xref: /openbmc/linux/fs/nfs/dir.c (revision 39cf8a1374dc51fea169190674d5e4996a7d7ea2)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 
37 #include "nfs4_fs.h"
38 #include "delegation.h"
39 #include "iostat.h"
40 
41 #define NFS_PARANOIA 1
42 /* #define NFS_DEBUG_VERBOSE 1 */
43 
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 		      struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.readdir	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_release,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 struct inode_operations nfs_dir_inode_operations = {
69 	.create		= nfs_create,
70 	.lookup		= nfs_lookup,
71 	.link		= nfs_link,
72 	.unlink		= nfs_unlink,
73 	.symlink	= nfs_symlink,
74 	.mkdir		= nfs_mkdir,
75 	.rmdir		= nfs_rmdir,
76 	.mknod		= nfs_mknod,
77 	.rename		= nfs_rename,
78 	.permission	= nfs_permission,
79 	.getattr	= nfs_getattr,
80 	.setattr	= nfs_setattr,
81 };
82 
83 #ifdef CONFIG_NFS_V3
84 struct inode_operations nfs3_dir_inode_operations = {
85 	.create		= nfs_create,
86 	.lookup		= nfs_lookup,
87 	.link		= nfs_link,
88 	.unlink		= nfs_unlink,
89 	.symlink	= nfs_symlink,
90 	.mkdir		= nfs_mkdir,
91 	.rmdir		= nfs_rmdir,
92 	.mknod		= nfs_mknod,
93 	.rename		= nfs_rename,
94 	.permission	= nfs_permission,
95 	.getattr	= nfs_getattr,
96 	.setattr	= nfs_setattr,
97 	.listxattr	= nfs3_listxattr,
98 	.getxattr	= nfs3_getxattr,
99 	.setxattr	= nfs3_setxattr,
100 	.removexattr	= nfs3_removexattr,
101 };
102 #endif  /* CONFIG_NFS_V3 */
103 
104 #ifdef CONFIG_NFS_V4
105 
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 struct inode_operations nfs4_dir_inode_operations = {
108 	.create		= nfs_create,
109 	.lookup		= nfs_atomic_lookup,
110 	.link		= nfs_link,
111 	.unlink		= nfs_unlink,
112 	.symlink	= nfs_symlink,
113 	.mkdir		= nfs_mkdir,
114 	.rmdir		= nfs_rmdir,
115 	.mknod		= nfs_mknod,
116 	.rename		= nfs_rename,
117 	.permission	= nfs_permission,
118 	.getattr	= nfs_getattr,
119 	.setattr	= nfs_setattr,
120 	.getxattr       = nfs4_getxattr,
121 	.setxattr       = nfs4_setxattr,
122 	.listxattr      = nfs4_listxattr,
123 };
124 
125 #endif /* CONFIG_NFS_V4 */
126 
127 /*
128  * Open file
129  */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 	int res;
134 
135 	dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 			inode->i_sb->s_id, inode->i_ino);
137 
138 	lock_kernel();
139 	/* Call generic open code in order to cache credentials */
140 	res = nfs_open(inode, filp);
141 	unlock_kernel();
142 	return res;
143 }
144 
145 typedef u32 * (*decode_dirent_t)(u32 *, struct nfs_entry *, int);
146 typedef struct {
147 	struct file	*file;
148 	struct page	*page;
149 	unsigned long	page_index;
150 	u32		*ptr;
151 	u64		*dir_cookie;
152 	loff_t		current_index;
153 	struct nfs_entry *entry;
154 	decode_dirent_t	decode;
155 	int		plus;
156 	int		error;
157 } nfs_readdir_descriptor_t;
158 
159 /* Now we cache directories properly, by stuffing the dirent
160  * data directly in the page cache.
161  *
162  * Inode invalidation due to refresh etc. takes care of
163  * _everything_, no sloppy entry flushing logic, no extraneous
164  * copying, network direct to page cache, the way it was meant
165  * to be.
166  *
167  * NOTE: Dirent information verification is done always by the
168  *	 page-in of the RPC reply, nowhere else, this simplies
169  *	 things substantially.
170  */
171 static
172 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
173 {
174 	struct file	*file = desc->file;
175 	struct inode	*inode = file->f_dentry->d_inode;
176 	struct rpc_cred	*cred = nfs_file_cred(file);
177 	unsigned long	timestamp;
178 	int		error;
179 
180 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
181 			__FUNCTION__, (long long)desc->entry->cookie,
182 			page->index);
183 
184  again:
185 	timestamp = jiffies;
186 	error = NFS_PROTO(inode)->readdir(file->f_dentry, cred, desc->entry->cookie, page,
187 					  NFS_SERVER(inode)->dtsize, desc->plus);
188 	if (error < 0) {
189 		/* We requested READDIRPLUS, but the server doesn't grok it */
190 		if (error == -ENOTSUPP && desc->plus) {
191 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
192 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
193 			desc->plus = 0;
194 			goto again;
195 		}
196 		goto error;
197 	}
198 	SetPageUptodate(page);
199 	spin_lock(&inode->i_lock);
200 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
201 	spin_unlock(&inode->i_lock);
202 	/* Ensure consistent page alignment of the data.
203 	 * Note: assumes we have exclusive access to this mapping either
204 	 *	 through inode->i_mutex or some other mechanism.
205 	 */
206 	if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
207 		/* Should never happen */
208 		nfs_zap_mapping(inode, inode->i_mapping);
209 	}
210 	unlock_page(page);
211 	return 0;
212  error:
213 	SetPageError(page);
214 	unlock_page(page);
215 	nfs_zap_caches(inode);
216 	desc->error = error;
217 	return -EIO;
218 }
219 
220 static inline
221 int dir_decode(nfs_readdir_descriptor_t *desc)
222 {
223 	u32	*p = desc->ptr;
224 	p = desc->decode(p, desc->entry, desc->plus);
225 	if (IS_ERR(p))
226 		return PTR_ERR(p);
227 	desc->ptr = p;
228 	return 0;
229 }
230 
231 static inline
232 void dir_page_release(nfs_readdir_descriptor_t *desc)
233 {
234 	kunmap(desc->page);
235 	page_cache_release(desc->page);
236 	desc->page = NULL;
237 	desc->ptr = NULL;
238 }
239 
240 /*
241  * Given a pointer to a buffer that has already been filled by a call
242  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
243  *
244  * If the end of the buffer has been reached, return -EAGAIN, if not,
245  * return the offset within the buffer of the next entry to be
246  * read.
247  */
248 static inline
249 int find_dirent(nfs_readdir_descriptor_t *desc)
250 {
251 	struct nfs_entry *entry = desc->entry;
252 	int		loop_count = 0,
253 			status;
254 
255 	while((status = dir_decode(desc)) == 0) {
256 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
257 				__FUNCTION__, (unsigned long long)entry->cookie);
258 		if (entry->prev_cookie == *desc->dir_cookie)
259 			break;
260 		if (loop_count++ > 200) {
261 			loop_count = 0;
262 			schedule();
263 		}
264 	}
265 	return status;
266 }
267 
268 /*
269  * Given a pointer to a buffer that has already been filled by a call
270  * to readdir, find the entry at offset 'desc->file->f_pos'.
271  *
272  * If the end of the buffer has been reached, return -EAGAIN, if not,
273  * return the offset within the buffer of the next entry to be
274  * read.
275  */
276 static inline
277 int find_dirent_index(nfs_readdir_descriptor_t *desc)
278 {
279 	struct nfs_entry *entry = desc->entry;
280 	int		loop_count = 0,
281 			status;
282 
283 	for(;;) {
284 		status = dir_decode(desc);
285 		if (status)
286 			break;
287 
288 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
289 				(unsigned long long)entry->cookie, desc->current_index);
290 
291 		if (desc->file->f_pos == desc->current_index) {
292 			*desc->dir_cookie = entry->cookie;
293 			break;
294 		}
295 		desc->current_index++;
296 		if (loop_count++ > 200) {
297 			loop_count = 0;
298 			schedule();
299 		}
300 	}
301 	return status;
302 }
303 
304 /*
305  * Find the given page, and call find_dirent() or find_dirent_index in
306  * order to try to return the next entry.
307  */
308 static inline
309 int find_dirent_page(nfs_readdir_descriptor_t *desc)
310 {
311 	struct inode	*inode = desc->file->f_dentry->d_inode;
312 	struct page	*page;
313 	int		status;
314 
315 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
316 			__FUNCTION__, desc->page_index,
317 			(long long) *desc->dir_cookie);
318 
319 	page = read_cache_page(inode->i_mapping, desc->page_index,
320 			       (filler_t *)nfs_readdir_filler, desc);
321 	if (IS_ERR(page)) {
322 		status = PTR_ERR(page);
323 		goto out;
324 	}
325 	if (!PageUptodate(page))
326 		goto read_error;
327 
328 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
329 	desc->page = page;
330 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
331 	if (*desc->dir_cookie != 0)
332 		status = find_dirent(desc);
333 	else
334 		status = find_dirent_index(desc);
335 	if (status < 0)
336 		dir_page_release(desc);
337  out:
338 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
339 	return status;
340  read_error:
341 	page_cache_release(page);
342 	return -EIO;
343 }
344 
345 /*
346  * Recurse through the page cache pages, and return a
347  * filled nfs_entry structure of the next directory entry if possible.
348  *
349  * The target for the search is '*desc->dir_cookie' if non-0,
350  * 'desc->file->f_pos' otherwise
351  */
352 static inline
353 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
354 {
355 	int		loop_count = 0;
356 	int		res;
357 
358 	/* Always search-by-index from the beginning of the cache */
359 	if (*desc->dir_cookie == 0) {
360 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
361 				(long long)desc->file->f_pos);
362 		desc->page_index = 0;
363 		desc->entry->cookie = desc->entry->prev_cookie = 0;
364 		desc->entry->eof = 0;
365 		desc->current_index = 0;
366 	} else
367 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
368 				(unsigned long long)*desc->dir_cookie);
369 
370 	for (;;) {
371 		res = find_dirent_page(desc);
372 		if (res != -EAGAIN)
373 			break;
374 		/* Align to beginning of next page */
375 		desc->page_index ++;
376 		if (loop_count++ > 200) {
377 			loop_count = 0;
378 			schedule();
379 		}
380 	}
381 
382 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
383 	return res;
384 }
385 
386 static inline unsigned int dt_type(struct inode *inode)
387 {
388 	return (inode->i_mode >> 12) & 15;
389 }
390 
391 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
392 
393 /*
394  * Once we've found the start of the dirent within a page: fill 'er up...
395  */
396 static
397 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
398 		   filldir_t filldir)
399 {
400 	struct file	*file = desc->file;
401 	struct nfs_entry *entry = desc->entry;
402 	struct dentry	*dentry = NULL;
403 	unsigned long	fileid;
404 	int		loop_count = 0,
405 			res;
406 
407 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
408 			(unsigned long long)entry->cookie);
409 
410 	for(;;) {
411 		unsigned d_type = DT_UNKNOWN;
412 		/* Note: entry->prev_cookie contains the cookie for
413 		 *	 retrieving the current dirent on the server */
414 		fileid = nfs_fileid_to_ino_t(entry->ino);
415 
416 		/* Get a dentry if we have one */
417 		if (dentry != NULL)
418 			dput(dentry);
419 		dentry = nfs_readdir_lookup(desc);
420 
421 		/* Use readdirplus info */
422 		if (dentry != NULL && dentry->d_inode != NULL) {
423 			d_type = dt_type(dentry->d_inode);
424 			fileid = dentry->d_inode->i_ino;
425 		}
426 
427 		res = filldir(dirent, entry->name, entry->len,
428 			      file->f_pos, fileid, d_type);
429 		if (res < 0)
430 			break;
431 		file->f_pos++;
432 		*desc->dir_cookie = entry->cookie;
433 		if (dir_decode(desc) != 0) {
434 			desc->page_index ++;
435 			break;
436 		}
437 		if (loop_count++ > 200) {
438 			loop_count = 0;
439 			schedule();
440 		}
441 	}
442 	dir_page_release(desc);
443 	if (dentry != NULL)
444 		dput(dentry);
445 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
446 			(unsigned long long)*desc->dir_cookie, res);
447 	return res;
448 }
449 
450 /*
451  * If we cannot find a cookie in our cache, we suspect that this is
452  * because it points to a deleted file, so we ask the server to return
453  * whatever it thinks is the next entry. We then feed this to filldir.
454  * If all goes well, we should then be able to find our way round the
455  * cache on the next call to readdir_search_pagecache();
456  *
457  * NOTE: we cannot add the anonymous page to the pagecache because
458  *	 the data it contains might not be page aligned. Besides,
459  *	 we should already have a complete representation of the
460  *	 directory in the page cache by the time we get here.
461  */
462 static inline
463 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
464 		     filldir_t filldir)
465 {
466 	struct file	*file = desc->file;
467 	struct inode	*inode = file->f_dentry->d_inode;
468 	struct rpc_cred	*cred = nfs_file_cred(file);
469 	struct page	*page = NULL;
470 	int		status;
471 
472 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
473 			(unsigned long long)*desc->dir_cookie);
474 
475 	page = alloc_page(GFP_HIGHUSER);
476 	if (!page) {
477 		status = -ENOMEM;
478 		goto out;
479 	}
480 	desc->error = NFS_PROTO(inode)->readdir(file->f_dentry, cred, *desc->dir_cookie,
481 						page,
482 						NFS_SERVER(inode)->dtsize,
483 						desc->plus);
484 	spin_lock(&inode->i_lock);
485 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
486 	spin_unlock(&inode->i_lock);
487 	desc->page = page;
488 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
489 	if (desc->error >= 0) {
490 		if ((status = dir_decode(desc)) == 0)
491 			desc->entry->prev_cookie = *desc->dir_cookie;
492 	} else
493 		status = -EIO;
494 	if (status < 0)
495 		goto out_release;
496 
497 	status = nfs_do_filldir(desc, dirent, filldir);
498 
499 	/* Reset read descriptor so it searches the page cache from
500 	 * the start upon the next call to readdir_search_pagecache() */
501 	desc->page_index = 0;
502 	desc->entry->cookie = desc->entry->prev_cookie = 0;
503 	desc->entry->eof = 0;
504  out:
505 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
506 			__FUNCTION__, status);
507 	return status;
508  out_release:
509 	dir_page_release(desc);
510 	goto out;
511 }
512 
513 /* The file offset position represents the dirent entry number.  A
514    last cookie cache takes care of the common case of reading the
515    whole directory.
516  */
517 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
518 {
519 	struct dentry	*dentry = filp->f_dentry;
520 	struct inode	*inode = dentry->d_inode;
521 	nfs_readdir_descriptor_t my_desc,
522 			*desc = &my_desc;
523 	struct nfs_entry my_entry;
524 	struct nfs_fh	 fh;
525 	struct nfs_fattr fattr;
526 	long		res;
527 
528 	dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
529 			dentry->d_parent->d_name.name, dentry->d_name.name,
530 			(long long)filp->f_pos);
531 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
532 
533 	lock_kernel();
534 
535 	res = nfs_revalidate_mapping(inode, filp->f_mapping);
536 	if (res < 0) {
537 		unlock_kernel();
538 		return res;
539 	}
540 
541 	/*
542 	 * filp->f_pos points to the dirent entry number.
543 	 * *desc->dir_cookie has the cookie for the next entry. We have
544 	 * to either find the entry with the appropriate number or
545 	 * revalidate the cookie.
546 	 */
547 	memset(desc, 0, sizeof(*desc));
548 
549 	desc->file = filp;
550 	desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie;
551 	desc->decode = NFS_PROTO(inode)->decode_dirent;
552 	desc->plus = NFS_USE_READDIRPLUS(inode);
553 
554 	my_entry.cookie = my_entry.prev_cookie = 0;
555 	my_entry.eof = 0;
556 	my_entry.fh = &fh;
557 	my_entry.fattr = &fattr;
558 	nfs_fattr_init(&fattr);
559 	desc->entry = &my_entry;
560 
561 	while(!desc->entry->eof) {
562 		res = readdir_search_pagecache(desc);
563 
564 		if (res == -EBADCOOKIE) {
565 			/* This means either end of directory */
566 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
567 				/* Or that the server has 'lost' a cookie */
568 				res = uncached_readdir(desc, dirent, filldir);
569 				if (res >= 0)
570 					continue;
571 			}
572 			res = 0;
573 			break;
574 		}
575 		if (res == -ETOOSMALL && desc->plus) {
576 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
577 			nfs_zap_caches(inode);
578 			desc->plus = 0;
579 			desc->entry->eof = 0;
580 			continue;
581 		}
582 		if (res < 0)
583 			break;
584 
585 		res = nfs_do_filldir(desc, dirent, filldir);
586 		if (res < 0) {
587 			res = 0;
588 			break;
589 		}
590 	}
591 	unlock_kernel();
592 	if (res > 0)
593 		res = 0;
594 	dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
595 			dentry->d_parent->d_name.name, dentry->d_name.name,
596 			res);
597 	return res;
598 }
599 
600 loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
601 {
602 	mutex_lock(&filp->f_dentry->d_inode->i_mutex);
603 	switch (origin) {
604 		case 1:
605 			offset += filp->f_pos;
606 		case 0:
607 			if (offset >= 0)
608 				break;
609 		default:
610 			offset = -EINVAL;
611 			goto out;
612 	}
613 	if (offset != filp->f_pos) {
614 		filp->f_pos = offset;
615 		((struct nfs_open_context *)filp->private_data)->dir_cookie = 0;
616 	}
617 out:
618 	mutex_unlock(&filp->f_dentry->d_inode->i_mutex);
619 	return offset;
620 }
621 
622 /*
623  * All directory operations under NFS are synchronous, so fsync()
624  * is a dummy operation.
625  */
626 int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
627 {
628 	dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
629 			dentry->d_parent->d_name.name, dentry->d_name.name,
630 			datasync);
631 
632 	return 0;
633 }
634 
635 /*
636  * A check for whether or not the parent directory has changed.
637  * In the case it has, we assume that the dentries are untrustworthy
638  * and may need to be looked up again.
639  */
640 static inline int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
641 {
642 	if (IS_ROOT(dentry))
643 		return 1;
644 	if ((NFS_I(dir)->cache_validity & NFS_INO_INVALID_ATTR) != 0
645 			|| nfs_attribute_timeout(dir))
646 		return 0;
647 	return nfs_verify_change_attribute(dir, (unsigned long)dentry->d_fsdata);
648 }
649 
650 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
651 {
652 	dentry->d_fsdata = (void *)verf;
653 }
654 
655 /*
656  * Whenever an NFS operation succeeds, we know that the dentry
657  * is valid, so we update the revalidation timestamp.
658  */
659 static inline void nfs_renew_times(struct dentry * dentry)
660 {
661 	dentry->d_time = jiffies;
662 }
663 
664 /*
665  * Return the intent data that applies to this particular path component
666  *
667  * Note that the current set of intents only apply to the very last
668  * component of the path.
669  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
670  */
671 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
672 {
673 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
674 		return 0;
675 	return nd->flags & mask;
676 }
677 
678 /*
679  * Inode and filehandle revalidation for lookups.
680  *
681  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
682  * or if the intent information indicates that we're about to open this
683  * particular file and the "nocto" mount flag is not set.
684  *
685  */
686 static inline
687 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
688 {
689 	struct nfs_server *server = NFS_SERVER(inode);
690 
691 	if (nd != NULL) {
692 		/* VFS wants an on-the-wire revalidation */
693 		if (nd->flags & LOOKUP_REVAL)
694 			goto out_force;
695 		/* This is an open(2) */
696 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
697 				!(server->flags & NFS_MOUNT_NOCTO) &&
698 				(S_ISREG(inode->i_mode) ||
699 				 S_ISDIR(inode->i_mode)))
700 			goto out_force;
701 	}
702 	return nfs_revalidate_inode(server, inode);
703 out_force:
704 	return __nfs_revalidate_inode(server, inode);
705 }
706 
707 /*
708  * We judge how long we want to trust negative
709  * dentries by looking at the parent inode mtime.
710  *
711  * If parent mtime has changed, we revalidate, else we wait for a
712  * period corresponding to the parent's attribute cache timeout value.
713  */
714 static inline
715 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
716 		       struct nameidata *nd)
717 {
718 	/* Don't revalidate a negative dentry if we're creating a new file */
719 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
720 		return 0;
721 	return !nfs_check_verifier(dir, dentry);
722 }
723 
724 /*
725  * This is called every time the dcache has a lookup hit,
726  * and we should check whether we can really trust that
727  * lookup.
728  *
729  * NOTE! The hit can be a negative hit too, don't assume
730  * we have an inode!
731  *
732  * If the parent directory is seen to have changed, we throw out the
733  * cached dentry and do a new lookup.
734  */
735 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
736 {
737 	struct inode *dir;
738 	struct inode *inode;
739 	struct dentry *parent;
740 	int error;
741 	struct nfs_fh fhandle;
742 	struct nfs_fattr fattr;
743 	unsigned long verifier;
744 
745 	parent = dget_parent(dentry);
746 	lock_kernel();
747 	dir = parent->d_inode;
748 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
749 	inode = dentry->d_inode;
750 
751 	if (!inode) {
752 		if (nfs_neg_need_reval(dir, dentry, nd))
753 			goto out_bad;
754 		goto out_valid;
755 	}
756 
757 	if (is_bad_inode(inode)) {
758 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
759 				__FUNCTION__, dentry->d_parent->d_name.name,
760 				dentry->d_name.name);
761 		goto out_bad;
762 	}
763 
764 	/* Revalidate parent directory attribute cache */
765 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
766 		goto out_zap_parent;
767 
768 	/* Force a full look up iff the parent directory has changed */
769 	if (nfs_check_verifier(dir, dentry)) {
770 		if (nfs_lookup_verify_inode(inode, nd))
771 			goto out_zap_parent;
772 		goto out_valid;
773 	}
774 
775 	if (NFS_STALE(inode))
776 		goto out_bad;
777 
778 	verifier = nfs_save_change_attribute(dir);
779 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
780 	if (error)
781 		goto out_bad;
782 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
783 		goto out_bad;
784 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
785 		goto out_bad;
786 
787 	nfs_renew_times(dentry);
788 	nfs_set_verifier(dentry, verifier);
789  out_valid:
790 	unlock_kernel();
791 	dput(parent);
792 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
793 			__FUNCTION__, dentry->d_parent->d_name.name,
794 			dentry->d_name.name);
795 	return 1;
796 out_zap_parent:
797 	nfs_zap_caches(dir);
798  out_bad:
799 	NFS_CACHEINV(dir);
800 	if (inode && S_ISDIR(inode->i_mode)) {
801 		/* Purge readdir caches. */
802 		nfs_zap_caches(inode);
803 		/* If we have submounts, don't unhash ! */
804 		if (have_submounts(dentry))
805 			goto out_valid;
806 		shrink_dcache_parent(dentry);
807 	}
808 	d_drop(dentry);
809 	unlock_kernel();
810 	dput(parent);
811 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
812 			__FUNCTION__, dentry->d_parent->d_name.name,
813 			dentry->d_name.name);
814 	return 0;
815 }
816 
817 /*
818  * This is called from dput() when d_count is going to 0.
819  */
820 static int nfs_dentry_delete(struct dentry *dentry)
821 {
822 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
823 		dentry->d_parent->d_name.name, dentry->d_name.name,
824 		dentry->d_flags);
825 
826 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
827 		/* Unhash it, so that ->d_iput() would be called */
828 		return 1;
829 	}
830 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
831 		/* Unhash it, so that ancestors of killed async unlink
832 		 * files will be cleaned up during umount */
833 		return 1;
834 	}
835 	return 0;
836 
837 }
838 
839 /*
840  * Called when the dentry loses inode.
841  * We use it to clean up silly-renamed files.
842  */
843 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
844 {
845 	nfs_inode_return_delegation(inode);
846 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
847 		lock_kernel();
848 		drop_nlink(inode);
849 		nfs_complete_unlink(dentry);
850 		unlock_kernel();
851 	}
852 	/* When creating a negative dentry, we want to renew d_time */
853 	nfs_renew_times(dentry);
854 	iput(inode);
855 }
856 
857 struct dentry_operations nfs_dentry_operations = {
858 	.d_revalidate	= nfs_lookup_revalidate,
859 	.d_delete	= nfs_dentry_delete,
860 	.d_iput		= nfs_dentry_iput,
861 };
862 
863 /*
864  * Use intent information to check whether or not we're going to do
865  * an O_EXCL create using this path component.
866  */
867 static inline
868 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
869 {
870 	if (NFS_PROTO(dir)->version == 2)
871 		return 0;
872 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
873 		return 0;
874 	return (nd->intent.open.flags & O_EXCL) != 0;
875 }
876 
877 static inline int nfs_reval_fsid(struct vfsmount *mnt, struct inode *dir,
878 				 struct nfs_fh *fh, struct nfs_fattr *fattr)
879 {
880 	struct nfs_server *server = NFS_SERVER(dir);
881 
882 	if (!nfs_fsid_equal(&server->fsid, &fattr->fsid))
883 		/* Revalidate fsid on root dir */
884 		return __nfs_revalidate_inode(server, mnt->mnt_root->d_inode);
885 	return 0;
886 }
887 
888 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
889 {
890 	struct dentry *res;
891 	struct inode *inode = NULL;
892 	int error;
893 	struct nfs_fh fhandle;
894 	struct nfs_fattr fattr;
895 
896 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
897 		dentry->d_parent->d_name.name, dentry->d_name.name);
898 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
899 
900 	res = ERR_PTR(-ENAMETOOLONG);
901 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
902 		goto out;
903 
904 	res = ERR_PTR(-ENOMEM);
905 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
906 
907 	lock_kernel();
908 
909 	/*
910 	 * If we're doing an exclusive create, optimize away the lookup
911 	 * but don't hash the dentry.
912 	 */
913 	if (nfs_is_exclusive_create(dir, nd)) {
914 		d_instantiate(dentry, NULL);
915 		res = NULL;
916 		goto out_unlock;
917 	}
918 
919 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
920 	if (error == -ENOENT)
921 		goto no_entry;
922 	if (error < 0) {
923 		res = ERR_PTR(error);
924 		goto out_unlock;
925 	}
926 	error = nfs_reval_fsid(nd->mnt, dir, &fhandle, &fattr);
927 	if (error < 0) {
928 		res = ERR_PTR(error);
929 		goto out_unlock;
930 	}
931 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
932 	res = (struct dentry *)inode;
933 	if (IS_ERR(res))
934 		goto out_unlock;
935 
936 no_entry:
937 	res = d_materialise_unique(dentry, inode);
938 	if (res != NULL)
939 		dentry = res;
940 	nfs_renew_times(dentry);
941 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
942 out_unlock:
943 	unlock_kernel();
944 out:
945 	return res;
946 }
947 
948 #ifdef CONFIG_NFS_V4
949 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
950 
951 struct dentry_operations nfs4_dentry_operations = {
952 	.d_revalidate	= nfs_open_revalidate,
953 	.d_delete	= nfs_dentry_delete,
954 	.d_iput		= nfs_dentry_iput,
955 };
956 
957 /*
958  * Use intent information to determine whether we need to substitute
959  * the NFSv4-style stateful OPEN for the LOOKUP call
960  */
961 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
962 {
963 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
964 		return 0;
965 	/* NFS does not (yet) have a stateful open for directories */
966 	if (nd->flags & LOOKUP_DIRECTORY)
967 		return 0;
968 	/* Are we trying to write to a read only partition? */
969 	if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
970 		return 0;
971 	return 1;
972 }
973 
974 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
975 {
976 	struct dentry *res = NULL;
977 	int error;
978 
979 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
980 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
981 
982 	/* Check that we are indeed trying to open this file */
983 	if (!is_atomic_open(dir, nd))
984 		goto no_open;
985 
986 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
987 		res = ERR_PTR(-ENAMETOOLONG);
988 		goto out;
989 	}
990 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
991 
992 	/* Let vfs_create() deal with O_EXCL */
993 	if (nd->intent.open.flags & O_EXCL) {
994 		d_add(dentry, NULL);
995 		goto out;
996 	}
997 
998 	/* Open the file on the server */
999 	lock_kernel();
1000 	/* Revalidate parent directory attribute cache */
1001 	error = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1002 	if (error < 0) {
1003 		res = ERR_PTR(error);
1004 		unlock_kernel();
1005 		goto out;
1006 	}
1007 
1008 	if (nd->intent.open.flags & O_CREAT) {
1009 		nfs_begin_data_update(dir);
1010 		res = nfs4_atomic_open(dir, dentry, nd);
1011 		nfs_end_data_update(dir);
1012 	} else
1013 		res = nfs4_atomic_open(dir, dentry, nd);
1014 	unlock_kernel();
1015 	if (IS_ERR(res)) {
1016 		error = PTR_ERR(res);
1017 		switch (error) {
1018 			/* Make a negative dentry */
1019 			case -ENOENT:
1020 				res = NULL;
1021 				goto out;
1022 			/* This turned out not to be a regular file */
1023 			case -EISDIR:
1024 			case -ENOTDIR:
1025 				goto no_open;
1026 			case -ELOOP:
1027 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1028 					goto no_open;
1029 			/* case -EINVAL: */
1030 			default:
1031 				goto out;
1032 		}
1033 	} else if (res != NULL)
1034 		dentry = res;
1035 	nfs_renew_times(dentry);
1036 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1037 out:
1038 	return res;
1039 no_open:
1040 	return nfs_lookup(dir, dentry, nd);
1041 }
1042 
1043 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1044 {
1045 	struct dentry *parent = NULL;
1046 	struct inode *inode = dentry->d_inode;
1047 	struct inode *dir;
1048 	unsigned long verifier;
1049 	int openflags, ret = 0;
1050 
1051 	parent = dget_parent(dentry);
1052 	dir = parent->d_inode;
1053 	if (!is_atomic_open(dir, nd))
1054 		goto no_open;
1055 	/* We can't create new files in nfs_open_revalidate(), so we
1056 	 * optimize away revalidation of negative dentries.
1057 	 */
1058 	if (inode == NULL)
1059 		goto out;
1060 	/* NFS only supports OPEN on regular files */
1061 	if (!S_ISREG(inode->i_mode))
1062 		goto no_open;
1063 	openflags = nd->intent.open.flags;
1064 	/* We cannot do exclusive creation on a positive dentry */
1065 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1066 		goto no_open;
1067 	/* We can't create new files, or truncate existing ones here */
1068 	openflags &= ~(O_CREAT|O_TRUNC);
1069 
1070 	/*
1071 	 * Note: we're not holding inode->i_mutex and so may be racing with
1072 	 * operations that change the directory. We therefore save the
1073 	 * change attribute *before* we do the RPC call.
1074 	 */
1075 	lock_kernel();
1076 	verifier = nfs_save_change_attribute(dir);
1077 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1078 	if (!ret)
1079 		nfs_set_verifier(dentry, verifier);
1080 	unlock_kernel();
1081 out:
1082 	dput(parent);
1083 	if (!ret)
1084 		d_drop(dentry);
1085 	return ret;
1086 no_open:
1087 	dput(parent);
1088 	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1089 		return 1;
1090 	return nfs_lookup_revalidate(dentry, nd);
1091 }
1092 #endif /* CONFIG_NFSV4 */
1093 
1094 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1095 {
1096 	struct dentry *parent = desc->file->f_dentry;
1097 	struct inode *dir = parent->d_inode;
1098 	struct nfs_entry *entry = desc->entry;
1099 	struct dentry *dentry, *alias;
1100 	struct qstr name = {
1101 		.name = entry->name,
1102 		.len = entry->len,
1103 	};
1104 	struct inode *inode;
1105 
1106 	switch (name.len) {
1107 		case 2:
1108 			if (name.name[0] == '.' && name.name[1] == '.')
1109 				return dget_parent(parent);
1110 			break;
1111 		case 1:
1112 			if (name.name[0] == '.')
1113 				return dget(parent);
1114 	}
1115 	name.hash = full_name_hash(name.name, name.len);
1116 	dentry = d_lookup(parent, &name);
1117 	if (dentry != NULL)
1118 		return dentry;
1119 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1120 		return NULL;
1121 	/* Note: caller is already holding the dir->i_mutex! */
1122 	dentry = d_alloc(parent, &name);
1123 	if (dentry == NULL)
1124 		return NULL;
1125 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1126 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1127 	if (IS_ERR(inode)) {
1128 		dput(dentry);
1129 		return NULL;
1130 	}
1131 
1132 	alias = d_materialise_unique(dentry, inode);
1133 	if (alias != NULL) {
1134 		dput(dentry);
1135 		dentry = alias;
1136 	}
1137 
1138 	nfs_renew_times(dentry);
1139 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1140 	return dentry;
1141 }
1142 
1143 /*
1144  * Code common to create, mkdir, and mknod.
1145  */
1146 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1147 				struct nfs_fattr *fattr)
1148 {
1149 	struct inode *inode;
1150 	int error = -EACCES;
1151 
1152 	/* We may have been initialized further down */
1153 	if (dentry->d_inode)
1154 		return 0;
1155 	if (fhandle->size == 0) {
1156 		struct inode *dir = dentry->d_parent->d_inode;
1157 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1158 		if (error)
1159 			return error;
1160 	}
1161 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1162 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1163 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1164 		if (error < 0)
1165 			return error;
1166 	}
1167 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1168 	error = PTR_ERR(inode);
1169 	if (IS_ERR(inode))
1170 		return error;
1171 	d_instantiate(dentry, inode);
1172 	if (d_unhashed(dentry))
1173 		d_rehash(dentry);
1174 	return 0;
1175 }
1176 
1177 /*
1178  * Following a failed create operation, we drop the dentry rather
1179  * than retain a negative dentry. This avoids a problem in the event
1180  * that the operation succeeded on the server, but an error in the
1181  * reply path made it appear to have failed.
1182  */
1183 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1184 		struct nameidata *nd)
1185 {
1186 	struct iattr attr;
1187 	int error;
1188 	int open_flags = 0;
1189 
1190 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1191 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1192 
1193 	attr.ia_mode = mode;
1194 	attr.ia_valid = ATTR_MODE;
1195 
1196 	if (nd && (nd->flags & LOOKUP_CREATE))
1197 		open_flags = nd->intent.open.flags;
1198 
1199 	lock_kernel();
1200 	nfs_begin_data_update(dir);
1201 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1202 	nfs_end_data_update(dir);
1203 	if (error != 0)
1204 		goto out_err;
1205 	nfs_renew_times(dentry);
1206 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1207 	unlock_kernel();
1208 	return 0;
1209 out_err:
1210 	unlock_kernel();
1211 	d_drop(dentry);
1212 	return error;
1213 }
1214 
1215 /*
1216  * See comments for nfs_proc_create regarding failed operations.
1217  */
1218 static int
1219 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1220 {
1221 	struct iattr attr;
1222 	int status;
1223 
1224 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1225 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1226 
1227 	if (!new_valid_dev(rdev))
1228 		return -EINVAL;
1229 
1230 	attr.ia_mode = mode;
1231 	attr.ia_valid = ATTR_MODE;
1232 
1233 	lock_kernel();
1234 	nfs_begin_data_update(dir);
1235 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1236 	nfs_end_data_update(dir);
1237 	if (status != 0)
1238 		goto out_err;
1239 	nfs_renew_times(dentry);
1240 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1241 	unlock_kernel();
1242 	return 0;
1243 out_err:
1244 	unlock_kernel();
1245 	d_drop(dentry);
1246 	return status;
1247 }
1248 
1249 /*
1250  * See comments for nfs_proc_create regarding failed operations.
1251  */
1252 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1253 {
1254 	struct iattr attr;
1255 	int error;
1256 
1257 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1258 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1259 
1260 	attr.ia_valid = ATTR_MODE;
1261 	attr.ia_mode = mode | S_IFDIR;
1262 
1263 	lock_kernel();
1264 	nfs_begin_data_update(dir);
1265 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1266 	nfs_end_data_update(dir);
1267 	if (error != 0)
1268 		goto out_err;
1269 	nfs_renew_times(dentry);
1270 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1271 	unlock_kernel();
1272 	return 0;
1273 out_err:
1274 	d_drop(dentry);
1275 	unlock_kernel();
1276 	return error;
1277 }
1278 
1279 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1280 {
1281 	int error;
1282 
1283 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1284 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1285 
1286 	lock_kernel();
1287 	nfs_begin_data_update(dir);
1288 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1289 	/* Ensure the VFS deletes this inode */
1290 	if (error == 0 && dentry->d_inode != NULL)
1291 		clear_nlink(dentry->d_inode);
1292 	nfs_end_data_update(dir);
1293 	unlock_kernel();
1294 
1295 	return error;
1296 }
1297 
1298 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1299 {
1300 	static unsigned int sillycounter;
1301 	const int      i_inosize  = sizeof(dir->i_ino)*2;
1302 	const int      countersize = sizeof(sillycounter)*2;
1303 	const int      slen       = sizeof(".nfs") + i_inosize + countersize - 1;
1304 	char           silly[slen+1];
1305 	struct qstr    qsilly;
1306 	struct dentry *sdentry;
1307 	int            error = -EIO;
1308 
1309 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1310 		dentry->d_parent->d_name.name, dentry->d_name.name,
1311 		atomic_read(&dentry->d_count));
1312 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1313 
1314 #ifdef NFS_PARANOIA
1315 if (!dentry->d_inode)
1316 printk("NFS: silly-renaming %s/%s, negative dentry??\n",
1317 dentry->d_parent->d_name.name, dentry->d_name.name);
1318 #endif
1319 	/*
1320 	 * We don't allow a dentry to be silly-renamed twice.
1321 	 */
1322 	error = -EBUSY;
1323 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1324 		goto out;
1325 
1326 	sprintf(silly, ".nfs%*.*lx",
1327 		i_inosize, i_inosize, dentry->d_inode->i_ino);
1328 
1329 	/* Return delegation in anticipation of the rename */
1330 	nfs_inode_return_delegation(dentry->d_inode);
1331 
1332 	sdentry = NULL;
1333 	do {
1334 		char *suffix = silly + slen - countersize;
1335 
1336 		dput(sdentry);
1337 		sillycounter++;
1338 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1339 
1340 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1341 				dentry->d_name.name, silly);
1342 
1343 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1344 		/*
1345 		 * N.B. Better to return EBUSY here ... it could be
1346 		 * dangerous to delete the file while it's in use.
1347 		 */
1348 		if (IS_ERR(sdentry))
1349 			goto out;
1350 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1351 
1352 	qsilly.name = silly;
1353 	qsilly.len  = strlen(silly);
1354 	nfs_begin_data_update(dir);
1355 	if (dentry->d_inode) {
1356 		nfs_begin_data_update(dentry->d_inode);
1357 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1358 				dir, &qsilly);
1359 		nfs_mark_for_revalidate(dentry->d_inode);
1360 		nfs_end_data_update(dentry->d_inode);
1361 	} else
1362 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1363 				dir, &qsilly);
1364 	nfs_end_data_update(dir);
1365 	if (!error) {
1366 		nfs_renew_times(dentry);
1367 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1368 		d_move(dentry, sdentry);
1369 		error = nfs_async_unlink(dentry);
1370  		/* If we return 0 we don't unlink */
1371 	}
1372 	dput(sdentry);
1373 out:
1374 	return error;
1375 }
1376 
1377 /*
1378  * Remove a file after making sure there are no pending writes,
1379  * and after checking that the file has only one user.
1380  *
1381  * We invalidate the attribute cache and free the inode prior to the operation
1382  * to avoid possible races if the server reuses the inode.
1383  */
1384 static int nfs_safe_remove(struct dentry *dentry)
1385 {
1386 	struct inode *dir = dentry->d_parent->d_inode;
1387 	struct inode *inode = dentry->d_inode;
1388 	int error = -EBUSY;
1389 
1390 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1391 		dentry->d_parent->d_name.name, dentry->d_name.name);
1392 
1393 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1394 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1395 		error = 0;
1396 		goto out;
1397 	}
1398 
1399 	nfs_begin_data_update(dir);
1400 	if (inode != NULL) {
1401 		nfs_inode_return_delegation(inode);
1402 		nfs_begin_data_update(inode);
1403 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1404 		/* The VFS may want to delete this inode */
1405 		if (error == 0)
1406 			drop_nlink(inode);
1407 		nfs_mark_for_revalidate(inode);
1408 		nfs_end_data_update(inode);
1409 	} else
1410 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1411 	nfs_end_data_update(dir);
1412 out:
1413 	return error;
1414 }
1415 
1416 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1417  *  belongs to an active ".nfs..." file and we return -EBUSY.
1418  *
1419  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1420  */
1421 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1422 {
1423 	int error;
1424 	int need_rehash = 0;
1425 
1426 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1427 		dir->i_ino, dentry->d_name.name);
1428 
1429 	lock_kernel();
1430 	spin_lock(&dcache_lock);
1431 	spin_lock(&dentry->d_lock);
1432 	if (atomic_read(&dentry->d_count) > 1) {
1433 		spin_unlock(&dentry->d_lock);
1434 		spin_unlock(&dcache_lock);
1435 		error = nfs_sillyrename(dir, dentry);
1436 		unlock_kernel();
1437 		return error;
1438 	}
1439 	if (!d_unhashed(dentry)) {
1440 		__d_drop(dentry);
1441 		need_rehash = 1;
1442 	}
1443 	spin_unlock(&dentry->d_lock);
1444 	spin_unlock(&dcache_lock);
1445 	error = nfs_safe_remove(dentry);
1446 	if (!error) {
1447 		nfs_renew_times(dentry);
1448 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1449 	} else if (need_rehash)
1450 		d_rehash(dentry);
1451 	unlock_kernel();
1452 	return error;
1453 }
1454 
1455 /*
1456  * To create a symbolic link, most file systems instantiate a new inode,
1457  * add a page to it containing the path, then write it out to the disk
1458  * using prepare_write/commit_write.
1459  *
1460  * Unfortunately the NFS client can't create the in-core inode first
1461  * because it needs a file handle to create an in-core inode (see
1462  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1463  * symlink request has completed on the server.
1464  *
1465  * So instead we allocate a raw page, copy the symname into it, then do
1466  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1467  * now have a new file handle and can instantiate an in-core NFS inode
1468  * and move the raw page into its mapping.
1469  */
1470 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1471 {
1472 	struct pagevec lru_pvec;
1473 	struct page *page;
1474 	char *kaddr;
1475 	struct iattr attr;
1476 	unsigned int pathlen = strlen(symname);
1477 	int error;
1478 
1479 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1480 		dir->i_ino, dentry->d_name.name, symname);
1481 
1482 	if (pathlen > PAGE_SIZE)
1483 		return -ENAMETOOLONG;
1484 
1485 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1486 	attr.ia_valid = ATTR_MODE;
1487 
1488 	lock_kernel();
1489 
1490 	page = alloc_page(GFP_KERNEL);
1491 	if (!page) {
1492 		unlock_kernel();
1493 		return -ENOMEM;
1494 	}
1495 
1496 	kaddr = kmap_atomic(page, KM_USER0);
1497 	memcpy(kaddr, symname, pathlen);
1498 	if (pathlen < PAGE_SIZE)
1499 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1500 	kunmap_atomic(kaddr, KM_USER0);
1501 
1502 	nfs_begin_data_update(dir);
1503 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1504 	nfs_end_data_update(dir);
1505 	if (error != 0) {
1506 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1507 			dir->i_sb->s_id, dir->i_ino,
1508 			dentry->d_name.name, symname, error);
1509 		d_drop(dentry);
1510 		__free_page(page);
1511 		unlock_kernel();
1512 		return error;
1513 	}
1514 
1515 	/*
1516 	 * No big deal if we can't add this page to the page cache here.
1517 	 * READLINK will get the missing page from the server if needed.
1518 	 */
1519 	pagevec_init(&lru_pvec, 0);
1520 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1521 							GFP_KERNEL)) {
1522 		pagevec_add(&lru_pvec, page);
1523 		pagevec_lru_add(&lru_pvec);
1524 		SetPageUptodate(page);
1525 		unlock_page(page);
1526 	} else
1527 		__free_page(page);
1528 
1529 	unlock_kernel();
1530 	return 0;
1531 }
1532 
1533 static int
1534 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1535 {
1536 	struct inode *inode = old_dentry->d_inode;
1537 	int error;
1538 
1539 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1540 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1541 		dentry->d_parent->d_name.name, dentry->d_name.name);
1542 
1543 	lock_kernel();
1544 	nfs_begin_data_update(dir);
1545 	nfs_begin_data_update(inode);
1546 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1547 	if (error == 0) {
1548 		atomic_inc(&inode->i_count);
1549 		d_instantiate(dentry, inode);
1550 	}
1551 	nfs_end_data_update(inode);
1552 	nfs_end_data_update(dir);
1553 	unlock_kernel();
1554 	return error;
1555 }
1556 
1557 /*
1558  * RENAME
1559  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1560  * different file handle for the same inode after a rename (e.g. when
1561  * moving to a different directory). A fail-safe method to do so would
1562  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1563  * rename the old file using the sillyrename stuff. This way, the original
1564  * file in old_dir will go away when the last process iput()s the inode.
1565  *
1566  * FIXED.
1567  *
1568  * It actually works quite well. One needs to have the possibility for
1569  * at least one ".nfs..." file in each directory the file ever gets
1570  * moved or linked to which happens automagically with the new
1571  * implementation that only depends on the dcache stuff instead of
1572  * using the inode layer
1573  *
1574  * Unfortunately, things are a little more complicated than indicated
1575  * above. For a cross-directory move, we want to make sure we can get
1576  * rid of the old inode after the operation.  This means there must be
1577  * no pending writes (if it's a file), and the use count must be 1.
1578  * If these conditions are met, we can drop the dentries before doing
1579  * the rename.
1580  */
1581 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1582 		      struct inode *new_dir, struct dentry *new_dentry)
1583 {
1584 	struct inode *old_inode = old_dentry->d_inode;
1585 	struct inode *new_inode = new_dentry->d_inode;
1586 	struct dentry *dentry = NULL, *rehash = NULL;
1587 	int error = -EBUSY;
1588 
1589 	/*
1590 	 * To prevent any new references to the target during the rename,
1591 	 * we unhash the dentry and free the inode in advance.
1592 	 */
1593 	lock_kernel();
1594 	if (!d_unhashed(new_dentry)) {
1595 		d_drop(new_dentry);
1596 		rehash = new_dentry;
1597 	}
1598 
1599 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1600 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1601 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1602 		 atomic_read(&new_dentry->d_count));
1603 
1604 	/*
1605 	 * First check whether the target is busy ... we can't
1606 	 * safely do _any_ rename if the target is in use.
1607 	 *
1608 	 * For files, make a copy of the dentry and then do a
1609 	 * silly-rename. If the silly-rename succeeds, the
1610 	 * copied dentry is hashed and becomes the new target.
1611 	 */
1612 	if (!new_inode)
1613 		goto go_ahead;
1614 	if (S_ISDIR(new_inode->i_mode)) {
1615 		error = -EISDIR;
1616 		if (!S_ISDIR(old_inode->i_mode))
1617 			goto out;
1618 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1619 		int err;
1620 		/* copy the target dentry's name */
1621 		dentry = d_alloc(new_dentry->d_parent,
1622 				 &new_dentry->d_name);
1623 		if (!dentry)
1624 			goto out;
1625 
1626 		/* silly-rename the existing target ... */
1627 		err = nfs_sillyrename(new_dir, new_dentry);
1628 		if (!err) {
1629 			new_dentry = rehash = dentry;
1630 			new_inode = NULL;
1631 			/* instantiate the replacement target */
1632 			d_instantiate(new_dentry, NULL);
1633 		} else if (atomic_read(&new_dentry->d_count) > 1) {
1634 		/* dentry still busy? */
1635 #ifdef NFS_PARANOIA
1636 			printk("nfs_rename: target %s/%s busy, d_count=%d\n",
1637 			       new_dentry->d_parent->d_name.name,
1638 			       new_dentry->d_name.name,
1639 			       atomic_read(&new_dentry->d_count));
1640 #endif
1641 			goto out;
1642 		}
1643 	} else
1644 		drop_nlink(new_inode);
1645 
1646 go_ahead:
1647 	/*
1648 	 * ... prune child dentries and writebacks if needed.
1649 	 */
1650 	if (atomic_read(&old_dentry->d_count) > 1) {
1651 		nfs_wb_all(old_inode);
1652 		shrink_dcache_parent(old_dentry);
1653 	}
1654 	nfs_inode_return_delegation(old_inode);
1655 
1656 	if (new_inode != NULL) {
1657 		nfs_inode_return_delegation(new_inode);
1658 		d_delete(new_dentry);
1659 	}
1660 
1661 	nfs_begin_data_update(old_dir);
1662 	nfs_begin_data_update(new_dir);
1663 	nfs_begin_data_update(old_inode);
1664 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1665 					   new_dir, &new_dentry->d_name);
1666 	nfs_mark_for_revalidate(old_inode);
1667 	nfs_end_data_update(old_inode);
1668 	nfs_end_data_update(new_dir);
1669 	nfs_end_data_update(old_dir);
1670 out:
1671 	if (rehash)
1672 		d_rehash(rehash);
1673 	if (!error) {
1674 		d_move(old_dentry, new_dentry);
1675 		nfs_renew_times(new_dentry);
1676 		nfs_set_verifier(new_dentry, nfs_save_change_attribute(new_dir));
1677 	}
1678 
1679 	/* new dentry created? */
1680 	if (dentry)
1681 		dput(dentry);
1682 	unlock_kernel();
1683 	return error;
1684 }
1685 
1686 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1687 static LIST_HEAD(nfs_access_lru_list);
1688 static atomic_long_t nfs_access_nr_entries;
1689 
1690 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1691 {
1692 	put_rpccred(entry->cred);
1693 	kfree(entry);
1694 	smp_mb__before_atomic_dec();
1695 	atomic_long_dec(&nfs_access_nr_entries);
1696 	smp_mb__after_atomic_dec();
1697 }
1698 
1699 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1700 {
1701 	LIST_HEAD(head);
1702 	struct nfs_inode *nfsi;
1703 	struct nfs_access_entry *cache;
1704 
1705 	spin_lock(&nfs_access_lru_lock);
1706 restart:
1707 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1708 		struct inode *inode;
1709 
1710 		if (nr_to_scan-- == 0)
1711 			break;
1712 		inode = igrab(&nfsi->vfs_inode);
1713 		if (inode == NULL)
1714 			continue;
1715 		spin_lock(&inode->i_lock);
1716 		if (list_empty(&nfsi->access_cache_entry_lru))
1717 			goto remove_lru_entry;
1718 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1719 				struct nfs_access_entry, lru);
1720 		list_move(&cache->lru, &head);
1721 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1722 		if (!list_empty(&nfsi->access_cache_entry_lru))
1723 			list_move_tail(&nfsi->access_cache_inode_lru,
1724 					&nfs_access_lru_list);
1725 		else {
1726 remove_lru_entry:
1727 			list_del_init(&nfsi->access_cache_inode_lru);
1728 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1729 		}
1730 		spin_unlock(&inode->i_lock);
1731 		iput(inode);
1732 		goto restart;
1733 	}
1734 	spin_unlock(&nfs_access_lru_lock);
1735 	while (!list_empty(&head)) {
1736 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1737 		list_del(&cache->lru);
1738 		nfs_access_free_entry(cache);
1739 	}
1740 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1741 }
1742 
1743 static void __nfs_access_zap_cache(struct inode *inode)
1744 {
1745 	struct nfs_inode *nfsi = NFS_I(inode);
1746 	struct rb_root *root_node = &nfsi->access_cache;
1747 	struct rb_node *n, *dispose = NULL;
1748 	struct nfs_access_entry *entry;
1749 
1750 	/* Unhook entries from the cache */
1751 	while ((n = rb_first(root_node)) != NULL) {
1752 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1753 		rb_erase(n, root_node);
1754 		list_del(&entry->lru);
1755 		n->rb_left = dispose;
1756 		dispose = n;
1757 	}
1758 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1759 	spin_unlock(&inode->i_lock);
1760 
1761 	/* Now kill them all! */
1762 	while (dispose != NULL) {
1763 		n = dispose;
1764 		dispose = n->rb_left;
1765 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1766 	}
1767 }
1768 
1769 void nfs_access_zap_cache(struct inode *inode)
1770 {
1771 	/* Remove from global LRU init */
1772 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1773 		spin_lock(&nfs_access_lru_lock);
1774 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1775 		spin_unlock(&nfs_access_lru_lock);
1776 	}
1777 
1778 	spin_lock(&inode->i_lock);
1779 	/* This will release the spinlock */
1780 	__nfs_access_zap_cache(inode);
1781 }
1782 
1783 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1784 {
1785 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1786 	struct nfs_access_entry *entry;
1787 
1788 	while (n != NULL) {
1789 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1790 
1791 		if (cred < entry->cred)
1792 			n = n->rb_left;
1793 		else if (cred > entry->cred)
1794 			n = n->rb_right;
1795 		else
1796 			return entry;
1797 	}
1798 	return NULL;
1799 }
1800 
1801 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1802 {
1803 	struct nfs_inode *nfsi = NFS_I(inode);
1804 	struct nfs_access_entry *cache;
1805 	int err = -ENOENT;
1806 
1807 	spin_lock(&inode->i_lock);
1808 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1809 		goto out_zap;
1810 	cache = nfs_access_search_rbtree(inode, cred);
1811 	if (cache == NULL)
1812 		goto out;
1813 	if (time_after(jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1814 		goto out_stale;
1815 	res->jiffies = cache->jiffies;
1816 	res->cred = cache->cred;
1817 	res->mask = cache->mask;
1818 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1819 	err = 0;
1820 out:
1821 	spin_unlock(&inode->i_lock);
1822 	return err;
1823 out_stale:
1824 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1825 	list_del(&cache->lru);
1826 	spin_unlock(&inode->i_lock);
1827 	nfs_access_free_entry(cache);
1828 	return -ENOENT;
1829 out_zap:
1830 	/* This will release the spinlock */
1831 	__nfs_access_zap_cache(inode);
1832 	return -ENOENT;
1833 }
1834 
1835 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1836 {
1837 	struct nfs_inode *nfsi = NFS_I(inode);
1838 	struct rb_root *root_node = &nfsi->access_cache;
1839 	struct rb_node **p = &root_node->rb_node;
1840 	struct rb_node *parent = NULL;
1841 	struct nfs_access_entry *entry;
1842 
1843 	spin_lock(&inode->i_lock);
1844 	while (*p != NULL) {
1845 		parent = *p;
1846 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1847 
1848 		if (set->cred < entry->cred)
1849 			p = &parent->rb_left;
1850 		else if (set->cred > entry->cred)
1851 			p = &parent->rb_right;
1852 		else
1853 			goto found;
1854 	}
1855 	rb_link_node(&set->rb_node, parent, p);
1856 	rb_insert_color(&set->rb_node, root_node);
1857 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1858 	spin_unlock(&inode->i_lock);
1859 	return;
1860 found:
1861 	rb_replace_node(parent, &set->rb_node, root_node);
1862 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1863 	list_del(&entry->lru);
1864 	spin_unlock(&inode->i_lock);
1865 	nfs_access_free_entry(entry);
1866 }
1867 
1868 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1869 {
1870 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1871 	if (cache == NULL)
1872 		return;
1873 	RB_CLEAR_NODE(&cache->rb_node);
1874 	cache->jiffies = set->jiffies;
1875 	cache->cred = get_rpccred(set->cred);
1876 	cache->mask = set->mask;
1877 
1878 	nfs_access_add_rbtree(inode, cache);
1879 
1880 	/* Update accounting */
1881 	smp_mb__before_atomic_inc();
1882 	atomic_long_inc(&nfs_access_nr_entries);
1883 	smp_mb__after_atomic_inc();
1884 
1885 	/* Add inode to global LRU list */
1886 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1887 		spin_lock(&nfs_access_lru_lock);
1888 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1889 		spin_unlock(&nfs_access_lru_lock);
1890 	}
1891 }
1892 
1893 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1894 {
1895 	struct nfs_access_entry cache;
1896 	int status;
1897 
1898 	status = nfs_access_get_cached(inode, cred, &cache);
1899 	if (status == 0)
1900 		goto out;
1901 
1902 	/* Be clever: ask server to check for all possible rights */
1903 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1904 	cache.cred = cred;
1905 	cache.jiffies = jiffies;
1906 	status = NFS_PROTO(inode)->access(inode, &cache);
1907 	if (status != 0)
1908 		return status;
1909 	nfs_access_add_cache(inode, &cache);
1910 out:
1911 	if ((cache.mask & mask) == mask)
1912 		return 0;
1913 	return -EACCES;
1914 }
1915 
1916 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1917 {
1918 	struct rpc_cred *cred;
1919 	int res = 0;
1920 
1921 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1922 
1923 	if (mask == 0)
1924 		goto out;
1925 	/* Is this sys_access() ? */
1926 	if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1927 		goto force_lookup;
1928 
1929 	switch (inode->i_mode & S_IFMT) {
1930 		case S_IFLNK:
1931 			goto out;
1932 		case S_IFREG:
1933 			/* NFSv4 has atomic_open... */
1934 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1935 					&& nd != NULL
1936 					&& (nd->flags & LOOKUP_OPEN))
1937 				goto out;
1938 			break;
1939 		case S_IFDIR:
1940 			/*
1941 			 * Optimize away all write operations, since the server
1942 			 * will check permissions when we perform the op.
1943 			 */
1944 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1945 				goto out;
1946 	}
1947 
1948 force_lookup:
1949 	lock_kernel();
1950 
1951 	if (!NFS_PROTO(inode)->access)
1952 		goto out_notsup;
1953 
1954 	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1955 	if (!IS_ERR(cred)) {
1956 		res = nfs_do_access(inode, cred, mask);
1957 		put_rpccred(cred);
1958 	} else
1959 		res = PTR_ERR(cred);
1960 	unlock_kernel();
1961 out:
1962 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1963 		inode->i_sb->s_id, inode->i_ino, mask, res);
1964 	return res;
1965 out_notsup:
1966 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1967 	if (res == 0)
1968 		res = generic_permission(inode, mask, NULL);
1969 	unlock_kernel();
1970 	goto out;
1971 }
1972 
1973 /*
1974  * Local variables:
1975  *  version-control: t
1976  *  kept-new-versions: 5
1977  * End:
1978  */
1979