1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/module.h> 22 #include <linux/time.h> 23 #include <linux/errno.h> 24 #include <linux/stat.h> 25 #include <linux/fcntl.h> 26 #include <linux/string.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/mm.h> 30 #include <linux/sunrpc/clnt.h> 31 #include <linux/nfs_fs.h> 32 #include <linux/nfs_mount.h> 33 #include <linux/pagemap.h> 34 #include <linux/pagevec.h> 35 #include <linux/namei.h> 36 #include <linux/mount.h> 37 #include <linux/swap.h> 38 #include <linux/sched.h> 39 #include <linux/kmemleak.h> 40 #include <linux/xattr.h> 41 42 #include "delegation.h" 43 #include "iostat.h" 44 #include "internal.h" 45 #include "fscache.h" 46 47 #include "nfstrace.h" 48 49 /* #define NFS_DEBUG_VERBOSE 1 */ 50 51 static int nfs_opendir(struct inode *, struct file *); 52 static int nfs_closedir(struct inode *, struct file *); 53 static int nfs_readdir(struct file *, struct dir_context *); 54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 55 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 56 static void nfs_readdir_clear_array(struct page*); 57 58 const struct file_operations nfs_dir_operations = { 59 .llseek = nfs_llseek_dir, 60 .read = generic_read_dir, 61 .iterate_shared = nfs_readdir, 62 .open = nfs_opendir, 63 .release = nfs_closedir, 64 .fsync = nfs_fsync_dir, 65 }; 66 67 const struct address_space_operations nfs_dir_aops = { 68 .freepage = nfs_readdir_clear_array, 69 }; 70 71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir) 72 { 73 struct nfs_inode *nfsi = NFS_I(dir); 74 struct nfs_open_dir_context *ctx; 75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 76 if (ctx != NULL) { 77 ctx->duped = 0; 78 ctx->attr_gencount = nfsi->attr_gencount; 79 ctx->dir_cookie = 0; 80 ctx->dup_cookie = 0; 81 spin_lock(&dir->i_lock); 82 if (list_empty(&nfsi->open_files) && 83 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 84 nfsi->cache_validity |= NFS_INO_INVALID_DATA | 85 NFS_INO_REVAL_FORCED; 86 list_add(&ctx->list, &nfsi->open_files); 87 spin_unlock(&dir->i_lock); 88 return ctx; 89 } 90 return ERR_PTR(-ENOMEM); 91 } 92 93 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 94 { 95 spin_lock(&dir->i_lock); 96 list_del(&ctx->list); 97 spin_unlock(&dir->i_lock); 98 kfree(ctx); 99 } 100 101 /* 102 * Open file 103 */ 104 static int 105 nfs_opendir(struct inode *inode, struct file *filp) 106 { 107 int res = 0; 108 struct nfs_open_dir_context *ctx; 109 110 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 111 112 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 113 114 ctx = alloc_nfs_open_dir_context(inode); 115 if (IS_ERR(ctx)) { 116 res = PTR_ERR(ctx); 117 goto out; 118 } 119 filp->private_data = ctx; 120 out: 121 return res; 122 } 123 124 static int 125 nfs_closedir(struct inode *inode, struct file *filp) 126 { 127 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 128 return 0; 129 } 130 131 struct nfs_cache_array_entry { 132 u64 cookie; 133 u64 ino; 134 const char *name; 135 unsigned int name_len; 136 unsigned char d_type; 137 }; 138 139 struct nfs_cache_array { 140 u64 last_cookie; 141 unsigned int size; 142 unsigned char page_full : 1, 143 page_is_eof : 1; 144 struct nfs_cache_array_entry array[]; 145 }; 146 147 typedef struct nfs_readdir_descriptor { 148 struct file *file; 149 struct page *page; 150 struct dir_context *ctx; 151 pgoff_t page_index; 152 u64 dir_cookie; 153 u64 last_cookie; 154 u64 dup_cookie; 155 loff_t current_index; 156 loff_t prev_index; 157 158 unsigned long dir_verifier; 159 unsigned long timestamp; 160 unsigned long gencount; 161 unsigned long attr_gencount; 162 unsigned int cache_entry_index; 163 signed char duped; 164 bool plus; 165 bool eof; 166 } nfs_readdir_descriptor_t; 167 168 static void nfs_readdir_array_init(struct nfs_cache_array *array) 169 { 170 memset(array, 0, sizeof(struct nfs_cache_array)); 171 } 172 173 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie) 174 { 175 struct nfs_cache_array *array; 176 177 array = kmap_atomic(page); 178 nfs_readdir_array_init(array); 179 array->last_cookie = last_cookie; 180 kunmap_atomic(array); 181 } 182 183 /* 184 * we are freeing strings created by nfs_add_to_readdir_array() 185 */ 186 static 187 void nfs_readdir_clear_array(struct page *page) 188 { 189 struct nfs_cache_array *array; 190 int i; 191 192 array = kmap_atomic(page); 193 for (i = 0; i < array->size; i++) 194 kfree(array->array[i].name); 195 nfs_readdir_array_init(array); 196 kunmap_atomic(array); 197 } 198 199 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) 200 { 201 array->page_is_eof = 1; 202 array->page_full = 1; 203 } 204 205 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) 206 { 207 return array->page_full; 208 } 209 210 /* 211 * the caller is responsible for freeing qstr.name 212 * when called by nfs_readdir_add_to_array, the strings will be freed in 213 * nfs_clear_readdir_array() 214 */ 215 static const char *nfs_readdir_copy_name(const char *name, unsigned int len) 216 { 217 const char *ret = kmemdup_nul(name, len, GFP_KERNEL); 218 219 /* 220 * Avoid a kmemleak false positive. The pointer to the name is stored 221 * in a page cache page which kmemleak does not scan. 222 */ 223 if (ret != NULL) 224 kmemleak_not_leak(ret); 225 return ret; 226 } 227 228 /* 229 * Check that the next array entry lies entirely within the page bounds 230 */ 231 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) 232 { 233 struct nfs_cache_array_entry *cache_entry; 234 235 if (array->page_full) 236 return -ENOSPC; 237 cache_entry = &array->array[array->size + 1]; 238 if ((char *)cache_entry - (char *)array > PAGE_SIZE) { 239 array->page_full = 1; 240 return -ENOSPC; 241 } 242 return 0; 243 } 244 245 static 246 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 247 { 248 struct nfs_cache_array *array; 249 struct nfs_cache_array_entry *cache_entry; 250 const char *name; 251 int ret; 252 253 name = nfs_readdir_copy_name(entry->name, entry->len); 254 if (!name) 255 return -ENOMEM; 256 257 array = kmap_atomic(page); 258 ret = nfs_readdir_array_can_expand(array); 259 if (ret) { 260 kfree(name); 261 goto out; 262 } 263 264 cache_entry = &array->array[array->size]; 265 cache_entry->cookie = entry->prev_cookie; 266 cache_entry->ino = entry->ino; 267 cache_entry->d_type = entry->d_type; 268 cache_entry->name_len = entry->len; 269 cache_entry->name = name; 270 array->last_cookie = entry->cookie; 271 array->size++; 272 if (entry->eof != 0) 273 nfs_readdir_array_set_eof(array); 274 out: 275 kunmap_atomic(array); 276 return ret; 277 } 278 279 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping, 280 pgoff_t index, u64 last_cookie) 281 { 282 struct page *page; 283 284 page = grab_cache_page(mapping, index); 285 if (page && !PageUptodate(page)) { 286 nfs_readdir_page_init_array(page, last_cookie); 287 if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0) 288 nfs_zap_mapping(mapping->host, mapping); 289 SetPageUptodate(page); 290 } 291 292 return page; 293 } 294 295 static u64 nfs_readdir_page_last_cookie(struct page *page) 296 { 297 struct nfs_cache_array *array; 298 u64 ret; 299 300 array = kmap_atomic(page); 301 ret = array->last_cookie; 302 kunmap_atomic(array); 303 return ret; 304 } 305 306 static bool nfs_readdir_page_needs_filling(struct page *page) 307 { 308 struct nfs_cache_array *array; 309 bool ret; 310 311 array = kmap_atomic(page); 312 ret = !nfs_readdir_array_is_full(array); 313 kunmap_atomic(array); 314 return ret; 315 } 316 317 static void nfs_readdir_page_set_eof(struct page *page) 318 { 319 struct nfs_cache_array *array; 320 321 array = kmap_atomic(page); 322 nfs_readdir_array_set_eof(array); 323 kunmap_atomic(array); 324 } 325 326 static void nfs_readdir_page_unlock_and_put(struct page *page) 327 { 328 unlock_page(page); 329 put_page(page); 330 } 331 332 static struct page *nfs_readdir_page_get_next(struct address_space *mapping, 333 pgoff_t index, u64 cookie) 334 { 335 struct page *page; 336 337 page = nfs_readdir_page_get_locked(mapping, index, cookie); 338 if (page) { 339 if (nfs_readdir_page_last_cookie(page) == cookie) 340 return page; 341 nfs_readdir_page_unlock_and_put(page); 342 } 343 return NULL; 344 } 345 346 static inline 347 int is_32bit_api(void) 348 { 349 #ifdef CONFIG_COMPAT 350 return in_compat_syscall(); 351 #else 352 return (BITS_PER_LONG == 32); 353 #endif 354 } 355 356 static 357 bool nfs_readdir_use_cookie(const struct file *filp) 358 { 359 if ((filp->f_mode & FMODE_32BITHASH) || 360 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 361 return false; 362 return true; 363 } 364 365 static 366 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 367 { 368 loff_t diff = desc->ctx->pos - desc->current_index; 369 unsigned int index; 370 371 if (diff < 0) 372 goto out_eof; 373 if (diff >= array->size) { 374 if (array->page_is_eof) 375 goto out_eof; 376 return -EAGAIN; 377 } 378 379 index = (unsigned int)diff; 380 desc->dir_cookie = array->array[index].cookie; 381 desc->cache_entry_index = index; 382 return 0; 383 out_eof: 384 desc->eof = true; 385 return -EBADCOOKIE; 386 } 387 388 static bool 389 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 390 { 391 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 392 return false; 393 smp_rmb(); 394 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 395 } 396 397 static 398 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 399 { 400 int i; 401 loff_t new_pos; 402 int status = -EAGAIN; 403 404 for (i = 0; i < array->size; i++) { 405 if (array->array[i].cookie == desc->dir_cookie) { 406 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 407 408 new_pos = desc->current_index + i; 409 if (desc->attr_gencount != nfsi->attr_gencount || 410 !nfs_readdir_inode_mapping_valid(nfsi)) { 411 desc->duped = 0; 412 desc->attr_gencount = nfsi->attr_gencount; 413 } else if (new_pos < desc->prev_index) { 414 if (desc->duped > 0 415 && desc->dup_cookie == desc->dir_cookie) { 416 if (printk_ratelimit()) { 417 pr_notice("NFS: directory %pD2 contains a readdir loop." 418 "Please contact your server vendor. " 419 "The file: %s has duplicate cookie %llu\n", 420 desc->file, array->array[i].name, desc->dir_cookie); 421 } 422 status = -ELOOP; 423 goto out; 424 } 425 desc->dup_cookie = desc->dir_cookie; 426 desc->duped = -1; 427 } 428 if (nfs_readdir_use_cookie(desc->file)) 429 desc->ctx->pos = desc->dir_cookie; 430 else 431 desc->ctx->pos = new_pos; 432 desc->prev_index = new_pos; 433 desc->cache_entry_index = i; 434 return 0; 435 } 436 } 437 if (array->page_is_eof) { 438 status = -EBADCOOKIE; 439 if (desc->dir_cookie == array->last_cookie) 440 desc->eof = true; 441 } 442 out: 443 return status; 444 } 445 446 static 447 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 448 { 449 struct nfs_cache_array *array; 450 int status; 451 452 array = kmap_atomic(desc->page); 453 454 if (desc->dir_cookie == 0) 455 status = nfs_readdir_search_for_pos(array, desc); 456 else 457 status = nfs_readdir_search_for_cookie(array, desc); 458 459 if (status == -EAGAIN) { 460 desc->last_cookie = array->last_cookie; 461 desc->current_index += array->size; 462 desc->page_index++; 463 } 464 kunmap_atomic(array); 465 return status; 466 } 467 468 /* Fill a page with xdr information before transferring to the cache page */ 469 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, 470 u64 cookie, struct page **pages, 471 size_t bufsize) 472 { 473 struct file *file = desc->file; 474 struct inode *inode = file_inode(file); 475 unsigned long timestamp, gencount; 476 int error; 477 478 again: 479 timestamp = jiffies; 480 gencount = nfs_inc_attr_generation_counter(); 481 desc->dir_verifier = nfs_save_change_attribute(inode); 482 error = NFS_PROTO(inode)->readdir(file_dentry(file), file->f_cred, 483 cookie, pages, bufsize, desc->plus); 484 if (error < 0) { 485 /* We requested READDIRPLUS, but the server doesn't grok it */ 486 if (error == -ENOTSUPP && desc->plus) { 487 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 488 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 489 desc->plus = false; 490 goto again; 491 } 492 goto error; 493 } 494 desc->timestamp = timestamp; 495 desc->gencount = gencount; 496 error: 497 return error; 498 } 499 500 static int xdr_decode(nfs_readdir_descriptor_t *desc, 501 struct nfs_entry *entry, struct xdr_stream *xdr) 502 { 503 struct inode *inode = file_inode(desc->file); 504 int error; 505 506 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 507 if (error) 508 return error; 509 entry->fattr->time_start = desc->timestamp; 510 entry->fattr->gencount = desc->gencount; 511 return 0; 512 } 513 514 /* Match file and dirent using either filehandle or fileid 515 * Note: caller is responsible for checking the fsid 516 */ 517 static 518 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 519 { 520 struct inode *inode; 521 struct nfs_inode *nfsi; 522 523 if (d_really_is_negative(dentry)) 524 return 0; 525 526 inode = d_inode(dentry); 527 if (is_bad_inode(inode) || NFS_STALE(inode)) 528 return 0; 529 530 nfsi = NFS_I(inode); 531 if (entry->fattr->fileid != nfsi->fileid) 532 return 0; 533 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 534 return 0; 535 return 1; 536 } 537 538 static 539 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 540 { 541 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 542 return false; 543 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 544 return true; 545 if (ctx->pos == 0) 546 return true; 547 return false; 548 } 549 550 /* 551 * This function is called by the lookup and getattr code to request the 552 * use of readdirplus to accelerate any future lookups in the same 553 * directory. 554 */ 555 void nfs_advise_use_readdirplus(struct inode *dir) 556 { 557 struct nfs_inode *nfsi = NFS_I(dir); 558 559 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 560 !list_empty(&nfsi->open_files)) 561 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 562 } 563 564 /* 565 * This function is mainly for use by nfs_getattr(). 566 * 567 * If this is an 'ls -l', we want to force use of readdirplus. 568 * Do this by checking if there is an active file descriptor 569 * and calling nfs_advise_use_readdirplus, then forcing a 570 * cache flush. 571 */ 572 void nfs_force_use_readdirplus(struct inode *dir) 573 { 574 struct nfs_inode *nfsi = NFS_I(dir); 575 576 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 577 !list_empty(&nfsi->open_files)) { 578 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 579 invalidate_mapping_pages(dir->i_mapping, 580 nfsi->page_index + 1, -1); 581 } 582 } 583 584 static 585 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 586 unsigned long dir_verifier) 587 { 588 struct qstr filename = QSTR_INIT(entry->name, entry->len); 589 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 590 struct dentry *dentry; 591 struct dentry *alias; 592 struct inode *inode; 593 int status; 594 595 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 596 return; 597 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 598 return; 599 if (filename.len == 0) 600 return; 601 /* Validate that the name doesn't contain any illegal '\0' */ 602 if (strnlen(filename.name, filename.len) != filename.len) 603 return; 604 /* ...or '/' */ 605 if (strnchr(filename.name, filename.len, '/')) 606 return; 607 if (filename.name[0] == '.') { 608 if (filename.len == 1) 609 return; 610 if (filename.len == 2 && filename.name[1] == '.') 611 return; 612 } 613 filename.hash = full_name_hash(parent, filename.name, filename.len); 614 615 dentry = d_lookup(parent, &filename); 616 again: 617 if (!dentry) { 618 dentry = d_alloc_parallel(parent, &filename, &wq); 619 if (IS_ERR(dentry)) 620 return; 621 } 622 if (!d_in_lookup(dentry)) { 623 /* Is there a mountpoint here? If so, just exit */ 624 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 625 &entry->fattr->fsid)) 626 goto out; 627 if (nfs_same_file(dentry, entry)) { 628 if (!entry->fh->size) 629 goto out; 630 nfs_set_verifier(dentry, dir_verifier); 631 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 632 if (!status) 633 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 634 goto out; 635 } else { 636 d_invalidate(dentry); 637 dput(dentry); 638 dentry = NULL; 639 goto again; 640 } 641 } 642 if (!entry->fh->size) { 643 d_lookup_done(dentry); 644 goto out; 645 } 646 647 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 648 alias = d_splice_alias(inode, dentry); 649 d_lookup_done(dentry); 650 if (alias) { 651 if (IS_ERR(alias)) 652 goto out; 653 dput(dentry); 654 dentry = alias; 655 } 656 nfs_set_verifier(dentry, dir_verifier); 657 out: 658 dput(dentry); 659 } 660 661 /* Perform conversion from xdr to cache array */ 662 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc, 663 struct nfs_entry *entry, 664 struct page **xdr_pages, 665 struct page *fillme, unsigned int buflen) 666 { 667 struct address_space *mapping = desc->file->f_mapping; 668 struct xdr_stream stream; 669 struct xdr_buf buf; 670 struct page *scratch, *new, *page = fillme; 671 int status; 672 673 scratch = alloc_page(GFP_KERNEL); 674 if (scratch == NULL) 675 return -ENOMEM; 676 677 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 678 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 679 680 do { 681 if (entry->label) 682 entry->label->len = NFS4_MAXLABELLEN; 683 684 status = xdr_decode(desc, entry, &stream); 685 if (status != 0) 686 break; 687 688 if (desc->plus) 689 nfs_prime_dcache(file_dentry(desc->file), entry, 690 desc->dir_verifier); 691 692 status = nfs_readdir_add_to_array(entry, page); 693 if (status != -ENOSPC) 694 continue; 695 696 if (page->mapping != mapping) 697 break; 698 new = nfs_readdir_page_get_next(mapping, page->index + 1, 699 entry->prev_cookie); 700 if (!new) 701 break; 702 if (page != fillme) 703 nfs_readdir_page_unlock_and_put(page); 704 page = new; 705 status = nfs_readdir_add_to_array(entry, page); 706 } while (!status && !entry->eof); 707 708 switch (status) { 709 case -EBADCOOKIE: 710 if (entry->eof) { 711 nfs_readdir_page_set_eof(page); 712 status = 0; 713 } 714 break; 715 case -ENOSPC: 716 case -EAGAIN: 717 status = 0; 718 break; 719 } 720 721 if (page != fillme) 722 nfs_readdir_page_unlock_and_put(page); 723 724 put_page(scratch); 725 return status; 726 } 727 728 static void nfs_readdir_free_pages(struct page **pages, size_t npages) 729 { 730 while (npages--) 731 put_page(pages[npages]); 732 kfree(pages); 733 } 734 735 /* 736 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 737 * to nfs_readdir_free_pages() 738 */ 739 static struct page **nfs_readdir_alloc_pages(size_t npages) 740 { 741 struct page **pages; 742 size_t i; 743 744 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 745 if (!pages) 746 return NULL; 747 for (i = 0; i < npages; i++) { 748 struct page *page = alloc_page(GFP_KERNEL); 749 if (page == NULL) 750 goto out_freepages; 751 pages[i] = page; 752 } 753 return pages; 754 755 out_freepages: 756 nfs_readdir_free_pages(pages, i); 757 return NULL; 758 } 759 760 static 761 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 762 { 763 struct page **pages; 764 struct nfs_entry *entry; 765 size_t array_size; 766 size_t dtsize = NFS_SERVER(inode)->dtsize; 767 int status = -ENOMEM; 768 769 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 770 if (!entry) 771 return -ENOMEM; 772 entry->cookie = nfs_readdir_page_last_cookie(page); 773 entry->fh = nfs_alloc_fhandle(); 774 entry->fattr = nfs_alloc_fattr(); 775 entry->server = NFS_SERVER(inode); 776 if (entry->fh == NULL || entry->fattr == NULL) 777 goto out; 778 779 entry->label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 780 if (IS_ERR(entry->label)) { 781 status = PTR_ERR(entry->label); 782 goto out; 783 } 784 785 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; 786 pages = nfs_readdir_alloc_pages(array_size); 787 if (!pages) 788 goto out_release_label; 789 790 do { 791 unsigned int pglen; 792 status = nfs_readdir_xdr_filler(desc, entry->cookie, 793 pages, dtsize); 794 if (status < 0) 795 break; 796 797 pglen = status; 798 if (pglen == 0) { 799 nfs_readdir_page_set_eof(page); 800 break; 801 } 802 803 status = nfs_readdir_page_filler(desc, entry, pages, page, pglen); 804 } while (!status && nfs_readdir_page_needs_filling(page)); 805 806 nfs_readdir_free_pages(pages, array_size); 807 out_release_label: 808 nfs4_label_free(entry->label); 809 out: 810 nfs_free_fattr(entry->fattr); 811 nfs_free_fhandle(entry->fh); 812 kfree(entry); 813 return status; 814 } 815 816 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc) 817 { 818 put_page(desc->page); 819 desc->page = NULL; 820 } 821 822 static void 823 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) 824 { 825 unlock_page(desc->page); 826 nfs_readdir_page_put(desc); 827 } 828 829 static struct page * 830 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc) 831 { 832 return nfs_readdir_page_get_locked(desc->file->f_mapping, 833 desc->page_index, 834 desc->last_cookie); 835 } 836 837 /* 838 * Returns 0 if desc->dir_cookie was found on page desc->page_index 839 * and locks the page to prevent removal from the page cache. 840 */ 841 static 842 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc) 843 { 844 struct inode *inode = file_inode(desc->file); 845 struct nfs_inode *nfsi = NFS_I(inode); 846 int res; 847 848 desc->page = nfs_readdir_page_get_cached(desc); 849 if (!desc->page) 850 return -ENOMEM; 851 if (nfs_readdir_page_needs_filling(desc->page)) { 852 res = nfs_readdir_xdr_to_array(desc, desc->page, inode); 853 if (res < 0) 854 goto error; 855 } 856 res = nfs_readdir_search_array(desc); 857 if (res == 0) { 858 nfsi->page_index = desc->page_index; 859 return 0; 860 } 861 error: 862 nfs_readdir_page_unlock_and_put_cached(desc); 863 return res; 864 } 865 866 /* Search for desc->dir_cookie from the beginning of the page cache */ 867 static inline 868 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 869 { 870 int res; 871 872 if (desc->page_index == 0) { 873 desc->current_index = 0; 874 desc->prev_index = 0; 875 desc->last_cookie = 0; 876 } 877 do { 878 res = find_and_lock_cache_page(desc); 879 } while (res == -EAGAIN); 880 return res; 881 } 882 883 /* 884 * Once we've found the start of the dirent within a page: fill 'er up... 885 */ 886 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc) 887 { 888 struct file *file = desc->file; 889 struct nfs_cache_array *array; 890 unsigned int i = 0; 891 892 array = kmap(desc->page); 893 for (i = desc->cache_entry_index; i < array->size; i++) { 894 struct nfs_cache_array_entry *ent; 895 896 ent = &array->array[i]; 897 if (!dir_emit(desc->ctx, ent->name, ent->name_len, 898 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 899 desc->eof = true; 900 break; 901 } 902 if (i < (array->size-1)) 903 desc->dir_cookie = array->array[i+1].cookie; 904 else 905 desc->dir_cookie = array->last_cookie; 906 if (nfs_readdir_use_cookie(file)) 907 desc->ctx->pos = desc->dir_cookie; 908 else 909 desc->ctx->pos++; 910 if (desc->duped != 0) 911 desc->duped = 1; 912 } 913 if (array->page_is_eof) 914 desc->eof = true; 915 916 kunmap(desc->page); 917 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", 918 (unsigned long long)desc->dir_cookie); 919 } 920 921 /* 922 * If we cannot find a cookie in our cache, we suspect that this is 923 * because it points to a deleted file, so we ask the server to return 924 * whatever it thinks is the next entry. We then feed this to filldir. 925 * If all goes well, we should then be able to find our way round the 926 * cache on the next call to readdir_search_pagecache(); 927 * 928 * NOTE: we cannot add the anonymous page to the pagecache because 929 * the data it contains might not be page aligned. Besides, 930 * we should already have a complete representation of the 931 * directory in the page cache by the time we get here. 932 */ 933 static inline 934 int uncached_readdir(nfs_readdir_descriptor_t *desc) 935 { 936 struct page *page = NULL; 937 int status; 938 struct inode *inode = file_inode(desc->file); 939 940 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 941 (unsigned long long)desc->dir_cookie); 942 943 page = alloc_page(GFP_HIGHUSER); 944 if (!page) { 945 status = -ENOMEM; 946 goto out; 947 } 948 949 desc->page_index = 0; 950 desc->last_cookie = desc->dir_cookie; 951 desc->page = page; 952 desc->duped = 0; 953 954 nfs_readdir_page_init_array(page, desc->dir_cookie); 955 status = nfs_readdir_xdr_to_array(desc, page, inode); 956 if (status < 0) 957 goto out_release; 958 959 nfs_do_filldir(desc); 960 961 out_release: 962 nfs_readdir_clear_array(desc->page); 963 nfs_readdir_page_put(desc); 964 out: 965 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 966 __func__, status); 967 return status; 968 } 969 970 /* The file offset position represents the dirent entry number. A 971 last cookie cache takes care of the common case of reading the 972 whole directory. 973 */ 974 static int nfs_readdir(struct file *file, struct dir_context *ctx) 975 { 976 struct dentry *dentry = file_dentry(file); 977 struct inode *inode = d_inode(dentry); 978 struct nfs_open_dir_context *dir_ctx = file->private_data; 979 struct nfs_readdir_descriptor *desc; 980 int res; 981 982 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 983 file, (long long)ctx->pos); 984 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 985 986 /* 987 * ctx->pos points to the dirent entry number. 988 * *desc->dir_cookie has the cookie for the next entry. We have 989 * to either find the entry with the appropriate number or 990 * revalidate the cookie. 991 */ 992 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) { 993 res = nfs_revalidate_mapping(inode, file->f_mapping); 994 if (res < 0) 995 goto out; 996 } 997 998 res = -ENOMEM; 999 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 1000 if (!desc) 1001 goto out; 1002 desc->file = file; 1003 desc->ctx = ctx; 1004 desc->plus = nfs_use_readdirplus(inode, ctx); 1005 1006 spin_lock(&file->f_lock); 1007 desc->dir_cookie = dir_ctx->dir_cookie; 1008 desc->dup_cookie = dir_ctx->dup_cookie; 1009 desc->duped = dir_ctx->duped; 1010 desc->attr_gencount = dir_ctx->attr_gencount; 1011 spin_unlock(&file->f_lock); 1012 1013 do { 1014 res = readdir_search_pagecache(desc); 1015 1016 if (res == -EBADCOOKIE) { 1017 res = 0; 1018 /* This means either end of directory */ 1019 if (desc->dir_cookie && !desc->eof) { 1020 /* Or that the server has 'lost' a cookie */ 1021 res = uncached_readdir(desc); 1022 if (res == 0) 1023 continue; 1024 } 1025 break; 1026 } 1027 if (res == -ETOOSMALL && desc->plus) { 1028 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 1029 nfs_zap_caches(inode); 1030 desc->page_index = 0; 1031 desc->plus = false; 1032 desc->eof = false; 1033 continue; 1034 } 1035 if (res < 0) 1036 break; 1037 1038 nfs_do_filldir(desc); 1039 nfs_readdir_page_unlock_and_put_cached(desc); 1040 } while (!desc->eof); 1041 1042 spin_lock(&file->f_lock); 1043 dir_ctx->dir_cookie = desc->dir_cookie; 1044 dir_ctx->dup_cookie = desc->dup_cookie; 1045 dir_ctx->duped = desc->duped; 1046 dir_ctx->attr_gencount = desc->attr_gencount; 1047 spin_unlock(&file->f_lock); 1048 1049 kfree(desc); 1050 1051 out: 1052 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 1053 return res; 1054 } 1055 1056 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 1057 { 1058 struct nfs_open_dir_context *dir_ctx = filp->private_data; 1059 1060 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 1061 filp, offset, whence); 1062 1063 switch (whence) { 1064 default: 1065 return -EINVAL; 1066 case SEEK_SET: 1067 if (offset < 0) 1068 return -EINVAL; 1069 spin_lock(&filp->f_lock); 1070 break; 1071 case SEEK_CUR: 1072 if (offset == 0) 1073 return filp->f_pos; 1074 spin_lock(&filp->f_lock); 1075 offset += filp->f_pos; 1076 if (offset < 0) { 1077 spin_unlock(&filp->f_lock); 1078 return -EINVAL; 1079 } 1080 } 1081 if (offset != filp->f_pos) { 1082 filp->f_pos = offset; 1083 if (nfs_readdir_use_cookie(filp)) 1084 dir_ctx->dir_cookie = offset; 1085 else 1086 dir_ctx->dir_cookie = 0; 1087 dir_ctx->duped = 0; 1088 } 1089 spin_unlock(&filp->f_lock); 1090 return offset; 1091 } 1092 1093 /* 1094 * All directory operations under NFS are synchronous, so fsync() 1095 * is a dummy operation. 1096 */ 1097 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1098 int datasync) 1099 { 1100 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1101 1102 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1103 return 0; 1104 } 1105 1106 /** 1107 * nfs_force_lookup_revalidate - Mark the directory as having changed 1108 * @dir: pointer to directory inode 1109 * 1110 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1111 * full lookup on all child dentries of 'dir' whenever a change occurs 1112 * on the server that might have invalidated our dcache. 1113 * 1114 * Note that we reserve bit '0' as a tag to let us know when a dentry 1115 * was revalidated while holding a delegation on its inode. 1116 * 1117 * The caller should be holding dir->i_lock 1118 */ 1119 void nfs_force_lookup_revalidate(struct inode *dir) 1120 { 1121 NFS_I(dir)->cache_change_attribute += 2; 1122 } 1123 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1124 1125 /** 1126 * nfs_verify_change_attribute - Detects NFS remote directory changes 1127 * @dir: pointer to parent directory inode 1128 * @verf: previously saved change attribute 1129 * 1130 * Return "false" if the verifiers doesn't match the change attribute. 1131 * This would usually indicate that the directory contents have changed on 1132 * the server, and that any dentries need revalidating. 1133 */ 1134 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1135 { 1136 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1137 } 1138 1139 static void nfs_set_verifier_delegated(unsigned long *verf) 1140 { 1141 *verf |= 1UL; 1142 } 1143 1144 #if IS_ENABLED(CONFIG_NFS_V4) 1145 static void nfs_unset_verifier_delegated(unsigned long *verf) 1146 { 1147 *verf &= ~1UL; 1148 } 1149 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1150 1151 static bool nfs_test_verifier_delegated(unsigned long verf) 1152 { 1153 return verf & 1; 1154 } 1155 1156 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1157 { 1158 return nfs_test_verifier_delegated(dentry->d_time); 1159 } 1160 1161 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1162 { 1163 struct inode *inode = d_inode(dentry); 1164 1165 if (!nfs_verifier_is_delegated(dentry) && 1166 !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf)) 1167 goto out; 1168 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1169 nfs_set_verifier_delegated(&verf); 1170 out: 1171 dentry->d_time = verf; 1172 } 1173 1174 /** 1175 * nfs_set_verifier - save a parent directory verifier in the dentry 1176 * @dentry: pointer to dentry 1177 * @verf: verifier to save 1178 * 1179 * Saves the parent directory verifier in @dentry. If the inode has 1180 * a delegation, we also tag the dentry as having been revalidated 1181 * while holding a delegation so that we know we don't have to 1182 * look it up again after a directory change. 1183 */ 1184 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1185 { 1186 1187 spin_lock(&dentry->d_lock); 1188 nfs_set_verifier_locked(dentry, verf); 1189 spin_unlock(&dentry->d_lock); 1190 } 1191 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1192 1193 #if IS_ENABLED(CONFIG_NFS_V4) 1194 /** 1195 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1196 * @inode: pointer to inode 1197 * 1198 * Iterates through the dentries in the inode alias list and clears 1199 * the tag used to indicate that the dentry has been revalidated 1200 * while holding a delegation. 1201 * This function is intended for use when the delegation is being 1202 * returned or revoked. 1203 */ 1204 void nfs_clear_verifier_delegated(struct inode *inode) 1205 { 1206 struct dentry *alias; 1207 1208 if (!inode) 1209 return; 1210 spin_lock(&inode->i_lock); 1211 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1212 spin_lock(&alias->d_lock); 1213 nfs_unset_verifier_delegated(&alias->d_time); 1214 spin_unlock(&alias->d_lock); 1215 } 1216 spin_unlock(&inode->i_lock); 1217 } 1218 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1219 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1220 1221 /* 1222 * A check for whether or not the parent directory has changed. 1223 * In the case it has, we assume that the dentries are untrustworthy 1224 * and may need to be looked up again. 1225 * If rcu_walk prevents us from performing a full check, return 0. 1226 */ 1227 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1228 int rcu_walk) 1229 { 1230 if (IS_ROOT(dentry)) 1231 return 1; 1232 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1233 return 0; 1234 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1235 return 0; 1236 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1237 if (nfs_mapping_need_revalidate_inode(dir)) { 1238 if (rcu_walk) 1239 return 0; 1240 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1241 return 0; 1242 } 1243 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1244 return 0; 1245 return 1; 1246 } 1247 1248 /* 1249 * Use intent information to check whether or not we're going to do 1250 * an O_EXCL create using this path component. 1251 */ 1252 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1253 { 1254 if (NFS_PROTO(dir)->version == 2) 1255 return 0; 1256 return flags & LOOKUP_EXCL; 1257 } 1258 1259 /* 1260 * Inode and filehandle revalidation for lookups. 1261 * 1262 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1263 * or if the intent information indicates that we're about to open this 1264 * particular file and the "nocto" mount flag is not set. 1265 * 1266 */ 1267 static 1268 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1269 { 1270 struct nfs_server *server = NFS_SERVER(inode); 1271 int ret; 1272 1273 if (IS_AUTOMOUNT(inode)) 1274 return 0; 1275 1276 if (flags & LOOKUP_OPEN) { 1277 switch (inode->i_mode & S_IFMT) { 1278 case S_IFREG: 1279 /* A NFSv4 OPEN will revalidate later */ 1280 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1281 goto out; 1282 fallthrough; 1283 case S_IFDIR: 1284 if (server->flags & NFS_MOUNT_NOCTO) 1285 break; 1286 /* NFS close-to-open cache consistency validation */ 1287 goto out_force; 1288 } 1289 } 1290 1291 /* VFS wants an on-the-wire revalidation */ 1292 if (flags & LOOKUP_REVAL) 1293 goto out_force; 1294 out: 1295 return (inode->i_nlink == 0) ? -ESTALE : 0; 1296 out_force: 1297 if (flags & LOOKUP_RCU) 1298 return -ECHILD; 1299 ret = __nfs_revalidate_inode(server, inode); 1300 if (ret != 0) 1301 return ret; 1302 goto out; 1303 } 1304 1305 /* 1306 * We judge how long we want to trust negative 1307 * dentries by looking at the parent inode mtime. 1308 * 1309 * If parent mtime has changed, we revalidate, else we wait for a 1310 * period corresponding to the parent's attribute cache timeout value. 1311 * 1312 * If LOOKUP_RCU prevents us from performing a full check, return 1 1313 * suggesting a reval is needed. 1314 * 1315 * Note that when creating a new file, or looking up a rename target, 1316 * then it shouldn't be necessary to revalidate a negative dentry. 1317 */ 1318 static inline 1319 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1320 unsigned int flags) 1321 { 1322 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1323 return 0; 1324 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1325 return 1; 1326 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1327 } 1328 1329 static int 1330 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1331 struct inode *inode, int error) 1332 { 1333 switch (error) { 1334 case 1: 1335 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1336 __func__, dentry); 1337 return 1; 1338 case 0: 1339 nfs_mark_for_revalidate(dir); 1340 if (inode && S_ISDIR(inode->i_mode)) { 1341 /* Purge readdir caches. */ 1342 nfs_zap_caches(inode); 1343 /* 1344 * We can't d_drop the root of a disconnected tree: 1345 * its d_hash is on the s_anon list and d_drop() would hide 1346 * it from shrink_dcache_for_unmount(), leading to busy 1347 * inodes on unmount and further oopses. 1348 */ 1349 if (IS_ROOT(dentry)) 1350 return 1; 1351 } 1352 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1353 __func__, dentry); 1354 return 0; 1355 } 1356 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1357 __func__, dentry, error); 1358 return error; 1359 } 1360 1361 static int 1362 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1363 unsigned int flags) 1364 { 1365 int ret = 1; 1366 if (nfs_neg_need_reval(dir, dentry, flags)) { 1367 if (flags & LOOKUP_RCU) 1368 return -ECHILD; 1369 ret = 0; 1370 } 1371 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1372 } 1373 1374 static int 1375 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1376 struct inode *inode) 1377 { 1378 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1379 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1380 } 1381 1382 static int 1383 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1384 struct inode *inode) 1385 { 1386 struct nfs_fh *fhandle; 1387 struct nfs_fattr *fattr; 1388 struct nfs4_label *label; 1389 unsigned long dir_verifier; 1390 int ret; 1391 1392 ret = -ENOMEM; 1393 fhandle = nfs_alloc_fhandle(); 1394 fattr = nfs_alloc_fattr(); 1395 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); 1396 if (fhandle == NULL || fattr == NULL || IS_ERR(label)) 1397 goto out; 1398 1399 dir_verifier = nfs_save_change_attribute(dir); 1400 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1401 if (ret < 0) { 1402 switch (ret) { 1403 case -ESTALE: 1404 case -ENOENT: 1405 ret = 0; 1406 break; 1407 case -ETIMEDOUT: 1408 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1409 ret = 1; 1410 } 1411 goto out; 1412 } 1413 ret = 0; 1414 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1415 goto out; 1416 if (nfs_refresh_inode(inode, fattr) < 0) 1417 goto out; 1418 1419 nfs_setsecurity(inode, fattr, label); 1420 nfs_set_verifier(dentry, dir_verifier); 1421 1422 /* set a readdirplus hint that we had a cache miss */ 1423 nfs_force_use_readdirplus(dir); 1424 ret = 1; 1425 out: 1426 nfs_free_fattr(fattr); 1427 nfs_free_fhandle(fhandle); 1428 nfs4_label_free(label); 1429 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1430 } 1431 1432 /* 1433 * This is called every time the dcache has a lookup hit, 1434 * and we should check whether we can really trust that 1435 * lookup. 1436 * 1437 * NOTE! The hit can be a negative hit too, don't assume 1438 * we have an inode! 1439 * 1440 * If the parent directory is seen to have changed, we throw out the 1441 * cached dentry and do a new lookup. 1442 */ 1443 static int 1444 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1445 unsigned int flags) 1446 { 1447 struct inode *inode; 1448 int error; 1449 1450 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1451 inode = d_inode(dentry); 1452 1453 if (!inode) 1454 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1455 1456 if (is_bad_inode(inode)) { 1457 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1458 __func__, dentry); 1459 goto out_bad; 1460 } 1461 1462 if (nfs_verifier_is_delegated(dentry)) 1463 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1464 1465 /* Force a full look up iff the parent directory has changed */ 1466 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1467 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1468 error = nfs_lookup_verify_inode(inode, flags); 1469 if (error) { 1470 if (error == -ESTALE) 1471 nfs_zap_caches(dir); 1472 goto out_bad; 1473 } 1474 nfs_advise_use_readdirplus(dir); 1475 goto out_valid; 1476 } 1477 1478 if (flags & LOOKUP_RCU) 1479 return -ECHILD; 1480 1481 if (NFS_STALE(inode)) 1482 goto out_bad; 1483 1484 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1485 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1486 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1487 return error; 1488 out_valid: 1489 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1490 out_bad: 1491 if (flags & LOOKUP_RCU) 1492 return -ECHILD; 1493 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1494 } 1495 1496 static int 1497 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1498 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1499 { 1500 struct dentry *parent; 1501 struct inode *dir; 1502 int ret; 1503 1504 if (flags & LOOKUP_RCU) { 1505 parent = READ_ONCE(dentry->d_parent); 1506 dir = d_inode_rcu(parent); 1507 if (!dir) 1508 return -ECHILD; 1509 ret = reval(dir, dentry, flags); 1510 if (parent != READ_ONCE(dentry->d_parent)) 1511 return -ECHILD; 1512 } else { 1513 parent = dget_parent(dentry); 1514 ret = reval(d_inode(parent), dentry, flags); 1515 dput(parent); 1516 } 1517 return ret; 1518 } 1519 1520 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1521 { 1522 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1523 } 1524 1525 /* 1526 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1527 * when we don't really care about the dentry name. This is called when a 1528 * pathwalk ends on a dentry that was not found via a normal lookup in the 1529 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1530 * 1531 * In this situation, we just want to verify that the inode itself is OK 1532 * since the dentry might have changed on the server. 1533 */ 1534 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1535 { 1536 struct inode *inode = d_inode(dentry); 1537 int error = 0; 1538 1539 /* 1540 * I believe we can only get a negative dentry here in the case of a 1541 * procfs-style symlink. Just assume it's correct for now, but we may 1542 * eventually need to do something more here. 1543 */ 1544 if (!inode) { 1545 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1546 __func__, dentry); 1547 return 1; 1548 } 1549 1550 if (is_bad_inode(inode)) { 1551 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1552 __func__, dentry); 1553 return 0; 1554 } 1555 1556 error = nfs_lookup_verify_inode(inode, flags); 1557 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1558 __func__, inode->i_ino, error ? "invalid" : "valid"); 1559 return !error; 1560 } 1561 1562 /* 1563 * This is called from dput() when d_count is going to 0. 1564 */ 1565 static int nfs_dentry_delete(const struct dentry *dentry) 1566 { 1567 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1568 dentry, dentry->d_flags); 1569 1570 /* Unhash any dentry with a stale inode */ 1571 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1572 return 1; 1573 1574 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1575 /* Unhash it, so that ->d_iput() would be called */ 1576 return 1; 1577 } 1578 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1579 /* Unhash it, so that ancestors of killed async unlink 1580 * files will be cleaned up during umount */ 1581 return 1; 1582 } 1583 return 0; 1584 1585 } 1586 1587 /* Ensure that we revalidate inode->i_nlink */ 1588 static void nfs_drop_nlink(struct inode *inode) 1589 { 1590 spin_lock(&inode->i_lock); 1591 /* drop the inode if we're reasonably sure this is the last link */ 1592 if (inode->i_nlink > 0) 1593 drop_nlink(inode); 1594 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1595 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE 1596 | NFS_INO_INVALID_CTIME 1597 | NFS_INO_INVALID_OTHER 1598 | NFS_INO_REVAL_FORCED; 1599 spin_unlock(&inode->i_lock); 1600 } 1601 1602 /* 1603 * Called when the dentry loses inode. 1604 * We use it to clean up silly-renamed files. 1605 */ 1606 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1607 { 1608 if (S_ISDIR(inode->i_mode)) 1609 /* drop any readdir cache as it could easily be old */ 1610 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1611 1612 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1613 nfs_complete_unlink(dentry, inode); 1614 nfs_drop_nlink(inode); 1615 } 1616 iput(inode); 1617 } 1618 1619 static void nfs_d_release(struct dentry *dentry) 1620 { 1621 /* free cached devname value, if it survived that far */ 1622 if (unlikely(dentry->d_fsdata)) { 1623 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1624 WARN_ON(1); 1625 else 1626 kfree(dentry->d_fsdata); 1627 } 1628 } 1629 1630 const struct dentry_operations nfs_dentry_operations = { 1631 .d_revalidate = nfs_lookup_revalidate, 1632 .d_weak_revalidate = nfs_weak_revalidate, 1633 .d_delete = nfs_dentry_delete, 1634 .d_iput = nfs_dentry_iput, 1635 .d_automount = nfs_d_automount, 1636 .d_release = nfs_d_release, 1637 }; 1638 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1639 1640 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1641 { 1642 struct dentry *res; 1643 struct inode *inode = NULL; 1644 struct nfs_fh *fhandle = NULL; 1645 struct nfs_fattr *fattr = NULL; 1646 struct nfs4_label *label = NULL; 1647 unsigned long dir_verifier; 1648 int error; 1649 1650 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1651 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1652 1653 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1654 return ERR_PTR(-ENAMETOOLONG); 1655 1656 /* 1657 * If we're doing an exclusive create, optimize away the lookup 1658 * but don't hash the dentry. 1659 */ 1660 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1661 return NULL; 1662 1663 res = ERR_PTR(-ENOMEM); 1664 fhandle = nfs_alloc_fhandle(); 1665 fattr = nfs_alloc_fattr(); 1666 if (fhandle == NULL || fattr == NULL) 1667 goto out; 1668 1669 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1670 if (IS_ERR(label)) 1671 goto out; 1672 1673 dir_verifier = nfs_save_change_attribute(dir); 1674 trace_nfs_lookup_enter(dir, dentry, flags); 1675 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1676 if (error == -ENOENT) 1677 goto no_entry; 1678 if (error < 0) { 1679 res = ERR_PTR(error); 1680 goto out_label; 1681 } 1682 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1683 res = ERR_CAST(inode); 1684 if (IS_ERR(res)) 1685 goto out_label; 1686 1687 /* Notify readdir to use READDIRPLUS */ 1688 nfs_force_use_readdirplus(dir); 1689 1690 no_entry: 1691 res = d_splice_alias(inode, dentry); 1692 if (res != NULL) { 1693 if (IS_ERR(res)) 1694 goto out_label; 1695 dentry = res; 1696 } 1697 nfs_set_verifier(dentry, dir_verifier); 1698 out_label: 1699 trace_nfs_lookup_exit(dir, dentry, flags, error); 1700 nfs4_label_free(label); 1701 out: 1702 nfs_free_fattr(fattr); 1703 nfs_free_fhandle(fhandle); 1704 return res; 1705 } 1706 EXPORT_SYMBOL_GPL(nfs_lookup); 1707 1708 #if IS_ENABLED(CONFIG_NFS_V4) 1709 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1710 1711 const struct dentry_operations nfs4_dentry_operations = { 1712 .d_revalidate = nfs4_lookup_revalidate, 1713 .d_weak_revalidate = nfs_weak_revalidate, 1714 .d_delete = nfs_dentry_delete, 1715 .d_iput = nfs_dentry_iput, 1716 .d_automount = nfs_d_automount, 1717 .d_release = nfs_d_release, 1718 }; 1719 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1720 1721 static fmode_t flags_to_mode(int flags) 1722 { 1723 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1724 if ((flags & O_ACCMODE) != O_WRONLY) 1725 res |= FMODE_READ; 1726 if ((flags & O_ACCMODE) != O_RDONLY) 1727 res |= FMODE_WRITE; 1728 return res; 1729 } 1730 1731 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1732 { 1733 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1734 } 1735 1736 static int do_open(struct inode *inode, struct file *filp) 1737 { 1738 nfs_fscache_open_file(inode, filp); 1739 return 0; 1740 } 1741 1742 static int nfs_finish_open(struct nfs_open_context *ctx, 1743 struct dentry *dentry, 1744 struct file *file, unsigned open_flags) 1745 { 1746 int err; 1747 1748 err = finish_open(file, dentry, do_open); 1749 if (err) 1750 goto out; 1751 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1752 nfs_file_set_open_context(file, ctx); 1753 else 1754 err = -EOPENSTALE; 1755 out: 1756 return err; 1757 } 1758 1759 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1760 struct file *file, unsigned open_flags, 1761 umode_t mode) 1762 { 1763 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1764 struct nfs_open_context *ctx; 1765 struct dentry *res; 1766 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1767 struct inode *inode; 1768 unsigned int lookup_flags = 0; 1769 bool switched = false; 1770 int created = 0; 1771 int err; 1772 1773 /* Expect a negative dentry */ 1774 BUG_ON(d_inode(dentry)); 1775 1776 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1777 dir->i_sb->s_id, dir->i_ino, dentry); 1778 1779 err = nfs_check_flags(open_flags); 1780 if (err) 1781 return err; 1782 1783 /* NFS only supports OPEN on regular files */ 1784 if ((open_flags & O_DIRECTORY)) { 1785 if (!d_in_lookup(dentry)) { 1786 /* 1787 * Hashed negative dentry with O_DIRECTORY: dentry was 1788 * revalidated and is fine, no need to perform lookup 1789 * again 1790 */ 1791 return -ENOENT; 1792 } 1793 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1794 goto no_open; 1795 } 1796 1797 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1798 return -ENAMETOOLONG; 1799 1800 if (open_flags & O_CREAT) { 1801 struct nfs_server *server = NFS_SERVER(dir); 1802 1803 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1804 mode &= ~current_umask(); 1805 1806 attr.ia_valid |= ATTR_MODE; 1807 attr.ia_mode = mode; 1808 } 1809 if (open_flags & O_TRUNC) { 1810 attr.ia_valid |= ATTR_SIZE; 1811 attr.ia_size = 0; 1812 } 1813 1814 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1815 d_drop(dentry); 1816 switched = true; 1817 dentry = d_alloc_parallel(dentry->d_parent, 1818 &dentry->d_name, &wq); 1819 if (IS_ERR(dentry)) 1820 return PTR_ERR(dentry); 1821 if (unlikely(!d_in_lookup(dentry))) 1822 return finish_no_open(file, dentry); 1823 } 1824 1825 ctx = create_nfs_open_context(dentry, open_flags, file); 1826 err = PTR_ERR(ctx); 1827 if (IS_ERR(ctx)) 1828 goto out; 1829 1830 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1831 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1832 if (created) 1833 file->f_mode |= FMODE_CREATED; 1834 if (IS_ERR(inode)) { 1835 err = PTR_ERR(inode); 1836 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1837 put_nfs_open_context(ctx); 1838 d_drop(dentry); 1839 switch (err) { 1840 case -ENOENT: 1841 d_splice_alias(NULL, dentry); 1842 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1843 break; 1844 case -EISDIR: 1845 case -ENOTDIR: 1846 goto no_open; 1847 case -ELOOP: 1848 if (!(open_flags & O_NOFOLLOW)) 1849 goto no_open; 1850 break; 1851 /* case -EINVAL: */ 1852 default: 1853 break; 1854 } 1855 goto out; 1856 } 1857 1858 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1859 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1860 put_nfs_open_context(ctx); 1861 out: 1862 if (unlikely(switched)) { 1863 d_lookup_done(dentry); 1864 dput(dentry); 1865 } 1866 return err; 1867 1868 no_open: 1869 res = nfs_lookup(dir, dentry, lookup_flags); 1870 if (switched) { 1871 d_lookup_done(dentry); 1872 if (!res) 1873 res = dentry; 1874 else 1875 dput(dentry); 1876 } 1877 if (IS_ERR(res)) 1878 return PTR_ERR(res); 1879 return finish_no_open(file, res); 1880 } 1881 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1882 1883 static int 1884 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1885 unsigned int flags) 1886 { 1887 struct inode *inode; 1888 1889 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1890 goto full_reval; 1891 if (d_mountpoint(dentry)) 1892 goto full_reval; 1893 1894 inode = d_inode(dentry); 1895 1896 /* We can't create new files in nfs_open_revalidate(), so we 1897 * optimize away revalidation of negative dentries. 1898 */ 1899 if (inode == NULL) 1900 goto full_reval; 1901 1902 if (nfs_verifier_is_delegated(dentry)) 1903 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1904 1905 /* NFS only supports OPEN on regular files */ 1906 if (!S_ISREG(inode->i_mode)) 1907 goto full_reval; 1908 1909 /* We cannot do exclusive creation on a positive dentry */ 1910 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 1911 goto reval_dentry; 1912 1913 /* Check if the directory changed */ 1914 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 1915 goto reval_dentry; 1916 1917 /* Let f_op->open() actually open (and revalidate) the file */ 1918 return 1; 1919 reval_dentry: 1920 if (flags & LOOKUP_RCU) 1921 return -ECHILD; 1922 return nfs_lookup_revalidate_dentry(dir, dentry, inode); 1923 1924 full_reval: 1925 return nfs_do_lookup_revalidate(dir, dentry, flags); 1926 } 1927 1928 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1929 { 1930 return __nfs_lookup_revalidate(dentry, flags, 1931 nfs4_do_lookup_revalidate); 1932 } 1933 1934 #endif /* CONFIG_NFSV4 */ 1935 1936 struct dentry * 1937 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 1938 struct nfs_fattr *fattr, 1939 struct nfs4_label *label) 1940 { 1941 struct dentry *parent = dget_parent(dentry); 1942 struct inode *dir = d_inode(parent); 1943 struct inode *inode; 1944 struct dentry *d; 1945 int error; 1946 1947 d_drop(dentry); 1948 1949 if (fhandle->size == 0) { 1950 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL); 1951 if (error) 1952 goto out_error; 1953 } 1954 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1955 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1956 struct nfs_server *server = NFS_SB(dentry->d_sb); 1957 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 1958 fattr, NULL, NULL); 1959 if (error < 0) 1960 goto out_error; 1961 } 1962 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1963 d = d_splice_alias(inode, dentry); 1964 out: 1965 dput(parent); 1966 return d; 1967 out_error: 1968 nfs_mark_for_revalidate(dir); 1969 d = ERR_PTR(error); 1970 goto out; 1971 } 1972 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 1973 1974 /* 1975 * Code common to create, mkdir, and mknod. 1976 */ 1977 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1978 struct nfs_fattr *fattr, 1979 struct nfs4_label *label) 1980 { 1981 struct dentry *d; 1982 1983 d = nfs_add_or_obtain(dentry, fhandle, fattr, label); 1984 if (IS_ERR(d)) 1985 return PTR_ERR(d); 1986 1987 /* Callers don't care */ 1988 dput(d); 1989 return 0; 1990 } 1991 EXPORT_SYMBOL_GPL(nfs_instantiate); 1992 1993 /* 1994 * Following a failed create operation, we drop the dentry rather 1995 * than retain a negative dentry. This avoids a problem in the event 1996 * that the operation succeeded on the server, but an error in the 1997 * reply path made it appear to have failed. 1998 */ 1999 int nfs_create(struct inode *dir, struct dentry *dentry, 2000 umode_t mode, bool excl) 2001 { 2002 struct iattr attr; 2003 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 2004 int error; 2005 2006 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 2007 dir->i_sb->s_id, dir->i_ino, dentry); 2008 2009 attr.ia_mode = mode; 2010 attr.ia_valid = ATTR_MODE; 2011 2012 trace_nfs_create_enter(dir, dentry, open_flags); 2013 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 2014 trace_nfs_create_exit(dir, dentry, open_flags, error); 2015 if (error != 0) 2016 goto out_err; 2017 return 0; 2018 out_err: 2019 d_drop(dentry); 2020 return error; 2021 } 2022 EXPORT_SYMBOL_GPL(nfs_create); 2023 2024 /* 2025 * See comments for nfs_proc_create regarding failed operations. 2026 */ 2027 int 2028 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 2029 { 2030 struct iattr attr; 2031 int status; 2032 2033 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 2034 dir->i_sb->s_id, dir->i_ino, dentry); 2035 2036 attr.ia_mode = mode; 2037 attr.ia_valid = ATTR_MODE; 2038 2039 trace_nfs_mknod_enter(dir, dentry); 2040 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 2041 trace_nfs_mknod_exit(dir, dentry, status); 2042 if (status != 0) 2043 goto out_err; 2044 return 0; 2045 out_err: 2046 d_drop(dentry); 2047 return status; 2048 } 2049 EXPORT_SYMBOL_GPL(nfs_mknod); 2050 2051 /* 2052 * See comments for nfs_proc_create regarding failed operations. 2053 */ 2054 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2055 { 2056 struct iattr attr; 2057 int error; 2058 2059 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 2060 dir->i_sb->s_id, dir->i_ino, dentry); 2061 2062 attr.ia_valid = ATTR_MODE; 2063 attr.ia_mode = mode | S_IFDIR; 2064 2065 trace_nfs_mkdir_enter(dir, dentry); 2066 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 2067 trace_nfs_mkdir_exit(dir, dentry, error); 2068 if (error != 0) 2069 goto out_err; 2070 return 0; 2071 out_err: 2072 d_drop(dentry); 2073 return error; 2074 } 2075 EXPORT_SYMBOL_GPL(nfs_mkdir); 2076 2077 static void nfs_dentry_handle_enoent(struct dentry *dentry) 2078 { 2079 if (simple_positive(dentry)) 2080 d_delete(dentry); 2081 } 2082 2083 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2084 { 2085 int error; 2086 2087 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2088 dir->i_sb->s_id, dir->i_ino, dentry); 2089 2090 trace_nfs_rmdir_enter(dir, dentry); 2091 if (d_really_is_positive(dentry)) { 2092 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2093 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2094 /* Ensure the VFS deletes this inode */ 2095 switch (error) { 2096 case 0: 2097 clear_nlink(d_inode(dentry)); 2098 break; 2099 case -ENOENT: 2100 nfs_dentry_handle_enoent(dentry); 2101 } 2102 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2103 } else 2104 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2105 trace_nfs_rmdir_exit(dir, dentry, error); 2106 2107 return error; 2108 } 2109 EXPORT_SYMBOL_GPL(nfs_rmdir); 2110 2111 /* 2112 * Remove a file after making sure there are no pending writes, 2113 * and after checking that the file has only one user. 2114 * 2115 * We invalidate the attribute cache and free the inode prior to the operation 2116 * to avoid possible races if the server reuses the inode. 2117 */ 2118 static int nfs_safe_remove(struct dentry *dentry) 2119 { 2120 struct inode *dir = d_inode(dentry->d_parent); 2121 struct inode *inode = d_inode(dentry); 2122 int error = -EBUSY; 2123 2124 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2125 2126 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2127 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2128 error = 0; 2129 goto out; 2130 } 2131 2132 trace_nfs_remove_enter(dir, dentry); 2133 if (inode != NULL) { 2134 error = NFS_PROTO(dir)->remove(dir, dentry); 2135 if (error == 0) 2136 nfs_drop_nlink(inode); 2137 } else 2138 error = NFS_PROTO(dir)->remove(dir, dentry); 2139 if (error == -ENOENT) 2140 nfs_dentry_handle_enoent(dentry); 2141 trace_nfs_remove_exit(dir, dentry, error); 2142 out: 2143 return error; 2144 } 2145 2146 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2147 * belongs to an active ".nfs..." file and we return -EBUSY. 2148 * 2149 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2150 */ 2151 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2152 { 2153 int error; 2154 int need_rehash = 0; 2155 2156 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2157 dir->i_ino, dentry); 2158 2159 trace_nfs_unlink_enter(dir, dentry); 2160 spin_lock(&dentry->d_lock); 2161 if (d_count(dentry) > 1) { 2162 spin_unlock(&dentry->d_lock); 2163 /* Start asynchronous writeout of the inode */ 2164 write_inode_now(d_inode(dentry), 0); 2165 error = nfs_sillyrename(dir, dentry); 2166 goto out; 2167 } 2168 if (!d_unhashed(dentry)) { 2169 __d_drop(dentry); 2170 need_rehash = 1; 2171 } 2172 spin_unlock(&dentry->d_lock); 2173 error = nfs_safe_remove(dentry); 2174 if (!error || error == -ENOENT) { 2175 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2176 } else if (need_rehash) 2177 d_rehash(dentry); 2178 out: 2179 trace_nfs_unlink_exit(dir, dentry, error); 2180 return error; 2181 } 2182 EXPORT_SYMBOL_GPL(nfs_unlink); 2183 2184 /* 2185 * To create a symbolic link, most file systems instantiate a new inode, 2186 * add a page to it containing the path, then write it out to the disk 2187 * using prepare_write/commit_write. 2188 * 2189 * Unfortunately the NFS client can't create the in-core inode first 2190 * because it needs a file handle to create an in-core inode (see 2191 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2192 * symlink request has completed on the server. 2193 * 2194 * So instead we allocate a raw page, copy the symname into it, then do 2195 * the SYMLINK request with the page as the buffer. If it succeeds, we 2196 * now have a new file handle and can instantiate an in-core NFS inode 2197 * and move the raw page into its mapping. 2198 */ 2199 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2200 { 2201 struct page *page; 2202 char *kaddr; 2203 struct iattr attr; 2204 unsigned int pathlen = strlen(symname); 2205 int error; 2206 2207 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2208 dir->i_ino, dentry, symname); 2209 2210 if (pathlen > PAGE_SIZE) 2211 return -ENAMETOOLONG; 2212 2213 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2214 attr.ia_valid = ATTR_MODE; 2215 2216 page = alloc_page(GFP_USER); 2217 if (!page) 2218 return -ENOMEM; 2219 2220 kaddr = page_address(page); 2221 memcpy(kaddr, symname, pathlen); 2222 if (pathlen < PAGE_SIZE) 2223 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2224 2225 trace_nfs_symlink_enter(dir, dentry); 2226 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2227 trace_nfs_symlink_exit(dir, dentry, error); 2228 if (error != 0) { 2229 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2230 dir->i_sb->s_id, dir->i_ino, 2231 dentry, symname, error); 2232 d_drop(dentry); 2233 __free_page(page); 2234 return error; 2235 } 2236 2237 /* 2238 * No big deal if we can't add this page to the page cache here. 2239 * READLINK will get the missing page from the server if needed. 2240 */ 2241 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2242 GFP_KERNEL)) { 2243 SetPageUptodate(page); 2244 unlock_page(page); 2245 /* 2246 * add_to_page_cache_lru() grabs an extra page refcount. 2247 * Drop it here to avoid leaking this page later. 2248 */ 2249 put_page(page); 2250 } else 2251 __free_page(page); 2252 2253 return 0; 2254 } 2255 EXPORT_SYMBOL_GPL(nfs_symlink); 2256 2257 int 2258 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2259 { 2260 struct inode *inode = d_inode(old_dentry); 2261 int error; 2262 2263 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2264 old_dentry, dentry); 2265 2266 trace_nfs_link_enter(inode, dir, dentry); 2267 d_drop(dentry); 2268 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2269 if (error == 0) { 2270 ihold(inode); 2271 d_add(dentry, inode); 2272 } 2273 trace_nfs_link_exit(inode, dir, dentry, error); 2274 return error; 2275 } 2276 EXPORT_SYMBOL_GPL(nfs_link); 2277 2278 /* 2279 * RENAME 2280 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2281 * different file handle for the same inode after a rename (e.g. when 2282 * moving to a different directory). A fail-safe method to do so would 2283 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2284 * rename the old file using the sillyrename stuff. This way, the original 2285 * file in old_dir will go away when the last process iput()s the inode. 2286 * 2287 * FIXED. 2288 * 2289 * It actually works quite well. One needs to have the possibility for 2290 * at least one ".nfs..." file in each directory the file ever gets 2291 * moved or linked to which happens automagically with the new 2292 * implementation that only depends on the dcache stuff instead of 2293 * using the inode layer 2294 * 2295 * Unfortunately, things are a little more complicated than indicated 2296 * above. For a cross-directory move, we want to make sure we can get 2297 * rid of the old inode after the operation. This means there must be 2298 * no pending writes (if it's a file), and the use count must be 1. 2299 * If these conditions are met, we can drop the dentries before doing 2300 * the rename. 2301 */ 2302 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2303 struct inode *new_dir, struct dentry *new_dentry, 2304 unsigned int flags) 2305 { 2306 struct inode *old_inode = d_inode(old_dentry); 2307 struct inode *new_inode = d_inode(new_dentry); 2308 struct dentry *dentry = NULL, *rehash = NULL; 2309 struct rpc_task *task; 2310 int error = -EBUSY; 2311 2312 if (flags) 2313 return -EINVAL; 2314 2315 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2316 old_dentry, new_dentry, 2317 d_count(new_dentry)); 2318 2319 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2320 /* 2321 * For non-directories, check whether the target is busy and if so, 2322 * make a copy of the dentry and then do a silly-rename. If the 2323 * silly-rename succeeds, the copied dentry is hashed and becomes 2324 * the new target. 2325 */ 2326 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2327 /* 2328 * To prevent any new references to the target during the 2329 * rename, we unhash the dentry in advance. 2330 */ 2331 if (!d_unhashed(new_dentry)) { 2332 d_drop(new_dentry); 2333 rehash = new_dentry; 2334 } 2335 2336 if (d_count(new_dentry) > 2) { 2337 int err; 2338 2339 /* copy the target dentry's name */ 2340 dentry = d_alloc(new_dentry->d_parent, 2341 &new_dentry->d_name); 2342 if (!dentry) 2343 goto out; 2344 2345 /* silly-rename the existing target ... */ 2346 err = nfs_sillyrename(new_dir, new_dentry); 2347 if (err) 2348 goto out; 2349 2350 new_dentry = dentry; 2351 rehash = NULL; 2352 new_inode = NULL; 2353 } 2354 } 2355 2356 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2357 if (IS_ERR(task)) { 2358 error = PTR_ERR(task); 2359 goto out; 2360 } 2361 2362 error = rpc_wait_for_completion_task(task); 2363 if (error != 0) { 2364 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2365 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2366 smp_wmb(); 2367 } else 2368 error = task->tk_status; 2369 rpc_put_task(task); 2370 /* Ensure the inode attributes are revalidated */ 2371 if (error == 0) { 2372 spin_lock(&old_inode->i_lock); 2373 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2374 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE 2375 | NFS_INO_INVALID_CTIME 2376 | NFS_INO_REVAL_FORCED; 2377 spin_unlock(&old_inode->i_lock); 2378 } 2379 out: 2380 if (rehash) 2381 d_rehash(rehash); 2382 trace_nfs_rename_exit(old_dir, old_dentry, 2383 new_dir, new_dentry, error); 2384 if (!error) { 2385 if (new_inode != NULL) 2386 nfs_drop_nlink(new_inode); 2387 /* 2388 * The d_move() should be here instead of in an async RPC completion 2389 * handler because we need the proper locks to move the dentry. If 2390 * we're interrupted by a signal, the async RPC completion handler 2391 * should mark the directories for revalidation. 2392 */ 2393 d_move(old_dentry, new_dentry); 2394 nfs_set_verifier(old_dentry, 2395 nfs_save_change_attribute(new_dir)); 2396 } else if (error == -ENOENT) 2397 nfs_dentry_handle_enoent(old_dentry); 2398 2399 /* new dentry created? */ 2400 if (dentry) 2401 dput(dentry); 2402 return error; 2403 } 2404 EXPORT_SYMBOL_GPL(nfs_rename); 2405 2406 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2407 static LIST_HEAD(nfs_access_lru_list); 2408 static atomic_long_t nfs_access_nr_entries; 2409 2410 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2411 module_param(nfs_access_max_cachesize, ulong, 0644); 2412 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2413 2414 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2415 { 2416 put_cred(entry->cred); 2417 kfree_rcu(entry, rcu_head); 2418 smp_mb__before_atomic(); 2419 atomic_long_dec(&nfs_access_nr_entries); 2420 smp_mb__after_atomic(); 2421 } 2422 2423 static void nfs_access_free_list(struct list_head *head) 2424 { 2425 struct nfs_access_entry *cache; 2426 2427 while (!list_empty(head)) { 2428 cache = list_entry(head->next, struct nfs_access_entry, lru); 2429 list_del(&cache->lru); 2430 nfs_access_free_entry(cache); 2431 } 2432 } 2433 2434 static unsigned long 2435 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2436 { 2437 LIST_HEAD(head); 2438 struct nfs_inode *nfsi, *next; 2439 struct nfs_access_entry *cache; 2440 long freed = 0; 2441 2442 spin_lock(&nfs_access_lru_lock); 2443 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2444 struct inode *inode; 2445 2446 if (nr_to_scan-- == 0) 2447 break; 2448 inode = &nfsi->vfs_inode; 2449 spin_lock(&inode->i_lock); 2450 if (list_empty(&nfsi->access_cache_entry_lru)) 2451 goto remove_lru_entry; 2452 cache = list_entry(nfsi->access_cache_entry_lru.next, 2453 struct nfs_access_entry, lru); 2454 list_move(&cache->lru, &head); 2455 rb_erase(&cache->rb_node, &nfsi->access_cache); 2456 freed++; 2457 if (!list_empty(&nfsi->access_cache_entry_lru)) 2458 list_move_tail(&nfsi->access_cache_inode_lru, 2459 &nfs_access_lru_list); 2460 else { 2461 remove_lru_entry: 2462 list_del_init(&nfsi->access_cache_inode_lru); 2463 smp_mb__before_atomic(); 2464 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2465 smp_mb__after_atomic(); 2466 } 2467 spin_unlock(&inode->i_lock); 2468 } 2469 spin_unlock(&nfs_access_lru_lock); 2470 nfs_access_free_list(&head); 2471 return freed; 2472 } 2473 2474 unsigned long 2475 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2476 { 2477 int nr_to_scan = sc->nr_to_scan; 2478 gfp_t gfp_mask = sc->gfp_mask; 2479 2480 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2481 return SHRINK_STOP; 2482 return nfs_do_access_cache_scan(nr_to_scan); 2483 } 2484 2485 2486 unsigned long 2487 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2488 { 2489 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2490 } 2491 2492 static void 2493 nfs_access_cache_enforce_limit(void) 2494 { 2495 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2496 unsigned long diff; 2497 unsigned int nr_to_scan; 2498 2499 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2500 return; 2501 nr_to_scan = 100; 2502 diff = nr_entries - nfs_access_max_cachesize; 2503 if (diff < nr_to_scan) 2504 nr_to_scan = diff; 2505 nfs_do_access_cache_scan(nr_to_scan); 2506 } 2507 2508 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2509 { 2510 struct rb_root *root_node = &nfsi->access_cache; 2511 struct rb_node *n; 2512 struct nfs_access_entry *entry; 2513 2514 /* Unhook entries from the cache */ 2515 while ((n = rb_first(root_node)) != NULL) { 2516 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2517 rb_erase(n, root_node); 2518 list_move(&entry->lru, head); 2519 } 2520 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2521 } 2522 2523 void nfs_access_zap_cache(struct inode *inode) 2524 { 2525 LIST_HEAD(head); 2526 2527 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2528 return; 2529 /* Remove from global LRU init */ 2530 spin_lock(&nfs_access_lru_lock); 2531 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2532 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2533 2534 spin_lock(&inode->i_lock); 2535 __nfs_access_zap_cache(NFS_I(inode), &head); 2536 spin_unlock(&inode->i_lock); 2537 spin_unlock(&nfs_access_lru_lock); 2538 nfs_access_free_list(&head); 2539 } 2540 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2541 2542 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2543 { 2544 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2545 2546 while (n != NULL) { 2547 struct nfs_access_entry *entry = 2548 rb_entry(n, struct nfs_access_entry, rb_node); 2549 int cmp = cred_fscmp(cred, entry->cred); 2550 2551 if (cmp < 0) 2552 n = n->rb_left; 2553 else if (cmp > 0) 2554 n = n->rb_right; 2555 else 2556 return entry; 2557 } 2558 return NULL; 2559 } 2560 2561 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block) 2562 { 2563 struct nfs_inode *nfsi = NFS_I(inode); 2564 struct nfs_access_entry *cache; 2565 bool retry = true; 2566 int err; 2567 2568 spin_lock(&inode->i_lock); 2569 for(;;) { 2570 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2571 goto out_zap; 2572 cache = nfs_access_search_rbtree(inode, cred); 2573 err = -ENOENT; 2574 if (cache == NULL) 2575 goto out; 2576 /* Found an entry, is our attribute cache valid? */ 2577 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2578 break; 2579 if (!retry) 2580 break; 2581 err = -ECHILD; 2582 if (!may_block) 2583 goto out; 2584 spin_unlock(&inode->i_lock); 2585 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2586 if (err) 2587 return err; 2588 spin_lock(&inode->i_lock); 2589 retry = false; 2590 } 2591 res->cred = cache->cred; 2592 res->mask = cache->mask; 2593 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2594 err = 0; 2595 out: 2596 spin_unlock(&inode->i_lock); 2597 return err; 2598 out_zap: 2599 spin_unlock(&inode->i_lock); 2600 nfs_access_zap_cache(inode); 2601 return -ENOENT; 2602 } 2603 2604 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res) 2605 { 2606 /* Only check the most recently returned cache entry, 2607 * but do it without locking. 2608 */ 2609 struct nfs_inode *nfsi = NFS_I(inode); 2610 struct nfs_access_entry *cache; 2611 int err = -ECHILD; 2612 struct list_head *lh; 2613 2614 rcu_read_lock(); 2615 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2616 goto out; 2617 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 2618 cache = list_entry(lh, struct nfs_access_entry, lru); 2619 if (lh == &nfsi->access_cache_entry_lru || 2620 cred_fscmp(cred, cache->cred) != 0) 2621 cache = NULL; 2622 if (cache == NULL) 2623 goto out; 2624 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2625 goto out; 2626 res->cred = cache->cred; 2627 res->mask = cache->mask; 2628 err = 0; 2629 out: 2630 rcu_read_unlock(); 2631 return err; 2632 } 2633 2634 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct 2635 nfs_access_entry *res, bool may_block) 2636 { 2637 int status; 2638 2639 status = nfs_access_get_cached_rcu(inode, cred, res); 2640 if (status != 0) 2641 status = nfs_access_get_cached_locked(inode, cred, res, 2642 may_block); 2643 2644 return status; 2645 } 2646 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 2647 2648 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2649 { 2650 struct nfs_inode *nfsi = NFS_I(inode); 2651 struct rb_root *root_node = &nfsi->access_cache; 2652 struct rb_node **p = &root_node->rb_node; 2653 struct rb_node *parent = NULL; 2654 struct nfs_access_entry *entry; 2655 int cmp; 2656 2657 spin_lock(&inode->i_lock); 2658 while (*p != NULL) { 2659 parent = *p; 2660 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2661 cmp = cred_fscmp(set->cred, entry->cred); 2662 2663 if (cmp < 0) 2664 p = &parent->rb_left; 2665 else if (cmp > 0) 2666 p = &parent->rb_right; 2667 else 2668 goto found; 2669 } 2670 rb_link_node(&set->rb_node, parent, p); 2671 rb_insert_color(&set->rb_node, root_node); 2672 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2673 spin_unlock(&inode->i_lock); 2674 return; 2675 found: 2676 rb_replace_node(parent, &set->rb_node, root_node); 2677 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2678 list_del(&entry->lru); 2679 spin_unlock(&inode->i_lock); 2680 nfs_access_free_entry(entry); 2681 } 2682 2683 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2684 { 2685 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2686 if (cache == NULL) 2687 return; 2688 RB_CLEAR_NODE(&cache->rb_node); 2689 cache->cred = get_cred(set->cred); 2690 cache->mask = set->mask; 2691 2692 /* The above field assignments must be visible 2693 * before this item appears on the lru. We cannot easily 2694 * use rcu_assign_pointer, so just force the memory barrier. 2695 */ 2696 smp_wmb(); 2697 nfs_access_add_rbtree(inode, cache); 2698 2699 /* Update accounting */ 2700 smp_mb__before_atomic(); 2701 atomic_long_inc(&nfs_access_nr_entries); 2702 smp_mb__after_atomic(); 2703 2704 /* Add inode to global LRU list */ 2705 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2706 spin_lock(&nfs_access_lru_lock); 2707 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2708 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2709 &nfs_access_lru_list); 2710 spin_unlock(&nfs_access_lru_lock); 2711 } 2712 nfs_access_cache_enforce_limit(); 2713 } 2714 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2715 2716 #define NFS_MAY_READ (NFS_ACCESS_READ) 2717 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2718 NFS_ACCESS_EXTEND | \ 2719 NFS_ACCESS_DELETE) 2720 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2721 NFS_ACCESS_EXTEND) 2722 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2723 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2724 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2725 static int 2726 nfs_access_calc_mask(u32 access_result, umode_t umode) 2727 { 2728 int mask = 0; 2729 2730 if (access_result & NFS_MAY_READ) 2731 mask |= MAY_READ; 2732 if (S_ISDIR(umode)) { 2733 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2734 mask |= MAY_WRITE; 2735 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2736 mask |= MAY_EXEC; 2737 } else if (S_ISREG(umode)) { 2738 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2739 mask |= MAY_WRITE; 2740 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2741 mask |= MAY_EXEC; 2742 } else if (access_result & NFS_MAY_WRITE) 2743 mask |= MAY_WRITE; 2744 return mask; 2745 } 2746 2747 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2748 { 2749 entry->mask = access_result; 2750 } 2751 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2752 2753 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 2754 { 2755 struct nfs_access_entry cache; 2756 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2757 int cache_mask = -1; 2758 int status; 2759 2760 trace_nfs_access_enter(inode); 2761 2762 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2763 if (status == 0) 2764 goto out_cached; 2765 2766 status = -ECHILD; 2767 if (!may_block) 2768 goto out; 2769 2770 /* 2771 * Determine which access bits we want to ask for... 2772 */ 2773 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2774 if (nfs_server_capable(inode, NFS_CAP_XATTR)) { 2775 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE | 2776 NFS_ACCESS_XALIST; 2777 } 2778 if (S_ISDIR(inode->i_mode)) 2779 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2780 else 2781 cache.mask |= NFS_ACCESS_EXECUTE; 2782 cache.cred = cred; 2783 status = NFS_PROTO(inode)->access(inode, &cache); 2784 if (status != 0) { 2785 if (status == -ESTALE) { 2786 if (!S_ISDIR(inode->i_mode)) 2787 nfs_set_inode_stale(inode); 2788 else 2789 nfs_zap_caches(inode); 2790 } 2791 goto out; 2792 } 2793 nfs_access_add_cache(inode, &cache); 2794 out_cached: 2795 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2796 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2797 status = -EACCES; 2798 out: 2799 trace_nfs_access_exit(inode, mask, cache_mask, status); 2800 return status; 2801 } 2802 2803 static int nfs_open_permission_mask(int openflags) 2804 { 2805 int mask = 0; 2806 2807 if (openflags & __FMODE_EXEC) { 2808 /* ONLY check exec rights */ 2809 mask = MAY_EXEC; 2810 } else { 2811 if ((openflags & O_ACCMODE) != O_WRONLY) 2812 mask |= MAY_READ; 2813 if ((openflags & O_ACCMODE) != O_RDONLY) 2814 mask |= MAY_WRITE; 2815 } 2816 2817 return mask; 2818 } 2819 2820 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 2821 { 2822 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2823 } 2824 EXPORT_SYMBOL_GPL(nfs_may_open); 2825 2826 static int nfs_execute_ok(struct inode *inode, int mask) 2827 { 2828 struct nfs_server *server = NFS_SERVER(inode); 2829 int ret = 0; 2830 2831 if (S_ISDIR(inode->i_mode)) 2832 return 0; 2833 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { 2834 if (mask & MAY_NOT_BLOCK) 2835 return -ECHILD; 2836 ret = __nfs_revalidate_inode(server, inode); 2837 } 2838 if (ret == 0 && !execute_ok(inode)) 2839 ret = -EACCES; 2840 return ret; 2841 } 2842 2843 int nfs_permission(struct inode *inode, int mask) 2844 { 2845 const struct cred *cred = current_cred(); 2846 int res = 0; 2847 2848 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2849 2850 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2851 goto out; 2852 /* Is this sys_access() ? */ 2853 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2854 goto force_lookup; 2855 2856 switch (inode->i_mode & S_IFMT) { 2857 case S_IFLNK: 2858 goto out; 2859 case S_IFREG: 2860 if ((mask & MAY_OPEN) && 2861 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2862 return 0; 2863 break; 2864 case S_IFDIR: 2865 /* 2866 * Optimize away all write operations, since the server 2867 * will check permissions when we perform the op. 2868 */ 2869 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2870 goto out; 2871 } 2872 2873 force_lookup: 2874 if (!NFS_PROTO(inode)->access) 2875 goto out_notsup; 2876 2877 res = nfs_do_access(inode, cred, mask); 2878 out: 2879 if (!res && (mask & MAY_EXEC)) 2880 res = nfs_execute_ok(inode, mask); 2881 2882 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2883 inode->i_sb->s_id, inode->i_ino, mask, res); 2884 return res; 2885 out_notsup: 2886 if (mask & MAY_NOT_BLOCK) 2887 return -ECHILD; 2888 2889 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2890 if (res == 0) 2891 res = generic_permission(inode, mask); 2892 goto out; 2893 } 2894 EXPORT_SYMBOL_GPL(nfs_permission); 2895 2896 /* 2897 * Local variables: 2898 * version-control: t 2899 * kept-new-versions: 5 2900 * End: 2901 */ 2902