xref: /openbmc/linux/fs/nfs/dir.c (revision 6417f03132a6952cd17ddd8eaddbac92b61b17e0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		spin_lock(&dir->i_lock);
82 		if (list_empty(&nfsi->open_files) &&
83 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
84 			nfs_set_cache_invalid(dir,
85 					      NFS_INO_INVALID_DATA |
86 						      NFS_INO_REVAL_FORCED);
87 		list_add(&ctx->list, &nfsi->open_files);
88 		spin_unlock(&dir->i_lock);
89 		return ctx;
90 	}
91 	return  ERR_PTR(-ENOMEM);
92 }
93 
94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95 {
96 	spin_lock(&dir->i_lock);
97 	list_del(&ctx->list);
98 	spin_unlock(&dir->i_lock);
99 	kfree(ctx);
100 }
101 
102 /*
103  * Open file
104  */
105 static int
106 nfs_opendir(struct inode *inode, struct file *filp)
107 {
108 	int res = 0;
109 	struct nfs_open_dir_context *ctx;
110 
111 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
112 
113 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
114 
115 	ctx = alloc_nfs_open_dir_context(inode);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 out:
122 	return res;
123 }
124 
125 static int
126 nfs_closedir(struct inode *inode, struct file *filp)
127 {
128 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
129 	return 0;
130 }
131 
132 struct nfs_cache_array_entry {
133 	u64 cookie;
134 	u64 ino;
135 	const char *name;
136 	unsigned int name_len;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	u64 last_cookie;
142 	unsigned int size;
143 	unsigned char page_full : 1,
144 		      page_is_eof : 1,
145 		      cookies_are_ordered : 1;
146 	struct nfs_cache_array_entry array[];
147 };
148 
149 struct nfs_readdir_descriptor {
150 	struct file	*file;
151 	struct page	*page;
152 	struct dir_context *ctx;
153 	pgoff_t		page_index;
154 	u64		dir_cookie;
155 	u64		last_cookie;
156 	u64		dup_cookie;
157 	loff_t		current_index;
158 	loff_t		prev_index;
159 
160 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
161 	unsigned long	dir_verifier;
162 	unsigned long	timestamp;
163 	unsigned long	gencount;
164 	unsigned long	attr_gencount;
165 	unsigned int	cache_entry_index;
166 	signed char duped;
167 	bool plus;
168 	bool eof;
169 };
170 
171 static void nfs_readdir_array_init(struct nfs_cache_array *array)
172 {
173 	memset(array, 0, sizeof(struct nfs_cache_array));
174 }
175 
176 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
177 {
178 	struct nfs_cache_array *array;
179 
180 	array = kmap_atomic(page);
181 	nfs_readdir_array_init(array);
182 	array->last_cookie = last_cookie;
183 	array->cookies_are_ordered = 1;
184 	kunmap_atomic(array);
185 }
186 
187 /*
188  * we are freeing strings created by nfs_add_to_readdir_array()
189  */
190 static
191 void nfs_readdir_clear_array(struct page *page)
192 {
193 	struct nfs_cache_array *array;
194 	int i;
195 
196 	array = kmap_atomic(page);
197 	for (i = 0; i < array->size; i++)
198 		kfree(array->array[i].name);
199 	nfs_readdir_array_init(array);
200 	kunmap_atomic(array);
201 }
202 
203 static struct page *
204 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
205 {
206 	struct page *page = alloc_page(gfp_flags);
207 	if (page)
208 		nfs_readdir_page_init_array(page, last_cookie);
209 	return page;
210 }
211 
212 static void nfs_readdir_page_array_free(struct page *page)
213 {
214 	if (page) {
215 		nfs_readdir_clear_array(page);
216 		put_page(page);
217 	}
218 }
219 
220 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
221 {
222 	array->page_is_eof = 1;
223 	array->page_full = 1;
224 }
225 
226 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
227 {
228 	return array->page_full;
229 }
230 
231 /*
232  * the caller is responsible for freeing qstr.name
233  * when called by nfs_readdir_add_to_array, the strings will be freed in
234  * nfs_clear_readdir_array()
235  */
236 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
237 {
238 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
239 
240 	/*
241 	 * Avoid a kmemleak false positive. The pointer to the name is stored
242 	 * in a page cache page which kmemleak does not scan.
243 	 */
244 	if (ret != NULL)
245 		kmemleak_not_leak(ret);
246 	return ret;
247 }
248 
249 /*
250  * Check that the next array entry lies entirely within the page bounds
251  */
252 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
253 {
254 	struct nfs_cache_array_entry *cache_entry;
255 
256 	if (array->page_full)
257 		return -ENOSPC;
258 	cache_entry = &array->array[array->size + 1];
259 	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
260 		array->page_full = 1;
261 		return -ENOSPC;
262 	}
263 	return 0;
264 }
265 
266 static
267 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
268 {
269 	struct nfs_cache_array *array;
270 	struct nfs_cache_array_entry *cache_entry;
271 	const char *name;
272 	int ret;
273 
274 	name = nfs_readdir_copy_name(entry->name, entry->len);
275 	if (!name)
276 		return -ENOMEM;
277 
278 	array = kmap_atomic(page);
279 	ret = nfs_readdir_array_can_expand(array);
280 	if (ret) {
281 		kfree(name);
282 		goto out;
283 	}
284 
285 	cache_entry = &array->array[array->size];
286 	cache_entry->cookie = entry->prev_cookie;
287 	cache_entry->ino = entry->ino;
288 	cache_entry->d_type = entry->d_type;
289 	cache_entry->name_len = entry->len;
290 	cache_entry->name = name;
291 	array->last_cookie = entry->cookie;
292 	if (array->last_cookie <= cache_entry->cookie)
293 		array->cookies_are_ordered = 0;
294 	array->size++;
295 	if (entry->eof != 0)
296 		nfs_readdir_array_set_eof(array);
297 out:
298 	kunmap_atomic(array);
299 	return ret;
300 }
301 
302 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
303 						pgoff_t index, u64 last_cookie)
304 {
305 	struct page *page;
306 
307 	page = grab_cache_page(mapping, index);
308 	if (page && !PageUptodate(page)) {
309 		nfs_readdir_page_init_array(page, last_cookie);
310 		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
311 			nfs_zap_mapping(mapping->host, mapping);
312 		SetPageUptodate(page);
313 	}
314 
315 	return page;
316 }
317 
318 static u64 nfs_readdir_page_last_cookie(struct page *page)
319 {
320 	struct nfs_cache_array *array;
321 	u64 ret;
322 
323 	array = kmap_atomic(page);
324 	ret = array->last_cookie;
325 	kunmap_atomic(array);
326 	return ret;
327 }
328 
329 static bool nfs_readdir_page_needs_filling(struct page *page)
330 {
331 	struct nfs_cache_array *array;
332 	bool ret;
333 
334 	array = kmap_atomic(page);
335 	ret = !nfs_readdir_array_is_full(array);
336 	kunmap_atomic(array);
337 	return ret;
338 }
339 
340 static void nfs_readdir_page_set_eof(struct page *page)
341 {
342 	struct nfs_cache_array *array;
343 
344 	array = kmap_atomic(page);
345 	nfs_readdir_array_set_eof(array);
346 	kunmap_atomic(array);
347 }
348 
349 static void nfs_readdir_page_unlock_and_put(struct page *page)
350 {
351 	unlock_page(page);
352 	put_page(page);
353 }
354 
355 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
356 					      pgoff_t index, u64 cookie)
357 {
358 	struct page *page;
359 
360 	page = nfs_readdir_page_get_locked(mapping, index, cookie);
361 	if (page) {
362 		if (nfs_readdir_page_last_cookie(page) == cookie)
363 			return page;
364 		nfs_readdir_page_unlock_and_put(page);
365 	}
366 	return NULL;
367 }
368 
369 static inline
370 int is_32bit_api(void)
371 {
372 #ifdef CONFIG_COMPAT
373 	return in_compat_syscall();
374 #else
375 	return (BITS_PER_LONG == 32);
376 #endif
377 }
378 
379 static
380 bool nfs_readdir_use_cookie(const struct file *filp)
381 {
382 	if ((filp->f_mode & FMODE_32BITHASH) ||
383 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
384 		return false;
385 	return true;
386 }
387 
388 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
389 				      struct nfs_readdir_descriptor *desc)
390 {
391 	loff_t diff = desc->ctx->pos - desc->current_index;
392 	unsigned int index;
393 
394 	if (diff < 0)
395 		goto out_eof;
396 	if (diff >= array->size) {
397 		if (array->page_is_eof)
398 			goto out_eof;
399 		return -EAGAIN;
400 	}
401 
402 	index = (unsigned int)diff;
403 	desc->dir_cookie = array->array[index].cookie;
404 	desc->cache_entry_index = index;
405 	return 0;
406 out_eof:
407 	desc->eof = true;
408 	return -EBADCOOKIE;
409 }
410 
411 static bool
412 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
413 {
414 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
415 		return false;
416 	smp_rmb();
417 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
418 }
419 
420 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
421 					      u64 cookie)
422 {
423 	if (!array->cookies_are_ordered)
424 		return true;
425 	/* Optimisation for monotonically increasing cookies */
426 	if (cookie >= array->last_cookie)
427 		return false;
428 	if (array->size && cookie < array->array[0].cookie)
429 		return false;
430 	return true;
431 }
432 
433 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
434 					 struct nfs_readdir_descriptor *desc)
435 {
436 	int i;
437 	loff_t new_pos;
438 	int status = -EAGAIN;
439 
440 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
441 		goto check_eof;
442 
443 	for (i = 0; i < array->size; i++) {
444 		if (array->array[i].cookie == desc->dir_cookie) {
445 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
446 
447 			new_pos = desc->current_index + i;
448 			if (desc->attr_gencount != nfsi->attr_gencount ||
449 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
450 				desc->duped = 0;
451 				desc->attr_gencount = nfsi->attr_gencount;
452 			} else if (new_pos < desc->prev_index) {
453 				if (desc->duped > 0
454 				    && desc->dup_cookie == desc->dir_cookie) {
455 					if (printk_ratelimit()) {
456 						pr_notice("NFS: directory %pD2 contains a readdir loop."
457 								"Please contact your server vendor.  "
458 								"The file: %s has duplicate cookie %llu\n",
459 								desc->file, array->array[i].name, desc->dir_cookie);
460 					}
461 					status = -ELOOP;
462 					goto out;
463 				}
464 				desc->dup_cookie = desc->dir_cookie;
465 				desc->duped = -1;
466 			}
467 			if (nfs_readdir_use_cookie(desc->file))
468 				desc->ctx->pos = desc->dir_cookie;
469 			else
470 				desc->ctx->pos = new_pos;
471 			desc->prev_index = new_pos;
472 			desc->cache_entry_index = i;
473 			return 0;
474 		}
475 	}
476 check_eof:
477 	if (array->page_is_eof) {
478 		status = -EBADCOOKIE;
479 		if (desc->dir_cookie == array->last_cookie)
480 			desc->eof = true;
481 	}
482 out:
483 	return status;
484 }
485 
486 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
487 {
488 	struct nfs_cache_array *array;
489 	int status;
490 
491 	array = kmap_atomic(desc->page);
492 
493 	if (desc->dir_cookie == 0)
494 		status = nfs_readdir_search_for_pos(array, desc);
495 	else
496 		status = nfs_readdir_search_for_cookie(array, desc);
497 
498 	if (status == -EAGAIN) {
499 		desc->last_cookie = array->last_cookie;
500 		desc->current_index += array->size;
501 		desc->page_index++;
502 	}
503 	kunmap_atomic(array);
504 	return status;
505 }
506 
507 /* Fill a page with xdr information before transferring to the cache page */
508 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
509 				  __be32 *verf, u64 cookie,
510 				  struct page **pages, size_t bufsize,
511 				  __be32 *verf_res)
512 {
513 	struct inode *inode = file_inode(desc->file);
514 	struct nfs_readdir_arg arg = {
515 		.dentry = file_dentry(desc->file),
516 		.cred = desc->file->f_cred,
517 		.verf = verf,
518 		.cookie = cookie,
519 		.pages = pages,
520 		.page_len = bufsize,
521 		.plus = desc->plus,
522 	};
523 	struct nfs_readdir_res res = {
524 		.verf = verf_res,
525 	};
526 	unsigned long	timestamp, gencount;
527 	int		error;
528 
529  again:
530 	timestamp = jiffies;
531 	gencount = nfs_inc_attr_generation_counter();
532 	desc->dir_verifier = nfs_save_change_attribute(inode);
533 	error = NFS_PROTO(inode)->readdir(&arg, &res);
534 	if (error < 0) {
535 		/* We requested READDIRPLUS, but the server doesn't grok it */
536 		if (error == -ENOTSUPP && desc->plus) {
537 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
538 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
539 			desc->plus = arg.plus = false;
540 			goto again;
541 		}
542 		goto error;
543 	}
544 	desc->timestamp = timestamp;
545 	desc->gencount = gencount;
546 error:
547 	return error;
548 }
549 
550 static int xdr_decode(struct nfs_readdir_descriptor *desc,
551 		      struct nfs_entry *entry, struct xdr_stream *xdr)
552 {
553 	struct inode *inode = file_inode(desc->file);
554 	int error;
555 
556 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
557 	if (error)
558 		return error;
559 	entry->fattr->time_start = desc->timestamp;
560 	entry->fattr->gencount = desc->gencount;
561 	return 0;
562 }
563 
564 /* Match file and dirent using either filehandle or fileid
565  * Note: caller is responsible for checking the fsid
566  */
567 static
568 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
569 {
570 	struct inode *inode;
571 	struct nfs_inode *nfsi;
572 
573 	if (d_really_is_negative(dentry))
574 		return 0;
575 
576 	inode = d_inode(dentry);
577 	if (is_bad_inode(inode) || NFS_STALE(inode))
578 		return 0;
579 
580 	nfsi = NFS_I(inode);
581 	if (entry->fattr->fileid != nfsi->fileid)
582 		return 0;
583 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
584 		return 0;
585 	return 1;
586 }
587 
588 static
589 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
590 {
591 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
592 		return false;
593 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
594 		return true;
595 	if (ctx->pos == 0)
596 		return true;
597 	return false;
598 }
599 
600 /*
601  * This function is called by the lookup and getattr code to request the
602  * use of readdirplus to accelerate any future lookups in the same
603  * directory.
604  */
605 void nfs_advise_use_readdirplus(struct inode *dir)
606 {
607 	struct nfs_inode *nfsi = NFS_I(dir);
608 
609 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
610 	    !list_empty(&nfsi->open_files))
611 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
612 }
613 
614 /*
615  * This function is mainly for use by nfs_getattr().
616  *
617  * If this is an 'ls -l', we want to force use of readdirplus.
618  * Do this by checking if there is an active file descriptor
619  * and calling nfs_advise_use_readdirplus, then forcing a
620  * cache flush.
621  */
622 void nfs_force_use_readdirplus(struct inode *dir)
623 {
624 	struct nfs_inode *nfsi = NFS_I(dir);
625 
626 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
627 	    !list_empty(&nfsi->open_files)) {
628 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
629 		invalidate_mapping_pages(dir->i_mapping,
630 			nfsi->page_index + 1, -1);
631 	}
632 }
633 
634 static
635 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
636 		unsigned long dir_verifier)
637 {
638 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
639 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
640 	struct dentry *dentry;
641 	struct dentry *alias;
642 	struct inode *inode;
643 	int status;
644 
645 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
646 		return;
647 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
648 		return;
649 	if (filename.len == 0)
650 		return;
651 	/* Validate that the name doesn't contain any illegal '\0' */
652 	if (strnlen(filename.name, filename.len) != filename.len)
653 		return;
654 	/* ...or '/' */
655 	if (strnchr(filename.name, filename.len, '/'))
656 		return;
657 	if (filename.name[0] == '.') {
658 		if (filename.len == 1)
659 			return;
660 		if (filename.len == 2 && filename.name[1] == '.')
661 			return;
662 	}
663 	filename.hash = full_name_hash(parent, filename.name, filename.len);
664 
665 	dentry = d_lookup(parent, &filename);
666 again:
667 	if (!dentry) {
668 		dentry = d_alloc_parallel(parent, &filename, &wq);
669 		if (IS_ERR(dentry))
670 			return;
671 	}
672 	if (!d_in_lookup(dentry)) {
673 		/* Is there a mountpoint here? If so, just exit */
674 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
675 					&entry->fattr->fsid))
676 			goto out;
677 		if (nfs_same_file(dentry, entry)) {
678 			if (!entry->fh->size)
679 				goto out;
680 			nfs_set_verifier(dentry, dir_verifier);
681 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
682 			if (!status)
683 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
684 			goto out;
685 		} else {
686 			d_invalidate(dentry);
687 			dput(dentry);
688 			dentry = NULL;
689 			goto again;
690 		}
691 	}
692 	if (!entry->fh->size) {
693 		d_lookup_done(dentry);
694 		goto out;
695 	}
696 
697 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
698 	alias = d_splice_alias(inode, dentry);
699 	d_lookup_done(dentry);
700 	if (alias) {
701 		if (IS_ERR(alias))
702 			goto out;
703 		dput(dentry);
704 		dentry = alias;
705 	}
706 	nfs_set_verifier(dentry, dir_verifier);
707 out:
708 	dput(dentry);
709 }
710 
711 /* Perform conversion from xdr to cache array */
712 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
713 				   struct nfs_entry *entry,
714 				   struct page **xdr_pages,
715 				   unsigned int buflen,
716 				   struct page **arrays,
717 				   size_t narrays)
718 {
719 	struct address_space *mapping = desc->file->f_mapping;
720 	struct xdr_stream stream;
721 	struct xdr_buf buf;
722 	struct page *scratch, *new, *page = *arrays;
723 	int status;
724 
725 	scratch = alloc_page(GFP_KERNEL);
726 	if (scratch == NULL)
727 		return -ENOMEM;
728 
729 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
730 	xdr_set_scratch_page(&stream, scratch);
731 
732 	do {
733 		if (entry->label)
734 			entry->label->len = NFS4_MAXLABELLEN;
735 
736 		status = xdr_decode(desc, entry, &stream);
737 		if (status != 0)
738 			break;
739 
740 		if (desc->plus)
741 			nfs_prime_dcache(file_dentry(desc->file), entry,
742 					desc->dir_verifier);
743 
744 		status = nfs_readdir_add_to_array(entry, page);
745 		if (status != -ENOSPC)
746 			continue;
747 
748 		if (page->mapping != mapping) {
749 			if (!--narrays)
750 				break;
751 			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
752 							   GFP_KERNEL);
753 			if (!new)
754 				break;
755 			arrays++;
756 			*arrays = page = new;
757 		} else {
758 			new = nfs_readdir_page_get_next(mapping,
759 							page->index + 1,
760 							entry->prev_cookie);
761 			if (!new)
762 				break;
763 			if (page != *arrays)
764 				nfs_readdir_page_unlock_and_put(page);
765 			page = new;
766 		}
767 		status = nfs_readdir_add_to_array(entry, page);
768 	} while (!status && !entry->eof);
769 
770 	switch (status) {
771 	case -EBADCOOKIE:
772 		if (entry->eof) {
773 			nfs_readdir_page_set_eof(page);
774 			status = 0;
775 		}
776 		break;
777 	case -ENOSPC:
778 	case -EAGAIN:
779 		status = 0;
780 		break;
781 	}
782 
783 	if (page != *arrays)
784 		nfs_readdir_page_unlock_and_put(page);
785 
786 	put_page(scratch);
787 	return status;
788 }
789 
790 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
791 {
792 	while (npages--)
793 		put_page(pages[npages]);
794 	kfree(pages);
795 }
796 
797 /*
798  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
799  * to nfs_readdir_free_pages()
800  */
801 static struct page **nfs_readdir_alloc_pages(size_t npages)
802 {
803 	struct page **pages;
804 	size_t i;
805 
806 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
807 	if (!pages)
808 		return NULL;
809 	for (i = 0; i < npages; i++) {
810 		struct page *page = alloc_page(GFP_KERNEL);
811 		if (page == NULL)
812 			goto out_freepages;
813 		pages[i] = page;
814 	}
815 	return pages;
816 
817 out_freepages:
818 	nfs_readdir_free_pages(pages, i);
819 	return NULL;
820 }
821 
822 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
823 				    __be32 *verf_arg, __be32 *verf_res,
824 				    struct page **arrays, size_t narrays)
825 {
826 	struct page **pages;
827 	struct page *page = *arrays;
828 	struct nfs_entry *entry;
829 	size_t array_size;
830 	struct inode *inode = file_inode(desc->file);
831 	size_t dtsize = NFS_SERVER(inode)->dtsize;
832 	int status = -ENOMEM;
833 
834 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
835 	if (!entry)
836 		return -ENOMEM;
837 	entry->cookie = nfs_readdir_page_last_cookie(page);
838 	entry->fh = nfs_alloc_fhandle();
839 	entry->fattr = nfs_alloc_fattr();
840 	entry->server = NFS_SERVER(inode);
841 	if (entry->fh == NULL || entry->fattr == NULL)
842 		goto out;
843 
844 	entry->label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
845 	if (IS_ERR(entry->label)) {
846 		status = PTR_ERR(entry->label);
847 		goto out;
848 	}
849 
850 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
851 	pages = nfs_readdir_alloc_pages(array_size);
852 	if (!pages)
853 		goto out_release_label;
854 
855 	do {
856 		unsigned int pglen;
857 		status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
858 						pages, dtsize,
859 						verf_res);
860 		if (status < 0)
861 			break;
862 
863 		pglen = status;
864 		if (pglen == 0) {
865 			nfs_readdir_page_set_eof(page);
866 			break;
867 		}
868 
869 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
870 						 arrays, narrays);
871 	} while (!status && nfs_readdir_page_needs_filling(page));
872 
873 	nfs_readdir_free_pages(pages, array_size);
874 out_release_label:
875 	nfs4_label_free(entry->label);
876 out:
877 	nfs_free_fattr(entry->fattr);
878 	nfs_free_fhandle(entry->fh);
879 	kfree(entry);
880 	return status;
881 }
882 
883 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
884 {
885 	put_page(desc->page);
886 	desc->page = NULL;
887 }
888 
889 static void
890 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
891 {
892 	unlock_page(desc->page);
893 	nfs_readdir_page_put(desc);
894 }
895 
896 static struct page *
897 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
898 {
899 	return nfs_readdir_page_get_locked(desc->file->f_mapping,
900 					   desc->page_index,
901 					   desc->last_cookie);
902 }
903 
904 /*
905  * Returns 0 if desc->dir_cookie was found on page desc->page_index
906  * and locks the page to prevent removal from the page cache.
907  */
908 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
909 {
910 	struct inode *inode = file_inode(desc->file);
911 	struct nfs_inode *nfsi = NFS_I(inode);
912 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
913 	int res;
914 
915 	desc->page = nfs_readdir_page_get_cached(desc);
916 	if (!desc->page)
917 		return -ENOMEM;
918 	if (nfs_readdir_page_needs_filling(desc->page)) {
919 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
920 					       &desc->page, 1);
921 		if (res < 0) {
922 			nfs_readdir_page_unlock_and_put_cached(desc);
923 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
924 				invalidate_inode_pages2(desc->file->f_mapping);
925 				desc->page_index = 0;
926 				return -EAGAIN;
927 			}
928 			return res;
929 		}
930 		memcpy(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf));
931 	}
932 	res = nfs_readdir_search_array(desc);
933 	if (res == 0) {
934 		nfsi->page_index = desc->page_index;
935 		return 0;
936 	}
937 	nfs_readdir_page_unlock_and_put_cached(desc);
938 	return res;
939 }
940 
941 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
942 {
943 	struct address_space *mapping = desc->file->f_mapping;
944 	struct inode *dir = file_inode(desc->file);
945 	unsigned int dtsize = NFS_SERVER(dir)->dtsize;
946 	loff_t size = i_size_read(dir);
947 
948 	/*
949 	 * Default to uncached readdir if the page cache is empty, and
950 	 * we're looking for a non-zero cookie in a large directory.
951 	 */
952 	return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
953 }
954 
955 /* Search for desc->dir_cookie from the beginning of the page cache */
956 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
957 {
958 	int res;
959 
960 	if (nfs_readdir_dont_search_cache(desc))
961 		return -EBADCOOKIE;
962 
963 	do {
964 		if (desc->page_index == 0) {
965 			desc->current_index = 0;
966 			desc->prev_index = 0;
967 			desc->last_cookie = 0;
968 		}
969 		res = find_and_lock_cache_page(desc);
970 	} while (res == -EAGAIN);
971 	return res;
972 }
973 
974 /*
975  * Once we've found the start of the dirent within a page: fill 'er up...
976  */
977 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc)
978 {
979 	struct file	*file = desc->file;
980 	struct nfs_inode *nfsi = NFS_I(file_inode(file));
981 	struct nfs_cache_array *array;
982 	unsigned int i = 0;
983 
984 	array = kmap(desc->page);
985 	for (i = desc->cache_entry_index; i < array->size; i++) {
986 		struct nfs_cache_array_entry *ent;
987 
988 		ent = &array->array[i];
989 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
990 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
991 			desc->eof = true;
992 			break;
993 		}
994 		memcpy(desc->verf, nfsi->cookieverf, sizeof(desc->verf));
995 		if (i < (array->size-1))
996 			desc->dir_cookie = array->array[i+1].cookie;
997 		else
998 			desc->dir_cookie = array->last_cookie;
999 		if (nfs_readdir_use_cookie(file))
1000 			desc->ctx->pos = desc->dir_cookie;
1001 		else
1002 			desc->ctx->pos++;
1003 		if (desc->duped != 0)
1004 			desc->duped = 1;
1005 	}
1006 	if (array->page_is_eof)
1007 		desc->eof = true;
1008 
1009 	kunmap(desc->page);
1010 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1011 			(unsigned long long)desc->dir_cookie);
1012 }
1013 
1014 /*
1015  * If we cannot find a cookie in our cache, we suspect that this is
1016  * because it points to a deleted file, so we ask the server to return
1017  * whatever it thinks is the next entry. We then feed this to filldir.
1018  * If all goes well, we should then be able to find our way round the
1019  * cache on the next call to readdir_search_pagecache();
1020  *
1021  * NOTE: we cannot add the anonymous page to the pagecache because
1022  *	 the data it contains might not be page aligned. Besides,
1023  *	 we should already have a complete representation of the
1024  *	 directory in the page cache by the time we get here.
1025  */
1026 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1027 {
1028 	struct page	**arrays;
1029 	size_t		i, sz = 512;
1030 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1031 	int		status = -ENOMEM;
1032 
1033 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1034 			(unsigned long long)desc->dir_cookie);
1035 
1036 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1037 	if (!arrays)
1038 		goto out;
1039 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1040 	if (!arrays[0])
1041 		goto out;
1042 
1043 	desc->page_index = 0;
1044 	desc->last_cookie = desc->dir_cookie;
1045 	desc->duped = 0;
1046 
1047 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1048 
1049 	for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1050 		desc->page = arrays[i];
1051 		nfs_do_filldir(desc);
1052 	}
1053 	desc->page = NULL;
1054 
1055 
1056 	for (i = 0; i < sz && arrays[i]; i++)
1057 		nfs_readdir_page_array_free(arrays[i]);
1058 out:
1059 	kfree(arrays);
1060 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1061 	return status;
1062 }
1063 
1064 /* The file offset position represents the dirent entry number.  A
1065    last cookie cache takes care of the common case of reading the
1066    whole directory.
1067  */
1068 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1069 {
1070 	struct dentry	*dentry = file_dentry(file);
1071 	struct inode	*inode = d_inode(dentry);
1072 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1073 	struct nfs_readdir_descriptor *desc;
1074 	int res;
1075 
1076 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1077 			file, (long long)ctx->pos);
1078 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1079 
1080 	/*
1081 	 * ctx->pos points to the dirent entry number.
1082 	 * *desc->dir_cookie has the cookie for the next entry. We have
1083 	 * to either find the entry with the appropriate number or
1084 	 * revalidate the cookie.
1085 	 */
1086 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1087 		res = nfs_revalidate_mapping(inode, file->f_mapping);
1088 		if (res < 0)
1089 			goto out;
1090 	}
1091 
1092 	res = -ENOMEM;
1093 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1094 	if (!desc)
1095 		goto out;
1096 	desc->file = file;
1097 	desc->ctx = ctx;
1098 	desc->plus = nfs_use_readdirplus(inode, ctx);
1099 
1100 	spin_lock(&file->f_lock);
1101 	desc->dir_cookie = dir_ctx->dir_cookie;
1102 	desc->dup_cookie = dir_ctx->dup_cookie;
1103 	desc->duped = dir_ctx->duped;
1104 	desc->attr_gencount = dir_ctx->attr_gencount;
1105 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1106 	spin_unlock(&file->f_lock);
1107 
1108 	do {
1109 		res = readdir_search_pagecache(desc);
1110 
1111 		if (res == -EBADCOOKIE) {
1112 			res = 0;
1113 			/* This means either end of directory */
1114 			if (desc->dir_cookie && !desc->eof) {
1115 				/* Or that the server has 'lost' a cookie */
1116 				res = uncached_readdir(desc);
1117 				if (res == 0)
1118 					continue;
1119 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1120 					res = 0;
1121 			}
1122 			break;
1123 		}
1124 		if (res == -ETOOSMALL && desc->plus) {
1125 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
1126 			nfs_zap_caches(inode);
1127 			desc->page_index = 0;
1128 			desc->plus = false;
1129 			desc->eof = false;
1130 			continue;
1131 		}
1132 		if (res < 0)
1133 			break;
1134 
1135 		nfs_do_filldir(desc);
1136 		nfs_readdir_page_unlock_and_put_cached(desc);
1137 	} while (!desc->eof);
1138 
1139 	spin_lock(&file->f_lock);
1140 	dir_ctx->dir_cookie = desc->dir_cookie;
1141 	dir_ctx->dup_cookie = desc->dup_cookie;
1142 	dir_ctx->duped = desc->duped;
1143 	dir_ctx->attr_gencount = desc->attr_gencount;
1144 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1145 	spin_unlock(&file->f_lock);
1146 
1147 	kfree(desc);
1148 
1149 out:
1150 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1151 	return res;
1152 }
1153 
1154 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1155 {
1156 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1157 
1158 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1159 			filp, offset, whence);
1160 
1161 	switch (whence) {
1162 	default:
1163 		return -EINVAL;
1164 	case SEEK_SET:
1165 		if (offset < 0)
1166 			return -EINVAL;
1167 		spin_lock(&filp->f_lock);
1168 		break;
1169 	case SEEK_CUR:
1170 		if (offset == 0)
1171 			return filp->f_pos;
1172 		spin_lock(&filp->f_lock);
1173 		offset += filp->f_pos;
1174 		if (offset < 0) {
1175 			spin_unlock(&filp->f_lock);
1176 			return -EINVAL;
1177 		}
1178 	}
1179 	if (offset != filp->f_pos) {
1180 		filp->f_pos = offset;
1181 		if (nfs_readdir_use_cookie(filp))
1182 			dir_ctx->dir_cookie = offset;
1183 		else
1184 			dir_ctx->dir_cookie = 0;
1185 		if (offset == 0)
1186 			memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1187 		dir_ctx->duped = 0;
1188 	}
1189 	spin_unlock(&filp->f_lock);
1190 	return offset;
1191 }
1192 
1193 /*
1194  * All directory operations under NFS are synchronous, so fsync()
1195  * is a dummy operation.
1196  */
1197 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1198 			 int datasync)
1199 {
1200 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1201 
1202 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1203 	return 0;
1204 }
1205 
1206 /**
1207  * nfs_force_lookup_revalidate - Mark the directory as having changed
1208  * @dir: pointer to directory inode
1209  *
1210  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1211  * full lookup on all child dentries of 'dir' whenever a change occurs
1212  * on the server that might have invalidated our dcache.
1213  *
1214  * Note that we reserve bit '0' as a tag to let us know when a dentry
1215  * was revalidated while holding a delegation on its inode.
1216  *
1217  * The caller should be holding dir->i_lock
1218  */
1219 void nfs_force_lookup_revalidate(struct inode *dir)
1220 {
1221 	NFS_I(dir)->cache_change_attribute += 2;
1222 }
1223 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1224 
1225 /**
1226  * nfs_verify_change_attribute - Detects NFS remote directory changes
1227  * @dir: pointer to parent directory inode
1228  * @verf: previously saved change attribute
1229  *
1230  * Return "false" if the verifiers doesn't match the change attribute.
1231  * This would usually indicate that the directory contents have changed on
1232  * the server, and that any dentries need revalidating.
1233  */
1234 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1235 {
1236 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1237 }
1238 
1239 static void nfs_set_verifier_delegated(unsigned long *verf)
1240 {
1241 	*verf |= 1UL;
1242 }
1243 
1244 #if IS_ENABLED(CONFIG_NFS_V4)
1245 static void nfs_unset_verifier_delegated(unsigned long *verf)
1246 {
1247 	*verf &= ~1UL;
1248 }
1249 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1250 
1251 static bool nfs_test_verifier_delegated(unsigned long verf)
1252 {
1253 	return verf & 1;
1254 }
1255 
1256 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1257 {
1258 	return nfs_test_verifier_delegated(dentry->d_time);
1259 }
1260 
1261 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1262 {
1263 	struct inode *inode = d_inode(dentry);
1264 
1265 	if (!nfs_verifier_is_delegated(dentry) &&
1266 	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1267 		goto out;
1268 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1269 		nfs_set_verifier_delegated(&verf);
1270 out:
1271 	dentry->d_time = verf;
1272 }
1273 
1274 /**
1275  * nfs_set_verifier - save a parent directory verifier in the dentry
1276  * @dentry: pointer to dentry
1277  * @verf: verifier to save
1278  *
1279  * Saves the parent directory verifier in @dentry. If the inode has
1280  * a delegation, we also tag the dentry as having been revalidated
1281  * while holding a delegation so that we know we don't have to
1282  * look it up again after a directory change.
1283  */
1284 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1285 {
1286 
1287 	spin_lock(&dentry->d_lock);
1288 	nfs_set_verifier_locked(dentry, verf);
1289 	spin_unlock(&dentry->d_lock);
1290 }
1291 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1292 
1293 #if IS_ENABLED(CONFIG_NFS_V4)
1294 /**
1295  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1296  * @inode: pointer to inode
1297  *
1298  * Iterates through the dentries in the inode alias list and clears
1299  * the tag used to indicate that the dentry has been revalidated
1300  * while holding a delegation.
1301  * This function is intended for use when the delegation is being
1302  * returned or revoked.
1303  */
1304 void nfs_clear_verifier_delegated(struct inode *inode)
1305 {
1306 	struct dentry *alias;
1307 
1308 	if (!inode)
1309 		return;
1310 	spin_lock(&inode->i_lock);
1311 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1312 		spin_lock(&alias->d_lock);
1313 		nfs_unset_verifier_delegated(&alias->d_time);
1314 		spin_unlock(&alias->d_lock);
1315 	}
1316 	spin_unlock(&inode->i_lock);
1317 }
1318 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1319 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1320 
1321 /*
1322  * A check for whether or not the parent directory has changed.
1323  * In the case it has, we assume that the dentries are untrustworthy
1324  * and may need to be looked up again.
1325  * If rcu_walk prevents us from performing a full check, return 0.
1326  */
1327 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1328 			      int rcu_walk)
1329 {
1330 	if (IS_ROOT(dentry))
1331 		return 1;
1332 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1333 		return 0;
1334 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1335 		return 0;
1336 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1337 	if (nfs_mapping_need_revalidate_inode(dir)) {
1338 		if (rcu_walk)
1339 			return 0;
1340 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1341 			return 0;
1342 	}
1343 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1344 		return 0;
1345 	return 1;
1346 }
1347 
1348 /*
1349  * Use intent information to check whether or not we're going to do
1350  * an O_EXCL create using this path component.
1351  */
1352 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1353 {
1354 	if (NFS_PROTO(dir)->version == 2)
1355 		return 0;
1356 	return flags & LOOKUP_EXCL;
1357 }
1358 
1359 /*
1360  * Inode and filehandle revalidation for lookups.
1361  *
1362  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1363  * or if the intent information indicates that we're about to open this
1364  * particular file and the "nocto" mount flag is not set.
1365  *
1366  */
1367 static
1368 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1369 {
1370 	struct nfs_server *server = NFS_SERVER(inode);
1371 	int ret;
1372 
1373 	if (IS_AUTOMOUNT(inode))
1374 		return 0;
1375 
1376 	if (flags & LOOKUP_OPEN) {
1377 		switch (inode->i_mode & S_IFMT) {
1378 		case S_IFREG:
1379 			/* A NFSv4 OPEN will revalidate later */
1380 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1381 				goto out;
1382 			fallthrough;
1383 		case S_IFDIR:
1384 			if (server->flags & NFS_MOUNT_NOCTO)
1385 				break;
1386 			/* NFS close-to-open cache consistency validation */
1387 			goto out_force;
1388 		}
1389 	}
1390 
1391 	/* VFS wants an on-the-wire revalidation */
1392 	if (flags & LOOKUP_REVAL)
1393 		goto out_force;
1394 out:
1395 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1396 out_force:
1397 	if (flags & LOOKUP_RCU)
1398 		return -ECHILD;
1399 	ret = __nfs_revalidate_inode(server, inode);
1400 	if (ret != 0)
1401 		return ret;
1402 	goto out;
1403 }
1404 
1405 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1406 {
1407 	spin_lock(&inode->i_lock);
1408 	nfs_set_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE);
1409 	spin_unlock(&inode->i_lock);
1410 }
1411 
1412 /*
1413  * We judge how long we want to trust negative
1414  * dentries by looking at the parent inode mtime.
1415  *
1416  * If parent mtime has changed, we revalidate, else we wait for a
1417  * period corresponding to the parent's attribute cache timeout value.
1418  *
1419  * If LOOKUP_RCU prevents us from performing a full check, return 1
1420  * suggesting a reval is needed.
1421  *
1422  * Note that when creating a new file, or looking up a rename target,
1423  * then it shouldn't be necessary to revalidate a negative dentry.
1424  */
1425 static inline
1426 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1427 		       unsigned int flags)
1428 {
1429 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1430 		return 0;
1431 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1432 		return 1;
1433 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1434 }
1435 
1436 static int
1437 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1438 			   struct inode *inode, int error)
1439 {
1440 	switch (error) {
1441 	case 1:
1442 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1443 			__func__, dentry);
1444 		return 1;
1445 	case 0:
1446 		/*
1447 		 * We can't d_drop the root of a disconnected tree:
1448 		 * its d_hash is on the s_anon list and d_drop() would hide
1449 		 * it from shrink_dcache_for_unmount(), leading to busy
1450 		 * inodes on unmount and further oopses.
1451 		 */
1452 		if (inode && IS_ROOT(dentry))
1453 			return 1;
1454 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1455 				__func__, dentry);
1456 		return 0;
1457 	}
1458 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1459 				__func__, dentry, error);
1460 	return error;
1461 }
1462 
1463 static int
1464 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1465 			       unsigned int flags)
1466 {
1467 	int ret = 1;
1468 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1469 		if (flags & LOOKUP_RCU)
1470 			return -ECHILD;
1471 		ret = 0;
1472 	}
1473 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1474 }
1475 
1476 static int
1477 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1478 				struct inode *inode)
1479 {
1480 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1481 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1482 }
1483 
1484 static int
1485 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1486 			     struct inode *inode)
1487 {
1488 	struct nfs_fh *fhandle;
1489 	struct nfs_fattr *fattr;
1490 	struct nfs4_label *label;
1491 	unsigned long dir_verifier;
1492 	int ret;
1493 
1494 	ret = -ENOMEM;
1495 	fhandle = nfs_alloc_fhandle();
1496 	fattr = nfs_alloc_fattr();
1497 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1498 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1499 		goto out;
1500 
1501 	dir_verifier = nfs_save_change_attribute(dir);
1502 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1503 	if (ret < 0) {
1504 		switch (ret) {
1505 		case -ESTALE:
1506 		case -ENOENT:
1507 			ret = 0;
1508 			break;
1509 		case -ETIMEDOUT:
1510 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1511 				ret = 1;
1512 		}
1513 		goto out;
1514 	}
1515 	ret = 0;
1516 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1517 		goto out;
1518 	if (nfs_refresh_inode(inode, fattr) < 0)
1519 		goto out;
1520 
1521 	nfs_setsecurity(inode, fattr, label);
1522 	nfs_set_verifier(dentry, dir_verifier);
1523 
1524 	/* set a readdirplus hint that we had a cache miss */
1525 	nfs_force_use_readdirplus(dir);
1526 	ret = 1;
1527 out:
1528 	nfs_free_fattr(fattr);
1529 	nfs_free_fhandle(fhandle);
1530 	nfs4_label_free(label);
1531 
1532 	/*
1533 	 * If the lookup failed despite the dentry change attribute being
1534 	 * a match, then we should revalidate the directory cache.
1535 	 */
1536 	if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1537 		nfs_mark_dir_for_revalidate(dir);
1538 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1539 }
1540 
1541 /*
1542  * This is called every time the dcache has a lookup hit,
1543  * and we should check whether we can really trust that
1544  * lookup.
1545  *
1546  * NOTE! The hit can be a negative hit too, don't assume
1547  * we have an inode!
1548  *
1549  * If the parent directory is seen to have changed, we throw out the
1550  * cached dentry and do a new lookup.
1551  */
1552 static int
1553 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1554 			 unsigned int flags)
1555 {
1556 	struct inode *inode;
1557 	int error;
1558 
1559 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1560 	inode = d_inode(dentry);
1561 
1562 	if (!inode)
1563 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1564 
1565 	if (is_bad_inode(inode)) {
1566 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1567 				__func__, dentry);
1568 		goto out_bad;
1569 	}
1570 
1571 	if (nfs_verifier_is_delegated(dentry))
1572 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1573 
1574 	/* Force a full look up iff the parent directory has changed */
1575 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1576 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1577 		error = nfs_lookup_verify_inode(inode, flags);
1578 		if (error) {
1579 			if (error == -ESTALE)
1580 				nfs_mark_dir_for_revalidate(dir);
1581 			goto out_bad;
1582 		}
1583 		nfs_advise_use_readdirplus(dir);
1584 		goto out_valid;
1585 	}
1586 
1587 	if (flags & LOOKUP_RCU)
1588 		return -ECHILD;
1589 
1590 	if (NFS_STALE(inode))
1591 		goto out_bad;
1592 
1593 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1594 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1595 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1596 	return error;
1597 out_valid:
1598 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1599 out_bad:
1600 	if (flags & LOOKUP_RCU)
1601 		return -ECHILD;
1602 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1603 }
1604 
1605 static int
1606 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1607 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1608 {
1609 	struct dentry *parent;
1610 	struct inode *dir;
1611 	int ret;
1612 
1613 	if (flags & LOOKUP_RCU) {
1614 		parent = READ_ONCE(dentry->d_parent);
1615 		dir = d_inode_rcu(parent);
1616 		if (!dir)
1617 			return -ECHILD;
1618 		ret = reval(dir, dentry, flags);
1619 		if (parent != READ_ONCE(dentry->d_parent))
1620 			return -ECHILD;
1621 	} else {
1622 		parent = dget_parent(dentry);
1623 		ret = reval(d_inode(parent), dentry, flags);
1624 		dput(parent);
1625 	}
1626 	return ret;
1627 }
1628 
1629 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1630 {
1631 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1632 }
1633 
1634 /*
1635  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1636  * when we don't really care about the dentry name. This is called when a
1637  * pathwalk ends on a dentry that was not found via a normal lookup in the
1638  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1639  *
1640  * In this situation, we just want to verify that the inode itself is OK
1641  * since the dentry might have changed on the server.
1642  */
1643 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1644 {
1645 	struct inode *inode = d_inode(dentry);
1646 	int error = 0;
1647 
1648 	/*
1649 	 * I believe we can only get a negative dentry here in the case of a
1650 	 * procfs-style symlink. Just assume it's correct for now, but we may
1651 	 * eventually need to do something more here.
1652 	 */
1653 	if (!inode) {
1654 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1655 				__func__, dentry);
1656 		return 1;
1657 	}
1658 
1659 	if (is_bad_inode(inode)) {
1660 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1661 				__func__, dentry);
1662 		return 0;
1663 	}
1664 
1665 	error = nfs_lookup_verify_inode(inode, flags);
1666 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1667 			__func__, inode->i_ino, error ? "invalid" : "valid");
1668 	return !error;
1669 }
1670 
1671 /*
1672  * This is called from dput() when d_count is going to 0.
1673  */
1674 static int nfs_dentry_delete(const struct dentry *dentry)
1675 {
1676 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1677 		dentry, dentry->d_flags);
1678 
1679 	/* Unhash any dentry with a stale inode */
1680 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1681 		return 1;
1682 
1683 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1684 		/* Unhash it, so that ->d_iput() would be called */
1685 		return 1;
1686 	}
1687 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1688 		/* Unhash it, so that ancestors of killed async unlink
1689 		 * files will be cleaned up during umount */
1690 		return 1;
1691 	}
1692 	return 0;
1693 
1694 }
1695 
1696 /* Ensure that we revalidate inode->i_nlink */
1697 static void nfs_drop_nlink(struct inode *inode)
1698 {
1699 	spin_lock(&inode->i_lock);
1700 	/* drop the inode if we're reasonably sure this is the last link */
1701 	if (inode->i_nlink > 0)
1702 		drop_nlink(inode);
1703 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1704 	nfs_set_cache_invalid(
1705 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1706 			       NFS_INO_INVALID_OTHER | NFS_INO_REVAL_FORCED);
1707 	spin_unlock(&inode->i_lock);
1708 }
1709 
1710 /*
1711  * Called when the dentry loses inode.
1712  * We use it to clean up silly-renamed files.
1713  */
1714 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1715 {
1716 	if (S_ISDIR(inode->i_mode))
1717 		/* drop any readdir cache as it could easily be old */
1718 		nfs_set_cache_invalid(inode, NFS_INO_INVALID_DATA);
1719 
1720 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1721 		nfs_complete_unlink(dentry, inode);
1722 		nfs_drop_nlink(inode);
1723 	}
1724 	iput(inode);
1725 }
1726 
1727 static void nfs_d_release(struct dentry *dentry)
1728 {
1729 	/* free cached devname value, if it survived that far */
1730 	if (unlikely(dentry->d_fsdata)) {
1731 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1732 			WARN_ON(1);
1733 		else
1734 			kfree(dentry->d_fsdata);
1735 	}
1736 }
1737 
1738 const struct dentry_operations nfs_dentry_operations = {
1739 	.d_revalidate	= nfs_lookup_revalidate,
1740 	.d_weak_revalidate	= nfs_weak_revalidate,
1741 	.d_delete	= nfs_dentry_delete,
1742 	.d_iput		= nfs_dentry_iput,
1743 	.d_automount	= nfs_d_automount,
1744 	.d_release	= nfs_d_release,
1745 };
1746 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1747 
1748 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1749 {
1750 	struct dentry *res;
1751 	struct inode *inode = NULL;
1752 	struct nfs_fh *fhandle = NULL;
1753 	struct nfs_fattr *fattr = NULL;
1754 	struct nfs4_label *label = NULL;
1755 	unsigned long dir_verifier;
1756 	int error;
1757 
1758 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1759 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1760 
1761 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1762 		return ERR_PTR(-ENAMETOOLONG);
1763 
1764 	/*
1765 	 * If we're doing an exclusive create, optimize away the lookup
1766 	 * but don't hash the dentry.
1767 	 */
1768 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1769 		return NULL;
1770 
1771 	res = ERR_PTR(-ENOMEM);
1772 	fhandle = nfs_alloc_fhandle();
1773 	fattr = nfs_alloc_fattr();
1774 	if (fhandle == NULL || fattr == NULL)
1775 		goto out;
1776 
1777 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1778 	if (IS_ERR(label))
1779 		goto out;
1780 
1781 	dir_verifier = nfs_save_change_attribute(dir);
1782 	trace_nfs_lookup_enter(dir, dentry, flags);
1783 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1784 	if (error == -ENOENT)
1785 		goto no_entry;
1786 	if (error < 0) {
1787 		res = ERR_PTR(error);
1788 		goto out_label;
1789 	}
1790 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1791 	res = ERR_CAST(inode);
1792 	if (IS_ERR(res))
1793 		goto out_label;
1794 
1795 	/* Notify readdir to use READDIRPLUS */
1796 	nfs_force_use_readdirplus(dir);
1797 
1798 no_entry:
1799 	res = d_splice_alias(inode, dentry);
1800 	if (res != NULL) {
1801 		if (IS_ERR(res))
1802 			goto out_label;
1803 		dentry = res;
1804 	}
1805 	nfs_set_verifier(dentry, dir_verifier);
1806 out_label:
1807 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1808 	nfs4_label_free(label);
1809 out:
1810 	nfs_free_fattr(fattr);
1811 	nfs_free_fhandle(fhandle);
1812 	return res;
1813 }
1814 EXPORT_SYMBOL_GPL(nfs_lookup);
1815 
1816 #if IS_ENABLED(CONFIG_NFS_V4)
1817 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1818 
1819 const struct dentry_operations nfs4_dentry_operations = {
1820 	.d_revalidate	= nfs4_lookup_revalidate,
1821 	.d_weak_revalidate	= nfs_weak_revalidate,
1822 	.d_delete	= nfs_dentry_delete,
1823 	.d_iput		= nfs_dentry_iput,
1824 	.d_automount	= nfs_d_automount,
1825 	.d_release	= nfs_d_release,
1826 };
1827 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1828 
1829 static fmode_t flags_to_mode(int flags)
1830 {
1831 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1832 	if ((flags & O_ACCMODE) != O_WRONLY)
1833 		res |= FMODE_READ;
1834 	if ((flags & O_ACCMODE) != O_RDONLY)
1835 		res |= FMODE_WRITE;
1836 	return res;
1837 }
1838 
1839 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1840 {
1841 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1842 }
1843 
1844 static int do_open(struct inode *inode, struct file *filp)
1845 {
1846 	nfs_fscache_open_file(inode, filp);
1847 	return 0;
1848 }
1849 
1850 static int nfs_finish_open(struct nfs_open_context *ctx,
1851 			   struct dentry *dentry,
1852 			   struct file *file, unsigned open_flags)
1853 {
1854 	int err;
1855 
1856 	err = finish_open(file, dentry, do_open);
1857 	if (err)
1858 		goto out;
1859 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1860 		nfs_file_set_open_context(file, ctx);
1861 	else
1862 		err = -EOPENSTALE;
1863 out:
1864 	return err;
1865 }
1866 
1867 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1868 		    struct file *file, unsigned open_flags,
1869 		    umode_t mode)
1870 {
1871 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1872 	struct nfs_open_context *ctx;
1873 	struct dentry *res;
1874 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1875 	struct inode *inode;
1876 	unsigned int lookup_flags = 0;
1877 	bool switched = false;
1878 	int created = 0;
1879 	int err;
1880 
1881 	/* Expect a negative dentry */
1882 	BUG_ON(d_inode(dentry));
1883 
1884 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1885 			dir->i_sb->s_id, dir->i_ino, dentry);
1886 
1887 	err = nfs_check_flags(open_flags);
1888 	if (err)
1889 		return err;
1890 
1891 	/* NFS only supports OPEN on regular files */
1892 	if ((open_flags & O_DIRECTORY)) {
1893 		if (!d_in_lookup(dentry)) {
1894 			/*
1895 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1896 			 * revalidated and is fine, no need to perform lookup
1897 			 * again
1898 			 */
1899 			return -ENOENT;
1900 		}
1901 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1902 		goto no_open;
1903 	}
1904 
1905 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1906 		return -ENAMETOOLONG;
1907 
1908 	if (open_flags & O_CREAT) {
1909 		struct nfs_server *server = NFS_SERVER(dir);
1910 
1911 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1912 			mode &= ~current_umask();
1913 
1914 		attr.ia_valid |= ATTR_MODE;
1915 		attr.ia_mode = mode;
1916 	}
1917 	if (open_flags & O_TRUNC) {
1918 		attr.ia_valid |= ATTR_SIZE;
1919 		attr.ia_size = 0;
1920 	}
1921 
1922 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1923 		d_drop(dentry);
1924 		switched = true;
1925 		dentry = d_alloc_parallel(dentry->d_parent,
1926 					  &dentry->d_name, &wq);
1927 		if (IS_ERR(dentry))
1928 			return PTR_ERR(dentry);
1929 		if (unlikely(!d_in_lookup(dentry)))
1930 			return finish_no_open(file, dentry);
1931 	}
1932 
1933 	ctx = create_nfs_open_context(dentry, open_flags, file);
1934 	err = PTR_ERR(ctx);
1935 	if (IS_ERR(ctx))
1936 		goto out;
1937 
1938 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1939 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1940 	if (created)
1941 		file->f_mode |= FMODE_CREATED;
1942 	if (IS_ERR(inode)) {
1943 		err = PTR_ERR(inode);
1944 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1945 		put_nfs_open_context(ctx);
1946 		d_drop(dentry);
1947 		switch (err) {
1948 		case -ENOENT:
1949 			d_splice_alias(NULL, dentry);
1950 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1951 			break;
1952 		case -EISDIR:
1953 		case -ENOTDIR:
1954 			goto no_open;
1955 		case -ELOOP:
1956 			if (!(open_flags & O_NOFOLLOW))
1957 				goto no_open;
1958 			break;
1959 			/* case -EINVAL: */
1960 		default:
1961 			break;
1962 		}
1963 		goto out;
1964 	}
1965 
1966 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1967 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1968 	put_nfs_open_context(ctx);
1969 out:
1970 	if (unlikely(switched)) {
1971 		d_lookup_done(dentry);
1972 		dput(dentry);
1973 	}
1974 	return err;
1975 
1976 no_open:
1977 	res = nfs_lookup(dir, dentry, lookup_flags);
1978 	if (switched) {
1979 		d_lookup_done(dentry);
1980 		if (!res)
1981 			res = dentry;
1982 		else
1983 			dput(dentry);
1984 	}
1985 	if (IS_ERR(res))
1986 		return PTR_ERR(res);
1987 	return finish_no_open(file, res);
1988 }
1989 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1990 
1991 static int
1992 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1993 			  unsigned int flags)
1994 {
1995 	struct inode *inode;
1996 
1997 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1998 		goto full_reval;
1999 	if (d_mountpoint(dentry))
2000 		goto full_reval;
2001 
2002 	inode = d_inode(dentry);
2003 
2004 	/* We can't create new files in nfs_open_revalidate(), so we
2005 	 * optimize away revalidation of negative dentries.
2006 	 */
2007 	if (inode == NULL)
2008 		goto full_reval;
2009 
2010 	if (nfs_verifier_is_delegated(dentry))
2011 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2012 
2013 	/* NFS only supports OPEN on regular files */
2014 	if (!S_ISREG(inode->i_mode))
2015 		goto full_reval;
2016 
2017 	/* We cannot do exclusive creation on a positive dentry */
2018 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2019 		goto reval_dentry;
2020 
2021 	/* Check if the directory changed */
2022 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2023 		goto reval_dentry;
2024 
2025 	/* Let f_op->open() actually open (and revalidate) the file */
2026 	return 1;
2027 reval_dentry:
2028 	if (flags & LOOKUP_RCU)
2029 		return -ECHILD;
2030 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2031 
2032 full_reval:
2033 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2034 }
2035 
2036 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2037 {
2038 	return __nfs_lookup_revalidate(dentry, flags,
2039 			nfs4_do_lookup_revalidate);
2040 }
2041 
2042 #endif /* CONFIG_NFSV4 */
2043 
2044 struct dentry *
2045 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2046 				struct nfs_fattr *fattr,
2047 				struct nfs4_label *label)
2048 {
2049 	struct dentry *parent = dget_parent(dentry);
2050 	struct inode *dir = d_inode(parent);
2051 	struct inode *inode;
2052 	struct dentry *d;
2053 	int error;
2054 
2055 	d_drop(dentry);
2056 
2057 	if (fhandle->size == 0) {
2058 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
2059 		if (error)
2060 			goto out_error;
2061 	}
2062 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2063 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2064 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2065 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2066 				fattr, NULL, NULL);
2067 		if (error < 0)
2068 			goto out_error;
2069 	}
2070 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
2071 	d = d_splice_alias(inode, dentry);
2072 out:
2073 	dput(parent);
2074 	return d;
2075 out_error:
2076 	d = ERR_PTR(error);
2077 	goto out;
2078 }
2079 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2080 
2081 /*
2082  * Code common to create, mkdir, and mknod.
2083  */
2084 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2085 				struct nfs_fattr *fattr,
2086 				struct nfs4_label *label)
2087 {
2088 	struct dentry *d;
2089 
2090 	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
2091 	if (IS_ERR(d))
2092 		return PTR_ERR(d);
2093 
2094 	/* Callers don't care */
2095 	dput(d);
2096 	return 0;
2097 }
2098 EXPORT_SYMBOL_GPL(nfs_instantiate);
2099 
2100 /*
2101  * Following a failed create operation, we drop the dentry rather
2102  * than retain a negative dentry. This avoids a problem in the event
2103  * that the operation succeeded on the server, but an error in the
2104  * reply path made it appear to have failed.
2105  */
2106 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2107 	       struct dentry *dentry, umode_t mode, bool excl)
2108 {
2109 	struct iattr attr;
2110 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2111 	int error;
2112 
2113 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2114 			dir->i_sb->s_id, dir->i_ino, dentry);
2115 
2116 	attr.ia_mode = mode;
2117 	attr.ia_valid = ATTR_MODE;
2118 
2119 	trace_nfs_create_enter(dir, dentry, open_flags);
2120 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2121 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2122 	if (error != 0)
2123 		goto out_err;
2124 	return 0;
2125 out_err:
2126 	d_drop(dentry);
2127 	return error;
2128 }
2129 EXPORT_SYMBOL_GPL(nfs_create);
2130 
2131 /*
2132  * See comments for nfs_proc_create regarding failed operations.
2133  */
2134 int
2135 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2136 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2137 {
2138 	struct iattr attr;
2139 	int status;
2140 
2141 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2142 			dir->i_sb->s_id, dir->i_ino, dentry);
2143 
2144 	attr.ia_mode = mode;
2145 	attr.ia_valid = ATTR_MODE;
2146 
2147 	trace_nfs_mknod_enter(dir, dentry);
2148 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2149 	trace_nfs_mknod_exit(dir, dentry, status);
2150 	if (status != 0)
2151 		goto out_err;
2152 	return 0;
2153 out_err:
2154 	d_drop(dentry);
2155 	return status;
2156 }
2157 EXPORT_SYMBOL_GPL(nfs_mknod);
2158 
2159 /*
2160  * See comments for nfs_proc_create regarding failed operations.
2161  */
2162 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2163 	      struct dentry *dentry, umode_t mode)
2164 {
2165 	struct iattr attr;
2166 	int error;
2167 
2168 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2169 			dir->i_sb->s_id, dir->i_ino, dentry);
2170 
2171 	attr.ia_valid = ATTR_MODE;
2172 	attr.ia_mode = mode | S_IFDIR;
2173 
2174 	trace_nfs_mkdir_enter(dir, dentry);
2175 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2176 	trace_nfs_mkdir_exit(dir, dentry, error);
2177 	if (error != 0)
2178 		goto out_err;
2179 	return 0;
2180 out_err:
2181 	d_drop(dentry);
2182 	return error;
2183 }
2184 EXPORT_SYMBOL_GPL(nfs_mkdir);
2185 
2186 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2187 {
2188 	if (simple_positive(dentry))
2189 		d_delete(dentry);
2190 }
2191 
2192 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2193 {
2194 	int error;
2195 
2196 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2197 			dir->i_sb->s_id, dir->i_ino, dentry);
2198 
2199 	trace_nfs_rmdir_enter(dir, dentry);
2200 	if (d_really_is_positive(dentry)) {
2201 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2202 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2203 		/* Ensure the VFS deletes this inode */
2204 		switch (error) {
2205 		case 0:
2206 			clear_nlink(d_inode(dentry));
2207 			break;
2208 		case -ENOENT:
2209 			nfs_dentry_handle_enoent(dentry);
2210 		}
2211 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2212 	} else
2213 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2214 	trace_nfs_rmdir_exit(dir, dentry, error);
2215 
2216 	return error;
2217 }
2218 EXPORT_SYMBOL_GPL(nfs_rmdir);
2219 
2220 /*
2221  * Remove a file after making sure there are no pending writes,
2222  * and after checking that the file has only one user.
2223  *
2224  * We invalidate the attribute cache and free the inode prior to the operation
2225  * to avoid possible races if the server reuses the inode.
2226  */
2227 static int nfs_safe_remove(struct dentry *dentry)
2228 {
2229 	struct inode *dir = d_inode(dentry->d_parent);
2230 	struct inode *inode = d_inode(dentry);
2231 	int error = -EBUSY;
2232 
2233 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2234 
2235 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2236 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2237 		error = 0;
2238 		goto out;
2239 	}
2240 
2241 	trace_nfs_remove_enter(dir, dentry);
2242 	if (inode != NULL) {
2243 		error = NFS_PROTO(dir)->remove(dir, dentry);
2244 		if (error == 0)
2245 			nfs_drop_nlink(inode);
2246 	} else
2247 		error = NFS_PROTO(dir)->remove(dir, dentry);
2248 	if (error == -ENOENT)
2249 		nfs_dentry_handle_enoent(dentry);
2250 	trace_nfs_remove_exit(dir, dentry, error);
2251 out:
2252 	return error;
2253 }
2254 
2255 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2256  *  belongs to an active ".nfs..." file and we return -EBUSY.
2257  *
2258  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2259  */
2260 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2261 {
2262 	int error;
2263 	int need_rehash = 0;
2264 
2265 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2266 		dir->i_ino, dentry);
2267 
2268 	trace_nfs_unlink_enter(dir, dentry);
2269 	spin_lock(&dentry->d_lock);
2270 	if (d_count(dentry) > 1) {
2271 		spin_unlock(&dentry->d_lock);
2272 		/* Start asynchronous writeout of the inode */
2273 		write_inode_now(d_inode(dentry), 0);
2274 		error = nfs_sillyrename(dir, dentry);
2275 		goto out;
2276 	}
2277 	if (!d_unhashed(dentry)) {
2278 		__d_drop(dentry);
2279 		need_rehash = 1;
2280 	}
2281 	spin_unlock(&dentry->d_lock);
2282 	error = nfs_safe_remove(dentry);
2283 	if (!error || error == -ENOENT) {
2284 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2285 	} else if (need_rehash)
2286 		d_rehash(dentry);
2287 out:
2288 	trace_nfs_unlink_exit(dir, dentry, error);
2289 	return error;
2290 }
2291 EXPORT_SYMBOL_GPL(nfs_unlink);
2292 
2293 /*
2294  * To create a symbolic link, most file systems instantiate a new inode,
2295  * add a page to it containing the path, then write it out to the disk
2296  * using prepare_write/commit_write.
2297  *
2298  * Unfortunately the NFS client can't create the in-core inode first
2299  * because it needs a file handle to create an in-core inode (see
2300  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2301  * symlink request has completed on the server.
2302  *
2303  * So instead we allocate a raw page, copy the symname into it, then do
2304  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2305  * now have a new file handle and can instantiate an in-core NFS inode
2306  * and move the raw page into its mapping.
2307  */
2308 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2309 		struct dentry *dentry, const char *symname)
2310 {
2311 	struct page *page;
2312 	char *kaddr;
2313 	struct iattr attr;
2314 	unsigned int pathlen = strlen(symname);
2315 	int error;
2316 
2317 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2318 		dir->i_ino, dentry, symname);
2319 
2320 	if (pathlen > PAGE_SIZE)
2321 		return -ENAMETOOLONG;
2322 
2323 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2324 	attr.ia_valid = ATTR_MODE;
2325 
2326 	page = alloc_page(GFP_USER);
2327 	if (!page)
2328 		return -ENOMEM;
2329 
2330 	kaddr = page_address(page);
2331 	memcpy(kaddr, symname, pathlen);
2332 	if (pathlen < PAGE_SIZE)
2333 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2334 
2335 	trace_nfs_symlink_enter(dir, dentry);
2336 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2337 	trace_nfs_symlink_exit(dir, dentry, error);
2338 	if (error != 0) {
2339 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2340 			dir->i_sb->s_id, dir->i_ino,
2341 			dentry, symname, error);
2342 		d_drop(dentry);
2343 		__free_page(page);
2344 		return error;
2345 	}
2346 
2347 	/*
2348 	 * No big deal if we can't add this page to the page cache here.
2349 	 * READLINK will get the missing page from the server if needed.
2350 	 */
2351 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2352 							GFP_KERNEL)) {
2353 		SetPageUptodate(page);
2354 		unlock_page(page);
2355 		/*
2356 		 * add_to_page_cache_lru() grabs an extra page refcount.
2357 		 * Drop it here to avoid leaking this page later.
2358 		 */
2359 		put_page(page);
2360 	} else
2361 		__free_page(page);
2362 
2363 	return 0;
2364 }
2365 EXPORT_SYMBOL_GPL(nfs_symlink);
2366 
2367 int
2368 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2369 {
2370 	struct inode *inode = d_inode(old_dentry);
2371 	int error;
2372 
2373 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2374 		old_dentry, dentry);
2375 
2376 	trace_nfs_link_enter(inode, dir, dentry);
2377 	d_drop(dentry);
2378 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2379 	if (error == 0) {
2380 		ihold(inode);
2381 		d_add(dentry, inode);
2382 	}
2383 	trace_nfs_link_exit(inode, dir, dentry, error);
2384 	return error;
2385 }
2386 EXPORT_SYMBOL_GPL(nfs_link);
2387 
2388 /*
2389  * RENAME
2390  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2391  * different file handle for the same inode after a rename (e.g. when
2392  * moving to a different directory). A fail-safe method to do so would
2393  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2394  * rename the old file using the sillyrename stuff. This way, the original
2395  * file in old_dir will go away when the last process iput()s the inode.
2396  *
2397  * FIXED.
2398  *
2399  * It actually works quite well. One needs to have the possibility for
2400  * at least one ".nfs..." file in each directory the file ever gets
2401  * moved or linked to which happens automagically with the new
2402  * implementation that only depends on the dcache stuff instead of
2403  * using the inode layer
2404  *
2405  * Unfortunately, things are a little more complicated than indicated
2406  * above. For a cross-directory move, we want to make sure we can get
2407  * rid of the old inode after the operation.  This means there must be
2408  * no pending writes (if it's a file), and the use count must be 1.
2409  * If these conditions are met, we can drop the dentries before doing
2410  * the rename.
2411  */
2412 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2413 	       struct dentry *old_dentry, struct inode *new_dir,
2414 	       struct dentry *new_dentry, unsigned int flags)
2415 {
2416 	struct inode *old_inode = d_inode(old_dentry);
2417 	struct inode *new_inode = d_inode(new_dentry);
2418 	struct dentry *dentry = NULL, *rehash = NULL;
2419 	struct rpc_task *task;
2420 	int error = -EBUSY;
2421 
2422 	if (flags)
2423 		return -EINVAL;
2424 
2425 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2426 		 old_dentry, new_dentry,
2427 		 d_count(new_dentry));
2428 
2429 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2430 	/*
2431 	 * For non-directories, check whether the target is busy and if so,
2432 	 * make a copy of the dentry and then do a silly-rename. If the
2433 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2434 	 * the new target.
2435 	 */
2436 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2437 		/*
2438 		 * To prevent any new references to the target during the
2439 		 * rename, we unhash the dentry in advance.
2440 		 */
2441 		if (!d_unhashed(new_dentry)) {
2442 			d_drop(new_dentry);
2443 			rehash = new_dentry;
2444 		}
2445 
2446 		if (d_count(new_dentry) > 2) {
2447 			int err;
2448 
2449 			/* copy the target dentry's name */
2450 			dentry = d_alloc(new_dentry->d_parent,
2451 					 &new_dentry->d_name);
2452 			if (!dentry)
2453 				goto out;
2454 
2455 			/* silly-rename the existing target ... */
2456 			err = nfs_sillyrename(new_dir, new_dentry);
2457 			if (err)
2458 				goto out;
2459 
2460 			new_dentry = dentry;
2461 			rehash = NULL;
2462 			new_inode = NULL;
2463 		}
2464 	}
2465 
2466 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2467 	if (IS_ERR(task)) {
2468 		error = PTR_ERR(task);
2469 		goto out;
2470 	}
2471 
2472 	error = rpc_wait_for_completion_task(task);
2473 	if (error != 0) {
2474 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2475 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2476 		smp_wmb();
2477 	} else
2478 		error = task->tk_status;
2479 	rpc_put_task(task);
2480 	/* Ensure the inode attributes are revalidated */
2481 	if (error == 0) {
2482 		spin_lock(&old_inode->i_lock);
2483 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2484 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2485 							 NFS_INO_INVALID_CTIME |
2486 							 NFS_INO_REVAL_FORCED);
2487 		spin_unlock(&old_inode->i_lock);
2488 	}
2489 out:
2490 	if (rehash)
2491 		d_rehash(rehash);
2492 	trace_nfs_rename_exit(old_dir, old_dentry,
2493 			new_dir, new_dentry, error);
2494 	if (!error) {
2495 		if (new_inode != NULL)
2496 			nfs_drop_nlink(new_inode);
2497 		/*
2498 		 * The d_move() should be here instead of in an async RPC completion
2499 		 * handler because we need the proper locks to move the dentry.  If
2500 		 * we're interrupted by a signal, the async RPC completion handler
2501 		 * should mark the directories for revalidation.
2502 		 */
2503 		d_move(old_dentry, new_dentry);
2504 		nfs_set_verifier(old_dentry,
2505 					nfs_save_change_attribute(new_dir));
2506 	} else if (error == -ENOENT)
2507 		nfs_dentry_handle_enoent(old_dentry);
2508 
2509 	/* new dentry created? */
2510 	if (dentry)
2511 		dput(dentry);
2512 	return error;
2513 }
2514 EXPORT_SYMBOL_GPL(nfs_rename);
2515 
2516 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2517 static LIST_HEAD(nfs_access_lru_list);
2518 static atomic_long_t nfs_access_nr_entries;
2519 
2520 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2521 module_param(nfs_access_max_cachesize, ulong, 0644);
2522 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2523 
2524 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2525 {
2526 	put_cred(entry->cred);
2527 	kfree_rcu(entry, rcu_head);
2528 	smp_mb__before_atomic();
2529 	atomic_long_dec(&nfs_access_nr_entries);
2530 	smp_mb__after_atomic();
2531 }
2532 
2533 static void nfs_access_free_list(struct list_head *head)
2534 {
2535 	struct nfs_access_entry *cache;
2536 
2537 	while (!list_empty(head)) {
2538 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2539 		list_del(&cache->lru);
2540 		nfs_access_free_entry(cache);
2541 	}
2542 }
2543 
2544 static unsigned long
2545 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2546 {
2547 	LIST_HEAD(head);
2548 	struct nfs_inode *nfsi, *next;
2549 	struct nfs_access_entry *cache;
2550 	long freed = 0;
2551 
2552 	spin_lock(&nfs_access_lru_lock);
2553 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2554 		struct inode *inode;
2555 
2556 		if (nr_to_scan-- == 0)
2557 			break;
2558 		inode = &nfsi->vfs_inode;
2559 		spin_lock(&inode->i_lock);
2560 		if (list_empty(&nfsi->access_cache_entry_lru))
2561 			goto remove_lru_entry;
2562 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2563 				struct nfs_access_entry, lru);
2564 		list_move(&cache->lru, &head);
2565 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2566 		freed++;
2567 		if (!list_empty(&nfsi->access_cache_entry_lru))
2568 			list_move_tail(&nfsi->access_cache_inode_lru,
2569 					&nfs_access_lru_list);
2570 		else {
2571 remove_lru_entry:
2572 			list_del_init(&nfsi->access_cache_inode_lru);
2573 			smp_mb__before_atomic();
2574 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2575 			smp_mb__after_atomic();
2576 		}
2577 		spin_unlock(&inode->i_lock);
2578 	}
2579 	spin_unlock(&nfs_access_lru_lock);
2580 	nfs_access_free_list(&head);
2581 	return freed;
2582 }
2583 
2584 unsigned long
2585 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2586 {
2587 	int nr_to_scan = sc->nr_to_scan;
2588 	gfp_t gfp_mask = sc->gfp_mask;
2589 
2590 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2591 		return SHRINK_STOP;
2592 	return nfs_do_access_cache_scan(nr_to_scan);
2593 }
2594 
2595 
2596 unsigned long
2597 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2598 {
2599 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2600 }
2601 
2602 static void
2603 nfs_access_cache_enforce_limit(void)
2604 {
2605 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2606 	unsigned long diff;
2607 	unsigned int nr_to_scan;
2608 
2609 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2610 		return;
2611 	nr_to_scan = 100;
2612 	diff = nr_entries - nfs_access_max_cachesize;
2613 	if (diff < nr_to_scan)
2614 		nr_to_scan = diff;
2615 	nfs_do_access_cache_scan(nr_to_scan);
2616 }
2617 
2618 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2619 {
2620 	struct rb_root *root_node = &nfsi->access_cache;
2621 	struct rb_node *n;
2622 	struct nfs_access_entry *entry;
2623 
2624 	/* Unhook entries from the cache */
2625 	while ((n = rb_first(root_node)) != NULL) {
2626 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2627 		rb_erase(n, root_node);
2628 		list_move(&entry->lru, head);
2629 	}
2630 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2631 }
2632 
2633 void nfs_access_zap_cache(struct inode *inode)
2634 {
2635 	LIST_HEAD(head);
2636 
2637 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2638 		return;
2639 	/* Remove from global LRU init */
2640 	spin_lock(&nfs_access_lru_lock);
2641 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2642 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2643 
2644 	spin_lock(&inode->i_lock);
2645 	__nfs_access_zap_cache(NFS_I(inode), &head);
2646 	spin_unlock(&inode->i_lock);
2647 	spin_unlock(&nfs_access_lru_lock);
2648 	nfs_access_free_list(&head);
2649 }
2650 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2651 
2652 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2653 {
2654 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2655 
2656 	while (n != NULL) {
2657 		struct nfs_access_entry *entry =
2658 			rb_entry(n, struct nfs_access_entry, rb_node);
2659 		int cmp = cred_fscmp(cred, entry->cred);
2660 
2661 		if (cmp < 0)
2662 			n = n->rb_left;
2663 		else if (cmp > 0)
2664 			n = n->rb_right;
2665 		else
2666 			return entry;
2667 	}
2668 	return NULL;
2669 }
2670 
2671 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2672 {
2673 	struct nfs_inode *nfsi = NFS_I(inode);
2674 	struct nfs_access_entry *cache;
2675 	bool retry = true;
2676 	int err;
2677 
2678 	spin_lock(&inode->i_lock);
2679 	for(;;) {
2680 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2681 			goto out_zap;
2682 		cache = nfs_access_search_rbtree(inode, cred);
2683 		err = -ENOENT;
2684 		if (cache == NULL)
2685 			goto out;
2686 		/* Found an entry, is our attribute cache valid? */
2687 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2688 			break;
2689 		if (!retry)
2690 			break;
2691 		err = -ECHILD;
2692 		if (!may_block)
2693 			goto out;
2694 		spin_unlock(&inode->i_lock);
2695 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2696 		if (err)
2697 			return err;
2698 		spin_lock(&inode->i_lock);
2699 		retry = false;
2700 	}
2701 	res->cred = cache->cred;
2702 	res->mask = cache->mask;
2703 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2704 	err = 0;
2705 out:
2706 	spin_unlock(&inode->i_lock);
2707 	return err;
2708 out_zap:
2709 	spin_unlock(&inode->i_lock);
2710 	nfs_access_zap_cache(inode);
2711 	return -ENOENT;
2712 }
2713 
2714 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2715 {
2716 	/* Only check the most recently returned cache entry,
2717 	 * but do it without locking.
2718 	 */
2719 	struct nfs_inode *nfsi = NFS_I(inode);
2720 	struct nfs_access_entry *cache;
2721 	int err = -ECHILD;
2722 	struct list_head *lh;
2723 
2724 	rcu_read_lock();
2725 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2726 		goto out;
2727 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2728 	cache = list_entry(lh, struct nfs_access_entry, lru);
2729 	if (lh == &nfsi->access_cache_entry_lru ||
2730 	    cred_fscmp(cred, cache->cred) != 0)
2731 		cache = NULL;
2732 	if (cache == NULL)
2733 		goto out;
2734 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2735 		goto out;
2736 	res->cred = cache->cred;
2737 	res->mask = cache->mask;
2738 	err = 0;
2739 out:
2740 	rcu_read_unlock();
2741 	return err;
2742 }
2743 
2744 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2745 nfs_access_entry *res, bool may_block)
2746 {
2747 	int status;
2748 
2749 	status = nfs_access_get_cached_rcu(inode, cred, res);
2750 	if (status != 0)
2751 		status = nfs_access_get_cached_locked(inode, cred, res,
2752 		    may_block);
2753 
2754 	return status;
2755 }
2756 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2757 
2758 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2759 {
2760 	struct nfs_inode *nfsi = NFS_I(inode);
2761 	struct rb_root *root_node = &nfsi->access_cache;
2762 	struct rb_node **p = &root_node->rb_node;
2763 	struct rb_node *parent = NULL;
2764 	struct nfs_access_entry *entry;
2765 	int cmp;
2766 
2767 	spin_lock(&inode->i_lock);
2768 	while (*p != NULL) {
2769 		parent = *p;
2770 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2771 		cmp = cred_fscmp(set->cred, entry->cred);
2772 
2773 		if (cmp < 0)
2774 			p = &parent->rb_left;
2775 		else if (cmp > 0)
2776 			p = &parent->rb_right;
2777 		else
2778 			goto found;
2779 	}
2780 	rb_link_node(&set->rb_node, parent, p);
2781 	rb_insert_color(&set->rb_node, root_node);
2782 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2783 	spin_unlock(&inode->i_lock);
2784 	return;
2785 found:
2786 	rb_replace_node(parent, &set->rb_node, root_node);
2787 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2788 	list_del(&entry->lru);
2789 	spin_unlock(&inode->i_lock);
2790 	nfs_access_free_entry(entry);
2791 }
2792 
2793 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2794 {
2795 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2796 	if (cache == NULL)
2797 		return;
2798 	RB_CLEAR_NODE(&cache->rb_node);
2799 	cache->cred = get_cred(set->cred);
2800 	cache->mask = set->mask;
2801 
2802 	/* The above field assignments must be visible
2803 	 * before this item appears on the lru.  We cannot easily
2804 	 * use rcu_assign_pointer, so just force the memory barrier.
2805 	 */
2806 	smp_wmb();
2807 	nfs_access_add_rbtree(inode, cache);
2808 
2809 	/* Update accounting */
2810 	smp_mb__before_atomic();
2811 	atomic_long_inc(&nfs_access_nr_entries);
2812 	smp_mb__after_atomic();
2813 
2814 	/* Add inode to global LRU list */
2815 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2816 		spin_lock(&nfs_access_lru_lock);
2817 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2818 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2819 					&nfs_access_lru_list);
2820 		spin_unlock(&nfs_access_lru_lock);
2821 	}
2822 	nfs_access_cache_enforce_limit();
2823 }
2824 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2825 
2826 #define NFS_MAY_READ (NFS_ACCESS_READ)
2827 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2828 		NFS_ACCESS_EXTEND | \
2829 		NFS_ACCESS_DELETE)
2830 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2831 		NFS_ACCESS_EXTEND)
2832 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2833 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2834 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2835 static int
2836 nfs_access_calc_mask(u32 access_result, umode_t umode)
2837 {
2838 	int mask = 0;
2839 
2840 	if (access_result & NFS_MAY_READ)
2841 		mask |= MAY_READ;
2842 	if (S_ISDIR(umode)) {
2843 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2844 			mask |= MAY_WRITE;
2845 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2846 			mask |= MAY_EXEC;
2847 	} else if (S_ISREG(umode)) {
2848 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2849 			mask |= MAY_WRITE;
2850 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2851 			mask |= MAY_EXEC;
2852 	} else if (access_result & NFS_MAY_WRITE)
2853 			mask |= MAY_WRITE;
2854 	return mask;
2855 }
2856 
2857 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2858 {
2859 	entry->mask = access_result;
2860 }
2861 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2862 
2863 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2864 {
2865 	struct nfs_access_entry cache;
2866 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2867 	int cache_mask = -1;
2868 	int status;
2869 
2870 	trace_nfs_access_enter(inode);
2871 
2872 	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2873 	if (status == 0)
2874 		goto out_cached;
2875 
2876 	status = -ECHILD;
2877 	if (!may_block)
2878 		goto out;
2879 
2880 	/*
2881 	 * Determine which access bits we want to ask for...
2882 	 */
2883 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2884 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2885 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2886 		    NFS_ACCESS_XALIST;
2887 	}
2888 	if (S_ISDIR(inode->i_mode))
2889 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2890 	else
2891 		cache.mask |= NFS_ACCESS_EXECUTE;
2892 	cache.cred = cred;
2893 	status = NFS_PROTO(inode)->access(inode, &cache);
2894 	if (status != 0) {
2895 		if (status == -ESTALE) {
2896 			if (!S_ISDIR(inode->i_mode))
2897 				nfs_set_inode_stale(inode);
2898 			else
2899 				nfs_zap_caches(inode);
2900 		}
2901 		goto out;
2902 	}
2903 	nfs_access_add_cache(inode, &cache);
2904 out_cached:
2905 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2906 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2907 		status = -EACCES;
2908 out:
2909 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2910 	return status;
2911 }
2912 
2913 static int nfs_open_permission_mask(int openflags)
2914 {
2915 	int mask = 0;
2916 
2917 	if (openflags & __FMODE_EXEC) {
2918 		/* ONLY check exec rights */
2919 		mask = MAY_EXEC;
2920 	} else {
2921 		if ((openflags & O_ACCMODE) != O_WRONLY)
2922 			mask |= MAY_READ;
2923 		if ((openflags & O_ACCMODE) != O_RDONLY)
2924 			mask |= MAY_WRITE;
2925 	}
2926 
2927 	return mask;
2928 }
2929 
2930 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2931 {
2932 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2933 }
2934 EXPORT_SYMBOL_GPL(nfs_may_open);
2935 
2936 static int nfs_execute_ok(struct inode *inode, int mask)
2937 {
2938 	struct nfs_server *server = NFS_SERVER(inode);
2939 	int ret = 0;
2940 
2941 	if (S_ISDIR(inode->i_mode))
2942 		return 0;
2943 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2944 		if (mask & MAY_NOT_BLOCK)
2945 			return -ECHILD;
2946 		ret = __nfs_revalidate_inode(server, inode);
2947 	}
2948 	if (ret == 0 && !execute_ok(inode))
2949 		ret = -EACCES;
2950 	return ret;
2951 }
2952 
2953 int nfs_permission(struct user_namespace *mnt_userns,
2954 		   struct inode *inode,
2955 		   int mask)
2956 {
2957 	const struct cred *cred = current_cred();
2958 	int res = 0;
2959 
2960 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2961 
2962 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2963 		goto out;
2964 	/* Is this sys_access() ? */
2965 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2966 		goto force_lookup;
2967 
2968 	switch (inode->i_mode & S_IFMT) {
2969 		case S_IFLNK:
2970 			goto out;
2971 		case S_IFREG:
2972 			if ((mask & MAY_OPEN) &&
2973 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2974 				return 0;
2975 			break;
2976 		case S_IFDIR:
2977 			/*
2978 			 * Optimize away all write operations, since the server
2979 			 * will check permissions when we perform the op.
2980 			 */
2981 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2982 				goto out;
2983 	}
2984 
2985 force_lookup:
2986 	if (!NFS_PROTO(inode)->access)
2987 		goto out_notsup;
2988 
2989 	res = nfs_do_access(inode, cred, mask);
2990 out:
2991 	if (!res && (mask & MAY_EXEC))
2992 		res = nfs_execute_ok(inode, mask);
2993 
2994 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2995 		inode->i_sb->s_id, inode->i_ino, mask, res);
2996 	return res;
2997 out_notsup:
2998 	if (mask & MAY_NOT_BLOCK)
2999 		return -ECHILD;
3000 
3001 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
3002 	if (res == 0)
3003 		res = generic_permission(&init_user_ns, inode, mask);
3004 	goto out;
3005 }
3006 EXPORT_SYMBOL_GPL(nfs_permission);
3007 
3008 /*
3009  * Local variables:
3010  *  version-control: t
3011  *  kept-new-versions: 5
3012  * End:
3013  */
3014