1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/smp_lock.h> 15 #include <linux/init.h> 16 #include <linux/kernel.h> 17 #include <linux/quotaops.h> 18 #include <linux/acct.h> 19 #include <linux/capability.h> 20 #include <linux/module.h> 21 #include <linux/sysfs.h> 22 #include <linux/seq_file.h> 23 #include <linux/mnt_namespace.h> 24 #include <linux/namei.h> 25 #include <linux/security.h> 26 #include <linux/mount.h> 27 #include <linux/ramfs.h> 28 #include <asm/uaccess.h> 29 #include <asm/unistd.h> 30 #include "pnode.h" 31 32 /* spinlock for vfsmount related operations, inplace of dcache_lock */ 33 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock); 34 35 static int event; 36 37 static struct list_head *mount_hashtable __read_mostly; 38 static int hash_mask __read_mostly, hash_bits __read_mostly; 39 static struct kmem_cache *mnt_cache __read_mostly; 40 static struct rw_semaphore namespace_sem; 41 42 /* /sys/fs */ 43 decl_subsys(fs, NULL, NULL); 44 EXPORT_SYMBOL_GPL(fs_subsys); 45 46 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) 47 { 48 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 49 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 50 tmp = tmp + (tmp >> hash_bits); 51 return tmp & hash_mask; 52 } 53 54 struct vfsmount *alloc_vfsmnt(const char *name) 55 { 56 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 57 if (mnt) { 58 atomic_set(&mnt->mnt_count, 1); 59 INIT_LIST_HEAD(&mnt->mnt_hash); 60 INIT_LIST_HEAD(&mnt->mnt_child); 61 INIT_LIST_HEAD(&mnt->mnt_mounts); 62 INIT_LIST_HEAD(&mnt->mnt_list); 63 INIT_LIST_HEAD(&mnt->mnt_expire); 64 INIT_LIST_HEAD(&mnt->mnt_share); 65 INIT_LIST_HEAD(&mnt->mnt_slave_list); 66 INIT_LIST_HEAD(&mnt->mnt_slave); 67 if (name) { 68 int size = strlen(name) + 1; 69 char *newname = kmalloc(size, GFP_KERNEL); 70 if (newname) { 71 memcpy(newname, name, size); 72 mnt->mnt_devname = newname; 73 } 74 } 75 } 76 return mnt; 77 } 78 79 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb) 80 { 81 mnt->mnt_sb = sb; 82 mnt->mnt_root = dget(sb->s_root); 83 return 0; 84 } 85 86 EXPORT_SYMBOL(simple_set_mnt); 87 88 void free_vfsmnt(struct vfsmount *mnt) 89 { 90 kfree(mnt->mnt_devname); 91 kmem_cache_free(mnt_cache, mnt); 92 } 93 94 /* 95 * find the first or last mount at @dentry on vfsmount @mnt depending on 96 * @dir. If @dir is set return the first mount else return the last mount. 97 */ 98 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, 99 int dir) 100 { 101 struct list_head *head = mount_hashtable + hash(mnt, dentry); 102 struct list_head *tmp = head; 103 struct vfsmount *p, *found = NULL; 104 105 for (;;) { 106 tmp = dir ? tmp->next : tmp->prev; 107 p = NULL; 108 if (tmp == head) 109 break; 110 p = list_entry(tmp, struct vfsmount, mnt_hash); 111 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) { 112 found = p; 113 break; 114 } 115 } 116 return found; 117 } 118 119 /* 120 * lookup_mnt increments the ref count before returning 121 * the vfsmount struct. 122 */ 123 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 124 { 125 struct vfsmount *child_mnt; 126 spin_lock(&vfsmount_lock); 127 if ((child_mnt = __lookup_mnt(mnt, dentry, 1))) 128 mntget(child_mnt); 129 spin_unlock(&vfsmount_lock); 130 return child_mnt; 131 } 132 133 static inline int check_mnt(struct vfsmount *mnt) 134 { 135 return mnt->mnt_ns == current->nsproxy->mnt_ns; 136 } 137 138 static void touch_mnt_namespace(struct mnt_namespace *ns) 139 { 140 if (ns) { 141 ns->event = ++event; 142 wake_up_interruptible(&ns->poll); 143 } 144 } 145 146 static void __touch_mnt_namespace(struct mnt_namespace *ns) 147 { 148 if (ns && ns->event != event) { 149 ns->event = event; 150 wake_up_interruptible(&ns->poll); 151 } 152 } 153 154 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd) 155 { 156 old_nd->dentry = mnt->mnt_mountpoint; 157 old_nd->mnt = mnt->mnt_parent; 158 mnt->mnt_parent = mnt; 159 mnt->mnt_mountpoint = mnt->mnt_root; 160 list_del_init(&mnt->mnt_child); 161 list_del_init(&mnt->mnt_hash); 162 old_nd->dentry->d_mounted--; 163 } 164 165 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry, 166 struct vfsmount *child_mnt) 167 { 168 child_mnt->mnt_parent = mntget(mnt); 169 child_mnt->mnt_mountpoint = dget(dentry); 170 dentry->d_mounted++; 171 } 172 173 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd) 174 { 175 mnt_set_mountpoint(nd->mnt, nd->dentry, mnt); 176 list_add_tail(&mnt->mnt_hash, mount_hashtable + 177 hash(nd->mnt, nd->dentry)); 178 list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts); 179 } 180 181 /* 182 * the caller must hold vfsmount_lock 183 */ 184 static void commit_tree(struct vfsmount *mnt) 185 { 186 struct vfsmount *parent = mnt->mnt_parent; 187 struct vfsmount *m; 188 LIST_HEAD(head); 189 struct mnt_namespace *n = parent->mnt_ns; 190 191 BUG_ON(parent == mnt); 192 193 list_add_tail(&head, &mnt->mnt_list); 194 list_for_each_entry(m, &head, mnt_list) 195 m->mnt_ns = n; 196 list_splice(&head, n->list.prev); 197 198 list_add_tail(&mnt->mnt_hash, mount_hashtable + 199 hash(parent, mnt->mnt_mountpoint)); 200 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 201 touch_mnt_namespace(n); 202 } 203 204 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root) 205 { 206 struct list_head *next = p->mnt_mounts.next; 207 if (next == &p->mnt_mounts) { 208 while (1) { 209 if (p == root) 210 return NULL; 211 next = p->mnt_child.next; 212 if (next != &p->mnt_parent->mnt_mounts) 213 break; 214 p = p->mnt_parent; 215 } 216 } 217 return list_entry(next, struct vfsmount, mnt_child); 218 } 219 220 static struct vfsmount *skip_mnt_tree(struct vfsmount *p) 221 { 222 struct list_head *prev = p->mnt_mounts.prev; 223 while (prev != &p->mnt_mounts) { 224 p = list_entry(prev, struct vfsmount, mnt_child); 225 prev = p->mnt_mounts.prev; 226 } 227 return p; 228 } 229 230 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root, 231 int flag) 232 { 233 struct super_block *sb = old->mnt_sb; 234 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname); 235 236 if (mnt) { 237 mnt->mnt_flags = old->mnt_flags; 238 atomic_inc(&sb->s_active); 239 mnt->mnt_sb = sb; 240 mnt->mnt_root = dget(root); 241 mnt->mnt_mountpoint = mnt->mnt_root; 242 mnt->mnt_parent = mnt; 243 244 if (flag & CL_SLAVE) { 245 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 246 mnt->mnt_master = old; 247 CLEAR_MNT_SHARED(mnt); 248 } else { 249 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old)) 250 list_add(&mnt->mnt_share, &old->mnt_share); 251 if (IS_MNT_SLAVE(old)) 252 list_add(&mnt->mnt_slave, &old->mnt_slave); 253 mnt->mnt_master = old->mnt_master; 254 } 255 if (flag & CL_MAKE_SHARED) 256 set_mnt_shared(mnt); 257 258 /* stick the duplicate mount on the same expiry list 259 * as the original if that was on one */ 260 if (flag & CL_EXPIRE) { 261 spin_lock(&vfsmount_lock); 262 if (!list_empty(&old->mnt_expire)) 263 list_add(&mnt->mnt_expire, &old->mnt_expire); 264 spin_unlock(&vfsmount_lock); 265 } 266 } 267 return mnt; 268 } 269 270 static inline void __mntput(struct vfsmount *mnt) 271 { 272 struct super_block *sb = mnt->mnt_sb; 273 dput(mnt->mnt_root); 274 free_vfsmnt(mnt); 275 deactivate_super(sb); 276 } 277 278 void mntput_no_expire(struct vfsmount *mnt) 279 { 280 repeat: 281 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) { 282 if (likely(!mnt->mnt_pinned)) { 283 spin_unlock(&vfsmount_lock); 284 __mntput(mnt); 285 return; 286 } 287 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count); 288 mnt->mnt_pinned = 0; 289 spin_unlock(&vfsmount_lock); 290 acct_auto_close_mnt(mnt); 291 security_sb_umount_close(mnt); 292 goto repeat; 293 } 294 } 295 296 EXPORT_SYMBOL(mntput_no_expire); 297 298 void mnt_pin(struct vfsmount *mnt) 299 { 300 spin_lock(&vfsmount_lock); 301 mnt->mnt_pinned++; 302 spin_unlock(&vfsmount_lock); 303 } 304 305 EXPORT_SYMBOL(mnt_pin); 306 307 void mnt_unpin(struct vfsmount *mnt) 308 { 309 spin_lock(&vfsmount_lock); 310 if (mnt->mnt_pinned) { 311 atomic_inc(&mnt->mnt_count); 312 mnt->mnt_pinned--; 313 } 314 spin_unlock(&vfsmount_lock); 315 } 316 317 EXPORT_SYMBOL(mnt_unpin); 318 319 /* iterator */ 320 static void *m_start(struct seq_file *m, loff_t *pos) 321 { 322 struct mnt_namespace *n = m->private; 323 struct list_head *p; 324 loff_t l = *pos; 325 326 down_read(&namespace_sem); 327 list_for_each(p, &n->list) 328 if (!l--) 329 return list_entry(p, struct vfsmount, mnt_list); 330 return NULL; 331 } 332 333 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 334 { 335 struct mnt_namespace *n = m->private; 336 struct list_head *p = ((struct vfsmount *)v)->mnt_list.next; 337 (*pos)++; 338 return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list); 339 } 340 341 static void m_stop(struct seq_file *m, void *v) 342 { 343 up_read(&namespace_sem); 344 } 345 346 static inline void mangle(struct seq_file *m, const char *s) 347 { 348 seq_escape(m, s, " \t\n\\"); 349 } 350 351 static int show_vfsmnt(struct seq_file *m, void *v) 352 { 353 struct vfsmount *mnt = v; 354 int err = 0; 355 static struct proc_fs_info { 356 int flag; 357 char *str; 358 } fs_info[] = { 359 { MS_SYNCHRONOUS, ",sync" }, 360 { MS_DIRSYNC, ",dirsync" }, 361 { MS_MANDLOCK, ",mand" }, 362 { 0, NULL } 363 }; 364 static struct proc_fs_info mnt_info[] = { 365 { MNT_NOSUID, ",nosuid" }, 366 { MNT_NODEV, ",nodev" }, 367 { MNT_NOEXEC, ",noexec" }, 368 { MNT_NOATIME, ",noatime" }, 369 { MNT_NODIRATIME, ",nodiratime" }, 370 { MNT_RELATIME, ",relatime" }, 371 { 0, NULL } 372 }; 373 struct proc_fs_info *fs_infop; 374 375 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none"); 376 seq_putc(m, ' '); 377 seq_path(m, mnt, mnt->mnt_root, " \t\n\\"); 378 seq_putc(m, ' '); 379 mangle(m, mnt->mnt_sb->s_type->name); 380 seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw"); 381 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) { 382 if (mnt->mnt_sb->s_flags & fs_infop->flag) 383 seq_puts(m, fs_infop->str); 384 } 385 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) { 386 if (mnt->mnt_flags & fs_infop->flag) 387 seq_puts(m, fs_infop->str); 388 } 389 if (mnt->mnt_sb->s_op->show_options) 390 err = mnt->mnt_sb->s_op->show_options(m, mnt); 391 seq_puts(m, " 0 0\n"); 392 return err; 393 } 394 395 struct seq_operations mounts_op = { 396 .start = m_start, 397 .next = m_next, 398 .stop = m_stop, 399 .show = show_vfsmnt 400 }; 401 402 static int show_vfsstat(struct seq_file *m, void *v) 403 { 404 struct vfsmount *mnt = v; 405 int err = 0; 406 407 /* device */ 408 if (mnt->mnt_devname) { 409 seq_puts(m, "device "); 410 mangle(m, mnt->mnt_devname); 411 } else 412 seq_puts(m, "no device"); 413 414 /* mount point */ 415 seq_puts(m, " mounted on "); 416 seq_path(m, mnt, mnt->mnt_root, " \t\n\\"); 417 seq_putc(m, ' '); 418 419 /* file system type */ 420 seq_puts(m, "with fstype "); 421 mangle(m, mnt->mnt_sb->s_type->name); 422 423 /* optional statistics */ 424 if (mnt->mnt_sb->s_op->show_stats) { 425 seq_putc(m, ' '); 426 err = mnt->mnt_sb->s_op->show_stats(m, mnt); 427 } 428 429 seq_putc(m, '\n'); 430 return err; 431 } 432 433 struct seq_operations mountstats_op = { 434 .start = m_start, 435 .next = m_next, 436 .stop = m_stop, 437 .show = show_vfsstat, 438 }; 439 440 /** 441 * may_umount_tree - check if a mount tree is busy 442 * @mnt: root of mount tree 443 * 444 * This is called to check if a tree of mounts has any 445 * open files, pwds, chroots or sub mounts that are 446 * busy. 447 */ 448 int may_umount_tree(struct vfsmount *mnt) 449 { 450 int actual_refs = 0; 451 int minimum_refs = 0; 452 struct vfsmount *p; 453 454 spin_lock(&vfsmount_lock); 455 for (p = mnt; p; p = next_mnt(p, mnt)) { 456 actual_refs += atomic_read(&p->mnt_count); 457 minimum_refs += 2; 458 } 459 spin_unlock(&vfsmount_lock); 460 461 if (actual_refs > minimum_refs) 462 return 0; 463 464 return 1; 465 } 466 467 EXPORT_SYMBOL(may_umount_tree); 468 469 /** 470 * may_umount - check if a mount point is busy 471 * @mnt: root of mount 472 * 473 * This is called to check if a mount point has any 474 * open files, pwds, chroots or sub mounts. If the 475 * mount has sub mounts this will return busy 476 * regardless of whether the sub mounts are busy. 477 * 478 * Doesn't take quota and stuff into account. IOW, in some cases it will 479 * give false negatives. The main reason why it's here is that we need 480 * a non-destructive way to look for easily umountable filesystems. 481 */ 482 int may_umount(struct vfsmount *mnt) 483 { 484 int ret = 1; 485 spin_lock(&vfsmount_lock); 486 if (propagate_mount_busy(mnt, 2)) 487 ret = 0; 488 spin_unlock(&vfsmount_lock); 489 return ret; 490 } 491 492 EXPORT_SYMBOL(may_umount); 493 494 void release_mounts(struct list_head *head) 495 { 496 struct vfsmount *mnt; 497 while (!list_empty(head)) { 498 mnt = list_entry(head->next, struct vfsmount, mnt_hash); 499 list_del_init(&mnt->mnt_hash); 500 if (mnt->mnt_parent != mnt) { 501 struct dentry *dentry; 502 struct vfsmount *m; 503 spin_lock(&vfsmount_lock); 504 dentry = mnt->mnt_mountpoint; 505 m = mnt->mnt_parent; 506 mnt->mnt_mountpoint = mnt->mnt_root; 507 mnt->mnt_parent = mnt; 508 spin_unlock(&vfsmount_lock); 509 dput(dentry); 510 mntput(m); 511 } 512 mntput(mnt); 513 } 514 } 515 516 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill) 517 { 518 struct vfsmount *p; 519 520 for (p = mnt; p; p = next_mnt(p, mnt)) 521 list_move(&p->mnt_hash, kill); 522 523 if (propagate) 524 propagate_umount(kill); 525 526 list_for_each_entry(p, kill, mnt_hash) { 527 list_del_init(&p->mnt_expire); 528 list_del_init(&p->mnt_list); 529 __touch_mnt_namespace(p->mnt_ns); 530 p->mnt_ns = NULL; 531 list_del_init(&p->mnt_child); 532 if (p->mnt_parent != p) 533 p->mnt_mountpoint->d_mounted--; 534 change_mnt_propagation(p, MS_PRIVATE); 535 } 536 } 537 538 static int do_umount(struct vfsmount *mnt, int flags) 539 { 540 struct super_block *sb = mnt->mnt_sb; 541 int retval; 542 LIST_HEAD(umount_list); 543 544 retval = security_sb_umount(mnt, flags); 545 if (retval) 546 return retval; 547 548 /* 549 * Allow userspace to request a mountpoint be expired rather than 550 * unmounting unconditionally. Unmount only happens if: 551 * (1) the mark is already set (the mark is cleared by mntput()) 552 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 553 */ 554 if (flags & MNT_EXPIRE) { 555 if (mnt == current->fs->rootmnt || 556 flags & (MNT_FORCE | MNT_DETACH)) 557 return -EINVAL; 558 559 if (atomic_read(&mnt->mnt_count) != 2) 560 return -EBUSY; 561 562 if (!xchg(&mnt->mnt_expiry_mark, 1)) 563 return -EAGAIN; 564 } 565 566 /* 567 * If we may have to abort operations to get out of this 568 * mount, and they will themselves hold resources we must 569 * allow the fs to do things. In the Unix tradition of 570 * 'Gee thats tricky lets do it in userspace' the umount_begin 571 * might fail to complete on the first run through as other tasks 572 * must return, and the like. Thats for the mount program to worry 573 * about for the moment. 574 */ 575 576 lock_kernel(); 577 if (sb->s_op->umount_begin) 578 sb->s_op->umount_begin(mnt, flags); 579 unlock_kernel(); 580 581 /* 582 * No sense to grab the lock for this test, but test itself looks 583 * somewhat bogus. Suggestions for better replacement? 584 * Ho-hum... In principle, we might treat that as umount + switch 585 * to rootfs. GC would eventually take care of the old vfsmount. 586 * Actually it makes sense, especially if rootfs would contain a 587 * /reboot - static binary that would close all descriptors and 588 * call reboot(9). Then init(8) could umount root and exec /reboot. 589 */ 590 if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) { 591 /* 592 * Special case for "unmounting" root ... 593 * we just try to remount it readonly. 594 */ 595 down_write(&sb->s_umount); 596 if (!(sb->s_flags & MS_RDONLY)) { 597 lock_kernel(); 598 DQUOT_OFF(sb); 599 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 600 unlock_kernel(); 601 } 602 up_write(&sb->s_umount); 603 return retval; 604 } 605 606 down_write(&namespace_sem); 607 spin_lock(&vfsmount_lock); 608 event++; 609 610 retval = -EBUSY; 611 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { 612 if (!list_empty(&mnt->mnt_list)) 613 umount_tree(mnt, 1, &umount_list); 614 retval = 0; 615 } 616 spin_unlock(&vfsmount_lock); 617 if (retval) 618 security_sb_umount_busy(mnt); 619 up_write(&namespace_sem); 620 release_mounts(&umount_list); 621 return retval; 622 } 623 624 /* 625 * Now umount can handle mount points as well as block devices. 626 * This is important for filesystems which use unnamed block devices. 627 * 628 * We now support a flag for forced unmount like the other 'big iron' 629 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 630 */ 631 632 asmlinkage long sys_umount(char __user * name, int flags) 633 { 634 struct nameidata nd; 635 int retval; 636 637 retval = __user_walk(name, LOOKUP_FOLLOW, &nd); 638 if (retval) 639 goto out; 640 retval = -EINVAL; 641 if (nd.dentry != nd.mnt->mnt_root) 642 goto dput_and_out; 643 if (!check_mnt(nd.mnt)) 644 goto dput_and_out; 645 646 retval = -EPERM; 647 if (!capable(CAP_SYS_ADMIN)) 648 goto dput_and_out; 649 650 retval = do_umount(nd.mnt, flags); 651 dput_and_out: 652 path_release_on_umount(&nd); 653 out: 654 return retval; 655 } 656 657 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 658 659 /* 660 * The 2.0 compatible umount. No flags. 661 */ 662 asmlinkage long sys_oldumount(char __user * name) 663 { 664 return sys_umount(name, 0); 665 } 666 667 #endif 668 669 static int mount_is_safe(struct nameidata *nd) 670 { 671 if (capable(CAP_SYS_ADMIN)) 672 return 0; 673 return -EPERM; 674 #ifdef notyet 675 if (S_ISLNK(nd->dentry->d_inode->i_mode)) 676 return -EPERM; 677 if (nd->dentry->d_inode->i_mode & S_ISVTX) { 678 if (current->uid != nd->dentry->d_inode->i_uid) 679 return -EPERM; 680 } 681 if (vfs_permission(nd, MAY_WRITE)) 682 return -EPERM; 683 return 0; 684 #endif 685 } 686 687 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry) 688 { 689 while (1) { 690 if (d == dentry) 691 return 1; 692 if (d == NULL || d == d->d_parent) 693 return 0; 694 d = d->d_parent; 695 } 696 } 697 698 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry, 699 int flag) 700 { 701 struct vfsmount *res, *p, *q, *r, *s; 702 struct nameidata nd; 703 704 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) 705 return NULL; 706 707 res = q = clone_mnt(mnt, dentry, flag); 708 if (!q) 709 goto Enomem; 710 q->mnt_mountpoint = mnt->mnt_mountpoint; 711 712 p = mnt; 713 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 714 if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry)) 715 continue; 716 717 for (s = r; s; s = next_mnt(s, r)) { 718 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { 719 s = skip_mnt_tree(s); 720 continue; 721 } 722 while (p != s->mnt_parent) { 723 p = p->mnt_parent; 724 q = q->mnt_parent; 725 } 726 p = s; 727 nd.mnt = q; 728 nd.dentry = p->mnt_mountpoint; 729 q = clone_mnt(p, p->mnt_root, flag); 730 if (!q) 731 goto Enomem; 732 spin_lock(&vfsmount_lock); 733 list_add_tail(&q->mnt_list, &res->mnt_list); 734 attach_mnt(q, &nd); 735 spin_unlock(&vfsmount_lock); 736 } 737 } 738 return res; 739 Enomem: 740 if (res) { 741 LIST_HEAD(umount_list); 742 spin_lock(&vfsmount_lock); 743 umount_tree(res, 0, &umount_list); 744 spin_unlock(&vfsmount_lock); 745 release_mounts(&umount_list); 746 } 747 return NULL; 748 } 749 750 /* 751 * @source_mnt : mount tree to be attached 752 * @nd : place the mount tree @source_mnt is attached 753 * @parent_nd : if non-null, detach the source_mnt from its parent and 754 * store the parent mount and mountpoint dentry. 755 * (done when source_mnt is moved) 756 * 757 * NOTE: in the table below explains the semantics when a source mount 758 * of a given type is attached to a destination mount of a given type. 759 * --------------------------------------------------------------------------- 760 * | BIND MOUNT OPERATION | 761 * |************************************************************************** 762 * | source-->| shared | private | slave | unbindable | 763 * | dest | | | | | 764 * | | | | | | | 765 * | v | | | | | 766 * |************************************************************************** 767 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 768 * | | | | | | 769 * |non-shared| shared (+) | private | slave (*) | invalid | 770 * *************************************************************************** 771 * A bind operation clones the source mount and mounts the clone on the 772 * destination mount. 773 * 774 * (++) the cloned mount is propagated to all the mounts in the propagation 775 * tree of the destination mount and the cloned mount is added to 776 * the peer group of the source mount. 777 * (+) the cloned mount is created under the destination mount and is marked 778 * as shared. The cloned mount is added to the peer group of the source 779 * mount. 780 * (+++) the mount is propagated to all the mounts in the propagation tree 781 * of the destination mount and the cloned mount is made slave 782 * of the same master as that of the source mount. The cloned mount 783 * is marked as 'shared and slave'. 784 * (*) the cloned mount is made a slave of the same master as that of the 785 * source mount. 786 * 787 * --------------------------------------------------------------------------- 788 * | MOVE MOUNT OPERATION | 789 * |************************************************************************** 790 * | source-->| shared | private | slave | unbindable | 791 * | dest | | | | | 792 * | | | | | | | 793 * | v | | | | | 794 * |************************************************************************** 795 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 796 * | | | | | | 797 * |non-shared| shared (+*) | private | slave (*) | unbindable | 798 * *************************************************************************** 799 * 800 * (+) the mount is moved to the destination. And is then propagated to 801 * all the mounts in the propagation tree of the destination mount. 802 * (+*) the mount is moved to the destination. 803 * (+++) the mount is moved to the destination and is then propagated to 804 * all the mounts belonging to the destination mount's propagation tree. 805 * the mount is marked as 'shared and slave'. 806 * (*) the mount continues to be a slave at the new location. 807 * 808 * if the source mount is a tree, the operations explained above is 809 * applied to each mount in the tree. 810 * Must be called without spinlocks held, since this function can sleep 811 * in allocations. 812 */ 813 static int attach_recursive_mnt(struct vfsmount *source_mnt, 814 struct nameidata *nd, struct nameidata *parent_nd) 815 { 816 LIST_HEAD(tree_list); 817 struct vfsmount *dest_mnt = nd->mnt; 818 struct dentry *dest_dentry = nd->dentry; 819 struct vfsmount *child, *p; 820 821 if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list)) 822 return -EINVAL; 823 824 if (IS_MNT_SHARED(dest_mnt)) { 825 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 826 set_mnt_shared(p); 827 } 828 829 spin_lock(&vfsmount_lock); 830 if (parent_nd) { 831 detach_mnt(source_mnt, parent_nd); 832 attach_mnt(source_mnt, nd); 833 touch_mnt_namespace(current->nsproxy->mnt_ns); 834 } else { 835 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); 836 commit_tree(source_mnt); 837 } 838 839 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { 840 list_del_init(&child->mnt_hash); 841 commit_tree(child); 842 } 843 spin_unlock(&vfsmount_lock); 844 return 0; 845 } 846 847 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd) 848 { 849 int err; 850 if (mnt->mnt_sb->s_flags & MS_NOUSER) 851 return -EINVAL; 852 853 if (S_ISDIR(nd->dentry->d_inode->i_mode) != 854 S_ISDIR(mnt->mnt_root->d_inode->i_mode)) 855 return -ENOTDIR; 856 857 err = -ENOENT; 858 mutex_lock(&nd->dentry->d_inode->i_mutex); 859 if (IS_DEADDIR(nd->dentry->d_inode)) 860 goto out_unlock; 861 862 err = security_sb_check_sb(mnt, nd); 863 if (err) 864 goto out_unlock; 865 866 err = -ENOENT; 867 if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry)) 868 err = attach_recursive_mnt(mnt, nd, NULL); 869 out_unlock: 870 mutex_unlock(&nd->dentry->d_inode->i_mutex); 871 if (!err) 872 security_sb_post_addmount(mnt, nd); 873 return err; 874 } 875 876 /* 877 * recursively change the type of the mountpoint. 878 */ 879 static int do_change_type(struct nameidata *nd, int flag) 880 { 881 struct vfsmount *m, *mnt = nd->mnt; 882 int recurse = flag & MS_REC; 883 int type = flag & ~MS_REC; 884 885 if (nd->dentry != nd->mnt->mnt_root) 886 return -EINVAL; 887 888 down_write(&namespace_sem); 889 spin_lock(&vfsmount_lock); 890 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 891 change_mnt_propagation(m, type); 892 spin_unlock(&vfsmount_lock); 893 up_write(&namespace_sem); 894 return 0; 895 } 896 897 /* 898 * do loopback mount. 899 */ 900 static int do_loopback(struct nameidata *nd, char *old_name, int recurse) 901 { 902 struct nameidata old_nd; 903 struct vfsmount *mnt = NULL; 904 int err = mount_is_safe(nd); 905 if (err) 906 return err; 907 if (!old_name || !*old_name) 908 return -EINVAL; 909 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); 910 if (err) 911 return err; 912 913 down_write(&namespace_sem); 914 err = -EINVAL; 915 if (IS_MNT_UNBINDABLE(old_nd.mnt)) 916 goto out; 917 918 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt)) 919 goto out; 920 921 err = -ENOMEM; 922 if (recurse) 923 mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0); 924 else 925 mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0); 926 927 if (!mnt) 928 goto out; 929 930 err = graft_tree(mnt, nd); 931 if (err) { 932 LIST_HEAD(umount_list); 933 spin_lock(&vfsmount_lock); 934 umount_tree(mnt, 0, &umount_list); 935 spin_unlock(&vfsmount_lock); 936 release_mounts(&umount_list); 937 } 938 939 out: 940 up_write(&namespace_sem); 941 path_release(&old_nd); 942 return err; 943 } 944 945 /* 946 * change filesystem flags. dir should be a physical root of filesystem. 947 * If you've mounted a non-root directory somewhere and want to do remount 948 * on it - tough luck. 949 */ 950 static int do_remount(struct nameidata *nd, int flags, int mnt_flags, 951 void *data) 952 { 953 int err; 954 struct super_block *sb = nd->mnt->mnt_sb; 955 956 if (!capable(CAP_SYS_ADMIN)) 957 return -EPERM; 958 959 if (!check_mnt(nd->mnt)) 960 return -EINVAL; 961 962 if (nd->dentry != nd->mnt->mnt_root) 963 return -EINVAL; 964 965 down_write(&sb->s_umount); 966 err = do_remount_sb(sb, flags, data, 0); 967 if (!err) 968 nd->mnt->mnt_flags = mnt_flags; 969 up_write(&sb->s_umount); 970 if (!err) 971 security_sb_post_remount(nd->mnt, flags, data); 972 return err; 973 } 974 975 static inline int tree_contains_unbindable(struct vfsmount *mnt) 976 { 977 struct vfsmount *p; 978 for (p = mnt; p; p = next_mnt(p, mnt)) { 979 if (IS_MNT_UNBINDABLE(p)) 980 return 1; 981 } 982 return 0; 983 } 984 985 static int do_move_mount(struct nameidata *nd, char *old_name) 986 { 987 struct nameidata old_nd, parent_nd; 988 struct vfsmount *p; 989 int err = 0; 990 if (!capable(CAP_SYS_ADMIN)) 991 return -EPERM; 992 if (!old_name || !*old_name) 993 return -EINVAL; 994 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd); 995 if (err) 996 return err; 997 998 down_write(&namespace_sem); 999 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry)) 1000 ; 1001 err = -EINVAL; 1002 if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt)) 1003 goto out; 1004 1005 err = -ENOENT; 1006 mutex_lock(&nd->dentry->d_inode->i_mutex); 1007 if (IS_DEADDIR(nd->dentry->d_inode)) 1008 goto out1; 1009 1010 if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry)) 1011 goto out1; 1012 1013 err = -EINVAL; 1014 if (old_nd.dentry != old_nd.mnt->mnt_root) 1015 goto out1; 1016 1017 if (old_nd.mnt == old_nd.mnt->mnt_parent) 1018 goto out1; 1019 1020 if (S_ISDIR(nd->dentry->d_inode->i_mode) != 1021 S_ISDIR(old_nd.dentry->d_inode->i_mode)) 1022 goto out1; 1023 /* 1024 * Don't move a mount residing in a shared parent. 1025 */ 1026 if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent)) 1027 goto out1; 1028 /* 1029 * Don't move a mount tree containing unbindable mounts to a destination 1030 * mount which is shared. 1031 */ 1032 if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt)) 1033 goto out1; 1034 err = -ELOOP; 1035 for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent) 1036 if (p == old_nd.mnt) 1037 goto out1; 1038 1039 if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd))) 1040 goto out1; 1041 1042 spin_lock(&vfsmount_lock); 1043 /* if the mount is moved, it should no longer be expire 1044 * automatically */ 1045 list_del_init(&old_nd.mnt->mnt_expire); 1046 spin_unlock(&vfsmount_lock); 1047 out1: 1048 mutex_unlock(&nd->dentry->d_inode->i_mutex); 1049 out: 1050 up_write(&namespace_sem); 1051 if (!err) 1052 path_release(&parent_nd); 1053 path_release(&old_nd); 1054 return err; 1055 } 1056 1057 /* 1058 * create a new mount for userspace and request it to be added into the 1059 * namespace's tree 1060 */ 1061 static int do_new_mount(struct nameidata *nd, char *type, int flags, 1062 int mnt_flags, char *name, void *data) 1063 { 1064 struct vfsmount *mnt; 1065 1066 if (!type || !memchr(type, 0, PAGE_SIZE)) 1067 return -EINVAL; 1068 1069 /* we need capabilities... */ 1070 if (!capable(CAP_SYS_ADMIN)) 1071 return -EPERM; 1072 1073 mnt = do_kern_mount(type, flags, name, data); 1074 if (IS_ERR(mnt)) 1075 return PTR_ERR(mnt); 1076 1077 return do_add_mount(mnt, nd, mnt_flags, NULL); 1078 } 1079 1080 /* 1081 * add a mount into a namespace's mount tree 1082 * - provide the option of adding the new mount to an expiration list 1083 */ 1084 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd, 1085 int mnt_flags, struct list_head *fslist) 1086 { 1087 int err; 1088 1089 down_write(&namespace_sem); 1090 /* Something was mounted here while we slept */ 1091 while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry)) 1092 ; 1093 err = -EINVAL; 1094 if (!check_mnt(nd->mnt)) 1095 goto unlock; 1096 1097 /* Refuse the same filesystem on the same mount point */ 1098 err = -EBUSY; 1099 if (nd->mnt->mnt_sb == newmnt->mnt_sb && 1100 nd->mnt->mnt_root == nd->dentry) 1101 goto unlock; 1102 1103 err = -EINVAL; 1104 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode)) 1105 goto unlock; 1106 1107 newmnt->mnt_flags = mnt_flags; 1108 if ((err = graft_tree(newmnt, nd))) 1109 goto unlock; 1110 1111 if (fslist) { 1112 /* add to the specified expiration list */ 1113 spin_lock(&vfsmount_lock); 1114 list_add_tail(&newmnt->mnt_expire, fslist); 1115 spin_unlock(&vfsmount_lock); 1116 } 1117 up_write(&namespace_sem); 1118 return 0; 1119 1120 unlock: 1121 up_write(&namespace_sem); 1122 mntput(newmnt); 1123 return err; 1124 } 1125 1126 EXPORT_SYMBOL_GPL(do_add_mount); 1127 1128 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts, 1129 struct list_head *umounts) 1130 { 1131 spin_lock(&vfsmount_lock); 1132 1133 /* 1134 * Check if mount is still attached, if not, let whoever holds it deal 1135 * with the sucker 1136 */ 1137 if (mnt->mnt_parent == mnt) { 1138 spin_unlock(&vfsmount_lock); 1139 return; 1140 } 1141 1142 /* 1143 * Check that it is still dead: the count should now be 2 - as 1144 * contributed by the vfsmount parent and the mntget above 1145 */ 1146 if (!propagate_mount_busy(mnt, 2)) { 1147 /* delete from the namespace */ 1148 touch_mnt_namespace(mnt->mnt_ns); 1149 list_del_init(&mnt->mnt_list); 1150 mnt->mnt_ns = NULL; 1151 umount_tree(mnt, 1, umounts); 1152 spin_unlock(&vfsmount_lock); 1153 } else { 1154 /* 1155 * Someone brought it back to life whilst we didn't have any 1156 * locks held so return it to the expiration list 1157 */ 1158 list_add_tail(&mnt->mnt_expire, mounts); 1159 spin_unlock(&vfsmount_lock); 1160 } 1161 } 1162 1163 /* 1164 * go through the vfsmounts we've just consigned to the graveyard to 1165 * - check that they're still dead 1166 * - delete the vfsmount from the appropriate namespace under lock 1167 * - dispose of the corpse 1168 */ 1169 static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts) 1170 { 1171 struct mnt_namespace *ns; 1172 struct vfsmount *mnt; 1173 1174 while (!list_empty(graveyard)) { 1175 LIST_HEAD(umounts); 1176 mnt = list_entry(graveyard->next, struct vfsmount, mnt_expire); 1177 list_del_init(&mnt->mnt_expire); 1178 1179 /* don't do anything if the namespace is dead - all the 1180 * vfsmounts from it are going away anyway */ 1181 ns = mnt->mnt_ns; 1182 if (!ns || !ns->root) 1183 continue; 1184 get_mnt_ns(ns); 1185 1186 spin_unlock(&vfsmount_lock); 1187 down_write(&namespace_sem); 1188 expire_mount(mnt, mounts, &umounts); 1189 up_write(&namespace_sem); 1190 release_mounts(&umounts); 1191 mntput(mnt); 1192 put_mnt_ns(ns); 1193 spin_lock(&vfsmount_lock); 1194 } 1195 } 1196 1197 /* 1198 * process a list of expirable mountpoints with the intent of discarding any 1199 * mountpoints that aren't in use and haven't been touched since last we came 1200 * here 1201 */ 1202 void mark_mounts_for_expiry(struct list_head *mounts) 1203 { 1204 struct vfsmount *mnt, *next; 1205 LIST_HEAD(graveyard); 1206 1207 if (list_empty(mounts)) 1208 return; 1209 1210 spin_lock(&vfsmount_lock); 1211 1212 /* extract from the expiration list every vfsmount that matches the 1213 * following criteria: 1214 * - only referenced by its parent vfsmount 1215 * - still marked for expiry (marked on the last call here; marks are 1216 * cleared by mntput()) 1217 */ 1218 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 1219 if (!xchg(&mnt->mnt_expiry_mark, 1) || 1220 atomic_read(&mnt->mnt_count) != 1) 1221 continue; 1222 1223 mntget(mnt); 1224 list_move(&mnt->mnt_expire, &graveyard); 1225 } 1226 1227 expire_mount_list(&graveyard, mounts); 1228 1229 spin_unlock(&vfsmount_lock); 1230 } 1231 1232 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 1233 1234 /* 1235 * Ripoff of 'select_parent()' 1236 * 1237 * search the list of submounts for a given mountpoint, and move any 1238 * shrinkable submounts to the 'graveyard' list. 1239 */ 1240 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard) 1241 { 1242 struct vfsmount *this_parent = parent; 1243 struct list_head *next; 1244 int found = 0; 1245 1246 repeat: 1247 next = this_parent->mnt_mounts.next; 1248 resume: 1249 while (next != &this_parent->mnt_mounts) { 1250 struct list_head *tmp = next; 1251 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child); 1252 1253 next = tmp->next; 1254 if (!(mnt->mnt_flags & MNT_SHRINKABLE)) 1255 continue; 1256 /* 1257 * Descend a level if the d_mounts list is non-empty. 1258 */ 1259 if (!list_empty(&mnt->mnt_mounts)) { 1260 this_parent = mnt; 1261 goto repeat; 1262 } 1263 1264 if (!propagate_mount_busy(mnt, 1)) { 1265 mntget(mnt); 1266 list_move_tail(&mnt->mnt_expire, graveyard); 1267 found++; 1268 } 1269 } 1270 /* 1271 * All done at this level ... ascend and resume the search 1272 */ 1273 if (this_parent != parent) { 1274 next = this_parent->mnt_child.next; 1275 this_parent = this_parent->mnt_parent; 1276 goto resume; 1277 } 1278 return found; 1279 } 1280 1281 /* 1282 * process a list of expirable mountpoints with the intent of discarding any 1283 * submounts of a specific parent mountpoint 1284 */ 1285 void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts) 1286 { 1287 LIST_HEAD(graveyard); 1288 int found; 1289 1290 spin_lock(&vfsmount_lock); 1291 1292 /* extract submounts of 'mountpoint' from the expiration list */ 1293 while ((found = select_submounts(mountpoint, &graveyard)) != 0) 1294 expire_mount_list(&graveyard, mounts); 1295 1296 spin_unlock(&vfsmount_lock); 1297 } 1298 1299 EXPORT_SYMBOL_GPL(shrink_submounts); 1300 1301 /* 1302 * Some copy_from_user() implementations do not return the exact number of 1303 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 1304 * Note that this function differs from copy_from_user() in that it will oops 1305 * on bad values of `to', rather than returning a short copy. 1306 */ 1307 static long exact_copy_from_user(void *to, const void __user * from, 1308 unsigned long n) 1309 { 1310 char *t = to; 1311 const char __user *f = from; 1312 char c; 1313 1314 if (!access_ok(VERIFY_READ, from, n)) 1315 return n; 1316 1317 while (n) { 1318 if (__get_user(c, f)) { 1319 memset(t, 0, n); 1320 break; 1321 } 1322 *t++ = c; 1323 f++; 1324 n--; 1325 } 1326 return n; 1327 } 1328 1329 int copy_mount_options(const void __user * data, unsigned long *where) 1330 { 1331 int i; 1332 unsigned long page; 1333 unsigned long size; 1334 1335 *where = 0; 1336 if (!data) 1337 return 0; 1338 1339 if (!(page = __get_free_page(GFP_KERNEL))) 1340 return -ENOMEM; 1341 1342 /* We only care that *some* data at the address the user 1343 * gave us is valid. Just in case, we'll zero 1344 * the remainder of the page. 1345 */ 1346 /* copy_from_user cannot cross TASK_SIZE ! */ 1347 size = TASK_SIZE - (unsigned long)data; 1348 if (size > PAGE_SIZE) 1349 size = PAGE_SIZE; 1350 1351 i = size - exact_copy_from_user((void *)page, data, size); 1352 if (!i) { 1353 free_page(page); 1354 return -EFAULT; 1355 } 1356 if (i != PAGE_SIZE) 1357 memset((char *)page + i, 0, PAGE_SIZE - i); 1358 *where = page; 1359 return 0; 1360 } 1361 1362 /* 1363 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 1364 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 1365 * 1366 * data is a (void *) that can point to any structure up to 1367 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 1368 * information (or be NULL). 1369 * 1370 * Pre-0.97 versions of mount() didn't have a flags word. 1371 * When the flags word was introduced its top half was required 1372 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 1373 * Therefore, if this magic number is present, it carries no information 1374 * and must be discarded. 1375 */ 1376 long do_mount(char *dev_name, char *dir_name, char *type_page, 1377 unsigned long flags, void *data_page) 1378 { 1379 struct nameidata nd; 1380 int retval = 0; 1381 int mnt_flags = 0; 1382 1383 /* Discard magic */ 1384 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 1385 flags &= ~MS_MGC_MSK; 1386 1387 /* Basic sanity checks */ 1388 1389 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) 1390 return -EINVAL; 1391 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE)) 1392 return -EINVAL; 1393 1394 if (data_page) 1395 ((char *)data_page)[PAGE_SIZE - 1] = 0; 1396 1397 /* Separate the per-mountpoint flags */ 1398 if (flags & MS_NOSUID) 1399 mnt_flags |= MNT_NOSUID; 1400 if (flags & MS_NODEV) 1401 mnt_flags |= MNT_NODEV; 1402 if (flags & MS_NOEXEC) 1403 mnt_flags |= MNT_NOEXEC; 1404 if (flags & MS_NOATIME) 1405 mnt_flags |= MNT_NOATIME; 1406 if (flags & MS_NODIRATIME) 1407 mnt_flags |= MNT_NODIRATIME; 1408 if (flags & MS_RELATIME) 1409 mnt_flags |= MNT_RELATIME; 1410 1411 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | 1412 MS_NOATIME | MS_NODIRATIME | MS_RELATIME); 1413 1414 /* ... and get the mountpoint */ 1415 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd); 1416 if (retval) 1417 return retval; 1418 1419 retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page); 1420 if (retval) 1421 goto dput_out; 1422 1423 if (flags & MS_REMOUNT) 1424 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags, 1425 data_page); 1426 else if (flags & MS_BIND) 1427 retval = do_loopback(&nd, dev_name, flags & MS_REC); 1428 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1429 retval = do_change_type(&nd, flags); 1430 else if (flags & MS_MOVE) 1431 retval = do_move_mount(&nd, dev_name); 1432 else 1433 retval = do_new_mount(&nd, type_page, flags, mnt_flags, 1434 dev_name, data_page); 1435 dput_out: 1436 path_release(&nd); 1437 return retval; 1438 } 1439 1440 /* 1441 * Allocate a new namespace structure and populate it with contents 1442 * copied from the namespace of the passed in task structure. 1443 */ 1444 struct mnt_namespace *dup_mnt_ns(struct task_struct *tsk, 1445 struct fs_struct *fs) 1446 { 1447 struct mnt_namespace *mnt_ns = tsk->nsproxy->mnt_ns; 1448 struct mnt_namespace *new_ns; 1449 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL; 1450 struct vfsmount *p, *q; 1451 1452 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 1453 if (!new_ns) 1454 return NULL; 1455 1456 atomic_set(&new_ns->count, 1); 1457 INIT_LIST_HEAD(&new_ns->list); 1458 init_waitqueue_head(&new_ns->poll); 1459 new_ns->event = 0; 1460 1461 down_write(&namespace_sem); 1462 /* First pass: copy the tree topology */ 1463 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root, 1464 CL_COPY_ALL | CL_EXPIRE); 1465 if (!new_ns->root) { 1466 up_write(&namespace_sem); 1467 kfree(new_ns); 1468 return NULL; 1469 } 1470 spin_lock(&vfsmount_lock); 1471 list_add_tail(&new_ns->list, &new_ns->root->mnt_list); 1472 spin_unlock(&vfsmount_lock); 1473 1474 /* 1475 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 1476 * as belonging to new namespace. We have already acquired a private 1477 * fs_struct, so tsk->fs->lock is not needed. 1478 */ 1479 p = mnt_ns->root; 1480 q = new_ns->root; 1481 while (p) { 1482 q->mnt_ns = new_ns; 1483 if (fs) { 1484 if (p == fs->rootmnt) { 1485 rootmnt = p; 1486 fs->rootmnt = mntget(q); 1487 } 1488 if (p == fs->pwdmnt) { 1489 pwdmnt = p; 1490 fs->pwdmnt = mntget(q); 1491 } 1492 if (p == fs->altrootmnt) { 1493 altrootmnt = p; 1494 fs->altrootmnt = mntget(q); 1495 } 1496 } 1497 p = next_mnt(p, mnt_ns->root); 1498 q = next_mnt(q, new_ns->root); 1499 } 1500 up_write(&namespace_sem); 1501 1502 if (rootmnt) 1503 mntput(rootmnt); 1504 if (pwdmnt) 1505 mntput(pwdmnt); 1506 if (altrootmnt) 1507 mntput(altrootmnt); 1508 1509 return new_ns; 1510 } 1511 1512 int copy_mnt_ns(int flags, struct task_struct *tsk) 1513 { 1514 struct mnt_namespace *ns = tsk->nsproxy->mnt_ns; 1515 struct mnt_namespace *new_ns; 1516 int err = 0; 1517 1518 if (!ns) 1519 return 0; 1520 1521 get_mnt_ns(ns); 1522 1523 if (!(flags & CLONE_NEWNS)) 1524 return 0; 1525 1526 if (!capable(CAP_SYS_ADMIN)) { 1527 err = -EPERM; 1528 goto out; 1529 } 1530 1531 new_ns = dup_mnt_ns(tsk, tsk->fs); 1532 if (!new_ns) { 1533 err = -ENOMEM; 1534 goto out; 1535 } 1536 1537 tsk->nsproxy->mnt_ns = new_ns; 1538 1539 out: 1540 put_mnt_ns(ns); 1541 return err; 1542 } 1543 1544 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name, 1545 char __user * type, unsigned long flags, 1546 void __user * data) 1547 { 1548 int retval; 1549 unsigned long data_page; 1550 unsigned long type_page; 1551 unsigned long dev_page; 1552 char *dir_page; 1553 1554 retval = copy_mount_options(type, &type_page); 1555 if (retval < 0) 1556 return retval; 1557 1558 dir_page = getname(dir_name); 1559 retval = PTR_ERR(dir_page); 1560 if (IS_ERR(dir_page)) 1561 goto out1; 1562 1563 retval = copy_mount_options(dev_name, &dev_page); 1564 if (retval < 0) 1565 goto out2; 1566 1567 retval = copy_mount_options(data, &data_page); 1568 if (retval < 0) 1569 goto out3; 1570 1571 lock_kernel(); 1572 retval = do_mount((char *)dev_page, dir_page, (char *)type_page, 1573 flags, (void *)data_page); 1574 unlock_kernel(); 1575 free_page(data_page); 1576 1577 out3: 1578 free_page(dev_page); 1579 out2: 1580 putname(dir_page); 1581 out1: 1582 free_page(type_page); 1583 return retval; 1584 } 1585 1586 /* 1587 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values. 1588 * It can block. Requires the big lock held. 1589 */ 1590 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt, 1591 struct dentry *dentry) 1592 { 1593 struct dentry *old_root; 1594 struct vfsmount *old_rootmnt; 1595 write_lock(&fs->lock); 1596 old_root = fs->root; 1597 old_rootmnt = fs->rootmnt; 1598 fs->rootmnt = mntget(mnt); 1599 fs->root = dget(dentry); 1600 write_unlock(&fs->lock); 1601 if (old_root) { 1602 dput(old_root); 1603 mntput(old_rootmnt); 1604 } 1605 } 1606 1607 /* 1608 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values. 1609 * It can block. Requires the big lock held. 1610 */ 1611 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt, 1612 struct dentry *dentry) 1613 { 1614 struct dentry *old_pwd; 1615 struct vfsmount *old_pwdmnt; 1616 1617 write_lock(&fs->lock); 1618 old_pwd = fs->pwd; 1619 old_pwdmnt = fs->pwdmnt; 1620 fs->pwdmnt = mntget(mnt); 1621 fs->pwd = dget(dentry); 1622 write_unlock(&fs->lock); 1623 1624 if (old_pwd) { 1625 dput(old_pwd); 1626 mntput(old_pwdmnt); 1627 } 1628 } 1629 1630 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd) 1631 { 1632 struct task_struct *g, *p; 1633 struct fs_struct *fs; 1634 1635 read_lock(&tasklist_lock); 1636 do_each_thread(g, p) { 1637 task_lock(p); 1638 fs = p->fs; 1639 if (fs) { 1640 atomic_inc(&fs->count); 1641 task_unlock(p); 1642 if (fs->root == old_nd->dentry 1643 && fs->rootmnt == old_nd->mnt) 1644 set_fs_root(fs, new_nd->mnt, new_nd->dentry); 1645 if (fs->pwd == old_nd->dentry 1646 && fs->pwdmnt == old_nd->mnt) 1647 set_fs_pwd(fs, new_nd->mnt, new_nd->dentry); 1648 put_fs_struct(fs); 1649 } else 1650 task_unlock(p); 1651 } while_each_thread(g, p); 1652 read_unlock(&tasklist_lock); 1653 } 1654 1655 /* 1656 * pivot_root Semantics: 1657 * Moves the root file system of the current process to the directory put_old, 1658 * makes new_root as the new root file system of the current process, and sets 1659 * root/cwd of all processes which had them on the current root to new_root. 1660 * 1661 * Restrictions: 1662 * The new_root and put_old must be directories, and must not be on the 1663 * same file system as the current process root. The put_old must be 1664 * underneath new_root, i.e. adding a non-zero number of /.. to the string 1665 * pointed to by put_old must yield the same directory as new_root. No other 1666 * file system may be mounted on put_old. After all, new_root is a mountpoint. 1667 * 1668 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 1669 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 1670 * in this situation. 1671 * 1672 * Notes: 1673 * - we don't move root/cwd if they are not at the root (reason: if something 1674 * cared enough to change them, it's probably wrong to force them elsewhere) 1675 * - it's okay to pick a root that isn't the root of a file system, e.g. 1676 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 1677 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 1678 * first. 1679 */ 1680 asmlinkage long sys_pivot_root(const char __user * new_root, 1681 const char __user * put_old) 1682 { 1683 struct vfsmount *tmp; 1684 struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd; 1685 int error; 1686 1687 if (!capable(CAP_SYS_ADMIN)) 1688 return -EPERM; 1689 1690 lock_kernel(); 1691 1692 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, 1693 &new_nd); 1694 if (error) 1695 goto out0; 1696 error = -EINVAL; 1697 if (!check_mnt(new_nd.mnt)) 1698 goto out1; 1699 1700 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd); 1701 if (error) 1702 goto out1; 1703 1704 error = security_sb_pivotroot(&old_nd, &new_nd); 1705 if (error) { 1706 path_release(&old_nd); 1707 goto out1; 1708 } 1709 1710 read_lock(¤t->fs->lock); 1711 user_nd.mnt = mntget(current->fs->rootmnt); 1712 user_nd.dentry = dget(current->fs->root); 1713 read_unlock(¤t->fs->lock); 1714 down_write(&namespace_sem); 1715 mutex_lock(&old_nd.dentry->d_inode->i_mutex); 1716 error = -EINVAL; 1717 if (IS_MNT_SHARED(old_nd.mnt) || 1718 IS_MNT_SHARED(new_nd.mnt->mnt_parent) || 1719 IS_MNT_SHARED(user_nd.mnt->mnt_parent)) 1720 goto out2; 1721 if (!check_mnt(user_nd.mnt)) 1722 goto out2; 1723 error = -ENOENT; 1724 if (IS_DEADDIR(new_nd.dentry->d_inode)) 1725 goto out2; 1726 if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry)) 1727 goto out2; 1728 if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry)) 1729 goto out2; 1730 error = -EBUSY; 1731 if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt) 1732 goto out2; /* loop, on the same file system */ 1733 error = -EINVAL; 1734 if (user_nd.mnt->mnt_root != user_nd.dentry) 1735 goto out2; /* not a mountpoint */ 1736 if (user_nd.mnt->mnt_parent == user_nd.mnt) 1737 goto out2; /* not attached */ 1738 if (new_nd.mnt->mnt_root != new_nd.dentry) 1739 goto out2; /* not a mountpoint */ 1740 if (new_nd.mnt->mnt_parent == new_nd.mnt) 1741 goto out2; /* not attached */ 1742 tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */ 1743 spin_lock(&vfsmount_lock); 1744 if (tmp != new_nd.mnt) { 1745 for (;;) { 1746 if (tmp->mnt_parent == tmp) 1747 goto out3; /* already mounted on put_old */ 1748 if (tmp->mnt_parent == new_nd.mnt) 1749 break; 1750 tmp = tmp->mnt_parent; 1751 } 1752 if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry)) 1753 goto out3; 1754 } else if (!is_subdir(old_nd.dentry, new_nd.dentry)) 1755 goto out3; 1756 detach_mnt(new_nd.mnt, &parent_nd); 1757 detach_mnt(user_nd.mnt, &root_parent); 1758 attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */ 1759 attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */ 1760 touch_mnt_namespace(current->nsproxy->mnt_ns); 1761 spin_unlock(&vfsmount_lock); 1762 chroot_fs_refs(&user_nd, &new_nd); 1763 security_sb_post_pivotroot(&user_nd, &new_nd); 1764 error = 0; 1765 path_release(&root_parent); 1766 path_release(&parent_nd); 1767 out2: 1768 mutex_unlock(&old_nd.dentry->d_inode->i_mutex); 1769 up_write(&namespace_sem); 1770 path_release(&user_nd); 1771 path_release(&old_nd); 1772 out1: 1773 path_release(&new_nd); 1774 out0: 1775 unlock_kernel(); 1776 return error; 1777 out3: 1778 spin_unlock(&vfsmount_lock); 1779 goto out2; 1780 } 1781 1782 static void __init init_mount_tree(void) 1783 { 1784 struct vfsmount *mnt; 1785 struct mnt_namespace *ns; 1786 1787 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); 1788 if (IS_ERR(mnt)) 1789 panic("Can't create rootfs"); 1790 ns = kmalloc(sizeof(*ns), GFP_KERNEL); 1791 if (!ns) 1792 panic("Can't allocate initial namespace"); 1793 atomic_set(&ns->count, 1); 1794 INIT_LIST_HEAD(&ns->list); 1795 init_waitqueue_head(&ns->poll); 1796 ns->event = 0; 1797 list_add(&mnt->mnt_list, &ns->list); 1798 ns->root = mnt; 1799 mnt->mnt_ns = ns; 1800 1801 init_task.nsproxy->mnt_ns = ns; 1802 get_mnt_ns(ns); 1803 1804 set_fs_pwd(current->fs, ns->root, ns->root->mnt_root); 1805 set_fs_root(current->fs, ns->root, ns->root->mnt_root); 1806 } 1807 1808 void __init mnt_init(unsigned long mempages) 1809 { 1810 struct list_head *d; 1811 unsigned int nr_hash; 1812 int i; 1813 int err; 1814 1815 init_rwsem(&namespace_sem); 1816 1817 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount), 1818 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL); 1819 1820 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); 1821 1822 if (!mount_hashtable) 1823 panic("Failed to allocate mount hash table\n"); 1824 1825 /* 1826 * Find the power-of-two list-heads that can fit into the allocation.. 1827 * We don't guarantee that "sizeof(struct list_head)" is necessarily 1828 * a power-of-two. 1829 */ 1830 nr_hash = PAGE_SIZE / sizeof(struct list_head); 1831 hash_bits = 0; 1832 do { 1833 hash_bits++; 1834 } while ((nr_hash >> hash_bits) != 0); 1835 hash_bits--; 1836 1837 /* 1838 * Re-calculate the actual number of entries and the mask 1839 * from the number of bits we can fit. 1840 */ 1841 nr_hash = 1UL << hash_bits; 1842 hash_mask = nr_hash - 1; 1843 1844 printk("Mount-cache hash table entries: %d\n", nr_hash); 1845 1846 /* And initialize the newly allocated array */ 1847 d = mount_hashtable; 1848 i = nr_hash; 1849 do { 1850 INIT_LIST_HEAD(d); 1851 d++; 1852 i--; 1853 } while (i); 1854 err = sysfs_init(); 1855 if (err) 1856 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 1857 __FUNCTION__, err); 1858 err = subsystem_register(&fs_subsys); 1859 if (err) 1860 printk(KERN_WARNING "%s: subsystem_register error: %d\n", 1861 __FUNCTION__, err); 1862 init_rootfs(); 1863 init_mount_tree(); 1864 } 1865 1866 void __put_mnt_ns(struct mnt_namespace *ns) 1867 { 1868 struct vfsmount *root = ns->root; 1869 LIST_HEAD(umount_list); 1870 ns->root = NULL; 1871 spin_unlock(&vfsmount_lock); 1872 down_write(&namespace_sem); 1873 spin_lock(&vfsmount_lock); 1874 umount_tree(root, 0, &umount_list); 1875 spin_unlock(&vfsmount_lock); 1876 up_write(&namespace_sem); 1877 release_mounts(&umount_list); 1878 kfree(ns); 1879 } 1880