xref: /openbmc/linux/fs/namespace.c (revision b22364c8eec89e6b0c081a237f3b6348df87796f)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/quotaops.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <asm/uaccess.h>
29 #include <asm/unistd.h>
30 #include "pnode.h"
31 
32 /* spinlock for vfsmount related operations, inplace of dcache_lock */
33 __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
34 
35 static int event;
36 
37 static struct list_head *mount_hashtable __read_mostly;
38 static int hash_mask __read_mostly, hash_bits __read_mostly;
39 static struct kmem_cache *mnt_cache __read_mostly;
40 static struct rw_semaphore namespace_sem;
41 
42 /* /sys/fs */
43 decl_subsys(fs, NULL, NULL);
44 EXPORT_SYMBOL_GPL(fs_subsys);
45 
46 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
47 {
48 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
49 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
50 	tmp = tmp + (tmp >> hash_bits);
51 	return tmp & hash_mask;
52 }
53 
54 struct vfsmount *alloc_vfsmnt(const char *name)
55 {
56 	struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
57 	if (mnt) {
58 		memset(mnt, 0, sizeof(struct vfsmount));
59 		atomic_set(&mnt->mnt_count, 1);
60 		INIT_LIST_HEAD(&mnt->mnt_hash);
61 		INIT_LIST_HEAD(&mnt->mnt_child);
62 		INIT_LIST_HEAD(&mnt->mnt_mounts);
63 		INIT_LIST_HEAD(&mnt->mnt_list);
64 		INIT_LIST_HEAD(&mnt->mnt_expire);
65 		INIT_LIST_HEAD(&mnt->mnt_share);
66 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
67 		INIT_LIST_HEAD(&mnt->mnt_slave);
68 		if (name) {
69 			int size = strlen(name) + 1;
70 			char *newname = kmalloc(size, GFP_KERNEL);
71 			if (newname) {
72 				memcpy(newname, name, size);
73 				mnt->mnt_devname = newname;
74 			}
75 		}
76 	}
77 	return mnt;
78 }
79 
80 int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
81 {
82 	mnt->mnt_sb = sb;
83 	mnt->mnt_root = dget(sb->s_root);
84 	return 0;
85 }
86 
87 EXPORT_SYMBOL(simple_set_mnt);
88 
89 void free_vfsmnt(struct vfsmount *mnt)
90 {
91 	kfree(mnt->mnt_devname);
92 	kmem_cache_free(mnt_cache, mnt);
93 }
94 
95 /*
96  * find the first or last mount at @dentry on vfsmount @mnt depending on
97  * @dir. If @dir is set return the first mount else return the last mount.
98  */
99 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
100 			      int dir)
101 {
102 	struct list_head *head = mount_hashtable + hash(mnt, dentry);
103 	struct list_head *tmp = head;
104 	struct vfsmount *p, *found = NULL;
105 
106 	for (;;) {
107 		tmp = dir ? tmp->next : tmp->prev;
108 		p = NULL;
109 		if (tmp == head)
110 			break;
111 		p = list_entry(tmp, struct vfsmount, mnt_hash);
112 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
113 			found = p;
114 			break;
115 		}
116 	}
117 	return found;
118 }
119 
120 /*
121  * lookup_mnt increments the ref count before returning
122  * the vfsmount struct.
123  */
124 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
125 {
126 	struct vfsmount *child_mnt;
127 	spin_lock(&vfsmount_lock);
128 	if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
129 		mntget(child_mnt);
130 	spin_unlock(&vfsmount_lock);
131 	return child_mnt;
132 }
133 
134 static inline int check_mnt(struct vfsmount *mnt)
135 {
136 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
137 }
138 
139 static void touch_mnt_namespace(struct mnt_namespace *ns)
140 {
141 	if (ns) {
142 		ns->event = ++event;
143 		wake_up_interruptible(&ns->poll);
144 	}
145 }
146 
147 static void __touch_mnt_namespace(struct mnt_namespace *ns)
148 {
149 	if (ns && ns->event != event) {
150 		ns->event = event;
151 		wake_up_interruptible(&ns->poll);
152 	}
153 }
154 
155 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
156 {
157 	old_nd->dentry = mnt->mnt_mountpoint;
158 	old_nd->mnt = mnt->mnt_parent;
159 	mnt->mnt_parent = mnt;
160 	mnt->mnt_mountpoint = mnt->mnt_root;
161 	list_del_init(&mnt->mnt_child);
162 	list_del_init(&mnt->mnt_hash);
163 	old_nd->dentry->d_mounted--;
164 }
165 
166 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
167 			struct vfsmount *child_mnt)
168 {
169 	child_mnt->mnt_parent = mntget(mnt);
170 	child_mnt->mnt_mountpoint = dget(dentry);
171 	dentry->d_mounted++;
172 }
173 
174 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
175 {
176 	mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
177 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
178 			hash(nd->mnt, nd->dentry));
179 	list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
180 }
181 
182 /*
183  * the caller must hold vfsmount_lock
184  */
185 static void commit_tree(struct vfsmount *mnt)
186 {
187 	struct vfsmount *parent = mnt->mnt_parent;
188 	struct vfsmount *m;
189 	LIST_HEAD(head);
190 	struct mnt_namespace *n = parent->mnt_ns;
191 
192 	BUG_ON(parent == mnt);
193 
194 	list_add_tail(&head, &mnt->mnt_list);
195 	list_for_each_entry(m, &head, mnt_list)
196 		m->mnt_ns = n;
197 	list_splice(&head, n->list.prev);
198 
199 	list_add_tail(&mnt->mnt_hash, mount_hashtable +
200 				hash(parent, mnt->mnt_mountpoint));
201 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
202 	touch_mnt_namespace(n);
203 }
204 
205 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
206 {
207 	struct list_head *next = p->mnt_mounts.next;
208 	if (next == &p->mnt_mounts) {
209 		while (1) {
210 			if (p == root)
211 				return NULL;
212 			next = p->mnt_child.next;
213 			if (next != &p->mnt_parent->mnt_mounts)
214 				break;
215 			p = p->mnt_parent;
216 		}
217 	}
218 	return list_entry(next, struct vfsmount, mnt_child);
219 }
220 
221 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
222 {
223 	struct list_head *prev = p->mnt_mounts.prev;
224 	while (prev != &p->mnt_mounts) {
225 		p = list_entry(prev, struct vfsmount, mnt_child);
226 		prev = p->mnt_mounts.prev;
227 	}
228 	return p;
229 }
230 
231 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
232 					int flag)
233 {
234 	struct super_block *sb = old->mnt_sb;
235 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
236 
237 	if (mnt) {
238 		mnt->mnt_flags = old->mnt_flags;
239 		atomic_inc(&sb->s_active);
240 		mnt->mnt_sb = sb;
241 		mnt->mnt_root = dget(root);
242 		mnt->mnt_mountpoint = mnt->mnt_root;
243 		mnt->mnt_parent = mnt;
244 
245 		if (flag & CL_SLAVE) {
246 			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
247 			mnt->mnt_master = old;
248 			CLEAR_MNT_SHARED(mnt);
249 		} else {
250 			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
251 				list_add(&mnt->mnt_share, &old->mnt_share);
252 			if (IS_MNT_SLAVE(old))
253 				list_add(&mnt->mnt_slave, &old->mnt_slave);
254 			mnt->mnt_master = old->mnt_master;
255 		}
256 		if (flag & CL_MAKE_SHARED)
257 			set_mnt_shared(mnt);
258 
259 		/* stick the duplicate mount on the same expiry list
260 		 * as the original if that was on one */
261 		if (flag & CL_EXPIRE) {
262 			spin_lock(&vfsmount_lock);
263 			if (!list_empty(&old->mnt_expire))
264 				list_add(&mnt->mnt_expire, &old->mnt_expire);
265 			spin_unlock(&vfsmount_lock);
266 		}
267 	}
268 	return mnt;
269 }
270 
271 static inline void __mntput(struct vfsmount *mnt)
272 {
273 	struct super_block *sb = mnt->mnt_sb;
274 	dput(mnt->mnt_root);
275 	free_vfsmnt(mnt);
276 	deactivate_super(sb);
277 }
278 
279 void mntput_no_expire(struct vfsmount *mnt)
280 {
281 repeat:
282 	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
283 		if (likely(!mnt->mnt_pinned)) {
284 			spin_unlock(&vfsmount_lock);
285 			__mntput(mnt);
286 			return;
287 		}
288 		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
289 		mnt->mnt_pinned = 0;
290 		spin_unlock(&vfsmount_lock);
291 		acct_auto_close_mnt(mnt);
292 		security_sb_umount_close(mnt);
293 		goto repeat;
294 	}
295 }
296 
297 EXPORT_SYMBOL(mntput_no_expire);
298 
299 void mnt_pin(struct vfsmount *mnt)
300 {
301 	spin_lock(&vfsmount_lock);
302 	mnt->mnt_pinned++;
303 	spin_unlock(&vfsmount_lock);
304 }
305 
306 EXPORT_SYMBOL(mnt_pin);
307 
308 void mnt_unpin(struct vfsmount *mnt)
309 {
310 	spin_lock(&vfsmount_lock);
311 	if (mnt->mnt_pinned) {
312 		atomic_inc(&mnt->mnt_count);
313 		mnt->mnt_pinned--;
314 	}
315 	spin_unlock(&vfsmount_lock);
316 }
317 
318 EXPORT_SYMBOL(mnt_unpin);
319 
320 /* iterator */
321 static void *m_start(struct seq_file *m, loff_t *pos)
322 {
323 	struct mnt_namespace *n = m->private;
324 	struct list_head *p;
325 	loff_t l = *pos;
326 
327 	down_read(&namespace_sem);
328 	list_for_each(p, &n->list)
329 		if (!l--)
330 			return list_entry(p, struct vfsmount, mnt_list);
331 	return NULL;
332 }
333 
334 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
335 {
336 	struct mnt_namespace *n = m->private;
337 	struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
338 	(*pos)++;
339 	return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
340 }
341 
342 static void m_stop(struct seq_file *m, void *v)
343 {
344 	up_read(&namespace_sem);
345 }
346 
347 static inline void mangle(struct seq_file *m, const char *s)
348 {
349 	seq_escape(m, s, " \t\n\\");
350 }
351 
352 static int show_vfsmnt(struct seq_file *m, void *v)
353 {
354 	struct vfsmount *mnt = v;
355 	int err = 0;
356 	static struct proc_fs_info {
357 		int flag;
358 		char *str;
359 	} fs_info[] = {
360 		{ MS_SYNCHRONOUS, ",sync" },
361 		{ MS_DIRSYNC, ",dirsync" },
362 		{ MS_MANDLOCK, ",mand" },
363 		{ 0, NULL }
364 	};
365 	static struct proc_fs_info mnt_info[] = {
366 		{ MNT_NOSUID, ",nosuid" },
367 		{ MNT_NODEV, ",nodev" },
368 		{ MNT_NOEXEC, ",noexec" },
369 		{ MNT_NOATIME, ",noatime" },
370 		{ MNT_NODIRATIME, ",nodiratime" },
371 		{ MNT_RELATIME, ",relatime" },
372 		{ 0, NULL }
373 	};
374 	struct proc_fs_info *fs_infop;
375 
376 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
377 	seq_putc(m, ' ');
378 	seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
379 	seq_putc(m, ' ');
380 	mangle(m, mnt->mnt_sb->s_type->name);
381 	seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
382 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
383 		if (mnt->mnt_sb->s_flags & fs_infop->flag)
384 			seq_puts(m, fs_infop->str);
385 	}
386 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
387 		if (mnt->mnt_flags & fs_infop->flag)
388 			seq_puts(m, fs_infop->str);
389 	}
390 	if (mnt->mnt_sb->s_op->show_options)
391 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
392 	seq_puts(m, " 0 0\n");
393 	return err;
394 }
395 
396 struct seq_operations mounts_op = {
397 	.start	= m_start,
398 	.next	= m_next,
399 	.stop	= m_stop,
400 	.show	= show_vfsmnt
401 };
402 
403 static int show_vfsstat(struct seq_file *m, void *v)
404 {
405 	struct vfsmount *mnt = v;
406 	int err = 0;
407 
408 	/* device */
409 	if (mnt->mnt_devname) {
410 		seq_puts(m, "device ");
411 		mangle(m, mnt->mnt_devname);
412 	} else
413 		seq_puts(m, "no device");
414 
415 	/* mount point */
416 	seq_puts(m, " mounted on ");
417 	seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
418 	seq_putc(m, ' ');
419 
420 	/* file system type */
421 	seq_puts(m, "with fstype ");
422 	mangle(m, mnt->mnt_sb->s_type->name);
423 
424 	/* optional statistics */
425 	if (mnt->mnt_sb->s_op->show_stats) {
426 		seq_putc(m, ' ');
427 		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
428 	}
429 
430 	seq_putc(m, '\n');
431 	return err;
432 }
433 
434 struct seq_operations mountstats_op = {
435 	.start	= m_start,
436 	.next	= m_next,
437 	.stop	= m_stop,
438 	.show	= show_vfsstat,
439 };
440 
441 /**
442  * may_umount_tree - check if a mount tree is busy
443  * @mnt: root of mount tree
444  *
445  * This is called to check if a tree of mounts has any
446  * open files, pwds, chroots or sub mounts that are
447  * busy.
448  */
449 int may_umount_tree(struct vfsmount *mnt)
450 {
451 	int actual_refs = 0;
452 	int minimum_refs = 0;
453 	struct vfsmount *p;
454 
455 	spin_lock(&vfsmount_lock);
456 	for (p = mnt; p; p = next_mnt(p, mnt)) {
457 		actual_refs += atomic_read(&p->mnt_count);
458 		minimum_refs += 2;
459 	}
460 	spin_unlock(&vfsmount_lock);
461 
462 	if (actual_refs > minimum_refs)
463 		return 0;
464 
465 	return 1;
466 }
467 
468 EXPORT_SYMBOL(may_umount_tree);
469 
470 /**
471  * may_umount - check if a mount point is busy
472  * @mnt: root of mount
473  *
474  * This is called to check if a mount point has any
475  * open files, pwds, chroots or sub mounts. If the
476  * mount has sub mounts this will return busy
477  * regardless of whether the sub mounts are busy.
478  *
479  * Doesn't take quota and stuff into account. IOW, in some cases it will
480  * give false negatives. The main reason why it's here is that we need
481  * a non-destructive way to look for easily umountable filesystems.
482  */
483 int may_umount(struct vfsmount *mnt)
484 {
485 	int ret = 1;
486 	spin_lock(&vfsmount_lock);
487 	if (propagate_mount_busy(mnt, 2))
488 		ret = 0;
489 	spin_unlock(&vfsmount_lock);
490 	return ret;
491 }
492 
493 EXPORT_SYMBOL(may_umount);
494 
495 void release_mounts(struct list_head *head)
496 {
497 	struct vfsmount *mnt;
498 	while (!list_empty(head)) {
499 		mnt = list_entry(head->next, struct vfsmount, mnt_hash);
500 		list_del_init(&mnt->mnt_hash);
501 		if (mnt->mnt_parent != mnt) {
502 			struct dentry *dentry;
503 			struct vfsmount *m;
504 			spin_lock(&vfsmount_lock);
505 			dentry = mnt->mnt_mountpoint;
506 			m = mnt->mnt_parent;
507 			mnt->mnt_mountpoint = mnt->mnt_root;
508 			mnt->mnt_parent = mnt;
509 			spin_unlock(&vfsmount_lock);
510 			dput(dentry);
511 			mntput(m);
512 		}
513 		mntput(mnt);
514 	}
515 }
516 
517 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
518 {
519 	struct vfsmount *p;
520 
521 	for (p = mnt; p; p = next_mnt(p, mnt))
522 		list_move(&p->mnt_hash, kill);
523 
524 	if (propagate)
525 		propagate_umount(kill);
526 
527 	list_for_each_entry(p, kill, mnt_hash) {
528 		list_del_init(&p->mnt_expire);
529 		list_del_init(&p->mnt_list);
530 		__touch_mnt_namespace(p->mnt_ns);
531 		p->mnt_ns = NULL;
532 		list_del_init(&p->mnt_child);
533 		if (p->mnt_parent != p)
534 			p->mnt_mountpoint->d_mounted--;
535 		change_mnt_propagation(p, MS_PRIVATE);
536 	}
537 }
538 
539 static int do_umount(struct vfsmount *mnt, int flags)
540 {
541 	struct super_block *sb = mnt->mnt_sb;
542 	int retval;
543 	LIST_HEAD(umount_list);
544 
545 	retval = security_sb_umount(mnt, flags);
546 	if (retval)
547 		return retval;
548 
549 	/*
550 	 * Allow userspace to request a mountpoint be expired rather than
551 	 * unmounting unconditionally. Unmount only happens if:
552 	 *  (1) the mark is already set (the mark is cleared by mntput())
553 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
554 	 */
555 	if (flags & MNT_EXPIRE) {
556 		if (mnt == current->fs->rootmnt ||
557 		    flags & (MNT_FORCE | MNT_DETACH))
558 			return -EINVAL;
559 
560 		if (atomic_read(&mnt->mnt_count) != 2)
561 			return -EBUSY;
562 
563 		if (!xchg(&mnt->mnt_expiry_mark, 1))
564 			return -EAGAIN;
565 	}
566 
567 	/*
568 	 * If we may have to abort operations to get out of this
569 	 * mount, and they will themselves hold resources we must
570 	 * allow the fs to do things. In the Unix tradition of
571 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
572 	 * might fail to complete on the first run through as other tasks
573 	 * must return, and the like. Thats for the mount program to worry
574 	 * about for the moment.
575 	 */
576 
577 	lock_kernel();
578 	if (sb->s_op->umount_begin)
579 		sb->s_op->umount_begin(mnt, flags);
580 	unlock_kernel();
581 
582 	/*
583 	 * No sense to grab the lock for this test, but test itself looks
584 	 * somewhat bogus. Suggestions for better replacement?
585 	 * Ho-hum... In principle, we might treat that as umount + switch
586 	 * to rootfs. GC would eventually take care of the old vfsmount.
587 	 * Actually it makes sense, especially if rootfs would contain a
588 	 * /reboot - static binary that would close all descriptors and
589 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
590 	 */
591 	if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
592 		/*
593 		 * Special case for "unmounting" root ...
594 		 * we just try to remount it readonly.
595 		 */
596 		down_write(&sb->s_umount);
597 		if (!(sb->s_flags & MS_RDONLY)) {
598 			lock_kernel();
599 			DQUOT_OFF(sb);
600 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
601 			unlock_kernel();
602 		}
603 		up_write(&sb->s_umount);
604 		return retval;
605 	}
606 
607 	down_write(&namespace_sem);
608 	spin_lock(&vfsmount_lock);
609 	event++;
610 
611 	retval = -EBUSY;
612 	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
613 		if (!list_empty(&mnt->mnt_list))
614 			umount_tree(mnt, 1, &umount_list);
615 		retval = 0;
616 	}
617 	spin_unlock(&vfsmount_lock);
618 	if (retval)
619 		security_sb_umount_busy(mnt);
620 	up_write(&namespace_sem);
621 	release_mounts(&umount_list);
622 	return retval;
623 }
624 
625 /*
626  * Now umount can handle mount points as well as block devices.
627  * This is important for filesystems which use unnamed block devices.
628  *
629  * We now support a flag for forced unmount like the other 'big iron'
630  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
631  */
632 
633 asmlinkage long sys_umount(char __user * name, int flags)
634 {
635 	struct nameidata nd;
636 	int retval;
637 
638 	retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
639 	if (retval)
640 		goto out;
641 	retval = -EINVAL;
642 	if (nd.dentry != nd.mnt->mnt_root)
643 		goto dput_and_out;
644 	if (!check_mnt(nd.mnt))
645 		goto dput_and_out;
646 
647 	retval = -EPERM;
648 	if (!capable(CAP_SYS_ADMIN))
649 		goto dput_and_out;
650 
651 	retval = do_umount(nd.mnt, flags);
652 dput_and_out:
653 	path_release_on_umount(&nd);
654 out:
655 	return retval;
656 }
657 
658 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
659 
660 /*
661  *	The 2.0 compatible umount. No flags.
662  */
663 asmlinkage long sys_oldumount(char __user * name)
664 {
665 	return sys_umount(name, 0);
666 }
667 
668 #endif
669 
670 static int mount_is_safe(struct nameidata *nd)
671 {
672 	if (capable(CAP_SYS_ADMIN))
673 		return 0;
674 	return -EPERM;
675 #ifdef notyet
676 	if (S_ISLNK(nd->dentry->d_inode->i_mode))
677 		return -EPERM;
678 	if (nd->dentry->d_inode->i_mode & S_ISVTX) {
679 		if (current->uid != nd->dentry->d_inode->i_uid)
680 			return -EPERM;
681 	}
682 	if (vfs_permission(nd, MAY_WRITE))
683 		return -EPERM;
684 	return 0;
685 #endif
686 }
687 
688 static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
689 {
690 	while (1) {
691 		if (d == dentry)
692 			return 1;
693 		if (d == NULL || d == d->d_parent)
694 			return 0;
695 		d = d->d_parent;
696 	}
697 }
698 
699 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
700 					int flag)
701 {
702 	struct vfsmount *res, *p, *q, *r, *s;
703 	struct nameidata nd;
704 
705 	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
706 		return NULL;
707 
708 	res = q = clone_mnt(mnt, dentry, flag);
709 	if (!q)
710 		goto Enomem;
711 	q->mnt_mountpoint = mnt->mnt_mountpoint;
712 
713 	p = mnt;
714 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
715 		if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
716 			continue;
717 
718 		for (s = r; s; s = next_mnt(s, r)) {
719 			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
720 				s = skip_mnt_tree(s);
721 				continue;
722 			}
723 			while (p != s->mnt_parent) {
724 				p = p->mnt_parent;
725 				q = q->mnt_parent;
726 			}
727 			p = s;
728 			nd.mnt = q;
729 			nd.dentry = p->mnt_mountpoint;
730 			q = clone_mnt(p, p->mnt_root, flag);
731 			if (!q)
732 				goto Enomem;
733 			spin_lock(&vfsmount_lock);
734 			list_add_tail(&q->mnt_list, &res->mnt_list);
735 			attach_mnt(q, &nd);
736 			spin_unlock(&vfsmount_lock);
737 		}
738 	}
739 	return res;
740 Enomem:
741 	if (res) {
742 		LIST_HEAD(umount_list);
743 		spin_lock(&vfsmount_lock);
744 		umount_tree(res, 0, &umount_list);
745 		spin_unlock(&vfsmount_lock);
746 		release_mounts(&umount_list);
747 	}
748 	return NULL;
749 }
750 
751 /*
752  *  @source_mnt : mount tree to be attached
753  *  @nd         : place the mount tree @source_mnt is attached
754  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
755  *  		   store the parent mount and mountpoint dentry.
756  *  		   (done when source_mnt is moved)
757  *
758  *  NOTE: in the table below explains the semantics when a source mount
759  *  of a given type is attached to a destination mount of a given type.
760  * ---------------------------------------------------------------------------
761  * |         BIND MOUNT OPERATION                                            |
762  * |**************************************************************************
763  * | source-->| shared        |       private  |       slave    | unbindable |
764  * | dest     |               |                |                |            |
765  * |   |      |               |                |                |            |
766  * |   v      |               |                |                |            |
767  * |**************************************************************************
768  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
769  * |          |               |                |                |            |
770  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
771  * ***************************************************************************
772  * A bind operation clones the source mount and mounts the clone on the
773  * destination mount.
774  *
775  * (++)  the cloned mount is propagated to all the mounts in the propagation
776  * 	 tree of the destination mount and the cloned mount is added to
777  * 	 the peer group of the source mount.
778  * (+)   the cloned mount is created under the destination mount and is marked
779  *       as shared. The cloned mount is added to the peer group of the source
780  *       mount.
781  * (+++) the mount is propagated to all the mounts in the propagation tree
782  *       of the destination mount and the cloned mount is made slave
783  *       of the same master as that of the source mount. The cloned mount
784  *       is marked as 'shared and slave'.
785  * (*)   the cloned mount is made a slave of the same master as that of the
786  * 	 source mount.
787  *
788  * ---------------------------------------------------------------------------
789  * |         		MOVE MOUNT OPERATION                                 |
790  * |**************************************************************************
791  * | source-->| shared        |       private  |       slave    | unbindable |
792  * | dest     |               |                |                |            |
793  * |   |      |               |                |                |            |
794  * |   v      |               |                |                |            |
795  * |**************************************************************************
796  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
797  * |          |               |                |                |            |
798  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
799  * ***************************************************************************
800  *
801  * (+)  the mount is moved to the destination. And is then propagated to
802  * 	all the mounts in the propagation tree of the destination mount.
803  * (+*)  the mount is moved to the destination.
804  * (+++)  the mount is moved to the destination and is then propagated to
805  * 	all the mounts belonging to the destination mount's propagation tree.
806  * 	the mount is marked as 'shared and slave'.
807  * (*)	the mount continues to be a slave at the new location.
808  *
809  * if the source mount is a tree, the operations explained above is
810  * applied to each mount in the tree.
811  * Must be called without spinlocks held, since this function can sleep
812  * in allocations.
813  */
814 static int attach_recursive_mnt(struct vfsmount *source_mnt,
815 			struct nameidata *nd, struct nameidata *parent_nd)
816 {
817 	LIST_HEAD(tree_list);
818 	struct vfsmount *dest_mnt = nd->mnt;
819 	struct dentry *dest_dentry = nd->dentry;
820 	struct vfsmount *child, *p;
821 
822 	if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
823 		return -EINVAL;
824 
825 	if (IS_MNT_SHARED(dest_mnt)) {
826 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
827 			set_mnt_shared(p);
828 	}
829 
830 	spin_lock(&vfsmount_lock);
831 	if (parent_nd) {
832 		detach_mnt(source_mnt, parent_nd);
833 		attach_mnt(source_mnt, nd);
834 		touch_mnt_namespace(current->nsproxy->mnt_ns);
835 	} else {
836 		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
837 		commit_tree(source_mnt);
838 	}
839 
840 	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
841 		list_del_init(&child->mnt_hash);
842 		commit_tree(child);
843 	}
844 	spin_unlock(&vfsmount_lock);
845 	return 0;
846 }
847 
848 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
849 {
850 	int err;
851 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
852 		return -EINVAL;
853 
854 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
855 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
856 		return -ENOTDIR;
857 
858 	err = -ENOENT;
859 	mutex_lock(&nd->dentry->d_inode->i_mutex);
860 	if (IS_DEADDIR(nd->dentry->d_inode))
861 		goto out_unlock;
862 
863 	err = security_sb_check_sb(mnt, nd);
864 	if (err)
865 		goto out_unlock;
866 
867 	err = -ENOENT;
868 	if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
869 		err = attach_recursive_mnt(mnt, nd, NULL);
870 out_unlock:
871 	mutex_unlock(&nd->dentry->d_inode->i_mutex);
872 	if (!err)
873 		security_sb_post_addmount(mnt, nd);
874 	return err;
875 }
876 
877 /*
878  * recursively change the type of the mountpoint.
879  */
880 static int do_change_type(struct nameidata *nd, int flag)
881 {
882 	struct vfsmount *m, *mnt = nd->mnt;
883 	int recurse = flag & MS_REC;
884 	int type = flag & ~MS_REC;
885 
886 	if (nd->dentry != nd->mnt->mnt_root)
887 		return -EINVAL;
888 
889 	down_write(&namespace_sem);
890 	spin_lock(&vfsmount_lock);
891 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
892 		change_mnt_propagation(m, type);
893 	spin_unlock(&vfsmount_lock);
894 	up_write(&namespace_sem);
895 	return 0;
896 }
897 
898 /*
899  * do loopback mount.
900  */
901 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
902 {
903 	struct nameidata old_nd;
904 	struct vfsmount *mnt = NULL;
905 	int err = mount_is_safe(nd);
906 	if (err)
907 		return err;
908 	if (!old_name || !*old_name)
909 		return -EINVAL;
910 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
911 	if (err)
912 		return err;
913 
914 	down_write(&namespace_sem);
915 	err = -EINVAL;
916 	if (IS_MNT_UNBINDABLE(old_nd.mnt))
917  		goto out;
918 
919 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
920 		goto out;
921 
922 	err = -ENOMEM;
923 	if (recurse)
924 		mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
925 	else
926 		mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
927 
928 	if (!mnt)
929 		goto out;
930 
931 	err = graft_tree(mnt, nd);
932 	if (err) {
933 		LIST_HEAD(umount_list);
934 		spin_lock(&vfsmount_lock);
935 		umount_tree(mnt, 0, &umount_list);
936 		spin_unlock(&vfsmount_lock);
937 		release_mounts(&umount_list);
938 	}
939 
940 out:
941 	up_write(&namespace_sem);
942 	path_release(&old_nd);
943 	return err;
944 }
945 
946 /*
947  * change filesystem flags. dir should be a physical root of filesystem.
948  * If you've mounted a non-root directory somewhere and want to do remount
949  * on it - tough luck.
950  */
951 static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
952 		      void *data)
953 {
954 	int err;
955 	struct super_block *sb = nd->mnt->mnt_sb;
956 
957 	if (!capable(CAP_SYS_ADMIN))
958 		return -EPERM;
959 
960 	if (!check_mnt(nd->mnt))
961 		return -EINVAL;
962 
963 	if (nd->dentry != nd->mnt->mnt_root)
964 		return -EINVAL;
965 
966 	down_write(&sb->s_umount);
967 	err = do_remount_sb(sb, flags, data, 0);
968 	if (!err)
969 		nd->mnt->mnt_flags = mnt_flags;
970 	up_write(&sb->s_umount);
971 	if (!err)
972 		security_sb_post_remount(nd->mnt, flags, data);
973 	return err;
974 }
975 
976 static inline int tree_contains_unbindable(struct vfsmount *mnt)
977 {
978 	struct vfsmount *p;
979 	for (p = mnt; p; p = next_mnt(p, mnt)) {
980 		if (IS_MNT_UNBINDABLE(p))
981 			return 1;
982 	}
983 	return 0;
984 }
985 
986 static int do_move_mount(struct nameidata *nd, char *old_name)
987 {
988 	struct nameidata old_nd, parent_nd;
989 	struct vfsmount *p;
990 	int err = 0;
991 	if (!capable(CAP_SYS_ADMIN))
992 		return -EPERM;
993 	if (!old_name || !*old_name)
994 		return -EINVAL;
995 	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
996 	if (err)
997 		return err;
998 
999 	down_write(&namespace_sem);
1000 	while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1001 		;
1002 	err = -EINVAL;
1003 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1004 		goto out;
1005 
1006 	err = -ENOENT;
1007 	mutex_lock(&nd->dentry->d_inode->i_mutex);
1008 	if (IS_DEADDIR(nd->dentry->d_inode))
1009 		goto out1;
1010 
1011 	if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1012 		goto out1;
1013 
1014 	err = -EINVAL;
1015 	if (old_nd.dentry != old_nd.mnt->mnt_root)
1016 		goto out1;
1017 
1018 	if (old_nd.mnt == old_nd.mnt->mnt_parent)
1019 		goto out1;
1020 
1021 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1022 	      S_ISDIR(old_nd.dentry->d_inode->i_mode))
1023 		goto out1;
1024 	/*
1025 	 * Don't move a mount residing in a shared parent.
1026 	 */
1027 	if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1028 		goto out1;
1029 	/*
1030 	 * Don't move a mount tree containing unbindable mounts to a destination
1031 	 * mount which is shared.
1032 	 */
1033 	if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1034 		goto out1;
1035 	err = -ELOOP;
1036 	for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1037 		if (p == old_nd.mnt)
1038 			goto out1;
1039 
1040 	if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1041 		goto out1;
1042 
1043 	spin_lock(&vfsmount_lock);
1044 	/* if the mount is moved, it should no longer be expire
1045 	 * automatically */
1046 	list_del_init(&old_nd.mnt->mnt_expire);
1047 	spin_unlock(&vfsmount_lock);
1048 out1:
1049 	mutex_unlock(&nd->dentry->d_inode->i_mutex);
1050 out:
1051 	up_write(&namespace_sem);
1052 	if (!err)
1053 		path_release(&parent_nd);
1054 	path_release(&old_nd);
1055 	return err;
1056 }
1057 
1058 /*
1059  * create a new mount for userspace and request it to be added into the
1060  * namespace's tree
1061  */
1062 static int do_new_mount(struct nameidata *nd, char *type, int flags,
1063 			int mnt_flags, char *name, void *data)
1064 {
1065 	struct vfsmount *mnt;
1066 
1067 	if (!type || !memchr(type, 0, PAGE_SIZE))
1068 		return -EINVAL;
1069 
1070 	/* we need capabilities... */
1071 	if (!capable(CAP_SYS_ADMIN))
1072 		return -EPERM;
1073 
1074 	mnt = do_kern_mount(type, flags, name, data);
1075 	if (IS_ERR(mnt))
1076 		return PTR_ERR(mnt);
1077 
1078 	return do_add_mount(mnt, nd, mnt_flags, NULL);
1079 }
1080 
1081 /*
1082  * add a mount into a namespace's mount tree
1083  * - provide the option of adding the new mount to an expiration list
1084  */
1085 int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1086 		 int mnt_flags, struct list_head *fslist)
1087 {
1088 	int err;
1089 
1090 	down_write(&namespace_sem);
1091 	/* Something was mounted here while we slept */
1092 	while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1093 		;
1094 	err = -EINVAL;
1095 	if (!check_mnt(nd->mnt))
1096 		goto unlock;
1097 
1098 	/* Refuse the same filesystem on the same mount point */
1099 	err = -EBUSY;
1100 	if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1101 	    nd->mnt->mnt_root == nd->dentry)
1102 		goto unlock;
1103 
1104 	err = -EINVAL;
1105 	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1106 		goto unlock;
1107 
1108 	newmnt->mnt_flags = mnt_flags;
1109 	if ((err = graft_tree(newmnt, nd)))
1110 		goto unlock;
1111 
1112 	if (fslist) {
1113 		/* add to the specified expiration list */
1114 		spin_lock(&vfsmount_lock);
1115 		list_add_tail(&newmnt->mnt_expire, fslist);
1116 		spin_unlock(&vfsmount_lock);
1117 	}
1118 	up_write(&namespace_sem);
1119 	return 0;
1120 
1121 unlock:
1122 	up_write(&namespace_sem);
1123 	mntput(newmnt);
1124 	return err;
1125 }
1126 
1127 EXPORT_SYMBOL_GPL(do_add_mount);
1128 
1129 static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1130 				struct list_head *umounts)
1131 {
1132 	spin_lock(&vfsmount_lock);
1133 
1134 	/*
1135 	 * Check if mount is still attached, if not, let whoever holds it deal
1136 	 * with the sucker
1137 	 */
1138 	if (mnt->mnt_parent == mnt) {
1139 		spin_unlock(&vfsmount_lock);
1140 		return;
1141 	}
1142 
1143 	/*
1144 	 * Check that it is still dead: the count should now be 2 - as
1145 	 * contributed by the vfsmount parent and the mntget above
1146 	 */
1147 	if (!propagate_mount_busy(mnt, 2)) {
1148 		/* delete from the namespace */
1149 		touch_mnt_namespace(mnt->mnt_ns);
1150 		list_del_init(&mnt->mnt_list);
1151 		mnt->mnt_ns = NULL;
1152 		umount_tree(mnt, 1, umounts);
1153 		spin_unlock(&vfsmount_lock);
1154 	} else {
1155 		/*
1156 		 * Someone brought it back to life whilst we didn't have any
1157 		 * locks held so return it to the expiration list
1158 		 */
1159 		list_add_tail(&mnt->mnt_expire, mounts);
1160 		spin_unlock(&vfsmount_lock);
1161 	}
1162 }
1163 
1164 /*
1165  * go through the vfsmounts we've just consigned to the graveyard to
1166  * - check that they're still dead
1167  * - delete the vfsmount from the appropriate namespace under lock
1168  * - dispose of the corpse
1169  */
1170 static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
1171 {
1172 	struct mnt_namespace *ns;
1173 	struct vfsmount *mnt;
1174 
1175 	while (!list_empty(graveyard)) {
1176 		LIST_HEAD(umounts);
1177 		mnt = list_entry(graveyard->next, struct vfsmount, mnt_expire);
1178 		list_del_init(&mnt->mnt_expire);
1179 
1180 		/* don't do anything if the namespace is dead - all the
1181 		 * vfsmounts from it are going away anyway */
1182 		ns = mnt->mnt_ns;
1183 		if (!ns || !ns->root)
1184 			continue;
1185 		get_mnt_ns(ns);
1186 
1187 		spin_unlock(&vfsmount_lock);
1188 		down_write(&namespace_sem);
1189 		expire_mount(mnt, mounts, &umounts);
1190 		up_write(&namespace_sem);
1191 		release_mounts(&umounts);
1192 		mntput(mnt);
1193 		put_mnt_ns(ns);
1194 		spin_lock(&vfsmount_lock);
1195 	}
1196 }
1197 
1198 /*
1199  * process a list of expirable mountpoints with the intent of discarding any
1200  * mountpoints that aren't in use and haven't been touched since last we came
1201  * here
1202  */
1203 void mark_mounts_for_expiry(struct list_head *mounts)
1204 {
1205 	struct vfsmount *mnt, *next;
1206 	LIST_HEAD(graveyard);
1207 
1208 	if (list_empty(mounts))
1209 		return;
1210 
1211 	spin_lock(&vfsmount_lock);
1212 
1213 	/* extract from the expiration list every vfsmount that matches the
1214 	 * following criteria:
1215 	 * - only referenced by its parent vfsmount
1216 	 * - still marked for expiry (marked on the last call here; marks are
1217 	 *   cleared by mntput())
1218 	 */
1219 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1220 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1221 		    atomic_read(&mnt->mnt_count) != 1)
1222 			continue;
1223 
1224 		mntget(mnt);
1225 		list_move(&mnt->mnt_expire, &graveyard);
1226 	}
1227 
1228 	expire_mount_list(&graveyard, mounts);
1229 
1230 	spin_unlock(&vfsmount_lock);
1231 }
1232 
1233 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1234 
1235 /*
1236  * Ripoff of 'select_parent()'
1237  *
1238  * search the list of submounts for a given mountpoint, and move any
1239  * shrinkable submounts to the 'graveyard' list.
1240  */
1241 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1242 {
1243 	struct vfsmount *this_parent = parent;
1244 	struct list_head *next;
1245 	int found = 0;
1246 
1247 repeat:
1248 	next = this_parent->mnt_mounts.next;
1249 resume:
1250 	while (next != &this_parent->mnt_mounts) {
1251 		struct list_head *tmp = next;
1252 		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1253 
1254 		next = tmp->next;
1255 		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1256 			continue;
1257 		/*
1258 		 * Descend a level if the d_mounts list is non-empty.
1259 		 */
1260 		if (!list_empty(&mnt->mnt_mounts)) {
1261 			this_parent = mnt;
1262 			goto repeat;
1263 		}
1264 
1265 		if (!propagate_mount_busy(mnt, 1)) {
1266 			mntget(mnt);
1267 			list_move_tail(&mnt->mnt_expire, graveyard);
1268 			found++;
1269 		}
1270 	}
1271 	/*
1272 	 * All done at this level ... ascend and resume the search
1273 	 */
1274 	if (this_parent != parent) {
1275 		next = this_parent->mnt_child.next;
1276 		this_parent = this_parent->mnt_parent;
1277 		goto resume;
1278 	}
1279 	return found;
1280 }
1281 
1282 /*
1283  * process a list of expirable mountpoints with the intent of discarding any
1284  * submounts of a specific parent mountpoint
1285  */
1286 void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
1287 {
1288 	LIST_HEAD(graveyard);
1289 	int found;
1290 
1291 	spin_lock(&vfsmount_lock);
1292 
1293 	/* extract submounts of 'mountpoint' from the expiration list */
1294 	while ((found = select_submounts(mountpoint, &graveyard)) != 0)
1295 		expire_mount_list(&graveyard, mounts);
1296 
1297 	spin_unlock(&vfsmount_lock);
1298 }
1299 
1300 EXPORT_SYMBOL_GPL(shrink_submounts);
1301 
1302 /*
1303  * Some copy_from_user() implementations do not return the exact number of
1304  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1305  * Note that this function differs from copy_from_user() in that it will oops
1306  * on bad values of `to', rather than returning a short copy.
1307  */
1308 static long exact_copy_from_user(void *to, const void __user * from,
1309 				 unsigned long n)
1310 {
1311 	char *t = to;
1312 	const char __user *f = from;
1313 	char c;
1314 
1315 	if (!access_ok(VERIFY_READ, from, n))
1316 		return n;
1317 
1318 	while (n) {
1319 		if (__get_user(c, f)) {
1320 			memset(t, 0, n);
1321 			break;
1322 		}
1323 		*t++ = c;
1324 		f++;
1325 		n--;
1326 	}
1327 	return n;
1328 }
1329 
1330 int copy_mount_options(const void __user * data, unsigned long *where)
1331 {
1332 	int i;
1333 	unsigned long page;
1334 	unsigned long size;
1335 
1336 	*where = 0;
1337 	if (!data)
1338 		return 0;
1339 
1340 	if (!(page = __get_free_page(GFP_KERNEL)))
1341 		return -ENOMEM;
1342 
1343 	/* We only care that *some* data at the address the user
1344 	 * gave us is valid.  Just in case, we'll zero
1345 	 * the remainder of the page.
1346 	 */
1347 	/* copy_from_user cannot cross TASK_SIZE ! */
1348 	size = TASK_SIZE - (unsigned long)data;
1349 	if (size > PAGE_SIZE)
1350 		size = PAGE_SIZE;
1351 
1352 	i = size - exact_copy_from_user((void *)page, data, size);
1353 	if (!i) {
1354 		free_page(page);
1355 		return -EFAULT;
1356 	}
1357 	if (i != PAGE_SIZE)
1358 		memset((char *)page + i, 0, PAGE_SIZE - i);
1359 	*where = page;
1360 	return 0;
1361 }
1362 
1363 /*
1364  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1365  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1366  *
1367  * data is a (void *) that can point to any structure up to
1368  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1369  * information (or be NULL).
1370  *
1371  * Pre-0.97 versions of mount() didn't have a flags word.
1372  * When the flags word was introduced its top half was required
1373  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1374  * Therefore, if this magic number is present, it carries no information
1375  * and must be discarded.
1376  */
1377 long do_mount(char *dev_name, char *dir_name, char *type_page,
1378 		  unsigned long flags, void *data_page)
1379 {
1380 	struct nameidata nd;
1381 	int retval = 0;
1382 	int mnt_flags = 0;
1383 
1384 	/* Discard magic */
1385 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1386 		flags &= ~MS_MGC_MSK;
1387 
1388 	/* Basic sanity checks */
1389 
1390 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1391 		return -EINVAL;
1392 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1393 		return -EINVAL;
1394 
1395 	if (data_page)
1396 		((char *)data_page)[PAGE_SIZE - 1] = 0;
1397 
1398 	/* Separate the per-mountpoint flags */
1399 	if (flags & MS_NOSUID)
1400 		mnt_flags |= MNT_NOSUID;
1401 	if (flags & MS_NODEV)
1402 		mnt_flags |= MNT_NODEV;
1403 	if (flags & MS_NOEXEC)
1404 		mnt_flags |= MNT_NOEXEC;
1405 	if (flags & MS_NOATIME)
1406 		mnt_flags |= MNT_NOATIME;
1407 	if (flags & MS_NODIRATIME)
1408 		mnt_flags |= MNT_NODIRATIME;
1409 	if (flags & MS_RELATIME)
1410 		mnt_flags |= MNT_RELATIME;
1411 
1412 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1413 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME);
1414 
1415 	/* ... and get the mountpoint */
1416 	retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1417 	if (retval)
1418 		return retval;
1419 
1420 	retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1421 	if (retval)
1422 		goto dput_out;
1423 
1424 	if (flags & MS_REMOUNT)
1425 		retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1426 				    data_page);
1427 	else if (flags & MS_BIND)
1428 		retval = do_loopback(&nd, dev_name, flags & MS_REC);
1429 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1430 		retval = do_change_type(&nd, flags);
1431 	else if (flags & MS_MOVE)
1432 		retval = do_move_mount(&nd, dev_name);
1433 	else
1434 		retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1435 				      dev_name, data_page);
1436 dput_out:
1437 	path_release(&nd);
1438 	return retval;
1439 }
1440 
1441 /*
1442  * Allocate a new namespace structure and populate it with contents
1443  * copied from the namespace of the passed in task structure.
1444  */
1445 struct mnt_namespace *dup_mnt_ns(struct task_struct *tsk,
1446 		struct fs_struct *fs)
1447 {
1448 	struct mnt_namespace *mnt_ns = tsk->nsproxy->mnt_ns;
1449 	struct mnt_namespace *new_ns;
1450 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1451 	struct vfsmount *p, *q;
1452 
1453 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1454 	if (!new_ns)
1455 		return NULL;
1456 
1457 	atomic_set(&new_ns->count, 1);
1458 	INIT_LIST_HEAD(&new_ns->list);
1459 	init_waitqueue_head(&new_ns->poll);
1460 	new_ns->event = 0;
1461 
1462 	down_write(&namespace_sem);
1463 	/* First pass: copy the tree topology */
1464 	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1465 					CL_COPY_ALL | CL_EXPIRE);
1466 	if (!new_ns->root) {
1467 		up_write(&namespace_sem);
1468 		kfree(new_ns);
1469 		return NULL;
1470 	}
1471 	spin_lock(&vfsmount_lock);
1472 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1473 	spin_unlock(&vfsmount_lock);
1474 
1475 	/*
1476 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1477 	 * as belonging to new namespace.  We have already acquired a private
1478 	 * fs_struct, so tsk->fs->lock is not needed.
1479 	 */
1480 	p = mnt_ns->root;
1481 	q = new_ns->root;
1482 	while (p) {
1483 		q->mnt_ns = new_ns;
1484 		if (fs) {
1485 			if (p == fs->rootmnt) {
1486 				rootmnt = p;
1487 				fs->rootmnt = mntget(q);
1488 			}
1489 			if (p == fs->pwdmnt) {
1490 				pwdmnt = p;
1491 				fs->pwdmnt = mntget(q);
1492 			}
1493 			if (p == fs->altrootmnt) {
1494 				altrootmnt = p;
1495 				fs->altrootmnt = mntget(q);
1496 			}
1497 		}
1498 		p = next_mnt(p, mnt_ns->root);
1499 		q = next_mnt(q, new_ns->root);
1500 	}
1501 	up_write(&namespace_sem);
1502 
1503 	if (rootmnt)
1504 		mntput(rootmnt);
1505 	if (pwdmnt)
1506 		mntput(pwdmnt);
1507 	if (altrootmnt)
1508 		mntput(altrootmnt);
1509 
1510 	return new_ns;
1511 }
1512 
1513 int copy_mnt_ns(int flags, struct task_struct *tsk)
1514 {
1515 	struct mnt_namespace *ns = tsk->nsproxy->mnt_ns;
1516 	struct mnt_namespace *new_ns;
1517 	int err = 0;
1518 
1519 	if (!ns)
1520 		return 0;
1521 
1522 	get_mnt_ns(ns);
1523 
1524 	if (!(flags & CLONE_NEWNS))
1525 		return 0;
1526 
1527 	if (!capable(CAP_SYS_ADMIN)) {
1528 		err = -EPERM;
1529 		goto out;
1530 	}
1531 
1532 	new_ns = dup_mnt_ns(tsk, tsk->fs);
1533 	if (!new_ns) {
1534 		err = -ENOMEM;
1535 		goto out;
1536 	}
1537 
1538 	tsk->nsproxy->mnt_ns = new_ns;
1539 
1540 out:
1541 	put_mnt_ns(ns);
1542 	return err;
1543 }
1544 
1545 asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1546 			  char __user * type, unsigned long flags,
1547 			  void __user * data)
1548 {
1549 	int retval;
1550 	unsigned long data_page;
1551 	unsigned long type_page;
1552 	unsigned long dev_page;
1553 	char *dir_page;
1554 
1555 	retval = copy_mount_options(type, &type_page);
1556 	if (retval < 0)
1557 		return retval;
1558 
1559 	dir_page = getname(dir_name);
1560 	retval = PTR_ERR(dir_page);
1561 	if (IS_ERR(dir_page))
1562 		goto out1;
1563 
1564 	retval = copy_mount_options(dev_name, &dev_page);
1565 	if (retval < 0)
1566 		goto out2;
1567 
1568 	retval = copy_mount_options(data, &data_page);
1569 	if (retval < 0)
1570 		goto out3;
1571 
1572 	lock_kernel();
1573 	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1574 			  flags, (void *)data_page);
1575 	unlock_kernel();
1576 	free_page(data_page);
1577 
1578 out3:
1579 	free_page(dev_page);
1580 out2:
1581 	putname(dir_page);
1582 out1:
1583 	free_page(type_page);
1584 	return retval;
1585 }
1586 
1587 /*
1588  * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1589  * It can block. Requires the big lock held.
1590  */
1591 void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1592 		 struct dentry *dentry)
1593 {
1594 	struct dentry *old_root;
1595 	struct vfsmount *old_rootmnt;
1596 	write_lock(&fs->lock);
1597 	old_root = fs->root;
1598 	old_rootmnt = fs->rootmnt;
1599 	fs->rootmnt = mntget(mnt);
1600 	fs->root = dget(dentry);
1601 	write_unlock(&fs->lock);
1602 	if (old_root) {
1603 		dput(old_root);
1604 		mntput(old_rootmnt);
1605 	}
1606 }
1607 
1608 /*
1609  * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1610  * It can block. Requires the big lock held.
1611  */
1612 void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1613 		struct dentry *dentry)
1614 {
1615 	struct dentry *old_pwd;
1616 	struct vfsmount *old_pwdmnt;
1617 
1618 	write_lock(&fs->lock);
1619 	old_pwd = fs->pwd;
1620 	old_pwdmnt = fs->pwdmnt;
1621 	fs->pwdmnt = mntget(mnt);
1622 	fs->pwd = dget(dentry);
1623 	write_unlock(&fs->lock);
1624 
1625 	if (old_pwd) {
1626 		dput(old_pwd);
1627 		mntput(old_pwdmnt);
1628 	}
1629 }
1630 
1631 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1632 {
1633 	struct task_struct *g, *p;
1634 	struct fs_struct *fs;
1635 
1636 	read_lock(&tasklist_lock);
1637 	do_each_thread(g, p) {
1638 		task_lock(p);
1639 		fs = p->fs;
1640 		if (fs) {
1641 			atomic_inc(&fs->count);
1642 			task_unlock(p);
1643 			if (fs->root == old_nd->dentry
1644 			    && fs->rootmnt == old_nd->mnt)
1645 				set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1646 			if (fs->pwd == old_nd->dentry
1647 			    && fs->pwdmnt == old_nd->mnt)
1648 				set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1649 			put_fs_struct(fs);
1650 		} else
1651 			task_unlock(p);
1652 	} while_each_thread(g, p);
1653 	read_unlock(&tasklist_lock);
1654 }
1655 
1656 /*
1657  * pivot_root Semantics:
1658  * Moves the root file system of the current process to the directory put_old,
1659  * makes new_root as the new root file system of the current process, and sets
1660  * root/cwd of all processes which had them on the current root to new_root.
1661  *
1662  * Restrictions:
1663  * The new_root and put_old must be directories, and  must not be on the
1664  * same file  system as the current process root. The put_old  must  be
1665  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
1666  * pointed to by put_old must yield the same directory as new_root. No other
1667  * file system may be mounted on put_old. After all, new_root is a mountpoint.
1668  *
1669  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1670  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1671  * in this situation.
1672  *
1673  * Notes:
1674  *  - we don't move root/cwd if they are not at the root (reason: if something
1675  *    cared enough to change them, it's probably wrong to force them elsewhere)
1676  *  - it's okay to pick a root that isn't the root of a file system, e.g.
1677  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1678  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1679  *    first.
1680  */
1681 asmlinkage long sys_pivot_root(const char __user * new_root,
1682 			       const char __user * put_old)
1683 {
1684 	struct vfsmount *tmp;
1685 	struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1686 	int error;
1687 
1688 	if (!capable(CAP_SYS_ADMIN))
1689 		return -EPERM;
1690 
1691 	lock_kernel();
1692 
1693 	error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1694 			    &new_nd);
1695 	if (error)
1696 		goto out0;
1697 	error = -EINVAL;
1698 	if (!check_mnt(new_nd.mnt))
1699 		goto out1;
1700 
1701 	error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1702 	if (error)
1703 		goto out1;
1704 
1705 	error = security_sb_pivotroot(&old_nd, &new_nd);
1706 	if (error) {
1707 		path_release(&old_nd);
1708 		goto out1;
1709 	}
1710 
1711 	read_lock(&current->fs->lock);
1712 	user_nd.mnt = mntget(current->fs->rootmnt);
1713 	user_nd.dentry = dget(current->fs->root);
1714 	read_unlock(&current->fs->lock);
1715 	down_write(&namespace_sem);
1716 	mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1717 	error = -EINVAL;
1718 	if (IS_MNT_SHARED(old_nd.mnt) ||
1719 		IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1720 		IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1721 		goto out2;
1722 	if (!check_mnt(user_nd.mnt))
1723 		goto out2;
1724 	error = -ENOENT;
1725 	if (IS_DEADDIR(new_nd.dentry->d_inode))
1726 		goto out2;
1727 	if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1728 		goto out2;
1729 	if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1730 		goto out2;
1731 	error = -EBUSY;
1732 	if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1733 		goto out2; /* loop, on the same file system  */
1734 	error = -EINVAL;
1735 	if (user_nd.mnt->mnt_root != user_nd.dentry)
1736 		goto out2; /* not a mountpoint */
1737 	if (user_nd.mnt->mnt_parent == user_nd.mnt)
1738 		goto out2; /* not attached */
1739 	if (new_nd.mnt->mnt_root != new_nd.dentry)
1740 		goto out2; /* not a mountpoint */
1741 	if (new_nd.mnt->mnt_parent == new_nd.mnt)
1742 		goto out2; /* not attached */
1743 	tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1744 	spin_lock(&vfsmount_lock);
1745 	if (tmp != new_nd.mnt) {
1746 		for (;;) {
1747 			if (tmp->mnt_parent == tmp)
1748 				goto out3; /* already mounted on put_old */
1749 			if (tmp->mnt_parent == new_nd.mnt)
1750 				break;
1751 			tmp = tmp->mnt_parent;
1752 		}
1753 		if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1754 			goto out3;
1755 	} else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1756 		goto out3;
1757 	detach_mnt(new_nd.mnt, &parent_nd);
1758 	detach_mnt(user_nd.mnt, &root_parent);
1759 	attach_mnt(user_nd.mnt, &old_nd);     /* mount old root on put_old */
1760 	attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1761 	touch_mnt_namespace(current->nsproxy->mnt_ns);
1762 	spin_unlock(&vfsmount_lock);
1763 	chroot_fs_refs(&user_nd, &new_nd);
1764 	security_sb_post_pivotroot(&user_nd, &new_nd);
1765 	error = 0;
1766 	path_release(&root_parent);
1767 	path_release(&parent_nd);
1768 out2:
1769 	mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1770 	up_write(&namespace_sem);
1771 	path_release(&user_nd);
1772 	path_release(&old_nd);
1773 out1:
1774 	path_release(&new_nd);
1775 out0:
1776 	unlock_kernel();
1777 	return error;
1778 out3:
1779 	spin_unlock(&vfsmount_lock);
1780 	goto out2;
1781 }
1782 
1783 static void __init init_mount_tree(void)
1784 {
1785 	struct vfsmount *mnt;
1786 	struct mnt_namespace *ns;
1787 
1788 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1789 	if (IS_ERR(mnt))
1790 		panic("Can't create rootfs");
1791 	ns = kmalloc(sizeof(*ns), GFP_KERNEL);
1792 	if (!ns)
1793 		panic("Can't allocate initial namespace");
1794 	atomic_set(&ns->count, 1);
1795 	INIT_LIST_HEAD(&ns->list);
1796 	init_waitqueue_head(&ns->poll);
1797 	ns->event = 0;
1798 	list_add(&mnt->mnt_list, &ns->list);
1799 	ns->root = mnt;
1800 	mnt->mnt_ns = ns;
1801 
1802 	init_task.nsproxy->mnt_ns = ns;
1803 	get_mnt_ns(ns);
1804 
1805 	set_fs_pwd(current->fs, ns->root, ns->root->mnt_root);
1806 	set_fs_root(current->fs, ns->root, ns->root->mnt_root);
1807 }
1808 
1809 void __init mnt_init(unsigned long mempages)
1810 {
1811 	struct list_head *d;
1812 	unsigned int nr_hash;
1813 	int i;
1814 	int err;
1815 
1816 	init_rwsem(&namespace_sem);
1817 
1818 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1819 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
1820 
1821 	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1822 
1823 	if (!mount_hashtable)
1824 		panic("Failed to allocate mount hash table\n");
1825 
1826 	/*
1827 	 * Find the power-of-two list-heads that can fit into the allocation..
1828 	 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1829 	 * a power-of-two.
1830 	 */
1831 	nr_hash = PAGE_SIZE / sizeof(struct list_head);
1832 	hash_bits = 0;
1833 	do {
1834 		hash_bits++;
1835 	} while ((nr_hash >> hash_bits) != 0);
1836 	hash_bits--;
1837 
1838 	/*
1839 	 * Re-calculate the actual number of entries and the mask
1840 	 * from the number of bits we can fit.
1841 	 */
1842 	nr_hash = 1UL << hash_bits;
1843 	hash_mask = nr_hash - 1;
1844 
1845 	printk("Mount-cache hash table entries: %d\n", nr_hash);
1846 
1847 	/* And initialize the newly allocated array */
1848 	d = mount_hashtable;
1849 	i = nr_hash;
1850 	do {
1851 		INIT_LIST_HEAD(d);
1852 		d++;
1853 		i--;
1854 	} while (i);
1855 	err = sysfs_init();
1856 	if (err)
1857 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
1858 			__FUNCTION__, err);
1859 	err = subsystem_register(&fs_subsys);
1860 	if (err)
1861 		printk(KERN_WARNING "%s: subsystem_register error: %d\n",
1862 			__FUNCTION__, err);
1863 	init_rootfs();
1864 	init_mount_tree();
1865 }
1866 
1867 void __put_mnt_ns(struct mnt_namespace *ns)
1868 {
1869 	struct vfsmount *root = ns->root;
1870 	LIST_HEAD(umount_list);
1871 	ns->root = NULL;
1872 	spin_unlock(&vfsmount_lock);
1873 	down_write(&namespace_sem);
1874 	spin_lock(&vfsmount_lock);
1875 	umount_tree(root, 0, &umount_list);
1876 	spin_unlock(&vfsmount_lock);
1877 	up_write(&namespace_sem);
1878 	release_mounts(&umount_list);
1879 	kfree(ns);
1880 }
1881