xref: /openbmc/linux/fs/namespace.c (revision 78aa08a8cab6731ab8f8241a9eb0b5021a648dd6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 
36 #include "pnode.h"
37 #include "internal.h"
38 
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
41 
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
46 
47 static __initdata unsigned long mhash_entries;
48 static int __init set_mhash_entries(char *str)
49 {
50 	if (!str)
51 		return 0;
52 	mhash_entries = simple_strtoul(str, &str, 0);
53 	return 1;
54 }
55 __setup("mhash_entries=", set_mhash_entries);
56 
57 static __initdata unsigned long mphash_entries;
58 static int __init set_mphash_entries(char *str)
59 {
60 	if (!str)
61 		return 0;
62 	mphash_entries = simple_strtoul(str, &str, 0);
63 	return 1;
64 }
65 __setup("mphash_entries=", set_mphash_entries);
66 
67 static u64 event;
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
70 
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77 
78 struct mount_kattr {
79 	unsigned int attr_set;
80 	unsigned int attr_clr;
81 	unsigned int propagation;
82 	unsigned int lookup_flags;
83 	bool recurse;
84 	struct user_namespace *mnt_userns;
85 	struct mnt_idmap *mnt_idmap;
86 };
87 
88 /* /sys/fs */
89 struct kobject *fs_kobj;
90 EXPORT_SYMBOL_GPL(fs_kobj);
91 
92 /*
93  * vfsmount lock may be taken for read to prevent changes to the
94  * vfsmount hash, ie. during mountpoint lookups or walking back
95  * up the tree.
96  *
97  * It should be taken for write in all cases where the vfsmount
98  * tree or hash is modified or when a vfsmount structure is modified.
99  */
100 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
101 
102 static inline void lock_mount_hash(void)
103 {
104 	write_seqlock(&mount_lock);
105 }
106 
107 static inline void unlock_mount_hash(void)
108 {
109 	write_sequnlock(&mount_lock);
110 }
111 
112 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
113 {
114 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
115 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
116 	tmp = tmp + (tmp >> m_hash_shift);
117 	return &mount_hashtable[tmp & m_hash_mask];
118 }
119 
120 static inline struct hlist_head *mp_hash(struct dentry *dentry)
121 {
122 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
123 	tmp = tmp + (tmp >> mp_hash_shift);
124 	return &mountpoint_hashtable[tmp & mp_hash_mask];
125 }
126 
127 static int mnt_alloc_id(struct mount *mnt)
128 {
129 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
130 
131 	if (res < 0)
132 		return res;
133 	mnt->mnt_id = res;
134 	return 0;
135 }
136 
137 static void mnt_free_id(struct mount *mnt)
138 {
139 	ida_free(&mnt_id_ida, mnt->mnt_id);
140 }
141 
142 /*
143  * Allocate a new peer group ID
144  */
145 static int mnt_alloc_group_id(struct mount *mnt)
146 {
147 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
148 
149 	if (res < 0)
150 		return res;
151 	mnt->mnt_group_id = res;
152 	return 0;
153 }
154 
155 /*
156  * Release a peer group ID
157  */
158 void mnt_release_group_id(struct mount *mnt)
159 {
160 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
161 	mnt->mnt_group_id = 0;
162 }
163 
164 /*
165  * vfsmount lock must be held for read
166  */
167 static inline void mnt_add_count(struct mount *mnt, int n)
168 {
169 #ifdef CONFIG_SMP
170 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
171 #else
172 	preempt_disable();
173 	mnt->mnt_count += n;
174 	preempt_enable();
175 #endif
176 }
177 
178 /*
179  * vfsmount lock must be held for write
180  */
181 int mnt_get_count(struct mount *mnt)
182 {
183 #ifdef CONFIG_SMP
184 	int count = 0;
185 	int cpu;
186 
187 	for_each_possible_cpu(cpu) {
188 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
189 	}
190 
191 	return count;
192 #else
193 	return mnt->mnt_count;
194 #endif
195 }
196 
197 static struct mount *alloc_vfsmnt(const char *name)
198 {
199 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
200 	if (mnt) {
201 		int err;
202 
203 		err = mnt_alloc_id(mnt);
204 		if (err)
205 			goto out_free_cache;
206 
207 		if (name) {
208 			mnt->mnt_devname = kstrdup_const(name,
209 							 GFP_KERNEL_ACCOUNT);
210 			if (!mnt->mnt_devname)
211 				goto out_free_id;
212 		}
213 
214 #ifdef CONFIG_SMP
215 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
216 		if (!mnt->mnt_pcp)
217 			goto out_free_devname;
218 
219 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
220 #else
221 		mnt->mnt_count = 1;
222 		mnt->mnt_writers = 0;
223 #endif
224 
225 		INIT_HLIST_NODE(&mnt->mnt_hash);
226 		INIT_LIST_HEAD(&mnt->mnt_child);
227 		INIT_LIST_HEAD(&mnt->mnt_mounts);
228 		INIT_LIST_HEAD(&mnt->mnt_list);
229 		INIT_LIST_HEAD(&mnt->mnt_expire);
230 		INIT_LIST_HEAD(&mnt->mnt_share);
231 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
232 		INIT_LIST_HEAD(&mnt->mnt_slave);
233 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
234 		INIT_LIST_HEAD(&mnt->mnt_umounting);
235 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
236 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
237 	}
238 	return mnt;
239 
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 	kfree_const(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 	mnt_free_id(mnt);
246 out_free_cache:
247 	kmem_cache_free(mnt_cache, mnt);
248 	return NULL;
249 }
250 
251 /*
252  * Most r/o checks on a fs are for operations that take
253  * discrete amounts of time, like a write() or unlink().
254  * We must keep track of when those operations start
255  * (for permission checks) and when they end, so that
256  * we can determine when writes are able to occur to
257  * a filesystem.
258  */
259 /*
260  * __mnt_is_readonly: check whether a mount is read-only
261  * @mnt: the mount to check for its write status
262  *
263  * This shouldn't be used directly ouside of the VFS.
264  * It does not guarantee that the filesystem will stay
265  * r/w, just that it is right *now*.  This can not and
266  * should not be used in place of IS_RDONLY(inode).
267  * mnt_want/drop_write() will _keep_ the filesystem
268  * r/w.
269  */
270 bool __mnt_is_readonly(struct vfsmount *mnt)
271 {
272 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
273 }
274 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
275 
276 static inline void mnt_inc_writers(struct mount *mnt)
277 {
278 #ifdef CONFIG_SMP
279 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
280 #else
281 	mnt->mnt_writers++;
282 #endif
283 }
284 
285 static inline void mnt_dec_writers(struct mount *mnt)
286 {
287 #ifdef CONFIG_SMP
288 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
289 #else
290 	mnt->mnt_writers--;
291 #endif
292 }
293 
294 static unsigned int mnt_get_writers(struct mount *mnt)
295 {
296 #ifdef CONFIG_SMP
297 	unsigned int count = 0;
298 	int cpu;
299 
300 	for_each_possible_cpu(cpu) {
301 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
302 	}
303 
304 	return count;
305 #else
306 	return mnt->mnt_writers;
307 #endif
308 }
309 
310 static int mnt_is_readonly(struct vfsmount *mnt)
311 {
312 	if (mnt->mnt_sb->s_readonly_remount)
313 		return 1;
314 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
315 	smp_rmb();
316 	return __mnt_is_readonly(mnt);
317 }
318 
319 /*
320  * Most r/o & frozen checks on a fs are for operations that take discrete
321  * amounts of time, like a write() or unlink().  We must keep track of when
322  * those operations start (for permission checks) and when they end, so that we
323  * can determine when writes are able to occur to a filesystem.
324  */
325 /**
326  * __mnt_want_write - get write access to a mount without freeze protection
327  * @m: the mount on which to take a write
328  *
329  * This tells the low-level filesystem that a write is about to be performed to
330  * it, and makes sure that writes are allowed (mnt it read-write) before
331  * returning success. This operation does not protect against filesystem being
332  * frozen. When the write operation is finished, __mnt_drop_write() must be
333  * called. This is effectively a refcount.
334  */
335 int __mnt_want_write(struct vfsmount *m)
336 {
337 	struct mount *mnt = real_mount(m);
338 	int ret = 0;
339 
340 	preempt_disable();
341 	mnt_inc_writers(mnt);
342 	/*
343 	 * The store to mnt_inc_writers must be visible before we pass
344 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
345 	 * incremented count after it has set MNT_WRITE_HOLD.
346 	 */
347 	smp_mb();
348 	might_lock(&mount_lock.lock);
349 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
350 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
351 			cpu_relax();
352 		} else {
353 			/*
354 			 * This prevents priority inversion, if the task
355 			 * setting MNT_WRITE_HOLD got preempted on a remote
356 			 * CPU, and it prevents life lock if the task setting
357 			 * MNT_WRITE_HOLD has a lower priority and is bound to
358 			 * the same CPU as the task that is spinning here.
359 			 */
360 			preempt_enable();
361 			lock_mount_hash();
362 			unlock_mount_hash();
363 			preempt_disable();
364 		}
365 	}
366 	/*
367 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
368 	 * be set to match its requirements. So we must not load that until
369 	 * MNT_WRITE_HOLD is cleared.
370 	 */
371 	smp_rmb();
372 	if (mnt_is_readonly(m)) {
373 		mnt_dec_writers(mnt);
374 		ret = -EROFS;
375 	}
376 	preempt_enable();
377 
378 	return ret;
379 }
380 
381 /**
382  * mnt_want_write - get write access to a mount
383  * @m: the mount on which to take a write
384  *
385  * This tells the low-level filesystem that a write is about to be performed to
386  * it, and makes sure that writes are allowed (mount is read-write, filesystem
387  * is not frozen) before returning success.  When the write operation is
388  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
389  */
390 int mnt_want_write(struct vfsmount *m)
391 {
392 	int ret;
393 
394 	sb_start_write(m->mnt_sb);
395 	ret = __mnt_want_write(m);
396 	if (ret)
397 		sb_end_write(m->mnt_sb);
398 	return ret;
399 }
400 EXPORT_SYMBOL_GPL(mnt_want_write);
401 
402 /**
403  * __mnt_want_write_file - get write access to a file's mount
404  * @file: the file who's mount on which to take a write
405  *
406  * This is like __mnt_want_write, but if the file is already open for writing it
407  * skips incrementing mnt_writers (since the open file already has a reference)
408  * and instead only does the check for emergency r/o remounts.  This must be
409  * paired with __mnt_drop_write_file.
410  */
411 int __mnt_want_write_file(struct file *file)
412 {
413 	if (file->f_mode & FMODE_WRITER) {
414 		/*
415 		 * Superblock may have become readonly while there are still
416 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
417 		 */
418 		if (__mnt_is_readonly(file->f_path.mnt))
419 			return -EROFS;
420 		return 0;
421 	}
422 	return __mnt_want_write(file->f_path.mnt);
423 }
424 
425 /**
426  * mnt_want_write_file - get write access to a file's mount
427  * @file: the file who's mount on which to take a write
428  *
429  * This is like mnt_want_write, but if the file is already open for writing it
430  * skips incrementing mnt_writers (since the open file already has a reference)
431  * and instead only does the freeze protection and the check for emergency r/o
432  * remounts.  This must be paired with mnt_drop_write_file.
433  */
434 int mnt_want_write_file(struct file *file)
435 {
436 	int ret;
437 
438 	sb_start_write(file_inode(file)->i_sb);
439 	ret = __mnt_want_write_file(file);
440 	if (ret)
441 		sb_end_write(file_inode(file)->i_sb);
442 	return ret;
443 }
444 EXPORT_SYMBOL_GPL(mnt_want_write_file);
445 
446 /**
447  * __mnt_drop_write - give up write access to a mount
448  * @mnt: the mount on which to give up write access
449  *
450  * Tells the low-level filesystem that we are done
451  * performing writes to it.  Must be matched with
452  * __mnt_want_write() call above.
453  */
454 void __mnt_drop_write(struct vfsmount *mnt)
455 {
456 	preempt_disable();
457 	mnt_dec_writers(real_mount(mnt));
458 	preempt_enable();
459 }
460 
461 /**
462  * mnt_drop_write - give up write access to a mount
463  * @mnt: the mount on which to give up write access
464  *
465  * Tells the low-level filesystem that we are done performing writes to it and
466  * also allows filesystem to be frozen again.  Must be matched with
467  * mnt_want_write() call above.
468  */
469 void mnt_drop_write(struct vfsmount *mnt)
470 {
471 	__mnt_drop_write(mnt);
472 	sb_end_write(mnt->mnt_sb);
473 }
474 EXPORT_SYMBOL_GPL(mnt_drop_write);
475 
476 void __mnt_drop_write_file(struct file *file)
477 {
478 	if (!(file->f_mode & FMODE_WRITER))
479 		__mnt_drop_write(file->f_path.mnt);
480 }
481 
482 void mnt_drop_write_file(struct file *file)
483 {
484 	__mnt_drop_write_file(file);
485 	sb_end_write(file_inode(file)->i_sb);
486 }
487 EXPORT_SYMBOL(mnt_drop_write_file);
488 
489 /**
490  * mnt_hold_writers - prevent write access to the given mount
491  * @mnt: mnt to prevent write access to
492  *
493  * Prevents write access to @mnt if there are no active writers for @mnt.
494  * This function needs to be called and return successfully before changing
495  * properties of @mnt that need to remain stable for callers with write access
496  * to @mnt.
497  *
498  * After this functions has been called successfully callers must pair it with
499  * a call to mnt_unhold_writers() in order to stop preventing write access to
500  * @mnt.
501  *
502  * Context: This function expects lock_mount_hash() to be held serializing
503  *          setting MNT_WRITE_HOLD.
504  * Return: On success 0 is returned.
505  *	   On error, -EBUSY is returned.
506  */
507 static inline int mnt_hold_writers(struct mount *mnt)
508 {
509 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
510 	/*
511 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
512 	 * should be visible before we do.
513 	 */
514 	smp_mb();
515 
516 	/*
517 	 * With writers on hold, if this value is zero, then there are
518 	 * definitely no active writers (although held writers may subsequently
519 	 * increment the count, they'll have to wait, and decrement it after
520 	 * seeing MNT_READONLY).
521 	 *
522 	 * It is OK to have counter incremented on one CPU and decremented on
523 	 * another: the sum will add up correctly. The danger would be when we
524 	 * sum up each counter, if we read a counter before it is incremented,
525 	 * but then read another CPU's count which it has been subsequently
526 	 * decremented from -- we would see more decrements than we should.
527 	 * MNT_WRITE_HOLD protects against this scenario, because
528 	 * mnt_want_write first increments count, then smp_mb, then spins on
529 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
530 	 * we're counting up here.
531 	 */
532 	if (mnt_get_writers(mnt) > 0)
533 		return -EBUSY;
534 
535 	return 0;
536 }
537 
538 /**
539  * mnt_unhold_writers - stop preventing write access to the given mount
540  * @mnt: mnt to stop preventing write access to
541  *
542  * Stop preventing write access to @mnt allowing callers to gain write access
543  * to @mnt again.
544  *
545  * This function can only be called after a successful call to
546  * mnt_hold_writers().
547  *
548  * Context: This function expects lock_mount_hash() to be held.
549  */
550 static inline void mnt_unhold_writers(struct mount *mnt)
551 {
552 	/*
553 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
554 	 * that become unheld will see MNT_READONLY.
555 	 */
556 	smp_wmb();
557 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
558 }
559 
560 static int mnt_make_readonly(struct mount *mnt)
561 {
562 	int ret;
563 
564 	ret = mnt_hold_writers(mnt);
565 	if (!ret)
566 		mnt->mnt.mnt_flags |= MNT_READONLY;
567 	mnt_unhold_writers(mnt);
568 	return ret;
569 }
570 
571 int sb_prepare_remount_readonly(struct super_block *sb)
572 {
573 	struct mount *mnt;
574 	int err = 0;
575 
576 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
577 	if (atomic_long_read(&sb->s_remove_count))
578 		return -EBUSY;
579 
580 	lock_mount_hash();
581 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
582 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
583 			err = mnt_hold_writers(mnt);
584 			if (err)
585 				break;
586 		}
587 	}
588 	if (!err && atomic_long_read(&sb->s_remove_count))
589 		err = -EBUSY;
590 
591 	if (!err) {
592 		sb->s_readonly_remount = 1;
593 		smp_wmb();
594 	}
595 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
596 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
597 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
598 	}
599 	unlock_mount_hash();
600 
601 	return err;
602 }
603 
604 static void free_vfsmnt(struct mount *mnt)
605 {
606 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
607 	kfree_const(mnt->mnt_devname);
608 #ifdef CONFIG_SMP
609 	free_percpu(mnt->mnt_pcp);
610 #endif
611 	kmem_cache_free(mnt_cache, mnt);
612 }
613 
614 static void delayed_free_vfsmnt(struct rcu_head *head)
615 {
616 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
617 }
618 
619 /* call under rcu_read_lock */
620 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
621 {
622 	struct mount *mnt;
623 	if (read_seqretry(&mount_lock, seq))
624 		return 1;
625 	if (bastard == NULL)
626 		return 0;
627 	mnt = real_mount(bastard);
628 	mnt_add_count(mnt, 1);
629 	smp_mb();			// see mntput_no_expire()
630 	if (likely(!read_seqretry(&mount_lock, seq)))
631 		return 0;
632 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
633 		mnt_add_count(mnt, -1);
634 		return 1;
635 	}
636 	lock_mount_hash();
637 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
638 		mnt_add_count(mnt, -1);
639 		unlock_mount_hash();
640 		return 1;
641 	}
642 	unlock_mount_hash();
643 	/* caller will mntput() */
644 	return -1;
645 }
646 
647 /* call under rcu_read_lock */
648 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
649 {
650 	int res = __legitimize_mnt(bastard, seq);
651 	if (likely(!res))
652 		return true;
653 	if (unlikely(res < 0)) {
654 		rcu_read_unlock();
655 		mntput(bastard);
656 		rcu_read_lock();
657 	}
658 	return false;
659 }
660 
661 /*
662  * find the first mount at @dentry on vfsmount @mnt.
663  * call under rcu_read_lock()
664  */
665 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
666 {
667 	struct hlist_head *head = m_hash(mnt, dentry);
668 	struct mount *p;
669 
670 	hlist_for_each_entry_rcu(p, head, mnt_hash)
671 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
672 			return p;
673 	return NULL;
674 }
675 
676 /*
677  * lookup_mnt - Return the first child mount mounted at path
678  *
679  * "First" means first mounted chronologically.  If you create the
680  * following mounts:
681  *
682  * mount /dev/sda1 /mnt
683  * mount /dev/sda2 /mnt
684  * mount /dev/sda3 /mnt
685  *
686  * Then lookup_mnt() on the base /mnt dentry in the root mount will
687  * return successively the root dentry and vfsmount of /dev/sda1, then
688  * /dev/sda2, then /dev/sda3, then NULL.
689  *
690  * lookup_mnt takes a reference to the found vfsmount.
691  */
692 struct vfsmount *lookup_mnt(const struct path *path)
693 {
694 	struct mount *child_mnt;
695 	struct vfsmount *m;
696 	unsigned seq;
697 
698 	rcu_read_lock();
699 	do {
700 		seq = read_seqbegin(&mount_lock);
701 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
702 		m = child_mnt ? &child_mnt->mnt : NULL;
703 	} while (!legitimize_mnt(m, seq));
704 	rcu_read_unlock();
705 	return m;
706 }
707 
708 static inline void lock_ns_list(struct mnt_namespace *ns)
709 {
710 	spin_lock(&ns->ns_lock);
711 }
712 
713 static inline void unlock_ns_list(struct mnt_namespace *ns)
714 {
715 	spin_unlock(&ns->ns_lock);
716 }
717 
718 static inline bool mnt_is_cursor(struct mount *mnt)
719 {
720 	return mnt->mnt.mnt_flags & MNT_CURSOR;
721 }
722 
723 /*
724  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
725  *                         current mount namespace.
726  *
727  * The common case is dentries are not mountpoints at all and that
728  * test is handled inline.  For the slow case when we are actually
729  * dealing with a mountpoint of some kind, walk through all of the
730  * mounts in the current mount namespace and test to see if the dentry
731  * is a mountpoint.
732  *
733  * The mount_hashtable is not usable in the context because we
734  * need to identify all mounts that may be in the current mount
735  * namespace not just a mount that happens to have some specified
736  * parent mount.
737  */
738 bool __is_local_mountpoint(struct dentry *dentry)
739 {
740 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
741 	struct mount *mnt;
742 	bool is_covered = false;
743 
744 	down_read(&namespace_sem);
745 	lock_ns_list(ns);
746 	list_for_each_entry(mnt, &ns->list, mnt_list) {
747 		if (mnt_is_cursor(mnt))
748 			continue;
749 		is_covered = (mnt->mnt_mountpoint == dentry);
750 		if (is_covered)
751 			break;
752 	}
753 	unlock_ns_list(ns);
754 	up_read(&namespace_sem);
755 
756 	return is_covered;
757 }
758 
759 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
760 {
761 	struct hlist_head *chain = mp_hash(dentry);
762 	struct mountpoint *mp;
763 
764 	hlist_for_each_entry(mp, chain, m_hash) {
765 		if (mp->m_dentry == dentry) {
766 			mp->m_count++;
767 			return mp;
768 		}
769 	}
770 	return NULL;
771 }
772 
773 static struct mountpoint *get_mountpoint(struct dentry *dentry)
774 {
775 	struct mountpoint *mp, *new = NULL;
776 	int ret;
777 
778 	if (d_mountpoint(dentry)) {
779 		/* might be worth a WARN_ON() */
780 		if (d_unlinked(dentry))
781 			return ERR_PTR(-ENOENT);
782 mountpoint:
783 		read_seqlock_excl(&mount_lock);
784 		mp = lookup_mountpoint(dentry);
785 		read_sequnlock_excl(&mount_lock);
786 		if (mp)
787 			goto done;
788 	}
789 
790 	if (!new)
791 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
792 	if (!new)
793 		return ERR_PTR(-ENOMEM);
794 
795 
796 	/* Exactly one processes may set d_mounted */
797 	ret = d_set_mounted(dentry);
798 
799 	/* Someone else set d_mounted? */
800 	if (ret == -EBUSY)
801 		goto mountpoint;
802 
803 	/* The dentry is not available as a mountpoint? */
804 	mp = ERR_PTR(ret);
805 	if (ret)
806 		goto done;
807 
808 	/* Add the new mountpoint to the hash table */
809 	read_seqlock_excl(&mount_lock);
810 	new->m_dentry = dget(dentry);
811 	new->m_count = 1;
812 	hlist_add_head(&new->m_hash, mp_hash(dentry));
813 	INIT_HLIST_HEAD(&new->m_list);
814 	read_sequnlock_excl(&mount_lock);
815 
816 	mp = new;
817 	new = NULL;
818 done:
819 	kfree(new);
820 	return mp;
821 }
822 
823 /*
824  * vfsmount lock must be held.  Additionally, the caller is responsible
825  * for serializing calls for given disposal list.
826  */
827 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
828 {
829 	if (!--mp->m_count) {
830 		struct dentry *dentry = mp->m_dentry;
831 		BUG_ON(!hlist_empty(&mp->m_list));
832 		spin_lock(&dentry->d_lock);
833 		dentry->d_flags &= ~DCACHE_MOUNTED;
834 		spin_unlock(&dentry->d_lock);
835 		dput_to_list(dentry, list);
836 		hlist_del(&mp->m_hash);
837 		kfree(mp);
838 	}
839 }
840 
841 /* called with namespace_lock and vfsmount lock */
842 static void put_mountpoint(struct mountpoint *mp)
843 {
844 	__put_mountpoint(mp, &ex_mountpoints);
845 }
846 
847 static inline int check_mnt(struct mount *mnt)
848 {
849 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
850 }
851 
852 /*
853  * vfsmount lock must be held for write
854  */
855 static void touch_mnt_namespace(struct mnt_namespace *ns)
856 {
857 	if (ns) {
858 		ns->event = ++event;
859 		wake_up_interruptible(&ns->poll);
860 	}
861 }
862 
863 /*
864  * vfsmount lock must be held for write
865  */
866 static void __touch_mnt_namespace(struct mnt_namespace *ns)
867 {
868 	if (ns && ns->event != event) {
869 		ns->event = event;
870 		wake_up_interruptible(&ns->poll);
871 	}
872 }
873 
874 /*
875  * vfsmount lock must be held for write
876  */
877 static struct mountpoint *unhash_mnt(struct mount *mnt)
878 {
879 	struct mountpoint *mp;
880 	mnt->mnt_parent = mnt;
881 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
882 	list_del_init(&mnt->mnt_child);
883 	hlist_del_init_rcu(&mnt->mnt_hash);
884 	hlist_del_init(&mnt->mnt_mp_list);
885 	mp = mnt->mnt_mp;
886 	mnt->mnt_mp = NULL;
887 	return mp;
888 }
889 
890 /*
891  * vfsmount lock must be held for write
892  */
893 static void umount_mnt(struct mount *mnt)
894 {
895 	put_mountpoint(unhash_mnt(mnt));
896 }
897 
898 /*
899  * vfsmount lock must be held for write
900  */
901 void mnt_set_mountpoint(struct mount *mnt,
902 			struct mountpoint *mp,
903 			struct mount *child_mnt)
904 {
905 	mp->m_count++;
906 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
907 	child_mnt->mnt_mountpoint = mp->m_dentry;
908 	child_mnt->mnt_parent = mnt;
909 	child_mnt->mnt_mp = mp;
910 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
911 }
912 
913 static void __attach_mnt(struct mount *mnt, struct mount *parent)
914 {
915 	hlist_add_head_rcu(&mnt->mnt_hash,
916 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
917 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
918 }
919 
920 /*
921  * vfsmount lock must be held for write
922  */
923 static void attach_mnt(struct mount *mnt,
924 			struct mount *parent,
925 			struct mountpoint *mp)
926 {
927 	mnt_set_mountpoint(parent, mp, mnt);
928 	__attach_mnt(mnt, parent);
929 }
930 
931 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
932 {
933 	struct mountpoint *old_mp = mnt->mnt_mp;
934 	struct mount *old_parent = mnt->mnt_parent;
935 
936 	list_del_init(&mnt->mnt_child);
937 	hlist_del_init(&mnt->mnt_mp_list);
938 	hlist_del_init_rcu(&mnt->mnt_hash);
939 
940 	attach_mnt(mnt, parent, mp);
941 
942 	put_mountpoint(old_mp);
943 	mnt_add_count(old_parent, -1);
944 }
945 
946 /*
947  * vfsmount lock must be held for write
948  */
949 static void commit_tree(struct mount *mnt)
950 {
951 	struct mount *parent = mnt->mnt_parent;
952 	struct mount *m;
953 	LIST_HEAD(head);
954 	struct mnt_namespace *n = parent->mnt_ns;
955 
956 	BUG_ON(parent == mnt);
957 
958 	list_add_tail(&head, &mnt->mnt_list);
959 	list_for_each_entry(m, &head, mnt_list)
960 		m->mnt_ns = n;
961 
962 	list_splice(&head, n->list.prev);
963 
964 	n->mounts += n->pending_mounts;
965 	n->pending_mounts = 0;
966 
967 	__attach_mnt(mnt, parent);
968 	touch_mnt_namespace(n);
969 }
970 
971 static struct mount *next_mnt(struct mount *p, struct mount *root)
972 {
973 	struct list_head *next = p->mnt_mounts.next;
974 	if (next == &p->mnt_mounts) {
975 		while (1) {
976 			if (p == root)
977 				return NULL;
978 			next = p->mnt_child.next;
979 			if (next != &p->mnt_parent->mnt_mounts)
980 				break;
981 			p = p->mnt_parent;
982 		}
983 	}
984 	return list_entry(next, struct mount, mnt_child);
985 }
986 
987 static struct mount *skip_mnt_tree(struct mount *p)
988 {
989 	struct list_head *prev = p->mnt_mounts.prev;
990 	while (prev != &p->mnt_mounts) {
991 		p = list_entry(prev, struct mount, mnt_child);
992 		prev = p->mnt_mounts.prev;
993 	}
994 	return p;
995 }
996 
997 /**
998  * vfs_create_mount - Create a mount for a configured superblock
999  * @fc: The configuration context with the superblock attached
1000  *
1001  * Create a mount to an already configured superblock.  If necessary, the
1002  * caller should invoke vfs_get_tree() before calling this.
1003  *
1004  * Note that this does not attach the mount to anything.
1005  */
1006 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1007 {
1008 	struct mount *mnt;
1009 
1010 	if (!fc->root)
1011 		return ERR_PTR(-EINVAL);
1012 
1013 	mnt = alloc_vfsmnt(fc->source ?: "none");
1014 	if (!mnt)
1015 		return ERR_PTR(-ENOMEM);
1016 
1017 	if (fc->sb_flags & SB_KERNMOUNT)
1018 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1019 
1020 	atomic_inc(&fc->root->d_sb->s_active);
1021 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1022 	mnt->mnt.mnt_root	= dget(fc->root);
1023 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1024 	mnt->mnt_parent		= mnt;
1025 
1026 	lock_mount_hash();
1027 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1028 	unlock_mount_hash();
1029 	return &mnt->mnt;
1030 }
1031 EXPORT_SYMBOL(vfs_create_mount);
1032 
1033 struct vfsmount *fc_mount(struct fs_context *fc)
1034 {
1035 	int err = vfs_get_tree(fc);
1036 	if (!err) {
1037 		up_write(&fc->root->d_sb->s_umount);
1038 		return vfs_create_mount(fc);
1039 	}
1040 	return ERR_PTR(err);
1041 }
1042 EXPORT_SYMBOL(fc_mount);
1043 
1044 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1045 				int flags, const char *name,
1046 				void *data)
1047 {
1048 	struct fs_context *fc;
1049 	struct vfsmount *mnt;
1050 	int ret = 0;
1051 
1052 	if (!type)
1053 		return ERR_PTR(-EINVAL);
1054 
1055 	fc = fs_context_for_mount(type, flags);
1056 	if (IS_ERR(fc))
1057 		return ERR_CAST(fc);
1058 
1059 	if (name)
1060 		ret = vfs_parse_fs_string(fc, "source",
1061 					  name, strlen(name));
1062 	if (!ret)
1063 		ret = parse_monolithic_mount_data(fc, data);
1064 	if (!ret)
1065 		mnt = fc_mount(fc);
1066 	else
1067 		mnt = ERR_PTR(ret);
1068 
1069 	put_fs_context(fc);
1070 	return mnt;
1071 }
1072 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1073 
1074 struct vfsmount *
1075 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1076 	     const char *name, void *data)
1077 {
1078 	/* Until it is worked out how to pass the user namespace
1079 	 * through from the parent mount to the submount don't support
1080 	 * unprivileged mounts with submounts.
1081 	 */
1082 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1083 		return ERR_PTR(-EPERM);
1084 
1085 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1086 }
1087 EXPORT_SYMBOL_GPL(vfs_submount);
1088 
1089 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1090 					int flag)
1091 {
1092 	struct super_block *sb = old->mnt.mnt_sb;
1093 	struct mount *mnt;
1094 	int err;
1095 
1096 	mnt = alloc_vfsmnt(old->mnt_devname);
1097 	if (!mnt)
1098 		return ERR_PTR(-ENOMEM);
1099 
1100 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1101 		mnt->mnt_group_id = 0; /* not a peer of original */
1102 	else
1103 		mnt->mnt_group_id = old->mnt_group_id;
1104 
1105 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1106 		err = mnt_alloc_group_id(mnt);
1107 		if (err)
1108 			goto out_free;
1109 	}
1110 
1111 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1112 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1113 
1114 	atomic_inc(&sb->s_active);
1115 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1116 
1117 	mnt->mnt.mnt_sb = sb;
1118 	mnt->mnt.mnt_root = dget(root);
1119 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1120 	mnt->mnt_parent = mnt;
1121 	lock_mount_hash();
1122 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1123 	unlock_mount_hash();
1124 
1125 	if ((flag & CL_SLAVE) ||
1126 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1127 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1128 		mnt->mnt_master = old;
1129 		CLEAR_MNT_SHARED(mnt);
1130 	} else if (!(flag & CL_PRIVATE)) {
1131 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1132 			list_add(&mnt->mnt_share, &old->mnt_share);
1133 		if (IS_MNT_SLAVE(old))
1134 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1135 		mnt->mnt_master = old->mnt_master;
1136 	} else {
1137 		CLEAR_MNT_SHARED(mnt);
1138 	}
1139 	if (flag & CL_MAKE_SHARED)
1140 		set_mnt_shared(mnt);
1141 
1142 	/* stick the duplicate mount on the same expiry list
1143 	 * as the original if that was on one */
1144 	if (flag & CL_EXPIRE) {
1145 		if (!list_empty(&old->mnt_expire))
1146 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1147 	}
1148 
1149 	return mnt;
1150 
1151  out_free:
1152 	mnt_free_id(mnt);
1153 	free_vfsmnt(mnt);
1154 	return ERR_PTR(err);
1155 }
1156 
1157 static void cleanup_mnt(struct mount *mnt)
1158 {
1159 	struct hlist_node *p;
1160 	struct mount *m;
1161 	/*
1162 	 * The warning here probably indicates that somebody messed
1163 	 * up a mnt_want/drop_write() pair.  If this happens, the
1164 	 * filesystem was probably unable to make r/w->r/o transitions.
1165 	 * The locking used to deal with mnt_count decrement provides barriers,
1166 	 * so mnt_get_writers() below is safe.
1167 	 */
1168 	WARN_ON(mnt_get_writers(mnt));
1169 	if (unlikely(mnt->mnt_pins.first))
1170 		mnt_pin_kill(mnt);
1171 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1172 		hlist_del(&m->mnt_umount);
1173 		mntput(&m->mnt);
1174 	}
1175 	fsnotify_vfsmount_delete(&mnt->mnt);
1176 	dput(mnt->mnt.mnt_root);
1177 	deactivate_super(mnt->mnt.mnt_sb);
1178 	mnt_free_id(mnt);
1179 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1180 }
1181 
1182 static void __cleanup_mnt(struct rcu_head *head)
1183 {
1184 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1185 }
1186 
1187 static LLIST_HEAD(delayed_mntput_list);
1188 static void delayed_mntput(struct work_struct *unused)
1189 {
1190 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1191 	struct mount *m, *t;
1192 
1193 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1194 		cleanup_mnt(m);
1195 }
1196 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1197 
1198 static void mntput_no_expire(struct mount *mnt)
1199 {
1200 	LIST_HEAD(list);
1201 	int count;
1202 
1203 	rcu_read_lock();
1204 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1205 		/*
1206 		 * Since we don't do lock_mount_hash() here,
1207 		 * ->mnt_ns can change under us.  However, if it's
1208 		 * non-NULL, then there's a reference that won't
1209 		 * be dropped until after an RCU delay done after
1210 		 * turning ->mnt_ns NULL.  So if we observe it
1211 		 * non-NULL under rcu_read_lock(), the reference
1212 		 * we are dropping is not the final one.
1213 		 */
1214 		mnt_add_count(mnt, -1);
1215 		rcu_read_unlock();
1216 		return;
1217 	}
1218 	lock_mount_hash();
1219 	/*
1220 	 * make sure that if __legitimize_mnt() has not seen us grab
1221 	 * mount_lock, we'll see their refcount increment here.
1222 	 */
1223 	smp_mb();
1224 	mnt_add_count(mnt, -1);
1225 	count = mnt_get_count(mnt);
1226 	if (count != 0) {
1227 		WARN_ON(count < 0);
1228 		rcu_read_unlock();
1229 		unlock_mount_hash();
1230 		return;
1231 	}
1232 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1233 		rcu_read_unlock();
1234 		unlock_mount_hash();
1235 		return;
1236 	}
1237 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1238 	rcu_read_unlock();
1239 
1240 	list_del(&mnt->mnt_instance);
1241 
1242 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1243 		struct mount *p, *tmp;
1244 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1245 			__put_mountpoint(unhash_mnt(p), &list);
1246 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1247 		}
1248 	}
1249 	unlock_mount_hash();
1250 	shrink_dentry_list(&list);
1251 
1252 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1253 		struct task_struct *task = current;
1254 		if (likely(!(task->flags & PF_KTHREAD))) {
1255 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1256 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1257 				return;
1258 		}
1259 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1260 			schedule_delayed_work(&delayed_mntput_work, 1);
1261 		return;
1262 	}
1263 	cleanup_mnt(mnt);
1264 }
1265 
1266 void mntput(struct vfsmount *mnt)
1267 {
1268 	if (mnt) {
1269 		struct mount *m = real_mount(mnt);
1270 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1271 		if (unlikely(m->mnt_expiry_mark))
1272 			m->mnt_expiry_mark = 0;
1273 		mntput_no_expire(m);
1274 	}
1275 }
1276 EXPORT_SYMBOL(mntput);
1277 
1278 struct vfsmount *mntget(struct vfsmount *mnt)
1279 {
1280 	if (mnt)
1281 		mnt_add_count(real_mount(mnt), 1);
1282 	return mnt;
1283 }
1284 EXPORT_SYMBOL(mntget);
1285 
1286 /*
1287  * Make a mount point inaccessible to new lookups.
1288  * Because there may still be current users, the caller MUST WAIT
1289  * for an RCU grace period before destroying the mount point.
1290  */
1291 void mnt_make_shortterm(struct vfsmount *mnt)
1292 {
1293 	if (mnt)
1294 		real_mount(mnt)->mnt_ns = NULL;
1295 }
1296 
1297 /**
1298  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1299  * @path: path to check
1300  *
1301  *  d_mountpoint() can only be used reliably to establish if a dentry is
1302  *  not mounted in any namespace and that common case is handled inline.
1303  *  d_mountpoint() isn't aware of the possibility there may be multiple
1304  *  mounts using a given dentry in a different namespace. This function
1305  *  checks if the passed in path is a mountpoint rather than the dentry
1306  *  alone.
1307  */
1308 bool path_is_mountpoint(const struct path *path)
1309 {
1310 	unsigned seq;
1311 	bool res;
1312 
1313 	if (!d_mountpoint(path->dentry))
1314 		return false;
1315 
1316 	rcu_read_lock();
1317 	do {
1318 		seq = read_seqbegin(&mount_lock);
1319 		res = __path_is_mountpoint(path);
1320 	} while (read_seqretry(&mount_lock, seq));
1321 	rcu_read_unlock();
1322 
1323 	return res;
1324 }
1325 EXPORT_SYMBOL(path_is_mountpoint);
1326 
1327 struct vfsmount *mnt_clone_internal(const struct path *path)
1328 {
1329 	struct mount *p;
1330 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1331 	if (IS_ERR(p))
1332 		return ERR_CAST(p);
1333 	p->mnt.mnt_flags |= MNT_INTERNAL;
1334 	return &p->mnt;
1335 }
1336 
1337 #ifdef CONFIG_PROC_FS
1338 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1339 				   struct list_head *p)
1340 {
1341 	struct mount *mnt, *ret = NULL;
1342 
1343 	lock_ns_list(ns);
1344 	list_for_each_continue(p, &ns->list) {
1345 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1346 		if (!mnt_is_cursor(mnt)) {
1347 			ret = mnt;
1348 			break;
1349 		}
1350 	}
1351 	unlock_ns_list(ns);
1352 
1353 	return ret;
1354 }
1355 
1356 /* iterator; we want it to have access to namespace_sem, thus here... */
1357 static void *m_start(struct seq_file *m, loff_t *pos)
1358 {
1359 	struct proc_mounts *p = m->private;
1360 	struct list_head *prev;
1361 
1362 	down_read(&namespace_sem);
1363 	if (!*pos) {
1364 		prev = &p->ns->list;
1365 	} else {
1366 		prev = &p->cursor.mnt_list;
1367 
1368 		/* Read after we'd reached the end? */
1369 		if (list_empty(prev))
1370 			return NULL;
1371 	}
1372 
1373 	return mnt_list_next(p->ns, prev);
1374 }
1375 
1376 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1377 {
1378 	struct proc_mounts *p = m->private;
1379 	struct mount *mnt = v;
1380 
1381 	++*pos;
1382 	return mnt_list_next(p->ns, &mnt->mnt_list);
1383 }
1384 
1385 static void m_stop(struct seq_file *m, void *v)
1386 {
1387 	struct proc_mounts *p = m->private;
1388 	struct mount *mnt = v;
1389 
1390 	lock_ns_list(p->ns);
1391 	if (mnt)
1392 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1393 	else
1394 		list_del_init(&p->cursor.mnt_list);
1395 	unlock_ns_list(p->ns);
1396 	up_read(&namespace_sem);
1397 }
1398 
1399 static int m_show(struct seq_file *m, void *v)
1400 {
1401 	struct proc_mounts *p = m->private;
1402 	struct mount *r = v;
1403 	return p->show(m, &r->mnt);
1404 }
1405 
1406 const struct seq_operations mounts_op = {
1407 	.start	= m_start,
1408 	.next	= m_next,
1409 	.stop	= m_stop,
1410 	.show	= m_show,
1411 };
1412 
1413 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1414 {
1415 	down_read(&namespace_sem);
1416 	lock_ns_list(ns);
1417 	list_del(&cursor->mnt_list);
1418 	unlock_ns_list(ns);
1419 	up_read(&namespace_sem);
1420 }
1421 #endif  /* CONFIG_PROC_FS */
1422 
1423 /**
1424  * may_umount_tree - check if a mount tree is busy
1425  * @m: root of mount tree
1426  *
1427  * This is called to check if a tree of mounts has any
1428  * open files, pwds, chroots or sub mounts that are
1429  * busy.
1430  */
1431 int may_umount_tree(struct vfsmount *m)
1432 {
1433 	struct mount *mnt = real_mount(m);
1434 	int actual_refs = 0;
1435 	int minimum_refs = 0;
1436 	struct mount *p;
1437 	BUG_ON(!m);
1438 
1439 	/* write lock needed for mnt_get_count */
1440 	lock_mount_hash();
1441 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1442 		actual_refs += mnt_get_count(p);
1443 		minimum_refs += 2;
1444 	}
1445 	unlock_mount_hash();
1446 
1447 	if (actual_refs > minimum_refs)
1448 		return 0;
1449 
1450 	return 1;
1451 }
1452 
1453 EXPORT_SYMBOL(may_umount_tree);
1454 
1455 /**
1456  * may_umount - check if a mount point is busy
1457  * @mnt: root of mount
1458  *
1459  * This is called to check if a mount point has any
1460  * open files, pwds, chroots or sub mounts. If the
1461  * mount has sub mounts this will return busy
1462  * regardless of whether the sub mounts are busy.
1463  *
1464  * Doesn't take quota and stuff into account. IOW, in some cases it will
1465  * give false negatives. The main reason why it's here is that we need
1466  * a non-destructive way to look for easily umountable filesystems.
1467  */
1468 int may_umount(struct vfsmount *mnt)
1469 {
1470 	int ret = 1;
1471 	down_read(&namespace_sem);
1472 	lock_mount_hash();
1473 	if (propagate_mount_busy(real_mount(mnt), 2))
1474 		ret = 0;
1475 	unlock_mount_hash();
1476 	up_read(&namespace_sem);
1477 	return ret;
1478 }
1479 
1480 EXPORT_SYMBOL(may_umount);
1481 
1482 static void namespace_unlock(void)
1483 {
1484 	struct hlist_head head;
1485 	struct hlist_node *p;
1486 	struct mount *m;
1487 	LIST_HEAD(list);
1488 
1489 	hlist_move_list(&unmounted, &head);
1490 	list_splice_init(&ex_mountpoints, &list);
1491 
1492 	up_write(&namespace_sem);
1493 
1494 	shrink_dentry_list(&list);
1495 
1496 	if (likely(hlist_empty(&head)))
1497 		return;
1498 
1499 	synchronize_rcu_expedited();
1500 
1501 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1502 		hlist_del(&m->mnt_umount);
1503 		mntput(&m->mnt);
1504 	}
1505 }
1506 
1507 static inline void namespace_lock(void)
1508 {
1509 	down_write(&namespace_sem);
1510 }
1511 
1512 enum umount_tree_flags {
1513 	UMOUNT_SYNC = 1,
1514 	UMOUNT_PROPAGATE = 2,
1515 	UMOUNT_CONNECTED = 4,
1516 };
1517 
1518 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1519 {
1520 	/* Leaving mounts connected is only valid for lazy umounts */
1521 	if (how & UMOUNT_SYNC)
1522 		return true;
1523 
1524 	/* A mount without a parent has nothing to be connected to */
1525 	if (!mnt_has_parent(mnt))
1526 		return true;
1527 
1528 	/* Because the reference counting rules change when mounts are
1529 	 * unmounted and connected, umounted mounts may not be
1530 	 * connected to mounted mounts.
1531 	 */
1532 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1533 		return true;
1534 
1535 	/* Has it been requested that the mount remain connected? */
1536 	if (how & UMOUNT_CONNECTED)
1537 		return false;
1538 
1539 	/* Is the mount locked such that it needs to remain connected? */
1540 	if (IS_MNT_LOCKED(mnt))
1541 		return false;
1542 
1543 	/* By default disconnect the mount */
1544 	return true;
1545 }
1546 
1547 /*
1548  * mount_lock must be held
1549  * namespace_sem must be held for write
1550  */
1551 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1552 {
1553 	LIST_HEAD(tmp_list);
1554 	struct mount *p;
1555 
1556 	if (how & UMOUNT_PROPAGATE)
1557 		propagate_mount_unlock(mnt);
1558 
1559 	/* Gather the mounts to umount */
1560 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1561 		p->mnt.mnt_flags |= MNT_UMOUNT;
1562 		list_move(&p->mnt_list, &tmp_list);
1563 	}
1564 
1565 	/* Hide the mounts from mnt_mounts */
1566 	list_for_each_entry(p, &tmp_list, mnt_list) {
1567 		list_del_init(&p->mnt_child);
1568 	}
1569 
1570 	/* Add propogated mounts to the tmp_list */
1571 	if (how & UMOUNT_PROPAGATE)
1572 		propagate_umount(&tmp_list);
1573 
1574 	while (!list_empty(&tmp_list)) {
1575 		struct mnt_namespace *ns;
1576 		bool disconnect;
1577 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1578 		list_del_init(&p->mnt_expire);
1579 		list_del_init(&p->mnt_list);
1580 		ns = p->mnt_ns;
1581 		if (ns) {
1582 			ns->mounts--;
1583 			__touch_mnt_namespace(ns);
1584 		}
1585 		p->mnt_ns = NULL;
1586 		if (how & UMOUNT_SYNC)
1587 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1588 
1589 		disconnect = disconnect_mount(p, how);
1590 		if (mnt_has_parent(p)) {
1591 			mnt_add_count(p->mnt_parent, -1);
1592 			if (!disconnect) {
1593 				/* Don't forget about p */
1594 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1595 			} else {
1596 				umount_mnt(p);
1597 			}
1598 		}
1599 		change_mnt_propagation(p, MS_PRIVATE);
1600 		if (disconnect)
1601 			hlist_add_head(&p->mnt_umount, &unmounted);
1602 	}
1603 }
1604 
1605 static void shrink_submounts(struct mount *mnt);
1606 
1607 static int do_umount_root(struct super_block *sb)
1608 {
1609 	int ret = 0;
1610 
1611 	down_write(&sb->s_umount);
1612 	if (!sb_rdonly(sb)) {
1613 		struct fs_context *fc;
1614 
1615 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1616 						SB_RDONLY);
1617 		if (IS_ERR(fc)) {
1618 			ret = PTR_ERR(fc);
1619 		} else {
1620 			ret = parse_monolithic_mount_data(fc, NULL);
1621 			if (!ret)
1622 				ret = reconfigure_super(fc);
1623 			put_fs_context(fc);
1624 		}
1625 	}
1626 	up_write(&sb->s_umount);
1627 	return ret;
1628 }
1629 
1630 static int do_umount(struct mount *mnt, int flags)
1631 {
1632 	struct super_block *sb = mnt->mnt.mnt_sb;
1633 	int retval;
1634 
1635 	retval = security_sb_umount(&mnt->mnt, flags);
1636 	if (retval)
1637 		return retval;
1638 
1639 	/*
1640 	 * Allow userspace to request a mountpoint be expired rather than
1641 	 * unmounting unconditionally. Unmount only happens if:
1642 	 *  (1) the mark is already set (the mark is cleared by mntput())
1643 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1644 	 */
1645 	if (flags & MNT_EXPIRE) {
1646 		if (&mnt->mnt == current->fs->root.mnt ||
1647 		    flags & (MNT_FORCE | MNT_DETACH))
1648 			return -EINVAL;
1649 
1650 		/*
1651 		 * probably don't strictly need the lock here if we examined
1652 		 * all race cases, but it's a slowpath.
1653 		 */
1654 		lock_mount_hash();
1655 		if (mnt_get_count(mnt) != 2) {
1656 			unlock_mount_hash();
1657 			return -EBUSY;
1658 		}
1659 		unlock_mount_hash();
1660 
1661 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1662 			return -EAGAIN;
1663 	}
1664 
1665 	/*
1666 	 * If we may have to abort operations to get out of this
1667 	 * mount, and they will themselves hold resources we must
1668 	 * allow the fs to do things. In the Unix tradition of
1669 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1670 	 * might fail to complete on the first run through as other tasks
1671 	 * must return, and the like. Thats for the mount program to worry
1672 	 * about for the moment.
1673 	 */
1674 
1675 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1676 		sb->s_op->umount_begin(sb);
1677 	}
1678 
1679 	/*
1680 	 * No sense to grab the lock for this test, but test itself looks
1681 	 * somewhat bogus. Suggestions for better replacement?
1682 	 * Ho-hum... In principle, we might treat that as umount + switch
1683 	 * to rootfs. GC would eventually take care of the old vfsmount.
1684 	 * Actually it makes sense, especially if rootfs would contain a
1685 	 * /reboot - static binary that would close all descriptors and
1686 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1687 	 */
1688 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1689 		/*
1690 		 * Special case for "unmounting" root ...
1691 		 * we just try to remount it readonly.
1692 		 */
1693 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1694 			return -EPERM;
1695 		return do_umount_root(sb);
1696 	}
1697 
1698 	namespace_lock();
1699 	lock_mount_hash();
1700 
1701 	/* Recheck MNT_LOCKED with the locks held */
1702 	retval = -EINVAL;
1703 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1704 		goto out;
1705 
1706 	event++;
1707 	if (flags & MNT_DETACH) {
1708 		if (!list_empty(&mnt->mnt_list))
1709 			umount_tree(mnt, UMOUNT_PROPAGATE);
1710 		retval = 0;
1711 	} else {
1712 		shrink_submounts(mnt);
1713 		retval = -EBUSY;
1714 		if (!propagate_mount_busy(mnt, 2)) {
1715 			if (!list_empty(&mnt->mnt_list))
1716 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1717 			retval = 0;
1718 		}
1719 	}
1720 out:
1721 	unlock_mount_hash();
1722 	namespace_unlock();
1723 	return retval;
1724 }
1725 
1726 /*
1727  * __detach_mounts - lazily unmount all mounts on the specified dentry
1728  *
1729  * During unlink, rmdir, and d_drop it is possible to loose the path
1730  * to an existing mountpoint, and wind up leaking the mount.
1731  * detach_mounts allows lazily unmounting those mounts instead of
1732  * leaking them.
1733  *
1734  * The caller may hold dentry->d_inode->i_mutex.
1735  */
1736 void __detach_mounts(struct dentry *dentry)
1737 {
1738 	struct mountpoint *mp;
1739 	struct mount *mnt;
1740 
1741 	namespace_lock();
1742 	lock_mount_hash();
1743 	mp = lookup_mountpoint(dentry);
1744 	if (!mp)
1745 		goto out_unlock;
1746 
1747 	event++;
1748 	while (!hlist_empty(&mp->m_list)) {
1749 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1750 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1751 			umount_mnt(mnt);
1752 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1753 		}
1754 		else umount_tree(mnt, UMOUNT_CONNECTED);
1755 	}
1756 	put_mountpoint(mp);
1757 out_unlock:
1758 	unlock_mount_hash();
1759 	namespace_unlock();
1760 }
1761 
1762 /*
1763  * Is the caller allowed to modify his namespace?
1764  */
1765 bool may_mount(void)
1766 {
1767 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1768 }
1769 
1770 /**
1771  * path_mounted - check whether path is mounted
1772  * @path: path to check
1773  *
1774  * Determine whether @path refers to the root of a mount.
1775  *
1776  * Return: true if @path is the root of a mount, false if not.
1777  */
1778 static inline bool path_mounted(const struct path *path)
1779 {
1780 	return path->mnt->mnt_root == path->dentry;
1781 }
1782 
1783 static void warn_mandlock(void)
1784 {
1785 	pr_warn_once("=======================================================\n"
1786 		     "WARNING: The mand mount option has been deprecated and\n"
1787 		     "         and is ignored by this kernel. Remove the mand\n"
1788 		     "         option from the mount to silence this warning.\n"
1789 		     "=======================================================\n");
1790 }
1791 
1792 static int can_umount(const struct path *path, int flags)
1793 {
1794 	struct mount *mnt = real_mount(path->mnt);
1795 
1796 	if (!may_mount())
1797 		return -EPERM;
1798 	if (!path_mounted(path))
1799 		return -EINVAL;
1800 	if (!check_mnt(mnt))
1801 		return -EINVAL;
1802 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1803 		return -EINVAL;
1804 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1805 		return -EPERM;
1806 	return 0;
1807 }
1808 
1809 // caller is responsible for flags being sane
1810 int path_umount(struct path *path, int flags)
1811 {
1812 	struct mount *mnt = real_mount(path->mnt);
1813 	int ret;
1814 
1815 	ret = can_umount(path, flags);
1816 	if (!ret)
1817 		ret = do_umount(mnt, flags);
1818 
1819 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1820 	dput(path->dentry);
1821 	mntput_no_expire(mnt);
1822 	return ret;
1823 }
1824 
1825 static int ksys_umount(char __user *name, int flags)
1826 {
1827 	int lookup_flags = LOOKUP_MOUNTPOINT;
1828 	struct path path;
1829 	int ret;
1830 
1831 	// basic validity checks done first
1832 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1833 		return -EINVAL;
1834 
1835 	if (!(flags & UMOUNT_NOFOLLOW))
1836 		lookup_flags |= LOOKUP_FOLLOW;
1837 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1838 	if (ret)
1839 		return ret;
1840 	return path_umount(&path, flags);
1841 }
1842 
1843 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1844 {
1845 	return ksys_umount(name, flags);
1846 }
1847 
1848 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1849 
1850 /*
1851  *	The 2.0 compatible umount. No flags.
1852  */
1853 SYSCALL_DEFINE1(oldumount, char __user *, name)
1854 {
1855 	return ksys_umount(name, 0);
1856 }
1857 
1858 #endif
1859 
1860 static bool is_mnt_ns_file(struct dentry *dentry)
1861 {
1862 	/* Is this a proxy for a mount namespace? */
1863 	return dentry->d_op == &ns_dentry_operations &&
1864 	       dentry->d_fsdata == &mntns_operations;
1865 }
1866 
1867 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1868 {
1869 	return container_of(ns, struct mnt_namespace, ns);
1870 }
1871 
1872 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1873 {
1874 	return &mnt->ns;
1875 }
1876 
1877 static bool mnt_ns_loop(struct dentry *dentry)
1878 {
1879 	/* Could bind mounting the mount namespace inode cause a
1880 	 * mount namespace loop?
1881 	 */
1882 	struct mnt_namespace *mnt_ns;
1883 	if (!is_mnt_ns_file(dentry))
1884 		return false;
1885 
1886 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1887 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1888 }
1889 
1890 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1891 					int flag)
1892 {
1893 	struct mount *res, *p, *q, *r, *parent;
1894 
1895 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1896 		return ERR_PTR(-EINVAL);
1897 
1898 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1899 		return ERR_PTR(-EINVAL);
1900 
1901 	res = q = clone_mnt(mnt, dentry, flag);
1902 	if (IS_ERR(q))
1903 		return q;
1904 
1905 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1906 
1907 	p = mnt;
1908 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1909 		struct mount *s;
1910 		if (!is_subdir(r->mnt_mountpoint, dentry))
1911 			continue;
1912 
1913 		for (s = r; s; s = next_mnt(s, r)) {
1914 			if (!(flag & CL_COPY_UNBINDABLE) &&
1915 			    IS_MNT_UNBINDABLE(s)) {
1916 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1917 					/* Both unbindable and locked. */
1918 					q = ERR_PTR(-EPERM);
1919 					goto out;
1920 				} else {
1921 					s = skip_mnt_tree(s);
1922 					continue;
1923 				}
1924 			}
1925 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1926 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1927 				s = skip_mnt_tree(s);
1928 				continue;
1929 			}
1930 			while (p != s->mnt_parent) {
1931 				p = p->mnt_parent;
1932 				q = q->mnt_parent;
1933 			}
1934 			p = s;
1935 			parent = q;
1936 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1937 			if (IS_ERR(q))
1938 				goto out;
1939 			lock_mount_hash();
1940 			list_add_tail(&q->mnt_list, &res->mnt_list);
1941 			attach_mnt(q, parent, p->mnt_mp);
1942 			unlock_mount_hash();
1943 		}
1944 	}
1945 	return res;
1946 out:
1947 	if (res) {
1948 		lock_mount_hash();
1949 		umount_tree(res, UMOUNT_SYNC);
1950 		unlock_mount_hash();
1951 	}
1952 	return q;
1953 }
1954 
1955 /* Caller should check returned pointer for errors */
1956 
1957 struct vfsmount *collect_mounts(const struct path *path)
1958 {
1959 	struct mount *tree;
1960 	namespace_lock();
1961 	if (!check_mnt(real_mount(path->mnt)))
1962 		tree = ERR_PTR(-EINVAL);
1963 	else
1964 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1965 				 CL_COPY_ALL | CL_PRIVATE);
1966 	namespace_unlock();
1967 	if (IS_ERR(tree))
1968 		return ERR_CAST(tree);
1969 	return &tree->mnt;
1970 }
1971 
1972 static void free_mnt_ns(struct mnt_namespace *);
1973 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1974 
1975 void dissolve_on_fput(struct vfsmount *mnt)
1976 {
1977 	struct mnt_namespace *ns;
1978 	namespace_lock();
1979 	lock_mount_hash();
1980 	ns = real_mount(mnt)->mnt_ns;
1981 	if (ns) {
1982 		if (is_anon_ns(ns))
1983 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1984 		else
1985 			ns = NULL;
1986 	}
1987 	unlock_mount_hash();
1988 	namespace_unlock();
1989 	if (ns)
1990 		free_mnt_ns(ns);
1991 }
1992 
1993 void drop_collected_mounts(struct vfsmount *mnt)
1994 {
1995 	namespace_lock();
1996 	lock_mount_hash();
1997 	umount_tree(real_mount(mnt), 0);
1998 	unlock_mount_hash();
1999 	namespace_unlock();
2000 }
2001 
2002 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2003 {
2004 	struct mount *child;
2005 
2006 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2007 		if (!is_subdir(child->mnt_mountpoint, dentry))
2008 			continue;
2009 
2010 		if (child->mnt.mnt_flags & MNT_LOCKED)
2011 			return true;
2012 	}
2013 	return false;
2014 }
2015 
2016 /**
2017  * clone_private_mount - create a private clone of a path
2018  * @path: path to clone
2019  *
2020  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2021  * will not be attached anywhere in the namespace and will be private (i.e.
2022  * changes to the originating mount won't be propagated into this).
2023  *
2024  * Release with mntput().
2025  */
2026 struct vfsmount *clone_private_mount(const struct path *path)
2027 {
2028 	struct mount *old_mnt = real_mount(path->mnt);
2029 	struct mount *new_mnt;
2030 
2031 	down_read(&namespace_sem);
2032 	if (IS_MNT_UNBINDABLE(old_mnt))
2033 		goto invalid;
2034 
2035 	if (!check_mnt(old_mnt))
2036 		goto invalid;
2037 
2038 	if (has_locked_children(old_mnt, path->dentry))
2039 		goto invalid;
2040 
2041 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2042 	up_read(&namespace_sem);
2043 
2044 	if (IS_ERR(new_mnt))
2045 		return ERR_CAST(new_mnt);
2046 
2047 	/* Longterm mount to be removed by kern_unmount*() */
2048 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2049 
2050 	return &new_mnt->mnt;
2051 
2052 invalid:
2053 	up_read(&namespace_sem);
2054 	return ERR_PTR(-EINVAL);
2055 }
2056 EXPORT_SYMBOL_GPL(clone_private_mount);
2057 
2058 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2059 		   struct vfsmount *root)
2060 {
2061 	struct mount *mnt;
2062 	int res = f(root, arg);
2063 	if (res)
2064 		return res;
2065 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2066 		res = f(&mnt->mnt, arg);
2067 		if (res)
2068 			return res;
2069 	}
2070 	return 0;
2071 }
2072 
2073 static void lock_mnt_tree(struct mount *mnt)
2074 {
2075 	struct mount *p;
2076 
2077 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2078 		int flags = p->mnt.mnt_flags;
2079 		/* Don't allow unprivileged users to change mount flags */
2080 		flags |= MNT_LOCK_ATIME;
2081 
2082 		if (flags & MNT_READONLY)
2083 			flags |= MNT_LOCK_READONLY;
2084 
2085 		if (flags & MNT_NODEV)
2086 			flags |= MNT_LOCK_NODEV;
2087 
2088 		if (flags & MNT_NOSUID)
2089 			flags |= MNT_LOCK_NOSUID;
2090 
2091 		if (flags & MNT_NOEXEC)
2092 			flags |= MNT_LOCK_NOEXEC;
2093 		/* Don't allow unprivileged users to reveal what is under a mount */
2094 		if (list_empty(&p->mnt_expire))
2095 			flags |= MNT_LOCKED;
2096 		p->mnt.mnt_flags = flags;
2097 	}
2098 }
2099 
2100 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2101 {
2102 	struct mount *p;
2103 
2104 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2105 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2106 			mnt_release_group_id(p);
2107 	}
2108 }
2109 
2110 static int invent_group_ids(struct mount *mnt, bool recurse)
2111 {
2112 	struct mount *p;
2113 
2114 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2115 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2116 			int err = mnt_alloc_group_id(p);
2117 			if (err) {
2118 				cleanup_group_ids(mnt, p);
2119 				return err;
2120 			}
2121 		}
2122 	}
2123 
2124 	return 0;
2125 }
2126 
2127 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2128 {
2129 	unsigned int max = READ_ONCE(sysctl_mount_max);
2130 	unsigned int mounts = 0;
2131 	struct mount *p;
2132 
2133 	if (ns->mounts >= max)
2134 		return -ENOSPC;
2135 	max -= ns->mounts;
2136 	if (ns->pending_mounts >= max)
2137 		return -ENOSPC;
2138 	max -= ns->pending_mounts;
2139 
2140 	for (p = mnt; p; p = next_mnt(p, mnt))
2141 		mounts++;
2142 
2143 	if (mounts > max)
2144 		return -ENOSPC;
2145 
2146 	ns->pending_mounts += mounts;
2147 	return 0;
2148 }
2149 
2150 /*
2151  *  @source_mnt : mount tree to be attached
2152  *  @nd         : place the mount tree @source_mnt is attached
2153  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2154  *  		   store the parent mount and mountpoint dentry.
2155  *  		   (done when source_mnt is moved)
2156  *
2157  *  NOTE: in the table below explains the semantics when a source mount
2158  *  of a given type is attached to a destination mount of a given type.
2159  * ---------------------------------------------------------------------------
2160  * |         BIND MOUNT OPERATION                                            |
2161  * |**************************************************************************
2162  * | source-->| shared        |       private  |       slave    | unbindable |
2163  * | dest     |               |                |                |            |
2164  * |   |      |               |                |                |            |
2165  * |   v      |               |                |                |            |
2166  * |**************************************************************************
2167  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2168  * |          |               |                |                |            |
2169  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2170  * ***************************************************************************
2171  * A bind operation clones the source mount and mounts the clone on the
2172  * destination mount.
2173  *
2174  * (++)  the cloned mount is propagated to all the mounts in the propagation
2175  * 	 tree of the destination mount and the cloned mount is added to
2176  * 	 the peer group of the source mount.
2177  * (+)   the cloned mount is created under the destination mount and is marked
2178  *       as shared. The cloned mount is added to the peer group of the source
2179  *       mount.
2180  * (+++) the mount is propagated to all the mounts in the propagation tree
2181  *       of the destination mount and the cloned mount is made slave
2182  *       of the same master as that of the source mount. The cloned mount
2183  *       is marked as 'shared and slave'.
2184  * (*)   the cloned mount is made a slave of the same master as that of the
2185  * 	 source mount.
2186  *
2187  * ---------------------------------------------------------------------------
2188  * |         		MOVE MOUNT OPERATION                                 |
2189  * |**************************************************************************
2190  * | source-->| shared        |       private  |       slave    | unbindable |
2191  * | dest     |               |                |                |            |
2192  * |   |      |               |                |                |            |
2193  * |   v      |               |                |                |            |
2194  * |**************************************************************************
2195  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2196  * |          |               |                |                |            |
2197  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2198  * ***************************************************************************
2199  *
2200  * (+)  the mount is moved to the destination. And is then propagated to
2201  * 	all the mounts in the propagation tree of the destination mount.
2202  * (+*)  the mount is moved to the destination.
2203  * (+++)  the mount is moved to the destination and is then propagated to
2204  * 	all the mounts belonging to the destination mount's propagation tree.
2205  * 	the mount is marked as 'shared and slave'.
2206  * (*)	the mount continues to be a slave at the new location.
2207  *
2208  * if the source mount is a tree, the operations explained above is
2209  * applied to each mount in the tree.
2210  * Must be called without spinlocks held, since this function can sleep
2211  * in allocations.
2212  */
2213 static int attach_recursive_mnt(struct mount *source_mnt,
2214 			struct mount *dest_mnt,
2215 			struct mountpoint *dest_mp,
2216 			bool moving)
2217 {
2218 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2219 	HLIST_HEAD(tree_list);
2220 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2221 	struct mountpoint *smp;
2222 	struct mount *child, *p;
2223 	struct hlist_node *n;
2224 	int err;
2225 
2226 	/* Preallocate a mountpoint in case the new mounts need
2227 	 * to be tucked under other mounts.
2228 	 */
2229 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2230 	if (IS_ERR(smp))
2231 		return PTR_ERR(smp);
2232 
2233 	/* Is there space to add these mounts to the mount namespace? */
2234 	if (!moving) {
2235 		err = count_mounts(ns, source_mnt);
2236 		if (err)
2237 			goto out;
2238 	}
2239 
2240 	if (IS_MNT_SHARED(dest_mnt)) {
2241 		err = invent_group_ids(source_mnt, true);
2242 		if (err)
2243 			goto out;
2244 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2245 		lock_mount_hash();
2246 		if (err)
2247 			goto out_cleanup_ids;
2248 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2249 			set_mnt_shared(p);
2250 	} else {
2251 		lock_mount_hash();
2252 	}
2253 	if (moving) {
2254 		unhash_mnt(source_mnt);
2255 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2256 		touch_mnt_namespace(source_mnt->mnt_ns);
2257 	} else {
2258 		if (source_mnt->mnt_ns) {
2259 			/* move from anon - the caller will destroy */
2260 			list_del_init(&source_mnt->mnt_ns->list);
2261 		}
2262 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2263 		commit_tree(source_mnt);
2264 	}
2265 
2266 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2267 		struct mount *q;
2268 		hlist_del_init(&child->mnt_hash);
2269 		q = __lookup_mnt(&child->mnt_parent->mnt,
2270 				 child->mnt_mountpoint);
2271 		if (q)
2272 			mnt_change_mountpoint(child, smp, q);
2273 		/* Notice when we are propagating across user namespaces */
2274 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2275 			lock_mnt_tree(child);
2276 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2277 		commit_tree(child);
2278 	}
2279 	put_mountpoint(smp);
2280 	unlock_mount_hash();
2281 
2282 	return 0;
2283 
2284  out_cleanup_ids:
2285 	while (!hlist_empty(&tree_list)) {
2286 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2287 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2288 		umount_tree(child, UMOUNT_SYNC);
2289 	}
2290 	unlock_mount_hash();
2291 	cleanup_group_ids(source_mnt, NULL);
2292  out:
2293 	ns->pending_mounts = 0;
2294 
2295 	read_seqlock_excl(&mount_lock);
2296 	put_mountpoint(smp);
2297 	read_sequnlock_excl(&mount_lock);
2298 
2299 	return err;
2300 }
2301 
2302 static struct mountpoint *lock_mount(struct path *path)
2303 {
2304 	struct vfsmount *mnt;
2305 	struct dentry *dentry = path->dentry;
2306 retry:
2307 	inode_lock(dentry->d_inode);
2308 	if (unlikely(cant_mount(dentry))) {
2309 		inode_unlock(dentry->d_inode);
2310 		return ERR_PTR(-ENOENT);
2311 	}
2312 	namespace_lock();
2313 	mnt = lookup_mnt(path);
2314 	if (likely(!mnt)) {
2315 		struct mountpoint *mp = get_mountpoint(dentry);
2316 		if (IS_ERR(mp)) {
2317 			namespace_unlock();
2318 			inode_unlock(dentry->d_inode);
2319 			return mp;
2320 		}
2321 		return mp;
2322 	}
2323 	namespace_unlock();
2324 	inode_unlock(path->dentry->d_inode);
2325 	path_put(path);
2326 	path->mnt = mnt;
2327 	dentry = path->dentry = dget(mnt->mnt_root);
2328 	goto retry;
2329 }
2330 
2331 static void unlock_mount(struct mountpoint *where)
2332 {
2333 	struct dentry *dentry = where->m_dentry;
2334 
2335 	read_seqlock_excl(&mount_lock);
2336 	put_mountpoint(where);
2337 	read_sequnlock_excl(&mount_lock);
2338 
2339 	namespace_unlock();
2340 	inode_unlock(dentry->d_inode);
2341 }
2342 
2343 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2344 {
2345 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2346 		return -EINVAL;
2347 
2348 	if (d_is_dir(mp->m_dentry) !=
2349 	      d_is_dir(mnt->mnt.mnt_root))
2350 		return -ENOTDIR;
2351 
2352 	return attach_recursive_mnt(mnt, p, mp, false);
2353 }
2354 
2355 /*
2356  * Sanity check the flags to change_mnt_propagation.
2357  */
2358 
2359 static int flags_to_propagation_type(int ms_flags)
2360 {
2361 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2362 
2363 	/* Fail if any non-propagation flags are set */
2364 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2365 		return 0;
2366 	/* Only one propagation flag should be set */
2367 	if (!is_power_of_2(type))
2368 		return 0;
2369 	return type;
2370 }
2371 
2372 /*
2373  * recursively change the type of the mountpoint.
2374  */
2375 static int do_change_type(struct path *path, int ms_flags)
2376 {
2377 	struct mount *m;
2378 	struct mount *mnt = real_mount(path->mnt);
2379 	int recurse = ms_flags & MS_REC;
2380 	int type;
2381 	int err = 0;
2382 
2383 	if (!path_mounted(path))
2384 		return -EINVAL;
2385 
2386 	type = flags_to_propagation_type(ms_flags);
2387 	if (!type)
2388 		return -EINVAL;
2389 
2390 	namespace_lock();
2391 	if (type == MS_SHARED) {
2392 		err = invent_group_ids(mnt, recurse);
2393 		if (err)
2394 			goto out_unlock;
2395 	}
2396 
2397 	lock_mount_hash();
2398 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2399 		change_mnt_propagation(m, type);
2400 	unlock_mount_hash();
2401 
2402  out_unlock:
2403 	namespace_unlock();
2404 	return err;
2405 }
2406 
2407 static struct mount *__do_loopback(struct path *old_path, int recurse)
2408 {
2409 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2410 
2411 	if (IS_MNT_UNBINDABLE(old))
2412 		return mnt;
2413 
2414 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2415 		return mnt;
2416 
2417 	if (!recurse && has_locked_children(old, old_path->dentry))
2418 		return mnt;
2419 
2420 	if (recurse)
2421 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2422 	else
2423 		mnt = clone_mnt(old, old_path->dentry, 0);
2424 
2425 	if (!IS_ERR(mnt))
2426 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2427 
2428 	return mnt;
2429 }
2430 
2431 /*
2432  * do loopback mount.
2433  */
2434 static int do_loopback(struct path *path, const char *old_name,
2435 				int recurse)
2436 {
2437 	struct path old_path;
2438 	struct mount *mnt = NULL, *parent;
2439 	struct mountpoint *mp;
2440 	int err;
2441 	if (!old_name || !*old_name)
2442 		return -EINVAL;
2443 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2444 	if (err)
2445 		return err;
2446 
2447 	err = -EINVAL;
2448 	if (mnt_ns_loop(old_path.dentry))
2449 		goto out;
2450 
2451 	mp = lock_mount(path);
2452 	if (IS_ERR(mp)) {
2453 		err = PTR_ERR(mp);
2454 		goto out;
2455 	}
2456 
2457 	parent = real_mount(path->mnt);
2458 	if (!check_mnt(parent))
2459 		goto out2;
2460 
2461 	mnt = __do_loopback(&old_path, recurse);
2462 	if (IS_ERR(mnt)) {
2463 		err = PTR_ERR(mnt);
2464 		goto out2;
2465 	}
2466 
2467 	err = graft_tree(mnt, parent, mp);
2468 	if (err) {
2469 		lock_mount_hash();
2470 		umount_tree(mnt, UMOUNT_SYNC);
2471 		unlock_mount_hash();
2472 	}
2473 out2:
2474 	unlock_mount(mp);
2475 out:
2476 	path_put(&old_path);
2477 	return err;
2478 }
2479 
2480 static struct file *open_detached_copy(struct path *path, bool recursive)
2481 {
2482 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2483 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2484 	struct mount *mnt, *p;
2485 	struct file *file;
2486 
2487 	if (IS_ERR(ns))
2488 		return ERR_CAST(ns);
2489 
2490 	namespace_lock();
2491 	mnt = __do_loopback(path, recursive);
2492 	if (IS_ERR(mnt)) {
2493 		namespace_unlock();
2494 		free_mnt_ns(ns);
2495 		return ERR_CAST(mnt);
2496 	}
2497 
2498 	lock_mount_hash();
2499 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2500 		p->mnt_ns = ns;
2501 		ns->mounts++;
2502 	}
2503 	ns->root = mnt;
2504 	list_add_tail(&ns->list, &mnt->mnt_list);
2505 	mntget(&mnt->mnt);
2506 	unlock_mount_hash();
2507 	namespace_unlock();
2508 
2509 	mntput(path->mnt);
2510 	path->mnt = &mnt->mnt;
2511 	file = dentry_open(path, O_PATH, current_cred());
2512 	if (IS_ERR(file))
2513 		dissolve_on_fput(path->mnt);
2514 	else
2515 		file->f_mode |= FMODE_NEED_UNMOUNT;
2516 	return file;
2517 }
2518 
2519 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2520 {
2521 	struct file *file;
2522 	struct path path;
2523 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2524 	bool detached = flags & OPEN_TREE_CLONE;
2525 	int error;
2526 	int fd;
2527 
2528 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2529 
2530 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2531 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2532 		      OPEN_TREE_CLOEXEC))
2533 		return -EINVAL;
2534 
2535 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2536 		return -EINVAL;
2537 
2538 	if (flags & AT_NO_AUTOMOUNT)
2539 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2540 	if (flags & AT_SYMLINK_NOFOLLOW)
2541 		lookup_flags &= ~LOOKUP_FOLLOW;
2542 	if (flags & AT_EMPTY_PATH)
2543 		lookup_flags |= LOOKUP_EMPTY;
2544 
2545 	if (detached && !may_mount())
2546 		return -EPERM;
2547 
2548 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2549 	if (fd < 0)
2550 		return fd;
2551 
2552 	error = user_path_at(dfd, filename, lookup_flags, &path);
2553 	if (unlikely(error)) {
2554 		file = ERR_PTR(error);
2555 	} else {
2556 		if (detached)
2557 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2558 		else
2559 			file = dentry_open(&path, O_PATH, current_cred());
2560 		path_put(&path);
2561 	}
2562 	if (IS_ERR(file)) {
2563 		put_unused_fd(fd);
2564 		return PTR_ERR(file);
2565 	}
2566 	fd_install(fd, file);
2567 	return fd;
2568 }
2569 
2570 /*
2571  * Don't allow locked mount flags to be cleared.
2572  *
2573  * No locks need to be held here while testing the various MNT_LOCK
2574  * flags because those flags can never be cleared once they are set.
2575  */
2576 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2577 {
2578 	unsigned int fl = mnt->mnt.mnt_flags;
2579 
2580 	if ((fl & MNT_LOCK_READONLY) &&
2581 	    !(mnt_flags & MNT_READONLY))
2582 		return false;
2583 
2584 	if ((fl & MNT_LOCK_NODEV) &&
2585 	    !(mnt_flags & MNT_NODEV))
2586 		return false;
2587 
2588 	if ((fl & MNT_LOCK_NOSUID) &&
2589 	    !(mnt_flags & MNT_NOSUID))
2590 		return false;
2591 
2592 	if ((fl & MNT_LOCK_NOEXEC) &&
2593 	    !(mnt_flags & MNT_NOEXEC))
2594 		return false;
2595 
2596 	if ((fl & MNT_LOCK_ATIME) &&
2597 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2598 		return false;
2599 
2600 	return true;
2601 }
2602 
2603 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2604 {
2605 	bool readonly_request = (mnt_flags & MNT_READONLY);
2606 
2607 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2608 		return 0;
2609 
2610 	if (readonly_request)
2611 		return mnt_make_readonly(mnt);
2612 
2613 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2614 	return 0;
2615 }
2616 
2617 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2618 {
2619 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2620 	mnt->mnt.mnt_flags = mnt_flags;
2621 	touch_mnt_namespace(mnt->mnt_ns);
2622 }
2623 
2624 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2625 {
2626 	struct super_block *sb = mnt->mnt_sb;
2627 
2628 	if (!__mnt_is_readonly(mnt) &&
2629 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2630 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2631 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2632 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2633 
2634 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2635 			sb->s_type->name,
2636 			is_mounted(mnt) ? "remounted" : "mounted",
2637 			mntpath, &sb->s_time_max,
2638 			(unsigned long long)sb->s_time_max);
2639 
2640 		free_page((unsigned long)buf);
2641 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2642 	}
2643 }
2644 
2645 /*
2646  * Handle reconfiguration of the mountpoint only without alteration of the
2647  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2648  * to mount(2).
2649  */
2650 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2651 {
2652 	struct super_block *sb = path->mnt->mnt_sb;
2653 	struct mount *mnt = real_mount(path->mnt);
2654 	int ret;
2655 
2656 	if (!check_mnt(mnt))
2657 		return -EINVAL;
2658 
2659 	if (!path_mounted(path))
2660 		return -EINVAL;
2661 
2662 	if (!can_change_locked_flags(mnt, mnt_flags))
2663 		return -EPERM;
2664 
2665 	/*
2666 	 * We're only checking whether the superblock is read-only not
2667 	 * changing it, so only take down_read(&sb->s_umount).
2668 	 */
2669 	down_read(&sb->s_umount);
2670 	lock_mount_hash();
2671 	ret = change_mount_ro_state(mnt, mnt_flags);
2672 	if (ret == 0)
2673 		set_mount_attributes(mnt, mnt_flags);
2674 	unlock_mount_hash();
2675 	up_read(&sb->s_umount);
2676 
2677 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2678 
2679 	return ret;
2680 }
2681 
2682 /*
2683  * change filesystem flags. dir should be a physical root of filesystem.
2684  * If you've mounted a non-root directory somewhere and want to do remount
2685  * on it - tough luck.
2686  */
2687 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2688 		      int mnt_flags, void *data)
2689 {
2690 	int err;
2691 	struct super_block *sb = path->mnt->mnt_sb;
2692 	struct mount *mnt = real_mount(path->mnt);
2693 	struct fs_context *fc;
2694 
2695 	if (!check_mnt(mnt))
2696 		return -EINVAL;
2697 
2698 	if (!path_mounted(path))
2699 		return -EINVAL;
2700 
2701 	if (!can_change_locked_flags(mnt, mnt_flags))
2702 		return -EPERM;
2703 
2704 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2705 	if (IS_ERR(fc))
2706 		return PTR_ERR(fc);
2707 
2708 	fc->oldapi = true;
2709 	err = parse_monolithic_mount_data(fc, data);
2710 	if (!err) {
2711 		down_write(&sb->s_umount);
2712 		err = -EPERM;
2713 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2714 			err = reconfigure_super(fc);
2715 			if (!err) {
2716 				lock_mount_hash();
2717 				set_mount_attributes(mnt, mnt_flags);
2718 				unlock_mount_hash();
2719 			}
2720 		}
2721 		up_write(&sb->s_umount);
2722 	}
2723 
2724 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2725 
2726 	put_fs_context(fc);
2727 	return err;
2728 }
2729 
2730 static inline int tree_contains_unbindable(struct mount *mnt)
2731 {
2732 	struct mount *p;
2733 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2734 		if (IS_MNT_UNBINDABLE(p))
2735 			return 1;
2736 	}
2737 	return 0;
2738 }
2739 
2740 /*
2741  * Check that there aren't references to earlier/same mount namespaces in the
2742  * specified subtree.  Such references can act as pins for mount namespaces
2743  * that aren't checked by the mount-cycle checking code, thereby allowing
2744  * cycles to be made.
2745  */
2746 static bool check_for_nsfs_mounts(struct mount *subtree)
2747 {
2748 	struct mount *p;
2749 	bool ret = false;
2750 
2751 	lock_mount_hash();
2752 	for (p = subtree; p; p = next_mnt(p, subtree))
2753 		if (mnt_ns_loop(p->mnt.mnt_root))
2754 			goto out;
2755 
2756 	ret = true;
2757 out:
2758 	unlock_mount_hash();
2759 	return ret;
2760 }
2761 
2762 static int do_set_group(struct path *from_path, struct path *to_path)
2763 {
2764 	struct mount *from, *to;
2765 	int err;
2766 
2767 	from = real_mount(from_path->mnt);
2768 	to = real_mount(to_path->mnt);
2769 
2770 	namespace_lock();
2771 
2772 	err = -EINVAL;
2773 	/* To and From must be mounted */
2774 	if (!is_mounted(&from->mnt))
2775 		goto out;
2776 	if (!is_mounted(&to->mnt))
2777 		goto out;
2778 
2779 	err = -EPERM;
2780 	/* We should be allowed to modify mount namespaces of both mounts */
2781 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2782 		goto out;
2783 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2784 		goto out;
2785 
2786 	err = -EINVAL;
2787 	/* To and From paths should be mount roots */
2788 	if (!path_mounted(from_path))
2789 		goto out;
2790 	if (!path_mounted(to_path))
2791 		goto out;
2792 
2793 	/* Setting sharing groups is only allowed across same superblock */
2794 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2795 		goto out;
2796 
2797 	/* From mount root should be wider than To mount root */
2798 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2799 		goto out;
2800 
2801 	/* From mount should not have locked children in place of To's root */
2802 	if (has_locked_children(from, to->mnt.mnt_root))
2803 		goto out;
2804 
2805 	/* Setting sharing groups is only allowed on private mounts */
2806 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2807 		goto out;
2808 
2809 	/* From should not be private */
2810 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2811 		goto out;
2812 
2813 	if (IS_MNT_SLAVE(from)) {
2814 		struct mount *m = from->mnt_master;
2815 
2816 		list_add(&to->mnt_slave, &m->mnt_slave_list);
2817 		to->mnt_master = m;
2818 	}
2819 
2820 	if (IS_MNT_SHARED(from)) {
2821 		to->mnt_group_id = from->mnt_group_id;
2822 		list_add(&to->mnt_share, &from->mnt_share);
2823 		lock_mount_hash();
2824 		set_mnt_shared(to);
2825 		unlock_mount_hash();
2826 	}
2827 
2828 	err = 0;
2829 out:
2830 	namespace_unlock();
2831 	return err;
2832 }
2833 
2834 static int do_move_mount(struct path *old_path, struct path *new_path)
2835 {
2836 	struct mnt_namespace *ns;
2837 	struct mount *p;
2838 	struct mount *old;
2839 	struct mount *parent;
2840 	struct mountpoint *mp, *old_mp;
2841 	int err;
2842 	bool attached;
2843 
2844 	mp = lock_mount(new_path);
2845 	if (IS_ERR(mp))
2846 		return PTR_ERR(mp);
2847 
2848 	old = real_mount(old_path->mnt);
2849 	p = real_mount(new_path->mnt);
2850 	parent = old->mnt_parent;
2851 	attached = mnt_has_parent(old);
2852 	old_mp = old->mnt_mp;
2853 	ns = old->mnt_ns;
2854 
2855 	err = -EINVAL;
2856 	/* The mountpoint must be in our namespace. */
2857 	if (!check_mnt(p))
2858 		goto out;
2859 
2860 	/* The thing moved must be mounted... */
2861 	if (!is_mounted(&old->mnt))
2862 		goto out;
2863 
2864 	/* ... and either ours or the root of anon namespace */
2865 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2866 		goto out;
2867 
2868 	if (old->mnt.mnt_flags & MNT_LOCKED)
2869 		goto out;
2870 
2871 	if (!path_mounted(old_path))
2872 		goto out;
2873 
2874 	if (d_is_dir(new_path->dentry) !=
2875 	    d_is_dir(old_path->dentry))
2876 		goto out;
2877 	/*
2878 	 * Don't move a mount residing in a shared parent.
2879 	 */
2880 	if (attached && IS_MNT_SHARED(parent))
2881 		goto out;
2882 	/*
2883 	 * Don't move a mount tree containing unbindable mounts to a destination
2884 	 * mount which is shared.
2885 	 */
2886 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2887 		goto out;
2888 	err = -ELOOP;
2889 	if (!check_for_nsfs_mounts(old))
2890 		goto out;
2891 	for (; mnt_has_parent(p); p = p->mnt_parent)
2892 		if (p == old)
2893 			goto out;
2894 
2895 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2896 				   attached);
2897 	if (err)
2898 		goto out;
2899 
2900 	/* if the mount is moved, it should no longer be expire
2901 	 * automatically */
2902 	list_del_init(&old->mnt_expire);
2903 	if (attached)
2904 		put_mountpoint(old_mp);
2905 out:
2906 	unlock_mount(mp);
2907 	if (!err) {
2908 		if (attached)
2909 			mntput_no_expire(parent);
2910 		else
2911 			free_mnt_ns(ns);
2912 	}
2913 	return err;
2914 }
2915 
2916 static int do_move_mount_old(struct path *path, const char *old_name)
2917 {
2918 	struct path old_path;
2919 	int err;
2920 
2921 	if (!old_name || !*old_name)
2922 		return -EINVAL;
2923 
2924 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2925 	if (err)
2926 		return err;
2927 
2928 	err = do_move_mount(&old_path, path);
2929 	path_put(&old_path);
2930 	return err;
2931 }
2932 
2933 /*
2934  * add a mount into a namespace's mount tree
2935  */
2936 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2937 			const struct path *path, int mnt_flags)
2938 {
2939 	struct mount *parent = real_mount(path->mnt);
2940 
2941 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2942 
2943 	if (unlikely(!check_mnt(parent))) {
2944 		/* that's acceptable only for automounts done in private ns */
2945 		if (!(mnt_flags & MNT_SHRINKABLE))
2946 			return -EINVAL;
2947 		/* ... and for those we'd better have mountpoint still alive */
2948 		if (!parent->mnt_ns)
2949 			return -EINVAL;
2950 	}
2951 
2952 	/* Refuse the same filesystem on the same mount point */
2953 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
2954 		return -EBUSY;
2955 
2956 	if (d_is_symlink(newmnt->mnt.mnt_root))
2957 		return -EINVAL;
2958 
2959 	newmnt->mnt.mnt_flags = mnt_flags;
2960 	return graft_tree(newmnt, parent, mp);
2961 }
2962 
2963 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2964 
2965 /*
2966  * Create a new mount using a superblock configuration and request it
2967  * be added to the namespace tree.
2968  */
2969 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2970 			   unsigned int mnt_flags)
2971 {
2972 	struct vfsmount *mnt;
2973 	struct mountpoint *mp;
2974 	struct super_block *sb = fc->root->d_sb;
2975 	int error;
2976 
2977 	error = security_sb_kern_mount(sb);
2978 	if (!error && mount_too_revealing(sb, &mnt_flags))
2979 		error = -EPERM;
2980 
2981 	if (unlikely(error)) {
2982 		fc_drop_locked(fc);
2983 		return error;
2984 	}
2985 
2986 	up_write(&sb->s_umount);
2987 
2988 	mnt = vfs_create_mount(fc);
2989 	if (IS_ERR(mnt))
2990 		return PTR_ERR(mnt);
2991 
2992 	mnt_warn_timestamp_expiry(mountpoint, mnt);
2993 
2994 	mp = lock_mount(mountpoint);
2995 	if (IS_ERR(mp)) {
2996 		mntput(mnt);
2997 		return PTR_ERR(mp);
2998 	}
2999 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3000 	unlock_mount(mp);
3001 	if (error < 0)
3002 		mntput(mnt);
3003 	return error;
3004 }
3005 
3006 /*
3007  * create a new mount for userspace and request it to be added into the
3008  * namespace's tree
3009  */
3010 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3011 			int mnt_flags, const char *name, void *data)
3012 {
3013 	struct file_system_type *type;
3014 	struct fs_context *fc;
3015 	const char *subtype = NULL;
3016 	int err = 0;
3017 
3018 	if (!fstype)
3019 		return -EINVAL;
3020 
3021 	type = get_fs_type(fstype);
3022 	if (!type)
3023 		return -ENODEV;
3024 
3025 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3026 		subtype = strchr(fstype, '.');
3027 		if (subtype) {
3028 			subtype++;
3029 			if (!*subtype) {
3030 				put_filesystem(type);
3031 				return -EINVAL;
3032 			}
3033 		}
3034 	}
3035 
3036 	fc = fs_context_for_mount(type, sb_flags);
3037 	put_filesystem(type);
3038 	if (IS_ERR(fc))
3039 		return PTR_ERR(fc);
3040 
3041 	if (subtype)
3042 		err = vfs_parse_fs_string(fc, "subtype",
3043 					  subtype, strlen(subtype));
3044 	if (!err && name)
3045 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3046 	if (!err)
3047 		err = parse_monolithic_mount_data(fc, data);
3048 	if (!err && !mount_capable(fc))
3049 		err = -EPERM;
3050 	if (!err)
3051 		err = vfs_get_tree(fc);
3052 	if (!err)
3053 		err = do_new_mount_fc(fc, path, mnt_flags);
3054 
3055 	put_fs_context(fc);
3056 	return err;
3057 }
3058 
3059 int finish_automount(struct vfsmount *m, const struct path *path)
3060 {
3061 	struct dentry *dentry = path->dentry;
3062 	struct mountpoint *mp;
3063 	struct mount *mnt;
3064 	int err;
3065 
3066 	if (!m)
3067 		return 0;
3068 	if (IS_ERR(m))
3069 		return PTR_ERR(m);
3070 
3071 	mnt = real_mount(m);
3072 	/* The new mount record should have at least 2 refs to prevent it being
3073 	 * expired before we get a chance to add it
3074 	 */
3075 	BUG_ON(mnt_get_count(mnt) < 2);
3076 
3077 	if (m->mnt_sb == path->mnt->mnt_sb &&
3078 	    m->mnt_root == dentry) {
3079 		err = -ELOOP;
3080 		goto discard;
3081 	}
3082 
3083 	/*
3084 	 * we don't want to use lock_mount() - in this case finding something
3085 	 * that overmounts our mountpoint to be means "quitely drop what we've
3086 	 * got", not "try to mount it on top".
3087 	 */
3088 	inode_lock(dentry->d_inode);
3089 	namespace_lock();
3090 	if (unlikely(cant_mount(dentry))) {
3091 		err = -ENOENT;
3092 		goto discard_locked;
3093 	}
3094 	rcu_read_lock();
3095 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3096 		rcu_read_unlock();
3097 		err = 0;
3098 		goto discard_locked;
3099 	}
3100 	rcu_read_unlock();
3101 	mp = get_mountpoint(dentry);
3102 	if (IS_ERR(mp)) {
3103 		err = PTR_ERR(mp);
3104 		goto discard_locked;
3105 	}
3106 
3107 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3108 	unlock_mount(mp);
3109 	if (unlikely(err))
3110 		goto discard;
3111 	mntput(m);
3112 	return 0;
3113 
3114 discard_locked:
3115 	namespace_unlock();
3116 	inode_unlock(dentry->d_inode);
3117 discard:
3118 	/* remove m from any expiration list it may be on */
3119 	if (!list_empty(&mnt->mnt_expire)) {
3120 		namespace_lock();
3121 		list_del_init(&mnt->mnt_expire);
3122 		namespace_unlock();
3123 	}
3124 	mntput(m);
3125 	mntput(m);
3126 	return err;
3127 }
3128 
3129 /**
3130  * mnt_set_expiry - Put a mount on an expiration list
3131  * @mnt: The mount to list.
3132  * @expiry_list: The list to add the mount to.
3133  */
3134 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3135 {
3136 	namespace_lock();
3137 
3138 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3139 
3140 	namespace_unlock();
3141 }
3142 EXPORT_SYMBOL(mnt_set_expiry);
3143 
3144 /*
3145  * process a list of expirable mountpoints with the intent of discarding any
3146  * mountpoints that aren't in use and haven't been touched since last we came
3147  * here
3148  */
3149 void mark_mounts_for_expiry(struct list_head *mounts)
3150 {
3151 	struct mount *mnt, *next;
3152 	LIST_HEAD(graveyard);
3153 
3154 	if (list_empty(mounts))
3155 		return;
3156 
3157 	namespace_lock();
3158 	lock_mount_hash();
3159 
3160 	/* extract from the expiration list every vfsmount that matches the
3161 	 * following criteria:
3162 	 * - only referenced by its parent vfsmount
3163 	 * - still marked for expiry (marked on the last call here; marks are
3164 	 *   cleared by mntput())
3165 	 */
3166 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3167 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3168 			propagate_mount_busy(mnt, 1))
3169 			continue;
3170 		list_move(&mnt->mnt_expire, &graveyard);
3171 	}
3172 	while (!list_empty(&graveyard)) {
3173 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3174 		touch_mnt_namespace(mnt->mnt_ns);
3175 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3176 	}
3177 	unlock_mount_hash();
3178 	namespace_unlock();
3179 }
3180 
3181 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3182 
3183 /*
3184  * Ripoff of 'select_parent()'
3185  *
3186  * search the list of submounts for a given mountpoint, and move any
3187  * shrinkable submounts to the 'graveyard' list.
3188  */
3189 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3190 {
3191 	struct mount *this_parent = parent;
3192 	struct list_head *next;
3193 	int found = 0;
3194 
3195 repeat:
3196 	next = this_parent->mnt_mounts.next;
3197 resume:
3198 	while (next != &this_parent->mnt_mounts) {
3199 		struct list_head *tmp = next;
3200 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3201 
3202 		next = tmp->next;
3203 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3204 			continue;
3205 		/*
3206 		 * Descend a level if the d_mounts list is non-empty.
3207 		 */
3208 		if (!list_empty(&mnt->mnt_mounts)) {
3209 			this_parent = mnt;
3210 			goto repeat;
3211 		}
3212 
3213 		if (!propagate_mount_busy(mnt, 1)) {
3214 			list_move_tail(&mnt->mnt_expire, graveyard);
3215 			found++;
3216 		}
3217 	}
3218 	/*
3219 	 * All done at this level ... ascend and resume the search
3220 	 */
3221 	if (this_parent != parent) {
3222 		next = this_parent->mnt_child.next;
3223 		this_parent = this_parent->mnt_parent;
3224 		goto resume;
3225 	}
3226 	return found;
3227 }
3228 
3229 /*
3230  * process a list of expirable mountpoints with the intent of discarding any
3231  * submounts of a specific parent mountpoint
3232  *
3233  * mount_lock must be held for write
3234  */
3235 static void shrink_submounts(struct mount *mnt)
3236 {
3237 	LIST_HEAD(graveyard);
3238 	struct mount *m;
3239 
3240 	/* extract submounts of 'mountpoint' from the expiration list */
3241 	while (select_submounts(mnt, &graveyard)) {
3242 		while (!list_empty(&graveyard)) {
3243 			m = list_first_entry(&graveyard, struct mount,
3244 						mnt_expire);
3245 			touch_mnt_namespace(m->mnt_ns);
3246 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3247 		}
3248 	}
3249 }
3250 
3251 static void *copy_mount_options(const void __user * data)
3252 {
3253 	char *copy;
3254 	unsigned left, offset;
3255 
3256 	if (!data)
3257 		return NULL;
3258 
3259 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3260 	if (!copy)
3261 		return ERR_PTR(-ENOMEM);
3262 
3263 	left = copy_from_user(copy, data, PAGE_SIZE);
3264 
3265 	/*
3266 	 * Not all architectures have an exact copy_from_user(). Resort to
3267 	 * byte at a time.
3268 	 */
3269 	offset = PAGE_SIZE - left;
3270 	while (left) {
3271 		char c;
3272 		if (get_user(c, (const char __user *)data + offset))
3273 			break;
3274 		copy[offset] = c;
3275 		left--;
3276 		offset++;
3277 	}
3278 
3279 	if (left == PAGE_SIZE) {
3280 		kfree(copy);
3281 		return ERR_PTR(-EFAULT);
3282 	}
3283 
3284 	return copy;
3285 }
3286 
3287 static char *copy_mount_string(const void __user *data)
3288 {
3289 	return data ? strndup_user(data, PATH_MAX) : NULL;
3290 }
3291 
3292 /*
3293  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3294  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3295  *
3296  * data is a (void *) that can point to any structure up to
3297  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3298  * information (or be NULL).
3299  *
3300  * Pre-0.97 versions of mount() didn't have a flags word.
3301  * When the flags word was introduced its top half was required
3302  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3303  * Therefore, if this magic number is present, it carries no information
3304  * and must be discarded.
3305  */
3306 int path_mount(const char *dev_name, struct path *path,
3307 		const char *type_page, unsigned long flags, void *data_page)
3308 {
3309 	unsigned int mnt_flags = 0, sb_flags;
3310 	int ret;
3311 
3312 	/* Discard magic */
3313 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3314 		flags &= ~MS_MGC_MSK;
3315 
3316 	/* Basic sanity checks */
3317 	if (data_page)
3318 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3319 
3320 	if (flags & MS_NOUSER)
3321 		return -EINVAL;
3322 
3323 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3324 	if (ret)
3325 		return ret;
3326 	if (!may_mount())
3327 		return -EPERM;
3328 	if (flags & SB_MANDLOCK)
3329 		warn_mandlock();
3330 
3331 	/* Default to relatime unless overriden */
3332 	if (!(flags & MS_NOATIME))
3333 		mnt_flags |= MNT_RELATIME;
3334 
3335 	/* Separate the per-mountpoint flags */
3336 	if (flags & MS_NOSUID)
3337 		mnt_flags |= MNT_NOSUID;
3338 	if (flags & MS_NODEV)
3339 		mnt_flags |= MNT_NODEV;
3340 	if (flags & MS_NOEXEC)
3341 		mnt_flags |= MNT_NOEXEC;
3342 	if (flags & MS_NOATIME)
3343 		mnt_flags |= MNT_NOATIME;
3344 	if (flags & MS_NODIRATIME)
3345 		mnt_flags |= MNT_NODIRATIME;
3346 	if (flags & MS_STRICTATIME)
3347 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3348 	if (flags & MS_RDONLY)
3349 		mnt_flags |= MNT_READONLY;
3350 	if (flags & MS_NOSYMFOLLOW)
3351 		mnt_flags |= MNT_NOSYMFOLLOW;
3352 
3353 	/* The default atime for remount is preservation */
3354 	if ((flags & MS_REMOUNT) &&
3355 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3356 		       MS_STRICTATIME)) == 0)) {
3357 		mnt_flags &= ~MNT_ATIME_MASK;
3358 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3359 	}
3360 
3361 	sb_flags = flags & (SB_RDONLY |
3362 			    SB_SYNCHRONOUS |
3363 			    SB_MANDLOCK |
3364 			    SB_DIRSYNC |
3365 			    SB_SILENT |
3366 			    SB_POSIXACL |
3367 			    SB_LAZYTIME |
3368 			    SB_I_VERSION);
3369 
3370 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3371 		return do_reconfigure_mnt(path, mnt_flags);
3372 	if (flags & MS_REMOUNT)
3373 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3374 	if (flags & MS_BIND)
3375 		return do_loopback(path, dev_name, flags & MS_REC);
3376 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3377 		return do_change_type(path, flags);
3378 	if (flags & MS_MOVE)
3379 		return do_move_mount_old(path, dev_name);
3380 
3381 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3382 			    data_page);
3383 }
3384 
3385 long do_mount(const char *dev_name, const char __user *dir_name,
3386 		const char *type_page, unsigned long flags, void *data_page)
3387 {
3388 	struct path path;
3389 	int ret;
3390 
3391 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3392 	if (ret)
3393 		return ret;
3394 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3395 	path_put(&path);
3396 	return ret;
3397 }
3398 
3399 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3400 {
3401 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3402 }
3403 
3404 static void dec_mnt_namespaces(struct ucounts *ucounts)
3405 {
3406 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3407 }
3408 
3409 static void free_mnt_ns(struct mnt_namespace *ns)
3410 {
3411 	if (!is_anon_ns(ns))
3412 		ns_free_inum(&ns->ns);
3413 	dec_mnt_namespaces(ns->ucounts);
3414 	put_user_ns(ns->user_ns);
3415 	kfree(ns);
3416 }
3417 
3418 /*
3419  * Assign a sequence number so we can detect when we attempt to bind
3420  * mount a reference to an older mount namespace into the current
3421  * mount namespace, preventing reference counting loops.  A 64bit
3422  * number incrementing at 10Ghz will take 12,427 years to wrap which
3423  * is effectively never, so we can ignore the possibility.
3424  */
3425 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3426 
3427 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3428 {
3429 	struct mnt_namespace *new_ns;
3430 	struct ucounts *ucounts;
3431 	int ret;
3432 
3433 	ucounts = inc_mnt_namespaces(user_ns);
3434 	if (!ucounts)
3435 		return ERR_PTR(-ENOSPC);
3436 
3437 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3438 	if (!new_ns) {
3439 		dec_mnt_namespaces(ucounts);
3440 		return ERR_PTR(-ENOMEM);
3441 	}
3442 	if (!anon) {
3443 		ret = ns_alloc_inum(&new_ns->ns);
3444 		if (ret) {
3445 			kfree(new_ns);
3446 			dec_mnt_namespaces(ucounts);
3447 			return ERR_PTR(ret);
3448 		}
3449 	}
3450 	new_ns->ns.ops = &mntns_operations;
3451 	if (!anon)
3452 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3453 	refcount_set(&new_ns->ns.count, 1);
3454 	INIT_LIST_HEAD(&new_ns->list);
3455 	init_waitqueue_head(&new_ns->poll);
3456 	spin_lock_init(&new_ns->ns_lock);
3457 	new_ns->user_ns = get_user_ns(user_ns);
3458 	new_ns->ucounts = ucounts;
3459 	return new_ns;
3460 }
3461 
3462 __latent_entropy
3463 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3464 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3465 {
3466 	struct mnt_namespace *new_ns;
3467 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3468 	struct mount *p, *q;
3469 	struct mount *old;
3470 	struct mount *new;
3471 	int copy_flags;
3472 
3473 	BUG_ON(!ns);
3474 
3475 	if (likely(!(flags & CLONE_NEWNS))) {
3476 		get_mnt_ns(ns);
3477 		return ns;
3478 	}
3479 
3480 	old = ns->root;
3481 
3482 	new_ns = alloc_mnt_ns(user_ns, false);
3483 	if (IS_ERR(new_ns))
3484 		return new_ns;
3485 
3486 	namespace_lock();
3487 	/* First pass: copy the tree topology */
3488 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3489 	if (user_ns != ns->user_ns)
3490 		copy_flags |= CL_SHARED_TO_SLAVE;
3491 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3492 	if (IS_ERR(new)) {
3493 		namespace_unlock();
3494 		free_mnt_ns(new_ns);
3495 		return ERR_CAST(new);
3496 	}
3497 	if (user_ns != ns->user_ns) {
3498 		lock_mount_hash();
3499 		lock_mnt_tree(new);
3500 		unlock_mount_hash();
3501 	}
3502 	new_ns->root = new;
3503 	list_add_tail(&new_ns->list, &new->mnt_list);
3504 
3505 	/*
3506 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3507 	 * as belonging to new namespace.  We have already acquired a private
3508 	 * fs_struct, so tsk->fs->lock is not needed.
3509 	 */
3510 	p = old;
3511 	q = new;
3512 	while (p) {
3513 		q->mnt_ns = new_ns;
3514 		new_ns->mounts++;
3515 		if (new_fs) {
3516 			if (&p->mnt == new_fs->root.mnt) {
3517 				new_fs->root.mnt = mntget(&q->mnt);
3518 				rootmnt = &p->mnt;
3519 			}
3520 			if (&p->mnt == new_fs->pwd.mnt) {
3521 				new_fs->pwd.mnt = mntget(&q->mnt);
3522 				pwdmnt = &p->mnt;
3523 			}
3524 		}
3525 		p = next_mnt(p, old);
3526 		q = next_mnt(q, new);
3527 		if (!q)
3528 			break;
3529 		// an mntns binding we'd skipped?
3530 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3531 			p = next_mnt(skip_mnt_tree(p), old);
3532 	}
3533 	namespace_unlock();
3534 
3535 	if (rootmnt)
3536 		mntput(rootmnt);
3537 	if (pwdmnt)
3538 		mntput(pwdmnt);
3539 
3540 	return new_ns;
3541 }
3542 
3543 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3544 {
3545 	struct mount *mnt = real_mount(m);
3546 	struct mnt_namespace *ns;
3547 	struct super_block *s;
3548 	struct path path;
3549 	int err;
3550 
3551 	ns = alloc_mnt_ns(&init_user_ns, true);
3552 	if (IS_ERR(ns)) {
3553 		mntput(m);
3554 		return ERR_CAST(ns);
3555 	}
3556 	mnt->mnt_ns = ns;
3557 	ns->root = mnt;
3558 	ns->mounts++;
3559 	list_add(&mnt->mnt_list, &ns->list);
3560 
3561 	err = vfs_path_lookup(m->mnt_root, m,
3562 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3563 
3564 	put_mnt_ns(ns);
3565 
3566 	if (err)
3567 		return ERR_PTR(err);
3568 
3569 	/* trade a vfsmount reference for active sb one */
3570 	s = path.mnt->mnt_sb;
3571 	atomic_inc(&s->s_active);
3572 	mntput(path.mnt);
3573 	/* lock the sucker */
3574 	down_write(&s->s_umount);
3575 	/* ... and return the root of (sub)tree on it */
3576 	return path.dentry;
3577 }
3578 EXPORT_SYMBOL(mount_subtree);
3579 
3580 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3581 		char __user *, type, unsigned long, flags, void __user *, data)
3582 {
3583 	int ret;
3584 	char *kernel_type;
3585 	char *kernel_dev;
3586 	void *options;
3587 
3588 	kernel_type = copy_mount_string(type);
3589 	ret = PTR_ERR(kernel_type);
3590 	if (IS_ERR(kernel_type))
3591 		goto out_type;
3592 
3593 	kernel_dev = copy_mount_string(dev_name);
3594 	ret = PTR_ERR(kernel_dev);
3595 	if (IS_ERR(kernel_dev))
3596 		goto out_dev;
3597 
3598 	options = copy_mount_options(data);
3599 	ret = PTR_ERR(options);
3600 	if (IS_ERR(options))
3601 		goto out_data;
3602 
3603 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3604 
3605 	kfree(options);
3606 out_data:
3607 	kfree(kernel_dev);
3608 out_dev:
3609 	kfree(kernel_type);
3610 out_type:
3611 	return ret;
3612 }
3613 
3614 #define FSMOUNT_VALID_FLAGS                                                    \
3615 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3616 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3617 	 MOUNT_ATTR_NOSYMFOLLOW)
3618 
3619 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3620 
3621 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3622 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3623 
3624 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3625 {
3626 	unsigned int mnt_flags = 0;
3627 
3628 	if (attr_flags & MOUNT_ATTR_RDONLY)
3629 		mnt_flags |= MNT_READONLY;
3630 	if (attr_flags & MOUNT_ATTR_NOSUID)
3631 		mnt_flags |= MNT_NOSUID;
3632 	if (attr_flags & MOUNT_ATTR_NODEV)
3633 		mnt_flags |= MNT_NODEV;
3634 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3635 		mnt_flags |= MNT_NOEXEC;
3636 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3637 		mnt_flags |= MNT_NODIRATIME;
3638 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3639 		mnt_flags |= MNT_NOSYMFOLLOW;
3640 
3641 	return mnt_flags;
3642 }
3643 
3644 /*
3645  * Create a kernel mount representation for a new, prepared superblock
3646  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3647  */
3648 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3649 		unsigned int, attr_flags)
3650 {
3651 	struct mnt_namespace *ns;
3652 	struct fs_context *fc;
3653 	struct file *file;
3654 	struct path newmount;
3655 	struct mount *mnt;
3656 	struct fd f;
3657 	unsigned int mnt_flags = 0;
3658 	long ret;
3659 
3660 	if (!may_mount())
3661 		return -EPERM;
3662 
3663 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3664 		return -EINVAL;
3665 
3666 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3667 		return -EINVAL;
3668 
3669 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3670 
3671 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3672 	case MOUNT_ATTR_STRICTATIME:
3673 		break;
3674 	case MOUNT_ATTR_NOATIME:
3675 		mnt_flags |= MNT_NOATIME;
3676 		break;
3677 	case MOUNT_ATTR_RELATIME:
3678 		mnt_flags |= MNT_RELATIME;
3679 		break;
3680 	default:
3681 		return -EINVAL;
3682 	}
3683 
3684 	f = fdget(fs_fd);
3685 	if (!f.file)
3686 		return -EBADF;
3687 
3688 	ret = -EINVAL;
3689 	if (f.file->f_op != &fscontext_fops)
3690 		goto err_fsfd;
3691 
3692 	fc = f.file->private_data;
3693 
3694 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3695 	if (ret < 0)
3696 		goto err_fsfd;
3697 
3698 	/* There must be a valid superblock or we can't mount it */
3699 	ret = -EINVAL;
3700 	if (!fc->root)
3701 		goto err_unlock;
3702 
3703 	ret = -EPERM;
3704 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3705 		pr_warn("VFS: Mount too revealing\n");
3706 		goto err_unlock;
3707 	}
3708 
3709 	ret = -EBUSY;
3710 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3711 		goto err_unlock;
3712 
3713 	if (fc->sb_flags & SB_MANDLOCK)
3714 		warn_mandlock();
3715 
3716 	newmount.mnt = vfs_create_mount(fc);
3717 	if (IS_ERR(newmount.mnt)) {
3718 		ret = PTR_ERR(newmount.mnt);
3719 		goto err_unlock;
3720 	}
3721 	newmount.dentry = dget(fc->root);
3722 	newmount.mnt->mnt_flags = mnt_flags;
3723 
3724 	/* We've done the mount bit - now move the file context into more or
3725 	 * less the same state as if we'd done an fspick().  We don't want to
3726 	 * do any memory allocation or anything like that at this point as we
3727 	 * don't want to have to handle any errors incurred.
3728 	 */
3729 	vfs_clean_context(fc);
3730 
3731 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3732 	if (IS_ERR(ns)) {
3733 		ret = PTR_ERR(ns);
3734 		goto err_path;
3735 	}
3736 	mnt = real_mount(newmount.mnt);
3737 	mnt->mnt_ns = ns;
3738 	ns->root = mnt;
3739 	ns->mounts = 1;
3740 	list_add(&mnt->mnt_list, &ns->list);
3741 	mntget(newmount.mnt);
3742 
3743 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3744 	 * it, not just simply put it.
3745 	 */
3746 	file = dentry_open(&newmount, O_PATH, fc->cred);
3747 	if (IS_ERR(file)) {
3748 		dissolve_on_fput(newmount.mnt);
3749 		ret = PTR_ERR(file);
3750 		goto err_path;
3751 	}
3752 	file->f_mode |= FMODE_NEED_UNMOUNT;
3753 
3754 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3755 	if (ret >= 0)
3756 		fd_install(ret, file);
3757 	else
3758 		fput(file);
3759 
3760 err_path:
3761 	path_put(&newmount);
3762 err_unlock:
3763 	mutex_unlock(&fc->uapi_mutex);
3764 err_fsfd:
3765 	fdput(f);
3766 	return ret;
3767 }
3768 
3769 /*
3770  * Move a mount from one place to another.  In combination with
3771  * fsopen()/fsmount() this is used to install a new mount and in combination
3772  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3773  * a mount subtree.
3774  *
3775  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3776  */
3777 SYSCALL_DEFINE5(move_mount,
3778 		int, from_dfd, const char __user *, from_pathname,
3779 		int, to_dfd, const char __user *, to_pathname,
3780 		unsigned int, flags)
3781 {
3782 	struct path from_path, to_path;
3783 	unsigned int lflags;
3784 	int ret = 0;
3785 
3786 	if (!may_mount())
3787 		return -EPERM;
3788 
3789 	if (flags & ~MOVE_MOUNT__MASK)
3790 		return -EINVAL;
3791 
3792 	/* If someone gives a pathname, they aren't permitted to move
3793 	 * from an fd that requires unmount as we can't get at the flag
3794 	 * to clear it afterwards.
3795 	 */
3796 	lflags = 0;
3797 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3798 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3799 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3800 
3801 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3802 	if (ret < 0)
3803 		return ret;
3804 
3805 	lflags = 0;
3806 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3807 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3808 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3809 
3810 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3811 	if (ret < 0)
3812 		goto out_from;
3813 
3814 	ret = security_move_mount(&from_path, &to_path);
3815 	if (ret < 0)
3816 		goto out_to;
3817 
3818 	if (flags & MOVE_MOUNT_SET_GROUP)
3819 		ret = do_set_group(&from_path, &to_path);
3820 	else
3821 		ret = do_move_mount(&from_path, &to_path);
3822 
3823 out_to:
3824 	path_put(&to_path);
3825 out_from:
3826 	path_put(&from_path);
3827 	return ret;
3828 }
3829 
3830 /*
3831  * Return true if path is reachable from root
3832  *
3833  * namespace_sem or mount_lock is held
3834  */
3835 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3836 			 const struct path *root)
3837 {
3838 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3839 		dentry = mnt->mnt_mountpoint;
3840 		mnt = mnt->mnt_parent;
3841 	}
3842 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3843 }
3844 
3845 bool path_is_under(const struct path *path1, const struct path *path2)
3846 {
3847 	bool res;
3848 	read_seqlock_excl(&mount_lock);
3849 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3850 	read_sequnlock_excl(&mount_lock);
3851 	return res;
3852 }
3853 EXPORT_SYMBOL(path_is_under);
3854 
3855 /*
3856  * pivot_root Semantics:
3857  * Moves the root file system of the current process to the directory put_old,
3858  * makes new_root as the new root file system of the current process, and sets
3859  * root/cwd of all processes which had them on the current root to new_root.
3860  *
3861  * Restrictions:
3862  * The new_root and put_old must be directories, and  must not be on the
3863  * same file  system as the current process root. The put_old  must  be
3864  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3865  * pointed to by put_old must yield the same directory as new_root. No other
3866  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3867  *
3868  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3869  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3870  * in this situation.
3871  *
3872  * Notes:
3873  *  - we don't move root/cwd if they are not at the root (reason: if something
3874  *    cared enough to change them, it's probably wrong to force them elsewhere)
3875  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3876  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3877  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3878  *    first.
3879  */
3880 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3881 		const char __user *, put_old)
3882 {
3883 	struct path new, old, root;
3884 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3885 	struct mountpoint *old_mp, *root_mp;
3886 	int error;
3887 
3888 	if (!may_mount())
3889 		return -EPERM;
3890 
3891 	error = user_path_at(AT_FDCWD, new_root,
3892 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3893 	if (error)
3894 		goto out0;
3895 
3896 	error = user_path_at(AT_FDCWD, put_old,
3897 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3898 	if (error)
3899 		goto out1;
3900 
3901 	error = security_sb_pivotroot(&old, &new);
3902 	if (error)
3903 		goto out2;
3904 
3905 	get_fs_root(current->fs, &root);
3906 	old_mp = lock_mount(&old);
3907 	error = PTR_ERR(old_mp);
3908 	if (IS_ERR(old_mp))
3909 		goto out3;
3910 
3911 	error = -EINVAL;
3912 	new_mnt = real_mount(new.mnt);
3913 	root_mnt = real_mount(root.mnt);
3914 	old_mnt = real_mount(old.mnt);
3915 	ex_parent = new_mnt->mnt_parent;
3916 	root_parent = root_mnt->mnt_parent;
3917 	if (IS_MNT_SHARED(old_mnt) ||
3918 		IS_MNT_SHARED(ex_parent) ||
3919 		IS_MNT_SHARED(root_parent))
3920 		goto out4;
3921 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3922 		goto out4;
3923 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3924 		goto out4;
3925 	error = -ENOENT;
3926 	if (d_unlinked(new.dentry))
3927 		goto out4;
3928 	error = -EBUSY;
3929 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3930 		goto out4; /* loop, on the same file system  */
3931 	error = -EINVAL;
3932 	if (!path_mounted(&root))
3933 		goto out4; /* not a mountpoint */
3934 	if (!mnt_has_parent(root_mnt))
3935 		goto out4; /* not attached */
3936 	if (!path_mounted(&new))
3937 		goto out4; /* not a mountpoint */
3938 	if (!mnt_has_parent(new_mnt))
3939 		goto out4; /* not attached */
3940 	/* make sure we can reach put_old from new_root */
3941 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3942 		goto out4;
3943 	/* make certain new is below the root */
3944 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3945 		goto out4;
3946 	lock_mount_hash();
3947 	umount_mnt(new_mnt);
3948 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3949 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3950 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3951 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3952 	}
3953 	/* mount old root on put_old */
3954 	attach_mnt(root_mnt, old_mnt, old_mp);
3955 	/* mount new_root on / */
3956 	attach_mnt(new_mnt, root_parent, root_mp);
3957 	mnt_add_count(root_parent, -1);
3958 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3959 	/* A moved mount should not expire automatically */
3960 	list_del_init(&new_mnt->mnt_expire);
3961 	put_mountpoint(root_mp);
3962 	unlock_mount_hash();
3963 	chroot_fs_refs(&root, &new);
3964 	error = 0;
3965 out4:
3966 	unlock_mount(old_mp);
3967 	if (!error)
3968 		mntput_no_expire(ex_parent);
3969 out3:
3970 	path_put(&root);
3971 out2:
3972 	path_put(&old);
3973 out1:
3974 	path_put(&new);
3975 out0:
3976 	return error;
3977 }
3978 
3979 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3980 {
3981 	unsigned int flags = mnt->mnt.mnt_flags;
3982 
3983 	/*  flags to clear */
3984 	flags &= ~kattr->attr_clr;
3985 	/* flags to raise */
3986 	flags |= kattr->attr_set;
3987 
3988 	return flags;
3989 }
3990 
3991 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3992 {
3993 	struct vfsmount *m = &mnt->mnt;
3994 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
3995 
3996 	if (!kattr->mnt_idmap)
3997 		return 0;
3998 
3999 	/*
4000 	 * Creating an idmapped mount with the filesystem wide idmapping
4001 	 * doesn't make sense so block that. We don't allow mushy semantics.
4002 	 */
4003 	if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb))
4004 		return -EINVAL;
4005 
4006 	/*
4007 	 * Once a mount has been idmapped we don't allow it to change its
4008 	 * mapping. It makes things simpler and callers can just create
4009 	 * another bind-mount they can idmap if they want to.
4010 	 */
4011 	if (is_idmapped_mnt(m))
4012 		return -EPERM;
4013 
4014 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4015 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4016 		return -EINVAL;
4017 
4018 	/* We're not controlling the superblock. */
4019 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4020 		return -EPERM;
4021 
4022 	/* Mount has already been visible in the filesystem hierarchy. */
4023 	if (!is_anon_ns(mnt->mnt_ns))
4024 		return -EINVAL;
4025 
4026 	return 0;
4027 }
4028 
4029 /**
4030  * mnt_allow_writers() - check whether the attribute change allows writers
4031  * @kattr: the new mount attributes
4032  * @mnt: the mount to which @kattr will be applied
4033  *
4034  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4035  *
4036  * Return: true if writers need to be held, false if not
4037  */
4038 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4039 				     const struct mount *mnt)
4040 {
4041 	return (!(kattr->attr_set & MNT_READONLY) ||
4042 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4043 	       !kattr->mnt_idmap;
4044 }
4045 
4046 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4047 {
4048 	struct mount *m;
4049 	int err;
4050 
4051 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4052 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4053 			err = -EPERM;
4054 			break;
4055 		}
4056 
4057 		err = can_idmap_mount(kattr, m);
4058 		if (err)
4059 			break;
4060 
4061 		if (!mnt_allow_writers(kattr, m)) {
4062 			err = mnt_hold_writers(m);
4063 			if (err)
4064 				break;
4065 		}
4066 
4067 		if (!kattr->recurse)
4068 			return 0;
4069 	}
4070 
4071 	if (err) {
4072 		struct mount *p;
4073 
4074 		/*
4075 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4076 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4077 		 * mounts and needs to take care to include the first mount.
4078 		 */
4079 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4080 			/* If we had to hold writers unblock them. */
4081 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4082 				mnt_unhold_writers(p);
4083 
4084 			/*
4085 			 * We're done once the first mount we changed got
4086 			 * MNT_WRITE_HOLD unset.
4087 			 */
4088 			if (p == m)
4089 				break;
4090 		}
4091 	}
4092 	return err;
4093 }
4094 
4095 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4096 {
4097 	if (!kattr->mnt_idmap)
4098 		return;
4099 
4100 	/*
4101 	 * Pairs with smp_load_acquire() in mnt_idmap().
4102 	 *
4103 	 * Since we only allow a mount to change the idmapping once and
4104 	 * verified this in can_idmap_mount() we know that the mount has
4105 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4106 	 * references.
4107 	 */
4108 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4109 }
4110 
4111 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4112 {
4113 	struct mount *m;
4114 
4115 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4116 		unsigned int flags;
4117 
4118 		do_idmap_mount(kattr, m);
4119 		flags = recalc_flags(kattr, m);
4120 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4121 
4122 		/* If we had to hold writers unblock them. */
4123 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4124 			mnt_unhold_writers(m);
4125 
4126 		if (kattr->propagation)
4127 			change_mnt_propagation(m, kattr->propagation);
4128 		if (!kattr->recurse)
4129 			break;
4130 	}
4131 	touch_mnt_namespace(mnt->mnt_ns);
4132 }
4133 
4134 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4135 {
4136 	struct mount *mnt = real_mount(path->mnt);
4137 	int err = 0;
4138 
4139 	if (!path_mounted(path))
4140 		return -EINVAL;
4141 
4142 	if (kattr->mnt_userns) {
4143 		struct mnt_idmap *mnt_idmap;
4144 
4145 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4146 		if (IS_ERR(mnt_idmap))
4147 			return PTR_ERR(mnt_idmap);
4148 		kattr->mnt_idmap = mnt_idmap;
4149 	}
4150 
4151 	if (kattr->propagation) {
4152 		/*
4153 		 * Only take namespace_lock() if we're actually changing
4154 		 * propagation.
4155 		 */
4156 		namespace_lock();
4157 		if (kattr->propagation == MS_SHARED) {
4158 			err = invent_group_ids(mnt, kattr->recurse);
4159 			if (err) {
4160 				namespace_unlock();
4161 				return err;
4162 			}
4163 		}
4164 	}
4165 
4166 	err = -EINVAL;
4167 	lock_mount_hash();
4168 
4169 	/* Ensure that this isn't anything purely vfs internal. */
4170 	if (!is_mounted(&mnt->mnt))
4171 		goto out;
4172 
4173 	/*
4174 	 * If this is an attached mount make sure it's located in the callers
4175 	 * mount namespace. If it's not don't let the caller interact with it.
4176 	 * If this is a detached mount make sure it has an anonymous mount
4177 	 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4178 	 */
4179 	if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4180 		goto out;
4181 
4182 	/*
4183 	 * First, we get the mount tree in a shape where we can change mount
4184 	 * properties without failure. If we succeeded to do so we commit all
4185 	 * changes and if we failed we clean up.
4186 	 */
4187 	err = mount_setattr_prepare(kattr, mnt);
4188 	if (!err)
4189 		mount_setattr_commit(kattr, mnt);
4190 
4191 out:
4192 	unlock_mount_hash();
4193 
4194 	if (kattr->propagation) {
4195 		if (err)
4196 			cleanup_group_ids(mnt, NULL);
4197 		namespace_unlock();
4198 	}
4199 
4200 	return err;
4201 }
4202 
4203 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4204 				struct mount_kattr *kattr, unsigned int flags)
4205 {
4206 	int err = 0;
4207 	struct ns_common *ns;
4208 	struct user_namespace *mnt_userns;
4209 	struct fd f;
4210 
4211 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4212 		return 0;
4213 
4214 	/*
4215 	 * We currently do not support clearing an idmapped mount. If this ever
4216 	 * is a use-case we can revisit this but for now let's keep it simple
4217 	 * and not allow it.
4218 	 */
4219 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4220 		return -EINVAL;
4221 
4222 	if (attr->userns_fd > INT_MAX)
4223 		return -EINVAL;
4224 
4225 	f = fdget(attr->userns_fd);
4226 	if (!f.file)
4227 		return -EBADF;
4228 
4229 	if (!proc_ns_file(f.file)) {
4230 		err = -EINVAL;
4231 		goto out_fput;
4232 	}
4233 
4234 	ns = get_proc_ns(file_inode(f.file));
4235 	if (ns->ops->type != CLONE_NEWUSER) {
4236 		err = -EINVAL;
4237 		goto out_fput;
4238 	}
4239 
4240 	/*
4241 	 * The initial idmapping cannot be used to create an idmapped
4242 	 * mount. We use the initial idmapping as an indicator of a mount
4243 	 * that is not idmapped. It can simply be passed into helpers that
4244 	 * are aware of idmapped mounts as a convenient shortcut. A user
4245 	 * can just create a dedicated identity mapping to achieve the same
4246 	 * result.
4247 	 */
4248 	mnt_userns = container_of(ns, struct user_namespace, ns);
4249 	if (mnt_userns == &init_user_ns) {
4250 		err = -EPERM;
4251 		goto out_fput;
4252 	}
4253 
4254 	/* We're not controlling the target namespace. */
4255 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4256 		err = -EPERM;
4257 		goto out_fput;
4258 	}
4259 
4260 	kattr->mnt_userns = get_user_ns(mnt_userns);
4261 
4262 out_fput:
4263 	fdput(f);
4264 	return err;
4265 }
4266 
4267 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4268 			     struct mount_kattr *kattr, unsigned int flags)
4269 {
4270 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4271 
4272 	if (flags & AT_NO_AUTOMOUNT)
4273 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4274 	if (flags & AT_SYMLINK_NOFOLLOW)
4275 		lookup_flags &= ~LOOKUP_FOLLOW;
4276 	if (flags & AT_EMPTY_PATH)
4277 		lookup_flags |= LOOKUP_EMPTY;
4278 
4279 	*kattr = (struct mount_kattr) {
4280 		.lookup_flags	= lookup_flags,
4281 		.recurse	= !!(flags & AT_RECURSIVE),
4282 	};
4283 
4284 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4285 		return -EINVAL;
4286 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4287 		return -EINVAL;
4288 	kattr->propagation = attr->propagation;
4289 
4290 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4291 		return -EINVAL;
4292 
4293 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4294 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4295 
4296 	/*
4297 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4298 	 * users wanting to transition to a different atime setting cannot
4299 	 * simply specify the atime setting in @attr_set, but must also
4300 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4301 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4302 	 * @attr_clr and that @attr_set can't have any atime bits set if
4303 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4304 	 */
4305 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4306 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4307 			return -EINVAL;
4308 
4309 		/*
4310 		 * Clear all previous time settings as they are mutually
4311 		 * exclusive.
4312 		 */
4313 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4314 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4315 		case MOUNT_ATTR_RELATIME:
4316 			kattr->attr_set |= MNT_RELATIME;
4317 			break;
4318 		case MOUNT_ATTR_NOATIME:
4319 			kattr->attr_set |= MNT_NOATIME;
4320 			break;
4321 		case MOUNT_ATTR_STRICTATIME:
4322 			break;
4323 		default:
4324 			return -EINVAL;
4325 		}
4326 	} else {
4327 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4328 			return -EINVAL;
4329 	}
4330 
4331 	return build_mount_idmapped(attr, usize, kattr, flags);
4332 }
4333 
4334 static void finish_mount_kattr(struct mount_kattr *kattr)
4335 {
4336 	put_user_ns(kattr->mnt_userns);
4337 	kattr->mnt_userns = NULL;
4338 
4339 	if (kattr->mnt_idmap)
4340 		mnt_idmap_put(kattr->mnt_idmap);
4341 }
4342 
4343 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4344 		unsigned int, flags, struct mount_attr __user *, uattr,
4345 		size_t, usize)
4346 {
4347 	int err;
4348 	struct path target;
4349 	struct mount_attr attr;
4350 	struct mount_kattr kattr;
4351 
4352 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4353 
4354 	if (flags & ~(AT_EMPTY_PATH |
4355 		      AT_RECURSIVE |
4356 		      AT_SYMLINK_NOFOLLOW |
4357 		      AT_NO_AUTOMOUNT))
4358 		return -EINVAL;
4359 
4360 	if (unlikely(usize > PAGE_SIZE))
4361 		return -E2BIG;
4362 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4363 		return -EINVAL;
4364 
4365 	if (!may_mount())
4366 		return -EPERM;
4367 
4368 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4369 	if (err)
4370 		return err;
4371 
4372 	/* Don't bother walking through the mounts if this is a nop. */
4373 	if (attr.attr_set == 0 &&
4374 	    attr.attr_clr == 0 &&
4375 	    attr.propagation == 0)
4376 		return 0;
4377 
4378 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4379 	if (err)
4380 		return err;
4381 
4382 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4383 	if (!err) {
4384 		err = do_mount_setattr(&target, &kattr);
4385 		path_put(&target);
4386 	}
4387 	finish_mount_kattr(&kattr);
4388 	return err;
4389 }
4390 
4391 static void __init init_mount_tree(void)
4392 {
4393 	struct vfsmount *mnt;
4394 	struct mount *m;
4395 	struct mnt_namespace *ns;
4396 	struct path root;
4397 
4398 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4399 	if (IS_ERR(mnt))
4400 		panic("Can't create rootfs");
4401 
4402 	ns = alloc_mnt_ns(&init_user_ns, false);
4403 	if (IS_ERR(ns))
4404 		panic("Can't allocate initial namespace");
4405 	m = real_mount(mnt);
4406 	m->mnt_ns = ns;
4407 	ns->root = m;
4408 	ns->mounts = 1;
4409 	list_add(&m->mnt_list, &ns->list);
4410 	init_task.nsproxy->mnt_ns = ns;
4411 	get_mnt_ns(ns);
4412 
4413 	root.mnt = mnt;
4414 	root.dentry = mnt->mnt_root;
4415 	mnt->mnt_flags |= MNT_LOCKED;
4416 
4417 	set_fs_pwd(current->fs, &root);
4418 	set_fs_root(current->fs, &root);
4419 }
4420 
4421 void __init mnt_init(void)
4422 {
4423 	int err;
4424 
4425 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4426 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4427 
4428 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4429 				sizeof(struct hlist_head),
4430 				mhash_entries, 19,
4431 				HASH_ZERO,
4432 				&m_hash_shift, &m_hash_mask, 0, 0);
4433 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4434 				sizeof(struct hlist_head),
4435 				mphash_entries, 19,
4436 				HASH_ZERO,
4437 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4438 
4439 	if (!mount_hashtable || !mountpoint_hashtable)
4440 		panic("Failed to allocate mount hash table\n");
4441 
4442 	kernfs_init();
4443 
4444 	err = sysfs_init();
4445 	if (err)
4446 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4447 			__func__, err);
4448 	fs_kobj = kobject_create_and_add("fs", NULL);
4449 	if (!fs_kobj)
4450 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4451 	shmem_init();
4452 	init_rootfs();
4453 	init_mount_tree();
4454 }
4455 
4456 void put_mnt_ns(struct mnt_namespace *ns)
4457 {
4458 	if (!refcount_dec_and_test(&ns->ns.count))
4459 		return;
4460 	drop_collected_mounts(&ns->root->mnt);
4461 	free_mnt_ns(ns);
4462 }
4463 
4464 struct vfsmount *kern_mount(struct file_system_type *type)
4465 {
4466 	struct vfsmount *mnt;
4467 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4468 	if (!IS_ERR(mnt)) {
4469 		/*
4470 		 * it is a longterm mount, don't release mnt until
4471 		 * we unmount before file sys is unregistered
4472 		*/
4473 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4474 	}
4475 	return mnt;
4476 }
4477 EXPORT_SYMBOL_GPL(kern_mount);
4478 
4479 void kern_unmount(struct vfsmount *mnt)
4480 {
4481 	/* release long term mount so mount point can be released */
4482 	if (!IS_ERR(mnt)) {
4483 		mnt_make_shortterm(mnt);
4484 		synchronize_rcu();	/* yecchhh... */
4485 		mntput(mnt);
4486 	}
4487 }
4488 EXPORT_SYMBOL(kern_unmount);
4489 
4490 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4491 {
4492 	unsigned int i;
4493 
4494 	for (i = 0; i < num; i++)
4495 		mnt_make_shortterm(mnt[i]);
4496 	synchronize_rcu_expedited();
4497 	for (i = 0; i < num; i++)
4498 		mntput(mnt[i]);
4499 }
4500 EXPORT_SYMBOL(kern_unmount_array);
4501 
4502 bool our_mnt(struct vfsmount *mnt)
4503 {
4504 	return check_mnt(real_mount(mnt));
4505 }
4506 
4507 bool current_chrooted(void)
4508 {
4509 	/* Does the current process have a non-standard root */
4510 	struct path ns_root;
4511 	struct path fs_root;
4512 	bool chrooted;
4513 
4514 	/* Find the namespace root */
4515 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4516 	ns_root.dentry = ns_root.mnt->mnt_root;
4517 	path_get(&ns_root);
4518 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4519 		;
4520 
4521 	get_fs_root(current->fs, &fs_root);
4522 
4523 	chrooted = !path_equal(&fs_root, &ns_root);
4524 
4525 	path_put(&fs_root);
4526 	path_put(&ns_root);
4527 
4528 	return chrooted;
4529 }
4530 
4531 static bool mnt_already_visible(struct mnt_namespace *ns,
4532 				const struct super_block *sb,
4533 				int *new_mnt_flags)
4534 {
4535 	int new_flags = *new_mnt_flags;
4536 	struct mount *mnt;
4537 	bool visible = false;
4538 
4539 	down_read(&namespace_sem);
4540 	lock_ns_list(ns);
4541 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4542 		struct mount *child;
4543 		int mnt_flags;
4544 
4545 		if (mnt_is_cursor(mnt))
4546 			continue;
4547 
4548 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4549 			continue;
4550 
4551 		/* This mount is not fully visible if it's root directory
4552 		 * is not the root directory of the filesystem.
4553 		 */
4554 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4555 			continue;
4556 
4557 		/* A local view of the mount flags */
4558 		mnt_flags = mnt->mnt.mnt_flags;
4559 
4560 		/* Don't miss readonly hidden in the superblock flags */
4561 		if (sb_rdonly(mnt->mnt.mnt_sb))
4562 			mnt_flags |= MNT_LOCK_READONLY;
4563 
4564 		/* Verify the mount flags are equal to or more permissive
4565 		 * than the proposed new mount.
4566 		 */
4567 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4568 		    !(new_flags & MNT_READONLY))
4569 			continue;
4570 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4571 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4572 			continue;
4573 
4574 		/* This mount is not fully visible if there are any
4575 		 * locked child mounts that cover anything except for
4576 		 * empty directories.
4577 		 */
4578 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4579 			struct inode *inode = child->mnt_mountpoint->d_inode;
4580 			/* Only worry about locked mounts */
4581 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4582 				continue;
4583 			/* Is the directory permanetly empty? */
4584 			if (!is_empty_dir_inode(inode))
4585 				goto next;
4586 		}
4587 		/* Preserve the locked attributes */
4588 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4589 					       MNT_LOCK_ATIME);
4590 		visible = true;
4591 		goto found;
4592 	next:	;
4593 	}
4594 found:
4595 	unlock_ns_list(ns);
4596 	up_read(&namespace_sem);
4597 	return visible;
4598 }
4599 
4600 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4601 {
4602 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4603 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4604 	unsigned long s_iflags;
4605 
4606 	if (ns->user_ns == &init_user_ns)
4607 		return false;
4608 
4609 	/* Can this filesystem be too revealing? */
4610 	s_iflags = sb->s_iflags;
4611 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4612 		return false;
4613 
4614 	if ((s_iflags & required_iflags) != required_iflags) {
4615 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4616 			  required_iflags);
4617 		return true;
4618 	}
4619 
4620 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4621 }
4622 
4623 bool mnt_may_suid(struct vfsmount *mnt)
4624 {
4625 	/*
4626 	 * Foreign mounts (accessed via fchdir or through /proc
4627 	 * symlinks) are always treated as if they are nosuid.  This
4628 	 * prevents namespaces from trusting potentially unsafe
4629 	 * suid/sgid bits, file caps, or security labels that originate
4630 	 * in other namespaces.
4631 	 */
4632 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4633 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4634 }
4635 
4636 static struct ns_common *mntns_get(struct task_struct *task)
4637 {
4638 	struct ns_common *ns = NULL;
4639 	struct nsproxy *nsproxy;
4640 
4641 	task_lock(task);
4642 	nsproxy = task->nsproxy;
4643 	if (nsproxy) {
4644 		ns = &nsproxy->mnt_ns->ns;
4645 		get_mnt_ns(to_mnt_ns(ns));
4646 	}
4647 	task_unlock(task);
4648 
4649 	return ns;
4650 }
4651 
4652 static void mntns_put(struct ns_common *ns)
4653 {
4654 	put_mnt_ns(to_mnt_ns(ns));
4655 }
4656 
4657 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4658 {
4659 	struct nsproxy *nsproxy = nsset->nsproxy;
4660 	struct fs_struct *fs = nsset->fs;
4661 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4662 	struct user_namespace *user_ns = nsset->cred->user_ns;
4663 	struct path root;
4664 	int err;
4665 
4666 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4667 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4668 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4669 		return -EPERM;
4670 
4671 	if (is_anon_ns(mnt_ns))
4672 		return -EINVAL;
4673 
4674 	if (fs->users != 1)
4675 		return -EINVAL;
4676 
4677 	get_mnt_ns(mnt_ns);
4678 	old_mnt_ns = nsproxy->mnt_ns;
4679 	nsproxy->mnt_ns = mnt_ns;
4680 
4681 	/* Find the root */
4682 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4683 				"/", LOOKUP_DOWN, &root);
4684 	if (err) {
4685 		/* revert to old namespace */
4686 		nsproxy->mnt_ns = old_mnt_ns;
4687 		put_mnt_ns(mnt_ns);
4688 		return err;
4689 	}
4690 
4691 	put_mnt_ns(old_mnt_ns);
4692 
4693 	/* Update the pwd and root */
4694 	set_fs_pwd(fs, &root);
4695 	set_fs_root(fs, &root);
4696 
4697 	path_put(&root);
4698 	return 0;
4699 }
4700 
4701 static struct user_namespace *mntns_owner(struct ns_common *ns)
4702 {
4703 	return to_mnt_ns(ns)->user_ns;
4704 }
4705 
4706 const struct proc_ns_operations mntns_operations = {
4707 	.name		= "mnt",
4708 	.type		= CLONE_NEWNS,
4709 	.get		= mntns_get,
4710 	.put		= mntns_put,
4711 	.install	= mntns_install,
4712 	.owner		= mntns_owner,
4713 };
4714 
4715 #ifdef CONFIG_SYSCTL
4716 static struct ctl_table fs_namespace_sysctls[] = {
4717 	{
4718 		.procname	= "mount-max",
4719 		.data		= &sysctl_mount_max,
4720 		.maxlen		= sizeof(unsigned int),
4721 		.mode		= 0644,
4722 		.proc_handler	= proc_dointvec_minmax,
4723 		.extra1		= SYSCTL_ONE,
4724 	},
4725 	{ }
4726 };
4727 
4728 static int __init init_fs_namespace_sysctls(void)
4729 {
4730 	register_sysctl_init("fs", fs_namespace_sysctls);
4731 	return 0;
4732 }
4733 fs_initcall(init_fs_namespace_sysctls);
4734 
4735 #endif /* CONFIG_SYSCTL */
4736