1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/time.h> 21 #include <linux/errno.h> 22 #include <linux/stat.h> 23 #include <linux/fcntl.h> 24 #include <linux/string.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/nfs_fs.h> 30 #include <linux/nfs_mount.h> 31 #include <linux/pagemap.h> 32 #include <linux/smp_lock.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 37 #include "nfs4_fs.h" 38 #include "delegation.h" 39 #include "iostat.h" 40 41 #define NFS_PARANOIA 1 42 /* #define NFS_DEBUG_VERBOSE 1 */ 43 44 static int nfs_opendir(struct inode *, struct file *); 45 static int nfs_readdir(struct file *, void *, filldir_t); 46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *); 47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *); 48 static int nfs_mkdir(struct inode *, struct dentry *, int); 49 static int nfs_rmdir(struct inode *, struct dentry *); 50 static int nfs_unlink(struct inode *, struct dentry *); 51 static int nfs_symlink(struct inode *, struct dentry *, const char *); 52 static int nfs_link(struct dentry *, struct inode *, struct dentry *); 53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t); 54 static int nfs_rename(struct inode *, struct dentry *, 55 struct inode *, struct dentry *); 56 static int nfs_fsync_dir(struct file *, struct dentry *, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 59 const struct file_operations nfs_dir_operations = { 60 .llseek = nfs_llseek_dir, 61 .read = generic_read_dir, 62 .readdir = nfs_readdir, 63 .open = nfs_opendir, 64 .release = nfs_release, 65 .fsync = nfs_fsync_dir, 66 }; 67 68 struct inode_operations nfs_dir_inode_operations = { 69 .create = nfs_create, 70 .lookup = nfs_lookup, 71 .link = nfs_link, 72 .unlink = nfs_unlink, 73 .symlink = nfs_symlink, 74 .mkdir = nfs_mkdir, 75 .rmdir = nfs_rmdir, 76 .mknod = nfs_mknod, 77 .rename = nfs_rename, 78 .permission = nfs_permission, 79 .getattr = nfs_getattr, 80 .setattr = nfs_setattr, 81 }; 82 83 #ifdef CONFIG_NFS_V3 84 struct inode_operations nfs3_dir_inode_operations = { 85 .create = nfs_create, 86 .lookup = nfs_lookup, 87 .link = nfs_link, 88 .unlink = nfs_unlink, 89 .symlink = nfs_symlink, 90 .mkdir = nfs_mkdir, 91 .rmdir = nfs_rmdir, 92 .mknod = nfs_mknod, 93 .rename = nfs_rename, 94 .permission = nfs_permission, 95 .getattr = nfs_getattr, 96 .setattr = nfs_setattr, 97 .listxattr = nfs3_listxattr, 98 .getxattr = nfs3_getxattr, 99 .setxattr = nfs3_setxattr, 100 .removexattr = nfs3_removexattr, 101 }; 102 #endif /* CONFIG_NFS_V3 */ 103 104 #ifdef CONFIG_NFS_V4 105 106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *); 107 struct inode_operations nfs4_dir_inode_operations = { 108 .create = nfs_create, 109 .lookup = nfs_atomic_lookup, 110 .link = nfs_link, 111 .unlink = nfs_unlink, 112 .symlink = nfs_symlink, 113 .mkdir = nfs_mkdir, 114 .rmdir = nfs_rmdir, 115 .mknod = nfs_mknod, 116 .rename = nfs_rename, 117 .permission = nfs_permission, 118 .getattr = nfs_getattr, 119 .setattr = nfs_setattr, 120 .getxattr = nfs4_getxattr, 121 .setxattr = nfs4_setxattr, 122 .listxattr = nfs4_listxattr, 123 }; 124 125 #endif /* CONFIG_NFS_V4 */ 126 127 /* 128 * Open file 129 */ 130 static int 131 nfs_opendir(struct inode *inode, struct file *filp) 132 { 133 int res; 134 135 dfprintk(VFS, "NFS: opendir(%s/%ld)\n", 136 inode->i_sb->s_id, inode->i_ino); 137 138 lock_kernel(); 139 /* Call generic open code in order to cache credentials */ 140 res = nfs_open(inode, filp); 141 unlock_kernel(); 142 return res; 143 } 144 145 typedef u32 * (*decode_dirent_t)(u32 *, struct nfs_entry *, int); 146 typedef struct { 147 struct file *file; 148 struct page *page; 149 unsigned long page_index; 150 u32 *ptr; 151 u64 *dir_cookie; 152 loff_t current_index; 153 struct nfs_entry *entry; 154 decode_dirent_t decode; 155 int plus; 156 int error; 157 } nfs_readdir_descriptor_t; 158 159 /* Now we cache directories properly, by stuffing the dirent 160 * data directly in the page cache. 161 * 162 * Inode invalidation due to refresh etc. takes care of 163 * _everything_, no sloppy entry flushing logic, no extraneous 164 * copying, network direct to page cache, the way it was meant 165 * to be. 166 * 167 * NOTE: Dirent information verification is done always by the 168 * page-in of the RPC reply, nowhere else, this simplies 169 * things substantially. 170 */ 171 static 172 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page) 173 { 174 struct file *file = desc->file; 175 struct inode *inode = file->f_dentry->d_inode; 176 struct rpc_cred *cred = nfs_file_cred(file); 177 unsigned long timestamp; 178 int error; 179 180 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n", 181 __FUNCTION__, (long long)desc->entry->cookie, 182 page->index); 183 184 again: 185 timestamp = jiffies; 186 error = NFS_PROTO(inode)->readdir(file->f_dentry, cred, desc->entry->cookie, page, 187 NFS_SERVER(inode)->dtsize, desc->plus); 188 if (error < 0) { 189 /* We requested READDIRPLUS, but the server doesn't grok it */ 190 if (error == -ENOTSUPP && desc->plus) { 191 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 192 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode)); 193 desc->plus = 0; 194 goto again; 195 } 196 goto error; 197 } 198 SetPageUptodate(page); 199 spin_lock(&inode->i_lock); 200 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME; 201 spin_unlock(&inode->i_lock); 202 /* Ensure consistent page alignment of the data. 203 * Note: assumes we have exclusive access to this mapping either 204 * through inode->i_mutex or some other mechanism. 205 */ 206 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) { 207 /* Should never happen */ 208 nfs_zap_mapping(inode, inode->i_mapping); 209 } 210 unlock_page(page); 211 return 0; 212 error: 213 SetPageError(page); 214 unlock_page(page); 215 nfs_zap_caches(inode); 216 desc->error = error; 217 return -EIO; 218 } 219 220 static inline 221 int dir_decode(nfs_readdir_descriptor_t *desc) 222 { 223 u32 *p = desc->ptr; 224 p = desc->decode(p, desc->entry, desc->plus); 225 if (IS_ERR(p)) 226 return PTR_ERR(p); 227 desc->ptr = p; 228 return 0; 229 } 230 231 static inline 232 void dir_page_release(nfs_readdir_descriptor_t *desc) 233 { 234 kunmap(desc->page); 235 page_cache_release(desc->page); 236 desc->page = NULL; 237 desc->ptr = NULL; 238 } 239 240 /* 241 * Given a pointer to a buffer that has already been filled by a call 242 * to readdir, find the next entry with cookie '*desc->dir_cookie'. 243 * 244 * If the end of the buffer has been reached, return -EAGAIN, if not, 245 * return the offset within the buffer of the next entry to be 246 * read. 247 */ 248 static inline 249 int find_dirent(nfs_readdir_descriptor_t *desc) 250 { 251 struct nfs_entry *entry = desc->entry; 252 int loop_count = 0, 253 status; 254 255 while((status = dir_decode(desc)) == 0) { 256 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n", 257 __FUNCTION__, (unsigned long long)entry->cookie); 258 if (entry->prev_cookie == *desc->dir_cookie) 259 break; 260 if (loop_count++ > 200) { 261 loop_count = 0; 262 schedule(); 263 } 264 } 265 return status; 266 } 267 268 /* 269 * Given a pointer to a buffer that has already been filled by a call 270 * to readdir, find the entry at offset 'desc->file->f_pos'. 271 * 272 * If the end of the buffer has been reached, return -EAGAIN, if not, 273 * return the offset within the buffer of the next entry to be 274 * read. 275 */ 276 static inline 277 int find_dirent_index(nfs_readdir_descriptor_t *desc) 278 { 279 struct nfs_entry *entry = desc->entry; 280 int loop_count = 0, 281 status; 282 283 for(;;) { 284 status = dir_decode(desc); 285 if (status) 286 break; 287 288 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n", 289 (unsigned long long)entry->cookie, desc->current_index); 290 291 if (desc->file->f_pos == desc->current_index) { 292 *desc->dir_cookie = entry->cookie; 293 break; 294 } 295 desc->current_index++; 296 if (loop_count++ > 200) { 297 loop_count = 0; 298 schedule(); 299 } 300 } 301 return status; 302 } 303 304 /* 305 * Find the given page, and call find_dirent() or find_dirent_index in 306 * order to try to return the next entry. 307 */ 308 static inline 309 int find_dirent_page(nfs_readdir_descriptor_t *desc) 310 { 311 struct inode *inode = desc->file->f_dentry->d_inode; 312 struct page *page; 313 int status; 314 315 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n", 316 __FUNCTION__, desc->page_index, 317 (long long) *desc->dir_cookie); 318 319 page = read_cache_page(inode->i_mapping, desc->page_index, 320 (filler_t *)nfs_readdir_filler, desc); 321 if (IS_ERR(page)) { 322 status = PTR_ERR(page); 323 goto out; 324 } 325 if (!PageUptodate(page)) 326 goto read_error; 327 328 /* NOTE: Someone else may have changed the READDIRPLUS flag */ 329 desc->page = page; 330 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 331 if (*desc->dir_cookie != 0) 332 status = find_dirent(desc); 333 else 334 status = find_dirent_index(desc); 335 if (status < 0) 336 dir_page_release(desc); 337 out: 338 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status); 339 return status; 340 read_error: 341 page_cache_release(page); 342 return -EIO; 343 } 344 345 /* 346 * Recurse through the page cache pages, and return a 347 * filled nfs_entry structure of the next directory entry if possible. 348 * 349 * The target for the search is '*desc->dir_cookie' if non-0, 350 * 'desc->file->f_pos' otherwise 351 */ 352 static inline 353 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 354 { 355 int loop_count = 0; 356 int res; 357 358 /* Always search-by-index from the beginning of the cache */ 359 if (*desc->dir_cookie == 0) { 360 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n", 361 (long long)desc->file->f_pos); 362 desc->page_index = 0; 363 desc->entry->cookie = desc->entry->prev_cookie = 0; 364 desc->entry->eof = 0; 365 desc->current_index = 0; 366 } else 367 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n", 368 (unsigned long long)*desc->dir_cookie); 369 370 for (;;) { 371 res = find_dirent_page(desc); 372 if (res != -EAGAIN) 373 break; 374 /* Align to beginning of next page */ 375 desc->page_index ++; 376 if (loop_count++ > 200) { 377 loop_count = 0; 378 schedule(); 379 } 380 } 381 382 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res); 383 return res; 384 } 385 386 static inline unsigned int dt_type(struct inode *inode) 387 { 388 return (inode->i_mode >> 12) & 15; 389 } 390 391 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc); 392 393 /* 394 * Once we've found the start of the dirent within a page: fill 'er up... 395 */ 396 static 397 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 398 filldir_t filldir) 399 { 400 struct file *file = desc->file; 401 struct nfs_entry *entry = desc->entry; 402 struct dentry *dentry = NULL; 403 unsigned long fileid; 404 int loop_count = 0, 405 res; 406 407 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n", 408 (unsigned long long)entry->cookie); 409 410 for(;;) { 411 unsigned d_type = DT_UNKNOWN; 412 /* Note: entry->prev_cookie contains the cookie for 413 * retrieving the current dirent on the server */ 414 fileid = nfs_fileid_to_ino_t(entry->ino); 415 416 /* Get a dentry if we have one */ 417 if (dentry != NULL) 418 dput(dentry); 419 dentry = nfs_readdir_lookup(desc); 420 421 /* Use readdirplus info */ 422 if (dentry != NULL && dentry->d_inode != NULL) { 423 d_type = dt_type(dentry->d_inode); 424 fileid = dentry->d_inode->i_ino; 425 } 426 427 res = filldir(dirent, entry->name, entry->len, 428 file->f_pos, fileid, d_type); 429 if (res < 0) 430 break; 431 file->f_pos++; 432 *desc->dir_cookie = entry->cookie; 433 if (dir_decode(desc) != 0) { 434 desc->page_index ++; 435 break; 436 } 437 if (loop_count++ > 200) { 438 loop_count = 0; 439 schedule(); 440 } 441 } 442 dir_page_release(desc); 443 if (dentry != NULL) 444 dput(dentry); 445 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 446 (unsigned long long)*desc->dir_cookie, res); 447 return res; 448 } 449 450 /* 451 * If we cannot find a cookie in our cache, we suspect that this is 452 * because it points to a deleted file, so we ask the server to return 453 * whatever it thinks is the next entry. We then feed this to filldir. 454 * If all goes well, we should then be able to find our way round the 455 * cache on the next call to readdir_search_pagecache(); 456 * 457 * NOTE: we cannot add the anonymous page to the pagecache because 458 * the data it contains might not be page aligned. Besides, 459 * we should already have a complete representation of the 460 * directory in the page cache by the time we get here. 461 */ 462 static inline 463 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 464 filldir_t filldir) 465 { 466 struct file *file = desc->file; 467 struct inode *inode = file->f_dentry->d_inode; 468 struct rpc_cred *cred = nfs_file_cred(file); 469 struct page *page = NULL; 470 int status; 471 472 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 473 (unsigned long long)*desc->dir_cookie); 474 475 page = alloc_page(GFP_HIGHUSER); 476 if (!page) { 477 status = -ENOMEM; 478 goto out; 479 } 480 desc->error = NFS_PROTO(inode)->readdir(file->f_dentry, cred, *desc->dir_cookie, 481 page, 482 NFS_SERVER(inode)->dtsize, 483 desc->plus); 484 spin_lock(&inode->i_lock); 485 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME; 486 spin_unlock(&inode->i_lock); 487 desc->page = page; 488 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 489 if (desc->error >= 0) { 490 if ((status = dir_decode(desc)) == 0) 491 desc->entry->prev_cookie = *desc->dir_cookie; 492 } else 493 status = -EIO; 494 if (status < 0) 495 goto out_release; 496 497 status = nfs_do_filldir(desc, dirent, filldir); 498 499 /* Reset read descriptor so it searches the page cache from 500 * the start upon the next call to readdir_search_pagecache() */ 501 desc->page_index = 0; 502 desc->entry->cookie = desc->entry->prev_cookie = 0; 503 desc->entry->eof = 0; 504 out: 505 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 506 __FUNCTION__, status); 507 return status; 508 out_release: 509 dir_page_release(desc); 510 goto out; 511 } 512 513 /* The file offset position represents the dirent entry number. A 514 last cookie cache takes care of the common case of reading the 515 whole directory. 516 */ 517 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 518 { 519 struct dentry *dentry = filp->f_dentry; 520 struct inode *inode = dentry->d_inode; 521 nfs_readdir_descriptor_t my_desc, 522 *desc = &my_desc; 523 struct nfs_entry my_entry; 524 struct nfs_fh fh; 525 struct nfs_fattr fattr; 526 long res; 527 528 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n", 529 dentry->d_parent->d_name.name, dentry->d_name.name, 530 (long long)filp->f_pos); 531 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 532 533 lock_kernel(); 534 535 res = nfs_revalidate_mapping(inode, filp->f_mapping); 536 if (res < 0) { 537 unlock_kernel(); 538 return res; 539 } 540 541 /* 542 * filp->f_pos points to the dirent entry number. 543 * *desc->dir_cookie has the cookie for the next entry. We have 544 * to either find the entry with the appropriate number or 545 * revalidate the cookie. 546 */ 547 memset(desc, 0, sizeof(*desc)); 548 549 desc->file = filp; 550 desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie; 551 desc->decode = NFS_PROTO(inode)->decode_dirent; 552 desc->plus = NFS_USE_READDIRPLUS(inode); 553 554 my_entry.cookie = my_entry.prev_cookie = 0; 555 my_entry.eof = 0; 556 my_entry.fh = &fh; 557 my_entry.fattr = &fattr; 558 nfs_fattr_init(&fattr); 559 desc->entry = &my_entry; 560 561 while(!desc->entry->eof) { 562 res = readdir_search_pagecache(desc); 563 564 if (res == -EBADCOOKIE) { 565 /* This means either end of directory */ 566 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) { 567 /* Or that the server has 'lost' a cookie */ 568 res = uncached_readdir(desc, dirent, filldir); 569 if (res >= 0) 570 continue; 571 } 572 res = 0; 573 break; 574 } 575 if (res == -ETOOSMALL && desc->plus) { 576 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode)); 577 nfs_zap_caches(inode); 578 desc->plus = 0; 579 desc->entry->eof = 0; 580 continue; 581 } 582 if (res < 0) 583 break; 584 585 res = nfs_do_filldir(desc, dirent, filldir); 586 if (res < 0) { 587 res = 0; 588 break; 589 } 590 } 591 unlock_kernel(); 592 if (res > 0) 593 res = 0; 594 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n", 595 dentry->d_parent->d_name.name, dentry->d_name.name, 596 res); 597 return res; 598 } 599 600 loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 601 { 602 mutex_lock(&filp->f_dentry->d_inode->i_mutex); 603 switch (origin) { 604 case 1: 605 offset += filp->f_pos; 606 case 0: 607 if (offset >= 0) 608 break; 609 default: 610 offset = -EINVAL; 611 goto out; 612 } 613 if (offset != filp->f_pos) { 614 filp->f_pos = offset; 615 ((struct nfs_open_context *)filp->private_data)->dir_cookie = 0; 616 } 617 out: 618 mutex_unlock(&filp->f_dentry->d_inode->i_mutex); 619 return offset; 620 } 621 622 /* 623 * All directory operations under NFS are synchronous, so fsync() 624 * is a dummy operation. 625 */ 626 int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync) 627 { 628 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n", 629 dentry->d_parent->d_name.name, dentry->d_name.name, 630 datasync); 631 632 return 0; 633 } 634 635 /* 636 * A check for whether or not the parent directory has changed. 637 * In the case it has, we assume that the dentries are untrustworthy 638 * and may need to be looked up again. 639 */ 640 static inline int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 641 { 642 if (IS_ROOT(dentry)) 643 return 1; 644 if ((NFS_I(dir)->cache_validity & NFS_INO_INVALID_ATTR) != 0 645 || nfs_attribute_timeout(dir)) 646 return 0; 647 return nfs_verify_change_attribute(dir, (unsigned long)dentry->d_fsdata); 648 } 649 650 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf) 651 { 652 dentry->d_fsdata = (void *)verf; 653 } 654 655 /* 656 * Whenever an NFS operation succeeds, we know that the dentry 657 * is valid, so we update the revalidation timestamp. 658 */ 659 static inline void nfs_renew_times(struct dentry * dentry) 660 { 661 dentry->d_time = jiffies; 662 } 663 664 /* 665 * Return the intent data that applies to this particular path component 666 * 667 * Note that the current set of intents only apply to the very last 668 * component of the path. 669 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT. 670 */ 671 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask) 672 { 673 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT)) 674 return 0; 675 return nd->flags & mask; 676 } 677 678 /* 679 * Inode and filehandle revalidation for lookups. 680 * 681 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 682 * or if the intent information indicates that we're about to open this 683 * particular file and the "nocto" mount flag is not set. 684 * 685 */ 686 static inline 687 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd) 688 { 689 struct nfs_server *server = NFS_SERVER(inode); 690 691 if (nd != NULL) { 692 /* VFS wants an on-the-wire revalidation */ 693 if (nd->flags & LOOKUP_REVAL) 694 goto out_force; 695 /* This is an open(2) */ 696 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 && 697 !(server->flags & NFS_MOUNT_NOCTO) && 698 (S_ISREG(inode->i_mode) || 699 S_ISDIR(inode->i_mode))) 700 goto out_force; 701 } 702 return nfs_revalidate_inode(server, inode); 703 out_force: 704 return __nfs_revalidate_inode(server, inode); 705 } 706 707 /* 708 * We judge how long we want to trust negative 709 * dentries by looking at the parent inode mtime. 710 * 711 * If parent mtime has changed, we revalidate, else we wait for a 712 * period corresponding to the parent's attribute cache timeout value. 713 */ 714 static inline 715 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 716 struct nameidata *nd) 717 { 718 /* Don't revalidate a negative dentry if we're creating a new file */ 719 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0) 720 return 0; 721 return !nfs_check_verifier(dir, dentry); 722 } 723 724 /* 725 * This is called every time the dcache has a lookup hit, 726 * and we should check whether we can really trust that 727 * lookup. 728 * 729 * NOTE! The hit can be a negative hit too, don't assume 730 * we have an inode! 731 * 732 * If the parent directory is seen to have changed, we throw out the 733 * cached dentry and do a new lookup. 734 */ 735 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd) 736 { 737 struct inode *dir; 738 struct inode *inode; 739 struct dentry *parent; 740 int error; 741 struct nfs_fh fhandle; 742 struct nfs_fattr fattr; 743 unsigned long verifier; 744 745 parent = dget_parent(dentry); 746 lock_kernel(); 747 dir = parent->d_inode; 748 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 749 inode = dentry->d_inode; 750 751 if (!inode) { 752 if (nfs_neg_need_reval(dir, dentry, nd)) 753 goto out_bad; 754 goto out_valid; 755 } 756 757 if (is_bad_inode(inode)) { 758 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 759 __FUNCTION__, dentry->d_parent->d_name.name, 760 dentry->d_name.name); 761 goto out_bad; 762 } 763 764 /* Revalidate parent directory attribute cache */ 765 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 766 goto out_zap_parent; 767 768 /* Force a full look up iff the parent directory has changed */ 769 if (nfs_check_verifier(dir, dentry)) { 770 if (nfs_lookup_verify_inode(inode, nd)) 771 goto out_zap_parent; 772 goto out_valid; 773 } 774 775 if (NFS_STALE(inode)) 776 goto out_bad; 777 778 verifier = nfs_save_change_attribute(dir); 779 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 780 if (error) 781 goto out_bad; 782 if (nfs_compare_fh(NFS_FH(inode), &fhandle)) 783 goto out_bad; 784 if ((error = nfs_refresh_inode(inode, &fattr)) != 0) 785 goto out_bad; 786 787 nfs_renew_times(dentry); 788 nfs_set_verifier(dentry, verifier); 789 out_valid: 790 unlock_kernel(); 791 dput(parent); 792 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 793 __FUNCTION__, dentry->d_parent->d_name.name, 794 dentry->d_name.name); 795 return 1; 796 out_zap_parent: 797 nfs_zap_caches(dir); 798 out_bad: 799 NFS_CACHEINV(dir); 800 if (inode && S_ISDIR(inode->i_mode)) { 801 /* Purge readdir caches. */ 802 nfs_zap_caches(inode); 803 /* If we have submounts, don't unhash ! */ 804 if (have_submounts(dentry)) 805 goto out_valid; 806 shrink_dcache_parent(dentry); 807 } 808 d_drop(dentry); 809 unlock_kernel(); 810 dput(parent); 811 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 812 __FUNCTION__, dentry->d_parent->d_name.name, 813 dentry->d_name.name); 814 return 0; 815 } 816 817 /* 818 * This is called from dput() when d_count is going to 0. 819 */ 820 static int nfs_dentry_delete(struct dentry *dentry) 821 { 822 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 823 dentry->d_parent->d_name.name, dentry->d_name.name, 824 dentry->d_flags); 825 826 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 827 /* Unhash it, so that ->d_iput() would be called */ 828 return 1; 829 } 830 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 831 /* Unhash it, so that ancestors of killed async unlink 832 * files will be cleaned up during umount */ 833 return 1; 834 } 835 return 0; 836 837 } 838 839 /* 840 * Called when the dentry loses inode. 841 * We use it to clean up silly-renamed files. 842 */ 843 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 844 { 845 nfs_inode_return_delegation(inode); 846 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 847 lock_kernel(); 848 drop_nlink(inode); 849 nfs_complete_unlink(dentry); 850 unlock_kernel(); 851 } 852 /* When creating a negative dentry, we want to renew d_time */ 853 nfs_renew_times(dentry); 854 iput(inode); 855 } 856 857 struct dentry_operations nfs_dentry_operations = { 858 .d_revalidate = nfs_lookup_revalidate, 859 .d_delete = nfs_dentry_delete, 860 .d_iput = nfs_dentry_iput, 861 }; 862 863 /* 864 * Use intent information to check whether or not we're going to do 865 * an O_EXCL create using this path component. 866 */ 867 static inline 868 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd) 869 { 870 if (NFS_PROTO(dir)->version == 2) 871 return 0; 872 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0) 873 return 0; 874 return (nd->intent.open.flags & O_EXCL) != 0; 875 } 876 877 static inline int nfs_reval_fsid(struct vfsmount *mnt, struct inode *dir, 878 struct nfs_fh *fh, struct nfs_fattr *fattr) 879 { 880 struct nfs_server *server = NFS_SERVER(dir); 881 882 if (!nfs_fsid_equal(&server->fsid, &fattr->fsid)) 883 /* Revalidate fsid on root dir */ 884 return __nfs_revalidate_inode(server, mnt->mnt_root->d_inode); 885 return 0; 886 } 887 888 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 889 { 890 struct dentry *res; 891 struct inode *inode = NULL; 892 int error; 893 struct nfs_fh fhandle; 894 struct nfs_fattr fattr; 895 896 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 897 dentry->d_parent->d_name.name, dentry->d_name.name); 898 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 899 900 res = ERR_PTR(-ENAMETOOLONG); 901 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 902 goto out; 903 904 res = ERR_PTR(-ENOMEM); 905 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 906 907 lock_kernel(); 908 909 /* 910 * If we're doing an exclusive create, optimize away the lookup 911 * but don't hash the dentry. 912 */ 913 if (nfs_is_exclusive_create(dir, nd)) { 914 d_instantiate(dentry, NULL); 915 res = NULL; 916 goto out_unlock; 917 } 918 919 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 920 if (error == -ENOENT) 921 goto no_entry; 922 if (error < 0) { 923 res = ERR_PTR(error); 924 goto out_unlock; 925 } 926 error = nfs_reval_fsid(nd->mnt, dir, &fhandle, &fattr); 927 if (error < 0) { 928 res = ERR_PTR(error); 929 goto out_unlock; 930 } 931 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr); 932 res = (struct dentry *)inode; 933 if (IS_ERR(res)) 934 goto out_unlock; 935 936 no_entry: 937 res = d_materialise_unique(dentry, inode); 938 if (res != NULL) 939 dentry = res; 940 nfs_renew_times(dentry); 941 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 942 out_unlock: 943 unlock_kernel(); 944 out: 945 return res; 946 } 947 948 #ifdef CONFIG_NFS_V4 949 static int nfs_open_revalidate(struct dentry *, struct nameidata *); 950 951 struct dentry_operations nfs4_dentry_operations = { 952 .d_revalidate = nfs_open_revalidate, 953 .d_delete = nfs_dentry_delete, 954 .d_iput = nfs_dentry_iput, 955 }; 956 957 /* 958 * Use intent information to determine whether we need to substitute 959 * the NFSv4-style stateful OPEN for the LOOKUP call 960 */ 961 static int is_atomic_open(struct inode *dir, struct nameidata *nd) 962 { 963 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0) 964 return 0; 965 /* NFS does not (yet) have a stateful open for directories */ 966 if (nd->flags & LOOKUP_DIRECTORY) 967 return 0; 968 /* Are we trying to write to a read only partition? */ 969 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE))) 970 return 0; 971 return 1; 972 } 973 974 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 975 { 976 struct dentry *res = NULL; 977 int error; 978 979 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n", 980 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 981 982 /* Check that we are indeed trying to open this file */ 983 if (!is_atomic_open(dir, nd)) 984 goto no_open; 985 986 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) { 987 res = ERR_PTR(-ENAMETOOLONG); 988 goto out; 989 } 990 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 991 992 /* Let vfs_create() deal with O_EXCL */ 993 if (nd->intent.open.flags & O_EXCL) { 994 d_add(dentry, NULL); 995 goto out; 996 } 997 998 /* Open the file on the server */ 999 lock_kernel(); 1000 /* Revalidate parent directory attribute cache */ 1001 error = nfs_revalidate_inode(NFS_SERVER(dir), dir); 1002 if (error < 0) { 1003 res = ERR_PTR(error); 1004 unlock_kernel(); 1005 goto out; 1006 } 1007 1008 if (nd->intent.open.flags & O_CREAT) { 1009 nfs_begin_data_update(dir); 1010 res = nfs4_atomic_open(dir, dentry, nd); 1011 nfs_end_data_update(dir); 1012 } else 1013 res = nfs4_atomic_open(dir, dentry, nd); 1014 unlock_kernel(); 1015 if (IS_ERR(res)) { 1016 error = PTR_ERR(res); 1017 switch (error) { 1018 /* Make a negative dentry */ 1019 case -ENOENT: 1020 res = NULL; 1021 goto out; 1022 /* This turned out not to be a regular file */ 1023 case -EISDIR: 1024 case -ENOTDIR: 1025 goto no_open; 1026 case -ELOOP: 1027 if (!(nd->intent.open.flags & O_NOFOLLOW)) 1028 goto no_open; 1029 /* case -EINVAL: */ 1030 default: 1031 goto out; 1032 } 1033 } else if (res != NULL) 1034 dentry = res; 1035 nfs_renew_times(dentry); 1036 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1037 out: 1038 return res; 1039 no_open: 1040 return nfs_lookup(dir, dentry, nd); 1041 } 1042 1043 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd) 1044 { 1045 struct dentry *parent = NULL; 1046 struct inode *inode = dentry->d_inode; 1047 struct inode *dir; 1048 unsigned long verifier; 1049 int openflags, ret = 0; 1050 1051 parent = dget_parent(dentry); 1052 dir = parent->d_inode; 1053 if (!is_atomic_open(dir, nd)) 1054 goto no_open; 1055 /* We can't create new files in nfs_open_revalidate(), so we 1056 * optimize away revalidation of negative dentries. 1057 */ 1058 if (inode == NULL) 1059 goto out; 1060 /* NFS only supports OPEN on regular files */ 1061 if (!S_ISREG(inode->i_mode)) 1062 goto no_open; 1063 openflags = nd->intent.open.flags; 1064 /* We cannot do exclusive creation on a positive dentry */ 1065 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 1066 goto no_open; 1067 /* We can't create new files, or truncate existing ones here */ 1068 openflags &= ~(O_CREAT|O_TRUNC); 1069 1070 /* 1071 * Note: we're not holding inode->i_mutex and so may be racing with 1072 * operations that change the directory. We therefore save the 1073 * change attribute *before* we do the RPC call. 1074 */ 1075 lock_kernel(); 1076 verifier = nfs_save_change_attribute(dir); 1077 ret = nfs4_open_revalidate(dir, dentry, openflags, nd); 1078 if (!ret) 1079 nfs_set_verifier(dentry, verifier); 1080 unlock_kernel(); 1081 out: 1082 dput(parent); 1083 if (!ret) 1084 d_drop(dentry); 1085 return ret; 1086 no_open: 1087 dput(parent); 1088 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ)) 1089 return 1; 1090 return nfs_lookup_revalidate(dentry, nd); 1091 } 1092 #endif /* CONFIG_NFSV4 */ 1093 1094 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc) 1095 { 1096 struct dentry *parent = desc->file->f_dentry; 1097 struct inode *dir = parent->d_inode; 1098 struct nfs_entry *entry = desc->entry; 1099 struct dentry *dentry, *alias; 1100 struct qstr name = { 1101 .name = entry->name, 1102 .len = entry->len, 1103 }; 1104 struct inode *inode; 1105 1106 switch (name.len) { 1107 case 2: 1108 if (name.name[0] == '.' && name.name[1] == '.') 1109 return dget_parent(parent); 1110 break; 1111 case 1: 1112 if (name.name[0] == '.') 1113 return dget(parent); 1114 } 1115 name.hash = full_name_hash(name.name, name.len); 1116 dentry = d_lookup(parent, &name); 1117 if (dentry != NULL) 1118 return dentry; 1119 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR)) 1120 return NULL; 1121 /* Note: caller is already holding the dir->i_mutex! */ 1122 dentry = d_alloc(parent, &name); 1123 if (dentry == NULL) 1124 return NULL; 1125 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1126 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 1127 if (IS_ERR(inode)) { 1128 dput(dentry); 1129 return NULL; 1130 } 1131 1132 alias = d_materialise_unique(dentry, inode); 1133 if (alias != NULL) { 1134 dput(dentry); 1135 dentry = alias; 1136 } 1137 1138 nfs_renew_times(dentry); 1139 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1140 return dentry; 1141 } 1142 1143 /* 1144 * Code common to create, mkdir, and mknod. 1145 */ 1146 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1147 struct nfs_fattr *fattr) 1148 { 1149 struct inode *inode; 1150 int error = -EACCES; 1151 1152 /* We may have been initialized further down */ 1153 if (dentry->d_inode) 1154 return 0; 1155 if (fhandle->size == 0) { 1156 struct inode *dir = dentry->d_parent->d_inode; 1157 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1158 if (error) 1159 return error; 1160 } 1161 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1162 struct nfs_server *server = NFS_SB(dentry->d_sb); 1163 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1164 if (error < 0) 1165 return error; 1166 } 1167 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1168 error = PTR_ERR(inode); 1169 if (IS_ERR(inode)) 1170 return error; 1171 d_instantiate(dentry, inode); 1172 if (d_unhashed(dentry)) 1173 d_rehash(dentry); 1174 return 0; 1175 } 1176 1177 /* 1178 * Following a failed create operation, we drop the dentry rather 1179 * than retain a negative dentry. This avoids a problem in the event 1180 * that the operation succeeded on the server, but an error in the 1181 * reply path made it appear to have failed. 1182 */ 1183 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode, 1184 struct nameidata *nd) 1185 { 1186 struct iattr attr; 1187 int error; 1188 int open_flags = 0; 1189 1190 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1191 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1192 1193 attr.ia_mode = mode; 1194 attr.ia_valid = ATTR_MODE; 1195 1196 if (nd && (nd->flags & LOOKUP_CREATE)) 1197 open_flags = nd->intent.open.flags; 1198 1199 lock_kernel(); 1200 nfs_begin_data_update(dir); 1201 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd); 1202 nfs_end_data_update(dir); 1203 if (error != 0) 1204 goto out_err; 1205 nfs_renew_times(dentry); 1206 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1207 unlock_kernel(); 1208 return 0; 1209 out_err: 1210 unlock_kernel(); 1211 d_drop(dentry); 1212 return error; 1213 } 1214 1215 /* 1216 * See comments for nfs_proc_create regarding failed operations. 1217 */ 1218 static int 1219 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) 1220 { 1221 struct iattr attr; 1222 int status; 1223 1224 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1225 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1226 1227 if (!new_valid_dev(rdev)) 1228 return -EINVAL; 1229 1230 attr.ia_mode = mode; 1231 attr.ia_valid = ATTR_MODE; 1232 1233 lock_kernel(); 1234 nfs_begin_data_update(dir); 1235 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1236 nfs_end_data_update(dir); 1237 if (status != 0) 1238 goto out_err; 1239 nfs_renew_times(dentry); 1240 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1241 unlock_kernel(); 1242 return 0; 1243 out_err: 1244 unlock_kernel(); 1245 d_drop(dentry); 1246 return status; 1247 } 1248 1249 /* 1250 * See comments for nfs_proc_create regarding failed operations. 1251 */ 1252 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1253 { 1254 struct iattr attr; 1255 int error; 1256 1257 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1258 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1259 1260 attr.ia_valid = ATTR_MODE; 1261 attr.ia_mode = mode | S_IFDIR; 1262 1263 lock_kernel(); 1264 nfs_begin_data_update(dir); 1265 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1266 nfs_end_data_update(dir); 1267 if (error != 0) 1268 goto out_err; 1269 nfs_renew_times(dentry); 1270 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1271 unlock_kernel(); 1272 return 0; 1273 out_err: 1274 d_drop(dentry); 1275 unlock_kernel(); 1276 return error; 1277 } 1278 1279 static int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1280 { 1281 int error; 1282 1283 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1284 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1285 1286 lock_kernel(); 1287 nfs_begin_data_update(dir); 1288 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1289 /* Ensure the VFS deletes this inode */ 1290 if (error == 0 && dentry->d_inode != NULL) 1291 clear_nlink(dentry->d_inode); 1292 nfs_end_data_update(dir); 1293 unlock_kernel(); 1294 1295 return error; 1296 } 1297 1298 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry) 1299 { 1300 static unsigned int sillycounter; 1301 const int i_inosize = sizeof(dir->i_ino)*2; 1302 const int countersize = sizeof(sillycounter)*2; 1303 const int slen = sizeof(".nfs") + i_inosize + countersize - 1; 1304 char silly[slen+1]; 1305 struct qstr qsilly; 1306 struct dentry *sdentry; 1307 int error = -EIO; 1308 1309 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n", 1310 dentry->d_parent->d_name.name, dentry->d_name.name, 1311 atomic_read(&dentry->d_count)); 1312 nfs_inc_stats(dir, NFSIOS_SILLYRENAME); 1313 1314 #ifdef NFS_PARANOIA 1315 if (!dentry->d_inode) 1316 printk("NFS: silly-renaming %s/%s, negative dentry??\n", 1317 dentry->d_parent->d_name.name, dentry->d_name.name); 1318 #endif 1319 /* 1320 * We don't allow a dentry to be silly-renamed twice. 1321 */ 1322 error = -EBUSY; 1323 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1324 goto out; 1325 1326 sprintf(silly, ".nfs%*.*lx", 1327 i_inosize, i_inosize, dentry->d_inode->i_ino); 1328 1329 /* Return delegation in anticipation of the rename */ 1330 nfs_inode_return_delegation(dentry->d_inode); 1331 1332 sdentry = NULL; 1333 do { 1334 char *suffix = silly + slen - countersize; 1335 1336 dput(sdentry); 1337 sillycounter++; 1338 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter); 1339 1340 dfprintk(VFS, "NFS: trying to rename %s to %s\n", 1341 dentry->d_name.name, silly); 1342 1343 sdentry = lookup_one_len(silly, dentry->d_parent, slen); 1344 /* 1345 * N.B. Better to return EBUSY here ... it could be 1346 * dangerous to delete the file while it's in use. 1347 */ 1348 if (IS_ERR(sdentry)) 1349 goto out; 1350 } while(sdentry->d_inode != NULL); /* need negative lookup */ 1351 1352 qsilly.name = silly; 1353 qsilly.len = strlen(silly); 1354 nfs_begin_data_update(dir); 1355 if (dentry->d_inode) { 1356 nfs_begin_data_update(dentry->d_inode); 1357 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1358 dir, &qsilly); 1359 nfs_mark_for_revalidate(dentry->d_inode); 1360 nfs_end_data_update(dentry->d_inode); 1361 } else 1362 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1363 dir, &qsilly); 1364 nfs_end_data_update(dir); 1365 if (!error) { 1366 nfs_renew_times(dentry); 1367 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1368 d_move(dentry, sdentry); 1369 error = nfs_async_unlink(dentry); 1370 /* If we return 0 we don't unlink */ 1371 } 1372 dput(sdentry); 1373 out: 1374 return error; 1375 } 1376 1377 /* 1378 * Remove a file after making sure there are no pending writes, 1379 * and after checking that the file has only one user. 1380 * 1381 * We invalidate the attribute cache and free the inode prior to the operation 1382 * to avoid possible races if the server reuses the inode. 1383 */ 1384 static int nfs_safe_remove(struct dentry *dentry) 1385 { 1386 struct inode *dir = dentry->d_parent->d_inode; 1387 struct inode *inode = dentry->d_inode; 1388 int error = -EBUSY; 1389 1390 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1391 dentry->d_parent->d_name.name, dentry->d_name.name); 1392 1393 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1394 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1395 error = 0; 1396 goto out; 1397 } 1398 1399 nfs_begin_data_update(dir); 1400 if (inode != NULL) { 1401 nfs_inode_return_delegation(inode); 1402 nfs_begin_data_update(inode); 1403 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1404 /* The VFS may want to delete this inode */ 1405 if (error == 0) 1406 drop_nlink(inode); 1407 nfs_mark_for_revalidate(inode); 1408 nfs_end_data_update(inode); 1409 } else 1410 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1411 nfs_end_data_update(dir); 1412 out: 1413 return error; 1414 } 1415 1416 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1417 * belongs to an active ".nfs..." file and we return -EBUSY. 1418 * 1419 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1420 */ 1421 static int nfs_unlink(struct inode *dir, struct dentry *dentry) 1422 { 1423 int error; 1424 int need_rehash = 0; 1425 1426 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1427 dir->i_ino, dentry->d_name.name); 1428 1429 lock_kernel(); 1430 spin_lock(&dcache_lock); 1431 spin_lock(&dentry->d_lock); 1432 if (atomic_read(&dentry->d_count) > 1) { 1433 spin_unlock(&dentry->d_lock); 1434 spin_unlock(&dcache_lock); 1435 error = nfs_sillyrename(dir, dentry); 1436 unlock_kernel(); 1437 return error; 1438 } 1439 if (!d_unhashed(dentry)) { 1440 __d_drop(dentry); 1441 need_rehash = 1; 1442 } 1443 spin_unlock(&dentry->d_lock); 1444 spin_unlock(&dcache_lock); 1445 error = nfs_safe_remove(dentry); 1446 if (!error) { 1447 nfs_renew_times(dentry); 1448 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1449 } else if (need_rehash) 1450 d_rehash(dentry); 1451 unlock_kernel(); 1452 return error; 1453 } 1454 1455 /* 1456 * To create a symbolic link, most file systems instantiate a new inode, 1457 * add a page to it containing the path, then write it out to the disk 1458 * using prepare_write/commit_write. 1459 * 1460 * Unfortunately the NFS client can't create the in-core inode first 1461 * because it needs a file handle to create an in-core inode (see 1462 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1463 * symlink request has completed on the server. 1464 * 1465 * So instead we allocate a raw page, copy the symname into it, then do 1466 * the SYMLINK request with the page as the buffer. If it succeeds, we 1467 * now have a new file handle and can instantiate an in-core NFS inode 1468 * and move the raw page into its mapping. 1469 */ 1470 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1471 { 1472 struct pagevec lru_pvec; 1473 struct page *page; 1474 char *kaddr; 1475 struct iattr attr; 1476 unsigned int pathlen = strlen(symname); 1477 int error; 1478 1479 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1480 dir->i_ino, dentry->d_name.name, symname); 1481 1482 if (pathlen > PAGE_SIZE) 1483 return -ENAMETOOLONG; 1484 1485 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1486 attr.ia_valid = ATTR_MODE; 1487 1488 lock_kernel(); 1489 1490 page = alloc_page(GFP_KERNEL); 1491 if (!page) { 1492 unlock_kernel(); 1493 return -ENOMEM; 1494 } 1495 1496 kaddr = kmap_atomic(page, KM_USER0); 1497 memcpy(kaddr, symname, pathlen); 1498 if (pathlen < PAGE_SIZE) 1499 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1500 kunmap_atomic(kaddr, KM_USER0); 1501 1502 nfs_begin_data_update(dir); 1503 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1504 nfs_end_data_update(dir); 1505 if (error != 0) { 1506 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1507 dir->i_sb->s_id, dir->i_ino, 1508 dentry->d_name.name, symname, error); 1509 d_drop(dentry); 1510 __free_page(page); 1511 unlock_kernel(); 1512 return error; 1513 } 1514 1515 /* 1516 * No big deal if we can't add this page to the page cache here. 1517 * READLINK will get the missing page from the server if needed. 1518 */ 1519 pagevec_init(&lru_pvec, 0); 1520 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1521 GFP_KERNEL)) { 1522 pagevec_add(&lru_pvec, page); 1523 pagevec_lru_add(&lru_pvec); 1524 SetPageUptodate(page); 1525 unlock_page(page); 1526 } else 1527 __free_page(page); 1528 1529 unlock_kernel(); 1530 return 0; 1531 } 1532 1533 static int 1534 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1535 { 1536 struct inode *inode = old_dentry->d_inode; 1537 int error; 1538 1539 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1540 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1541 dentry->d_parent->d_name.name, dentry->d_name.name); 1542 1543 lock_kernel(); 1544 nfs_begin_data_update(dir); 1545 nfs_begin_data_update(inode); 1546 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1547 if (error == 0) { 1548 atomic_inc(&inode->i_count); 1549 d_instantiate(dentry, inode); 1550 } 1551 nfs_end_data_update(inode); 1552 nfs_end_data_update(dir); 1553 unlock_kernel(); 1554 return error; 1555 } 1556 1557 /* 1558 * RENAME 1559 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1560 * different file handle for the same inode after a rename (e.g. when 1561 * moving to a different directory). A fail-safe method to do so would 1562 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1563 * rename the old file using the sillyrename stuff. This way, the original 1564 * file in old_dir will go away when the last process iput()s the inode. 1565 * 1566 * FIXED. 1567 * 1568 * It actually works quite well. One needs to have the possibility for 1569 * at least one ".nfs..." file in each directory the file ever gets 1570 * moved or linked to which happens automagically with the new 1571 * implementation that only depends on the dcache stuff instead of 1572 * using the inode layer 1573 * 1574 * Unfortunately, things are a little more complicated than indicated 1575 * above. For a cross-directory move, we want to make sure we can get 1576 * rid of the old inode after the operation. This means there must be 1577 * no pending writes (if it's a file), and the use count must be 1. 1578 * If these conditions are met, we can drop the dentries before doing 1579 * the rename. 1580 */ 1581 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1582 struct inode *new_dir, struct dentry *new_dentry) 1583 { 1584 struct inode *old_inode = old_dentry->d_inode; 1585 struct inode *new_inode = new_dentry->d_inode; 1586 struct dentry *dentry = NULL, *rehash = NULL; 1587 int error = -EBUSY; 1588 1589 /* 1590 * To prevent any new references to the target during the rename, 1591 * we unhash the dentry and free the inode in advance. 1592 */ 1593 lock_kernel(); 1594 if (!d_unhashed(new_dentry)) { 1595 d_drop(new_dentry); 1596 rehash = new_dentry; 1597 } 1598 1599 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1600 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1601 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1602 atomic_read(&new_dentry->d_count)); 1603 1604 /* 1605 * First check whether the target is busy ... we can't 1606 * safely do _any_ rename if the target is in use. 1607 * 1608 * For files, make a copy of the dentry and then do a 1609 * silly-rename. If the silly-rename succeeds, the 1610 * copied dentry is hashed and becomes the new target. 1611 */ 1612 if (!new_inode) 1613 goto go_ahead; 1614 if (S_ISDIR(new_inode->i_mode)) { 1615 error = -EISDIR; 1616 if (!S_ISDIR(old_inode->i_mode)) 1617 goto out; 1618 } else if (atomic_read(&new_dentry->d_count) > 2) { 1619 int err; 1620 /* copy the target dentry's name */ 1621 dentry = d_alloc(new_dentry->d_parent, 1622 &new_dentry->d_name); 1623 if (!dentry) 1624 goto out; 1625 1626 /* silly-rename the existing target ... */ 1627 err = nfs_sillyrename(new_dir, new_dentry); 1628 if (!err) { 1629 new_dentry = rehash = dentry; 1630 new_inode = NULL; 1631 /* instantiate the replacement target */ 1632 d_instantiate(new_dentry, NULL); 1633 } else if (atomic_read(&new_dentry->d_count) > 1) { 1634 /* dentry still busy? */ 1635 #ifdef NFS_PARANOIA 1636 printk("nfs_rename: target %s/%s busy, d_count=%d\n", 1637 new_dentry->d_parent->d_name.name, 1638 new_dentry->d_name.name, 1639 atomic_read(&new_dentry->d_count)); 1640 #endif 1641 goto out; 1642 } 1643 } else 1644 drop_nlink(new_inode); 1645 1646 go_ahead: 1647 /* 1648 * ... prune child dentries and writebacks if needed. 1649 */ 1650 if (atomic_read(&old_dentry->d_count) > 1) { 1651 nfs_wb_all(old_inode); 1652 shrink_dcache_parent(old_dentry); 1653 } 1654 nfs_inode_return_delegation(old_inode); 1655 1656 if (new_inode != NULL) { 1657 nfs_inode_return_delegation(new_inode); 1658 d_delete(new_dentry); 1659 } 1660 1661 nfs_begin_data_update(old_dir); 1662 nfs_begin_data_update(new_dir); 1663 nfs_begin_data_update(old_inode); 1664 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1665 new_dir, &new_dentry->d_name); 1666 nfs_mark_for_revalidate(old_inode); 1667 nfs_end_data_update(old_inode); 1668 nfs_end_data_update(new_dir); 1669 nfs_end_data_update(old_dir); 1670 out: 1671 if (rehash) 1672 d_rehash(rehash); 1673 if (!error) { 1674 d_move(old_dentry, new_dentry); 1675 nfs_renew_times(new_dentry); 1676 nfs_set_verifier(new_dentry, nfs_save_change_attribute(new_dir)); 1677 } 1678 1679 /* new dentry created? */ 1680 if (dentry) 1681 dput(dentry); 1682 unlock_kernel(); 1683 return error; 1684 } 1685 1686 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1687 static LIST_HEAD(nfs_access_lru_list); 1688 static atomic_long_t nfs_access_nr_entries; 1689 1690 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1691 { 1692 put_rpccred(entry->cred); 1693 kfree(entry); 1694 smp_mb__before_atomic_dec(); 1695 atomic_long_dec(&nfs_access_nr_entries); 1696 smp_mb__after_atomic_dec(); 1697 } 1698 1699 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask) 1700 { 1701 LIST_HEAD(head); 1702 struct nfs_inode *nfsi; 1703 struct nfs_access_entry *cache; 1704 1705 spin_lock(&nfs_access_lru_lock); 1706 restart: 1707 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) { 1708 struct inode *inode; 1709 1710 if (nr_to_scan-- == 0) 1711 break; 1712 inode = igrab(&nfsi->vfs_inode); 1713 if (inode == NULL) 1714 continue; 1715 spin_lock(&inode->i_lock); 1716 if (list_empty(&nfsi->access_cache_entry_lru)) 1717 goto remove_lru_entry; 1718 cache = list_entry(nfsi->access_cache_entry_lru.next, 1719 struct nfs_access_entry, lru); 1720 list_move(&cache->lru, &head); 1721 rb_erase(&cache->rb_node, &nfsi->access_cache); 1722 if (!list_empty(&nfsi->access_cache_entry_lru)) 1723 list_move_tail(&nfsi->access_cache_inode_lru, 1724 &nfs_access_lru_list); 1725 else { 1726 remove_lru_entry: 1727 list_del_init(&nfsi->access_cache_inode_lru); 1728 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 1729 } 1730 spin_unlock(&inode->i_lock); 1731 iput(inode); 1732 goto restart; 1733 } 1734 spin_unlock(&nfs_access_lru_lock); 1735 while (!list_empty(&head)) { 1736 cache = list_entry(head.next, struct nfs_access_entry, lru); 1737 list_del(&cache->lru); 1738 nfs_access_free_entry(cache); 1739 } 1740 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 1741 } 1742 1743 static void __nfs_access_zap_cache(struct inode *inode) 1744 { 1745 struct nfs_inode *nfsi = NFS_I(inode); 1746 struct rb_root *root_node = &nfsi->access_cache; 1747 struct rb_node *n, *dispose = NULL; 1748 struct nfs_access_entry *entry; 1749 1750 /* Unhook entries from the cache */ 1751 while ((n = rb_first(root_node)) != NULL) { 1752 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1753 rb_erase(n, root_node); 1754 list_del(&entry->lru); 1755 n->rb_left = dispose; 1756 dispose = n; 1757 } 1758 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 1759 spin_unlock(&inode->i_lock); 1760 1761 /* Now kill them all! */ 1762 while (dispose != NULL) { 1763 n = dispose; 1764 dispose = n->rb_left; 1765 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node)); 1766 } 1767 } 1768 1769 void nfs_access_zap_cache(struct inode *inode) 1770 { 1771 /* Remove from global LRU init */ 1772 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) { 1773 spin_lock(&nfs_access_lru_lock); 1774 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 1775 spin_unlock(&nfs_access_lru_lock); 1776 } 1777 1778 spin_lock(&inode->i_lock); 1779 /* This will release the spinlock */ 1780 __nfs_access_zap_cache(inode); 1781 } 1782 1783 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 1784 { 1785 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 1786 struct nfs_access_entry *entry; 1787 1788 while (n != NULL) { 1789 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1790 1791 if (cred < entry->cred) 1792 n = n->rb_left; 1793 else if (cred > entry->cred) 1794 n = n->rb_right; 1795 else 1796 return entry; 1797 } 1798 return NULL; 1799 } 1800 1801 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 1802 { 1803 struct nfs_inode *nfsi = NFS_I(inode); 1804 struct nfs_access_entry *cache; 1805 int err = -ENOENT; 1806 1807 spin_lock(&inode->i_lock); 1808 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 1809 goto out_zap; 1810 cache = nfs_access_search_rbtree(inode, cred); 1811 if (cache == NULL) 1812 goto out; 1813 if (time_after(jiffies, cache->jiffies + NFS_ATTRTIMEO(inode))) 1814 goto out_stale; 1815 res->jiffies = cache->jiffies; 1816 res->cred = cache->cred; 1817 res->mask = cache->mask; 1818 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 1819 err = 0; 1820 out: 1821 spin_unlock(&inode->i_lock); 1822 return err; 1823 out_stale: 1824 rb_erase(&cache->rb_node, &nfsi->access_cache); 1825 list_del(&cache->lru); 1826 spin_unlock(&inode->i_lock); 1827 nfs_access_free_entry(cache); 1828 return -ENOENT; 1829 out_zap: 1830 /* This will release the spinlock */ 1831 __nfs_access_zap_cache(inode); 1832 return -ENOENT; 1833 } 1834 1835 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 1836 { 1837 struct nfs_inode *nfsi = NFS_I(inode); 1838 struct rb_root *root_node = &nfsi->access_cache; 1839 struct rb_node **p = &root_node->rb_node; 1840 struct rb_node *parent = NULL; 1841 struct nfs_access_entry *entry; 1842 1843 spin_lock(&inode->i_lock); 1844 while (*p != NULL) { 1845 parent = *p; 1846 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 1847 1848 if (set->cred < entry->cred) 1849 p = &parent->rb_left; 1850 else if (set->cred > entry->cred) 1851 p = &parent->rb_right; 1852 else 1853 goto found; 1854 } 1855 rb_link_node(&set->rb_node, parent, p); 1856 rb_insert_color(&set->rb_node, root_node); 1857 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1858 spin_unlock(&inode->i_lock); 1859 return; 1860 found: 1861 rb_replace_node(parent, &set->rb_node, root_node); 1862 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1863 list_del(&entry->lru); 1864 spin_unlock(&inode->i_lock); 1865 nfs_access_free_entry(entry); 1866 } 1867 1868 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 1869 { 1870 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 1871 if (cache == NULL) 1872 return; 1873 RB_CLEAR_NODE(&cache->rb_node); 1874 cache->jiffies = set->jiffies; 1875 cache->cred = get_rpccred(set->cred); 1876 cache->mask = set->mask; 1877 1878 nfs_access_add_rbtree(inode, cache); 1879 1880 /* Update accounting */ 1881 smp_mb__before_atomic_inc(); 1882 atomic_long_inc(&nfs_access_nr_entries); 1883 smp_mb__after_atomic_inc(); 1884 1885 /* Add inode to global LRU list */ 1886 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) { 1887 spin_lock(&nfs_access_lru_lock); 1888 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list); 1889 spin_unlock(&nfs_access_lru_lock); 1890 } 1891 } 1892 1893 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 1894 { 1895 struct nfs_access_entry cache; 1896 int status; 1897 1898 status = nfs_access_get_cached(inode, cred, &cache); 1899 if (status == 0) 1900 goto out; 1901 1902 /* Be clever: ask server to check for all possible rights */ 1903 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 1904 cache.cred = cred; 1905 cache.jiffies = jiffies; 1906 status = NFS_PROTO(inode)->access(inode, &cache); 1907 if (status != 0) 1908 return status; 1909 nfs_access_add_cache(inode, &cache); 1910 out: 1911 if ((cache.mask & mask) == mask) 1912 return 0; 1913 return -EACCES; 1914 } 1915 1916 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd) 1917 { 1918 struct rpc_cred *cred; 1919 int res = 0; 1920 1921 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 1922 1923 if (mask == 0) 1924 goto out; 1925 /* Is this sys_access() ? */ 1926 if (nd != NULL && (nd->flags & LOOKUP_ACCESS)) 1927 goto force_lookup; 1928 1929 switch (inode->i_mode & S_IFMT) { 1930 case S_IFLNK: 1931 goto out; 1932 case S_IFREG: 1933 /* NFSv4 has atomic_open... */ 1934 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 1935 && nd != NULL 1936 && (nd->flags & LOOKUP_OPEN)) 1937 goto out; 1938 break; 1939 case S_IFDIR: 1940 /* 1941 * Optimize away all write operations, since the server 1942 * will check permissions when we perform the op. 1943 */ 1944 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 1945 goto out; 1946 } 1947 1948 force_lookup: 1949 lock_kernel(); 1950 1951 if (!NFS_PROTO(inode)->access) 1952 goto out_notsup; 1953 1954 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0); 1955 if (!IS_ERR(cred)) { 1956 res = nfs_do_access(inode, cred, mask); 1957 put_rpccred(cred); 1958 } else 1959 res = PTR_ERR(cred); 1960 unlock_kernel(); 1961 out: 1962 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 1963 inode->i_sb->s_id, inode->i_ino, mask, res); 1964 return res; 1965 out_notsup: 1966 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1967 if (res == 0) 1968 res = generic_permission(inode, mask, NULL); 1969 unlock_kernel(); 1970 goto out; 1971 } 1972 1973 /* 1974 * Local variables: 1975 * version-control: t 1976 * kept-new-versions: 5 1977 * End: 1978 */ 1979