xref: /openbmc/linux/fs/nfs/dir.c (revision 549177863bac22f23663ee9f70c4e3b9fb269f2c)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 
43 /* #define NFS_DEBUG_VERBOSE 1 */
44 
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 		      struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, struct dentry *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.readdir	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_release,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct inode_operations nfs_dir_inode_operations = {
70 	.create		= nfs_create,
71 	.lookup		= nfs_lookup,
72 	.link		= nfs_link,
73 	.unlink		= nfs_unlink,
74 	.symlink	= nfs_symlink,
75 	.mkdir		= nfs_mkdir,
76 	.rmdir		= nfs_rmdir,
77 	.mknod		= nfs_mknod,
78 	.rename		= nfs_rename,
79 	.permission	= nfs_permission,
80 	.getattr	= nfs_getattr,
81 	.setattr	= nfs_setattr,
82 };
83 
84 #ifdef CONFIG_NFS_V3
85 const struct inode_operations nfs3_dir_inode_operations = {
86 	.create		= nfs_create,
87 	.lookup		= nfs_lookup,
88 	.link		= nfs_link,
89 	.unlink		= nfs_unlink,
90 	.symlink	= nfs_symlink,
91 	.mkdir		= nfs_mkdir,
92 	.rmdir		= nfs_rmdir,
93 	.mknod		= nfs_mknod,
94 	.rename		= nfs_rename,
95 	.permission	= nfs_permission,
96 	.getattr	= nfs_getattr,
97 	.setattr	= nfs_setattr,
98 	.listxattr	= nfs3_listxattr,
99 	.getxattr	= nfs3_getxattr,
100 	.setxattr	= nfs3_setxattr,
101 	.removexattr	= nfs3_removexattr,
102 };
103 #endif  /* CONFIG_NFS_V3 */
104 
105 #ifdef CONFIG_NFS_V4
106 
107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
108 const struct inode_operations nfs4_dir_inode_operations = {
109 	.create		= nfs_create,
110 	.lookup		= nfs_atomic_lookup,
111 	.link		= nfs_link,
112 	.unlink		= nfs_unlink,
113 	.symlink	= nfs_symlink,
114 	.mkdir		= nfs_mkdir,
115 	.rmdir		= nfs_rmdir,
116 	.mknod		= nfs_mknod,
117 	.rename		= nfs_rename,
118 	.permission	= nfs_permission,
119 	.getattr	= nfs_getattr,
120 	.setattr	= nfs_setattr,
121 	.getxattr       = nfs4_getxattr,
122 	.setxattr       = nfs4_setxattr,
123 	.listxattr      = nfs4_listxattr,
124 };
125 
126 #endif /* CONFIG_NFS_V4 */
127 
128 /*
129  * Open file
130  */
131 static int
132 nfs_opendir(struct inode *inode, struct file *filp)
133 {
134 	int res;
135 
136 	dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
137 			inode->i_sb->s_id, inode->i_ino);
138 
139 	lock_kernel();
140 	/* Call generic open code in order to cache credentials */
141 	res = nfs_open(inode, filp);
142 	unlock_kernel();
143 	return res;
144 }
145 
146 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
147 typedef struct {
148 	struct file	*file;
149 	struct page	*page;
150 	unsigned long	page_index;
151 	__be32		*ptr;
152 	u64		*dir_cookie;
153 	loff_t		current_index;
154 	struct nfs_entry *entry;
155 	decode_dirent_t	decode;
156 	int		plus;
157 	unsigned long	timestamp;
158 	int		timestamp_valid;
159 } nfs_readdir_descriptor_t;
160 
161 /* Now we cache directories properly, by stuffing the dirent
162  * data directly in the page cache.
163  *
164  * Inode invalidation due to refresh etc. takes care of
165  * _everything_, no sloppy entry flushing logic, no extraneous
166  * copying, network direct to page cache, the way it was meant
167  * to be.
168  *
169  * NOTE: Dirent information verification is done always by the
170  *	 page-in of the RPC reply, nowhere else, this simplies
171  *	 things substantially.
172  */
173 static
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
175 {
176 	struct file	*file = desc->file;
177 	struct inode	*inode = file->f_path.dentry->d_inode;
178 	struct rpc_cred	*cred = nfs_file_cred(file);
179 	unsigned long	timestamp;
180 	int		error;
181 
182 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 			__func__, (long long)desc->entry->cookie,
184 			page->index);
185 
186  again:
187 	timestamp = jiffies;
188 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 					  NFS_SERVER(inode)->dtsize, desc->plus);
190 	if (error < 0) {
191 		/* We requested READDIRPLUS, but the server doesn't grok it */
192 		if (error == -ENOTSUPP && desc->plus) {
193 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
195 			desc->plus = 0;
196 			goto again;
197 		}
198 		goto error;
199 	}
200 	desc->timestamp = timestamp;
201 	desc->timestamp_valid = 1;
202 	SetPageUptodate(page);
203 	/* Ensure consistent page alignment of the data.
204 	 * Note: assumes we have exclusive access to this mapping either
205 	 *	 through inode->i_mutex or some other mechanism.
206 	 */
207 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
208 		/* Should never happen */
209 		nfs_zap_mapping(inode, inode->i_mapping);
210 	}
211 	unlock_page(page);
212 	return 0;
213  error:
214 	unlock_page(page);
215 	return -EIO;
216 }
217 
218 static inline
219 int dir_decode(nfs_readdir_descriptor_t *desc)
220 {
221 	__be32	*p = desc->ptr;
222 	p = desc->decode(p, desc->entry, desc->plus);
223 	if (IS_ERR(p))
224 		return PTR_ERR(p);
225 	desc->ptr = p;
226 	if (desc->timestamp_valid)
227 		desc->entry->fattr->time_start = desc->timestamp;
228 	else
229 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
230 	return 0;
231 }
232 
233 static inline
234 void dir_page_release(nfs_readdir_descriptor_t *desc)
235 {
236 	kunmap(desc->page);
237 	page_cache_release(desc->page);
238 	desc->page = NULL;
239 	desc->ptr = NULL;
240 }
241 
242 /*
243  * Given a pointer to a buffer that has already been filled by a call
244  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
245  *
246  * If the end of the buffer has been reached, return -EAGAIN, if not,
247  * return the offset within the buffer of the next entry to be
248  * read.
249  */
250 static inline
251 int find_dirent(nfs_readdir_descriptor_t *desc)
252 {
253 	struct nfs_entry *entry = desc->entry;
254 	int		loop_count = 0,
255 			status;
256 
257 	while((status = dir_decode(desc)) == 0) {
258 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
259 				__func__, (unsigned long long)entry->cookie);
260 		if (entry->prev_cookie == *desc->dir_cookie)
261 			break;
262 		if (loop_count++ > 200) {
263 			loop_count = 0;
264 			schedule();
265 		}
266 	}
267 	return status;
268 }
269 
270 /*
271  * Given a pointer to a buffer that has already been filled by a call
272  * to readdir, find the entry at offset 'desc->file->f_pos'.
273  *
274  * If the end of the buffer has been reached, return -EAGAIN, if not,
275  * return the offset within the buffer of the next entry to be
276  * read.
277  */
278 static inline
279 int find_dirent_index(nfs_readdir_descriptor_t *desc)
280 {
281 	struct nfs_entry *entry = desc->entry;
282 	int		loop_count = 0,
283 			status;
284 
285 	for(;;) {
286 		status = dir_decode(desc);
287 		if (status)
288 			break;
289 
290 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
291 				(unsigned long long)entry->cookie, desc->current_index);
292 
293 		if (desc->file->f_pos == desc->current_index) {
294 			*desc->dir_cookie = entry->cookie;
295 			break;
296 		}
297 		desc->current_index++;
298 		if (loop_count++ > 200) {
299 			loop_count = 0;
300 			schedule();
301 		}
302 	}
303 	return status;
304 }
305 
306 /*
307  * Find the given page, and call find_dirent() or find_dirent_index in
308  * order to try to return the next entry.
309  */
310 static inline
311 int find_dirent_page(nfs_readdir_descriptor_t *desc)
312 {
313 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
314 	struct page	*page;
315 	int		status;
316 
317 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
318 			__func__, desc->page_index,
319 			(long long) *desc->dir_cookie);
320 
321 	/* If we find the page in the page_cache, we cannot be sure
322 	 * how fresh the data is, so we will ignore readdir_plus attributes.
323 	 */
324 	desc->timestamp_valid = 0;
325 	page = read_cache_page(inode->i_mapping, desc->page_index,
326 			       (filler_t *)nfs_readdir_filler, desc);
327 	if (IS_ERR(page)) {
328 		status = PTR_ERR(page);
329 		goto out;
330 	}
331 
332 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
333 	desc->page = page;
334 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
335 	if (*desc->dir_cookie != 0)
336 		status = find_dirent(desc);
337 	else
338 		status = find_dirent_index(desc);
339 	if (status < 0)
340 		dir_page_release(desc);
341  out:
342 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
343 	return status;
344 }
345 
346 /*
347  * Recurse through the page cache pages, and return a
348  * filled nfs_entry structure of the next directory entry if possible.
349  *
350  * The target for the search is '*desc->dir_cookie' if non-0,
351  * 'desc->file->f_pos' otherwise
352  */
353 static inline
354 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
355 {
356 	int		loop_count = 0;
357 	int		res;
358 
359 	/* Always search-by-index from the beginning of the cache */
360 	if (*desc->dir_cookie == 0) {
361 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
362 				(long long)desc->file->f_pos);
363 		desc->page_index = 0;
364 		desc->entry->cookie = desc->entry->prev_cookie = 0;
365 		desc->entry->eof = 0;
366 		desc->current_index = 0;
367 	} else
368 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
369 				(unsigned long long)*desc->dir_cookie);
370 
371 	for (;;) {
372 		res = find_dirent_page(desc);
373 		if (res != -EAGAIN)
374 			break;
375 		/* Align to beginning of next page */
376 		desc->page_index ++;
377 		if (loop_count++ > 200) {
378 			loop_count = 0;
379 			schedule();
380 		}
381 	}
382 
383 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, res);
384 	return res;
385 }
386 
387 static inline unsigned int dt_type(struct inode *inode)
388 {
389 	return (inode->i_mode >> 12) & 15;
390 }
391 
392 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
393 
394 /*
395  * Once we've found the start of the dirent within a page: fill 'er up...
396  */
397 static
398 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
399 		   filldir_t filldir)
400 {
401 	struct file	*file = desc->file;
402 	struct nfs_entry *entry = desc->entry;
403 	struct dentry	*dentry = NULL;
404 	u64		fileid;
405 	int		loop_count = 0,
406 			res;
407 
408 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
409 			(unsigned long long)entry->cookie);
410 
411 	for(;;) {
412 		unsigned d_type = DT_UNKNOWN;
413 		/* Note: entry->prev_cookie contains the cookie for
414 		 *	 retrieving the current dirent on the server */
415 		fileid = entry->ino;
416 
417 		/* Get a dentry if we have one */
418 		if (dentry != NULL)
419 			dput(dentry);
420 		dentry = nfs_readdir_lookup(desc);
421 
422 		/* Use readdirplus info */
423 		if (dentry != NULL && dentry->d_inode != NULL) {
424 			d_type = dt_type(dentry->d_inode);
425 			fileid = NFS_FILEID(dentry->d_inode);
426 		}
427 
428 		res = filldir(dirent, entry->name, entry->len,
429 			      file->f_pos, nfs_compat_user_ino64(fileid),
430 			      d_type);
431 		if (res < 0)
432 			break;
433 		file->f_pos++;
434 		*desc->dir_cookie = entry->cookie;
435 		if (dir_decode(desc) != 0) {
436 			desc->page_index ++;
437 			break;
438 		}
439 		if (loop_count++ > 200) {
440 			loop_count = 0;
441 			schedule();
442 		}
443 	}
444 	dir_page_release(desc);
445 	if (dentry != NULL)
446 		dput(dentry);
447 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
448 			(unsigned long long)*desc->dir_cookie, res);
449 	return res;
450 }
451 
452 /*
453  * If we cannot find a cookie in our cache, we suspect that this is
454  * because it points to a deleted file, so we ask the server to return
455  * whatever it thinks is the next entry. We then feed this to filldir.
456  * If all goes well, we should then be able to find our way round the
457  * cache on the next call to readdir_search_pagecache();
458  *
459  * NOTE: we cannot add the anonymous page to the pagecache because
460  *	 the data it contains might not be page aligned. Besides,
461  *	 we should already have a complete representation of the
462  *	 directory in the page cache by the time we get here.
463  */
464 static inline
465 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
466 		     filldir_t filldir)
467 {
468 	struct file	*file = desc->file;
469 	struct inode	*inode = file->f_path.dentry->d_inode;
470 	struct rpc_cred	*cred = nfs_file_cred(file);
471 	struct page	*page = NULL;
472 	int		status;
473 	unsigned long	timestamp;
474 
475 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
476 			(unsigned long long)*desc->dir_cookie);
477 
478 	page = alloc_page(GFP_HIGHUSER);
479 	if (!page) {
480 		status = -ENOMEM;
481 		goto out;
482 	}
483 	timestamp = jiffies;
484 	status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
485 						*desc->dir_cookie, page,
486 						NFS_SERVER(inode)->dtsize,
487 						desc->plus);
488 	desc->page = page;
489 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
490 	if (status >= 0) {
491 		desc->timestamp = timestamp;
492 		desc->timestamp_valid = 1;
493 		if ((status = dir_decode(desc)) == 0)
494 			desc->entry->prev_cookie = *desc->dir_cookie;
495 	} else
496 		status = -EIO;
497 	if (status < 0)
498 		goto out_release;
499 
500 	status = nfs_do_filldir(desc, dirent, filldir);
501 
502 	/* Reset read descriptor so it searches the page cache from
503 	 * the start upon the next call to readdir_search_pagecache() */
504 	desc->page_index = 0;
505 	desc->entry->cookie = desc->entry->prev_cookie = 0;
506 	desc->entry->eof = 0;
507  out:
508 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
509 			__func__, status);
510 	return status;
511  out_release:
512 	dir_page_release(desc);
513 	goto out;
514 }
515 
516 /* The file offset position represents the dirent entry number.  A
517    last cookie cache takes care of the common case of reading the
518    whole directory.
519  */
520 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
521 {
522 	struct dentry	*dentry = filp->f_path.dentry;
523 	struct inode	*inode = dentry->d_inode;
524 	nfs_readdir_descriptor_t my_desc,
525 			*desc = &my_desc;
526 	struct nfs_entry my_entry;
527 	struct nfs_fh	 fh;
528 	struct nfs_fattr fattr;
529 	long		res;
530 
531 	dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
532 			dentry->d_parent->d_name.name, dentry->d_name.name,
533 			(long long)filp->f_pos);
534 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
535 
536 	lock_kernel();
537 
538 	/*
539 	 * filp->f_pos points to the dirent entry number.
540 	 * *desc->dir_cookie has the cookie for the next entry. We have
541 	 * to either find the entry with the appropriate number or
542 	 * revalidate the cookie.
543 	 */
544 	memset(desc, 0, sizeof(*desc));
545 
546 	desc->file = filp;
547 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
548 	desc->decode = NFS_PROTO(inode)->decode_dirent;
549 	desc->plus = NFS_USE_READDIRPLUS(inode);
550 
551 	my_entry.cookie = my_entry.prev_cookie = 0;
552 	my_entry.eof = 0;
553 	my_entry.fh = &fh;
554 	my_entry.fattr = &fattr;
555 	nfs_fattr_init(&fattr);
556 	desc->entry = &my_entry;
557 
558 	nfs_block_sillyrename(dentry);
559 	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
560 	if (res < 0)
561 		goto out;
562 
563 	while(!desc->entry->eof) {
564 		res = readdir_search_pagecache(desc);
565 
566 		if (res == -EBADCOOKIE) {
567 			/* This means either end of directory */
568 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
569 				/* Or that the server has 'lost' a cookie */
570 				res = uncached_readdir(desc, dirent, filldir);
571 				if (res >= 0)
572 					continue;
573 			}
574 			res = 0;
575 			break;
576 		}
577 		if (res == -ETOOSMALL && desc->plus) {
578 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
579 			nfs_zap_caches(inode);
580 			desc->plus = 0;
581 			desc->entry->eof = 0;
582 			continue;
583 		}
584 		if (res < 0)
585 			break;
586 
587 		res = nfs_do_filldir(desc, dirent, filldir);
588 		if (res < 0) {
589 			res = 0;
590 			break;
591 		}
592 	}
593 out:
594 	nfs_unblock_sillyrename(dentry);
595 	unlock_kernel();
596 	if (res > 0)
597 		res = 0;
598 	dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
599 			dentry->d_parent->d_name.name, dentry->d_name.name,
600 			res);
601 	return res;
602 }
603 
604 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
605 {
606 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
607 	switch (origin) {
608 		case 1:
609 			offset += filp->f_pos;
610 		case 0:
611 			if (offset >= 0)
612 				break;
613 		default:
614 			offset = -EINVAL;
615 			goto out;
616 	}
617 	if (offset != filp->f_pos) {
618 		filp->f_pos = offset;
619 		nfs_file_open_context(filp)->dir_cookie = 0;
620 	}
621 out:
622 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
623 	return offset;
624 }
625 
626 /*
627  * All directory operations under NFS are synchronous, so fsync()
628  * is a dummy operation.
629  */
630 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
631 {
632 	dfprintk(VFS, "NFS: fsync dir(%s/%s) datasync %d\n",
633 			dentry->d_parent->d_name.name, dentry->d_name.name,
634 			datasync);
635 
636 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
637 	return 0;
638 }
639 
640 /**
641  * nfs_force_lookup_revalidate - Mark the directory as having changed
642  * @dir - pointer to directory inode
643  *
644  * This forces the revalidation code in nfs_lookup_revalidate() to do a
645  * full lookup on all child dentries of 'dir' whenever a change occurs
646  * on the server that might have invalidated our dcache.
647  *
648  * The caller should be holding dir->i_lock
649  */
650 void nfs_force_lookup_revalidate(struct inode *dir)
651 {
652 	NFS_I(dir)->cache_change_attribute = jiffies;
653 }
654 
655 /*
656  * A check for whether or not the parent directory has changed.
657  * In the case it has, we assume that the dentries are untrustworthy
658  * and may need to be looked up again.
659  */
660 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
661 {
662 	if (IS_ROOT(dentry))
663 		return 1;
664 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
665 		return 0;
666 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
667 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
668 		return 0;
669 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
670 		return 0;
671 	return 1;
672 }
673 
674 /*
675  * Return the intent data that applies to this particular path component
676  *
677  * Note that the current set of intents only apply to the very last
678  * component of the path.
679  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
680  */
681 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
682 {
683 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
684 		return 0;
685 	return nd->flags & mask;
686 }
687 
688 /*
689  * Use intent information to check whether or not we're going to do
690  * an O_EXCL create using this path component.
691  */
692 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
693 {
694 	if (NFS_PROTO(dir)->version == 2)
695 		return 0;
696 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
697 		return 0;
698 	return (nd->intent.open.flags & O_EXCL) != 0;
699 }
700 
701 /*
702  * Inode and filehandle revalidation for lookups.
703  *
704  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
705  * or if the intent information indicates that we're about to open this
706  * particular file and the "nocto" mount flag is not set.
707  *
708  */
709 static inline
710 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
711 {
712 	struct nfs_server *server = NFS_SERVER(inode);
713 
714 	if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
715 		return 0;
716 	if (nd != NULL) {
717 		/* VFS wants an on-the-wire revalidation */
718 		if (nd->flags & LOOKUP_REVAL)
719 			goto out_force;
720 		/* This is an open(2) */
721 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
722 				!(server->flags & NFS_MOUNT_NOCTO) &&
723 				(S_ISREG(inode->i_mode) ||
724 				 S_ISDIR(inode->i_mode)))
725 			goto out_force;
726 		return 0;
727 	}
728 	return nfs_revalidate_inode(server, inode);
729 out_force:
730 	return __nfs_revalidate_inode(server, inode);
731 }
732 
733 /*
734  * We judge how long we want to trust negative
735  * dentries by looking at the parent inode mtime.
736  *
737  * If parent mtime has changed, we revalidate, else we wait for a
738  * period corresponding to the parent's attribute cache timeout value.
739  */
740 static inline
741 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
742 		       struct nameidata *nd)
743 {
744 	/* Don't revalidate a negative dentry if we're creating a new file */
745 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
746 		return 0;
747 	return !nfs_check_verifier(dir, dentry);
748 }
749 
750 /*
751  * This is called every time the dcache has a lookup hit,
752  * and we should check whether we can really trust that
753  * lookup.
754  *
755  * NOTE! The hit can be a negative hit too, don't assume
756  * we have an inode!
757  *
758  * If the parent directory is seen to have changed, we throw out the
759  * cached dentry and do a new lookup.
760  */
761 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
762 {
763 	struct inode *dir;
764 	struct inode *inode;
765 	struct dentry *parent;
766 	int error;
767 	struct nfs_fh fhandle;
768 	struct nfs_fattr fattr;
769 
770 	parent = dget_parent(dentry);
771 	lock_kernel();
772 	dir = parent->d_inode;
773 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
774 	inode = dentry->d_inode;
775 
776 	if (!inode) {
777 		if (nfs_neg_need_reval(dir, dentry, nd))
778 			goto out_bad;
779 		goto out_valid;
780 	}
781 
782 	if (is_bad_inode(inode)) {
783 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
784 				__func__, dentry->d_parent->d_name.name,
785 				dentry->d_name.name);
786 		goto out_bad;
787 	}
788 
789 	/* Force a full look up iff the parent directory has changed */
790 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
791 		if (nfs_lookup_verify_inode(inode, nd))
792 			goto out_zap_parent;
793 		goto out_valid;
794 	}
795 
796 	if (NFS_STALE(inode))
797 		goto out_bad;
798 
799 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
800 	if (error)
801 		goto out_bad;
802 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
803 		goto out_bad;
804 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
805 		goto out_bad;
806 
807 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
808  out_valid:
809 	unlock_kernel();
810 	dput(parent);
811 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
812 			__func__, dentry->d_parent->d_name.name,
813 			dentry->d_name.name);
814 	return 1;
815 out_zap_parent:
816 	nfs_zap_caches(dir);
817  out_bad:
818 	nfs_mark_for_revalidate(dir);
819 	if (inode && S_ISDIR(inode->i_mode)) {
820 		/* Purge readdir caches. */
821 		nfs_zap_caches(inode);
822 		/* If we have submounts, don't unhash ! */
823 		if (have_submounts(dentry))
824 			goto out_valid;
825 		shrink_dcache_parent(dentry);
826 	}
827 	d_drop(dentry);
828 	unlock_kernel();
829 	dput(parent);
830 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
831 			__func__, dentry->d_parent->d_name.name,
832 			dentry->d_name.name);
833 	return 0;
834 }
835 
836 /*
837  * This is called from dput() when d_count is going to 0.
838  */
839 static int nfs_dentry_delete(struct dentry *dentry)
840 {
841 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
842 		dentry->d_parent->d_name.name, dentry->d_name.name,
843 		dentry->d_flags);
844 
845 	/* Unhash any dentry with a stale inode */
846 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
847 		return 1;
848 
849 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
850 		/* Unhash it, so that ->d_iput() would be called */
851 		return 1;
852 	}
853 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
854 		/* Unhash it, so that ancestors of killed async unlink
855 		 * files will be cleaned up during umount */
856 		return 1;
857 	}
858 	return 0;
859 
860 }
861 
862 /*
863  * Called when the dentry loses inode.
864  * We use it to clean up silly-renamed files.
865  */
866 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
867 {
868 	if (S_ISDIR(inode->i_mode))
869 		/* drop any readdir cache as it could easily be old */
870 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
871 
872 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
873 		lock_kernel();
874 		drop_nlink(inode);
875 		nfs_complete_unlink(dentry, inode);
876 		unlock_kernel();
877 	}
878 	iput(inode);
879 }
880 
881 struct dentry_operations nfs_dentry_operations = {
882 	.d_revalidate	= nfs_lookup_revalidate,
883 	.d_delete	= nfs_dentry_delete,
884 	.d_iput		= nfs_dentry_iput,
885 };
886 
887 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
888 {
889 	struct dentry *res;
890 	struct dentry *parent;
891 	struct inode *inode = NULL;
892 	int error;
893 	struct nfs_fh fhandle;
894 	struct nfs_fattr fattr;
895 
896 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
897 		dentry->d_parent->d_name.name, dentry->d_name.name);
898 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
899 
900 	res = ERR_PTR(-ENAMETOOLONG);
901 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
902 		goto out;
903 
904 	res = ERR_PTR(-ENOMEM);
905 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
906 
907 	lock_kernel();
908 
909 	/*
910 	 * If we're doing an exclusive create, optimize away the lookup
911 	 * but don't hash the dentry.
912 	 */
913 	if (nfs_is_exclusive_create(dir, nd)) {
914 		d_instantiate(dentry, NULL);
915 		res = NULL;
916 		goto out_unlock;
917 	}
918 
919 	parent = dentry->d_parent;
920 	/* Protect against concurrent sillydeletes */
921 	nfs_block_sillyrename(parent);
922 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
923 	if (error == -ENOENT)
924 		goto no_entry;
925 	if (error < 0) {
926 		res = ERR_PTR(error);
927 		goto out_unblock_sillyrename;
928 	}
929 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
930 	res = (struct dentry *)inode;
931 	if (IS_ERR(res))
932 		goto out_unblock_sillyrename;
933 
934 no_entry:
935 	res = d_materialise_unique(dentry, inode);
936 	if (res != NULL) {
937 		if (IS_ERR(res))
938 			goto out_unblock_sillyrename;
939 		dentry = res;
940 	}
941 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
942 out_unblock_sillyrename:
943 	nfs_unblock_sillyrename(parent);
944 out_unlock:
945 	unlock_kernel();
946 out:
947 	return res;
948 }
949 
950 #ifdef CONFIG_NFS_V4
951 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
952 
953 struct dentry_operations nfs4_dentry_operations = {
954 	.d_revalidate	= nfs_open_revalidate,
955 	.d_delete	= nfs_dentry_delete,
956 	.d_iput		= nfs_dentry_iput,
957 };
958 
959 /*
960  * Use intent information to determine whether we need to substitute
961  * the NFSv4-style stateful OPEN for the LOOKUP call
962  */
963 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
964 {
965 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
966 		return 0;
967 	/* NFS does not (yet) have a stateful open for directories */
968 	if (nd->flags & LOOKUP_DIRECTORY)
969 		return 0;
970 	/* Are we trying to write to a read only partition? */
971 	if (__mnt_is_readonly(nd->path.mnt) &&
972 	    (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
973 		return 0;
974 	return 1;
975 }
976 
977 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
978 {
979 	struct dentry *res = NULL;
980 	int error;
981 
982 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
983 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
984 
985 	/* Check that we are indeed trying to open this file */
986 	if (!is_atomic_open(dir, nd))
987 		goto no_open;
988 
989 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
990 		res = ERR_PTR(-ENAMETOOLONG);
991 		goto out;
992 	}
993 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
994 
995 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
996 	 * the dentry. */
997 	if (nd->intent.open.flags & O_EXCL) {
998 		d_instantiate(dentry, NULL);
999 		goto out;
1000 	}
1001 
1002 	/* Open the file on the server */
1003 	lock_kernel();
1004 	res = nfs4_atomic_open(dir, dentry, nd);
1005 	unlock_kernel();
1006 	if (IS_ERR(res)) {
1007 		error = PTR_ERR(res);
1008 		switch (error) {
1009 			/* Make a negative dentry */
1010 			case -ENOENT:
1011 				res = NULL;
1012 				goto out;
1013 			/* This turned out not to be a regular file */
1014 			case -EISDIR:
1015 			case -ENOTDIR:
1016 				goto no_open;
1017 			case -ELOOP:
1018 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1019 					goto no_open;
1020 			/* case -EINVAL: */
1021 			default:
1022 				goto out;
1023 		}
1024 	} else if (res != NULL)
1025 		dentry = res;
1026 out:
1027 	return res;
1028 no_open:
1029 	return nfs_lookup(dir, dentry, nd);
1030 }
1031 
1032 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1033 {
1034 	struct dentry *parent = NULL;
1035 	struct inode *inode = dentry->d_inode;
1036 	struct inode *dir;
1037 	int openflags, ret = 0;
1038 
1039 	parent = dget_parent(dentry);
1040 	dir = parent->d_inode;
1041 	if (!is_atomic_open(dir, nd))
1042 		goto no_open;
1043 	/* We can't create new files in nfs_open_revalidate(), so we
1044 	 * optimize away revalidation of negative dentries.
1045 	 */
1046 	if (inode == NULL) {
1047 		if (!nfs_neg_need_reval(dir, dentry, nd))
1048 			ret = 1;
1049 		goto out;
1050 	}
1051 
1052 	/* NFS only supports OPEN on regular files */
1053 	if (!S_ISREG(inode->i_mode))
1054 		goto no_open;
1055 	openflags = nd->intent.open.flags;
1056 	/* We cannot do exclusive creation on a positive dentry */
1057 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1058 		goto no_open;
1059 	/* We can't create new files, or truncate existing ones here */
1060 	openflags &= ~(O_CREAT|O_TRUNC);
1061 
1062 	/*
1063 	 * Note: we're not holding inode->i_mutex and so may be racing with
1064 	 * operations that change the directory. We therefore save the
1065 	 * change attribute *before* we do the RPC call.
1066 	 */
1067 	lock_kernel();
1068 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1069 	unlock_kernel();
1070 out:
1071 	dput(parent);
1072 	if (!ret)
1073 		d_drop(dentry);
1074 	return ret;
1075 no_open:
1076 	dput(parent);
1077 	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1078 		return 1;
1079 	return nfs_lookup_revalidate(dentry, nd);
1080 }
1081 #endif /* CONFIG_NFSV4 */
1082 
1083 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1084 {
1085 	struct dentry *parent = desc->file->f_path.dentry;
1086 	struct inode *dir = parent->d_inode;
1087 	struct nfs_entry *entry = desc->entry;
1088 	struct dentry *dentry, *alias;
1089 	struct qstr name = {
1090 		.name = entry->name,
1091 		.len = entry->len,
1092 	};
1093 	struct inode *inode;
1094 	unsigned long verf = nfs_save_change_attribute(dir);
1095 
1096 	switch (name.len) {
1097 		case 2:
1098 			if (name.name[0] == '.' && name.name[1] == '.')
1099 				return dget_parent(parent);
1100 			break;
1101 		case 1:
1102 			if (name.name[0] == '.')
1103 				return dget(parent);
1104 	}
1105 
1106 	spin_lock(&dir->i_lock);
1107 	if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1108 		spin_unlock(&dir->i_lock);
1109 		return NULL;
1110 	}
1111 	spin_unlock(&dir->i_lock);
1112 
1113 	name.hash = full_name_hash(name.name, name.len);
1114 	dentry = d_lookup(parent, &name);
1115 	if (dentry != NULL) {
1116 		/* Is this a positive dentry that matches the readdir info? */
1117 		if (dentry->d_inode != NULL &&
1118 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1119 				d_mountpoint(dentry))) {
1120 			if (!desc->plus || entry->fh->size == 0)
1121 				return dentry;
1122 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1123 						entry->fh) == 0)
1124 				goto out_renew;
1125 		}
1126 		/* No, so d_drop to allow one to be created */
1127 		d_drop(dentry);
1128 		dput(dentry);
1129 	}
1130 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1131 		return NULL;
1132 	if (name.len > NFS_SERVER(dir)->namelen)
1133 		return NULL;
1134 	/* Note: caller is already holding the dir->i_mutex! */
1135 	dentry = d_alloc(parent, &name);
1136 	if (dentry == NULL)
1137 		return NULL;
1138 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1139 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1140 	if (IS_ERR(inode)) {
1141 		dput(dentry);
1142 		return NULL;
1143 	}
1144 
1145 	alias = d_materialise_unique(dentry, inode);
1146 	if (alias != NULL) {
1147 		dput(dentry);
1148 		if (IS_ERR(alias))
1149 			return NULL;
1150 		dentry = alias;
1151 	}
1152 
1153 out_renew:
1154 	nfs_set_verifier(dentry, verf);
1155 	return dentry;
1156 }
1157 
1158 /*
1159  * Code common to create, mkdir, and mknod.
1160  */
1161 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1162 				struct nfs_fattr *fattr)
1163 {
1164 	struct dentry *parent = dget_parent(dentry);
1165 	struct inode *dir = parent->d_inode;
1166 	struct inode *inode;
1167 	int error = -EACCES;
1168 
1169 	d_drop(dentry);
1170 
1171 	/* We may have been initialized further down */
1172 	if (dentry->d_inode)
1173 		goto out;
1174 	if (fhandle->size == 0) {
1175 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1176 		if (error)
1177 			goto out_error;
1178 	}
1179 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1180 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1181 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1182 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1183 		if (error < 0)
1184 			goto out_error;
1185 	}
1186 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1187 	error = PTR_ERR(inode);
1188 	if (IS_ERR(inode))
1189 		goto out_error;
1190 	d_add(dentry, inode);
1191 out:
1192 	dput(parent);
1193 	return 0;
1194 out_error:
1195 	nfs_mark_for_revalidate(dir);
1196 	dput(parent);
1197 	return error;
1198 }
1199 
1200 /*
1201  * Following a failed create operation, we drop the dentry rather
1202  * than retain a negative dentry. This avoids a problem in the event
1203  * that the operation succeeded on the server, but an error in the
1204  * reply path made it appear to have failed.
1205  */
1206 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1207 		struct nameidata *nd)
1208 {
1209 	struct iattr attr;
1210 	int error;
1211 	int open_flags = 0;
1212 
1213 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1214 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1215 
1216 	attr.ia_mode = mode;
1217 	attr.ia_valid = ATTR_MODE;
1218 
1219 	if ((nd->flags & LOOKUP_CREATE) != 0)
1220 		open_flags = nd->intent.open.flags;
1221 
1222 	lock_kernel();
1223 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1224 	if (error != 0)
1225 		goto out_err;
1226 	unlock_kernel();
1227 	return 0;
1228 out_err:
1229 	unlock_kernel();
1230 	d_drop(dentry);
1231 	return error;
1232 }
1233 
1234 /*
1235  * See comments for nfs_proc_create regarding failed operations.
1236  */
1237 static int
1238 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1239 {
1240 	struct iattr attr;
1241 	int status;
1242 
1243 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1244 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1245 
1246 	if (!new_valid_dev(rdev))
1247 		return -EINVAL;
1248 
1249 	attr.ia_mode = mode;
1250 	attr.ia_valid = ATTR_MODE;
1251 
1252 	lock_kernel();
1253 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1254 	if (status != 0)
1255 		goto out_err;
1256 	unlock_kernel();
1257 	return 0;
1258 out_err:
1259 	unlock_kernel();
1260 	d_drop(dentry);
1261 	return status;
1262 }
1263 
1264 /*
1265  * See comments for nfs_proc_create regarding failed operations.
1266  */
1267 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1268 {
1269 	struct iattr attr;
1270 	int error;
1271 
1272 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1273 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1274 
1275 	attr.ia_valid = ATTR_MODE;
1276 	attr.ia_mode = mode | S_IFDIR;
1277 
1278 	lock_kernel();
1279 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1280 	if (error != 0)
1281 		goto out_err;
1282 	unlock_kernel();
1283 	return 0;
1284 out_err:
1285 	d_drop(dentry);
1286 	unlock_kernel();
1287 	return error;
1288 }
1289 
1290 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1291 {
1292 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1293 		d_delete(dentry);
1294 }
1295 
1296 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1297 {
1298 	int error;
1299 
1300 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1301 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1302 
1303 	lock_kernel();
1304 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1305 	/* Ensure the VFS deletes this inode */
1306 	if (error == 0 && dentry->d_inode != NULL)
1307 		clear_nlink(dentry->d_inode);
1308 	else if (error == -ENOENT)
1309 		nfs_dentry_handle_enoent(dentry);
1310 	unlock_kernel();
1311 
1312 	return error;
1313 }
1314 
1315 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1316 {
1317 	static unsigned int sillycounter;
1318 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1319 	const int      countersize = sizeof(sillycounter)*2;
1320 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1321 	char           silly[slen+1];
1322 	struct qstr    qsilly;
1323 	struct dentry *sdentry;
1324 	int            error = -EIO;
1325 
1326 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1327 		dentry->d_parent->d_name.name, dentry->d_name.name,
1328 		atomic_read(&dentry->d_count));
1329 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1330 
1331 	/*
1332 	 * We don't allow a dentry to be silly-renamed twice.
1333 	 */
1334 	error = -EBUSY;
1335 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1336 		goto out;
1337 
1338 	sprintf(silly, ".nfs%*.*Lx",
1339 		fileidsize, fileidsize,
1340 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1341 
1342 	/* Return delegation in anticipation of the rename */
1343 	nfs_inode_return_delegation(dentry->d_inode);
1344 
1345 	sdentry = NULL;
1346 	do {
1347 		char *suffix = silly + slen - countersize;
1348 
1349 		dput(sdentry);
1350 		sillycounter++;
1351 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1352 
1353 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1354 				dentry->d_name.name, silly);
1355 
1356 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1357 		/*
1358 		 * N.B. Better to return EBUSY here ... it could be
1359 		 * dangerous to delete the file while it's in use.
1360 		 */
1361 		if (IS_ERR(sdentry))
1362 			goto out;
1363 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1364 
1365 	qsilly.name = silly;
1366 	qsilly.len  = strlen(silly);
1367 	if (dentry->d_inode) {
1368 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1369 				dir, &qsilly);
1370 		nfs_mark_for_revalidate(dentry->d_inode);
1371 	} else
1372 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1373 				dir, &qsilly);
1374 	if (!error) {
1375 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1376 		d_move(dentry, sdentry);
1377 		error = nfs_async_unlink(dir, dentry);
1378  		/* If we return 0 we don't unlink */
1379 	}
1380 	dput(sdentry);
1381 out:
1382 	return error;
1383 }
1384 
1385 /*
1386  * Remove a file after making sure there are no pending writes,
1387  * and after checking that the file has only one user.
1388  *
1389  * We invalidate the attribute cache and free the inode prior to the operation
1390  * to avoid possible races if the server reuses the inode.
1391  */
1392 static int nfs_safe_remove(struct dentry *dentry)
1393 {
1394 	struct inode *dir = dentry->d_parent->d_inode;
1395 	struct inode *inode = dentry->d_inode;
1396 	int error = -EBUSY;
1397 
1398 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1399 		dentry->d_parent->d_name.name, dentry->d_name.name);
1400 
1401 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1402 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1403 		error = 0;
1404 		goto out;
1405 	}
1406 
1407 	if (inode != NULL) {
1408 		nfs_inode_return_delegation(inode);
1409 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1410 		/* The VFS may want to delete this inode */
1411 		if (error == 0)
1412 			drop_nlink(inode);
1413 		nfs_mark_for_revalidate(inode);
1414 	} else
1415 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1416 	if (error == -ENOENT)
1417 		nfs_dentry_handle_enoent(dentry);
1418 out:
1419 	return error;
1420 }
1421 
1422 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1423  *  belongs to an active ".nfs..." file and we return -EBUSY.
1424  *
1425  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1426  */
1427 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1428 {
1429 	int error;
1430 	int need_rehash = 0;
1431 
1432 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1433 		dir->i_ino, dentry->d_name.name);
1434 
1435 	lock_kernel();
1436 	spin_lock(&dcache_lock);
1437 	spin_lock(&dentry->d_lock);
1438 	if (atomic_read(&dentry->d_count) > 1) {
1439 		spin_unlock(&dentry->d_lock);
1440 		spin_unlock(&dcache_lock);
1441 		/* Start asynchronous writeout of the inode */
1442 		write_inode_now(dentry->d_inode, 0);
1443 		error = nfs_sillyrename(dir, dentry);
1444 		unlock_kernel();
1445 		return error;
1446 	}
1447 	if (!d_unhashed(dentry)) {
1448 		__d_drop(dentry);
1449 		need_rehash = 1;
1450 	}
1451 	spin_unlock(&dentry->d_lock);
1452 	spin_unlock(&dcache_lock);
1453 	error = nfs_safe_remove(dentry);
1454 	if (!error || error == -ENOENT) {
1455 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1456 	} else if (need_rehash)
1457 		d_rehash(dentry);
1458 	unlock_kernel();
1459 	return error;
1460 }
1461 
1462 /*
1463  * To create a symbolic link, most file systems instantiate a new inode,
1464  * add a page to it containing the path, then write it out to the disk
1465  * using prepare_write/commit_write.
1466  *
1467  * Unfortunately the NFS client can't create the in-core inode first
1468  * because it needs a file handle to create an in-core inode (see
1469  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1470  * symlink request has completed on the server.
1471  *
1472  * So instead we allocate a raw page, copy the symname into it, then do
1473  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1474  * now have a new file handle and can instantiate an in-core NFS inode
1475  * and move the raw page into its mapping.
1476  */
1477 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1478 {
1479 	struct pagevec lru_pvec;
1480 	struct page *page;
1481 	char *kaddr;
1482 	struct iattr attr;
1483 	unsigned int pathlen = strlen(symname);
1484 	int error;
1485 
1486 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1487 		dir->i_ino, dentry->d_name.name, symname);
1488 
1489 	if (pathlen > PAGE_SIZE)
1490 		return -ENAMETOOLONG;
1491 
1492 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1493 	attr.ia_valid = ATTR_MODE;
1494 
1495 	lock_kernel();
1496 
1497 	page = alloc_page(GFP_HIGHUSER);
1498 	if (!page) {
1499 		unlock_kernel();
1500 		return -ENOMEM;
1501 	}
1502 
1503 	kaddr = kmap_atomic(page, KM_USER0);
1504 	memcpy(kaddr, symname, pathlen);
1505 	if (pathlen < PAGE_SIZE)
1506 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1507 	kunmap_atomic(kaddr, KM_USER0);
1508 
1509 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1510 	if (error != 0) {
1511 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1512 			dir->i_sb->s_id, dir->i_ino,
1513 			dentry->d_name.name, symname, error);
1514 		d_drop(dentry);
1515 		__free_page(page);
1516 		unlock_kernel();
1517 		return error;
1518 	}
1519 
1520 	/*
1521 	 * No big deal if we can't add this page to the page cache here.
1522 	 * READLINK will get the missing page from the server if needed.
1523 	 */
1524 	pagevec_init(&lru_pvec, 0);
1525 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1526 							GFP_KERNEL)) {
1527 		pagevec_add(&lru_pvec, page);
1528 		pagevec_lru_add(&lru_pvec);
1529 		SetPageUptodate(page);
1530 		unlock_page(page);
1531 	} else
1532 		__free_page(page);
1533 
1534 	unlock_kernel();
1535 	return 0;
1536 }
1537 
1538 static int
1539 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1540 {
1541 	struct inode *inode = old_dentry->d_inode;
1542 	int error;
1543 
1544 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1545 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1546 		dentry->d_parent->d_name.name, dentry->d_name.name);
1547 
1548 	lock_kernel();
1549 	d_drop(dentry);
1550 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1551 	if (error == 0) {
1552 		atomic_inc(&inode->i_count);
1553 		d_add(dentry, inode);
1554 	}
1555 	unlock_kernel();
1556 	return error;
1557 }
1558 
1559 /*
1560  * RENAME
1561  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1562  * different file handle for the same inode after a rename (e.g. when
1563  * moving to a different directory). A fail-safe method to do so would
1564  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1565  * rename the old file using the sillyrename stuff. This way, the original
1566  * file in old_dir will go away when the last process iput()s the inode.
1567  *
1568  * FIXED.
1569  *
1570  * It actually works quite well. One needs to have the possibility for
1571  * at least one ".nfs..." file in each directory the file ever gets
1572  * moved or linked to which happens automagically with the new
1573  * implementation that only depends on the dcache stuff instead of
1574  * using the inode layer
1575  *
1576  * Unfortunately, things are a little more complicated than indicated
1577  * above. For a cross-directory move, we want to make sure we can get
1578  * rid of the old inode after the operation.  This means there must be
1579  * no pending writes (if it's a file), and the use count must be 1.
1580  * If these conditions are met, we can drop the dentries before doing
1581  * the rename.
1582  */
1583 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1584 		      struct inode *new_dir, struct dentry *new_dentry)
1585 {
1586 	struct inode *old_inode = old_dentry->d_inode;
1587 	struct inode *new_inode = new_dentry->d_inode;
1588 	struct dentry *dentry = NULL, *rehash = NULL;
1589 	int error = -EBUSY;
1590 
1591 	/*
1592 	 * To prevent any new references to the target during the rename,
1593 	 * we unhash the dentry and free the inode in advance.
1594 	 */
1595 	lock_kernel();
1596 	if (!d_unhashed(new_dentry)) {
1597 		d_drop(new_dentry);
1598 		rehash = new_dentry;
1599 	}
1600 
1601 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1602 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1603 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1604 		 atomic_read(&new_dentry->d_count));
1605 
1606 	/*
1607 	 * First check whether the target is busy ... we can't
1608 	 * safely do _any_ rename if the target is in use.
1609 	 *
1610 	 * For files, make a copy of the dentry and then do a
1611 	 * silly-rename. If the silly-rename succeeds, the
1612 	 * copied dentry is hashed and becomes the new target.
1613 	 */
1614 	if (!new_inode)
1615 		goto go_ahead;
1616 	if (S_ISDIR(new_inode->i_mode)) {
1617 		error = -EISDIR;
1618 		if (!S_ISDIR(old_inode->i_mode))
1619 			goto out;
1620 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1621 		int err;
1622 		/* copy the target dentry's name */
1623 		dentry = d_alloc(new_dentry->d_parent,
1624 				 &new_dentry->d_name);
1625 		if (!dentry)
1626 			goto out;
1627 
1628 		/* silly-rename the existing target ... */
1629 		err = nfs_sillyrename(new_dir, new_dentry);
1630 		if (!err) {
1631 			new_dentry = rehash = dentry;
1632 			new_inode = NULL;
1633 			/* instantiate the replacement target */
1634 			d_instantiate(new_dentry, NULL);
1635 		} else if (atomic_read(&new_dentry->d_count) > 1)
1636 			/* dentry still busy? */
1637 			goto out;
1638 	} else
1639 		drop_nlink(new_inode);
1640 
1641 go_ahead:
1642 	/*
1643 	 * ... prune child dentries and writebacks if needed.
1644 	 */
1645 	if (atomic_read(&old_dentry->d_count) > 1) {
1646 		if (S_ISREG(old_inode->i_mode))
1647 			nfs_wb_all(old_inode);
1648 		shrink_dcache_parent(old_dentry);
1649 	}
1650 	nfs_inode_return_delegation(old_inode);
1651 
1652 	if (new_inode != NULL) {
1653 		nfs_inode_return_delegation(new_inode);
1654 		d_delete(new_dentry);
1655 	}
1656 
1657 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1658 					   new_dir, &new_dentry->d_name);
1659 	nfs_mark_for_revalidate(old_inode);
1660 out:
1661 	if (rehash)
1662 		d_rehash(rehash);
1663 	if (!error) {
1664 		d_move(old_dentry, new_dentry);
1665 		nfs_set_verifier(new_dentry,
1666 					nfs_save_change_attribute(new_dir));
1667 	} else if (error == -ENOENT)
1668 		nfs_dentry_handle_enoent(old_dentry);
1669 
1670 	/* new dentry created? */
1671 	if (dentry)
1672 		dput(dentry);
1673 	unlock_kernel();
1674 	return error;
1675 }
1676 
1677 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1678 static LIST_HEAD(nfs_access_lru_list);
1679 static atomic_long_t nfs_access_nr_entries;
1680 
1681 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1682 {
1683 	put_rpccred(entry->cred);
1684 	kfree(entry);
1685 	smp_mb__before_atomic_dec();
1686 	atomic_long_dec(&nfs_access_nr_entries);
1687 	smp_mb__after_atomic_dec();
1688 }
1689 
1690 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1691 {
1692 	LIST_HEAD(head);
1693 	struct nfs_inode *nfsi;
1694 	struct nfs_access_entry *cache;
1695 
1696 restart:
1697 	spin_lock(&nfs_access_lru_lock);
1698 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1699 		struct rw_semaphore *s_umount;
1700 		struct inode *inode;
1701 
1702 		if (nr_to_scan-- == 0)
1703 			break;
1704 		s_umount = &nfsi->vfs_inode.i_sb->s_umount;
1705 		if (!down_read_trylock(s_umount))
1706 			continue;
1707 		inode = igrab(&nfsi->vfs_inode);
1708 		if (inode == NULL) {
1709 			up_read(s_umount);
1710 			continue;
1711 		}
1712 		spin_lock(&inode->i_lock);
1713 		if (list_empty(&nfsi->access_cache_entry_lru))
1714 			goto remove_lru_entry;
1715 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1716 				struct nfs_access_entry, lru);
1717 		list_move(&cache->lru, &head);
1718 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1719 		if (!list_empty(&nfsi->access_cache_entry_lru))
1720 			list_move_tail(&nfsi->access_cache_inode_lru,
1721 					&nfs_access_lru_list);
1722 		else {
1723 remove_lru_entry:
1724 			list_del_init(&nfsi->access_cache_inode_lru);
1725 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1726 		}
1727 		spin_unlock(&inode->i_lock);
1728 		spin_unlock(&nfs_access_lru_lock);
1729 		iput(inode);
1730 		up_read(s_umount);
1731 		goto restart;
1732 	}
1733 	spin_unlock(&nfs_access_lru_lock);
1734 	while (!list_empty(&head)) {
1735 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1736 		list_del(&cache->lru);
1737 		nfs_access_free_entry(cache);
1738 	}
1739 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1740 }
1741 
1742 static void __nfs_access_zap_cache(struct inode *inode)
1743 {
1744 	struct nfs_inode *nfsi = NFS_I(inode);
1745 	struct rb_root *root_node = &nfsi->access_cache;
1746 	struct rb_node *n, *dispose = NULL;
1747 	struct nfs_access_entry *entry;
1748 
1749 	/* Unhook entries from the cache */
1750 	while ((n = rb_first(root_node)) != NULL) {
1751 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1752 		rb_erase(n, root_node);
1753 		list_del(&entry->lru);
1754 		n->rb_left = dispose;
1755 		dispose = n;
1756 	}
1757 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1758 	spin_unlock(&inode->i_lock);
1759 
1760 	/* Now kill them all! */
1761 	while (dispose != NULL) {
1762 		n = dispose;
1763 		dispose = n->rb_left;
1764 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1765 	}
1766 }
1767 
1768 void nfs_access_zap_cache(struct inode *inode)
1769 {
1770 	/* Remove from global LRU init */
1771 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1772 		spin_lock(&nfs_access_lru_lock);
1773 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1774 		spin_unlock(&nfs_access_lru_lock);
1775 	}
1776 
1777 	spin_lock(&inode->i_lock);
1778 	/* This will release the spinlock */
1779 	__nfs_access_zap_cache(inode);
1780 }
1781 
1782 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1783 {
1784 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1785 	struct nfs_access_entry *entry;
1786 
1787 	while (n != NULL) {
1788 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1789 
1790 		if (cred < entry->cred)
1791 			n = n->rb_left;
1792 		else if (cred > entry->cred)
1793 			n = n->rb_right;
1794 		else
1795 			return entry;
1796 	}
1797 	return NULL;
1798 }
1799 
1800 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1801 {
1802 	struct nfs_inode *nfsi = NFS_I(inode);
1803 	struct nfs_access_entry *cache;
1804 	int err = -ENOENT;
1805 
1806 	spin_lock(&inode->i_lock);
1807 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1808 		goto out_zap;
1809 	cache = nfs_access_search_rbtree(inode, cred);
1810 	if (cache == NULL)
1811 		goto out;
1812 	if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1813 		goto out_stale;
1814 	res->jiffies = cache->jiffies;
1815 	res->cred = cache->cred;
1816 	res->mask = cache->mask;
1817 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1818 	err = 0;
1819 out:
1820 	spin_unlock(&inode->i_lock);
1821 	return err;
1822 out_stale:
1823 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1824 	list_del(&cache->lru);
1825 	spin_unlock(&inode->i_lock);
1826 	nfs_access_free_entry(cache);
1827 	return -ENOENT;
1828 out_zap:
1829 	/* This will release the spinlock */
1830 	__nfs_access_zap_cache(inode);
1831 	return -ENOENT;
1832 }
1833 
1834 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1835 {
1836 	struct nfs_inode *nfsi = NFS_I(inode);
1837 	struct rb_root *root_node = &nfsi->access_cache;
1838 	struct rb_node **p = &root_node->rb_node;
1839 	struct rb_node *parent = NULL;
1840 	struct nfs_access_entry *entry;
1841 
1842 	spin_lock(&inode->i_lock);
1843 	while (*p != NULL) {
1844 		parent = *p;
1845 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1846 
1847 		if (set->cred < entry->cred)
1848 			p = &parent->rb_left;
1849 		else if (set->cred > entry->cred)
1850 			p = &parent->rb_right;
1851 		else
1852 			goto found;
1853 	}
1854 	rb_link_node(&set->rb_node, parent, p);
1855 	rb_insert_color(&set->rb_node, root_node);
1856 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1857 	spin_unlock(&inode->i_lock);
1858 	return;
1859 found:
1860 	rb_replace_node(parent, &set->rb_node, root_node);
1861 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1862 	list_del(&entry->lru);
1863 	spin_unlock(&inode->i_lock);
1864 	nfs_access_free_entry(entry);
1865 }
1866 
1867 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1868 {
1869 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1870 	if (cache == NULL)
1871 		return;
1872 	RB_CLEAR_NODE(&cache->rb_node);
1873 	cache->jiffies = set->jiffies;
1874 	cache->cred = get_rpccred(set->cred);
1875 	cache->mask = set->mask;
1876 
1877 	nfs_access_add_rbtree(inode, cache);
1878 
1879 	/* Update accounting */
1880 	smp_mb__before_atomic_inc();
1881 	atomic_long_inc(&nfs_access_nr_entries);
1882 	smp_mb__after_atomic_inc();
1883 
1884 	/* Add inode to global LRU list */
1885 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1886 		spin_lock(&nfs_access_lru_lock);
1887 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1888 		spin_unlock(&nfs_access_lru_lock);
1889 	}
1890 }
1891 
1892 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1893 {
1894 	struct nfs_access_entry cache;
1895 	int status;
1896 
1897 	status = nfs_access_get_cached(inode, cred, &cache);
1898 	if (status == 0)
1899 		goto out;
1900 
1901 	/* Be clever: ask server to check for all possible rights */
1902 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1903 	cache.cred = cred;
1904 	cache.jiffies = jiffies;
1905 	status = NFS_PROTO(inode)->access(inode, &cache);
1906 	if (status != 0)
1907 		return status;
1908 	nfs_access_add_cache(inode, &cache);
1909 out:
1910 	if ((cache.mask & mask) == mask)
1911 		return 0;
1912 	return -EACCES;
1913 }
1914 
1915 static int nfs_open_permission_mask(int openflags)
1916 {
1917 	int mask = 0;
1918 
1919 	if (openflags & FMODE_READ)
1920 		mask |= MAY_READ;
1921 	if (openflags & FMODE_WRITE)
1922 		mask |= MAY_WRITE;
1923 	if (openflags & FMODE_EXEC)
1924 		mask |= MAY_EXEC;
1925 	return mask;
1926 }
1927 
1928 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1929 {
1930 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1931 }
1932 
1933 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1934 {
1935 	struct rpc_cred *cred;
1936 	int res = 0;
1937 
1938 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1939 
1940 	if (mask == 0)
1941 		goto out;
1942 	/* Is this sys_access() ? */
1943 	if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1944 		goto force_lookup;
1945 
1946 	switch (inode->i_mode & S_IFMT) {
1947 		case S_IFLNK:
1948 			goto out;
1949 		case S_IFREG:
1950 			/* NFSv4 has atomic_open... */
1951 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1952 					&& nd != NULL
1953 					&& (nd->flags & LOOKUP_OPEN))
1954 				goto out;
1955 			break;
1956 		case S_IFDIR:
1957 			/*
1958 			 * Optimize away all write operations, since the server
1959 			 * will check permissions when we perform the op.
1960 			 */
1961 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1962 				goto out;
1963 	}
1964 
1965 force_lookup:
1966 	lock_kernel();
1967 
1968 	if (!NFS_PROTO(inode)->access)
1969 		goto out_notsup;
1970 
1971 	cred = rpc_lookup_cred();
1972 	if (!IS_ERR(cred)) {
1973 		res = nfs_do_access(inode, cred, mask);
1974 		put_rpccred(cred);
1975 	} else
1976 		res = PTR_ERR(cred);
1977 	unlock_kernel();
1978 out:
1979 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1980 		inode->i_sb->s_id, inode->i_ino, mask, res);
1981 	return res;
1982 out_notsup:
1983 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1984 	if (res == 0)
1985 		res = generic_permission(inode, mask, NULL);
1986 	unlock_kernel();
1987 	goto out;
1988 }
1989 
1990 /*
1991  * Local variables:
1992  *  version-control: t
1993  *  kept-new-versions: 5
1994  * End:
1995  */
1996