1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/time.h> 21 #include <linux/errno.h> 22 #include <linux/stat.h> 23 #include <linux/fcntl.h> 24 #include <linux/string.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/nfs_fs.h> 30 #include <linux/nfs_mount.h> 31 #include <linux/pagemap.h> 32 #include <linux/smp_lock.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/sched.h> 37 38 #include "nfs4_fs.h" 39 #include "delegation.h" 40 #include "iostat.h" 41 42 /* #define NFS_DEBUG_VERBOSE 1 */ 43 44 static int nfs_opendir(struct inode *, struct file *); 45 static int nfs_readdir(struct file *, void *, filldir_t); 46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *); 47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *); 48 static int nfs_mkdir(struct inode *, struct dentry *, int); 49 static int nfs_rmdir(struct inode *, struct dentry *); 50 static int nfs_unlink(struct inode *, struct dentry *); 51 static int nfs_symlink(struct inode *, struct dentry *, const char *); 52 static int nfs_link(struct dentry *, struct inode *, struct dentry *); 53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t); 54 static int nfs_rename(struct inode *, struct dentry *, 55 struct inode *, struct dentry *); 56 static int nfs_fsync_dir(struct file *, struct dentry *, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 59 const struct file_operations nfs_dir_operations = { 60 .llseek = nfs_llseek_dir, 61 .read = generic_read_dir, 62 .readdir = nfs_readdir, 63 .open = nfs_opendir, 64 .release = nfs_release, 65 .fsync = nfs_fsync_dir, 66 }; 67 68 const struct inode_operations nfs_dir_inode_operations = { 69 .create = nfs_create, 70 .lookup = nfs_lookup, 71 .link = nfs_link, 72 .unlink = nfs_unlink, 73 .symlink = nfs_symlink, 74 .mkdir = nfs_mkdir, 75 .rmdir = nfs_rmdir, 76 .mknod = nfs_mknod, 77 .rename = nfs_rename, 78 .permission = nfs_permission, 79 .getattr = nfs_getattr, 80 .setattr = nfs_setattr, 81 }; 82 83 #ifdef CONFIG_NFS_V3 84 const struct inode_operations nfs3_dir_inode_operations = { 85 .create = nfs_create, 86 .lookup = nfs_lookup, 87 .link = nfs_link, 88 .unlink = nfs_unlink, 89 .symlink = nfs_symlink, 90 .mkdir = nfs_mkdir, 91 .rmdir = nfs_rmdir, 92 .mknod = nfs_mknod, 93 .rename = nfs_rename, 94 .permission = nfs_permission, 95 .getattr = nfs_getattr, 96 .setattr = nfs_setattr, 97 .listxattr = nfs3_listxattr, 98 .getxattr = nfs3_getxattr, 99 .setxattr = nfs3_setxattr, 100 .removexattr = nfs3_removexattr, 101 }; 102 #endif /* CONFIG_NFS_V3 */ 103 104 #ifdef CONFIG_NFS_V4 105 106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *); 107 const struct inode_operations nfs4_dir_inode_operations = { 108 .create = nfs_create, 109 .lookup = nfs_atomic_lookup, 110 .link = nfs_link, 111 .unlink = nfs_unlink, 112 .symlink = nfs_symlink, 113 .mkdir = nfs_mkdir, 114 .rmdir = nfs_rmdir, 115 .mknod = nfs_mknod, 116 .rename = nfs_rename, 117 .permission = nfs_permission, 118 .getattr = nfs_getattr, 119 .setattr = nfs_setattr, 120 .getxattr = nfs4_getxattr, 121 .setxattr = nfs4_setxattr, 122 .listxattr = nfs4_listxattr, 123 }; 124 125 #endif /* CONFIG_NFS_V4 */ 126 127 /* 128 * Open file 129 */ 130 static int 131 nfs_opendir(struct inode *inode, struct file *filp) 132 { 133 int res; 134 135 dfprintk(VFS, "NFS: opendir(%s/%ld)\n", 136 inode->i_sb->s_id, inode->i_ino); 137 138 lock_kernel(); 139 /* Call generic open code in order to cache credentials */ 140 res = nfs_open(inode, filp); 141 unlock_kernel(); 142 return res; 143 } 144 145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int); 146 typedef struct { 147 struct file *file; 148 struct page *page; 149 unsigned long page_index; 150 __be32 *ptr; 151 u64 *dir_cookie; 152 loff_t current_index; 153 struct nfs_entry *entry; 154 decode_dirent_t decode; 155 int plus; 156 int error; 157 unsigned long timestamp; 158 int timestamp_valid; 159 } nfs_readdir_descriptor_t; 160 161 /* Now we cache directories properly, by stuffing the dirent 162 * data directly in the page cache. 163 * 164 * Inode invalidation due to refresh etc. takes care of 165 * _everything_, no sloppy entry flushing logic, no extraneous 166 * copying, network direct to page cache, the way it was meant 167 * to be. 168 * 169 * NOTE: Dirent information verification is done always by the 170 * page-in of the RPC reply, nowhere else, this simplies 171 * things substantially. 172 */ 173 static 174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page) 175 { 176 struct file *file = desc->file; 177 struct inode *inode = file->f_path.dentry->d_inode; 178 struct rpc_cred *cred = nfs_file_cred(file); 179 unsigned long timestamp; 180 int error; 181 182 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n", 183 __FUNCTION__, (long long)desc->entry->cookie, 184 page->index); 185 186 again: 187 timestamp = jiffies; 188 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page, 189 NFS_SERVER(inode)->dtsize, desc->plus); 190 if (error < 0) { 191 /* We requested READDIRPLUS, but the server doesn't grok it */ 192 if (error == -ENOTSUPP && desc->plus) { 193 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 194 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode)); 195 desc->plus = 0; 196 goto again; 197 } 198 goto error; 199 } 200 desc->timestamp = timestamp; 201 desc->timestamp_valid = 1; 202 SetPageUptodate(page); 203 spin_lock(&inode->i_lock); 204 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME; 205 spin_unlock(&inode->i_lock); 206 /* Ensure consistent page alignment of the data. 207 * Note: assumes we have exclusive access to this mapping either 208 * through inode->i_mutex or some other mechanism. 209 */ 210 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) { 211 /* Should never happen */ 212 nfs_zap_mapping(inode, inode->i_mapping); 213 } 214 unlock_page(page); 215 return 0; 216 error: 217 SetPageError(page); 218 unlock_page(page); 219 nfs_zap_caches(inode); 220 desc->error = error; 221 return -EIO; 222 } 223 224 static inline 225 int dir_decode(nfs_readdir_descriptor_t *desc) 226 { 227 __be32 *p = desc->ptr; 228 p = desc->decode(p, desc->entry, desc->plus); 229 if (IS_ERR(p)) 230 return PTR_ERR(p); 231 desc->ptr = p; 232 if (desc->timestamp_valid) 233 desc->entry->fattr->time_start = desc->timestamp; 234 else 235 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR; 236 return 0; 237 } 238 239 static inline 240 void dir_page_release(nfs_readdir_descriptor_t *desc) 241 { 242 kunmap(desc->page); 243 page_cache_release(desc->page); 244 desc->page = NULL; 245 desc->ptr = NULL; 246 } 247 248 /* 249 * Given a pointer to a buffer that has already been filled by a call 250 * to readdir, find the next entry with cookie '*desc->dir_cookie'. 251 * 252 * If the end of the buffer has been reached, return -EAGAIN, if not, 253 * return the offset within the buffer of the next entry to be 254 * read. 255 */ 256 static inline 257 int find_dirent(nfs_readdir_descriptor_t *desc) 258 { 259 struct nfs_entry *entry = desc->entry; 260 int loop_count = 0, 261 status; 262 263 while((status = dir_decode(desc)) == 0) { 264 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n", 265 __FUNCTION__, (unsigned long long)entry->cookie); 266 if (entry->prev_cookie == *desc->dir_cookie) 267 break; 268 if (loop_count++ > 200) { 269 loop_count = 0; 270 schedule(); 271 } 272 } 273 return status; 274 } 275 276 /* 277 * Given a pointer to a buffer that has already been filled by a call 278 * to readdir, find the entry at offset 'desc->file->f_pos'. 279 * 280 * If the end of the buffer has been reached, return -EAGAIN, if not, 281 * return the offset within the buffer of the next entry to be 282 * read. 283 */ 284 static inline 285 int find_dirent_index(nfs_readdir_descriptor_t *desc) 286 { 287 struct nfs_entry *entry = desc->entry; 288 int loop_count = 0, 289 status; 290 291 for(;;) { 292 status = dir_decode(desc); 293 if (status) 294 break; 295 296 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n", 297 (unsigned long long)entry->cookie, desc->current_index); 298 299 if (desc->file->f_pos == desc->current_index) { 300 *desc->dir_cookie = entry->cookie; 301 break; 302 } 303 desc->current_index++; 304 if (loop_count++ > 200) { 305 loop_count = 0; 306 schedule(); 307 } 308 } 309 return status; 310 } 311 312 /* 313 * Find the given page, and call find_dirent() or find_dirent_index in 314 * order to try to return the next entry. 315 */ 316 static inline 317 int find_dirent_page(nfs_readdir_descriptor_t *desc) 318 { 319 struct inode *inode = desc->file->f_path.dentry->d_inode; 320 struct page *page; 321 int status; 322 323 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n", 324 __FUNCTION__, desc->page_index, 325 (long long) *desc->dir_cookie); 326 327 /* If we find the page in the page_cache, we cannot be sure 328 * how fresh the data is, so we will ignore readdir_plus attributes. 329 */ 330 desc->timestamp_valid = 0; 331 page = read_cache_page(inode->i_mapping, desc->page_index, 332 (filler_t *)nfs_readdir_filler, desc); 333 if (IS_ERR(page)) { 334 status = PTR_ERR(page); 335 goto out; 336 } 337 338 /* NOTE: Someone else may have changed the READDIRPLUS flag */ 339 desc->page = page; 340 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 341 if (*desc->dir_cookie != 0) 342 status = find_dirent(desc); 343 else 344 status = find_dirent_index(desc); 345 if (status < 0) 346 dir_page_release(desc); 347 out: 348 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status); 349 return status; 350 } 351 352 /* 353 * Recurse through the page cache pages, and return a 354 * filled nfs_entry structure of the next directory entry if possible. 355 * 356 * The target for the search is '*desc->dir_cookie' if non-0, 357 * 'desc->file->f_pos' otherwise 358 */ 359 static inline 360 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 361 { 362 int loop_count = 0; 363 int res; 364 365 /* Always search-by-index from the beginning of the cache */ 366 if (*desc->dir_cookie == 0) { 367 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n", 368 (long long)desc->file->f_pos); 369 desc->page_index = 0; 370 desc->entry->cookie = desc->entry->prev_cookie = 0; 371 desc->entry->eof = 0; 372 desc->current_index = 0; 373 } else 374 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n", 375 (unsigned long long)*desc->dir_cookie); 376 377 for (;;) { 378 res = find_dirent_page(desc); 379 if (res != -EAGAIN) 380 break; 381 /* Align to beginning of next page */ 382 desc->page_index ++; 383 if (loop_count++ > 200) { 384 loop_count = 0; 385 schedule(); 386 } 387 } 388 389 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res); 390 return res; 391 } 392 393 static inline unsigned int dt_type(struct inode *inode) 394 { 395 return (inode->i_mode >> 12) & 15; 396 } 397 398 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc); 399 400 /* 401 * Once we've found the start of the dirent within a page: fill 'er up... 402 */ 403 static 404 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 405 filldir_t filldir) 406 { 407 struct file *file = desc->file; 408 struct nfs_entry *entry = desc->entry; 409 struct dentry *dentry = NULL; 410 u64 fileid; 411 int loop_count = 0, 412 res; 413 414 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n", 415 (unsigned long long)entry->cookie); 416 417 for(;;) { 418 unsigned d_type = DT_UNKNOWN; 419 /* Note: entry->prev_cookie contains the cookie for 420 * retrieving the current dirent on the server */ 421 fileid = entry->ino; 422 423 /* Get a dentry if we have one */ 424 if (dentry != NULL) 425 dput(dentry); 426 dentry = nfs_readdir_lookup(desc); 427 428 /* Use readdirplus info */ 429 if (dentry != NULL && dentry->d_inode != NULL) { 430 d_type = dt_type(dentry->d_inode); 431 fileid = NFS_FILEID(dentry->d_inode); 432 } 433 434 res = filldir(dirent, entry->name, entry->len, 435 file->f_pos, fileid, d_type); 436 if (res < 0) 437 break; 438 file->f_pos++; 439 *desc->dir_cookie = entry->cookie; 440 if (dir_decode(desc) != 0) { 441 desc->page_index ++; 442 break; 443 } 444 if (loop_count++ > 200) { 445 loop_count = 0; 446 schedule(); 447 } 448 } 449 dir_page_release(desc); 450 if (dentry != NULL) 451 dput(dentry); 452 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 453 (unsigned long long)*desc->dir_cookie, res); 454 return res; 455 } 456 457 /* 458 * If we cannot find a cookie in our cache, we suspect that this is 459 * because it points to a deleted file, so we ask the server to return 460 * whatever it thinks is the next entry. We then feed this to filldir. 461 * If all goes well, we should then be able to find our way round the 462 * cache on the next call to readdir_search_pagecache(); 463 * 464 * NOTE: we cannot add the anonymous page to the pagecache because 465 * the data it contains might not be page aligned. Besides, 466 * we should already have a complete representation of the 467 * directory in the page cache by the time we get here. 468 */ 469 static inline 470 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 471 filldir_t filldir) 472 { 473 struct file *file = desc->file; 474 struct inode *inode = file->f_path.dentry->d_inode; 475 struct rpc_cred *cred = nfs_file_cred(file); 476 struct page *page = NULL; 477 int status; 478 unsigned long timestamp; 479 480 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 481 (unsigned long long)*desc->dir_cookie); 482 483 page = alloc_page(GFP_HIGHUSER); 484 if (!page) { 485 status = -ENOMEM; 486 goto out; 487 } 488 timestamp = jiffies; 489 desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie, 490 page, 491 NFS_SERVER(inode)->dtsize, 492 desc->plus); 493 spin_lock(&inode->i_lock); 494 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME; 495 spin_unlock(&inode->i_lock); 496 desc->page = page; 497 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 498 if (desc->error >= 0) { 499 desc->timestamp = timestamp; 500 desc->timestamp_valid = 1; 501 if ((status = dir_decode(desc)) == 0) 502 desc->entry->prev_cookie = *desc->dir_cookie; 503 } else 504 status = -EIO; 505 if (status < 0) 506 goto out_release; 507 508 status = nfs_do_filldir(desc, dirent, filldir); 509 510 /* Reset read descriptor so it searches the page cache from 511 * the start upon the next call to readdir_search_pagecache() */ 512 desc->page_index = 0; 513 desc->entry->cookie = desc->entry->prev_cookie = 0; 514 desc->entry->eof = 0; 515 out: 516 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 517 __FUNCTION__, status); 518 return status; 519 out_release: 520 dir_page_release(desc); 521 goto out; 522 } 523 524 /* The file offset position represents the dirent entry number. A 525 last cookie cache takes care of the common case of reading the 526 whole directory. 527 */ 528 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 529 { 530 struct dentry *dentry = filp->f_path.dentry; 531 struct inode *inode = dentry->d_inode; 532 nfs_readdir_descriptor_t my_desc, 533 *desc = &my_desc; 534 struct nfs_entry my_entry; 535 struct nfs_fh fh; 536 struct nfs_fattr fattr; 537 long res; 538 539 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n", 540 dentry->d_parent->d_name.name, dentry->d_name.name, 541 (long long)filp->f_pos); 542 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 543 544 lock_kernel(); 545 546 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping); 547 if (res < 0) { 548 unlock_kernel(); 549 return res; 550 } 551 552 /* 553 * filp->f_pos points to the dirent entry number. 554 * *desc->dir_cookie has the cookie for the next entry. We have 555 * to either find the entry with the appropriate number or 556 * revalidate the cookie. 557 */ 558 memset(desc, 0, sizeof(*desc)); 559 560 desc->file = filp; 561 desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie; 562 desc->decode = NFS_PROTO(inode)->decode_dirent; 563 desc->plus = NFS_USE_READDIRPLUS(inode); 564 565 my_entry.cookie = my_entry.prev_cookie = 0; 566 my_entry.eof = 0; 567 my_entry.fh = &fh; 568 my_entry.fattr = &fattr; 569 nfs_fattr_init(&fattr); 570 desc->entry = &my_entry; 571 572 while(!desc->entry->eof) { 573 res = readdir_search_pagecache(desc); 574 575 if (res == -EBADCOOKIE) { 576 /* This means either end of directory */ 577 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) { 578 /* Or that the server has 'lost' a cookie */ 579 res = uncached_readdir(desc, dirent, filldir); 580 if (res >= 0) 581 continue; 582 } 583 res = 0; 584 break; 585 } 586 if (res == -ETOOSMALL && desc->plus) { 587 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode)); 588 nfs_zap_caches(inode); 589 desc->plus = 0; 590 desc->entry->eof = 0; 591 continue; 592 } 593 if (res < 0) 594 break; 595 596 res = nfs_do_filldir(desc, dirent, filldir); 597 if (res < 0) { 598 res = 0; 599 break; 600 } 601 } 602 unlock_kernel(); 603 if (res > 0) 604 res = 0; 605 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n", 606 dentry->d_parent->d_name.name, dentry->d_name.name, 607 res); 608 return res; 609 } 610 611 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 612 { 613 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex); 614 switch (origin) { 615 case 1: 616 offset += filp->f_pos; 617 case 0: 618 if (offset >= 0) 619 break; 620 default: 621 offset = -EINVAL; 622 goto out; 623 } 624 if (offset != filp->f_pos) { 625 filp->f_pos = offset; 626 ((struct nfs_open_context *)filp->private_data)->dir_cookie = 0; 627 } 628 out: 629 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex); 630 return offset; 631 } 632 633 /* 634 * All directory operations under NFS are synchronous, so fsync() 635 * is a dummy operation. 636 */ 637 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync) 638 { 639 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n", 640 dentry->d_parent->d_name.name, dentry->d_name.name, 641 datasync); 642 643 return 0; 644 } 645 646 /* 647 * A check for whether or not the parent directory has changed. 648 * In the case it has, we assume that the dentries are untrustworthy 649 * and may need to be looked up again. 650 */ 651 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 652 { 653 unsigned long verf; 654 655 if (IS_ROOT(dentry)) 656 return 1; 657 verf = dentry->d_time; 658 if (nfs_caches_unstable(dir) 659 || verf != NFS_I(dir)->cache_change_attribute) 660 return 0; 661 return 1; 662 } 663 664 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf) 665 { 666 dentry->d_time = verf; 667 } 668 669 static void nfs_refresh_verifier(struct dentry * dentry, unsigned long verf) 670 { 671 nfs_set_verifier(dentry, verf); 672 } 673 674 /* 675 * Return the intent data that applies to this particular path component 676 * 677 * Note that the current set of intents only apply to the very last 678 * component of the path. 679 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT. 680 */ 681 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask) 682 { 683 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT)) 684 return 0; 685 return nd->flags & mask; 686 } 687 688 /* 689 * Inode and filehandle revalidation for lookups. 690 * 691 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 692 * or if the intent information indicates that we're about to open this 693 * particular file and the "nocto" mount flag is not set. 694 * 695 */ 696 static inline 697 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd) 698 { 699 struct nfs_server *server = NFS_SERVER(inode); 700 701 if (nd != NULL) { 702 /* VFS wants an on-the-wire revalidation */ 703 if (nd->flags & LOOKUP_REVAL) 704 goto out_force; 705 /* This is an open(2) */ 706 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 && 707 !(server->flags & NFS_MOUNT_NOCTO) && 708 (S_ISREG(inode->i_mode) || 709 S_ISDIR(inode->i_mode))) 710 goto out_force; 711 } 712 return nfs_revalidate_inode(server, inode); 713 out_force: 714 return __nfs_revalidate_inode(server, inode); 715 } 716 717 /* 718 * We judge how long we want to trust negative 719 * dentries by looking at the parent inode mtime. 720 * 721 * If parent mtime has changed, we revalidate, else we wait for a 722 * period corresponding to the parent's attribute cache timeout value. 723 */ 724 static inline 725 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 726 struct nameidata *nd) 727 { 728 /* Don't revalidate a negative dentry if we're creating a new file */ 729 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0) 730 return 0; 731 return !nfs_check_verifier(dir, dentry); 732 } 733 734 /* 735 * This is called every time the dcache has a lookup hit, 736 * and we should check whether we can really trust that 737 * lookup. 738 * 739 * NOTE! The hit can be a negative hit too, don't assume 740 * we have an inode! 741 * 742 * If the parent directory is seen to have changed, we throw out the 743 * cached dentry and do a new lookup. 744 */ 745 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd) 746 { 747 struct inode *dir; 748 struct inode *inode; 749 struct dentry *parent; 750 int error; 751 struct nfs_fh fhandle; 752 struct nfs_fattr fattr; 753 unsigned long verifier; 754 755 parent = dget_parent(dentry); 756 lock_kernel(); 757 dir = parent->d_inode; 758 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 759 inode = dentry->d_inode; 760 761 /* Revalidate parent directory attribute cache */ 762 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 763 goto out_zap_parent; 764 765 if (!inode) { 766 if (nfs_neg_need_reval(dir, dentry, nd)) 767 goto out_bad; 768 goto out_valid; 769 } 770 771 if (is_bad_inode(inode)) { 772 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 773 __FUNCTION__, dentry->d_parent->d_name.name, 774 dentry->d_name.name); 775 goto out_bad; 776 } 777 778 /* Force a full look up iff the parent directory has changed */ 779 if (nfs_check_verifier(dir, dentry)) { 780 if (nfs_lookup_verify_inode(inode, nd)) 781 goto out_zap_parent; 782 goto out_valid; 783 } 784 785 if (NFS_STALE(inode)) 786 goto out_bad; 787 788 verifier = nfs_save_change_attribute(dir); 789 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 790 if (error) 791 goto out_bad; 792 if (nfs_compare_fh(NFS_FH(inode), &fhandle)) 793 goto out_bad; 794 if ((error = nfs_refresh_inode(inode, &fattr)) != 0) 795 goto out_bad; 796 797 nfs_refresh_verifier(dentry, verifier); 798 out_valid: 799 unlock_kernel(); 800 dput(parent); 801 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 802 __FUNCTION__, dentry->d_parent->d_name.name, 803 dentry->d_name.name); 804 return 1; 805 out_zap_parent: 806 nfs_zap_caches(dir); 807 out_bad: 808 NFS_CACHEINV(dir); 809 if (inode && S_ISDIR(inode->i_mode)) { 810 /* Purge readdir caches. */ 811 nfs_zap_caches(inode); 812 /* If we have submounts, don't unhash ! */ 813 if (have_submounts(dentry)) 814 goto out_valid; 815 shrink_dcache_parent(dentry); 816 } 817 d_drop(dentry); 818 unlock_kernel(); 819 dput(parent); 820 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 821 __FUNCTION__, dentry->d_parent->d_name.name, 822 dentry->d_name.name); 823 return 0; 824 } 825 826 /* 827 * This is called from dput() when d_count is going to 0. 828 */ 829 static int nfs_dentry_delete(struct dentry *dentry) 830 { 831 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 832 dentry->d_parent->d_name.name, dentry->d_name.name, 833 dentry->d_flags); 834 835 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 836 /* Unhash it, so that ->d_iput() would be called */ 837 return 1; 838 } 839 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 840 /* Unhash it, so that ancestors of killed async unlink 841 * files will be cleaned up during umount */ 842 return 1; 843 } 844 return 0; 845 846 } 847 848 /* 849 * Called when the dentry loses inode. 850 * We use it to clean up silly-renamed files. 851 */ 852 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 853 { 854 nfs_inode_return_delegation(inode); 855 if (S_ISDIR(inode->i_mode)) 856 /* drop any readdir cache as it could easily be old */ 857 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 858 859 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 860 lock_kernel(); 861 drop_nlink(inode); 862 nfs_complete_unlink(dentry, inode); 863 unlock_kernel(); 864 } 865 iput(inode); 866 } 867 868 struct dentry_operations nfs_dentry_operations = { 869 .d_revalidate = nfs_lookup_revalidate, 870 .d_delete = nfs_dentry_delete, 871 .d_iput = nfs_dentry_iput, 872 }; 873 874 /* 875 * Use intent information to check whether or not we're going to do 876 * an O_EXCL create using this path component. 877 */ 878 static inline 879 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd) 880 { 881 if (NFS_PROTO(dir)->version == 2) 882 return 0; 883 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0) 884 return 0; 885 return (nd->intent.open.flags & O_EXCL) != 0; 886 } 887 888 static inline int nfs_reval_fsid(struct inode *dir, const struct nfs_fattr *fattr) 889 { 890 struct nfs_server *server = NFS_SERVER(dir); 891 892 if (!nfs_fsid_equal(&server->fsid, &fattr->fsid)) 893 /* Revalidate fsid using the parent directory */ 894 return __nfs_revalidate_inode(server, dir); 895 return 0; 896 } 897 898 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 899 { 900 struct dentry *res; 901 struct inode *inode = NULL; 902 int error; 903 struct nfs_fh fhandle; 904 struct nfs_fattr fattr; 905 906 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 907 dentry->d_parent->d_name.name, dentry->d_name.name); 908 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 909 910 res = ERR_PTR(-ENAMETOOLONG); 911 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 912 goto out; 913 914 res = ERR_PTR(-ENOMEM); 915 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 916 917 lock_kernel(); 918 919 /* 920 * If we're doing an exclusive create, optimize away the lookup 921 * but don't hash the dentry. 922 */ 923 if (nfs_is_exclusive_create(dir, nd)) { 924 d_instantiate(dentry, NULL); 925 res = NULL; 926 goto out_unlock; 927 } 928 929 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 930 if (error == -ENOENT) 931 goto no_entry; 932 if (error < 0) { 933 res = ERR_PTR(error); 934 goto out_unlock; 935 } 936 error = nfs_reval_fsid(dir, &fattr); 937 if (error < 0) { 938 res = ERR_PTR(error); 939 goto out_unlock; 940 } 941 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr); 942 res = (struct dentry *)inode; 943 if (IS_ERR(res)) 944 goto out_unlock; 945 946 no_entry: 947 res = d_materialise_unique(dentry, inode); 948 if (res != NULL) { 949 struct dentry *parent; 950 if (IS_ERR(res)) 951 goto out_unlock; 952 /* Was a directory renamed! */ 953 parent = dget_parent(res); 954 if (!IS_ROOT(parent)) 955 nfs_mark_for_revalidate(parent->d_inode); 956 dput(parent); 957 dentry = res; 958 } 959 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 960 out_unlock: 961 unlock_kernel(); 962 out: 963 return res; 964 } 965 966 #ifdef CONFIG_NFS_V4 967 static int nfs_open_revalidate(struct dentry *, struct nameidata *); 968 969 struct dentry_operations nfs4_dentry_operations = { 970 .d_revalidate = nfs_open_revalidate, 971 .d_delete = nfs_dentry_delete, 972 .d_iput = nfs_dentry_iput, 973 }; 974 975 /* 976 * Use intent information to determine whether we need to substitute 977 * the NFSv4-style stateful OPEN for the LOOKUP call 978 */ 979 static int is_atomic_open(struct inode *dir, struct nameidata *nd) 980 { 981 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0) 982 return 0; 983 /* NFS does not (yet) have a stateful open for directories */ 984 if (nd->flags & LOOKUP_DIRECTORY) 985 return 0; 986 /* Are we trying to write to a read only partition? */ 987 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE))) 988 return 0; 989 return 1; 990 } 991 992 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 993 { 994 struct dentry *res = NULL; 995 int error; 996 997 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n", 998 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 999 1000 /* Check that we are indeed trying to open this file */ 1001 if (!is_atomic_open(dir, nd)) 1002 goto no_open; 1003 1004 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) { 1005 res = ERR_PTR(-ENAMETOOLONG); 1006 goto out; 1007 } 1008 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1009 1010 /* Let vfs_create() deal with O_EXCL */ 1011 if (nd->intent.open.flags & O_EXCL) { 1012 d_add(dentry, NULL); 1013 goto out; 1014 } 1015 1016 /* Open the file on the server */ 1017 lock_kernel(); 1018 /* Revalidate parent directory attribute cache */ 1019 error = nfs_revalidate_inode(NFS_SERVER(dir), dir); 1020 if (error < 0) { 1021 res = ERR_PTR(error); 1022 unlock_kernel(); 1023 goto out; 1024 } 1025 1026 if (nd->intent.open.flags & O_CREAT) { 1027 nfs_begin_data_update(dir); 1028 res = nfs4_atomic_open(dir, dentry, nd); 1029 nfs_end_data_update(dir); 1030 } else 1031 res = nfs4_atomic_open(dir, dentry, nd); 1032 unlock_kernel(); 1033 if (IS_ERR(res)) { 1034 error = PTR_ERR(res); 1035 switch (error) { 1036 /* Make a negative dentry */ 1037 case -ENOENT: 1038 res = NULL; 1039 goto out; 1040 /* This turned out not to be a regular file */ 1041 case -EISDIR: 1042 case -ENOTDIR: 1043 goto no_open; 1044 case -ELOOP: 1045 if (!(nd->intent.open.flags & O_NOFOLLOW)) 1046 goto no_open; 1047 /* case -EINVAL: */ 1048 default: 1049 goto out; 1050 } 1051 } else if (res != NULL) 1052 dentry = res; 1053 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1054 out: 1055 return res; 1056 no_open: 1057 return nfs_lookup(dir, dentry, nd); 1058 } 1059 1060 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd) 1061 { 1062 struct dentry *parent = NULL; 1063 struct inode *inode = dentry->d_inode; 1064 struct inode *dir; 1065 unsigned long verifier; 1066 int openflags, ret = 0; 1067 1068 parent = dget_parent(dentry); 1069 dir = parent->d_inode; 1070 if (!is_atomic_open(dir, nd)) 1071 goto no_open; 1072 /* We can't create new files in nfs_open_revalidate(), so we 1073 * optimize away revalidation of negative dentries. 1074 */ 1075 if (inode == NULL) 1076 goto out; 1077 /* NFS only supports OPEN on regular files */ 1078 if (!S_ISREG(inode->i_mode)) 1079 goto no_open; 1080 openflags = nd->intent.open.flags; 1081 /* We cannot do exclusive creation on a positive dentry */ 1082 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 1083 goto no_open; 1084 /* We can't create new files, or truncate existing ones here */ 1085 openflags &= ~(O_CREAT|O_TRUNC); 1086 1087 /* 1088 * Note: we're not holding inode->i_mutex and so may be racing with 1089 * operations that change the directory. We therefore save the 1090 * change attribute *before* we do the RPC call. 1091 */ 1092 lock_kernel(); 1093 verifier = nfs_save_change_attribute(dir); 1094 ret = nfs4_open_revalidate(dir, dentry, openflags, nd); 1095 if (!ret) 1096 nfs_refresh_verifier(dentry, verifier); 1097 unlock_kernel(); 1098 out: 1099 dput(parent); 1100 if (!ret) 1101 d_drop(dentry); 1102 return ret; 1103 no_open: 1104 dput(parent); 1105 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ)) 1106 return 1; 1107 return nfs_lookup_revalidate(dentry, nd); 1108 } 1109 #endif /* CONFIG_NFSV4 */ 1110 1111 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc) 1112 { 1113 struct dentry *parent = desc->file->f_path.dentry; 1114 struct inode *dir = parent->d_inode; 1115 struct nfs_entry *entry = desc->entry; 1116 struct dentry *dentry, *alias; 1117 struct qstr name = { 1118 .name = entry->name, 1119 .len = entry->len, 1120 }; 1121 struct inode *inode; 1122 1123 switch (name.len) { 1124 case 2: 1125 if (name.name[0] == '.' && name.name[1] == '.') 1126 return dget_parent(parent); 1127 break; 1128 case 1: 1129 if (name.name[0] == '.') 1130 return dget(parent); 1131 } 1132 name.hash = full_name_hash(name.name, name.len); 1133 dentry = d_lookup(parent, &name); 1134 if (dentry != NULL) { 1135 /* Is this a positive dentry that matches the readdir info? */ 1136 if (dentry->d_inode != NULL && 1137 (NFS_FILEID(dentry->d_inode) == entry->ino || 1138 d_mountpoint(dentry))) { 1139 if (!desc->plus || entry->fh->size == 0) 1140 return dentry; 1141 if (nfs_compare_fh(NFS_FH(dentry->d_inode), 1142 entry->fh) == 0) 1143 goto out_renew; 1144 } 1145 /* No, so d_drop to allow one to be created */ 1146 d_drop(dentry); 1147 dput(dentry); 1148 } 1149 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR)) 1150 return NULL; 1151 if (name.len > NFS_SERVER(dir)->namelen) 1152 return NULL; 1153 /* Note: caller is already holding the dir->i_mutex! */ 1154 dentry = d_alloc(parent, &name); 1155 if (dentry == NULL) 1156 return NULL; 1157 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1158 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 1159 if (IS_ERR(inode)) { 1160 dput(dentry); 1161 return NULL; 1162 } 1163 1164 alias = d_materialise_unique(dentry, inode); 1165 if (alias != NULL) { 1166 dput(dentry); 1167 if (IS_ERR(alias)) 1168 return NULL; 1169 dentry = alias; 1170 } 1171 1172 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1173 return dentry; 1174 out_renew: 1175 nfs_refresh_verifier(dentry, nfs_save_change_attribute(dir)); 1176 return dentry; 1177 } 1178 1179 /* 1180 * Code common to create, mkdir, and mknod. 1181 */ 1182 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1183 struct nfs_fattr *fattr) 1184 { 1185 struct inode *inode; 1186 int error = -EACCES; 1187 1188 /* We may have been initialized further down */ 1189 if (dentry->d_inode) 1190 return 0; 1191 if (fhandle->size == 0) { 1192 struct inode *dir = dentry->d_parent->d_inode; 1193 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1194 if (error) 1195 return error; 1196 } 1197 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1198 struct nfs_server *server = NFS_SB(dentry->d_sb); 1199 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1200 if (error < 0) 1201 return error; 1202 } 1203 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1204 error = PTR_ERR(inode); 1205 if (IS_ERR(inode)) 1206 return error; 1207 d_instantiate(dentry, inode); 1208 if (d_unhashed(dentry)) 1209 d_rehash(dentry); 1210 return 0; 1211 } 1212 1213 /* 1214 * Following a failed create operation, we drop the dentry rather 1215 * than retain a negative dentry. This avoids a problem in the event 1216 * that the operation succeeded on the server, but an error in the 1217 * reply path made it appear to have failed. 1218 */ 1219 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode, 1220 struct nameidata *nd) 1221 { 1222 struct iattr attr; 1223 int error; 1224 int open_flags = 0; 1225 1226 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1227 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1228 1229 attr.ia_mode = mode; 1230 attr.ia_valid = ATTR_MODE; 1231 1232 if ((nd->flags & LOOKUP_CREATE) != 0) 1233 open_flags = nd->intent.open.flags; 1234 1235 lock_kernel(); 1236 nfs_begin_data_update(dir); 1237 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd); 1238 nfs_end_data_update(dir); 1239 if (error != 0) 1240 goto out_err; 1241 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1242 unlock_kernel(); 1243 return 0; 1244 out_err: 1245 unlock_kernel(); 1246 d_drop(dentry); 1247 return error; 1248 } 1249 1250 /* 1251 * See comments for nfs_proc_create regarding failed operations. 1252 */ 1253 static int 1254 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) 1255 { 1256 struct iattr attr; 1257 int status; 1258 1259 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1260 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1261 1262 if (!new_valid_dev(rdev)) 1263 return -EINVAL; 1264 1265 attr.ia_mode = mode; 1266 attr.ia_valid = ATTR_MODE; 1267 1268 lock_kernel(); 1269 nfs_begin_data_update(dir); 1270 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1271 nfs_end_data_update(dir); 1272 if (status != 0) 1273 goto out_err; 1274 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1275 unlock_kernel(); 1276 return 0; 1277 out_err: 1278 unlock_kernel(); 1279 d_drop(dentry); 1280 return status; 1281 } 1282 1283 /* 1284 * See comments for nfs_proc_create regarding failed operations. 1285 */ 1286 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1287 { 1288 struct iattr attr; 1289 int error; 1290 1291 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1292 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1293 1294 attr.ia_valid = ATTR_MODE; 1295 attr.ia_mode = mode | S_IFDIR; 1296 1297 lock_kernel(); 1298 nfs_begin_data_update(dir); 1299 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1300 nfs_end_data_update(dir); 1301 if (error != 0) 1302 goto out_err; 1303 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1304 unlock_kernel(); 1305 return 0; 1306 out_err: 1307 d_drop(dentry); 1308 unlock_kernel(); 1309 return error; 1310 } 1311 1312 static int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1313 { 1314 int error; 1315 1316 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1317 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1318 1319 lock_kernel(); 1320 nfs_begin_data_update(dir); 1321 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1322 /* Ensure the VFS deletes this inode */ 1323 if (error == 0 && dentry->d_inode != NULL) 1324 clear_nlink(dentry->d_inode); 1325 nfs_end_data_update(dir); 1326 unlock_kernel(); 1327 1328 return error; 1329 } 1330 1331 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry) 1332 { 1333 static unsigned int sillycounter; 1334 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2; 1335 const int countersize = sizeof(sillycounter)*2; 1336 const int slen = sizeof(".nfs")+fileidsize+countersize-1; 1337 char silly[slen+1]; 1338 struct qstr qsilly; 1339 struct dentry *sdentry; 1340 int error = -EIO; 1341 1342 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n", 1343 dentry->d_parent->d_name.name, dentry->d_name.name, 1344 atomic_read(&dentry->d_count)); 1345 nfs_inc_stats(dir, NFSIOS_SILLYRENAME); 1346 1347 /* 1348 * We don't allow a dentry to be silly-renamed twice. 1349 */ 1350 error = -EBUSY; 1351 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1352 goto out; 1353 1354 sprintf(silly, ".nfs%*.*Lx", 1355 fileidsize, fileidsize, 1356 (unsigned long long)NFS_FILEID(dentry->d_inode)); 1357 1358 /* Return delegation in anticipation of the rename */ 1359 nfs_inode_return_delegation(dentry->d_inode); 1360 1361 sdentry = NULL; 1362 do { 1363 char *suffix = silly + slen - countersize; 1364 1365 dput(sdentry); 1366 sillycounter++; 1367 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter); 1368 1369 dfprintk(VFS, "NFS: trying to rename %s to %s\n", 1370 dentry->d_name.name, silly); 1371 1372 sdentry = lookup_one_len(silly, dentry->d_parent, slen); 1373 /* 1374 * N.B. Better to return EBUSY here ... it could be 1375 * dangerous to delete the file while it's in use. 1376 */ 1377 if (IS_ERR(sdentry)) 1378 goto out; 1379 } while(sdentry->d_inode != NULL); /* need negative lookup */ 1380 1381 qsilly.name = silly; 1382 qsilly.len = strlen(silly); 1383 nfs_begin_data_update(dir); 1384 if (dentry->d_inode) { 1385 nfs_begin_data_update(dentry->d_inode); 1386 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1387 dir, &qsilly); 1388 nfs_mark_for_revalidate(dentry->d_inode); 1389 nfs_end_data_update(dentry->d_inode); 1390 } else 1391 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1392 dir, &qsilly); 1393 nfs_end_data_update(dir); 1394 if (!error) { 1395 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1396 d_move(dentry, sdentry); 1397 error = nfs_async_unlink(dir, dentry); 1398 /* If we return 0 we don't unlink */ 1399 } 1400 dput(sdentry); 1401 out: 1402 return error; 1403 } 1404 1405 /* 1406 * Remove a file after making sure there are no pending writes, 1407 * and after checking that the file has only one user. 1408 * 1409 * We invalidate the attribute cache and free the inode prior to the operation 1410 * to avoid possible races if the server reuses the inode. 1411 */ 1412 static int nfs_safe_remove(struct dentry *dentry) 1413 { 1414 struct inode *dir = dentry->d_parent->d_inode; 1415 struct inode *inode = dentry->d_inode; 1416 int error = -EBUSY; 1417 1418 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1419 dentry->d_parent->d_name.name, dentry->d_name.name); 1420 1421 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1422 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1423 error = 0; 1424 goto out; 1425 } 1426 1427 nfs_begin_data_update(dir); 1428 if (inode != NULL) { 1429 nfs_inode_return_delegation(inode); 1430 nfs_begin_data_update(inode); 1431 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1432 /* The VFS may want to delete this inode */ 1433 if (error == 0) 1434 drop_nlink(inode); 1435 nfs_mark_for_revalidate(inode); 1436 nfs_end_data_update(inode); 1437 } else 1438 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1439 nfs_end_data_update(dir); 1440 out: 1441 return error; 1442 } 1443 1444 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1445 * belongs to an active ".nfs..." file and we return -EBUSY. 1446 * 1447 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1448 */ 1449 static int nfs_unlink(struct inode *dir, struct dentry *dentry) 1450 { 1451 int error; 1452 int need_rehash = 0; 1453 1454 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1455 dir->i_ino, dentry->d_name.name); 1456 1457 lock_kernel(); 1458 spin_lock(&dcache_lock); 1459 spin_lock(&dentry->d_lock); 1460 if (atomic_read(&dentry->d_count) > 1) { 1461 spin_unlock(&dentry->d_lock); 1462 spin_unlock(&dcache_lock); 1463 /* Start asynchronous writeout of the inode */ 1464 write_inode_now(dentry->d_inode, 0); 1465 error = nfs_sillyrename(dir, dentry); 1466 unlock_kernel(); 1467 return error; 1468 } 1469 if (!d_unhashed(dentry)) { 1470 __d_drop(dentry); 1471 need_rehash = 1; 1472 } 1473 spin_unlock(&dentry->d_lock); 1474 spin_unlock(&dcache_lock); 1475 error = nfs_safe_remove(dentry); 1476 if (!error) { 1477 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1478 } else if (need_rehash) 1479 d_rehash(dentry); 1480 unlock_kernel(); 1481 return error; 1482 } 1483 1484 /* 1485 * To create a symbolic link, most file systems instantiate a new inode, 1486 * add a page to it containing the path, then write it out to the disk 1487 * using prepare_write/commit_write. 1488 * 1489 * Unfortunately the NFS client can't create the in-core inode first 1490 * because it needs a file handle to create an in-core inode (see 1491 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1492 * symlink request has completed on the server. 1493 * 1494 * So instead we allocate a raw page, copy the symname into it, then do 1495 * the SYMLINK request with the page as the buffer. If it succeeds, we 1496 * now have a new file handle and can instantiate an in-core NFS inode 1497 * and move the raw page into its mapping. 1498 */ 1499 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1500 { 1501 struct pagevec lru_pvec; 1502 struct page *page; 1503 char *kaddr; 1504 struct iattr attr; 1505 unsigned int pathlen = strlen(symname); 1506 int error; 1507 1508 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1509 dir->i_ino, dentry->d_name.name, symname); 1510 1511 if (pathlen > PAGE_SIZE) 1512 return -ENAMETOOLONG; 1513 1514 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1515 attr.ia_valid = ATTR_MODE; 1516 1517 lock_kernel(); 1518 1519 page = alloc_page(GFP_HIGHUSER); 1520 if (!page) { 1521 unlock_kernel(); 1522 return -ENOMEM; 1523 } 1524 1525 kaddr = kmap_atomic(page, KM_USER0); 1526 memcpy(kaddr, symname, pathlen); 1527 if (pathlen < PAGE_SIZE) 1528 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1529 kunmap_atomic(kaddr, KM_USER0); 1530 1531 nfs_begin_data_update(dir); 1532 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1533 nfs_end_data_update(dir); 1534 if (error != 0) { 1535 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1536 dir->i_sb->s_id, dir->i_ino, 1537 dentry->d_name.name, symname, error); 1538 d_drop(dentry); 1539 __free_page(page); 1540 unlock_kernel(); 1541 return error; 1542 } 1543 1544 /* 1545 * No big deal if we can't add this page to the page cache here. 1546 * READLINK will get the missing page from the server if needed. 1547 */ 1548 pagevec_init(&lru_pvec, 0); 1549 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1550 GFP_KERNEL)) { 1551 pagevec_add(&lru_pvec, page); 1552 pagevec_lru_add(&lru_pvec); 1553 SetPageUptodate(page); 1554 unlock_page(page); 1555 } else 1556 __free_page(page); 1557 1558 unlock_kernel(); 1559 return 0; 1560 } 1561 1562 static int 1563 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1564 { 1565 struct inode *inode = old_dentry->d_inode; 1566 int error; 1567 1568 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1569 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1570 dentry->d_parent->d_name.name, dentry->d_name.name); 1571 1572 lock_kernel(); 1573 nfs_begin_data_update(dir); 1574 nfs_begin_data_update(inode); 1575 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1576 if (error == 0) { 1577 atomic_inc(&inode->i_count); 1578 d_instantiate(dentry, inode); 1579 } 1580 nfs_end_data_update(inode); 1581 nfs_end_data_update(dir); 1582 unlock_kernel(); 1583 return error; 1584 } 1585 1586 /* 1587 * RENAME 1588 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1589 * different file handle for the same inode after a rename (e.g. when 1590 * moving to a different directory). A fail-safe method to do so would 1591 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1592 * rename the old file using the sillyrename stuff. This way, the original 1593 * file in old_dir will go away when the last process iput()s the inode. 1594 * 1595 * FIXED. 1596 * 1597 * It actually works quite well. One needs to have the possibility for 1598 * at least one ".nfs..." file in each directory the file ever gets 1599 * moved or linked to which happens automagically with the new 1600 * implementation that only depends on the dcache stuff instead of 1601 * using the inode layer 1602 * 1603 * Unfortunately, things are a little more complicated than indicated 1604 * above. For a cross-directory move, we want to make sure we can get 1605 * rid of the old inode after the operation. This means there must be 1606 * no pending writes (if it's a file), and the use count must be 1. 1607 * If these conditions are met, we can drop the dentries before doing 1608 * the rename. 1609 */ 1610 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1611 struct inode *new_dir, struct dentry *new_dentry) 1612 { 1613 struct inode *old_inode = old_dentry->d_inode; 1614 struct inode *new_inode = new_dentry->d_inode; 1615 struct dentry *dentry = NULL, *rehash = NULL; 1616 int error = -EBUSY; 1617 1618 /* 1619 * To prevent any new references to the target during the rename, 1620 * we unhash the dentry and free the inode in advance. 1621 */ 1622 lock_kernel(); 1623 if (!d_unhashed(new_dentry)) { 1624 d_drop(new_dentry); 1625 rehash = new_dentry; 1626 } 1627 1628 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1629 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1630 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1631 atomic_read(&new_dentry->d_count)); 1632 1633 /* 1634 * First check whether the target is busy ... we can't 1635 * safely do _any_ rename if the target is in use. 1636 * 1637 * For files, make a copy of the dentry and then do a 1638 * silly-rename. If the silly-rename succeeds, the 1639 * copied dentry is hashed and becomes the new target. 1640 */ 1641 if (!new_inode) 1642 goto go_ahead; 1643 if (S_ISDIR(new_inode->i_mode)) { 1644 error = -EISDIR; 1645 if (!S_ISDIR(old_inode->i_mode)) 1646 goto out; 1647 } else if (atomic_read(&new_dentry->d_count) > 2) { 1648 int err; 1649 /* copy the target dentry's name */ 1650 dentry = d_alloc(new_dentry->d_parent, 1651 &new_dentry->d_name); 1652 if (!dentry) 1653 goto out; 1654 1655 /* silly-rename the existing target ... */ 1656 err = nfs_sillyrename(new_dir, new_dentry); 1657 if (!err) { 1658 new_dentry = rehash = dentry; 1659 new_inode = NULL; 1660 /* instantiate the replacement target */ 1661 d_instantiate(new_dentry, NULL); 1662 } else if (atomic_read(&new_dentry->d_count) > 1) 1663 /* dentry still busy? */ 1664 goto out; 1665 } else 1666 drop_nlink(new_inode); 1667 1668 go_ahead: 1669 /* 1670 * ... prune child dentries and writebacks if needed. 1671 */ 1672 if (atomic_read(&old_dentry->d_count) > 1) { 1673 if (S_ISREG(old_inode->i_mode)) 1674 nfs_wb_all(old_inode); 1675 shrink_dcache_parent(old_dentry); 1676 } 1677 nfs_inode_return_delegation(old_inode); 1678 1679 if (new_inode != NULL) { 1680 nfs_inode_return_delegation(new_inode); 1681 d_delete(new_dentry); 1682 } 1683 1684 nfs_begin_data_update(old_dir); 1685 nfs_begin_data_update(new_dir); 1686 nfs_begin_data_update(old_inode); 1687 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1688 new_dir, &new_dentry->d_name); 1689 nfs_mark_for_revalidate(old_inode); 1690 nfs_end_data_update(old_inode); 1691 nfs_end_data_update(new_dir); 1692 nfs_end_data_update(old_dir); 1693 out: 1694 if (rehash) 1695 d_rehash(rehash); 1696 if (!error) { 1697 d_move(old_dentry, new_dentry); 1698 nfs_refresh_verifier(new_dentry, nfs_save_change_attribute(new_dir)); 1699 } 1700 1701 /* new dentry created? */ 1702 if (dentry) 1703 dput(dentry); 1704 unlock_kernel(); 1705 return error; 1706 } 1707 1708 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1709 static LIST_HEAD(nfs_access_lru_list); 1710 static atomic_long_t nfs_access_nr_entries; 1711 1712 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1713 { 1714 put_rpccred(entry->cred); 1715 kfree(entry); 1716 smp_mb__before_atomic_dec(); 1717 atomic_long_dec(&nfs_access_nr_entries); 1718 smp_mb__after_atomic_dec(); 1719 } 1720 1721 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask) 1722 { 1723 LIST_HEAD(head); 1724 struct nfs_inode *nfsi; 1725 struct nfs_access_entry *cache; 1726 1727 restart: 1728 spin_lock(&nfs_access_lru_lock); 1729 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) { 1730 struct inode *inode; 1731 1732 if (nr_to_scan-- == 0) 1733 break; 1734 inode = igrab(&nfsi->vfs_inode); 1735 if (inode == NULL) 1736 continue; 1737 spin_lock(&inode->i_lock); 1738 if (list_empty(&nfsi->access_cache_entry_lru)) 1739 goto remove_lru_entry; 1740 cache = list_entry(nfsi->access_cache_entry_lru.next, 1741 struct nfs_access_entry, lru); 1742 list_move(&cache->lru, &head); 1743 rb_erase(&cache->rb_node, &nfsi->access_cache); 1744 if (!list_empty(&nfsi->access_cache_entry_lru)) 1745 list_move_tail(&nfsi->access_cache_inode_lru, 1746 &nfs_access_lru_list); 1747 else { 1748 remove_lru_entry: 1749 list_del_init(&nfsi->access_cache_inode_lru); 1750 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 1751 } 1752 spin_unlock(&inode->i_lock); 1753 spin_unlock(&nfs_access_lru_lock); 1754 iput(inode); 1755 goto restart; 1756 } 1757 spin_unlock(&nfs_access_lru_lock); 1758 while (!list_empty(&head)) { 1759 cache = list_entry(head.next, struct nfs_access_entry, lru); 1760 list_del(&cache->lru); 1761 nfs_access_free_entry(cache); 1762 } 1763 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 1764 } 1765 1766 static void __nfs_access_zap_cache(struct inode *inode) 1767 { 1768 struct nfs_inode *nfsi = NFS_I(inode); 1769 struct rb_root *root_node = &nfsi->access_cache; 1770 struct rb_node *n, *dispose = NULL; 1771 struct nfs_access_entry *entry; 1772 1773 /* Unhook entries from the cache */ 1774 while ((n = rb_first(root_node)) != NULL) { 1775 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1776 rb_erase(n, root_node); 1777 list_del(&entry->lru); 1778 n->rb_left = dispose; 1779 dispose = n; 1780 } 1781 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 1782 spin_unlock(&inode->i_lock); 1783 1784 /* Now kill them all! */ 1785 while (dispose != NULL) { 1786 n = dispose; 1787 dispose = n->rb_left; 1788 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node)); 1789 } 1790 } 1791 1792 void nfs_access_zap_cache(struct inode *inode) 1793 { 1794 /* Remove from global LRU init */ 1795 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) { 1796 spin_lock(&nfs_access_lru_lock); 1797 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 1798 spin_unlock(&nfs_access_lru_lock); 1799 } 1800 1801 spin_lock(&inode->i_lock); 1802 /* This will release the spinlock */ 1803 __nfs_access_zap_cache(inode); 1804 } 1805 1806 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 1807 { 1808 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 1809 struct nfs_access_entry *entry; 1810 1811 while (n != NULL) { 1812 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1813 1814 if (cred < entry->cred) 1815 n = n->rb_left; 1816 else if (cred > entry->cred) 1817 n = n->rb_right; 1818 else 1819 return entry; 1820 } 1821 return NULL; 1822 } 1823 1824 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 1825 { 1826 struct nfs_inode *nfsi = NFS_I(inode); 1827 struct nfs_access_entry *cache; 1828 int err = -ENOENT; 1829 1830 spin_lock(&inode->i_lock); 1831 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 1832 goto out_zap; 1833 cache = nfs_access_search_rbtree(inode, cred); 1834 if (cache == NULL) 1835 goto out; 1836 if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + NFS_ATTRTIMEO(inode))) 1837 goto out_stale; 1838 res->jiffies = cache->jiffies; 1839 res->cred = cache->cred; 1840 res->mask = cache->mask; 1841 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 1842 err = 0; 1843 out: 1844 spin_unlock(&inode->i_lock); 1845 return err; 1846 out_stale: 1847 rb_erase(&cache->rb_node, &nfsi->access_cache); 1848 list_del(&cache->lru); 1849 spin_unlock(&inode->i_lock); 1850 nfs_access_free_entry(cache); 1851 return -ENOENT; 1852 out_zap: 1853 /* This will release the spinlock */ 1854 __nfs_access_zap_cache(inode); 1855 return -ENOENT; 1856 } 1857 1858 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 1859 { 1860 struct nfs_inode *nfsi = NFS_I(inode); 1861 struct rb_root *root_node = &nfsi->access_cache; 1862 struct rb_node **p = &root_node->rb_node; 1863 struct rb_node *parent = NULL; 1864 struct nfs_access_entry *entry; 1865 1866 spin_lock(&inode->i_lock); 1867 while (*p != NULL) { 1868 parent = *p; 1869 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 1870 1871 if (set->cred < entry->cred) 1872 p = &parent->rb_left; 1873 else if (set->cred > entry->cred) 1874 p = &parent->rb_right; 1875 else 1876 goto found; 1877 } 1878 rb_link_node(&set->rb_node, parent, p); 1879 rb_insert_color(&set->rb_node, root_node); 1880 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1881 spin_unlock(&inode->i_lock); 1882 return; 1883 found: 1884 rb_replace_node(parent, &set->rb_node, root_node); 1885 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1886 list_del(&entry->lru); 1887 spin_unlock(&inode->i_lock); 1888 nfs_access_free_entry(entry); 1889 } 1890 1891 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 1892 { 1893 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 1894 if (cache == NULL) 1895 return; 1896 RB_CLEAR_NODE(&cache->rb_node); 1897 cache->jiffies = set->jiffies; 1898 cache->cred = get_rpccred(set->cred); 1899 cache->mask = set->mask; 1900 1901 nfs_access_add_rbtree(inode, cache); 1902 1903 /* Update accounting */ 1904 smp_mb__before_atomic_inc(); 1905 atomic_long_inc(&nfs_access_nr_entries); 1906 smp_mb__after_atomic_inc(); 1907 1908 /* Add inode to global LRU list */ 1909 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) { 1910 spin_lock(&nfs_access_lru_lock); 1911 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list); 1912 spin_unlock(&nfs_access_lru_lock); 1913 } 1914 } 1915 1916 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 1917 { 1918 struct nfs_access_entry cache; 1919 int status; 1920 1921 status = nfs_access_get_cached(inode, cred, &cache); 1922 if (status == 0) 1923 goto out; 1924 1925 /* Be clever: ask server to check for all possible rights */ 1926 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 1927 cache.cred = cred; 1928 cache.jiffies = jiffies; 1929 status = NFS_PROTO(inode)->access(inode, &cache); 1930 if (status != 0) 1931 return status; 1932 nfs_access_add_cache(inode, &cache); 1933 out: 1934 if ((cache.mask & mask) == mask) 1935 return 0; 1936 return -EACCES; 1937 } 1938 1939 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd) 1940 { 1941 struct rpc_cred *cred; 1942 int res = 0; 1943 1944 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 1945 1946 if (mask == 0) 1947 goto out; 1948 /* Is this sys_access() ? */ 1949 if (nd != NULL && (nd->flags & LOOKUP_ACCESS)) 1950 goto force_lookup; 1951 1952 switch (inode->i_mode & S_IFMT) { 1953 case S_IFLNK: 1954 goto out; 1955 case S_IFREG: 1956 /* NFSv4 has atomic_open... */ 1957 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 1958 && nd != NULL 1959 && (nd->flags & LOOKUP_OPEN)) 1960 goto out; 1961 break; 1962 case S_IFDIR: 1963 /* 1964 * Optimize away all write operations, since the server 1965 * will check permissions when we perform the op. 1966 */ 1967 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 1968 goto out; 1969 } 1970 1971 force_lookup: 1972 lock_kernel(); 1973 1974 if (!NFS_PROTO(inode)->access) 1975 goto out_notsup; 1976 1977 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0); 1978 if (!IS_ERR(cred)) { 1979 res = nfs_do_access(inode, cred, mask); 1980 put_rpccred(cred); 1981 } else 1982 res = PTR_ERR(cred); 1983 unlock_kernel(); 1984 out: 1985 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 1986 inode->i_sb->s_id, inode->i_ino, mask, res); 1987 return res; 1988 out_notsup: 1989 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1990 if (res == 0) 1991 res = generic_permission(inode, mask, NULL); 1992 unlock_kernel(); 1993 goto out; 1994 } 1995 1996 /* 1997 * Local variables: 1998 * version-control: t 1999 * kept-new-versions: 5 2000 * End: 2001 */ 2002