */
829 static int nfs_dentry_delete(struct dentry *dentry)
830 {
831 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
832 		dentry->d_parent->d_name.name, dentry->d_name.name,
833 		dentry->d_flags);
834 
835 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
836 		/* Unhash it, so that ->d_iput() would be called */
837 		return 1;
838 	}
839 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
840 		/* Unhash it, so that ancestors of killed async unlink
841 		 * files will be cleaned up during umount */
842 		return 1;
843 	}
844 	return 0;
845 
846 }
847 
848 /*
849  * Called when the dentry loses inode.
850  * We use it to clean up silly-renamed files.
851  */
852 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
853 {
854 	nfs_inode_return_delegation(inode);
855 	if (S_ISDIR(inode->i_mode))
856 		/* drop any readdir cache as it could easily be old */
857 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
858 
859 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
860 		lock_kernel();
861 		drop_nlink(inode);
862 		nfs_complete_unlink(dentry, inode);
863 		unlock_kernel();
864 	}
865 	iput(inode);
866 }
867 
868 struct dentry_operations nfs_dentry_operations = {
869 	.d_revalidate	= nfs_lookup_revalidate,
870 	.d_delete	= nfs_dentry_delete,
871 	.d_iput		= nfs_dentry_iput,
872 };
873 
874 /*
875  * Use intent information to check whether or not we're going to do
876  * an O_EXCL create using this path component.
877  */
878 static inline
879 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
880 {
881 	if (NFS_PROTO(dir)->version == 2)
882 		return 0;
883 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
884 		return 0;
885 	return (nd->intent.open.flags & O_EXCL) != 0;
886 }
887 
888 static inline int nfs_reval_fsid(struct inode *dir, const struct nfs_fattr *fattr)
889 {
890 	struct nfs_server *server = NFS_SERVER(dir);
891 
892 	if (!nfs_fsid_equal(&server->fsid, &fattr->fsid))
893 		/* Revalidate fsid using the parent directory */
894 		return __nfs_revalidate_inode(server, dir);
895 	return 0;
896 }
897 
898 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
899 {
900 	struct dentry *res;
901 	struct inode *inode = NULL;
902 	int error;
903 	struct nfs_fh fhandle;
904 	struct nfs_fattr fattr;
905 
906 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
907 		dentry->d_parent->d_name.name, dentry->d_name.name);
908 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
909 
910 	res = ERR_PTR(-ENAMETOOLONG);
911 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
912 		goto out;
913 
914 	res = ERR_PTR(-ENOMEM);
915 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
916 
917 	lock_kernel();
918 
919 	/*
920 	 * If we're doing an exclusive create, optimize away the lookup
921 	 * but don't hash the dentry.
922 	 */
923 	if (nfs_is_exclusive_create(dir, nd)) {
924 		d_instantiate(dentry, NULL);
925 		res = NULL;
926 		goto out_unlock;
927 	}
928 
929 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
930 	if (error == -ENOENT)
931 		goto no_entry;
932 	if (error < 0) {
933 		res = ERR_PTR(error);
934 		goto out_unlock;
935 	}
936 	error = nfs_reval_fsid(dir, &fattr);
937 	if (error < 0) {
938 		res = ERR_PTR(error);
939 		goto out_unlock;
940 	}
941 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
942 	res = (struct dentry *)inode;
943 	if (IS_ERR(res))
944 		goto out_unlock;
945 
946 no_entry:
947 	res = d_materialise_unique(dentry, inode);
948 	if (res != NULL) {
949 		struct dentry *parent;
950 		if (IS_ERR(res))
951 			goto out_unlock;
952 		/* Was a directory renamed! */
953 		parent = dget_parent(res);
954 		if (!IS_ROOT(parent))
955 			nfs_mark_for_revalidate(parent->d_inode);
956 		dput(parent);
957 		dentry = res;
958 	}
959 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
960 out_unlock:
961 	unlock_kernel();
962 out:
963 	return res;
964 }
965 
966 #ifdef CONFIG_NFS_V4
967 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
968 
969 struct dentry_operations nfs4_dentry_operations = {
970 	.d_revalidate	= nfs_open_revalidate,
971 	.d_delete	= nfs_dentry_delete,
972 	.d_iput		= nfs_dentry_iput,
973 };
974 
975 /*
976  * Use intent information to determine whether we need to substitute
977  * the NFSv4-style stateful OPEN for the LOOKUP call
978  */
979 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
980 {
981 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
982 		return 0;
983 	/* NFS does not (yet) have a stateful open for directories */
984 	if (nd->flags & LOOKUP_DIRECTORY)
985 		return 0;
986 	/* Are we trying to write to a read only partition? */
987 	if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
988 		return 0;
989 	return 1;
990 }
991 
992 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
993 {
994 	struct dentry *res = NULL;
995 	int error;
996 
997 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
998 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
999 
1000 	/* Check that we are indeed trying to open this file */
1001 	if (!is_atomic_open(dir, nd))
1002 		goto no_open;
1003 
1004 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1005 		res = ERR_PTR(-ENAMETOOLONG);
1006 		goto out;
1007 	}
1008 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1009 
1010 	/* Let vfs_create() deal with O_EXCL */
1011 	if (nd->intent.open.flags & O_EXCL) {
1012 		d_add(dentry, NULL);
1013 		goto out;
1014 	}
1015 
1016 	/* Open the file on the server */
1017 	lock_kernel();
1018 	/* Revalidate parent directory attribute cache */
1019 	error = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1020 	if (error < 0) {
1021 		res = ERR_PTR(error);
1022 		unlock_kernel();
1023 		goto out;
1024 	}
1025 
1026 	if (nd->intent.open.flags & O_CREAT) {
1027 		nfs_begin_data_update(dir);
1028 		res = nfs4_atomic_open(dir, dentry, nd);
1029 		nfs_end_data_update(dir);
1030 	} else
1031 		res = nfs4_atomic_open(dir, dentry, nd);
1032 	unlock_kernel();
1033 	if (IS_ERR(res)) {
1034 		error = PTR_ERR(res);
1035 		switch (error) {
1036 			/* Make a negative dentry */
1037 			case -ENOENT:
1038 				res = NULL;
1039 				goto out;
1040 			/* This turned out not to be a regular file */
1041 			case -EISDIR:
1042 			case -ENOTDIR:
1043 				goto no_open;
1044 			case -ELOOP:
1045 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1046 					goto no_open;
1047 			/* case -EINVAL: */
1048 			default:
1049 				goto out;
1050 		}
1051 	} else if (res != NULL)
1052 		dentry = res;
1053 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1054 out:
1055 	return res;
1056 no_open:
1057 	return nfs_lookup(dir, dentry, nd);
1058 }
1059 
1060 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1061 {
1062 	struct dentry *parent = NULL;
1063 	struct inode *inode = dentry->d_inode;
1064 	struct inode *dir;
1065 	unsigned long verifier;
1066 	int openflags, ret = 0;
1067 
1068 	parent = dget_parent(dentry);
1069 	dir = parent->d_inode;
1070 	if (!is_atomic_open(dir, nd))
1071 		goto no_open;
1072 	/* We can't create new files in nfs_open_revalidate(), so we
1073 	 * optimize away revalidation of negative dentries.
1074 	 */
1075 	if (inode == NULL)
1076 		goto out;
1077 	/* NFS only supports OPEN on regular files */
1078 	if (!S_ISREG(inode->i_mode))
1079 		goto no_open;
1080 	openflags = nd->intent.open.flags;
1081 	/* We cannot do exclusive creation on a positive dentry */
1082 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1083 		goto no_open;
1084 	/* We can't create new files, or truncate existing ones here */
1085 	openflags &= ~(O_CREAT|O_TRUNC);
1086 
1087 	/*
1088 	 * Note: we're not holding inode->i_mutex and so may be racing with
1089 	 * operations that change the directory. We therefore save the
1090 	 * change attribute *before* we do the RPC call.
1091 	 */
1092 	lock_kernel();
1093 	verifier = nfs_save_change_attribute(dir);
1094 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1095 	if (!ret)
1096 		nfs_refresh_verifier(dentry, verifier);
1097 	unlock_kernel();
1098 out:
1099 	dput(parent);
1100 	if (!ret)
1101 		d_drop(dentry);
1102 	return ret;
1103 no_open:
1104 	dput(parent);
1105 	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1106 		return 1;
1107 	return nfs_lookup_revalidate(dentry, nd);
1108 }
1109 #endif /* CONFIG_NFSV4 */
1110 
1111 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1112 {
1113 	struct dentry *parent = desc->file->f_path.dentry;
1114 	struct inode *dir = parent->d_inode;
1115 	struct nfs_entry *entry = desc->entry;
1116 	struct dentry *dentry, *alias;
1117 	struct qstr name = {
1118 		.name = entry->name,
1119 		.len = entry->len,
1120 	};
1121 	struct inode *inode;
1122 
1123 	switch (name.len) {
1124 		case 2:
1125 			if (name.name[0] == '.' && name.name[1] == '.')
1126 				return dget_parent(parent);
1127 			break;
1128 		case 1:
1129 			if (name.name[0] == '.')
1130 				return dget(parent);
1131 	}
1132 	name.hash = full_name_hash(name.name, name.len);
1133 	dentry = d_lookup(parent, &name);
1134 	if (dentry != NULL) {
1135 		/* Is this a positive dentry that matches the readdir info? */
1136 		if (dentry->d_inode != NULL &&
1137 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1138 				d_mountpoint(dentry))) {
1139 			if (!desc->plus || entry->fh->size == 0)
1140 				return dentry;
1141 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1142 						entry->fh) == 0)
1143 				goto out_renew;
1144 		}
1145 		/* No, so d_drop to allow one to be created */
1146 		d_drop(dentry);
1147 		dput(dentry);
1148 	}
1149 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1150 		return NULL;
1151 	if (name.len > NFS_SERVER(dir)->namelen)
1152 		return NULL;
1153 	/* Note: caller is already holding the dir->i_mutex! */
1154 	dentry = d_alloc(parent, &name);
1155 	if (dentry == NULL)
1156 		return NULL;
1157 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1158 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1159 	if (IS_ERR(inode)) {
1160 		dput(dentry);
1161 		return NULL;
1162 	}
1163 
1164 	alias = d_materialise_unique(dentry, inode);
1165 	if (alias != NULL) {
1166 		dput(dentry);
1167 		if (IS_ERR(alias))
1168 			return NULL;
1169 		dentry = alias;
1170 	}
1171 
1172 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1173 	return dentry;
1174 out_renew:
1175 	nfs_refresh_verifier(dentry, nfs_save_change_attribute(dir));
1176 	return dentry;
1177 }
1178 
1179 /*
1180  * Code common to create, mkdir, and mknod.
1181  */
1182 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1183 				struct nfs_fattr *fattr)
1184 {
1185 	struct inode *inode;
1186 	int error = -EACCES;
1187 
1188 	/* We may have been initialized further down */
1189 	if (dentry->d_inode)
1190 		return 0;
1191 	if (fhandle->size == 0) {
1192 		struct inode *dir = dentry->d_parent->d_inode;
1193 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1194 		if (error)
1195 			return error;
1196 	}
1197 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1198 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1199 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1200 		if (error < 0)
1201 			return error;
1202 	}
1203 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1204 	error = PTR_ERR(inode);
1205 	if (IS_ERR(inode))
1206 		return error;
1207 	d_instantiate(dentry, inode);
1208 	if (d_unhashed(dentry))
1209 		d_rehash(dentry);
1210 	return 0;
1211 }
1212 
1213 /*
1214  * Following a failed create operation, we drop the dentry rather
1215  * than retain a negative dentry. This avoids a problem in the event
1216  * that the operation succeeded on the server, but an error in the
1217  * reply path made it appear to have failed.
1218  */
1219 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1220 		struct nameidata *nd)
1221 {
1222 	struct iattr attr;
1223 	int error;
1224 	int open_flags = 0;
1225 
1226 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1227 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1228 
1229 	attr.ia_mode = mode;
1230 	attr.ia_valid = ATTR_MODE;
1231 
1232 	if ((nd->flags & LOOKUP_CREATE) != 0)
1233 		open_flags = nd->intent.open.flags;
1234 
1235 	lock_kernel();
1236 	nfs_begin_data_update(dir);
1237 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1238 	nfs_end_data_update(dir);
1239 	if (error != 0)
1240 		goto out_err;
1241 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1242 	unlock_kernel();
1243 	return 0;
1244 out_err:
1245 	unlock_kernel();
1246 	d_drop(dentry);
1247 	return error;
1248 }
1249 
1250 /*
1251  * See comments for nfs_proc_create regarding failed operations.
1252  */
1253 static int
1254 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1255 {
1256 	struct iattr attr;
1257 	int status;
1258 
1259 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1260 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1261 
1262 	if (!new_valid_dev(rdev))
1263 		return -EINVAL;
1264 
1265 	attr.ia_mode = mode;
1266 	attr.ia_valid = ATTR_MODE;
1267 
1268 	lock_kernel();
1269 	nfs_begin_data_update(dir);
1270 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1271 	nfs_end_data_update(dir);
1272 	if (status != 0)
1273 		goto out_err;
1274 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1275 	unlock_kernel();
1276 	return 0;
1277 out_err:
1278 	unlock_kernel();
1279 	d_drop(dentry);
1280 	return status;
1281 }
1282 
1283 /*
1284  * See comments for nfs_proc_create regarding failed operations.
1285  */
1286 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1287 {
1288 	struct iattr attr;
1289 	int error;
1290 
1291 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1292 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1293 
1294 	attr.ia_valid = ATTR_MODE;
1295 	attr.ia_mode = mode | S_IFDIR;
1296 
1297 	lock_kernel();
1298 	nfs_begin_data_update(dir);
1299 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1300 	nfs_end_data_update(dir);
1301 	if (error != 0)
1302 		goto out_err;
1303 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1304 	unlock_kernel();
1305 	return 0;
1306 out_err:
1307 	d_drop(dentry);
1308 	unlock_kernel();
1309 	return error;
1310 }
1311 
1312 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1313 {
1314 	int error;
1315 
1316 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1317 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1318 
1319 	lock_kernel();
1320 	nfs_begin_data_update(dir);
1321 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1322 	/* Ensure the VFS deletes this inode */
1323 	if (error == 0 && dentry->d_inode != NULL)
1324 		clear_nlink(dentry->d_inode);
1325 	nfs_end_data_update(dir);
1326 	unlock_kernel();
1327 
1328 	return error;
1329 }
1330 
1331 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1332 {
1333 	static unsigned int sillycounter;
1334 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1335 	const int      countersize = sizeof(sillycounter)*2;
1336 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1337 	char           silly[slen+1];
1338 	struct qstr    qsilly;
1339 	struct dentry *sdentry;
1340 	int            error = -EIO;
1341 
1342 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1343 		dentry->d_parent->d_name.name, dentry->d_name.name,
1344 		atomic_read(&dentry->d_count));
1345 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1346 
1347 	/*
1348 	 * We don't allow a dentry to be silly-renamed twice.
1349 	 */
1350 	error = -EBUSY;
1351 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1352 		goto out;
1353 
1354 	sprintf(silly, ".nfs%*.*Lx",
1355 		fileidsize, fileidsize,
1356 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1357 
1358 	/* Return delegation in anticipation of the rename */
1359 	nfs_inode_return_delegation(dentry->d_inode);
1360 
1361 	sdentry = NULL;
1362 	do {
1363 		char *suffix = silly + slen - countersize;
1364 
1365 		dput(sdentry);
1366 		sillycounter++;
1367 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1368 
1369 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1370 				dentry->d_name.name, silly);
1371 
1372 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1373 		/*
1374 		 * N.B. Better to return EBUSY here ... it could be
1375 		 * dangerous to delete the file while it's in use.
1376 		 */
1377 		if (IS_ERR(sdentry))
1378 			goto out;
1379 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1380 
1381 	qsilly.name = silly;
1382 	qsilly.len  = strlen(silly);
1383 	nfs_begin_data_update(dir);
1384 	if (dentry->d_inode) {
1385 		nfs_begin_data_update(dentry->d_inode);
1386 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1387 				dir, &qsilly);
1388 		nfs_mark_for_revalidate(dentry->d_inode);
1389 		nfs_end_data_update(dentry->d_inode);
1390 	} else
1391 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1392 				dir, &qsilly);
1393 	nfs_end_data_update(dir);
1394 	if (!error) {
1395 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1396 		d_move(dentry, sdentry);
1397 		error = nfs_async_unlink(dir, dentry);
1398  		/* If we return 0 we don't unlink */
1399 	}
1400 	dput(sdentry);
1401 out:
1402 	return error;
1403 }
1404 
1405 /*
1406  * Remove a file after making sure there are no pending writes,
1407  * and after checking that the file has only one user.
1408  *
1409  * We invalidate the attribute cache and free the inode prior to the operation
1410  * to avoid possible races if the server reuses the inode.
1411  */
1412 static int nfs_safe_remove(struct dentry *dentry)
1413 {
1414 	struct inode *dir = dentry->d_parent->d_inode;
1415 	struct inode *inode = dentry->d_inode;
1416 	int error = -EBUSY;
1417 
1418 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1419 		dentry->d_parent->d_name.name, dentry->d_name.name);
1420 
1421 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1422 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1423 		error = 0;
1424 		goto out;
1425 	}
1426 
1427 	nfs_begin_data_update(dir);
1428 	if (inode != NULL) {
1429 		nfs_inode_return_delegation(inode);
1430 		nfs_begin_data_update(inode);
1431 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1432 		/* The VFS may want to delete this inode */
1433 		if (error == 0)
1434 			drop_nlink(inode);
1435 		nfs_mark_for_revalidate(inode);
1436 		nfs_end_data_update(inode);
1437 	} else
1438 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1439 	nfs_end_data_update(dir);
1440 out:
1441 	return error;
1442 }
1443 
1444 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1445  *  belongs to an active ".nfs..." file and we return -EBUSY.
1446  *
1447  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1448  */
1449 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1450 {
1451 	int error;
1452 	int need_rehash = 0;
1453 
1454 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1455 		dir->i_ino, dentry->d_name.name);
1456 
1457 	lock_kernel();
1458 	spin_lock(&dcache_lock);
1459 	spin_lock(&dentry->d_lock);
1460 	if (atomic_read(&dentry->d_count) > 1) {
1461 		spin_unlock(&dentry->d_lock);
1462 		spin_unlock(&dcache_lock);
1463 		/* Start asynchronous writeout of the inode */
1464 		write_inode_now(dentry->d_inode, 0);
1465 		error = nfs_sillyrename(dir, dentry);
1466 		unlock_kernel();
1467 		return error;
1468 	}
1469 	if (!d_unhashed(dentry)) {
1470 		__d_drop(dentry);
1471 		need_rehash = 1;
1472 	}
1473 	spin_unlock(&dentry->d_lock);
1474 	spin_unlock(&dcache_lock);
1475 	error = nfs_safe_remove(dentry);
1476 	if (!error) {
1477 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1478 	} else if (need_rehash)
1479 		d_rehash(dentry);
1480 	unlock_kernel();
1481 	return error;
1482 }
1483 
1484 /*
1485  * To create a symbolic link, most file systems instantiate a new inode,
1486  * add a page to it containing the path, then write it out to the disk
1487  * using prepare_write/commit_write.
1488  *
1489  * Unfortunately the NFS client can't create the in-core inode first
1490  * because it needs a file handle to create an in-core inode (see
1491  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1492  * symlink request has completed on the server.
1493  *
1494  * So instead we allocate a raw page, copy the symname into it, then do
1495  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1496  * now have a new file handle and can instantiate an in-core NFS inode
1497  * and move the raw page into its mapping.
1498  */
1499 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1500 {
1501 	struct pagevec lru_pvec;
1502 	struct page *page;
1503 	char *kaddr;
1504 	struct iattr attr;
1505 	unsigned int pathlen = strlen(symname);
1506 	int error;
1507 
1508 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1509 		dir->i_ino, dentry->d_name.name, symname);
1510 
1511 	if (pathlen > PAGE_SIZE)
1512 		return -ENAMETOOLONG;
1513 
1514 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1515 	attr.ia_valid = ATTR_MODE;
1516 
1517 	lock_kernel();
1518 
1519 	page = alloc_page(GFP_HIGHUSER);
1520 	if (!page) {
1521 		unlock_kernel();
1522 		return -ENOMEM;
1523 	}
1524 
1525 	kaddr = kmap_atomic(page, KM_USER0);
1526 	memcpy(kaddr, symname, pathlen);
1527 	if (pathlen < PAGE_SIZE)
1528 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1529 	kunmap_atomic(kaddr, KM_USER0);
1530 
1531 	nfs_begin_data_update(dir);
1532 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1533 	nfs_end_data_update(dir);
1534 	if (error != 0) {
1535 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1536 			dir->i_sb->s_id, dir->i_ino,
1537 			dentry->d_name.name, symname, error);
1538 		d_drop(dentry);
1539 		__free_page(page);
1540 		unlock_kernel();
1541 		return error;
1542 	}
1543 
1544 	/*
1545 	 * No big deal if we can't add this page to the page cache here.
1546 	 * READLINK will get the missing page from the server if needed.
1547 	 */
1548 	pagevec_init(&lru_pvec, 0);
1549 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1550 							GFP_KERNEL)) {
1551 		pagevec_add(&lru_pvec, page);
1552 		pagevec_lru_add(&lru_pvec);
1553 		SetPageUptodate(page);
1554 		unlock_page(page);
1555 	} else
1556 		__free_page(page);
1557 
1558 	unlock_kernel();
1559 	return 0;
1560 }
1561 
1562 static int
1563 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1564 {
1565 	struct inode *inode = old_dentry->d_inode;
1566 	int error;
1567 
1568 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1569 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1570 		dentry->d_parent->d_name.name, dentry->d_name.name);
1571 
1572 	lock_kernel();
1573 	nfs_begin_data_update(dir);
1574 	nfs_begin_data_update(inode);
1575 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1576 	if (error == 0) {
1577 		atomic_inc(&inode->i_count);
1578 		d_instantiate(dentry, inode);
1579 	}
1580 	nfs_end_data_update(inode);
1581 	nfs_end_data_update(dir);
1582 	unlock_kernel();
1583 	return error;
1584 }
1585 
1586 /*
1587  * RENAME
1588  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1589  * different file handle for the same inode after a rename (e.g. when
1590  * moving to a different directory). A fail-safe method to do so would
1591  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1592  * rename the old file using the sillyrename stuff. This way, the original
1593  * file in old_dir will go away when the last process iput()s the inode.
1594  *
1595  * FIXED.
1596  *
1597  * It actually works quite well. One needs to have the possibility for
1598  * at least one ".nfs..." file in each directory the file ever gets
1599  * moved or linked to which happens automagically with the new
1600  * implementation that only depends on the dcache stuff instead of
1601  * using the inode layer
1602  *
1603  * Unfortunately, things are a little more complicated than indicated
1604  * above. For a cross-directory move, we want to make sure we can get
1605  * rid of the old inode after the operation.  This means there must be
1606  * no pending writes (if it's a file), and the use count must be 1.
1607  * If these conditions are met, we can drop the dentries before doing
1608  * the rename.
1609  */
1610 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1611 		      struct inode *new_dir, struct dentry *new_dentry)
1612 {
1613 	struct inode *old_inode = old_dentry->d_inode;
1614 	struct inode *new_inode = new_dentry->d_inode;
1615 	struct dentry *dentry = NULL, *rehash = NULL;
1616 	int error = -EBUSY;
1617 
1618 	/*
1619 	 * To prevent any new references to the target during the rename,
1620 	 * we unhash the dentry and free the inode in advance.
1621 	 */
1622 	lock_kernel();
1623 	if (!d_unhashed(new_dentry)) {
1624 		d_drop(new_dentry);
1625 		rehash = new_dentry;
1626 	}
1627 
1628 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1629 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1630 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1631 		 atomic_read(&new_dentry->d_count));
1632 
1633 	/*
1634 	 * First check whether the target is busy ... we can't
1635 	 * safely do _any_ rename if the target is in use.
1636 	 *
1637 	 * For files, make a copy of the dentry and then do a
1638 	 * silly-rename. If the silly-rename succeeds, the
1639 	 * copied dentry is hashed and becomes the new target.
1640 	 */
1641 	if (!new_inode)
1642 		goto go_ahead;
1643 	if (S_ISDIR(new_inode->i_mode)) {
1644 		error = -EISDIR;
1645 		if (!S_ISDIR(old_inode->i_mode))
1646 			goto out;
1647 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1648 		int err;
1649 		/* copy the target dentry's name */
1650 		dentry = d_alloc(new_dentry->d_parent,
1651 				 &new_dentry->d_name);
1652 		if (!dentry)
1653 			goto out;
1654 
1655 		/* silly-rename the existing target ... */
1656 		err = nfs_sillyrename(new_dir, new_dentry);
1657 		if (!err) {
1658 			new_dentry = rehash = dentry;
1659 			new_inode = NULL;
1660 			/* instantiate the replacement target */
1661 			d_instantiate(new_dentry, NULL);
1662 		} else if (atomic_read(&new_dentry->d_count) > 1)
1663 			/* dentry still busy? */
1664 			goto out;
1665 	} else
1666 		drop_nlink(new_inode);
1667 
1668 go_ahead:
1669 	/*
1670 	 * ... prune child dentries and writebacks if needed.
1671 	 */
1672 	if (atomic_read(&old_dentry->d_count) > 1) {
1673 		if (S_ISREG(old_inode->i_mode))
1674 			nfs_wb_all(old_inode);
1675 		shrink_dcache_parent(old_dentry);
1676 	}
1677 	nfs_inode_return_delegation(old_inode);
1678 
1679 	if (new_inode != NULL) {
1680 		nfs_inode_return_delegation(new_inode);
1681 		d_delete(new_dentry);
1682 	}
1683 
1684 	nfs_begin_data_update(old_dir);
1685 	nfs_begin_data_update(new_dir);
1686 	nfs_begin_data_update(old_inode);
1687 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1688 					   new_dir, &new_dentry->d_name);
1689 	nfs_mark_for_revalidate(old_inode);
1690 	nfs_end_data_update(old_inode);
1691 	nfs_end_data_update(new_dir);
1692 	nfs_end_data_update(old_dir);
1693 out:
1694 	if (rehash)
1695 		d_rehash(rehash);
1696 	if (!error) {
1697 		d_move(old_dentry, new_dentry);
1698 		nfs_refresh_verifier(new_dentry, nfs_save_change_attribute(new_dir));
1699 	}
1700 
1701 	/* new dentry created? */
1702 	if (dentry)
1703 		dput(dentry);
1704 	unlock_kernel();
1705 	return error;
1706 }
1707 
1708 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1709 static LIST_HEAD(nfs_access_lru_list);
1710 static atomic_long_t nfs_access_nr_entries;
1711 
1712 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1713 {
1714 	put_rpccred(entry->cred);
1715 	kfree(entry);
1716 	smp_mb__before_atomic_dec();
1717 	atomic_long_dec(&nfs_access_nr_entries);
1718 	smp_mb__after_atomic_dec();
1719 }
1720 
1721 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1722 {
1723 	LIST_HEAD(head);
1724 	struct nfs_inode *nfsi;
1725 	struct nfs_access_entry *cache;
1726 
1727 restart:
1728 	spin_lock(&nfs_access_lru_lock);
1729 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1730 		struct inode *inode;
1731 
1732 		if (nr_to_scan-- == 0)
1733 			break;
1734 		inode = igrab(&nfsi->vfs_inode);
1735 		if (inode == NULL)
1736 			continue;
1737 		spin_lock(&inode->i_lock);
1738 		if (list_empty(&nfsi->access_cache_entry_lru))
1739 			goto remove_lru_entry;
1740 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1741 				struct nfs_access_entry, lru);
1742 		list_move(&cache->lru, &head);
1743 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1744 		if (!list_empty(&nfsi->access_cache_entry_lru))
1745 			list_move_tail(&nfsi->access_cache_inode_lru,
1746 					&nfs_access_lru_list);
1747 		else {
1748 remove_lru_entry:
1749 			list_del_init(&nfsi->access_cache_inode_lru);
1750 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1751 		}
1752 		spin_unlock(&inode->i_lock);
1753 		spin_unlock(&nfs_access_lru_lock);
1754 		iput(inode);
1755 		goto restart;
1756 	}
1757 	spin_unlock(&nfs_access_lru_lock);
1758 	while (!list_empty(&head)) {
1759 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1760 		list_del(&cache->lru);
1761 		nfs_access_free_entry(cache);
1762 	}
1763 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1764 }
1765 
1766 static void __nfs_access_zap_cache(struct inode *inode)
1767 {
1768 	struct nfs_inode *nfsi = NFS_I(inode);
1769 	struct rb_root *root_node = &nfsi->access_cache;
1770 	struct rb_node *n, *dispose = NULL;
1771 	struct nfs_access_entry *entry;
1772 
1773 	/* Unhook entries from the cache */
1774 	while ((n = rb_first(root_node)) != NULL) {
1775 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1776 		rb_erase(n, root_node);
1777 		list_del(&entry->lru);
1778 		n->rb_left = dispose;
1779 		dispose = n;
1780 	}
1781 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1782 	spin_unlock(&inode->i_lock);
1783 
1784 	/* Now kill them all! */
1785 	while (dispose != NULL) {
1786 		n = dispose;
1787 		dispose = n->rb_left;
1788 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1789 	}
1790 }
1791 
1792 void nfs_access_zap_cache(struct inode *inode)
1793 {
1794 	/* Remove from global LRU init */
1795 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1796 		spin_lock(&nfs_access_lru_lock);
1797 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1798 		spin_unlock(&nfs_access_lru_lock);
1799 	}
1800 
1801 	spin_lock(&inode->i_lock);
1802 	/* This will release the spinlock */
1803 	__nfs_access_zap_cache(inode);
1804 }
1805 
1806 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1807 {
1808 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1809 	struct nfs_access_entry *entry;
1810 
1811 	while (n != NULL) {
1812 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1813 
1814 		if (cred < entry->cred)
1815 			n = n->rb_left;
1816 		else if (cred > entry->cred)
1817 			n = n->rb_right;
1818 		else
1819 			return entry;
1820 	}
1821 	return NULL;
1822 }
1823 
1824 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1825 {
1826 	struct nfs_inode *nfsi = NFS_I(inode);
1827 	struct nfs_access_entry *cache;
1828 	int err = -ENOENT;
1829 
1830 	spin_lock(&inode->i_lock);
1831 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1832 		goto out_zap;
1833 	cache = nfs_access_search_rbtree(inode, cred);
1834 	if (cache == NULL)
1835 		goto out;
1836 	if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1837 		goto out_stale;
1838 	res->jiffies = cache->jiffies;
1839 	res->cred = cache->cred;
1840 	res->mask = cache->mask;
1841 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1842 	err = 0;
1843 out:
1844 	spin_unlock(&inode->i_lock);
1845 	return err;
1846 out_stale:
1847 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1848 	list_del(&cache->lru);
1849 	spin_unlock(&inode->i_lock);
1850 	nfs_access_free_entry(cache);
1851 	return -ENOENT;
1852 out_zap:
1853 	/* This will release the spinlock */
1854 	__nfs_access_zap_cache(inode);
1855 	return -ENOENT;
1856 }
1857 
1858 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1859 {
1860 	struct nfs_inode *nfsi = NFS_I(inode);
1861 	struct rb_root *root_node = &nfsi->access_cache;
1862 	struct rb_node **p = &root_node->rb_node;
1863 	struct rb_node *parent = NULL;
1864 	struct nfs_access_entry *entry;
1865 
1866 	spin_lock(&inode->i_lock);
1867 	while (*p != NULL) {
1868 		parent = *p;
1869 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1870 
1871 		if (set->cred < entry->cred)
1872 			p = &parent->rb_left;
1873 		else if (set->cred > entry->cred)
1874 			p = &parent->rb_right;
1875 		else
1876 			goto found;
1877 	}
1878 	rb_link_node(&set->rb_node, parent, p);
1879 	rb_insert_color(&set->rb_node, root_node);
1880 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1881 	spin_unlock(&inode->i_lock);
1882 	return;
1883 found:
1884 	rb_replace_node(parent, &set->rb_node, root_node);
1885 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1886 	list_del(&entry->lru);
1887 	spin_unlock(&inode->i_lock);
1888 	nfs_access_free_entry(entry);
1889 }
1890 
1891 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1892 {
1893 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1894 	if (cache == NULL)
1895 		return;
1896 	RB_CLEAR_NODE(&cache->rb_node);
1897 	cache->jiffies = set->jiffies;
1898 	cache->cred = get_rpccred(set->cred);
1899 	cache->mask = set->mask;
1900 
1901 	nfs_access_add_rbtree(inode, cache);
1902 
1903 	/* Update accounting */
1904 	smp_mb__before_atomic_inc();
1905 	atomic_long_inc(&nfs_access_nr_entries);
1906 	smp_mb__after_atomic_inc();
1907 
1908 	/* Add inode to global LRU list */
1909 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1910 		spin_lock(&nfs_access_lru_lock);
1911 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1912 		spin_unlock(&nfs_access_lru_lock);
1913 	}
1914 }
1915 
1916 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1917 {
1918 	struct nfs_access_entry cache;
1919 	int status;
1920 
1921 	status = nfs_access_get_cached(inode, cred, &cache);
1922 	if (status == 0)
1923 		goto out;
1924 
1925 	/* Be clever: ask server to check for all possible rights */
1926 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1927 	cache.cred = cred;
1928 	cache.jiffies = jiffies;
1929 	status = NFS_PROTO(inode)->access(inode, &cache);
1930 	if (status != 0)
1931 		return status;
1932 	nfs_access_add_cache(inode, &cache);
1933 out:
1934 	if ((cache.mask & mask) == mask)
1935 		return 0;
1936 	return -EACCES;
1937 }
1938 
1939 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1940 {
1941 	struct rpc_cred *cred;
1942 	int res = 0;
1943 
1944 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1945 
1946 	if (mask == 0)
1947 		goto out;
1948 	/* Is this sys_access() ? */
1949 	if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1950 		goto force_lookup;
1951 
1952 	switch (inode->i_mode & S_IFMT) {
1953 		case S_IFLNK:
1954 			goto out;
1955 		case S_IFREG:
1956 			/* NFSv4 has atomic_open... */
1957 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1958 					&& nd != NULL
1959 					&& (nd->flags & LOOKUP_OPEN))
1960 				goto out;
1961 			break;
1962 		case S_IFDIR:
1963 			/*
1964 			 * Optimize away all write operations, since the server
1965 			 * will check permissions when we perform the op.
1966 			 */
1967 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1968 				goto out;
1969 	}
1970 
1971 force_lookup:
1972 	lock_kernel();
1973 
1974 	if (!NFS_PROTO(inode)->access)
1975 		goto out_notsup;
1976 
1977 	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1978 	if (!IS_ERR(cred)) {
1979 		res = nfs_do_access(inode, cred, mask);
1980 		put_rpccred(cred);
1981 	} else
1982 		res = PTR_ERR(cred);
1983 	unlock_kernel();
1984 out:
1985 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1986 		inode->i_sb->s_id, inode->i_ino, mask, res);
1987 	return res;
1988 out_notsup:
1989 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1990 	if (res == 0)
1991 		res = generic_permission(inode, mask, NULL);
1992 	unlock_kernel();
1993 	goto out;
1994 }
1995 
1996 /*
1997  * Local variables:
1998  *  version-control: t
1999  *  kept-new-versions: 5
2000  * End:
2001  */
2002