xref: /openbmc/linux/fs/nfs/dir.c (revision 4e541b06b0e8ae6ebd85a913dba8db43d3ce6fe3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 
43 #include "delegation.h"
44 #include "iostat.h"
45 #include "internal.h"
46 #include "fscache.h"
47 
48 #include "nfstrace.h"
49 
50 /* #define NFS_DEBUG_VERBOSE 1 */
51 
52 static int nfs_opendir(struct inode *, struct file *);
53 static int nfs_closedir(struct inode *, struct file *);
54 static int nfs_readdir(struct file *, struct dir_context *);
55 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
56 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
57 static void nfs_readdir_clear_array(struct page*);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.iterate_shared	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_closedir,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 const struct address_space_operations nfs_dir_aops = {
69 	.freepage = nfs_readdir_clear_array,
70 };
71 
72 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
73 {
74 	struct nfs_inode *nfsi = NFS_I(dir);
75 	struct nfs_open_dir_context *ctx;
76 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
77 	if (ctx != NULL) {
78 		ctx->duped = 0;
79 		ctx->attr_gencount = nfsi->attr_gencount;
80 		ctx->dir_cookie = 0;
81 		ctx->dup_cookie = 0;
82 		ctx->page_index = 0;
83 		spin_lock(&dir->i_lock);
84 		if (list_empty(&nfsi->open_files) &&
85 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
86 			nfs_set_cache_invalid(dir,
87 					      NFS_INO_INVALID_DATA |
88 						      NFS_INO_REVAL_FORCED);
89 		list_add(&ctx->list, &nfsi->open_files);
90 		clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
91 		spin_unlock(&dir->i_lock);
92 		return ctx;
93 	}
94 	return  ERR_PTR(-ENOMEM);
95 }
96 
97 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
98 {
99 	spin_lock(&dir->i_lock);
100 	list_del(&ctx->list);
101 	spin_unlock(&dir->i_lock);
102 	kfree(ctx);
103 }
104 
105 /*
106  * Open file
107  */
108 static int
109 nfs_opendir(struct inode *inode, struct file *filp)
110 {
111 	int res = 0;
112 	struct nfs_open_dir_context *ctx;
113 
114 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
115 
116 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
117 
118 	ctx = alloc_nfs_open_dir_context(inode);
119 	if (IS_ERR(ctx)) {
120 		res = PTR_ERR(ctx);
121 		goto out;
122 	}
123 	filp->private_data = ctx;
124 out:
125 	return res;
126 }
127 
128 static int
129 nfs_closedir(struct inode *inode, struct file *filp)
130 {
131 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
132 	return 0;
133 }
134 
135 struct nfs_cache_array_entry {
136 	u64 cookie;
137 	u64 ino;
138 	const char *name;
139 	unsigned int name_len;
140 	unsigned char d_type;
141 };
142 
143 struct nfs_cache_array {
144 	u64 last_cookie;
145 	unsigned int size;
146 	unsigned char page_full : 1,
147 		      page_is_eof : 1,
148 		      cookies_are_ordered : 1;
149 	struct nfs_cache_array_entry array[];
150 };
151 
152 struct nfs_readdir_descriptor {
153 	struct file	*file;
154 	struct page	*page;
155 	struct dir_context *ctx;
156 	pgoff_t		page_index;
157 	u64		dir_cookie;
158 	u64		last_cookie;
159 	u64		dup_cookie;
160 	loff_t		current_index;
161 	loff_t		prev_index;
162 
163 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
164 	unsigned long	dir_verifier;
165 	unsigned long	timestamp;
166 	unsigned long	gencount;
167 	unsigned long	attr_gencount;
168 	unsigned int	cache_entry_index;
169 	signed char duped;
170 	bool plus;
171 	bool eof;
172 };
173 
174 static void nfs_readdir_array_init(struct nfs_cache_array *array)
175 {
176 	memset(array, 0, sizeof(struct nfs_cache_array));
177 }
178 
179 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
180 {
181 	struct nfs_cache_array *array;
182 
183 	array = kmap_atomic(page);
184 	nfs_readdir_array_init(array);
185 	array->last_cookie = last_cookie;
186 	array->cookies_are_ordered = 1;
187 	kunmap_atomic(array);
188 }
189 
190 /*
191  * we are freeing strings created by nfs_add_to_readdir_array()
192  */
193 static
194 void nfs_readdir_clear_array(struct page *page)
195 {
196 	struct nfs_cache_array *array;
197 	int i;
198 
199 	array = kmap_atomic(page);
200 	for (i = 0; i < array->size; i++)
201 		kfree(array->array[i].name);
202 	nfs_readdir_array_init(array);
203 	kunmap_atomic(array);
204 }
205 
206 static struct page *
207 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
208 {
209 	struct page *page = alloc_page(gfp_flags);
210 	if (page)
211 		nfs_readdir_page_init_array(page, last_cookie);
212 	return page;
213 }
214 
215 static void nfs_readdir_page_array_free(struct page *page)
216 {
217 	if (page) {
218 		nfs_readdir_clear_array(page);
219 		put_page(page);
220 	}
221 }
222 
223 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
224 {
225 	array->page_is_eof = 1;
226 	array->page_full = 1;
227 }
228 
229 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
230 {
231 	return array->page_full;
232 }
233 
234 /*
235  * the caller is responsible for freeing qstr.name
236  * when called by nfs_readdir_add_to_array, the strings will be freed in
237  * nfs_clear_readdir_array()
238  */
239 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
240 {
241 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
242 
243 	/*
244 	 * Avoid a kmemleak false positive. The pointer to the name is stored
245 	 * in a page cache page which kmemleak does not scan.
246 	 */
247 	if (ret != NULL)
248 		kmemleak_not_leak(ret);
249 	return ret;
250 }
251 
252 /*
253  * Check that the next array entry lies entirely within the page bounds
254  */
255 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
256 {
257 	struct nfs_cache_array_entry *cache_entry;
258 
259 	if (array->page_full)
260 		return -ENOSPC;
261 	cache_entry = &array->array[array->size + 1];
262 	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
263 		array->page_full = 1;
264 		return -ENOSPC;
265 	}
266 	return 0;
267 }
268 
269 static
270 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
271 {
272 	struct nfs_cache_array *array;
273 	struct nfs_cache_array_entry *cache_entry;
274 	const char *name;
275 	int ret;
276 
277 	name = nfs_readdir_copy_name(entry->name, entry->len);
278 	if (!name)
279 		return -ENOMEM;
280 
281 	array = kmap_atomic(page);
282 	ret = nfs_readdir_array_can_expand(array);
283 	if (ret) {
284 		kfree(name);
285 		goto out;
286 	}
287 
288 	cache_entry = &array->array[array->size];
289 	cache_entry->cookie = entry->prev_cookie;
290 	cache_entry->ino = entry->ino;
291 	cache_entry->d_type = entry->d_type;
292 	cache_entry->name_len = entry->len;
293 	cache_entry->name = name;
294 	array->last_cookie = entry->cookie;
295 	if (array->last_cookie <= cache_entry->cookie)
296 		array->cookies_are_ordered = 0;
297 	array->size++;
298 	if (entry->eof != 0)
299 		nfs_readdir_array_set_eof(array);
300 out:
301 	kunmap_atomic(array);
302 	return ret;
303 }
304 
305 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
306 						pgoff_t index, u64 last_cookie)
307 {
308 	struct page *page;
309 
310 	page = grab_cache_page(mapping, index);
311 	if (page && !PageUptodate(page)) {
312 		nfs_readdir_page_init_array(page, last_cookie);
313 		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
314 			nfs_zap_mapping(mapping->host, mapping);
315 		SetPageUptodate(page);
316 	}
317 
318 	return page;
319 }
320 
321 static u64 nfs_readdir_page_last_cookie(struct page *page)
322 {
323 	struct nfs_cache_array *array;
324 	u64 ret;
325 
326 	array = kmap_atomic(page);
327 	ret = array->last_cookie;
328 	kunmap_atomic(array);
329 	return ret;
330 }
331 
332 static bool nfs_readdir_page_needs_filling(struct page *page)
333 {
334 	struct nfs_cache_array *array;
335 	bool ret;
336 
337 	array = kmap_atomic(page);
338 	ret = !nfs_readdir_array_is_full(array);
339 	kunmap_atomic(array);
340 	return ret;
341 }
342 
343 static void nfs_readdir_page_set_eof(struct page *page)
344 {
345 	struct nfs_cache_array *array;
346 
347 	array = kmap_atomic(page);
348 	nfs_readdir_array_set_eof(array);
349 	kunmap_atomic(array);
350 }
351 
352 static void nfs_readdir_page_unlock_and_put(struct page *page)
353 {
354 	unlock_page(page);
355 	put_page(page);
356 }
357 
358 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
359 					      pgoff_t index, u64 cookie)
360 {
361 	struct page *page;
362 
363 	page = nfs_readdir_page_get_locked(mapping, index, cookie);
364 	if (page) {
365 		if (nfs_readdir_page_last_cookie(page) == cookie)
366 			return page;
367 		nfs_readdir_page_unlock_and_put(page);
368 	}
369 	return NULL;
370 }
371 
372 static inline
373 int is_32bit_api(void)
374 {
375 #ifdef CONFIG_COMPAT
376 	return in_compat_syscall();
377 #else
378 	return (BITS_PER_LONG == 32);
379 #endif
380 }
381 
382 static
383 bool nfs_readdir_use_cookie(const struct file *filp)
384 {
385 	if ((filp->f_mode & FMODE_32BITHASH) ||
386 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
387 		return false;
388 	return true;
389 }
390 
391 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
392 				      struct nfs_readdir_descriptor *desc)
393 {
394 	loff_t diff = desc->ctx->pos - desc->current_index;
395 	unsigned int index;
396 
397 	if (diff < 0)
398 		goto out_eof;
399 	if (diff >= array->size) {
400 		if (array->page_is_eof)
401 			goto out_eof;
402 		return -EAGAIN;
403 	}
404 
405 	index = (unsigned int)diff;
406 	desc->dir_cookie = array->array[index].cookie;
407 	desc->cache_entry_index = index;
408 	return 0;
409 out_eof:
410 	desc->eof = true;
411 	return -EBADCOOKIE;
412 }
413 
414 static bool
415 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
416 {
417 	if (nfsi->cache_validity & (NFS_INO_INVALID_CHANGE |
418 				    NFS_INO_INVALID_DATA))
419 		return false;
420 	smp_rmb();
421 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
422 }
423 
424 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
425 					      u64 cookie)
426 {
427 	if (!array->cookies_are_ordered)
428 		return true;
429 	/* Optimisation for monotonically increasing cookies */
430 	if (cookie >= array->last_cookie)
431 		return false;
432 	if (array->size && cookie < array->array[0].cookie)
433 		return false;
434 	return true;
435 }
436 
437 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
438 					 struct nfs_readdir_descriptor *desc)
439 {
440 	int i;
441 	loff_t new_pos;
442 	int status = -EAGAIN;
443 
444 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
445 		goto check_eof;
446 
447 	for (i = 0; i < array->size; i++) {
448 		if (array->array[i].cookie == desc->dir_cookie) {
449 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
450 
451 			new_pos = desc->current_index + i;
452 			if (desc->attr_gencount != nfsi->attr_gencount ||
453 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
454 				desc->duped = 0;
455 				desc->attr_gencount = nfsi->attr_gencount;
456 			} else if (new_pos < desc->prev_index) {
457 				if (desc->duped > 0
458 				    && desc->dup_cookie == desc->dir_cookie) {
459 					if (printk_ratelimit()) {
460 						pr_notice("NFS: directory %pD2 contains a readdir loop."
461 								"Please contact your server vendor.  "
462 								"The file: %s has duplicate cookie %llu\n",
463 								desc->file, array->array[i].name, desc->dir_cookie);
464 					}
465 					status = -ELOOP;
466 					goto out;
467 				}
468 				desc->dup_cookie = desc->dir_cookie;
469 				desc->duped = -1;
470 			}
471 			if (nfs_readdir_use_cookie(desc->file))
472 				desc->ctx->pos = desc->dir_cookie;
473 			else
474 				desc->ctx->pos = new_pos;
475 			desc->prev_index = new_pos;
476 			desc->cache_entry_index = i;
477 			return 0;
478 		}
479 	}
480 check_eof:
481 	if (array->page_is_eof) {
482 		status = -EBADCOOKIE;
483 		if (desc->dir_cookie == array->last_cookie)
484 			desc->eof = true;
485 	}
486 out:
487 	return status;
488 }
489 
490 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
491 {
492 	struct nfs_cache_array *array;
493 	int status;
494 
495 	array = kmap_atomic(desc->page);
496 
497 	if (desc->dir_cookie == 0)
498 		status = nfs_readdir_search_for_pos(array, desc);
499 	else
500 		status = nfs_readdir_search_for_cookie(array, desc);
501 
502 	if (status == -EAGAIN) {
503 		desc->last_cookie = array->last_cookie;
504 		desc->current_index += array->size;
505 		desc->page_index++;
506 	}
507 	kunmap_atomic(array);
508 	return status;
509 }
510 
511 /* Fill a page with xdr information before transferring to the cache page */
512 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
513 				  __be32 *verf, u64 cookie,
514 				  struct page **pages, size_t bufsize,
515 				  __be32 *verf_res)
516 {
517 	struct inode *inode = file_inode(desc->file);
518 	struct nfs_readdir_arg arg = {
519 		.dentry = file_dentry(desc->file),
520 		.cred = desc->file->f_cred,
521 		.verf = verf,
522 		.cookie = cookie,
523 		.pages = pages,
524 		.page_len = bufsize,
525 		.plus = desc->plus,
526 	};
527 	struct nfs_readdir_res res = {
528 		.verf = verf_res,
529 	};
530 	unsigned long	timestamp, gencount;
531 	int		error;
532 
533  again:
534 	timestamp = jiffies;
535 	gencount = nfs_inc_attr_generation_counter();
536 	desc->dir_verifier = nfs_save_change_attribute(inode);
537 	error = NFS_PROTO(inode)->readdir(&arg, &res);
538 	if (error < 0) {
539 		/* We requested READDIRPLUS, but the server doesn't grok it */
540 		if (error == -ENOTSUPP && desc->plus) {
541 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
542 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
543 			desc->plus = arg.plus = false;
544 			goto again;
545 		}
546 		goto error;
547 	}
548 	desc->timestamp = timestamp;
549 	desc->gencount = gencount;
550 error:
551 	return error;
552 }
553 
554 static int xdr_decode(struct nfs_readdir_descriptor *desc,
555 		      struct nfs_entry *entry, struct xdr_stream *xdr)
556 {
557 	struct inode *inode = file_inode(desc->file);
558 	int error;
559 
560 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
561 	if (error)
562 		return error;
563 	entry->fattr->time_start = desc->timestamp;
564 	entry->fattr->gencount = desc->gencount;
565 	return 0;
566 }
567 
568 /* Match file and dirent using either filehandle or fileid
569  * Note: caller is responsible for checking the fsid
570  */
571 static
572 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
573 {
574 	struct inode *inode;
575 	struct nfs_inode *nfsi;
576 
577 	if (d_really_is_negative(dentry))
578 		return 0;
579 
580 	inode = d_inode(dentry);
581 	if (is_bad_inode(inode) || NFS_STALE(inode))
582 		return 0;
583 
584 	nfsi = NFS_I(inode);
585 	if (entry->fattr->fileid != nfsi->fileid)
586 		return 0;
587 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
588 		return 0;
589 	return 1;
590 }
591 
592 static
593 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
594 {
595 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
596 		return false;
597 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
598 		return true;
599 	if (ctx->pos == 0)
600 		return true;
601 	return false;
602 }
603 
604 /*
605  * This function is called by the lookup and getattr code to request the
606  * use of readdirplus to accelerate any future lookups in the same
607  * directory.
608  */
609 void nfs_advise_use_readdirplus(struct inode *dir)
610 {
611 	struct nfs_inode *nfsi = NFS_I(dir);
612 
613 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
614 	    !list_empty(&nfsi->open_files))
615 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
616 }
617 
618 /*
619  * This function is mainly for use by nfs_getattr().
620  *
621  * If this is an 'ls -l', we want to force use of readdirplus.
622  * Do this by checking if there is an active file descriptor
623  * and calling nfs_advise_use_readdirplus, then forcing a
624  * cache flush.
625  */
626 void nfs_force_use_readdirplus(struct inode *dir)
627 {
628 	struct nfs_inode *nfsi = NFS_I(dir);
629 
630 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
631 	    !list_empty(&nfsi->open_files)) {
632 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
633 		set_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
634 	}
635 }
636 
637 static
638 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
639 		unsigned long dir_verifier)
640 {
641 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
642 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
643 	struct dentry *dentry;
644 	struct dentry *alias;
645 	struct inode *inode;
646 	int status;
647 
648 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
649 		return;
650 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
651 		return;
652 	if (filename.len == 0)
653 		return;
654 	/* Validate that the name doesn't contain any illegal '\0' */
655 	if (strnlen(filename.name, filename.len) != filename.len)
656 		return;
657 	/* ...or '/' */
658 	if (strnchr(filename.name, filename.len, '/'))
659 		return;
660 	if (filename.name[0] == '.') {
661 		if (filename.len == 1)
662 			return;
663 		if (filename.len == 2 && filename.name[1] == '.')
664 			return;
665 	}
666 	filename.hash = full_name_hash(parent, filename.name, filename.len);
667 
668 	dentry = d_lookup(parent, &filename);
669 again:
670 	if (!dentry) {
671 		dentry = d_alloc_parallel(parent, &filename, &wq);
672 		if (IS_ERR(dentry))
673 			return;
674 	}
675 	if (!d_in_lookup(dentry)) {
676 		/* Is there a mountpoint here? If so, just exit */
677 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
678 					&entry->fattr->fsid))
679 			goto out;
680 		if (nfs_same_file(dentry, entry)) {
681 			if (!entry->fh->size)
682 				goto out;
683 			nfs_set_verifier(dentry, dir_verifier);
684 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
685 			if (!status)
686 				nfs_setsecurity(d_inode(dentry), entry->fattr);
687 			goto out;
688 		} else {
689 			d_invalidate(dentry);
690 			dput(dentry);
691 			dentry = NULL;
692 			goto again;
693 		}
694 	}
695 	if (!entry->fh->size) {
696 		d_lookup_done(dentry);
697 		goto out;
698 	}
699 
700 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
701 	alias = d_splice_alias(inode, dentry);
702 	d_lookup_done(dentry);
703 	if (alias) {
704 		if (IS_ERR(alias))
705 			goto out;
706 		dput(dentry);
707 		dentry = alias;
708 	}
709 	nfs_set_verifier(dentry, dir_verifier);
710 out:
711 	dput(dentry);
712 }
713 
714 /* Perform conversion from xdr to cache array */
715 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
716 				   struct nfs_entry *entry,
717 				   struct page **xdr_pages,
718 				   unsigned int buflen,
719 				   struct page **arrays,
720 				   size_t narrays)
721 {
722 	struct address_space *mapping = desc->file->f_mapping;
723 	struct xdr_stream stream;
724 	struct xdr_buf buf;
725 	struct page *scratch, *new, *page = *arrays;
726 	int status;
727 
728 	scratch = alloc_page(GFP_KERNEL);
729 	if (scratch == NULL)
730 		return -ENOMEM;
731 
732 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
733 	xdr_set_scratch_page(&stream, scratch);
734 
735 	do {
736 		if (entry->fattr->label)
737 			entry->fattr->label->len = NFS4_MAXLABELLEN;
738 
739 		status = xdr_decode(desc, entry, &stream);
740 		if (status != 0)
741 			break;
742 
743 		if (desc->plus)
744 			nfs_prime_dcache(file_dentry(desc->file), entry,
745 					desc->dir_verifier);
746 
747 		status = nfs_readdir_add_to_array(entry, page);
748 		if (status != -ENOSPC)
749 			continue;
750 
751 		if (page->mapping != mapping) {
752 			if (!--narrays)
753 				break;
754 			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
755 							   GFP_KERNEL);
756 			if (!new)
757 				break;
758 			arrays++;
759 			*arrays = page = new;
760 		} else {
761 			new = nfs_readdir_page_get_next(mapping,
762 							page->index + 1,
763 							entry->prev_cookie);
764 			if (!new)
765 				break;
766 			if (page != *arrays)
767 				nfs_readdir_page_unlock_and_put(page);
768 			page = new;
769 		}
770 		status = nfs_readdir_add_to_array(entry, page);
771 	} while (!status && !entry->eof);
772 
773 	switch (status) {
774 	case -EBADCOOKIE:
775 		if (entry->eof) {
776 			nfs_readdir_page_set_eof(page);
777 			status = 0;
778 		}
779 		break;
780 	case -ENOSPC:
781 	case -EAGAIN:
782 		status = 0;
783 		break;
784 	}
785 
786 	if (page != *arrays)
787 		nfs_readdir_page_unlock_and_put(page);
788 
789 	put_page(scratch);
790 	return status;
791 }
792 
793 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
794 {
795 	while (npages--)
796 		put_page(pages[npages]);
797 	kfree(pages);
798 }
799 
800 /*
801  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
802  * to nfs_readdir_free_pages()
803  */
804 static struct page **nfs_readdir_alloc_pages(size_t npages)
805 {
806 	struct page **pages;
807 	size_t i;
808 
809 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
810 	if (!pages)
811 		return NULL;
812 	for (i = 0; i < npages; i++) {
813 		struct page *page = alloc_page(GFP_KERNEL);
814 		if (page == NULL)
815 			goto out_freepages;
816 		pages[i] = page;
817 	}
818 	return pages;
819 
820 out_freepages:
821 	nfs_readdir_free_pages(pages, i);
822 	return NULL;
823 }
824 
825 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
826 				    __be32 *verf_arg, __be32 *verf_res,
827 				    struct page **arrays, size_t narrays)
828 {
829 	struct page **pages;
830 	struct page *page = *arrays;
831 	struct nfs_entry *entry;
832 	size_t array_size;
833 	struct inode *inode = file_inode(desc->file);
834 	size_t dtsize = NFS_SERVER(inode)->dtsize;
835 	int status = -ENOMEM;
836 
837 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
838 	if (!entry)
839 		return -ENOMEM;
840 	entry->cookie = nfs_readdir_page_last_cookie(page);
841 	entry->fh = nfs_alloc_fhandle();
842 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
843 	entry->server = NFS_SERVER(inode);
844 	if (entry->fh == NULL || entry->fattr == NULL)
845 		goto out;
846 
847 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
848 	pages = nfs_readdir_alloc_pages(array_size);
849 	if (!pages)
850 		goto out;
851 
852 	do {
853 		unsigned int pglen;
854 		status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
855 						pages, dtsize,
856 						verf_res);
857 		if (status < 0)
858 			break;
859 
860 		pglen = status;
861 		if (pglen == 0) {
862 			nfs_readdir_page_set_eof(page);
863 			break;
864 		}
865 
866 		verf_arg = verf_res;
867 
868 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
869 						 arrays, narrays);
870 	} while (!status && nfs_readdir_page_needs_filling(page));
871 
872 	nfs_readdir_free_pages(pages, array_size);
873 out:
874 	nfs_free_fattr(entry->fattr);
875 	nfs_free_fhandle(entry->fh);
876 	kfree(entry);
877 	return status;
878 }
879 
880 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
881 {
882 	put_page(desc->page);
883 	desc->page = NULL;
884 }
885 
886 static void
887 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
888 {
889 	unlock_page(desc->page);
890 	nfs_readdir_page_put(desc);
891 }
892 
893 static struct page *
894 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
895 {
896 	return nfs_readdir_page_get_locked(desc->file->f_mapping,
897 					   desc->page_index,
898 					   desc->last_cookie);
899 }
900 
901 /*
902  * Returns 0 if desc->dir_cookie was found on page desc->page_index
903  * and locks the page to prevent removal from the page cache.
904  */
905 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
906 {
907 	struct inode *inode = file_inode(desc->file);
908 	struct nfs_inode *nfsi = NFS_I(inode);
909 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
910 	int res;
911 
912 	desc->page = nfs_readdir_page_get_cached(desc);
913 	if (!desc->page)
914 		return -ENOMEM;
915 	if (nfs_readdir_page_needs_filling(desc->page)) {
916 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
917 					       &desc->page, 1);
918 		if (res < 0) {
919 			nfs_readdir_page_unlock_and_put_cached(desc);
920 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
921 				invalidate_inode_pages2(desc->file->f_mapping);
922 				desc->page_index = 0;
923 				return -EAGAIN;
924 			}
925 			return res;
926 		}
927 		/*
928 		 * Set the cookie verifier if the page cache was empty
929 		 */
930 		if (desc->page_index == 0)
931 			memcpy(nfsi->cookieverf, verf,
932 			       sizeof(nfsi->cookieverf));
933 	}
934 	res = nfs_readdir_search_array(desc);
935 	if (res == 0)
936 		return 0;
937 	nfs_readdir_page_unlock_and_put_cached(desc);
938 	return res;
939 }
940 
941 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
942 {
943 	struct address_space *mapping = desc->file->f_mapping;
944 	struct inode *dir = file_inode(desc->file);
945 	unsigned int dtsize = NFS_SERVER(dir)->dtsize;
946 	loff_t size = i_size_read(dir);
947 
948 	/*
949 	 * Default to uncached readdir if the page cache is empty, and
950 	 * we're looking for a non-zero cookie in a large directory.
951 	 */
952 	return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
953 }
954 
955 /* Search for desc->dir_cookie from the beginning of the page cache */
956 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
957 {
958 	int res;
959 
960 	if (nfs_readdir_dont_search_cache(desc))
961 		return -EBADCOOKIE;
962 
963 	do {
964 		if (desc->page_index == 0) {
965 			desc->current_index = 0;
966 			desc->prev_index = 0;
967 			desc->last_cookie = 0;
968 		}
969 		res = find_and_lock_cache_page(desc);
970 	} while (res == -EAGAIN);
971 	return res;
972 }
973 
974 /*
975  * Once we've found the start of the dirent within a page: fill 'er up...
976  */
977 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
978 			   const __be32 *verf)
979 {
980 	struct file	*file = desc->file;
981 	struct nfs_cache_array *array;
982 	unsigned int i = 0;
983 
984 	array = kmap(desc->page);
985 	for (i = desc->cache_entry_index; i < array->size; i++) {
986 		struct nfs_cache_array_entry *ent;
987 
988 		ent = &array->array[i];
989 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
990 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
991 			desc->eof = true;
992 			break;
993 		}
994 		memcpy(desc->verf, verf, sizeof(desc->verf));
995 		if (i < (array->size-1))
996 			desc->dir_cookie = array->array[i+1].cookie;
997 		else
998 			desc->dir_cookie = array->last_cookie;
999 		if (nfs_readdir_use_cookie(file))
1000 			desc->ctx->pos = desc->dir_cookie;
1001 		else
1002 			desc->ctx->pos++;
1003 		if (desc->duped != 0)
1004 			desc->duped = 1;
1005 	}
1006 	if (array->page_is_eof)
1007 		desc->eof = true;
1008 
1009 	kunmap(desc->page);
1010 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1011 			(unsigned long long)desc->dir_cookie);
1012 }
1013 
1014 /*
1015  * If we cannot find a cookie in our cache, we suspect that this is
1016  * because it points to a deleted file, so we ask the server to return
1017  * whatever it thinks is the next entry. We then feed this to filldir.
1018  * If all goes well, we should then be able to find our way round the
1019  * cache on the next call to readdir_search_pagecache();
1020  *
1021  * NOTE: we cannot add the anonymous page to the pagecache because
1022  *	 the data it contains might not be page aligned. Besides,
1023  *	 we should already have a complete representation of the
1024  *	 directory in the page cache by the time we get here.
1025  */
1026 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1027 {
1028 	struct page	**arrays;
1029 	size_t		i, sz = 512;
1030 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1031 	int		status = -ENOMEM;
1032 
1033 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1034 			(unsigned long long)desc->dir_cookie);
1035 
1036 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1037 	if (!arrays)
1038 		goto out;
1039 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1040 	if (!arrays[0])
1041 		goto out;
1042 
1043 	desc->page_index = 0;
1044 	desc->last_cookie = desc->dir_cookie;
1045 	desc->duped = 0;
1046 
1047 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1048 
1049 	for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1050 		desc->page = arrays[i];
1051 		nfs_do_filldir(desc, verf);
1052 	}
1053 	desc->page = NULL;
1054 
1055 
1056 	for (i = 0; i < sz && arrays[i]; i++)
1057 		nfs_readdir_page_array_free(arrays[i]);
1058 out:
1059 	kfree(arrays);
1060 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1061 	return status;
1062 }
1063 
1064 /* The file offset position represents the dirent entry number.  A
1065    last cookie cache takes care of the common case of reading the
1066    whole directory.
1067  */
1068 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1069 {
1070 	struct dentry	*dentry = file_dentry(file);
1071 	struct inode	*inode = d_inode(dentry);
1072 	struct nfs_inode *nfsi = NFS_I(inode);
1073 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1074 	struct nfs_readdir_descriptor *desc;
1075 	pgoff_t page_index;
1076 	int res;
1077 
1078 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1079 			file, (long long)ctx->pos);
1080 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1081 
1082 	/*
1083 	 * ctx->pos points to the dirent entry number.
1084 	 * *desc->dir_cookie has the cookie for the next entry. We have
1085 	 * to either find the entry with the appropriate number or
1086 	 * revalidate the cookie.
1087 	 */
1088 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1089 		res = nfs_revalidate_mapping(inode, file->f_mapping);
1090 		if (res < 0)
1091 			goto out;
1092 	}
1093 
1094 	res = -ENOMEM;
1095 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1096 	if (!desc)
1097 		goto out;
1098 	desc->file = file;
1099 	desc->ctx = ctx;
1100 	desc->plus = nfs_use_readdirplus(inode, ctx);
1101 
1102 	spin_lock(&file->f_lock);
1103 	desc->dir_cookie = dir_ctx->dir_cookie;
1104 	desc->dup_cookie = dir_ctx->dup_cookie;
1105 	desc->duped = dir_ctx->duped;
1106 	page_index = dir_ctx->page_index;
1107 	desc->attr_gencount = dir_ctx->attr_gencount;
1108 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1109 	spin_unlock(&file->f_lock);
1110 
1111 	if (test_and_clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags) &&
1112 	    list_is_singular(&nfsi->open_files))
1113 		invalidate_mapping_pages(inode->i_mapping, page_index + 1, -1);
1114 
1115 	do {
1116 		res = readdir_search_pagecache(desc);
1117 
1118 		if (res == -EBADCOOKIE) {
1119 			res = 0;
1120 			/* This means either end of directory */
1121 			if (desc->dir_cookie && !desc->eof) {
1122 				/* Or that the server has 'lost' a cookie */
1123 				res = uncached_readdir(desc);
1124 				if (res == 0)
1125 					continue;
1126 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1127 					res = 0;
1128 			}
1129 			break;
1130 		}
1131 		if (res == -ETOOSMALL && desc->plus) {
1132 			clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1133 			nfs_zap_caches(inode);
1134 			desc->page_index = 0;
1135 			desc->plus = false;
1136 			desc->eof = false;
1137 			continue;
1138 		}
1139 		if (res < 0)
1140 			break;
1141 
1142 		nfs_do_filldir(desc, nfsi->cookieverf);
1143 		nfs_readdir_page_unlock_and_put_cached(desc);
1144 	} while (!desc->eof);
1145 
1146 	spin_lock(&file->f_lock);
1147 	dir_ctx->dir_cookie = desc->dir_cookie;
1148 	dir_ctx->dup_cookie = desc->dup_cookie;
1149 	dir_ctx->duped = desc->duped;
1150 	dir_ctx->attr_gencount = desc->attr_gencount;
1151 	dir_ctx->page_index = desc->page_index;
1152 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1153 	spin_unlock(&file->f_lock);
1154 
1155 	kfree(desc);
1156 
1157 out:
1158 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1159 	return res;
1160 }
1161 
1162 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1163 {
1164 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1165 
1166 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1167 			filp, offset, whence);
1168 
1169 	switch (whence) {
1170 	default:
1171 		return -EINVAL;
1172 	case SEEK_SET:
1173 		if (offset < 0)
1174 			return -EINVAL;
1175 		spin_lock(&filp->f_lock);
1176 		break;
1177 	case SEEK_CUR:
1178 		if (offset == 0)
1179 			return filp->f_pos;
1180 		spin_lock(&filp->f_lock);
1181 		offset += filp->f_pos;
1182 		if (offset < 0) {
1183 			spin_unlock(&filp->f_lock);
1184 			return -EINVAL;
1185 		}
1186 	}
1187 	if (offset != filp->f_pos) {
1188 		filp->f_pos = offset;
1189 		if (nfs_readdir_use_cookie(filp))
1190 			dir_ctx->dir_cookie = offset;
1191 		else
1192 			dir_ctx->dir_cookie = 0;
1193 		if (offset == 0)
1194 			memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1195 		dir_ctx->duped = 0;
1196 	}
1197 	spin_unlock(&filp->f_lock);
1198 	return offset;
1199 }
1200 
1201 /*
1202  * All directory operations under NFS are synchronous, so fsync()
1203  * is a dummy operation.
1204  */
1205 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1206 			 int datasync)
1207 {
1208 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1209 
1210 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1211 	return 0;
1212 }
1213 
1214 /**
1215  * nfs_force_lookup_revalidate - Mark the directory as having changed
1216  * @dir: pointer to directory inode
1217  *
1218  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1219  * full lookup on all child dentries of 'dir' whenever a change occurs
1220  * on the server that might have invalidated our dcache.
1221  *
1222  * Note that we reserve bit '0' as a tag to let us know when a dentry
1223  * was revalidated while holding a delegation on its inode.
1224  *
1225  * The caller should be holding dir->i_lock
1226  */
1227 void nfs_force_lookup_revalidate(struct inode *dir)
1228 {
1229 	NFS_I(dir)->cache_change_attribute += 2;
1230 }
1231 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1232 
1233 /**
1234  * nfs_verify_change_attribute - Detects NFS remote directory changes
1235  * @dir: pointer to parent directory inode
1236  * @verf: previously saved change attribute
1237  *
1238  * Return "false" if the verifiers doesn't match the change attribute.
1239  * This would usually indicate that the directory contents have changed on
1240  * the server, and that any dentries need revalidating.
1241  */
1242 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1243 {
1244 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1245 }
1246 
1247 static void nfs_set_verifier_delegated(unsigned long *verf)
1248 {
1249 	*verf |= 1UL;
1250 }
1251 
1252 #if IS_ENABLED(CONFIG_NFS_V4)
1253 static void nfs_unset_verifier_delegated(unsigned long *verf)
1254 {
1255 	*verf &= ~1UL;
1256 }
1257 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1258 
1259 static bool nfs_test_verifier_delegated(unsigned long verf)
1260 {
1261 	return verf & 1;
1262 }
1263 
1264 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1265 {
1266 	return nfs_test_verifier_delegated(dentry->d_time);
1267 }
1268 
1269 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1270 {
1271 	struct inode *inode = d_inode(dentry);
1272 	struct inode *dir = d_inode(dentry->d_parent);
1273 
1274 	if (!nfs_verify_change_attribute(dir, verf))
1275 		return;
1276 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1277 		nfs_set_verifier_delegated(&verf);
1278 	dentry->d_time = verf;
1279 }
1280 
1281 /**
1282  * nfs_set_verifier - save a parent directory verifier in the dentry
1283  * @dentry: pointer to dentry
1284  * @verf: verifier to save
1285  *
1286  * Saves the parent directory verifier in @dentry. If the inode has
1287  * a delegation, we also tag the dentry as having been revalidated
1288  * while holding a delegation so that we know we don't have to
1289  * look it up again after a directory change.
1290  */
1291 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1292 {
1293 
1294 	spin_lock(&dentry->d_lock);
1295 	nfs_set_verifier_locked(dentry, verf);
1296 	spin_unlock(&dentry->d_lock);
1297 }
1298 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1299 
1300 #if IS_ENABLED(CONFIG_NFS_V4)
1301 /**
1302  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1303  * @inode: pointer to inode
1304  *
1305  * Iterates through the dentries in the inode alias list and clears
1306  * the tag used to indicate that the dentry has been revalidated
1307  * while holding a delegation.
1308  * This function is intended for use when the delegation is being
1309  * returned or revoked.
1310  */
1311 void nfs_clear_verifier_delegated(struct inode *inode)
1312 {
1313 	struct dentry *alias;
1314 
1315 	if (!inode)
1316 		return;
1317 	spin_lock(&inode->i_lock);
1318 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1319 		spin_lock(&alias->d_lock);
1320 		nfs_unset_verifier_delegated(&alias->d_time);
1321 		spin_unlock(&alias->d_lock);
1322 	}
1323 	spin_unlock(&inode->i_lock);
1324 }
1325 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1326 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1327 
1328 /*
1329  * A check for whether or not the parent directory has changed.
1330  * In the case it has, we assume that the dentries are untrustworthy
1331  * and may need to be looked up again.
1332  * If rcu_walk prevents us from performing a full check, return 0.
1333  */
1334 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1335 			      int rcu_walk)
1336 {
1337 	if (IS_ROOT(dentry))
1338 		return 1;
1339 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1340 		return 0;
1341 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1342 		return 0;
1343 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1344 	if (nfs_mapping_need_revalidate_inode(dir)) {
1345 		if (rcu_walk)
1346 			return 0;
1347 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1348 			return 0;
1349 	}
1350 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1351 		return 0;
1352 	return 1;
1353 }
1354 
1355 /*
1356  * Use intent information to check whether or not we're going to do
1357  * an O_EXCL create using this path component.
1358  */
1359 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1360 {
1361 	if (NFS_PROTO(dir)->version == 2)
1362 		return 0;
1363 	return flags & LOOKUP_EXCL;
1364 }
1365 
1366 /*
1367  * Inode and filehandle revalidation for lookups.
1368  *
1369  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1370  * or if the intent information indicates that we're about to open this
1371  * particular file and the "nocto" mount flag is not set.
1372  *
1373  */
1374 static
1375 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1376 {
1377 	struct nfs_server *server = NFS_SERVER(inode);
1378 	int ret;
1379 
1380 	if (IS_AUTOMOUNT(inode))
1381 		return 0;
1382 
1383 	if (flags & LOOKUP_OPEN) {
1384 		switch (inode->i_mode & S_IFMT) {
1385 		case S_IFREG:
1386 			/* A NFSv4 OPEN will revalidate later */
1387 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1388 				goto out;
1389 			fallthrough;
1390 		case S_IFDIR:
1391 			if (server->flags & NFS_MOUNT_NOCTO)
1392 				break;
1393 			/* NFS close-to-open cache consistency validation */
1394 			goto out_force;
1395 		}
1396 	}
1397 
1398 	/* VFS wants an on-the-wire revalidation */
1399 	if (flags & LOOKUP_REVAL)
1400 		goto out_force;
1401 out:
1402 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1403 out_force:
1404 	if (flags & LOOKUP_RCU)
1405 		return -ECHILD;
1406 	ret = __nfs_revalidate_inode(server, inode);
1407 	if (ret != 0)
1408 		return ret;
1409 	goto out;
1410 }
1411 
1412 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1413 {
1414 	spin_lock(&inode->i_lock);
1415 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1416 	spin_unlock(&inode->i_lock);
1417 }
1418 
1419 /*
1420  * We judge how long we want to trust negative
1421  * dentries by looking at the parent inode mtime.
1422  *
1423  * If parent mtime has changed, we revalidate, else we wait for a
1424  * period corresponding to the parent's attribute cache timeout value.
1425  *
1426  * If LOOKUP_RCU prevents us from performing a full check, return 1
1427  * suggesting a reval is needed.
1428  *
1429  * Note that when creating a new file, or looking up a rename target,
1430  * then it shouldn't be necessary to revalidate a negative dentry.
1431  */
1432 static inline
1433 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1434 		       unsigned int flags)
1435 {
1436 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1437 		return 0;
1438 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1439 		return 1;
1440 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1441 }
1442 
1443 static int
1444 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1445 			   struct inode *inode, int error)
1446 {
1447 	switch (error) {
1448 	case 1:
1449 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1450 			__func__, dentry);
1451 		return 1;
1452 	case 0:
1453 		/*
1454 		 * We can't d_drop the root of a disconnected tree:
1455 		 * its d_hash is on the s_anon list and d_drop() would hide
1456 		 * it from shrink_dcache_for_unmount(), leading to busy
1457 		 * inodes on unmount and further oopses.
1458 		 */
1459 		if (inode && IS_ROOT(dentry))
1460 			return 1;
1461 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1462 				__func__, dentry);
1463 		return 0;
1464 	}
1465 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1466 				__func__, dentry, error);
1467 	return error;
1468 }
1469 
1470 static int
1471 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1472 			       unsigned int flags)
1473 {
1474 	int ret = 1;
1475 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1476 		if (flags & LOOKUP_RCU)
1477 			return -ECHILD;
1478 		ret = 0;
1479 	}
1480 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1481 }
1482 
1483 static int
1484 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1485 				struct inode *inode)
1486 {
1487 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1488 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1489 }
1490 
1491 static int
1492 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1493 			     struct inode *inode)
1494 {
1495 	struct nfs_fh *fhandle;
1496 	struct nfs_fattr *fattr;
1497 	unsigned long dir_verifier;
1498 	int ret;
1499 
1500 	ret = -ENOMEM;
1501 	fhandle = nfs_alloc_fhandle();
1502 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1503 	if (fhandle == NULL || fattr == NULL)
1504 		goto out;
1505 
1506 	dir_verifier = nfs_save_change_attribute(dir);
1507 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1508 	if (ret < 0) {
1509 		switch (ret) {
1510 		case -ESTALE:
1511 		case -ENOENT:
1512 			ret = 0;
1513 			break;
1514 		case -ETIMEDOUT:
1515 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1516 				ret = 1;
1517 		}
1518 		goto out;
1519 	}
1520 	ret = 0;
1521 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1522 		goto out;
1523 	if (nfs_refresh_inode(inode, fattr) < 0)
1524 		goto out;
1525 
1526 	nfs_setsecurity(inode, fattr);
1527 	nfs_set_verifier(dentry, dir_verifier);
1528 
1529 	/* set a readdirplus hint that we had a cache miss */
1530 	nfs_force_use_readdirplus(dir);
1531 	ret = 1;
1532 out:
1533 	nfs_free_fattr(fattr);
1534 	nfs_free_fhandle(fhandle);
1535 
1536 	/*
1537 	 * If the lookup failed despite the dentry change attribute being
1538 	 * a match, then we should revalidate the directory cache.
1539 	 */
1540 	if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1541 		nfs_mark_dir_for_revalidate(dir);
1542 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1543 }
1544 
1545 /*
1546  * This is called every time the dcache has a lookup hit,
1547  * and we should check whether we can really trust that
1548  * lookup.
1549  *
1550  * NOTE! The hit can be a negative hit too, don't assume
1551  * we have an inode!
1552  *
1553  * If the parent directory is seen to have changed, we throw out the
1554  * cached dentry and do a new lookup.
1555  */
1556 static int
1557 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1558 			 unsigned int flags)
1559 {
1560 	struct inode *inode;
1561 	int error;
1562 
1563 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1564 	inode = d_inode(dentry);
1565 
1566 	if (!inode)
1567 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1568 
1569 	if (is_bad_inode(inode)) {
1570 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1571 				__func__, dentry);
1572 		goto out_bad;
1573 	}
1574 
1575 	if (nfs_verifier_is_delegated(dentry))
1576 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1577 
1578 	/* Force a full look up iff the parent directory has changed */
1579 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1580 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1581 		error = nfs_lookup_verify_inode(inode, flags);
1582 		if (error) {
1583 			if (error == -ESTALE)
1584 				nfs_mark_dir_for_revalidate(dir);
1585 			goto out_bad;
1586 		}
1587 		nfs_advise_use_readdirplus(dir);
1588 		goto out_valid;
1589 	}
1590 
1591 	if (flags & LOOKUP_RCU)
1592 		return -ECHILD;
1593 
1594 	if (NFS_STALE(inode))
1595 		goto out_bad;
1596 
1597 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1598 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1599 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1600 	return error;
1601 out_valid:
1602 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1603 out_bad:
1604 	if (flags & LOOKUP_RCU)
1605 		return -ECHILD;
1606 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1607 }
1608 
1609 static int
1610 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1611 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1612 {
1613 	struct dentry *parent;
1614 	struct inode *dir;
1615 	int ret;
1616 
1617 	if (flags & LOOKUP_RCU) {
1618 		parent = READ_ONCE(dentry->d_parent);
1619 		dir = d_inode_rcu(parent);
1620 		if (!dir)
1621 			return -ECHILD;
1622 		ret = reval(dir, dentry, flags);
1623 		if (parent != READ_ONCE(dentry->d_parent))
1624 			return -ECHILD;
1625 	} else {
1626 		parent = dget_parent(dentry);
1627 		ret = reval(d_inode(parent), dentry, flags);
1628 		dput(parent);
1629 	}
1630 	return ret;
1631 }
1632 
1633 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1634 {
1635 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1636 }
1637 
1638 /*
1639  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1640  * when we don't really care about the dentry name. This is called when a
1641  * pathwalk ends on a dentry that was not found via a normal lookup in the
1642  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1643  *
1644  * In this situation, we just want to verify that the inode itself is OK
1645  * since the dentry might have changed on the server.
1646  */
1647 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1648 {
1649 	struct inode *inode = d_inode(dentry);
1650 	int error = 0;
1651 
1652 	/*
1653 	 * I believe we can only get a negative dentry here in the case of a
1654 	 * procfs-style symlink. Just assume it's correct for now, but we may
1655 	 * eventually need to do something more here.
1656 	 */
1657 	if (!inode) {
1658 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1659 				__func__, dentry);
1660 		return 1;
1661 	}
1662 
1663 	if (is_bad_inode(inode)) {
1664 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1665 				__func__, dentry);
1666 		return 0;
1667 	}
1668 
1669 	error = nfs_lookup_verify_inode(inode, flags);
1670 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1671 			__func__, inode->i_ino, error ? "invalid" : "valid");
1672 	return !error;
1673 }
1674 
1675 /*
1676  * This is called from dput() when d_count is going to 0.
1677  */
1678 static int nfs_dentry_delete(const struct dentry *dentry)
1679 {
1680 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1681 		dentry, dentry->d_flags);
1682 
1683 	/* Unhash any dentry with a stale inode */
1684 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1685 		return 1;
1686 
1687 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1688 		/* Unhash it, so that ->d_iput() would be called */
1689 		return 1;
1690 	}
1691 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1692 		/* Unhash it, so that ancestors of killed async unlink
1693 		 * files will be cleaned up during umount */
1694 		return 1;
1695 	}
1696 	return 0;
1697 
1698 }
1699 
1700 /* Ensure that we revalidate inode->i_nlink */
1701 static void nfs_drop_nlink(struct inode *inode)
1702 {
1703 	spin_lock(&inode->i_lock);
1704 	/* drop the inode if we're reasonably sure this is the last link */
1705 	if (inode->i_nlink > 0)
1706 		drop_nlink(inode);
1707 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1708 	nfs_set_cache_invalid(
1709 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1710 			       NFS_INO_INVALID_NLINK);
1711 	spin_unlock(&inode->i_lock);
1712 }
1713 
1714 /*
1715  * Called when the dentry loses inode.
1716  * We use it to clean up silly-renamed files.
1717  */
1718 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1719 {
1720 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1721 		nfs_complete_unlink(dentry, inode);
1722 		nfs_drop_nlink(inode);
1723 	}
1724 	iput(inode);
1725 }
1726 
1727 static void nfs_d_release(struct dentry *dentry)
1728 {
1729 	/* free cached devname value, if it survived that far */
1730 	if (unlikely(dentry->d_fsdata)) {
1731 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1732 			WARN_ON(1);
1733 		else
1734 			kfree(dentry->d_fsdata);
1735 	}
1736 }
1737 
1738 const struct dentry_operations nfs_dentry_operations = {
1739 	.d_revalidate	= nfs_lookup_revalidate,
1740 	.d_weak_revalidate	= nfs_weak_revalidate,
1741 	.d_delete	= nfs_dentry_delete,
1742 	.d_iput		= nfs_dentry_iput,
1743 	.d_automount	= nfs_d_automount,
1744 	.d_release	= nfs_d_release,
1745 };
1746 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1747 
1748 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1749 {
1750 	struct dentry *res;
1751 	struct inode *inode = NULL;
1752 	struct nfs_fh *fhandle = NULL;
1753 	struct nfs_fattr *fattr = NULL;
1754 	unsigned long dir_verifier;
1755 	int error;
1756 
1757 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1758 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1759 
1760 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1761 		return ERR_PTR(-ENAMETOOLONG);
1762 
1763 	/*
1764 	 * If we're doing an exclusive create, optimize away the lookup
1765 	 * but don't hash the dentry.
1766 	 */
1767 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1768 		return NULL;
1769 
1770 	res = ERR_PTR(-ENOMEM);
1771 	fhandle = nfs_alloc_fhandle();
1772 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1773 	if (fhandle == NULL || fattr == NULL)
1774 		goto out;
1775 
1776 	dir_verifier = nfs_save_change_attribute(dir);
1777 	trace_nfs_lookup_enter(dir, dentry, flags);
1778 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1779 	if (error == -ENOENT)
1780 		goto no_entry;
1781 	if (error < 0) {
1782 		res = ERR_PTR(error);
1783 		goto out;
1784 	}
1785 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1786 	res = ERR_CAST(inode);
1787 	if (IS_ERR(res))
1788 		goto out;
1789 
1790 	/* Notify readdir to use READDIRPLUS */
1791 	nfs_force_use_readdirplus(dir);
1792 
1793 no_entry:
1794 	res = d_splice_alias(inode, dentry);
1795 	if (res != NULL) {
1796 		if (IS_ERR(res))
1797 			goto out;
1798 		dentry = res;
1799 	}
1800 	nfs_set_verifier(dentry, dir_verifier);
1801 out:
1802 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1803 	nfs_free_fattr(fattr);
1804 	nfs_free_fhandle(fhandle);
1805 	return res;
1806 }
1807 EXPORT_SYMBOL_GPL(nfs_lookup);
1808 
1809 #if IS_ENABLED(CONFIG_NFS_V4)
1810 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1811 
1812 const struct dentry_operations nfs4_dentry_operations = {
1813 	.d_revalidate	= nfs4_lookup_revalidate,
1814 	.d_weak_revalidate	= nfs_weak_revalidate,
1815 	.d_delete	= nfs_dentry_delete,
1816 	.d_iput		= nfs_dentry_iput,
1817 	.d_automount	= nfs_d_automount,
1818 	.d_release	= nfs_d_release,
1819 };
1820 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1821 
1822 static fmode_t flags_to_mode(int flags)
1823 {
1824 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1825 	if ((flags & O_ACCMODE) != O_WRONLY)
1826 		res |= FMODE_READ;
1827 	if ((flags & O_ACCMODE) != O_RDONLY)
1828 		res |= FMODE_WRITE;
1829 	return res;
1830 }
1831 
1832 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1833 {
1834 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1835 }
1836 
1837 static int do_open(struct inode *inode, struct file *filp)
1838 {
1839 	nfs_fscache_open_file(inode, filp);
1840 	return 0;
1841 }
1842 
1843 static int nfs_finish_open(struct nfs_open_context *ctx,
1844 			   struct dentry *dentry,
1845 			   struct file *file, unsigned open_flags)
1846 {
1847 	int err;
1848 
1849 	err = finish_open(file, dentry, do_open);
1850 	if (err)
1851 		goto out;
1852 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1853 		nfs_file_set_open_context(file, ctx);
1854 	else
1855 		err = -EOPENSTALE;
1856 out:
1857 	return err;
1858 }
1859 
1860 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1861 		    struct file *file, unsigned open_flags,
1862 		    umode_t mode)
1863 {
1864 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1865 	struct nfs_open_context *ctx;
1866 	struct dentry *res;
1867 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1868 	struct inode *inode;
1869 	unsigned int lookup_flags = 0;
1870 	bool switched = false;
1871 	int created = 0;
1872 	int err;
1873 
1874 	/* Expect a negative dentry */
1875 	BUG_ON(d_inode(dentry));
1876 
1877 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1878 			dir->i_sb->s_id, dir->i_ino, dentry);
1879 
1880 	err = nfs_check_flags(open_flags);
1881 	if (err)
1882 		return err;
1883 
1884 	/* NFS only supports OPEN on regular files */
1885 	if ((open_flags & O_DIRECTORY)) {
1886 		if (!d_in_lookup(dentry)) {
1887 			/*
1888 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1889 			 * revalidated and is fine, no need to perform lookup
1890 			 * again
1891 			 */
1892 			return -ENOENT;
1893 		}
1894 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1895 		goto no_open;
1896 	}
1897 
1898 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1899 		return -ENAMETOOLONG;
1900 
1901 	if (open_flags & O_CREAT) {
1902 		struct nfs_server *server = NFS_SERVER(dir);
1903 
1904 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1905 			mode &= ~current_umask();
1906 
1907 		attr.ia_valid |= ATTR_MODE;
1908 		attr.ia_mode = mode;
1909 	}
1910 	if (open_flags & O_TRUNC) {
1911 		attr.ia_valid |= ATTR_SIZE;
1912 		attr.ia_size = 0;
1913 	}
1914 
1915 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1916 		d_drop(dentry);
1917 		switched = true;
1918 		dentry = d_alloc_parallel(dentry->d_parent,
1919 					  &dentry->d_name, &wq);
1920 		if (IS_ERR(dentry))
1921 			return PTR_ERR(dentry);
1922 		if (unlikely(!d_in_lookup(dentry)))
1923 			return finish_no_open(file, dentry);
1924 	}
1925 
1926 	ctx = create_nfs_open_context(dentry, open_flags, file);
1927 	err = PTR_ERR(ctx);
1928 	if (IS_ERR(ctx))
1929 		goto out;
1930 
1931 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1932 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1933 	if (created)
1934 		file->f_mode |= FMODE_CREATED;
1935 	if (IS_ERR(inode)) {
1936 		err = PTR_ERR(inode);
1937 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1938 		put_nfs_open_context(ctx);
1939 		d_drop(dentry);
1940 		switch (err) {
1941 		case -ENOENT:
1942 			d_splice_alias(NULL, dentry);
1943 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1944 			break;
1945 		case -EISDIR:
1946 		case -ENOTDIR:
1947 			goto no_open;
1948 		case -ELOOP:
1949 			if (!(open_flags & O_NOFOLLOW))
1950 				goto no_open;
1951 			break;
1952 			/* case -EINVAL: */
1953 		default:
1954 			break;
1955 		}
1956 		goto out;
1957 	}
1958 
1959 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1960 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1961 	put_nfs_open_context(ctx);
1962 out:
1963 	if (unlikely(switched)) {
1964 		d_lookup_done(dentry);
1965 		dput(dentry);
1966 	}
1967 	return err;
1968 
1969 no_open:
1970 	res = nfs_lookup(dir, dentry, lookup_flags);
1971 	if (switched) {
1972 		d_lookup_done(dentry);
1973 		if (!res)
1974 			res = dentry;
1975 		else
1976 			dput(dentry);
1977 	}
1978 	if (IS_ERR(res))
1979 		return PTR_ERR(res);
1980 	return finish_no_open(file, res);
1981 }
1982 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1983 
1984 static int
1985 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1986 			  unsigned int flags)
1987 {
1988 	struct inode *inode;
1989 
1990 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1991 		goto full_reval;
1992 	if (d_mountpoint(dentry))
1993 		goto full_reval;
1994 
1995 	inode = d_inode(dentry);
1996 
1997 	/* We can't create new files in nfs_open_revalidate(), so we
1998 	 * optimize away revalidation of negative dentries.
1999 	 */
2000 	if (inode == NULL)
2001 		goto full_reval;
2002 
2003 	if (nfs_verifier_is_delegated(dentry))
2004 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2005 
2006 	/* NFS only supports OPEN on regular files */
2007 	if (!S_ISREG(inode->i_mode))
2008 		goto full_reval;
2009 
2010 	/* We cannot do exclusive creation on a positive dentry */
2011 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2012 		goto reval_dentry;
2013 
2014 	/* Check if the directory changed */
2015 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2016 		goto reval_dentry;
2017 
2018 	/* Let f_op->open() actually open (and revalidate) the file */
2019 	return 1;
2020 reval_dentry:
2021 	if (flags & LOOKUP_RCU)
2022 		return -ECHILD;
2023 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2024 
2025 full_reval:
2026 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2027 }
2028 
2029 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2030 {
2031 	return __nfs_lookup_revalidate(dentry, flags,
2032 			nfs4_do_lookup_revalidate);
2033 }
2034 
2035 #endif /* CONFIG_NFSV4 */
2036 
2037 struct dentry *
2038 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2039 				struct nfs_fattr *fattr)
2040 {
2041 	struct dentry *parent = dget_parent(dentry);
2042 	struct inode *dir = d_inode(parent);
2043 	struct inode *inode;
2044 	struct dentry *d;
2045 	int error;
2046 
2047 	d_drop(dentry);
2048 
2049 	if (fhandle->size == 0) {
2050 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2051 		if (error)
2052 			goto out_error;
2053 	}
2054 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2055 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2056 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2057 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2058 				fattr, NULL);
2059 		if (error < 0)
2060 			goto out_error;
2061 	}
2062 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2063 	d = d_splice_alias(inode, dentry);
2064 out:
2065 	dput(parent);
2066 	return d;
2067 out_error:
2068 	d = ERR_PTR(error);
2069 	goto out;
2070 }
2071 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2072 
2073 /*
2074  * Code common to create, mkdir, and mknod.
2075  */
2076 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2077 				struct nfs_fattr *fattr)
2078 {
2079 	struct dentry *d;
2080 
2081 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2082 	if (IS_ERR(d))
2083 		return PTR_ERR(d);
2084 
2085 	/* Callers don't care */
2086 	dput(d);
2087 	return 0;
2088 }
2089 EXPORT_SYMBOL_GPL(nfs_instantiate);
2090 
2091 /*
2092  * Following a failed create operation, we drop the dentry rather
2093  * than retain a negative dentry. This avoids a problem in the event
2094  * that the operation succeeded on the server, but an error in the
2095  * reply path made it appear to have failed.
2096  */
2097 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2098 	       struct dentry *dentry, umode_t mode, bool excl)
2099 {
2100 	struct iattr attr;
2101 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2102 	int error;
2103 
2104 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2105 			dir->i_sb->s_id, dir->i_ino, dentry);
2106 
2107 	attr.ia_mode = mode;
2108 	attr.ia_valid = ATTR_MODE;
2109 
2110 	trace_nfs_create_enter(dir, dentry, open_flags);
2111 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2112 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2113 	if (error != 0)
2114 		goto out_err;
2115 	return 0;
2116 out_err:
2117 	d_drop(dentry);
2118 	return error;
2119 }
2120 EXPORT_SYMBOL_GPL(nfs_create);
2121 
2122 /*
2123  * See comments for nfs_proc_create regarding failed operations.
2124  */
2125 int
2126 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2127 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2128 {
2129 	struct iattr attr;
2130 	int status;
2131 
2132 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2133 			dir->i_sb->s_id, dir->i_ino, dentry);
2134 
2135 	attr.ia_mode = mode;
2136 	attr.ia_valid = ATTR_MODE;
2137 
2138 	trace_nfs_mknod_enter(dir, dentry);
2139 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2140 	trace_nfs_mknod_exit(dir, dentry, status);
2141 	if (status != 0)
2142 		goto out_err;
2143 	return 0;
2144 out_err:
2145 	d_drop(dentry);
2146 	return status;
2147 }
2148 EXPORT_SYMBOL_GPL(nfs_mknod);
2149 
2150 /*
2151  * See comments for nfs_proc_create regarding failed operations.
2152  */
2153 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2154 	      struct dentry *dentry, umode_t mode)
2155 {
2156 	struct iattr attr;
2157 	int error;
2158 
2159 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2160 			dir->i_sb->s_id, dir->i_ino, dentry);
2161 
2162 	attr.ia_valid = ATTR_MODE;
2163 	attr.ia_mode = mode | S_IFDIR;
2164 
2165 	trace_nfs_mkdir_enter(dir, dentry);
2166 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2167 	trace_nfs_mkdir_exit(dir, dentry, error);
2168 	if (error != 0)
2169 		goto out_err;
2170 	return 0;
2171 out_err:
2172 	d_drop(dentry);
2173 	return error;
2174 }
2175 EXPORT_SYMBOL_GPL(nfs_mkdir);
2176 
2177 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2178 {
2179 	if (simple_positive(dentry))
2180 		d_delete(dentry);
2181 }
2182 
2183 static void nfs_dentry_remove_handle_error(struct inode *dir,
2184 					   struct dentry *dentry, int error)
2185 {
2186 	switch (error) {
2187 	case -ENOENT:
2188 		d_delete(dentry);
2189 		fallthrough;
2190 	case 0:
2191 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2192 	}
2193 }
2194 
2195 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2196 {
2197 	int error;
2198 
2199 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2200 			dir->i_sb->s_id, dir->i_ino, dentry);
2201 
2202 	trace_nfs_rmdir_enter(dir, dentry);
2203 	if (d_really_is_positive(dentry)) {
2204 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2205 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2206 		/* Ensure the VFS deletes this inode */
2207 		switch (error) {
2208 		case 0:
2209 			clear_nlink(d_inode(dentry));
2210 			break;
2211 		case -ENOENT:
2212 			nfs_dentry_handle_enoent(dentry);
2213 		}
2214 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2215 	} else
2216 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2217 	nfs_dentry_remove_handle_error(dir, dentry, error);
2218 	trace_nfs_rmdir_exit(dir, dentry, error);
2219 
2220 	return error;
2221 }
2222 EXPORT_SYMBOL_GPL(nfs_rmdir);
2223 
2224 /*
2225  * Remove a file after making sure there are no pending writes,
2226  * and after checking that the file has only one user.
2227  *
2228  * We invalidate the attribute cache and free the inode prior to the operation
2229  * to avoid possible races if the server reuses the inode.
2230  */
2231 static int nfs_safe_remove(struct dentry *dentry)
2232 {
2233 	struct inode *dir = d_inode(dentry->d_parent);
2234 	struct inode *inode = d_inode(dentry);
2235 	int error = -EBUSY;
2236 
2237 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2238 
2239 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2240 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2241 		error = 0;
2242 		goto out;
2243 	}
2244 
2245 	trace_nfs_remove_enter(dir, dentry);
2246 	if (inode != NULL) {
2247 		error = NFS_PROTO(dir)->remove(dir, dentry);
2248 		if (error == 0)
2249 			nfs_drop_nlink(inode);
2250 	} else
2251 		error = NFS_PROTO(dir)->remove(dir, dentry);
2252 	if (error == -ENOENT)
2253 		nfs_dentry_handle_enoent(dentry);
2254 	trace_nfs_remove_exit(dir, dentry, error);
2255 out:
2256 	return error;
2257 }
2258 
2259 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2260  *  belongs to an active ".nfs..." file and we return -EBUSY.
2261  *
2262  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2263  */
2264 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2265 {
2266 	int error;
2267 	int need_rehash = 0;
2268 
2269 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2270 		dir->i_ino, dentry);
2271 
2272 	trace_nfs_unlink_enter(dir, dentry);
2273 	spin_lock(&dentry->d_lock);
2274 	if (d_count(dentry) > 1) {
2275 		spin_unlock(&dentry->d_lock);
2276 		/* Start asynchronous writeout of the inode */
2277 		write_inode_now(d_inode(dentry), 0);
2278 		error = nfs_sillyrename(dir, dentry);
2279 		goto out;
2280 	}
2281 	if (!d_unhashed(dentry)) {
2282 		__d_drop(dentry);
2283 		need_rehash = 1;
2284 	}
2285 	spin_unlock(&dentry->d_lock);
2286 	error = nfs_safe_remove(dentry);
2287 	nfs_dentry_remove_handle_error(dir, dentry, error);
2288 	if (need_rehash)
2289 		d_rehash(dentry);
2290 out:
2291 	trace_nfs_unlink_exit(dir, dentry, error);
2292 	return error;
2293 }
2294 EXPORT_SYMBOL_GPL(nfs_unlink);
2295 
2296 /*
2297  * To create a symbolic link, most file systems instantiate a new inode,
2298  * add a page to it containing the path, then write it out to the disk
2299  * using prepare_write/commit_write.
2300  *
2301  * Unfortunately the NFS client can't create the in-core inode first
2302  * because it needs a file handle to create an in-core inode (see
2303  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2304  * symlink request has completed on the server.
2305  *
2306  * So instead we allocate a raw page, copy the symname into it, then do
2307  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2308  * now have a new file handle and can instantiate an in-core NFS inode
2309  * and move the raw page into its mapping.
2310  */
2311 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2312 		struct dentry *dentry, const char *symname)
2313 {
2314 	struct page *page;
2315 	char *kaddr;
2316 	struct iattr attr;
2317 	unsigned int pathlen = strlen(symname);
2318 	int error;
2319 
2320 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2321 		dir->i_ino, dentry, symname);
2322 
2323 	if (pathlen > PAGE_SIZE)
2324 		return -ENAMETOOLONG;
2325 
2326 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2327 	attr.ia_valid = ATTR_MODE;
2328 
2329 	page = alloc_page(GFP_USER);
2330 	if (!page)
2331 		return -ENOMEM;
2332 
2333 	kaddr = page_address(page);
2334 	memcpy(kaddr, symname, pathlen);
2335 	if (pathlen < PAGE_SIZE)
2336 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2337 
2338 	trace_nfs_symlink_enter(dir, dentry);
2339 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2340 	trace_nfs_symlink_exit(dir, dentry, error);
2341 	if (error != 0) {
2342 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2343 			dir->i_sb->s_id, dir->i_ino,
2344 			dentry, symname, error);
2345 		d_drop(dentry);
2346 		__free_page(page);
2347 		return error;
2348 	}
2349 
2350 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2351 
2352 	/*
2353 	 * No big deal if we can't add this page to the page cache here.
2354 	 * READLINK will get the missing page from the server if needed.
2355 	 */
2356 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2357 							GFP_KERNEL)) {
2358 		SetPageUptodate(page);
2359 		unlock_page(page);
2360 		/*
2361 		 * add_to_page_cache_lru() grabs an extra page refcount.
2362 		 * Drop it here to avoid leaking this page later.
2363 		 */
2364 		put_page(page);
2365 	} else
2366 		__free_page(page);
2367 
2368 	return 0;
2369 }
2370 EXPORT_SYMBOL_GPL(nfs_symlink);
2371 
2372 int
2373 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2374 {
2375 	struct inode *inode = d_inode(old_dentry);
2376 	int error;
2377 
2378 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2379 		old_dentry, dentry);
2380 
2381 	trace_nfs_link_enter(inode, dir, dentry);
2382 	d_drop(dentry);
2383 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2384 	if (error == 0) {
2385 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2386 		ihold(inode);
2387 		d_add(dentry, inode);
2388 	}
2389 	trace_nfs_link_exit(inode, dir, dentry, error);
2390 	return error;
2391 }
2392 EXPORT_SYMBOL_GPL(nfs_link);
2393 
2394 /*
2395  * RENAME
2396  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2397  * different file handle for the same inode after a rename (e.g. when
2398  * moving to a different directory). A fail-safe method to do so would
2399  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2400  * rename the old file using the sillyrename stuff. This way, the original
2401  * file in old_dir will go away when the last process iput()s the inode.
2402  *
2403  * FIXED.
2404  *
2405  * It actually works quite well. One needs to have the possibility for
2406  * at least one ".nfs..." file in each directory the file ever gets
2407  * moved or linked to which happens automagically with the new
2408  * implementation that only depends on the dcache stuff instead of
2409  * using the inode layer
2410  *
2411  * Unfortunately, things are a little more complicated than indicated
2412  * above. For a cross-directory move, we want to make sure we can get
2413  * rid of the old inode after the operation.  This means there must be
2414  * no pending writes (if it's a file), and the use count must be 1.
2415  * If these conditions are met, we can drop the dentries before doing
2416  * the rename.
2417  */
2418 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2419 	       struct dentry *old_dentry, struct inode *new_dir,
2420 	       struct dentry *new_dentry, unsigned int flags)
2421 {
2422 	struct inode *old_inode = d_inode(old_dentry);
2423 	struct inode *new_inode = d_inode(new_dentry);
2424 	struct dentry *dentry = NULL, *rehash = NULL;
2425 	struct rpc_task *task;
2426 	int error = -EBUSY;
2427 
2428 	if (flags)
2429 		return -EINVAL;
2430 
2431 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2432 		 old_dentry, new_dentry,
2433 		 d_count(new_dentry));
2434 
2435 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2436 	/*
2437 	 * For non-directories, check whether the target is busy and if so,
2438 	 * make a copy of the dentry and then do a silly-rename. If the
2439 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2440 	 * the new target.
2441 	 */
2442 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2443 		/*
2444 		 * To prevent any new references to the target during the
2445 		 * rename, we unhash the dentry in advance.
2446 		 */
2447 		if (!d_unhashed(new_dentry)) {
2448 			d_drop(new_dentry);
2449 			rehash = new_dentry;
2450 		}
2451 
2452 		if (d_count(new_dentry) > 2) {
2453 			int err;
2454 
2455 			/* copy the target dentry's name */
2456 			dentry = d_alloc(new_dentry->d_parent,
2457 					 &new_dentry->d_name);
2458 			if (!dentry)
2459 				goto out;
2460 
2461 			/* silly-rename the existing target ... */
2462 			err = nfs_sillyrename(new_dir, new_dentry);
2463 			if (err)
2464 				goto out;
2465 
2466 			new_dentry = dentry;
2467 			rehash = NULL;
2468 			new_inode = NULL;
2469 		}
2470 	}
2471 
2472 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2473 	if (IS_ERR(task)) {
2474 		error = PTR_ERR(task);
2475 		goto out;
2476 	}
2477 
2478 	error = rpc_wait_for_completion_task(task);
2479 	if (error != 0) {
2480 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2481 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2482 		smp_wmb();
2483 	} else
2484 		error = task->tk_status;
2485 	rpc_put_task(task);
2486 	/* Ensure the inode attributes are revalidated */
2487 	if (error == 0) {
2488 		spin_lock(&old_inode->i_lock);
2489 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2490 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2491 							 NFS_INO_INVALID_CTIME |
2492 							 NFS_INO_REVAL_FORCED);
2493 		spin_unlock(&old_inode->i_lock);
2494 	}
2495 out:
2496 	if (rehash)
2497 		d_rehash(rehash);
2498 	trace_nfs_rename_exit(old_dir, old_dentry,
2499 			new_dir, new_dentry, error);
2500 	if (!error) {
2501 		if (new_inode != NULL)
2502 			nfs_drop_nlink(new_inode);
2503 		/*
2504 		 * The d_move() should be here instead of in an async RPC completion
2505 		 * handler because we need the proper locks to move the dentry.  If
2506 		 * we're interrupted by a signal, the async RPC completion handler
2507 		 * should mark the directories for revalidation.
2508 		 */
2509 		d_move(old_dentry, new_dentry);
2510 		nfs_set_verifier(old_dentry,
2511 					nfs_save_change_attribute(new_dir));
2512 	} else if (error == -ENOENT)
2513 		nfs_dentry_handle_enoent(old_dentry);
2514 
2515 	/* new dentry created? */
2516 	if (dentry)
2517 		dput(dentry);
2518 	return error;
2519 }
2520 EXPORT_SYMBOL_GPL(nfs_rename);
2521 
2522 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2523 static LIST_HEAD(nfs_access_lru_list);
2524 static atomic_long_t nfs_access_nr_entries;
2525 
2526 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2527 module_param(nfs_access_max_cachesize, ulong, 0644);
2528 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2529 
2530 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2531 {
2532 	put_cred(entry->cred);
2533 	kfree_rcu(entry, rcu_head);
2534 	smp_mb__before_atomic();
2535 	atomic_long_dec(&nfs_access_nr_entries);
2536 	smp_mb__after_atomic();
2537 }
2538 
2539 static void nfs_access_free_list(struct list_head *head)
2540 {
2541 	struct nfs_access_entry *cache;
2542 
2543 	while (!list_empty(head)) {
2544 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2545 		list_del(&cache->lru);
2546 		nfs_access_free_entry(cache);
2547 	}
2548 }
2549 
2550 static unsigned long
2551 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2552 {
2553 	LIST_HEAD(head);
2554 	struct nfs_inode *nfsi, *next;
2555 	struct nfs_access_entry *cache;
2556 	long freed = 0;
2557 
2558 	spin_lock(&nfs_access_lru_lock);
2559 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2560 		struct inode *inode;
2561 
2562 		if (nr_to_scan-- == 0)
2563 			break;
2564 		inode = &nfsi->vfs_inode;
2565 		spin_lock(&inode->i_lock);
2566 		if (list_empty(&nfsi->access_cache_entry_lru))
2567 			goto remove_lru_entry;
2568 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2569 				struct nfs_access_entry, lru);
2570 		list_move(&cache->lru, &head);
2571 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2572 		freed++;
2573 		if (!list_empty(&nfsi->access_cache_entry_lru))
2574 			list_move_tail(&nfsi->access_cache_inode_lru,
2575 					&nfs_access_lru_list);
2576 		else {
2577 remove_lru_entry:
2578 			list_del_init(&nfsi->access_cache_inode_lru);
2579 			smp_mb__before_atomic();
2580 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2581 			smp_mb__after_atomic();
2582 		}
2583 		spin_unlock(&inode->i_lock);
2584 	}
2585 	spin_unlock(&nfs_access_lru_lock);
2586 	nfs_access_free_list(&head);
2587 	return freed;
2588 }
2589 
2590 unsigned long
2591 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2592 {
2593 	int nr_to_scan = sc->nr_to_scan;
2594 	gfp_t gfp_mask = sc->gfp_mask;
2595 
2596 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2597 		return SHRINK_STOP;
2598 	return nfs_do_access_cache_scan(nr_to_scan);
2599 }
2600 
2601 
2602 unsigned long
2603 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2604 {
2605 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2606 }
2607 
2608 static void
2609 nfs_access_cache_enforce_limit(void)
2610 {
2611 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2612 	unsigned long diff;
2613 	unsigned int nr_to_scan;
2614 
2615 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2616 		return;
2617 	nr_to_scan = 100;
2618 	diff = nr_entries - nfs_access_max_cachesize;
2619 	if (diff < nr_to_scan)
2620 		nr_to_scan = diff;
2621 	nfs_do_access_cache_scan(nr_to_scan);
2622 }
2623 
2624 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2625 {
2626 	struct rb_root *root_node = &nfsi->access_cache;
2627 	struct rb_node *n;
2628 	struct nfs_access_entry *entry;
2629 
2630 	/* Unhook entries from the cache */
2631 	while ((n = rb_first(root_node)) != NULL) {
2632 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2633 		rb_erase(n, root_node);
2634 		list_move(&entry->lru, head);
2635 	}
2636 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2637 }
2638 
2639 void nfs_access_zap_cache(struct inode *inode)
2640 {
2641 	LIST_HEAD(head);
2642 
2643 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2644 		return;
2645 	/* Remove from global LRU init */
2646 	spin_lock(&nfs_access_lru_lock);
2647 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2648 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2649 
2650 	spin_lock(&inode->i_lock);
2651 	__nfs_access_zap_cache(NFS_I(inode), &head);
2652 	spin_unlock(&inode->i_lock);
2653 	spin_unlock(&nfs_access_lru_lock);
2654 	nfs_access_free_list(&head);
2655 }
2656 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2657 
2658 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2659 {
2660 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2661 
2662 	while (n != NULL) {
2663 		struct nfs_access_entry *entry =
2664 			rb_entry(n, struct nfs_access_entry, rb_node);
2665 		int cmp = cred_fscmp(cred, entry->cred);
2666 
2667 		if (cmp < 0)
2668 			n = n->rb_left;
2669 		else if (cmp > 0)
2670 			n = n->rb_right;
2671 		else
2672 			return entry;
2673 	}
2674 	return NULL;
2675 }
2676 
2677 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2678 {
2679 	struct nfs_inode *nfsi = NFS_I(inode);
2680 	struct nfs_access_entry *cache;
2681 	bool retry = true;
2682 	int err;
2683 
2684 	spin_lock(&inode->i_lock);
2685 	for(;;) {
2686 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2687 			goto out_zap;
2688 		cache = nfs_access_search_rbtree(inode, cred);
2689 		err = -ENOENT;
2690 		if (cache == NULL)
2691 			goto out;
2692 		/* Found an entry, is our attribute cache valid? */
2693 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2694 			break;
2695 		if (!retry)
2696 			break;
2697 		err = -ECHILD;
2698 		if (!may_block)
2699 			goto out;
2700 		spin_unlock(&inode->i_lock);
2701 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2702 		if (err)
2703 			return err;
2704 		spin_lock(&inode->i_lock);
2705 		retry = false;
2706 	}
2707 	res->cred = cache->cred;
2708 	res->mask = cache->mask;
2709 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2710 	err = 0;
2711 out:
2712 	spin_unlock(&inode->i_lock);
2713 	return err;
2714 out_zap:
2715 	spin_unlock(&inode->i_lock);
2716 	nfs_access_zap_cache(inode);
2717 	return -ENOENT;
2718 }
2719 
2720 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2721 {
2722 	/* Only check the most recently returned cache entry,
2723 	 * but do it without locking.
2724 	 */
2725 	struct nfs_inode *nfsi = NFS_I(inode);
2726 	struct nfs_access_entry *cache;
2727 	int err = -ECHILD;
2728 	struct list_head *lh;
2729 
2730 	rcu_read_lock();
2731 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2732 		goto out;
2733 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2734 	cache = list_entry(lh, struct nfs_access_entry, lru);
2735 	if (lh == &nfsi->access_cache_entry_lru ||
2736 	    cred_fscmp(cred, cache->cred) != 0)
2737 		cache = NULL;
2738 	if (cache == NULL)
2739 		goto out;
2740 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2741 		goto out;
2742 	res->cred = cache->cred;
2743 	res->mask = cache->mask;
2744 	err = 0;
2745 out:
2746 	rcu_read_unlock();
2747 	return err;
2748 }
2749 
2750 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2751 nfs_access_entry *res, bool may_block)
2752 {
2753 	int status;
2754 
2755 	status = nfs_access_get_cached_rcu(inode, cred, res);
2756 	if (status != 0)
2757 		status = nfs_access_get_cached_locked(inode, cred, res,
2758 		    may_block);
2759 
2760 	return status;
2761 }
2762 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2763 
2764 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2765 {
2766 	struct nfs_inode *nfsi = NFS_I(inode);
2767 	struct rb_root *root_node = &nfsi->access_cache;
2768 	struct rb_node **p = &root_node->rb_node;
2769 	struct rb_node *parent = NULL;
2770 	struct nfs_access_entry *entry;
2771 	int cmp;
2772 
2773 	spin_lock(&inode->i_lock);
2774 	while (*p != NULL) {
2775 		parent = *p;
2776 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2777 		cmp = cred_fscmp(set->cred, entry->cred);
2778 
2779 		if (cmp < 0)
2780 			p = &parent->rb_left;
2781 		else if (cmp > 0)
2782 			p = &parent->rb_right;
2783 		else
2784 			goto found;
2785 	}
2786 	rb_link_node(&set->rb_node, parent, p);
2787 	rb_insert_color(&set->rb_node, root_node);
2788 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2789 	spin_unlock(&inode->i_lock);
2790 	return;
2791 found:
2792 	rb_replace_node(parent, &set->rb_node, root_node);
2793 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2794 	list_del(&entry->lru);
2795 	spin_unlock(&inode->i_lock);
2796 	nfs_access_free_entry(entry);
2797 }
2798 
2799 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2800 {
2801 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2802 	if (cache == NULL)
2803 		return;
2804 	RB_CLEAR_NODE(&cache->rb_node);
2805 	cache->cred = get_cred(set->cred);
2806 	cache->mask = set->mask;
2807 
2808 	/* The above field assignments must be visible
2809 	 * before this item appears on the lru.  We cannot easily
2810 	 * use rcu_assign_pointer, so just force the memory barrier.
2811 	 */
2812 	smp_wmb();
2813 	nfs_access_add_rbtree(inode, cache);
2814 
2815 	/* Update accounting */
2816 	smp_mb__before_atomic();
2817 	atomic_long_inc(&nfs_access_nr_entries);
2818 	smp_mb__after_atomic();
2819 
2820 	/* Add inode to global LRU list */
2821 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2822 		spin_lock(&nfs_access_lru_lock);
2823 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2824 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2825 					&nfs_access_lru_list);
2826 		spin_unlock(&nfs_access_lru_lock);
2827 	}
2828 	nfs_access_cache_enforce_limit();
2829 }
2830 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2831 
2832 #define NFS_MAY_READ (NFS_ACCESS_READ)
2833 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2834 		NFS_ACCESS_EXTEND | \
2835 		NFS_ACCESS_DELETE)
2836 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2837 		NFS_ACCESS_EXTEND)
2838 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2839 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2840 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2841 static int
2842 nfs_access_calc_mask(u32 access_result, umode_t umode)
2843 {
2844 	int mask = 0;
2845 
2846 	if (access_result & NFS_MAY_READ)
2847 		mask |= MAY_READ;
2848 	if (S_ISDIR(umode)) {
2849 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2850 			mask |= MAY_WRITE;
2851 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2852 			mask |= MAY_EXEC;
2853 	} else if (S_ISREG(umode)) {
2854 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2855 			mask |= MAY_WRITE;
2856 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2857 			mask |= MAY_EXEC;
2858 	} else if (access_result & NFS_MAY_WRITE)
2859 			mask |= MAY_WRITE;
2860 	return mask;
2861 }
2862 
2863 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2864 {
2865 	entry->mask = access_result;
2866 }
2867 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2868 
2869 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2870 {
2871 	struct nfs_access_entry cache;
2872 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2873 	int cache_mask = -1;
2874 	int status;
2875 
2876 	trace_nfs_access_enter(inode);
2877 
2878 	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2879 	if (status == 0)
2880 		goto out_cached;
2881 
2882 	status = -ECHILD;
2883 	if (!may_block)
2884 		goto out;
2885 
2886 	/*
2887 	 * Determine which access bits we want to ask for...
2888 	 */
2889 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2890 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2891 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2892 		    NFS_ACCESS_XALIST;
2893 	}
2894 	if (S_ISDIR(inode->i_mode))
2895 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2896 	else
2897 		cache.mask |= NFS_ACCESS_EXECUTE;
2898 	cache.cred = cred;
2899 	status = NFS_PROTO(inode)->access(inode, &cache);
2900 	if (status != 0) {
2901 		if (status == -ESTALE) {
2902 			if (!S_ISDIR(inode->i_mode))
2903 				nfs_set_inode_stale(inode);
2904 			else
2905 				nfs_zap_caches(inode);
2906 		}
2907 		goto out;
2908 	}
2909 	nfs_access_add_cache(inode, &cache);
2910 out_cached:
2911 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2912 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2913 		status = -EACCES;
2914 out:
2915 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2916 	return status;
2917 }
2918 
2919 static int nfs_open_permission_mask(int openflags)
2920 {
2921 	int mask = 0;
2922 
2923 	if (openflags & __FMODE_EXEC) {
2924 		/* ONLY check exec rights */
2925 		mask = MAY_EXEC;
2926 	} else {
2927 		if ((openflags & O_ACCMODE) != O_WRONLY)
2928 			mask |= MAY_READ;
2929 		if ((openflags & O_ACCMODE) != O_RDONLY)
2930 			mask |= MAY_WRITE;
2931 	}
2932 
2933 	return mask;
2934 }
2935 
2936 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2937 {
2938 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2939 }
2940 EXPORT_SYMBOL_GPL(nfs_may_open);
2941 
2942 static int nfs_execute_ok(struct inode *inode, int mask)
2943 {
2944 	struct nfs_server *server = NFS_SERVER(inode);
2945 	int ret = 0;
2946 
2947 	if (S_ISDIR(inode->i_mode))
2948 		return 0;
2949 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
2950 		if (mask & MAY_NOT_BLOCK)
2951 			return -ECHILD;
2952 		ret = __nfs_revalidate_inode(server, inode);
2953 	}
2954 	if (ret == 0 && !execute_ok(inode))
2955 		ret = -EACCES;
2956 	return ret;
2957 }
2958 
2959 int nfs_permission(struct user_namespace *mnt_userns,
2960 		   struct inode *inode,
2961 		   int mask)
2962 {
2963 	const struct cred *cred = current_cred();
2964 	int res = 0;
2965 
2966 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2967 
2968 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2969 		goto out;
2970 	/* Is this sys_access() ? */
2971 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2972 		goto force_lookup;
2973 
2974 	switch (inode->i_mode & S_IFMT) {
2975 		case S_IFLNK:
2976 			goto out;
2977 		case S_IFREG:
2978 			if ((mask & MAY_OPEN) &&
2979 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2980 				return 0;
2981 			break;
2982 		case S_IFDIR:
2983 			/*
2984 			 * Optimize away all write operations, since the server
2985 			 * will check permissions when we perform the op.
2986 			 */
2987 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2988 				goto out;
2989 	}
2990 
2991 force_lookup:
2992 	if (!NFS_PROTO(inode)->access)
2993 		goto out_notsup;
2994 
2995 	res = nfs_do_access(inode, cred, mask);
2996 out:
2997 	if (!res && (mask & MAY_EXEC))
2998 		res = nfs_execute_ok(inode, mask);
2999 
3000 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3001 		inode->i_sb->s_id, inode->i_ino, mask, res);
3002 	return res;
3003 out_notsup:
3004 	if (mask & MAY_NOT_BLOCK)
3005 		return -ECHILD;
3006 
3007 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3008 						  NFS_INO_INVALID_OTHER);
3009 	if (res == 0)
3010 		res = generic_permission(&init_user_ns, inode, mask);
3011 	goto out;
3012 }
3013 EXPORT_SYMBOL_GPL(nfs_permission);
3014