1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/time.h> 21 #include <linux/errno.h> 22 #include <linux/stat.h> 23 #include <linux/fcntl.h> 24 #include <linux/string.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/nfs_fs.h> 30 #include <linux/nfs_mount.h> 31 #include <linux/pagemap.h> 32 #include <linux/pagevec.h> 33 #include <linux/namei.h> 34 #include <linux/mount.h> 35 #include <linux/sched.h> 36 37 #include "nfs4_fs.h" 38 #include "delegation.h" 39 #include "iostat.h" 40 #include "internal.h" 41 42 /* #define NFS_DEBUG_VERBOSE 1 */ 43 44 static int nfs_opendir(struct inode *, struct file *); 45 static int nfs_readdir(struct file *, void *, filldir_t); 46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *); 47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *); 48 static int nfs_mkdir(struct inode *, struct dentry *, int); 49 static int nfs_rmdir(struct inode *, struct dentry *); 50 static int nfs_unlink(struct inode *, struct dentry *); 51 static int nfs_symlink(struct inode *, struct dentry *, const char *); 52 static int nfs_link(struct dentry *, struct inode *, struct dentry *); 53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t); 54 static int nfs_rename(struct inode *, struct dentry *, 55 struct inode *, struct dentry *); 56 static int nfs_fsync_dir(struct file *, struct dentry *, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 59 const struct file_operations nfs_dir_operations = { 60 .llseek = nfs_llseek_dir, 61 .read = generic_read_dir, 62 .readdir = nfs_readdir, 63 .open = nfs_opendir, 64 .release = nfs_release, 65 .fsync = nfs_fsync_dir, 66 }; 67 68 const struct inode_operations nfs_dir_inode_operations = { 69 .create = nfs_create, 70 .lookup = nfs_lookup, 71 .link = nfs_link, 72 .unlink = nfs_unlink, 73 .symlink = nfs_symlink, 74 .mkdir = nfs_mkdir, 75 .rmdir = nfs_rmdir, 76 .mknod = nfs_mknod, 77 .rename = nfs_rename, 78 .permission = nfs_permission, 79 .getattr = nfs_getattr, 80 .setattr = nfs_setattr, 81 }; 82 83 #ifdef CONFIG_NFS_V3 84 const struct inode_operations nfs3_dir_inode_operations = { 85 .create = nfs_create, 86 .lookup = nfs_lookup, 87 .link = nfs_link, 88 .unlink = nfs_unlink, 89 .symlink = nfs_symlink, 90 .mkdir = nfs_mkdir, 91 .rmdir = nfs_rmdir, 92 .mknod = nfs_mknod, 93 .rename = nfs_rename, 94 .permission = nfs_permission, 95 .getattr = nfs_getattr, 96 .setattr = nfs_setattr, 97 .listxattr = nfs3_listxattr, 98 .getxattr = nfs3_getxattr, 99 .setxattr = nfs3_setxattr, 100 .removexattr = nfs3_removexattr, 101 }; 102 #endif /* CONFIG_NFS_V3 */ 103 104 #ifdef CONFIG_NFS_V4 105 106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *); 107 const struct inode_operations nfs4_dir_inode_operations = { 108 .create = nfs_create, 109 .lookup = nfs_atomic_lookup, 110 .link = nfs_link, 111 .unlink = nfs_unlink, 112 .symlink = nfs_symlink, 113 .mkdir = nfs_mkdir, 114 .rmdir = nfs_rmdir, 115 .mknod = nfs_mknod, 116 .rename = nfs_rename, 117 .permission = nfs_permission, 118 .getattr = nfs_getattr, 119 .setattr = nfs_setattr, 120 .getxattr = nfs4_getxattr, 121 .setxattr = nfs4_setxattr, 122 .listxattr = nfs4_listxattr, 123 }; 124 125 #endif /* CONFIG_NFS_V4 */ 126 127 /* 128 * Open file 129 */ 130 static int 131 nfs_opendir(struct inode *inode, struct file *filp) 132 { 133 int res; 134 135 dfprintk(FILE, "NFS: open dir(%s/%s)\n", 136 filp->f_path.dentry->d_parent->d_name.name, 137 filp->f_path.dentry->d_name.name); 138 139 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 140 141 /* Call generic open code in order to cache credentials */ 142 res = nfs_open(inode, filp); 143 return res; 144 } 145 146 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int); 147 typedef struct { 148 struct file *file; 149 struct page *page; 150 unsigned long page_index; 151 __be32 *ptr; 152 u64 *dir_cookie; 153 loff_t current_index; 154 struct nfs_entry *entry; 155 decode_dirent_t decode; 156 int plus; 157 unsigned long timestamp; 158 unsigned long gencount; 159 int timestamp_valid; 160 } nfs_readdir_descriptor_t; 161 162 /* Now we cache directories properly, by stuffing the dirent 163 * data directly in the page cache. 164 * 165 * Inode invalidation due to refresh etc. takes care of 166 * _everything_, no sloppy entry flushing logic, no extraneous 167 * copying, network direct to page cache, the way it was meant 168 * to be. 169 * 170 * NOTE: Dirent information verification is done always by the 171 * page-in of the RPC reply, nowhere else, this simplies 172 * things substantially. 173 */ 174 static 175 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page) 176 { 177 struct file *file = desc->file; 178 struct inode *inode = file->f_path.dentry->d_inode; 179 struct rpc_cred *cred = nfs_file_cred(file); 180 unsigned long timestamp, gencount; 181 int error; 182 183 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n", 184 __func__, (long long)desc->entry->cookie, 185 page->index); 186 187 again: 188 timestamp = jiffies; 189 gencount = nfs_inc_attr_generation_counter(); 190 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page, 191 NFS_SERVER(inode)->dtsize, desc->plus); 192 if (error < 0) { 193 /* We requested READDIRPLUS, but the server doesn't grok it */ 194 if (error == -ENOTSUPP && desc->plus) { 195 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 196 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 197 desc->plus = 0; 198 goto again; 199 } 200 goto error; 201 } 202 desc->timestamp = timestamp; 203 desc->gencount = gencount; 204 desc->timestamp_valid = 1; 205 SetPageUptodate(page); 206 /* Ensure consistent page alignment of the data. 207 * Note: assumes we have exclusive access to this mapping either 208 * through inode->i_mutex or some other mechanism. 209 */ 210 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 211 /* Should never happen */ 212 nfs_zap_mapping(inode, inode->i_mapping); 213 } 214 unlock_page(page); 215 return 0; 216 error: 217 unlock_page(page); 218 return -EIO; 219 } 220 221 static inline 222 int dir_decode(nfs_readdir_descriptor_t *desc) 223 { 224 __be32 *p = desc->ptr; 225 p = desc->decode(p, desc->entry, desc->plus); 226 if (IS_ERR(p)) 227 return PTR_ERR(p); 228 desc->ptr = p; 229 if (desc->timestamp_valid) { 230 desc->entry->fattr->time_start = desc->timestamp; 231 desc->entry->fattr->gencount = desc->gencount; 232 } else 233 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR; 234 return 0; 235 } 236 237 static inline 238 void dir_page_release(nfs_readdir_descriptor_t *desc) 239 { 240 kunmap(desc->page); 241 page_cache_release(desc->page); 242 desc->page = NULL; 243 desc->ptr = NULL; 244 } 245 246 /* 247 * Given a pointer to a buffer that has already been filled by a call 248 * to readdir, find the next entry with cookie '*desc->dir_cookie'. 249 * 250 * If the end of the buffer has been reached, return -EAGAIN, if not, 251 * return the offset within the buffer of the next entry to be 252 * read. 253 */ 254 static inline 255 int find_dirent(nfs_readdir_descriptor_t *desc) 256 { 257 struct nfs_entry *entry = desc->entry; 258 int loop_count = 0, 259 status; 260 261 while((status = dir_decode(desc)) == 0) { 262 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n", 263 __func__, (unsigned long long)entry->cookie); 264 if (entry->prev_cookie == *desc->dir_cookie) 265 break; 266 if (loop_count++ > 200) { 267 loop_count = 0; 268 schedule(); 269 } 270 } 271 return status; 272 } 273 274 /* 275 * Given a pointer to a buffer that has already been filled by a call 276 * to readdir, find the entry at offset 'desc->file->f_pos'. 277 * 278 * If the end of the buffer has been reached, return -EAGAIN, if not, 279 * return the offset within the buffer of the next entry to be 280 * read. 281 */ 282 static inline 283 int find_dirent_index(nfs_readdir_descriptor_t *desc) 284 { 285 struct nfs_entry *entry = desc->entry; 286 int loop_count = 0, 287 status; 288 289 for(;;) { 290 status = dir_decode(desc); 291 if (status) 292 break; 293 294 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n", 295 (unsigned long long)entry->cookie, desc->current_index); 296 297 if (desc->file->f_pos == desc->current_index) { 298 *desc->dir_cookie = entry->cookie; 299 break; 300 } 301 desc->current_index++; 302 if (loop_count++ > 200) { 303 loop_count = 0; 304 schedule(); 305 } 306 } 307 return status; 308 } 309 310 /* 311 * Find the given page, and call find_dirent() or find_dirent_index in 312 * order to try to return the next entry. 313 */ 314 static inline 315 int find_dirent_page(nfs_readdir_descriptor_t *desc) 316 { 317 struct inode *inode = desc->file->f_path.dentry->d_inode; 318 struct page *page; 319 int status; 320 321 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n", 322 __func__, desc->page_index, 323 (long long) *desc->dir_cookie); 324 325 /* If we find the page in the page_cache, we cannot be sure 326 * how fresh the data is, so we will ignore readdir_plus attributes. 327 */ 328 desc->timestamp_valid = 0; 329 page = read_cache_page(inode->i_mapping, desc->page_index, 330 (filler_t *)nfs_readdir_filler, desc); 331 if (IS_ERR(page)) { 332 status = PTR_ERR(page); 333 goto out; 334 } 335 336 /* NOTE: Someone else may have changed the READDIRPLUS flag */ 337 desc->page = page; 338 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 339 if (*desc->dir_cookie != 0) 340 status = find_dirent(desc); 341 else 342 status = find_dirent_index(desc); 343 if (status < 0) 344 dir_page_release(desc); 345 out: 346 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); 347 return status; 348 } 349 350 /* 351 * Recurse through the page cache pages, and return a 352 * filled nfs_entry structure of the next directory entry if possible. 353 * 354 * The target for the search is '*desc->dir_cookie' if non-0, 355 * 'desc->file->f_pos' otherwise 356 */ 357 static inline 358 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 359 { 360 int loop_count = 0; 361 int res; 362 363 /* Always search-by-index from the beginning of the cache */ 364 if (*desc->dir_cookie == 0) { 365 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n", 366 (long long)desc->file->f_pos); 367 desc->page_index = 0; 368 desc->entry->cookie = desc->entry->prev_cookie = 0; 369 desc->entry->eof = 0; 370 desc->current_index = 0; 371 } else 372 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n", 373 (unsigned long long)*desc->dir_cookie); 374 375 for (;;) { 376 res = find_dirent_page(desc); 377 if (res != -EAGAIN) 378 break; 379 /* Align to beginning of next page */ 380 desc->page_index ++; 381 if (loop_count++ > 200) { 382 loop_count = 0; 383 schedule(); 384 } 385 } 386 387 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res); 388 return res; 389 } 390 391 static inline unsigned int dt_type(struct inode *inode) 392 { 393 return (inode->i_mode >> 12) & 15; 394 } 395 396 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc); 397 398 /* 399 * Once we've found the start of the dirent within a page: fill 'er up... 400 */ 401 static 402 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 403 filldir_t filldir) 404 { 405 struct file *file = desc->file; 406 struct nfs_entry *entry = desc->entry; 407 struct dentry *dentry = NULL; 408 u64 fileid; 409 int loop_count = 0, 410 res; 411 412 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n", 413 (unsigned long long)entry->cookie); 414 415 for(;;) { 416 unsigned d_type = DT_UNKNOWN; 417 /* Note: entry->prev_cookie contains the cookie for 418 * retrieving the current dirent on the server */ 419 fileid = entry->ino; 420 421 /* Get a dentry if we have one */ 422 if (dentry != NULL) 423 dput(dentry); 424 dentry = nfs_readdir_lookup(desc); 425 426 /* Use readdirplus info */ 427 if (dentry != NULL && dentry->d_inode != NULL) { 428 d_type = dt_type(dentry->d_inode); 429 fileid = NFS_FILEID(dentry->d_inode); 430 } 431 432 res = filldir(dirent, entry->name, entry->len, 433 file->f_pos, nfs_compat_user_ino64(fileid), 434 d_type); 435 if (res < 0) 436 break; 437 file->f_pos++; 438 *desc->dir_cookie = entry->cookie; 439 if (dir_decode(desc) != 0) { 440 desc->page_index ++; 441 break; 442 } 443 if (loop_count++ > 200) { 444 loop_count = 0; 445 schedule(); 446 } 447 } 448 dir_page_release(desc); 449 if (dentry != NULL) 450 dput(dentry); 451 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 452 (unsigned long long)*desc->dir_cookie, res); 453 return res; 454 } 455 456 /* 457 * If we cannot find a cookie in our cache, we suspect that this is 458 * because it points to a deleted file, so we ask the server to return 459 * whatever it thinks is the next entry. We then feed this to filldir. 460 * If all goes well, we should then be able to find our way round the 461 * cache on the next call to readdir_search_pagecache(); 462 * 463 * NOTE: we cannot add the anonymous page to the pagecache because 464 * the data it contains might not be page aligned. Besides, 465 * we should already have a complete representation of the 466 * directory in the page cache by the time we get here. 467 */ 468 static inline 469 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 470 filldir_t filldir) 471 { 472 struct file *file = desc->file; 473 struct inode *inode = file->f_path.dentry->d_inode; 474 struct rpc_cred *cred = nfs_file_cred(file); 475 struct page *page = NULL; 476 int status; 477 unsigned long timestamp, gencount; 478 479 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 480 (unsigned long long)*desc->dir_cookie); 481 482 page = alloc_page(GFP_HIGHUSER); 483 if (!page) { 484 status = -ENOMEM; 485 goto out; 486 } 487 timestamp = jiffies; 488 gencount = nfs_inc_attr_generation_counter(); 489 status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, 490 *desc->dir_cookie, page, 491 NFS_SERVER(inode)->dtsize, 492 desc->plus); 493 desc->page = page; 494 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 495 if (status >= 0) { 496 desc->timestamp = timestamp; 497 desc->gencount = gencount; 498 desc->timestamp_valid = 1; 499 if ((status = dir_decode(desc)) == 0) 500 desc->entry->prev_cookie = *desc->dir_cookie; 501 } else 502 status = -EIO; 503 if (status < 0) 504 goto out_release; 505 506 status = nfs_do_filldir(desc, dirent, filldir); 507 508 /* Reset read descriptor so it searches the page cache from 509 * the start upon the next call to readdir_search_pagecache() */ 510 desc->page_index = 0; 511 desc->entry->cookie = desc->entry->prev_cookie = 0; 512 desc->entry->eof = 0; 513 out: 514 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 515 __func__, status); 516 return status; 517 out_release: 518 dir_page_release(desc); 519 goto out; 520 } 521 522 /* The file offset position represents the dirent entry number. A 523 last cookie cache takes care of the common case of reading the 524 whole directory. 525 */ 526 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 527 { 528 struct dentry *dentry = filp->f_path.dentry; 529 struct inode *inode = dentry->d_inode; 530 nfs_readdir_descriptor_t my_desc, 531 *desc = &my_desc; 532 struct nfs_entry my_entry; 533 int res = -ENOMEM; 534 535 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n", 536 dentry->d_parent->d_name.name, dentry->d_name.name, 537 (long long)filp->f_pos); 538 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 539 540 /* 541 * filp->f_pos points to the dirent entry number. 542 * *desc->dir_cookie has the cookie for the next entry. We have 543 * to either find the entry with the appropriate number or 544 * revalidate the cookie. 545 */ 546 memset(desc, 0, sizeof(*desc)); 547 548 desc->file = filp; 549 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie; 550 desc->decode = NFS_PROTO(inode)->decode_dirent; 551 desc->plus = NFS_USE_READDIRPLUS(inode); 552 553 my_entry.cookie = my_entry.prev_cookie = 0; 554 my_entry.eof = 0; 555 my_entry.fh = nfs_alloc_fhandle(); 556 my_entry.fattr = nfs_alloc_fattr(); 557 if (my_entry.fh == NULL || my_entry.fattr == NULL) 558 goto out_alloc_failed; 559 560 desc->entry = &my_entry; 561 562 nfs_block_sillyrename(dentry); 563 res = nfs_revalidate_mapping(inode, filp->f_mapping); 564 if (res < 0) 565 goto out; 566 567 while(!desc->entry->eof) { 568 res = readdir_search_pagecache(desc); 569 570 if (res == -EBADCOOKIE) { 571 /* This means either end of directory */ 572 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) { 573 /* Or that the server has 'lost' a cookie */ 574 res = uncached_readdir(desc, dirent, filldir); 575 if (res >= 0) 576 continue; 577 } 578 res = 0; 579 break; 580 } 581 if (res == -ETOOSMALL && desc->plus) { 582 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 583 nfs_zap_caches(inode); 584 desc->plus = 0; 585 desc->entry->eof = 0; 586 continue; 587 } 588 if (res < 0) 589 break; 590 591 res = nfs_do_filldir(desc, dirent, filldir); 592 if (res < 0) { 593 res = 0; 594 break; 595 } 596 } 597 out: 598 nfs_unblock_sillyrename(dentry); 599 if (res > 0) 600 res = 0; 601 out_alloc_failed: 602 nfs_free_fattr(my_entry.fattr); 603 nfs_free_fhandle(my_entry.fh); 604 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n", 605 dentry->d_parent->d_name.name, dentry->d_name.name, 606 res); 607 return res; 608 } 609 610 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 611 { 612 struct dentry *dentry = filp->f_path.dentry; 613 struct inode *inode = dentry->d_inode; 614 615 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n", 616 dentry->d_parent->d_name.name, 617 dentry->d_name.name, 618 offset, origin); 619 620 mutex_lock(&inode->i_mutex); 621 switch (origin) { 622 case 1: 623 offset += filp->f_pos; 624 case 0: 625 if (offset >= 0) 626 break; 627 default: 628 offset = -EINVAL; 629 goto out; 630 } 631 if (offset != filp->f_pos) { 632 filp->f_pos = offset; 633 nfs_file_open_context(filp)->dir_cookie = 0; 634 } 635 out: 636 mutex_unlock(&inode->i_mutex); 637 return offset; 638 } 639 640 /* 641 * All directory operations under NFS are synchronous, so fsync() 642 * is a dummy operation. 643 */ 644 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync) 645 { 646 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n", 647 dentry->d_parent->d_name.name, dentry->d_name.name, 648 datasync); 649 650 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC); 651 return 0; 652 } 653 654 /** 655 * nfs_force_lookup_revalidate - Mark the directory as having changed 656 * @dir - pointer to directory inode 657 * 658 * This forces the revalidation code in nfs_lookup_revalidate() to do a 659 * full lookup on all child dentries of 'dir' whenever a change occurs 660 * on the server that might have invalidated our dcache. 661 * 662 * The caller should be holding dir->i_lock 663 */ 664 void nfs_force_lookup_revalidate(struct inode *dir) 665 { 666 NFS_I(dir)->cache_change_attribute++; 667 } 668 669 /* 670 * A check for whether or not the parent directory has changed. 671 * In the case it has, we assume that the dentries are untrustworthy 672 * and may need to be looked up again. 673 */ 674 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 675 { 676 if (IS_ROOT(dentry)) 677 return 1; 678 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 679 return 0; 680 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 681 return 0; 682 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 683 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 684 return 0; 685 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 686 return 0; 687 return 1; 688 } 689 690 /* 691 * Return the intent data that applies to this particular path component 692 * 693 * Note that the current set of intents only apply to the very last 694 * component of the path. 695 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT. 696 */ 697 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask) 698 { 699 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT)) 700 return 0; 701 return nd->flags & mask; 702 } 703 704 /* 705 * Use intent information to check whether or not we're going to do 706 * an O_EXCL create using this path component. 707 */ 708 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd) 709 { 710 if (NFS_PROTO(dir)->version == 2) 711 return 0; 712 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL); 713 } 714 715 /* 716 * Inode and filehandle revalidation for lookups. 717 * 718 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 719 * or if the intent information indicates that we're about to open this 720 * particular file and the "nocto" mount flag is not set. 721 * 722 */ 723 static inline 724 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd) 725 { 726 struct nfs_server *server = NFS_SERVER(inode); 727 728 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags)) 729 return 0; 730 if (nd != NULL) { 731 /* VFS wants an on-the-wire revalidation */ 732 if (nd->flags & LOOKUP_REVAL) 733 goto out_force; 734 /* This is an open(2) */ 735 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 && 736 !(server->flags & NFS_MOUNT_NOCTO) && 737 (S_ISREG(inode->i_mode) || 738 S_ISDIR(inode->i_mode))) 739 goto out_force; 740 return 0; 741 } 742 return nfs_revalidate_inode(server, inode); 743 out_force: 744 return __nfs_revalidate_inode(server, inode); 745 } 746 747 /* 748 * We judge how long we want to trust negative 749 * dentries by looking at the parent inode mtime. 750 * 751 * If parent mtime has changed, we revalidate, else we wait for a 752 * period corresponding to the parent's attribute cache timeout value. 753 */ 754 static inline 755 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 756 struct nameidata *nd) 757 { 758 /* Don't revalidate a negative dentry if we're creating a new file */ 759 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0) 760 return 0; 761 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 762 return 1; 763 return !nfs_check_verifier(dir, dentry); 764 } 765 766 /* 767 * This is called every time the dcache has a lookup hit, 768 * and we should check whether we can really trust that 769 * lookup. 770 * 771 * NOTE! The hit can be a negative hit too, don't assume 772 * we have an inode! 773 * 774 * If the parent directory is seen to have changed, we throw out the 775 * cached dentry and do a new lookup. 776 */ 777 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd) 778 { 779 struct inode *dir; 780 struct inode *inode; 781 struct dentry *parent; 782 struct nfs_fh *fhandle = NULL; 783 struct nfs_fattr *fattr = NULL; 784 int error; 785 786 parent = dget_parent(dentry); 787 dir = parent->d_inode; 788 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 789 inode = dentry->d_inode; 790 791 if (!inode) { 792 if (nfs_neg_need_reval(dir, dentry, nd)) 793 goto out_bad; 794 goto out_valid; 795 } 796 797 if (is_bad_inode(inode)) { 798 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 799 __func__, dentry->d_parent->d_name.name, 800 dentry->d_name.name); 801 goto out_bad; 802 } 803 804 if (nfs_have_delegation(inode, FMODE_READ)) 805 goto out_set_verifier; 806 807 /* Force a full look up iff the parent directory has changed */ 808 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) { 809 if (nfs_lookup_verify_inode(inode, nd)) 810 goto out_zap_parent; 811 goto out_valid; 812 } 813 814 if (NFS_STALE(inode)) 815 goto out_bad; 816 817 error = -ENOMEM; 818 fhandle = nfs_alloc_fhandle(); 819 fattr = nfs_alloc_fattr(); 820 if (fhandle == NULL || fattr == NULL) 821 goto out_error; 822 823 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 824 if (error) 825 goto out_bad; 826 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 827 goto out_bad; 828 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 829 goto out_bad; 830 831 nfs_free_fattr(fattr); 832 nfs_free_fhandle(fhandle); 833 out_set_verifier: 834 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 835 out_valid: 836 dput(parent); 837 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 838 __func__, dentry->d_parent->d_name.name, 839 dentry->d_name.name); 840 return 1; 841 out_zap_parent: 842 nfs_zap_caches(dir); 843 out_bad: 844 nfs_mark_for_revalidate(dir); 845 if (inode && S_ISDIR(inode->i_mode)) { 846 /* Purge readdir caches. */ 847 nfs_zap_caches(inode); 848 /* If we have submounts, don't unhash ! */ 849 if (have_submounts(dentry)) 850 goto out_valid; 851 if (dentry->d_flags & DCACHE_DISCONNECTED) 852 goto out_valid; 853 shrink_dcache_parent(dentry); 854 } 855 d_drop(dentry); 856 nfs_free_fattr(fattr); 857 nfs_free_fhandle(fhandle); 858 dput(parent); 859 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 860 __func__, dentry->d_parent->d_name.name, 861 dentry->d_name.name); 862 return 0; 863 out_error: 864 nfs_free_fattr(fattr); 865 nfs_free_fhandle(fhandle); 866 dput(parent); 867 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n", 868 __func__, dentry->d_parent->d_name.name, 869 dentry->d_name.name, error); 870 return error; 871 } 872 873 /* 874 * This is called from dput() when d_count is going to 0. 875 */ 876 static int nfs_dentry_delete(struct dentry *dentry) 877 { 878 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 879 dentry->d_parent->d_name.name, dentry->d_name.name, 880 dentry->d_flags); 881 882 /* Unhash any dentry with a stale inode */ 883 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 884 return 1; 885 886 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 887 /* Unhash it, so that ->d_iput() would be called */ 888 return 1; 889 } 890 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 891 /* Unhash it, so that ancestors of killed async unlink 892 * files will be cleaned up during umount */ 893 return 1; 894 } 895 return 0; 896 897 } 898 899 static void nfs_drop_nlink(struct inode *inode) 900 { 901 spin_lock(&inode->i_lock); 902 if (inode->i_nlink > 0) 903 drop_nlink(inode); 904 spin_unlock(&inode->i_lock); 905 } 906 907 /* 908 * Called when the dentry loses inode. 909 * We use it to clean up silly-renamed files. 910 */ 911 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 912 { 913 if (S_ISDIR(inode->i_mode)) 914 /* drop any readdir cache as it could easily be old */ 915 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 916 917 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 918 drop_nlink(inode); 919 nfs_complete_unlink(dentry, inode); 920 } 921 iput(inode); 922 } 923 924 const struct dentry_operations nfs_dentry_operations = { 925 .d_revalidate = nfs_lookup_revalidate, 926 .d_delete = nfs_dentry_delete, 927 .d_iput = nfs_dentry_iput, 928 }; 929 930 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 931 { 932 struct dentry *res; 933 struct dentry *parent; 934 struct inode *inode = NULL; 935 struct nfs_fh *fhandle = NULL; 936 struct nfs_fattr *fattr = NULL; 937 int error; 938 939 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 940 dentry->d_parent->d_name.name, dentry->d_name.name); 941 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 942 943 res = ERR_PTR(-ENAMETOOLONG); 944 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 945 goto out; 946 947 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 948 949 /* 950 * If we're doing an exclusive create, optimize away the lookup 951 * but don't hash the dentry. 952 */ 953 if (nfs_is_exclusive_create(dir, nd)) { 954 d_instantiate(dentry, NULL); 955 res = NULL; 956 goto out; 957 } 958 959 res = ERR_PTR(-ENOMEM); 960 fhandle = nfs_alloc_fhandle(); 961 fattr = nfs_alloc_fattr(); 962 if (fhandle == NULL || fattr == NULL) 963 goto out; 964 965 parent = dentry->d_parent; 966 /* Protect against concurrent sillydeletes */ 967 nfs_block_sillyrename(parent); 968 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 969 if (error == -ENOENT) 970 goto no_entry; 971 if (error < 0) { 972 res = ERR_PTR(error); 973 goto out_unblock_sillyrename; 974 } 975 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 976 res = (struct dentry *)inode; 977 if (IS_ERR(res)) 978 goto out_unblock_sillyrename; 979 980 no_entry: 981 res = d_materialise_unique(dentry, inode); 982 if (res != NULL) { 983 if (IS_ERR(res)) 984 goto out_unblock_sillyrename; 985 dentry = res; 986 } 987 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 988 out_unblock_sillyrename: 989 nfs_unblock_sillyrename(parent); 990 out: 991 nfs_free_fattr(fattr); 992 nfs_free_fhandle(fhandle); 993 return res; 994 } 995 996 #ifdef CONFIG_NFS_V4 997 static int nfs_open_revalidate(struct dentry *, struct nameidata *); 998 999 const struct dentry_operations nfs4_dentry_operations = { 1000 .d_revalidate = nfs_open_revalidate, 1001 .d_delete = nfs_dentry_delete, 1002 .d_iput = nfs_dentry_iput, 1003 }; 1004 1005 /* 1006 * Use intent information to determine whether we need to substitute 1007 * the NFSv4-style stateful OPEN for the LOOKUP call 1008 */ 1009 static int is_atomic_open(struct nameidata *nd) 1010 { 1011 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0) 1012 return 0; 1013 /* NFS does not (yet) have a stateful open for directories */ 1014 if (nd->flags & LOOKUP_DIRECTORY) 1015 return 0; 1016 /* Are we trying to write to a read only partition? */ 1017 if (__mnt_is_readonly(nd->path.mnt) && 1018 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE))) 1019 return 0; 1020 return 1; 1021 } 1022 1023 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 1024 { 1025 struct dentry *res = NULL; 1026 int error; 1027 1028 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n", 1029 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1030 1031 /* Check that we are indeed trying to open this file */ 1032 if (!is_atomic_open(nd)) 1033 goto no_open; 1034 1035 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) { 1036 res = ERR_PTR(-ENAMETOOLONG); 1037 goto out; 1038 } 1039 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1040 1041 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash 1042 * the dentry. */ 1043 if (nd->flags & LOOKUP_EXCL) { 1044 d_instantiate(dentry, NULL); 1045 goto out; 1046 } 1047 1048 /* Open the file on the server */ 1049 res = nfs4_atomic_open(dir, dentry, nd); 1050 if (IS_ERR(res)) { 1051 error = PTR_ERR(res); 1052 switch (error) { 1053 /* Make a negative dentry */ 1054 case -ENOENT: 1055 res = NULL; 1056 goto out; 1057 /* This turned out not to be a regular file */ 1058 case -EISDIR: 1059 case -ENOTDIR: 1060 goto no_open; 1061 case -ELOOP: 1062 if (!(nd->intent.open.flags & O_NOFOLLOW)) 1063 goto no_open; 1064 /* case -EINVAL: */ 1065 default: 1066 goto out; 1067 } 1068 } else if (res != NULL) 1069 dentry = res; 1070 out: 1071 return res; 1072 no_open: 1073 return nfs_lookup(dir, dentry, nd); 1074 } 1075 1076 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd) 1077 { 1078 struct dentry *parent = NULL; 1079 struct inode *inode = dentry->d_inode; 1080 struct inode *dir; 1081 int openflags, ret = 0; 1082 1083 if (!is_atomic_open(nd) || d_mountpoint(dentry)) 1084 goto no_open; 1085 parent = dget_parent(dentry); 1086 dir = parent->d_inode; 1087 /* We can't create new files in nfs_open_revalidate(), so we 1088 * optimize away revalidation of negative dentries. 1089 */ 1090 if (inode == NULL) { 1091 if (!nfs_neg_need_reval(dir, dentry, nd)) 1092 ret = 1; 1093 goto out; 1094 } 1095 1096 /* NFS only supports OPEN on regular files */ 1097 if (!S_ISREG(inode->i_mode)) 1098 goto no_open_dput; 1099 openflags = nd->intent.open.flags; 1100 /* We cannot do exclusive creation on a positive dentry */ 1101 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 1102 goto no_open_dput; 1103 /* We can't create new files, or truncate existing ones here */ 1104 openflags &= ~(O_CREAT|O_TRUNC); 1105 1106 /* 1107 * Note: we're not holding inode->i_mutex and so may be racing with 1108 * operations that change the directory. We therefore save the 1109 * change attribute *before* we do the RPC call. 1110 */ 1111 ret = nfs4_open_revalidate(dir, dentry, openflags, nd); 1112 out: 1113 dput(parent); 1114 if (!ret) 1115 d_drop(dentry); 1116 return ret; 1117 no_open_dput: 1118 dput(parent); 1119 no_open: 1120 return nfs_lookup_revalidate(dentry, nd); 1121 } 1122 #endif /* CONFIG_NFSV4 */ 1123 1124 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc) 1125 { 1126 struct dentry *parent = desc->file->f_path.dentry; 1127 struct inode *dir = parent->d_inode; 1128 struct nfs_entry *entry = desc->entry; 1129 struct dentry *dentry, *alias; 1130 struct qstr name = { 1131 .name = entry->name, 1132 .len = entry->len, 1133 }; 1134 struct inode *inode; 1135 unsigned long verf = nfs_save_change_attribute(dir); 1136 1137 switch (name.len) { 1138 case 2: 1139 if (name.name[0] == '.' && name.name[1] == '.') 1140 return dget_parent(parent); 1141 break; 1142 case 1: 1143 if (name.name[0] == '.') 1144 return dget(parent); 1145 } 1146 1147 spin_lock(&dir->i_lock); 1148 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) { 1149 spin_unlock(&dir->i_lock); 1150 return NULL; 1151 } 1152 spin_unlock(&dir->i_lock); 1153 1154 name.hash = full_name_hash(name.name, name.len); 1155 dentry = d_lookup(parent, &name); 1156 if (dentry != NULL) { 1157 /* Is this a positive dentry that matches the readdir info? */ 1158 if (dentry->d_inode != NULL && 1159 (NFS_FILEID(dentry->d_inode) == entry->ino || 1160 d_mountpoint(dentry))) { 1161 if (!desc->plus || entry->fh->size == 0) 1162 return dentry; 1163 if (nfs_compare_fh(NFS_FH(dentry->d_inode), 1164 entry->fh) == 0) 1165 goto out_renew; 1166 } 1167 /* No, so d_drop to allow one to be created */ 1168 d_drop(dentry); 1169 dput(dentry); 1170 } 1171 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR)) 1172 return NULL; 1173 if (name.len > NFS_SERVER(dir)->namelen) 1174 return NULL; 1175 /* Note: caller is already holding the dir->i_mutex! */ 1176 dentry = d_alloc(parent, &name); 1177 if (dentry == NULL) 1178 return NULL; 1179 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1180 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 1181 if (IS_ERR(inode)) { 1182 dput(dentry); 1183 return NULL; 1184 } 1185 1186 alias = d_materialise_unique(dentry, inode); 1187 if (alias != NULL) { 1188 dput(dentry); 1189 if (IS_ERR(alias)) 1190 return NULL; 1191 dentry = alias; 1192 } 1193 1194 out_renew: 1195 nfs_set_verifier(dentry, verf); 1196 return dentry; 1197 } 1198 1199 /* 1200 * Code common to create, mkdir, and mknod. 1201 */ 1202 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1203 struct nfs_fattr *fattr) 1204 { 1205 struct dentry *parent = dget_parent(dentry); 1206 struct inode *dir = parent->d_inode; 1207 struct inode *inode; 1208 int error = -EACCES; 1209 1210 d_drop(dentry); 1211 1212 /* We may have been initialized further down */ 1213 if (dentry->d_inode) 1214 goto out; 1215 if (fhandle->size == 0) { 1216 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1217 if (error) 1218 goto out_error; 1219 } 1220 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1221 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1222 struct nfs_server *server = NFS_SB(dentry->d_sb); 1223 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1224 if (error < 0) 1225 goto out_error; 1226 } 1227 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1228 error = PTR_ERR(inode); 1229 if (IS_ERR(inode)) 1230 goto out_error; 1231 d_add(dentry, inode); 1232 out: 1233 dput(parent); 1234 return 0; 1235 out_error: 1236 nfs_mark_for_revalidate(dir); 1237 dput(parent); 1238 return error; 1239 } 1240 1241 /* 1242 * Following a failed create operation, we drop the dentry rather 1243 * than retain a negative dentry. This avoids a problem in the event 1244 * that the operation succeeded on the server, but an error in the 1245 * reply path made it appear to have failed. 1246 */ 1247 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode, 1248 struct nameidata *nd) 1249 { 1250 struct iattr attr; 1251 int error; 1252 int open_flags = 0; 1253 1254 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1255 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1256 1257 attr.ia_mode = mode; 1258 attr.ia_valid = ATTR_MODE; 1259 1260 if ((nd->flags & LOOKUP_CREATE) != 0) 1261 open_flags = nd->intent.open.flags; 1262 1263 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd); 1264 if (error != 0) 1265 goto out_err; 1266 return 0; 1267 out_err: 1268 d_drop(dentry); 1269 return error; 1270 } 1271 1272 /* 1273 * See comments for nfs_proc_create regarding failed operations. 1274 */ 1275 static int 1276 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) 1277 { 1278 struct iattr attr; 1279 int status; 1280 1281 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1282 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1283 1284 if (!new_valid_dev(rdev)) 1285 return -EINVAL; 1286 1287 attr.ia_mode = mode; 1288 attr.ia_valid = ATTR_MODE; 1289 1290 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1291 if (status != 0) 1292 goto out_err; 1293 return 0; 1294 out_err: 1295 d_drop(dentry); 1296 return status; 1297 } 1298 1299 /* 1300 * See comments for nfs_proc_create regarding failed operations. 1301 */ 1302 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1303 { 1304 struct iattr attr; 1305 int error; 1306 1307 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1308 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1309 1310 attr.ia_valid = ATTR_MODE; 1311 attr.ia_mode = mode | S_IFDIR; 1312 1313 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1314 if (error != 0) 1315 goto out_err; 1316 return 0; 1317 out_err: 1318 d_drop(dentry); 1319 return error; 1320 } 1321 1322 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1323 { 1324 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1325 d_delete(dentry); 1326 } 1327 1328 static int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1329 { 1330 int error; 1331 1332 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1333 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1334 1335 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1336 /* Ensure the VFS deletes this inode */ 1337 if (error == 0 && dentry->d_inode != NULL) 1338 clear_nlink(dentry->d_inode); 1339 else if (error == -ENOENT) 1340 nfs_dentry_handle_enoent(dentry); 1341 1342 return error; 1343 } 1344 1345 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry) 1346 { 1347 static unsigned int sillycounter; 1348 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2; 1349 const int countersize = sizeof(sillycounter)*2; 1350 const int slen = sizeof(".nfs")+fileidsize+countersize-1; 1351 char silly[slen+1]; 1352 struct qstr qsilly; 1353 struct dentry *sdentry; 1354 int error = -EIO; 1355 1356 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n", 1357 dentry->d_parent->d_name.name, dentry->d_name.name, 1358 atomic_read(&dentry->d_count)); 1359 nfs_inc_stats(dir, NFSIOS_SILLYRENAME); 1360 1361 /* 1362 * We don't allow a dentry to be silly-renamed twice. 1363 */ 1364 error = -EBUSY; 1365 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1366 goto out; 1367 1368 sprintf(silly, ".nfs%*.*Lx", 1369 fileidsize, fileidsize, 1370 (unsigned long long)NFS_FILEID(dentry->d_inode)); 1371 1372 /* Return delegation in anticipation of the rename */ 1373 nfs_inode_return_delegation(dentry->d_inode); 1374 1375 sdentry = NULL; 1376 do { 1377 char *suffix = silly + slen - countersize; 1378 1379 dput(sdentry); 1380 sillycounter++; 1381 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter); 1382 1383 dfprintk(VFS, "NFS: trying to rename %s to %s\n", 1384 dentry->d_name.name, silly); 1385 1386 sdentry = lookup_one_len(silly, dentry->d_parent, slen); 1387 /* 1388 * N.B. Better to return EBUSY here ... it could be 1389 * dangerous to delete the file while it's in use. 1390 */ 1391 if (IS_ERR(sdentry)) 1392 goto out; 1393 } while(sdentry->d_inode != NULL); /* need negative lookup */ 1394 1395 qsilly.name = silly; 1396 qsilly.len = strlen(silly); 1397 if (dentry->d_inode) { 1398 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1399 dir, &qsilly); 1400 nfs_mark_for_revalidate(dentry->d_inode); 1401 } else 1402 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1403 dir, &qsilly); 1404 if (!error) { 1405 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1406 d_move(dentry, sdentry); 1407 error = nfs_async_unlink(dir, dentry); 1408 /* If we return 0 we don't unlink */ 1409 } 1410 dput(sdentry); 1411 out: 1412 return error; 1413 } 1414 1415 /* 1416 * Remove a file after making sure there are no pending writes, 1417 * and after checking that the file has only one user. 1418 * 1419 * We invalidate the attribute cache and free the inode prior to the operation 1420 * to avoid possible races if the server reuses the inode. 1421 */ 1422 static int nfs_safe_remove(struct dentry *dentry) 1423 { 1424 struct inode *dir = dentry->d_parent->d_inode; 1425 struct inode *inode = dentry->d_inode; 1426 int error = -EBUSY; 1427 1428 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1429 dentry->d_parent->d_name.name, dentry->d_name.name); 1430 1431 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1432 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1433 error = 0; 1434 goto out; 1435 } 1436 1437 if (inode != NULL) { 1438 nfs_inode_return_delegation(inode); 1439 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1440 /* The VFS may want to delete this inode */ 1441 if (error == 0) 1442 nfs_drop_nlink(inode); 1443 nfs_mark_for_revalidate(inode); 1444 } else 1445 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1446 if (error == -ENOENT) 1447 nfs_dentry_handle_enoent(dentry); 1448 out: 1449 return error; 1450 } 1451 1452 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1453 * belongs to an active ".nfs..." file and we return -EBUSY. 1454 * 1455 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1456 */ 1457 static int nfs_unlink(struct inode *dir, struct dentry *dentry) 1458 { 1459 int error; 1460 int need_rehash = 0; 1461 1462 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1463 dir->i_ino, dentry->d_name.name); 1464 1465 spin_lock(&dcache_lock); 1466 spin_lock(&dentry->d_lock); 1467 if (atomic_read(&dentry->d_count) > 1) { 1468 spin_unlock(&dentry->d_lock); 1469 spin_unlock(&dcache_lock); 1470 /* Start asynchronous writeout of the inode */ 1471 write_inode_now(dentry->d_inode, 0); 1472 error = nfs_sillyrename(dir, dentry); 1473 return error; 1474 } 1475 if (!d_unhashed(dentry)) { 1476 __d_drop(dentry); 1477 need_rehash = 1; 1478 } 1479 spin_unlock(&dentry->d_lock); 1480 spin_unlock(&dcache_lock); 1481 error = nfs_safe_remove(dentry); 1482 if (!error || error == -ENOENT) { 1483 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1484 } else if (need_rehash) 1485 d_rehash(dentry); 1486 return error; 1487 } 1488 1489 /* 1490 * To create a symbolic link, most file systems instantiate a new inode, 1491 * add a page to it containing the path, then write it out to the disk 1492 * using prepare_write/commit_write. 1493 * 1494 * Unfortunately the NFS client can't create the in-core inode first 1495 * because it needs a file handle to create an in-core inode (see 1496 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1497 * symlink request has completed on the server. 1498 * 1499 * So instead we allocate a raw page, copy the symname into it, then do 1500 * the SYMLINK request with the page as the buffer. If it succeeds, we 1501 * now have a new file handle and can instantiate an in-core NFS inode 1502 * and move the raw page into its mapping. 1503 */ 1504 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1505 { 1506 struct pagevec lru_pvec; 1507 struct page *page; 1508 char *kaddr; 1509 struct iattr attr; 1510 unsigned int pathlen = strlen(symname); 1511 int error; 1512 1513 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1514 dir->i_ino, dentry->d_name.name, symname); 1515 1516 if (pathlen > PAGE_SIZE) 1517 return -ENAMETOOLONG; 1518 1519 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1520 attr.ia_valid = ATTR_MODE; 1521 1522 page = alloc_page(GFP_HIGHUSER); 1523 if (!page) 1524 return -ENOMEM; 1525 1526 kaddr = kmap_atomic(page, KM_USER0); 1527 memcpy(kaddr, symname, pathlen); 1528 if (pathlen < PAGE_SIZE) 1529 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1530 kunmap_atomic(kaddr, KM_USER0); 1531 1532 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1533 if (error != 0) { 1534 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1535 dir->i_sb->s_id, dir->i_ino, 1536 dentry->d_name.name, symname, error); 1537 d_drop(dentry); 1538 __free_page(page); 1539 return error; 1540 } 1541 1542 /* 1543 * No big deal if we can't add this page to the page cache here. 1544 * READLINK will get the missing page from the server if needed. 1545 */ 1546 pagevec_init(&lru_pvec, 0); 1547 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1548 GFP_KERNEL)) { 1549 pagevec_add(&lru_pvec, page); 1550 pagevec_lru_add_file(&lru_pvec); 1551 SetPageUptodate(page); 1552 unlock_page(page); 1553 } else 1554 __free_page(page); 1555 1556 return 0; 1557 } 1558 1559 static int 1560 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1561 { 1562 struct inode *inode = old_dentry->d_inode; 1563 int error; 1564 1565 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1566 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1567 dentry->d_parent->d_name.name, dentry->d_name.name); 1568 1569 nfs_inode_return_delegation(inode); 1570 1571 d_drop(dentry); 1572 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1573 if (error == 0) { 1574 atomic_inc(&inode->i_count); 1575 d_add(dentry, inode); 1576 } 1577 return error; 1578 } 1579 1580 /* 1581 * RENAME 1582 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1583 * different file handle for the same inode after a rename (e.g. when 1584 * moving to a different directory). A fail-safe method to do so would 1585 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1586 * rename the old file using the sillyrename stuff. This way, the original 1587 * file in old_dir will go away when the last process iput()s the inode. 1588 * 1589 * FIXED. 1590 * 1591 * It actually works quite well. One needs to have the possibility for 1592 * at least one ".nfs..." file in each directory the file ever gets 1593 * moved or linked to which happens automagically with the new 1594 * implementation that only depends on the dcache stuff instead of 1595 * using the inode layer 1596 * 1597 * Unfortunately, things are a little more complicated than indicated 1598 * above. For a cross-directory move, we want to make sure we can get 1599 * rid of the old inode after the operation. This means there must be 1600 * no pending writes (if it's a file), and the use count must be 1. 1601 * If these conditions are met, we can drop the dentries before doing 1602 * the rename. 1603 */ 1604 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1605 struct inode *new_dir, struct dentry *new_dentry) 1606 { 1607 struct inode *old_inode = old_dentry->d_inode; 1608 struct inode *new_inode = new_dentry->d_inode; 1609 struct dentry *dentry = NULL, *rehash = NULL; 1610 int error = -EBUSY; 1611 1612 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1613 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1614 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1615 atomic_read(&new_dentry->d_count)); 1616 1617 /* 1618 * For non-directories, check whether the target is busy and if so, 1619 * make a copy of the dentry and then do a silly-rename. If the 1620 * silly-rename succeeds, the copied dentry is hashed and becomes 1621 * the new target. 1622 */ 1623 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1624 /* 1625 * To prevent any new references to the target during the 1626 * rename, we unhash the dentry in advance. 1627 */ 1628 if (!d_unhashed(new_dentry)) { 1629 d_drop(new_dentry); 1630 rehash = new_dentry; 1631 } 1632 1633 if (atomic_read(&new_dentry->d_count) > 2) { 1634 int err; 1635 1636 /* copy the target dentry's name */ 1637 dentry = d_alloc(new_dentry->d_parent, 1638 &new_dentry->d_name); 1639 if (!dentry) 1640 goto out; 1641 1642 /* silly-rename the existing target ... */ 1643 err = nfs_sillyrename(new_dir, new_dentry); 1644 if (err) 1645 goto out; 1646 1647 new_dentry = dentry; 1648 rehash = NULL; 1649 new_inode = NULL; 1650 } 1651 } 1652 1653 /* 1654 * ... prune child dentries and writebacks if needed. 1655 */ 1656 if (atomic_read(&old_dentry->d_count) > 1) { 1657 if (S_ISREG(old_inode->i_mode)) 1658 nfs_wb_all(old_inode); 1659 shrink_dcache_parent(old_dentry); 1660 } 1661 nfs_inode_return_delegation(old_inode); 1662 1663 if (new_inode != NULL) 1664 nfs_inode_return_delegation(new_inode); 1665 1666 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1667 new_dir, &new_dentry->d_name); 1668 nfs_mark_for_revalidate(old_inode); 1669 out: 1670 if (rehash) 1671 d_rehash(rehash); 1672 if (!error) { 1673 if (new_inode != NULL) 1674 nfs_drop_nlink(new_inode); 1675 d_move(old_dentry, new_dentry); 1676 nfs_set_verifier(new_dentry, 1677 nfs_save_change_attribute(new_dir)); 1678 } else if (error == -ENOENT) 1679 nfs_dentry_handle_enoent(old_dentry); 1680 1681 /* new dentry created? */ 1682 if (dentry) 1683 dput(dentry); 1684 return error; 1685 } 1686 1687 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1688 static LIST_HEAD(nfs_access_lru_list); 1689 static atomic_long_t nfs_access_nr_entries; 1690 1691 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1692 { 1693 put_rpccred(entry->cred); 1694 kfree(entry); 1695 smp_mb__before_atomic_dec(); 1696 atomic_long_dec(&nfs_access_nr_entries); 1697 smp_mb__after_atomic_dec(); 1698 } 1699 1700 static void nfs_access_free_list(struct list_head *head) 1701 { 1702 struct nfs_access_entry *cache; 1703 1704 while (!list_empty(head)) { 1705 cache = list_entry(head->next, struct nfs_access_entry, lru); 1706 list_del(&cache->lru); 1707 nfs_access_free_entry(cache); 1708 } 1709 } 1710 1711 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask) 1712 { 1713 LIST_HEAD(head); 1714 struct nfs_inode *nfsi; 1715 struct nfs_access_entry *cache; 1716 1717 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 1718 return (nr_to_scan == 0) ? 0 : -1; 1719 1720 spin_lock(&nfs_access_lru_lock); 1721 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) { 1722 struct inode *inode; 1723 1724 if (nr_to_scan-- == 0) 1725 break; 1726 inode = &nfsi->vfs_inode; 1727 spin_lock(&inode->i_lock); 1728 if (list_empty(&nfsi->access_cache_entry_lru)) 1729 goto remove_lru_entry; 1730 cache = list_entry(nfsi->access_cache_entry_lru.next, 1731 struct nfs_access_entry, lru); 1732 list_move(&cache->lru, &head); 1733 rb_erase(&cache->rb_node, &nfsi->access_cache); 1734 if (!list_empty(&nfsi->access_cache_entry_lru)) 1735 list_move_tail(&nfsi->access_cache_inode_lru, 1736 &nfs_access_lru_list); 1737 else { 1738 remove_lru_entry: 1739 list_del_init(&nfsi->access_cache_inode_lru); 1740 smp_mb__before_clear_bit(); 1741 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 1742 smp_mb__after_clear_bit(); 1743 } 1744 spin_unlock(&inode->i_lock); 1745 } 1746 spin_unlock(&nfs_access_lru_lock); 1747 nfs_access_free_list(&head); 1748 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 1749 } 1750 1751 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 1752 { 1753 struct rb_root *root_node = &nfsi->access_cache; 1754 struct rb_node *n; 1755 struct nfs_access_entry *entry; 1756 1757 /* Unhook entries from the cache */ 1758 while ((n = rb_first(root_node)) != NULL) { 1759 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1760 rb_erase(n, root_node); 1761 list_move(&entry->lru, head); 1762 } 1763 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 1764 } 1765 1766 void nfs_access_zap_cache(struct inode *inode) 1767 { 1768 LIST_HEAD(head); 1769 1770 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 1771 return; 1772 /* Remove from global LRU init */ 1773 spin_lock(&nfs_access_lru_lock); 1774 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 1775 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 1776 1777 spin_lock(&inode->i_lock); 1778 __nfs_access_zap_cache(NFS_I(inode), &head); 1779 spin_unlock(&inode->i_lock); 1780 spin_unlock(&nfs_access_lru_lock); 1781 nfs_access_free_list(&head); 1782 } 1783 1784 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 1785 { 1786 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 1787 struct nfs_access_entry *entry; 1788 1789 while (n != NULL) { 1790 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1791 1792 if (cred < entry->cred) 1793 n = n->rb_left; 1794 else if (cred > entry->cred) 1795 n = n->rb_right; 1796 else 1797 return entry; 1798 } 1799 return NULL; 1800 } 1801 1802 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 1803 { 1804 struct nfs_inode *nfsi = NFS_I(inode); 1805 struct nfs_access_entry *cache; 1806 int err = -ENOENT; 1807 1808 spin_lock(&inode->i_lock); 1809 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 1810 goto out_zap; 1811 cache = nfs_access_search_rbtree(inode, cred); 1812 if (cache == NULL) 1813 goto out; 1814 if (!nfs_have_delegated_attributes(inode) && 1815 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 1816 goto out_stale; 1817 res->jiffies = cache->jiffies; 1818 res->cred = cache->cred; 1819 res->mask = cache->mask; 1820 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 1821 err = 0; 1822 out: 1823 spin_unlock(&inode->i_lock); 1824 return err; 1825 out_stale: 1826 rb_erase(&cache->rb_node, &nfsi->access_cache); 1827 list_del(&cache->lru); 1828 spin_unlock(&inode->i_lock); 1829 nfs_access_free_entry(cache); 1830 return -ENOENT; 1831 out_zap: 1832 spin_unlock(&inode->i_lock); 1833 nfs_access_zap_cache(inode); 1834 return -ENOENT; 1835 } 1836 1837 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 1838 { 1839 struct nfs_inode *nfsi = NFS_I(inode); 1840 struct rb_root *root_node = &nfsi->access_cache; 1841 struct rb_node **p = &root_node->rb_node; 1842 struct rb_node *parent = NULL; 1843 struct nfs_access_entry *entry; 1844 1845 spin_lock(&inode->i_lock); 1846 while (*p != NULL) { 1847 parent = *p; 1848 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 1849 1850 if (set->cred < entry->cred) 1851 p = &parent->rb_left; 1852 else if (set->cred > entry->cred) 1853 p = &parent->rb_right; 1854 else 1855 goto found; 1856 } 1857 rb_link_node(&set->rb_node, parent, p); 1858 rb_insert_color(&set->rb_node, root_node); 1859 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1860 spin_unlock(&inode->i_lock); 1861 return; 1862 found: 1863 rb_replace_node(parent, &set->rb_node, root_node); 1864 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1865 list_del(&entry->lru); 1866 spin_unlock(&inode->i_lock); 1867 nfs_access_free_entry(entry); 1868 } 1869 1870 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 1871 { 1872 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 1873 if (cache == NULL) 1874 return; 1875 RB_CLEAR_NODE(&cache->rb_node); 1876 cache->jiffies = set->jiffies; 1877 cache->cred = get_rpccred(set->cred); 1878 cache->mask = set->mask; 1879 1880 nfs_access_add_rbtree(inode, cache); 1881 1882 /* Update accounting */ 1883 smp_mb__before_atomic_inc(); 1884 atomic_long_inc(&nfs_access_nr_entries); 1885 smp_mb__after_atomic_inc(); 1886 1887 /* Add inode to global LRU list */ 1888 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 1889 spin_lock(&nfs_access_lru_lock); 1890 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 1891 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 1892 &nfs_access_lru_list); 1893 spin_unlock(&nfs_access_lru_lock); 1894 } 1895 } 1896 1897 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 1898 { 1899 struct nfs_access_entry cache; 1900 int status; 1901 1902 status = nfs_access_get_cached(inode, cred, &cache); 1903 if (status == 0) 1904 goto out; 1905 1906 /* Be clever: ask server to check for all possible rights */ 1907 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 1908 cache.cred = cred; 1909 cache.jiffies = jiffies; 1910 status = NFS_PROTO(inode)->access(inode, &cache); 1911 if (status != 0) { 1912 if (status == -ESTALE) { 1913 nfs_zap_caches(inode); 1914 if (!S_ISDIR(inode->i_mode)) 1915 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 1916 } 1917 return status; 1918 } 1919 nfs_access_add_cache(inode, &cache); 1920 out: 1921 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 1922 return 0; 1923 return -EACCES; 1924 } 1925 1926 static int nfs_open_permission_mask(int openflags) 1927 { 1928 int mask = 0; 1929 1930 if (openflags & FMODE_READ) 1931 mask |= MAY_READ; 1932 if (openflags & FMODE_WRITE) 1933 mask |= MAY_WRITE; 1934 if (openflags & FMODE_EXEC) 1935 mask |= MAY_EXEC; 1936 return mask; 1937 } 1938 1939 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 1940 { 1941 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 1942 } 1943 1944 int nfs_permission(struct inode *inode, int mask) 1945 { 1946 struct rpc_cred *cred; 1947 int res = 0; 1948 1949 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 1950 1951 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 1952 goto out; 1953 /* Is this sys_access() ? */ 1954 if (mask & MAY_ACCESS) 1955 goto force_lookup; 1956 1957 switch (inode->i_mode & S_IFMT) { 1958 case S_IFLNK: 1959 goto out; 1960 case S_IFREG: 1961 /* NFSv4 has atomic_open... */ 1962 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 1963 && (mask & MAY_OPEN) 1964 && !(mask & MAY_EXEC)) 1965 goto out; 1966 break; 1967 case S_IFDIR: 1968 /* 1969 * Optimize away all write operations, since the server 1970 * will check permissions when we perform the op. 1971 */ 1972 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 1973 goto out; 1974 } 1975 1976 force_lookup: 1977 if (!NFS_PROTO(inode)->access) 1978 goto out_notsup; 1979 1980 cred = rpc_lookup_cred(); 1981 if (!IS_ERR(cred)) { 1982 res = nfs_do_access(inode, cred, mask); 1983 put_rpccred(cred); 1984 } else 1985 res = PTR_ERR(cred); 1986 out: 1987 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 1988 res = -EACCES; 1989 1990 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 1991 inode->i_sb->s_id, inode->i_ino, mask, res); 1992 return res; 1993 out_notsup: 1994 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1995 if (res == 0) 1996 res = generic_permission(inode, mask, NULL); 1997 goto out; 1998 } 1999 2000 /* 2001 * Local variables: 2002 * version-control: t 2003 * kept-new-versions: 5 2004 * End: 2005 */ 2006