xref: /openbmc/linux/fs/nfs/dir.c (revision 59844a9bd73e084b0ffefc0e13226098e28c71ad)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 
37 #include "nfs4_fs.h"
38 #include "delegation.h"
39 #include "iostat.h"
40 #include "internal.h"
41 
42 /* #define NFS_DEBUG_VERBOSE 1 */
43 
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 		      struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.readdir	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_release,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 const struct inode_operations nfs_dir_inode_operations = {
69 	.create		= nfs_create,
70 	.lookup		= nfs_lookup,
71 	.link		= nfs_link,
72 	.unlink		= nfs_unlink,
73 	.symlink	= nfs_symlink,
74 	.mkdir		= nfs_mkdir,
75 	.rmdir		= nfs_rmdir,
76 	.mknod		= nfs_mknod,
77 	.rename		= nfs_rename,
78 	.permission	= nfs_permission,
79 	.getattr	= nfs_getattr,
80 	.setattr	= nfs_setattr,
81 };
82 
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 	.create		= nfs_create,
86 	.lookup		= nfs_lookup,
87 	.link		= nfs_link,
88 	.unlink		= nfs_unlink,
89 	.symlink	= nfs_symlink,
90 	.mkdir		= nfs_mkdir,
91 	.rmdir		= nfs_rmdir,
92 	.mknod		= nfs_mknod,
93 	.rename		= nfs_rename,
94 	.permission	= nfs_permission,
95 	.getattr	= nfs_getattr,
96 	.setattr	= nfs_setattr,
97 	.listxattr	= nfs3_listxattr,
98 	.getxattr	= nfs3_getxattr,
99 	.setxattr	= nfs3_setxattr,
100 	.removexattr	= nfs3_removexattr,
101 };
102 #endif  /* CONFIG_NFS_V3 */
103 
104 #ifdef CONFIG_NFS_V4
105 
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 	.create		= nfs_create,
109 	.lookup		= nfs_atomic_lookup,
110 	.link		= nfs_link,
111 	.unlink		= nfs_unlink,
112 	.symlink	= nfs_symlink,
113 	.mkdir		= nfs_mkdir,
114 	.rmdir		= nfs_rmdir,
115 	.mknod		= nfs_mknod,
116 	.rename		= nfs_rename,
117 	.permission	= nfs_permission,
118 	.getattr	= nfs_getattr,
119 	.setattr	= nfs_setattr,
120 	.getxattr       = nfs4_getxattr,
121 	.setxattr       = nfs4_setxattr,
122 	.listxattr      = nfs4_listxattr,
123 };
124 
125 #endif /* CONFIG_NFS_V4 */
126 
127 /*
128  * Open file
129  */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 	int res;
134 
135 	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
136 			filp->f_path.dentry->d_parent->d_name.name,
137 			filp->f_path.dentry->d_name.name);
138 
139 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
140 
141 	/* Call generic open code in order to cache credentials */
142 	res = nfs_open(inode, filp);
143 	return res;
144 }
145 
146 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
147 typedef struct {
148 	struct file	*file;
149 	struct page	*page;
150 	unsigned long	page_index;
151 	__be32		*ptr;
152 	u64		*dir_cookie;
153 	loff_t		current_index;
154 	struct nfs_entry *entry;
155 	decode_dirent_t	decode;
156 	int		plus;
157 	unsigned long	timestamp;
158 	unsigned long	gencount;
159 	int		timestamp_valid;
160 } nfs_readdir_descriptor_t;
161 
162 /* Now we cache directories properly, by stuffing the dirent
163  * data directly in the page cache.
164  *
165  * Inode invalidation due to refresh etc. takes care of
166  * _everything_, no sloppy entry flushing logic, no extraneous
167  * copying, network direct to page cache, the way it was meant
168  * to be.
169  *
170  * NOTE: Dirent information verification is done always by the
171  *	 page-in of the RPC reply, nowhere else, this simplies
172  *	 things substantially.
173  */
174 static
175 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
176 {
177 	struct file	*file = desc->file;
178 	struct inode	*inode = file->f_path.dentry->d_inode;
179 	struct rpc_cred	*cred = nfs_file_cred(file);
180 	unsigned long	timestamp, gencount;
181 	int		error;
182 
183 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
184 			__func__, (long long)desc->entry->cookie,
185 			page->index);
186 
187  again:
188 	timestamp = jiffies;
189 	gencount = nfs_inc_attr_generation_counter();
190 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
191 					  NFS_SERVER(inode)->dtsize, desc->plus);
192 	if (error < 0) {
193 		/* We requested READDIRPLUS, but the server doesn't grok it */
194 		if (error == -ENOTSUPP && desc->plus) {
195 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
196 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
197 			desc->plus = 0;
198 			goto again;
199 		}
200 		goto error;
201 	}
202 	desc->timestamp = timestamp;
203 	desc->gencount = gencount;
204 	desc->timestamp_valid = 1;
205 	SetPageUptodate(page);
206 	/* Ensure consistent page alignment of the data.
207 	 * Note: assumes we have exclusive access to this mapping either
208 	 *	 through inode->i_mutex or some other mechanism.
209 	 */
210 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
211 		/* Should never happen */
212 		nfs_zap_mapping(inode, inode->i_mapping);
213 	}
214 	unlock_page(page);
215 	return 0;
216  error:
217 	unlock_page(page);
218 	return -EIO;
219 }
220 
221 static inline
222 int dir_decode(nfs_readdir_descriptor_t *desc)
223 {
224 	__be32	*p = desc->ptr;
225 	p = desc->decode(p, desc->entry, desc->plus);
226 	if (IS_ERR(p))
227 		return PTR_ERR(p);
228 	desc->ptr = p;
229 	if (desc->timestamp_valid) {
230 		desc->entry->fattr->time_start = desc->timestamp;
231 		desc->entry->fattr->gencount = desc->gencount;
232 	} else
233 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
234 	return 0;
235 }
236 
237 static inline
238 void dir_page_release(nfs_readdir_descriptor_t *desc)
239 {
240 	kunmap(desc->page);
241 	page_cache_release(desc->page);
242 	desc->page = NULL;
243 	desc->ptr = NULL;
244 }
245 
246 /*
247  * Given a pointer to a buffer that has already been filled by a call
248  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
249  *
250  * If the end of the buffer has been reached, return -EAGAIN, if not,
251  * return the offset within the buffer of the next entry to be
252  * read.
253  */
254 static inline
255 int find_dirent(nfs_readdir_descriptor_t *desc)
256 {
257 	struct nfs_entry *entry = desc->entry;
258 	int		loop_count = 0,
259 			status;
260 
261 	while((status = dir_decode(desc)) == 0) {
262 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
263 				__func__, (unsigned long long)entry->cookie);
264 		if (entry->prev_cookie == *desc->dir_cookie)
265 			break;
266 		if (loop_count++ > 200) {
267 			loop_count = 0;
268 			schedule();
269 		}
270 	}
271 	return status;
272 }
273 
274 /*
275  * Given a pointer to a buffer that has already been filled by a call
276  * to readdir, find the entry at offset 'desc->file->f_pos'.
277  *
278  * If the end of the buffer has been reached, return -EAGAIN, if not,
279  * return the offset within the buffer of the next entry to be
280  * read.
281  */
282 static inline
283 int find_dirent_index(nfs_readdir_descriptor_t *desc)
284 {
285 	struct nfs_entry *entry = desc->entry;
286 	int		loop_count = 0,
287 			status;
288 
289 	for(;;) {
290 		status = dir_decode(desc);
291 		if (status)
292 			break;
293 
294 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
295 				(unsigned long long)entry->cookie, desc->current_index);
296 
297 		if (desc->file->f_pos == desc->current_index) {
298 			*desc->dir_cookie = entry->cookie;
299 			break;
300 		}
301 		desc->current_index++;
302 		if (loop_count++ > 200) {
303 			loop_count = 0;
304 			schedule();
305 		}
306 	}
307 	return status;
308 }
309 
310 /*
311  * Find the given page, and call find_dirent() or find_dirent_index in
312  * order to try to return the next entry.
313  */
314 static inline
315 int find_dirent_page(nfs_readdir_descriptor_t *desc)
316 {
317 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
318 	struct page	*page;
319 	int		status;
320 
321 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
322 			__func__, desc->page_index,
323 			(long long) *desc->dir_cookie);
324 
325 	/* If we find the page in the page_cache, we cannot be sure
326 	 * how fresh the data is, so we will ignore readdir_plus attributes.
327 	 */
328 	desc->timestamp_valid = 0;
329 	page = read_cache_page(inode->i_mapping, desc->page_index,
330 			       (filler_t *)nfs_readdir_filler, desc);
331 	if (IS_ERR(page)) {
332 		status = PTR_ERR(page);
333 		goto out;
334 	}
335 
336 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
337 	desc->page = page;
338 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
339 	if (*desc->dir_cookie != 0)
340 		status = find_dirent(desc);
341 	else
342 		status = find_dirent_index(desc);
343 	if (status < 0)
344 		dir_page_release(desc);
345  out:
346 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
347 	return status;
348 }
349 
350 /*
351  * Recurse through the page cache pages, and return a
352  * filled nfs_entry structure of the next directory entry if possible.
353  *
354  * The target for the search is '*desc->dir_cookie' if non-0,
355  * 'desc->file->f_pos' otherwise
356  */
357 static inline
358 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
359 {
360 	int		loop_count = 0;
361 	int		res;
362 
363 	/* Always search-by-index from the beginning of the cache */
364 	if (*desc->dir_cookie == 0) {
365 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
366 				(long long)desc->file->f_pos);
367 		desc->page_index = 0;
368 		desc->entry->cookie = desc->entry->prev_cookie = 0;
369 		desc->entry->eof = 0;
370 		desc->current_index = 0;
371 	} else
372 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
373 				(unsigned long long)*desc->dir_cookie);
374 
375 	for (;;) {
376 		res = find_dirent_page(desc);
377 		if (res != -EAGAIN)
378 			break;
379 		/* Align to beginning of next page */
380 		desc->page_index ++;
381 		if (loop_count++ > 200) {
382 			loop_count = 0;
383 			schedule();
384 		}
385 	}
386 
387 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
388 	return res;
389 }
390 
391 static inline unsigned int dt_type(struct inode *inode)
392 {
393 	return (inode->i_mode >> 12) & 15;
394 }
395 
396 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
397 
398 /*
399  * Once we've found the start of the dirent within a page: fill 'er up...
400  */
401 static
402 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
403 		   filldir_t filldir)
404 {
405 	struct file	*file = desc->file;
406 	struct nfs_entry *entry = desc->entry;
407 	struct dentry	*dentry = NULL;
408 	u64		fileid;
409 	int		loop_count = 0,
410 			res;
411 
412 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
413 			(unsigned long long)entry->cookie);
414 
415 	for(;;) {
416 		unsigned d_type = DT_UNKNOWN;
417 		/* Note: entry->prev_cookie contains the cookie for
418 		 *	 retrieving the current dirent on the server */
419 		fileid = entry->ino;
420 
421 		/* Get a dentry if we have one */
422 		if (dentry != NULL)
423 			dput(dentry);
424 		dentry = nfs_readdir_lookup(desc);
425 
426 		/* Use readdirplus info */
427 		if (dentry != NULL && dentry->d_inode != NULL) {
428 			d_type = dt_type(dentry->d_inode);
429 			fileid = NFS_FILEID(dentry->d_inode);
430 		}
431 
432 		res = filldir(dirent, entry->name, entry->len,
433 			      file->f_pos, nfs_compat_user_ino64(fileid),
434 			      d_type);
435 		if (res < 0)
436 			break;
437 		file->f_pos++;
438 		*desc->dir_cookie = entry->cookie;
439 		if (dir_decode(desc) != 0) {
440 			desc->page_index ++;
441 			break;
442 		}
443 		if (loop_count++ > 200) {
444 			loop_count = 0;
445 			schedule();
446 		}
447 	}
448 	dir_page_release(desc);
449 	if (dentry != NULL)
450 		dput(dentry);
451 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
452 			(unsigned long long)*desc->dir_cookie, res);
453 	return res;
454 }
455 
456 /*
457  * If we cannot find a cookie in our cache, we suspect that this is
458  * because it points to a deleted file, so we ask the server to return
459  * whatever it thinks is the next entry. We then feed this to filldir.
460  * If all goes well, we should then be able to find our way round the
461  * cache on the next call to readdir_search_pagecache();
462  *
463  * NOTE: we cannot add the anonymous page to the pagecache because
464  *	 the data it contains might not be page aligned. Besides,
465  *	 we should already have a complete representation of the
466  *	 directory in the page cache by the time we get here.
467  */
468 static inline
469 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
470 		     filldir_t filldir)
471 {
472 	struct file	*file = desc->file;
473 	struct inode	*inode = file->f_path.dentry->d_inode;
474 	struct rpc_cred	*cred = nfs_file_cred(file);
475 	struct page	*page = NULL;
476 	int		status;
477 	unsigned long	timestamp, gencount;
478 
479 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
480 			(unsigned long long)*desc->dir_cookie);
481 
482 	page = alloc_page(GFP_HIGHUSER);
483 	if (!page) {
484 		status = -ENOMEM;
485 		goto out;
486 	}
487 	timestamp = jiffies;
488 	gencount = nfs_inc_attr_generation_counter();
489 	status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
490 						*desc->dir_cookie, page,
491 						NFS_SERVER(inode)->dtsize,
492 						desc->plus);
493 	desc->page = page;
494 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
495 	if (status >= 0) {
496 		desc->timestamp = timestamp;
497 		desc->gencount = gencount;
498 		desc->timestamp_valid = 1;
499 		if ((status = dir_decode(desc)) == 0)
500 			desc->entry->prev_cookie = *desc->dir_cookie;
501 	} else
502 		status = -EIO;
503 	if (status < 0)
504 		goto out_release;
505 
506 	status = nfs_do_filldir(desc, dirent, filldir);
507 
508 	/* Reset read descriptor so it searches the page cache from
509 	 * the start upon the next call to readdir_search_pagecache() */
510 	desc->page_index = 0;
511 	desc->entry->cookie = desc->entry->prev_cookie = 0;
512 	desc->entry->eof = 0;
513  out:
514 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
515 			__func__, status);
516 	return status;
517  out_release:
518 	dir_page_release(desc);
519 	goto out;
520 }
521 
522 /* The file offset position represents the dirent entry number.  A
523    last cookie cache takes care of the common case of reading the
524    whole directory.
525  */
526 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
527 {
528 	struct dentry	*dentry = filp->f_path.dentry;
529 	struct inode	*inode = dentry->d_inode;
530 	nfs_readdir_descriptor_t my_desc,
531 			*desc = &my_desc;
532 	struct nfs_entry my_entry;
533 	int res = -ENOMEM;
534 
535 	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
536 			dentry->d_parent->d_name.name, dentry->d_name.name,
537 			(long long)filp->f_pos);
538 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
539 
540 	/*
541 	 * filp->f_pos points to the dirent entry number.
542 	 * *desc->dir_cookie has the cookie for the next entry. We have
543 	 * to either find the entry with the appropriate number or
544 	 * revalidate the cookie.
545 	 */
546 	memset(desc, 0, sizeof(*desc));
547 
548 	desc->file = filp;
549 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
550 	desc->decode = NFS_PROTO(inode)->decode_dirent;
551 	desc->plus = NFS_USE_READDIRPLUS(inode);
552 
553 	my_entry.cookie = my_entry.prev_cookie = 0;
554 	my_entry.eof = 0;
555 	my_entry.fh = nfs_alloc_fhandle();
556 	my_entry.fattr = nfs_alloc_fattr();
557 	if (my_entry.fh == NULL || my_entry.fattr == NULL)
558 		goto out_alloc_failed;
559 
560 	desc->entry = &my_entry;
561 
562 	nfs_block_sillyrename(dentry);
563 	res = nfs_revalidate_mapping(inode, filp->f_mapping);
564 	if (res < 0)
565 		goto out;
566 
567 	while(!desc->entry->eof) {
568 		res = readdir_search_pagecache(desc);
569 
570 		if (res == -EBADCOOKIE) {
571 			/* This means either end of directory */
572 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
573 				/* Or that the server has 'lost' a cookie */
574 				res = uncached_readdir(desc, dirent, filldir);
575 				if (res >= 0)
576 					continue;
577 			}
578 			res = 0;
579 			break;
580 		}
581 		if (res == -ETOOSMALL && desc->plus) {
582 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
583 			nfs_zap_caches(inode);
584 			desc->plus = 0;
585 			desc->entry->eof = 0;
586 			continue;
587 		}
588 		if (res < 0)
589 			break;
590 
591 		res = nfs_do_filldir(desc, dirent, filldir);
592 		if (res < 0) {
593 			res = 0;
594 			break;
595 		}
596 	}
597 out:
598 	nfs_unblock_sillyrename(dentry);
599 	if (res > 0)
600 		res = 0;
601 out_alloc_failed:
602 	nfs_free_fattr(my_entry.fattr);
603 	nfs_free_fhandle(my_entry.fh);
604 	dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
605 			dentry->d_parent->d_name.name, dentry->d_name.name,
606 			res);
607 	return res;
608 }
609 
610 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
611 {
612 	struct dentry *dentry = filp->f_path.dentry;
613 	struct inode *inode = dentry->d_inode;
614 
615 	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
616 			dentry->d_parent->d_name.name,
617 			dentry->d_name.name,
618 			offset, origin);
619 
620 	mutex_lock(&inode->i_mutex);
621 	switch (origin) {
622 		case 1:
623 			offset += filp->f_pos;
624 		case 0:
625 			if (offset >= 0)
626 				break;
627 		default:
628 			offset = -EINVAL;
629 			goto out;
630 	}
631 	if (offset != filp->f_pos) {
632 		filp->f_pos = offset;
633 		nfs_file_open_context(filp)->dir_cookie = 0;
634 	}
635 out:
636 	mutex_unlock(&inode->i_mutex);
637 	return offset;
638 }
639 
640 /*
641  * All directory operations under NFS are synchronous, so fsync()
642  * is a dummy operation.
643  */
644 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
645 {
646 	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
647 			dentry->d_parent->d_name.name, dentry->d_name.name,
648 			datasync);
649 
650 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
651 	return 0;
652 }
653 
654 /**
655  * nfs_force_lookup_revalidate - Mark the directory as having changed
656  * @dir - pointer to directory inode
657  *
658  * This forces the revalidation code in nfs_lookup_revalidate() to do a
659  * full lookup on all child dentries of 'dir' whenever a change occurs
660  * on the server that might have invalidated our dcache.
661  *
662  * The caller should be holding dir->i_lock
663  */
664 void nfs_force_lookup_revalidate(struct inode *dir)
665 {
666 	NFS_I(dir)->cache_change_attribute++;
667 }
668 
669 /*
670  * A check for whether or not the parent directory has changed.
671  * In the case it has, we assume that the dentries are untrustworthy
672  * and may need to be looked up again.
673  */
674 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
675 {
676 	if (IS_ROOT(dentry))
677 		return 1;
678 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
679 		return 0;
680 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
681 		return 0;
682 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
683 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
684 		return 0;
685 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
686 		return 0;
687 	return 1;
688 }
689 
690 /*
691  * Return the intent data that applies to this particular path component
692  *
693  * Note that the current set of intents only apply to the very last
694  * component of the path.
695  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
696  */
697 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
698 {
699 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
700 		return 0;
701 	return nd->flags & mask;
702 }
703 
704 /*
705  * Use intent information to check whether or not we're going to do
706  * an O_EXCL create using this path component.
707  */
708 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
709 {
710 	if (NFS_PROTO(dir)->version == 2)
711 		return 0;
712 	return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
713 }
714 
715 /*
716  * Inode and filehandle revalidation for lookups.
717  *
718  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
719  * or if the intent information indicates that we're about to open this
720  * particular file and the "nocto" mount flag is not set.
721  *
722  */
723 static inline
724 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
725 {
726 	struct nfs_server *server = NFS_SERVER(inode);
727 
728 	if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
729 		return 0;
730 	if (nd != NULL) {
731 		/* VFS wants an on-the-wire revalidation */
732 		if (nd->flags & LOOKUP_REVAL)
733 			goto out_force;
734 		/* This is an open(2) */
735 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
736 				!(server->flags & NFS_MOUNT_NOCTO) &&
737 				(S_ISREG(inode->i_mode) ||
738 				 S_ISDIR(inode->i_mode)))
739 			goto out_force;
740 		return 0;
741 	}
742 	return nfs_revalidate_inode(server, inode);
743 out_force:
744 	return __nfs_revalidate_inode(server, inode);
745 }
746 
747 /*
748  * We judge how long we want to trust negative
749  * dentries by looking at the parent inode mtime.
750  *
751  * If parent mtime has changed, we revalidate, else we wait for a
752  * period corresponding to the parent's attribute cache timeout value.
753  */
754 static inline
755 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
756 		       struct nameidata *nd)
757 {
758 	/* Don't revalidate a negative dentry if we're creating a new file */
759 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
760 		return 0;
761 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
762 		return 1;
763 	return !nfs_check_verifier(dir, dentry);
764 }
765 
766 /*
767  * This is called every time the dcache has a lookup hit,
768  * and we should check whether we can really trust that
769  * lookup.
770  *
771  * NOTE! The hit can be a negative hit too, don't assume
772  * we have an inode!
773  *
774  * If the parent directory is seen to have changed, we throw out the
775  * cached dentry and do a new lookup.
776  */
777 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
778 {
779 	struct inode *dir;
780 	struct inode *inode;
781 	struct dentry *parent;
782 	struct nfs_fh *fhandle = NULL;
783 	struct nfs_fattr *fattr = NULL;
784 	int error;
785 
786 	parent = dget_parent(dentry);
787 	dir = parent->d_inode;
788 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
789 	inode = dentry->d_inode;
790 
791 	if (!inode) {
792 		if (nfs_neg_need_reval(dir, dentry, nd))
793 			goto out_bad;
794 		goto out_valid;
795 	}
796 
797 	if (is_bad_inode(inode)) {
798 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
799 				__func__, dentry->d_parent->d_name.name,
800 				dentry->d_name.name);
801 		goto out_bad;
802 	}
803 
804 	if (nfs_have_delegation(inode, FMODE_READ))
805 		goto out_set_verifier;
806 
807 	/* Force a full look up iff the parent directory has changed */
808 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
809 		if (nfs_lookup_verify_inode(inode, nd))
810 			goto out_zap_parent;
811 		goto out_valid;
812 	}
813 
814 	if (NFS_STALE(inode))
815 		goto out_bad;
816 
817 	error = -ENOMEM;
818 	fhandle = nfs_alloc_fhandle();
819 	fattr = nfs_alloc_fattr();
820 	if (fhandle == NULL || fattr == NULL)
821 		goto out_error;
822 
823 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
824 	if (error)
825 		goto out_bad;
826 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
827 		goto out_bad;
828 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
829 		goto out_bad;
830 
831 	nfs_free_fattr(fattr);
832 	nfs_free_fhandle(fhandle);
833 out_set_verifier:
834 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
835  out_valid:
836 	dput(parent);
837 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
838 			__func__, dentry->d_parent->d_name.name,
839 			dentry->d_name.name);
840 	return 1;
841 out_zap_parent:
842 	nfs_zap_caches(dir);
843  out_bad:
844 	nfs_mark_for_revalidate(dir);
845 	if (inode && S_ISDIR(inode->i_mode)) {
846 		/* Purge readdir caches. */
847 		nfs_zap_caches(inode);
848 		/* If we have submounts, don't unhash ! */
849 		if (have_submounts(dentry))
850 			goto out_valid;
851 		if (dentry->d_flags & DCACHE_DISCONNECTED)
852 			goto out_valid;
853 		shrink_dcache_parent(dentry);
854 	}
855 	d_drop(dentry);
856 	nfs_free_fattr(fattr);
857 	nfs_free_fhandle(fhandle);
858 	dput(parent);
859 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
860 			__func__, dentry->d_parent->d_name.name,
861 			dentry->d_name.name);
862 	return 0;
863 out_error:
864 	nfs_free_fattr(fattr);
865 	nfs_free_fhandle(fhandle);
866 	dput(parent);
867 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
868 			__func__, dentry->d_parent->d_name.name,
869 			dentry->d_name.name, error);
870 	return error;
871 }
872 
873 /*
874  * This is called from dput() when d_count is going to 0.
875  */
876 static int nfs_dentry_delete(struct dentry *dentry)
877 {
878 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
879 		dentry->d_parent->d_name.name, dentry->d_name.name,
880 		dentry->d_flags);
881 
882 	/* Unhash any dentry with a stale inode */
883 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
884 		return 1;
885 
886 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
887 		/* Unhash it, so that ->d_iput() would be called */
888 		return 1;
889 	}
890 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
891 		/* Unhash it, so that ancestors of killed async unlink
892 		 * files will be cleaned up during umount */
893 		return 1;
894 	}
895 	return 0;
896 
897 }
898 
899 static void nfs_drop_nlink(struct inode *inode)
900 {
901 	spin_lock(&inode->i_lock);
902 	if (inode->i_nlink > 0)
903 		drop_nlink(inode);
904 	spin_unlock(&inode->i_lock);
905 }
906 
907 /*
908  * Called when the dentry loses inode.
909  * We use it to clean up silly-renamed files.
910  */
911 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
912 {
913 	if (S_ISDIR(inode->i_mode))
914 		/* drop any readdir cache as it could easily be old */
915 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
916 
917 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
918 		drop_nlink(inode);
919 		nfs_complete_unlink(dentry, inode);
920 	}
921 	iput(inode);
922 }
923 
924 const struct dentry_operations nfs_dentry_operations = {
925 	.d_revalidate	= nfs_lookup_revalidate,
926 	.d_delete	= nfs_dentry_delete,
927 	.d_iput		= nfs_dentry_iput,
928 };
929 
930 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
931 {
932 	struct dentry *res;
933 	struct dentry *parent;
934 	struct inode *inode = NULL;
935 	struct nfs_fh *fhandle = NULL;
936 	struct nfs_fattr *fattr = NULL;
937 	int error;
938 
939 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
940 		dentry->d_parent->d_name.name, dentry->d_name.name);
941 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
942 
943 	res = ERR_PTR(-ENAMETOOLONG);
944 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
945 		goto out;
946 
947 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
948 
949 	/*
950 	 * If we're doing an exclusive create, optimize away the lookup
951 	 * but don't hash the dentry.
952 	 */
953 	if (nfs_is_exclusive_create(dir, nd)) {
954 		d_instantiate(dentry, NULL);
955 		res = NULL;
956 		goto out;
957 	}
958 
959 	res = ERR_PTR(-ENOMEM);
960 	fhandle = nfs_alloc_fhandle();
961 	fattr = nfs_alloc_fattr();
962 	if (fhandle == NULL || fattr == NULL)
963 		goto out;
964 
965 	parent = dentry->d_parent;
966 	/* Protect against concurrent sillydeletes */
967 	nfs_block_sillyrename(parent);
968 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
969 	if (error == -ENOENT)
970 		goto no_entry;
971 	if (error < 0) {
972 		res = ERR_PTR(error);
973 		goto out_unblock_sillyrename;
974 	}
975 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
976 	res = (struct dentry *)inode;
977 	if (IS_ERR(res))
978 		goto out_unblock_sillyrename;
979 
980 no_entry:
981 	res = d_materialise_unique(dentry, inode);
982 	if (res != NULL) {
983 		if (IS_ERR(res))
984 			goto out_unblock_sillyrename;
985 		dentry = res;
986 	}
987 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
988 out_unblock_sillyrename:
989 	nfs_unblock_sillyrename(parent);
990 out:
991 	nfs_free_fattr(fattr);
992 	nfs_free_fhandle(fhandle);
993 	return res;
994 }
995 
996 #ifdef CONFIG_NFS_V4
997 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
998 
999 const struct dentry_operations nfs4_dentry_operations = {
1000 	.d_revalidate	= nfs_open_revalidate,
1001 	.d_delete	= nfs_dentry_delete,
1002 	.d_iput		= nfs_dentry_iput,
1003 };
1004 
1005 /*
1006  * Use intent information to determine whether we need to substitute
1007  * the NFSv4-style stateful OPEN for the LOOKUP call
1008  */
1009 static int is_atomic_open(struct nameidata *nd)
1010 {
1011 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1012 		return 0;
1013 	/* NFS does not (yet) have a stateful open for directories */
1014 	if (nd->flags & LOOKUP_DIRECTORY)
1015 		return 0;
1016 	/* Are we trying to write to a read only partition? */
1017 	if (__mnt_is_readonly(nd->path.mnt) &&
1018 	    (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1019 		return 0;
1020 	return 1;
1021 }
1022 
1023 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1024 {
1025 	struct dentry *res = NULL;
1026 	int error;
1027 
1028 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1029 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1030 
1031 	/* Check that we are indeed trying to open this file */
1032 	if (!is_atomic_open(nd))
1033 		goto no_open;
1034 
1035 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1036 		res = ERR_PTR(-ENAMETOOLONG);
1037 		goto out;
1038 	}
1039 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1040 
1041 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1042 	 * the dentry. */
1043 	if (nd->flags & LOOKUP_EXCL) {
1044 		d_instantiate(dentry, NULL);
1045 		goto out;
1046 	}
1047 
1048 	/* Open the file on the server */
1049 	res = nfs4_atomic_open(dir, dentry, nd);
1050 	if (IS_ERR(res)) {
1051 		error = PTR_ERR(res);
1052 		switch (error) {
1053 			/* Make a negative dentry */
1054 			case -ENOENT:
1055 				res = NULL;
1056 				goto out;
1057 			/* This turned out not to be a regular file */
1058 			case -EISDIR:
1059 			case -ENOTDIR:
1060 				goto no_open;
1061 			case -ELOOP:
1062 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1063 					goto no_open;
1064 			/* case -EINVAL: */
1065 			default:
1066 				goto out;
1067 		}
1068 	} else if (res != NULL)
1069 		dentry = res;
1070 out:
1071 	return res;
1072 no_open:
1073 	return nfs_lookup(dir, dentry, nd);
1074 }
1075 
1076 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1077 {
1078 	struct dentry *parent = NULL;
1079 	struct inode *inode = dentry->d_inode;
1080 	struct inode *dir;
1081 	int openflags, ret = 0;
1082 
1083 	if (!is_atomic_open(nd) || d_mountpoint(dentry))
1084 		goto no_open;
1085 	parent = dget_parent(dentry);
1086 	dir = parent->d_inode;
1087 	/* We can't create new files in nfs_open_revalidate(), so we
1088 	 * optimize away revalidation of negative dentries.
1089 	 */
1090 	if (inode == NULL) {
1091 		if (!nfs_neg_need_reval(dir, dentry, nd))
1092 			ret = 1;
1093 		goto out;
1094 	}
1095 
1096 	/* NFS only supports OPEN on regular files */
1097 	if (!S_ISREG(inode->i_mode))
1098 		goto no_open_dput;
1099 	openflags = nd->intent.open.flags;
1100 	/* We cannot do exclusive creation on a positive dentry */
1101 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1102 		goto no_open_dput;
1103 	/* We can't create new files, or truncate existing ones here */
1104 	openflags &= ~(O_CREAT|O_TRUNC);
1105 
1106 	/*
1107 	 * Note: we're not holding inode->i_mutex and so may be racing with
1108 	 * operations that change the directory. We therefore save the
1109 	 * change attribute *before* we do the RPC call.
1110 	 */
1111 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1112 out:
1113 	dput(parent);
1114 	if (!ret)
1115 		d_drop(dentry);
1116 	return ret;
1117 no_open_dput:
1118 	dput(parent);
1119 no_open:
1120 	return nfs_lookup_revalidate(dentry, nd);
1121 }
1122 #endif /* CONFIG_NFSV4 */
1123 
1124 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1125 {
1126 	struct dentry *parent = desc->file->f_path.dentry;
1127 	struct inode *dir = parent->d_inode;
1128 	struct nfs_entry *entry = desc->entry;
1129 	struct dentry *dentry, *alias;
1130 	struct qstr name = {
1131 		.name = entry->name,
1132 		.len = entry->len,
1133 	};
1134 	struct inode *inode;
1135 	unsigned long verf = nfs_save_change_attribute(dir);
1136 
1137 	switch (name.len) {
1138 		case 2:
1139 			if (name.name[0] == '.' && name.name[1] == '.')
1140 				return dget_parent(parent);
1141 			break;
1142 		case 1:
1143 			if (name.name[0] == '.')
1144 				return dget(parent);
1145 	}
1146 
1147 	spin_lock(&dir->i_lock);
1148 	if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1149 		spin_unlock(&dir->i_lock);
1150 		return NULL;
1151 	}
1152 	spin_unlock(&dir->i_lock);
1153 
1154 	name.hash = full_name_hash(name.name, name.len);
1155 	dentry = d_lookup(parent, &name);
1156 	if (dentry != NULL) {
1157 		/* Is this a positive dentry that matches the readdir info? */
1158 		if (dentry->d_inode != NULL &&
1159 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1160 				d_mountpoint(dentry))) {
1161 			if (!desc->plus || entry->fh->size == 0)
1162 				return dentry;
1163 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1164 						entry->fh) == 0)
1165 				goto out_renew;
1166 		}
1167 		/* No, so d_drop to allow one to be created */
1168 		d_drop(dentry);
1169 		dput(dentry);
1170 	}
1171 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1172 		return NULL;
1173 	if (name.len > NFS_SERVER(dir)->namelen)
1174 		return NULL;
1175 	/* Note: caller is already holding the dir->i_mutex! */
1176 	dentry = d_alloc(parent, &name);
1177 	if (dentry == NULL)
1178 		return NULL;
1179 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1180 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1181 	if (IS_ERR(inode)) {
1182 		dput(dentry);
1183 		return NULL;
1184 	}
1185 
1186 	alias = d_materialise_unique(dentry, inode);
1187 	if (alias != NULL) {
1188 		dput(dentry);
1189 		if (IS_ERR(alias))
1190 			return NULL;
1191 		dentry = alias;
1192 	}
1193 
1194 out_renew:
1195 	nfs_set_verifier(dentry, verf);
1196 	return dentry;
1197 }
1198 
1199 /*
1200  * Code common to create, mkdir, and mknod.
1201  */
1202 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1203 				struct nfs_fattr *fattr)
1204 {
1205 	struct dentry *parent = dget_parent(dentry);
1206 	struct inode *dir = parent->d_inode;
1207 	struct inode *inode;
1208 	int error = -EACCES;
1209 
1210 	d_drop(dentry);
1211 
1212 	/* We may have been initialized further down */
1213 	if (dentry->d_inode)
1214 		goto out;
1215 	if (fhandle->size == 0) {
1216 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1217 		if (error)
1218 			goto out_error;
1219 	}
1220 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1221 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1222 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1223 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1224 		if (error < 0)
1225 			goto out_error;
1226 	}
1227 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1228 	error = PTR_ERR(inode);
1229 	if (IS_ERR(inode))
1230 		goto out_error;
1231 	d_add(dentry, inode);
1232 out:
1233 	dput(parent);
1234 	return 0;
1235 out_error:
1236 	nfs_mark_for_revalidate(dir);
1237 	dput(parent);
1238 	return error;
1239 }
1240 
1241 /*
1242  * Following a failed create operation, we drop the dentry rather
1243  * than retain a negative dentry. This avoids a problem in the event
1244  * that the operation succeeded on the server, but an error in the
1245  * reply path made it appear to have failed.
1246  */
1247 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1248 		struct nameidata *nd)
1249 {
1250 	struct iattr attr;
1251 	int error;
1252 	int open_flags = 0;
1253 
1254 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1255 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1256 
1257 	attr.ia_mode = mode;
1258 	attr.ia_valid = ATTR_MODE;
1259 
1260 	if ((nd->flags & LOOKUP_CREATE) != 0)
1261 		open_flags = nd->intent.open.flags;
1262 
1263 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1264 	if (error != 0)
1265 		goto out_err;
1266 	return 0;
1267 out_err:
1268 	d_drop(dentry);
1269 	return error;
1270 }
1271 
1272 /*
1273  * See comments for nfs_proc_create regarding failed operations.
1274  */
1275 static int
1276 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1277 {
1278 	struct iattr attr;
1279 	int status;
1280 
1281 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1282 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1283 
1284 	if (!new_valid_dev(rdev))
1285 		return -EINVAL;
1286 
1287 	attr.ia_mode = mode;
1288 	attr.ia_valid = ATTR_MODE;
1289 
1290 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1291 	if (status != 0)
1292 		goto out_err;
1293 	return 0;
1294 out_err:
1295 	d_drop(dentry);
1296 	return status;
1297 }
1298 
1299 /*
1300  * See comments for nfs_proc_create regarding failed operations.
1301  */
1302 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1303 {
1304 	struct iattr attr;
1305 	int error;
1306 
1307 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1308 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1309 
1310 	attr.ia_valid = ATTR_MODE;
1311 	attr.ia_mode = mode | S_IFDIR;
1312 
1313 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1314 	if (error != 0)
1315 		goto out_err;
1316 	return 0;
1317 out_err:
1318 	d_drop(dentry);
1319 	return error;
1320 }
1321 
1322 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1323 {
1324 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1325 		d_delete(dentry);
1326 }
1327 
1328 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1329 {
1330 	int error;
1331 
1332 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1333 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1334 
1335 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1336 	/* Ensure the VFS deletes this inode */
1337 	if (error == 0 && dentry->d_inode != NULL)
1338 		clear_nlink(dentry->d_inode);
1339 	else if (error == -ENOENT)
1340 		nfs_dentry_handle_enoent(dentry);
1341 
1342 	return error;
1343 }
1344 
1345 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1346 {
1347 	static unsigned int sillycounter;
1348 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1349 	const int      countersize = sizeof(sillycounter)*2;
1350 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1351 	char           silly[slen+1];
1352 	struct qstr    qsilly;
1353 	struct dentry *sdentry;
1354 	int            error = -EIO;
1355 
1356 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1357 		dentry->d_parent->d_name.name, dentry->d_name.name,
1358 		atomic_read(&dentry->d_count));
1359 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1360 
1361 	/*
1362 	 * We don't allow a dentry to be silly-renamed twice.
1363 	 */
1364 	error = -EBUSY;
1365 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1366 		goto out;
1367 
1368 	sprintf(silly, ".nfs%*.*Lx",
1369 		fileidsize, fileidsize,
1370 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1371 
1372 	/* Return delegation in anticipation of the rename */
1373 	nfs_inode_return_delegation(dentry->d_inode);
1374 
1375 	sdentry = NULL;
1376 	do {
1377 		char *suffix = silly + slen - countersize;
1378 
1379 		dput(sdentry);
1380 		sillycounter++;
1381 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1382 
1383 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1384 				dentry->d_name.name, silly);
1385 
1386 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1387 		/*
1388 		 * N.B. Better to return EBUSY here ... it could be
1389 		 * dangerous to delete the file while it's in use.
1390 		 */
1391 		if (IS_ERR(sdentry))
1392 			goto out;
1393 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1394 
1395 	qsilly.name = silly;
1396 	qsilly.len  = strlen(silly);
1397 	if (dentry->d_inode) {
1398 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1399 				dir, &qsilly);
1400 		nfs_mark_for_revalidate(dentry->d_inode);
1401 	} else
1402 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1403 				dir, &qsilly);
1404 	if (!error) {
1405 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1406 		d_move(dentry, sdentry);
1407 		error = nfs_async_unlink(dir, dentry);
1408  		/* If we return 0 we don't unlink */
1409 	}
1410 	dput(sdentry);
1411 out:
1412 	return error;
1413 }
1414 
1415 /*
1416  * Remove a file after making sure there are no pending writes,
1417  * and after checking that the file has only one user.
1418  *
1419  * We invalidate the attribute cache and free the inode prior to the operation
1420  * to avoid possible races if the server reuses the inode.
1421  */
1422 static int nfs_safe_remove(struct dentry *dentry)
1423 {
1424 	struct inode *dir = dentry->d_parent->d_inode;
1425 	struct inode *inode = dentry->d_inode;
1426 	int error = -EBUSY;
1427 
1428 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1429 		dentry->d_parent->d_name.name, dentry->d_name.name);
1430 
1431 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1432 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1433 		error = 0;
1434 		goto out;
1435 	}
1436 
1437 	if (inode != NULL) {
1438 		nfs_inode_return_delegation(inode);
1439 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1440 		/* The VFS may want to delete this inode */
1441 		if (error == 0)
1442 			nfs_drop_nlink(inode);
1443 		nfs_mark_for_revalidate(inode);
1444 	} else
1445 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1446 	if (error == -ENOENT)
1447 		nfs_dentry_handle_enoent(dentry);
1448 out:
1449 	return error;
1450 }
1451 
1452 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1453  *  belongs to an active ".nfs..." file and we return -EBUSY.
1454  *
1455  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1456  */
1457 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1458 {
1459 	int error;
1460 	int need_rehash = 0;
1461 
1462 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1463 		dir->i_ino, dentry->d_name.name);
1464 
1465 	spin_lock(&dcache_lock);
1466 	spin_lock(&dentry->d_lock);
1467 	if (atomic_read(&dentry->d_count) > 1) {
1468 		spin_unlock(&dentry->d_lock);
1469 		spin_unlock(&dcache_lock);
1470 		/* Start asynchronous writeout of the inode */
1471 		write_inode_now(dentry->d_inode, 0);
1472 		error = nfs_sillyrename(dir, dentry);
1473 		return error;
1474 	}
1475 	if (!d_unhashed(dentry)) {
1476 		__d_drop(dentry);
1477 		need_rehash = 1;
1478 	}
1479 	spin_unlock(&dentry->d_lock);
1480 	spin_unlock(&dcache_lock);
1481 	error = nfs_safe_remove(dentry);
1482 	if (!error || error == -ENOENT) {
1483 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1484 	} else if (need_rehash)
1485 		d_rehash(dentry);
1486 	return error;
1487 }
1488 
1489 /*
1490  * To create a symbolic link, most file systems instantiate a new inode,
1491  * add a page to it containing the path, then write it out to the disk
1492  * using prepare_write/commit_write.
1493  *
1494  * Unfortunately the NFS client can't create the in-core inode first
1495  * because it needs a file handle to create an in-core inode (see
1496  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1497  * symlink request has completed on the server.
1498  *
1499  * So instead we allocate a raw page, copy the symname into it, then do
1500  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1501  * now have a new file handle and can instantiate an in-core NFS inode
1502  * and move the raw page into its mapping.
1503  */
1504 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1505 {
1506 	struct pagevec lru_pvec;
1507 	struct page *page;
1508 	char *kaddr;
1509 	struct iattr attr;
1510 	unsigned int pathlen = strlen(symname);
1511 	int error;
1512 
1513 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1514 		dir->i_ino, dentry->d_name.name, symname);
1515 
1516 	if (pathlen > PAGE_SIZE)
1517 		return -ENAMETOOLONG;
1518 
1519 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1520 	attr.ia_valid = ATTR_MODE;
1521 
1522 	page = alloc_page(GFP_HIGHUSER);
1523 	if (!page)
1524 		return -ENOMEM;
1525 
1526 	kaddr = kmap_atomic(page, KM_USER0);
1527 	memcpy(kaddr, symname, pathlen);
1528 	if (pathlen < PAGE_SIZE)
1529 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1530 	kunmap_atomic(kaddr, KM_USER0);
1531 
1532 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1533 	if (error != 0) {
1534 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1535 			dir->i_sb->s_id, dir->i_ino,
1536 			dentry->d_name.name, symname, error);
1537 		d_drop(dentry);
1538 		__free_page(page);
1539 		return error;
1540 	}
1541 
1542 	/*
1543 	 * No big deal if we can't add this page to the page cache here.
1544 	 * READLINK will get the missing page from the server if needed.
1545 	 */
1546 	pagevec_init(&lru_pvec, 0);
1547 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1548 							GFP_KERNEL)) {
1549 		pagevec_add(&lru_pvec, page);
1550 		pagevec_lru_add_file(&lru_pvec);
1551 		SetPageUptodate(page);
1552 		unlock_page(page);
1553 	} else
1554 		__free_page(page);
1555 
1556 	return 0;
1557 }
1558 
1559 static int
1560 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1561 {
1562 	struct inode *inode = old_dentry->d_inode;
1563 	int error;
1564 
1565 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1566 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1567 		dentry->d_parent->d_name.name, dentry->d_name.name);
1568 
1569 	nfs_inode_return_delegation(inode);
1570 
1571 	d_drop(dentry);
1572 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1573 	if (error == 0) {
1574 		atomic_inc(&inode->i_count);
1575 		d_add(dentry, inode);
1576 	}
1577 	return error;
1578 }
1579 
1580 /*
1581  * RENAME
1582  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1583  * different file handle for the same inode after a rename (e.g. when
1584  * moving to a different directory). A fail-safe method to do so would
1585  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1586  * rename the old file using the sillyrename stuff. This way, the original
1587  * file in old_dir will go away when the last process iput()s the inode.
1588  *
1589  * FIXED.
1590  *
1591  * It actually works quite well. One needs to have the possibility for
1592  * at least one ".nfs..." file in each directory the file ever gets
1593  * moved or linked to which happens automagically with the new
1594  * implementation that only depends on the dcache stuff instead of
1595  * using the inode layer
1596  *
1597  * Unfortunately, things are a little more complicated than indicated
1598  * above. For a cross-directory move, we want to make sure we can get
1599  * rid of the old inode after the operation.  This means there must be
1600  * no pending writes (if it's a file), and the use count must be 1.
1601  * If these conditions are met, we can drop the dentries before doing
1602  * the rename.
1603  */
1604 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1605 		      struct inode *new_dir, struct dentry *new_dentry)
1606 {
1607 	struct inode *old_inode = old_dentry->d_inode;
1608 	struct inode *new_inode = new_dentry->d_inode;
1609 	struct dentry *dentry = NULL, *rehash = NULL;
1610 	int error = -EBUSY;
1611 
1612 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1613 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1614 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1615 		 atomic_read(&new_dentry->d_count));
1616 
1617 	/*
1618 	 * For non-directories, check whether the target is busy and if so,
1619 	 * make a copy of the dentry and then do a silly-rename. If the
1620 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1621 	 * the new target.
1622 	 */
1623 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1624 		/*
1625 		 * To prevent any new references to the target during the
1626 		 * rename, we unhash the dentry in advance.
1627 		 */
1628 		if (!d_unhashed(new_dentry)) {
1629 			d_drop(new_dentry);
1630 			rehash = new_dentry;
1631 		}
1632 
1633 		if (atomic_read(&new_dentry->d_count) > 2) {
1634 			int err;
1635 
1636 			/* copy the target dentry's name */
1637 			dentry = d_alloc(new_dentry->d_parent,
1638 					 &new_dentry->d_name);
1639 			if (!dentry)
1640 				goto out;
1641 
1642 			/* silly-rename the existing target ... */
1643 			err = nfs_sillyrename(new_dir, new_dentry);
1644 			if (err)
1645 				goto out;
1646 
1647 			new_dentry = dentry;
1648 			rehash = NULL;
1649 			new_inode = NULL;
1650 		}
1651 	}
1652 
1653 	/*
1654 	 * ... prune child dentries and writebacks if needed.
1655 	 */
1656 	if (atomic_read(&old_dentry->d_count) > 1) {
1657 		if (S_ISREG(old_inode->i_mode))
1658 			nfs_wb_all(old_inode);
1659 		shrink_dcache_parent(old_dentry);
1660 	}
1661 	nfs_inode_return_delegation(old_inode);
1662 
1663 	if (new_inode != NULL)
1664 		nfs_inode_return_delegation(new_inode);
1665 
1666 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1667 					   new_dir, &new_dentry->d_name);
1668 	nfs_mark_for_revalidate(old_inode);
1669 out:
1670 	if (rehash)
1671 		d_rehash(rehash);
1672 	if (!error) {
1673 		if (new_inode != NULL)
1674 			nfs_drop_nlink(new_inode);
1675 		d_move(old_dentry, new_dentry);
1676 		nfs_set_verifier(new_dentry,
1677 					nfs_save_change_attribute(new_dir));
1678 	} else if (error == -ENOENT)
1679 		nfs_dentry_handle_enoent(old_dentry);
1680 
1681 	/* new dentry created? */
1682 	if (dentry)
1683 		dput(dentry);
1684 	return error;
1685 }
1686 
1687 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1688 static LIST_HEAD(nfs_access_lru_list);
1689 static atomic_long_t nfs_access_nr_entries;
1690 
1691 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1692 {
1693 	put_rpccred(entry->cred);
1694 	kfree(entry);
1695 	smp_mb__before_atomic_dec();
1696 	atomic_long_dec(&nfs_access_nr_entries);
1697 	smp_mb__after_atomic_dec();
1698 }
1699 
1700 static void nfs_access_free_list(struct list_head *head)
1701 {
1702 	struct nfs_access_entry *cache;
1703 
1704 	while (!list_empty(head)) {
1705 		cache = list_entry(head->next, struct nfs_access_entry, lru);
1706 		list_del(&cache->lru);
1707 		nfs_access_free_entry(cache);
1708 	}
1709 }
1710 
1711 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1712 {
1713 	LIST_HEAD(head);
1714 	struct nfs_inode *nfsi;
1715 	struct nfs_access_entry *cache;
1716 
1717 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1718 		return (nr_to_scan == 0) ? 0 : -1;
1719 
1720 	spin_lock(&nfs_access_lru_lock);
1721 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1722 		struct inode *inode;
1723 
1724 		if (nr_to_scan-- == 0)
1725 			break;
1726 		inode = &nfsi->vfs_inode;
1727 		spin_lock(&inode->i_lock);
1728 		if (list_empty(&nfsi->access_cache_entry_lru))
1729 			goto remove_lru_entry;
1730 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1731 				struct nfs_access_entry, lru);
1732 		list_move(&cache->lru, &head);
1733 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1734 		if (!list_empty(&nfsi->access_cache_entry_lru))
1735 			list_move_tail(&nfsi->access_cache_inode_lru,
1736 					&nfs_access_lru_list);
1737 		else {
1738 remove_lru_entry:
1739 			list_del_init(&nfsi->access_cache_inode_lru);
1740 			smp_mb__before_clear_bit();
1741 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1742 			smp_mb__after_clear_bit();
1743 		}
1744 		spin_unlock(&inode->i_lock);
1745 	}
1746 	spin_unlock(&nfs_access_lru_lock);
1747 	nfs_access_free_list(&head);
1748 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1749 }
1750 
1751 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
1752 {
1753 	struct rb_root *root_node = &nfsi->access_cache;
1754 	struct rb_node *n;
1755 	struct nfs_access_entry *entry;
1756 
1757 	/* Unhook entries from the cache */
1758 	while ((n = rb_first(root_node)) != NULL) {
1759 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1760 		rb_erase(n, root_node);
1761 		list_move(&entry->lru, head);
1762 	}
1763 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1764 }
1765 
1766 void nfs_access_zap_cache(struct inode *inode)
1767 {
1768 	LIST_HEAD(head);
1769 
1770 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
1771 		return;
1772 	/* Remove from global LRU init */
1773 	spin_lock(&nfs_access_lru_lock);
1774 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1775 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1776 
1777 	spin_lock(&inode->i_lock);
1778 	__nfs_access_zap_cache(NFS_I(inode), &head);
1779 	spin_unlock(&inode->i_lock);
1780 	spin_unlock(&nfs_access_lru_lock);
1781 	nfs_access_free_list(&head);
1782 }
1783 
1784 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1785 {
1786 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1787 	struct nfs_access_entry *entry;
1788 
1789 	while (n != NULL) {
1790 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1791 
1792 		if (cred < entry->cred)
1793 			n = n->rb_left;
1794 		else if (cred > entry->cred)
1795 			n = n->rb_right;
1796 		else
1797 			return entry;
1798 	}
1799 	return NULL;
1800 }
1801 
1802 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1803 {
1804 	struct nfs_inode *nfsi = NFS_I(inode);
1805 	struct nfs_access_entry *cache;
1806 	int err = -ENOENT;
1807 
1808 	spin_lock(&inode->i_lock);
1809 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1810 		goto out_zap;
1811 	cache = nfs_access_search_rbtree(inode, cred);
1812 	if (cache == NULL)
1813 		goto out;
1814 	if (!nfs_have_delegated_attributes(inode) &&
1815 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1816 		goto out_stale;
1817 	res->jiffies = cache->jiffies;
1818 	res->cred = cache->cred;
1819 	res->mask = cache->mask;
1820 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1821 	err = 0;
1822 out:
1823 	spin_unlock(&inode->i_lock);
1824 	return err;
1825 out_stale:
1826 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1827 	list_del(&cache->lru);
1828 	spin_unlock(&inode->i_lock);
1829 	nfs_access_free_entry(cache);
1830 	return -ENOENT;
1831 out_zap:
1832 	spin_unlock(&inode->i_lock);
1833 	nfs_access_zap_cache(inode);
1834 	return -ENOENT;
1835 }
1836 
1837 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1838 {
1839 	struct nfs_inode *nfsi = NFS_I(inode);
1840 	struct rb_root *root_node = &nfsi->access_cache;
1841 	struct rb_node **p = &root_node->rb_node;
1842 	struct rb_node *parent = NULL;
1843 	struct nfs_access_entry *entry;
1844 
1845 	spin_lock(&inode->i_lock);
1846 	while (*p != NULL) {
1847 		parent = *p;
1848 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1849 
1850 		if (set->cred < entry->cred)
1851 			p = &parent->rb_left;
1852 		else if (set->cred > entry->cred)
1853 			p = &parent->rb_right;
1854 		else
1855 			goto found;
1856 	}
1857 	rb_link_node(&set->rb_node, parent, p);
1858 	rb_insert_color(&set->rb_node, root_node);
1859 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1860 	spin_unlock(&inode->i_lock);
1861 	return;
1862 found:
1863 	rb_replace_node(parent, &set->rb_node, root_node);
1864 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1865 	list_del(&entry->lru);
1866 	spin_unlock(&inode->i_lock);
1867 	nfs_access_free_entry(entry);
1868 }
1869 
1870 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1871 {
1872 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1873 	if (cache == NULL)
1874 		return;
1875 	RB_CLEAR_NODE(&cache->rb_node);
1876 	cache->jiffies = set->jiffies;
1877 	cache->cred = get_rpccred(set->cred);
1878 	cache->mask = set->mask;
1879 
1880 	nfs_access_add_rbtree(inode, cache);
1881 
1882 	/* Update accounting */
1883 	smp_mb__before_atomic_inc();
1884 	atomic_long_inc(&nfs_access_nr_entries);
1885 	smp_mb__after_atomic_inc();
1886 
1887 	/* Add inode to global LRU list */
1888 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1889 		spin_lock(&nfs_access_lru_lock);
1890 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
1891 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
1892 					&nfs_access_lru_list);
1893 		spin_unlock(&nfs_access_lru_lock);
1894 	}
1895 }
1896 
1897 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1898 {
1899 	struct nfs_access_entry cache;
1900 	int status;
1901 
1902 	status = nfs_access_get_cached(inode, cred, &cache);
1903 	if (status == 0)
1904 		goto out;
1905 
1906 	/* Be clever: ask server to check for all possible rights */
1907 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1908 	cache.cred = cred;
1909 	cache.jiffies = jiffies;
1910 	status = NFS_PROTO(inode)->access(inode, &cache);
1911 	if (status != 0) {
1912 		if (status == -ESTALE) {
1913 			nfs_zap_caches(inode);
1914 			if (!S_ISDIR(inode->i_mode))
1915 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
1916 		}
1917 		return status;
1918 	}
1919 	nfs_access_add_cache(inode, &cache);
1920 out:
1921 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1922 		return 0;
1923 	return -EACCES;
1924 }
1925 
1926 static int nfs_open_permission_mask(int openflags)
1927 {
1928 	int mask = 0;
1929 
1930 	if (openflags & FMODE_READ)
1931 		mask |= MAY_READ;
1932 	if (openflags & FMODE_WRITE)
1933 		mask |= MAY_WRITE;
1934 	if (openflags & FMODE_EXEC)
1935 		mask |= MAY_EXEC;
1936 	return mask;
1937 }
1938 
1939 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1940 {
1941 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1942 }
1943 
1944 int nfs_permission(struct inode *inode, int mask)
1945 {
1946 	struct rpc_cred *cred;
1947 	int res = 0;
1948 
1949 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1950 
1951 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
1952 		goto out;
1953 	/* Is this sys_access() ? */
1954 	if (mask & MAY_ACCESS)
1955 		goto force_lookup;
1956 
1957 	switch (inode->i_mode & S_IFMT) {
1958 		case S_IFLNK:
1959 			goto out;
1960 		case S_IFREG:
1961 			/* NFSv4 has atomic_open... */
1962 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1963 					&& (mask & MAY_OPEN)
1964 					&& !(mask & MAY_EXEC))
1965 				goto out;
1966 			break;
1967 		case S_IFDIR:
1968 			/*
1969 			 * Optimize away all write operations, since the server
1970 			 * will check permissions when we perform the op.
1971 			 */
1972 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1973 				goto out;
1974 	}
1975 
1976 force_lookup:
1977 	if (!NFS_PROTO(inode)->access)
1978 		goto out_notsup;
1979 
1980 	cred = rpc_lookup_cred();
1981 	if (!IS_ERR(cred)) {
1982 		res = nfs_do_access(inode, cred, mask);
1983 		put_rpccred(cred);
1984 	} else
1985 		res = PTR_ERR(cred);
1986 out:
1987 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
1988 		res = -EACCES;
1989 
1990 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1991 		inode->i_sb->s_id, inode->i_ino, mask, res);
1992 	return res;
1993 out_notsup:
1994 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1995 	if (res == 0)
1996 		res = generic_permission(inode, mask, NULL);
1997 	goto out;
1998 }
1999 
2000 /*
2001  * Local variables:
2002  *  version-control: t
2003  *  kept-new-versions: 5
2004  * End:
2005  */
2006