xref: /openbmc/linux/fs/namespace.c (revision 64f44b27ae9184e13ebbca230fa83da02a10f283)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 
36 #include "pnode.h"
37 #include "internal.h"
38 
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
41 
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
46 
47 static __initdata unsigned long mhash_entries;
48 static int __init set_mhash_entries(char *str)
49 {
50 	if (!str)
51 		return 0;
52 	mhash_entries = simple_strtoul(str, &str, 0);
53 	return 1;
54 }
55 __setup("mhash_entries=", set_mhash_entries);
56 
57 static __initdata unsigned long mphash_entries;
58 static int __init set_mphash_entries(char *str)
59 {
60 	if (!str)
61 		return 0;
62 	mphash_entries = simple_strtoul(str, &str, 0);
63 	return 1;
64 }
65 __setup("mphash_entries=", set_mphash_entries);
66 
67 static u64 event;
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
70 
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77 
78 struct mount_kattr {
79 	unsigned int attr_set;
80 	unsigned int attr_clr;
81 	unsigned int propagation;
82 	unsigned int lookup_flags;
83 	bool recurse;
84 	struct user_namespace *mnt_userns;
85 	struct mnt_idmap *mnt_idmap;
86 };
87 
88 /* /sys/fs */
89 struct kobject *fs_kobj;
90 EXPORT_SYMBOL_GPL(fs_kobj);
91 
92 /*
93  * vfsmount lock may be taken for read to prevent changes to the
94  * vfsmount hash, ie. during mountpoint lookups or walking back
95  * up the tree.
96  *
97  * It should be taken for write in all cases where the vfsmount
98  * tree or hash is modified or when a vfsmount structure is modified.
99  */
100 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
101 
102 static inline void lock_mount_hash(void)
103 {
104 	write_seqlock(&mount_lock);
105 }
106 
107 static inline void unlock_mount_hash(void)
108 {
109 	write_sequnlock(&mount_lock);
110 }
111 
112 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
113 {
114 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
115 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
116 	tmp = tmp + (tmp >> m_hash_shift);
117 	return &mount_hashtable[tmp & m_hash_mask];
118 }
119 
120 static inline struct hlist_head *mp_hash(struct dentry *dentry)
121 {
122 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
123 	tmp = tmp + (tmp >> mp_hash_shift);
124 	return &mountpoint_hashtable[tmp & mp_hash_mask];
125 }
126 
127 static int mnt_alloc_id(struct mount *mnt)
128 {
129 	int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
130 
131 	if (res < 0)
132 		return res;
133 	mnt->mnt_id = res;
134 	return 0;
135 }
136 
137 static void mnt_free_id(struct mount *mnt)
138 {
139 	ida_free(&mnt_id_ida, mnt->mnt_id);
140 }
141 
142 /*
143  * Allocate a new peer group ID
144  */
145 static int mnt_alloc_group_id(struct mount *mnt)
146 {
147 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
148 
149 	if (res < 0)
150 		return res;
151 	mnt->mnt_group_id = res;
152 	return 0;
153 }
154 
155 /*
156  * Release a peer group ID
157  */
158 void mnt_release_group_id(struct mount *mnt)
159 {
160 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
161 	mnt->mnt_group_id = 0;
162 }
163 
164 /*
165  * vfsmount lock must be held for read
166  */
167 static inline void mnt_add_count(struct mount *mnt, int n)
168 {
169 #ifdef CONFIG_SMP
170 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
171 #else
172 	preempt_disable();
173 	mnt->mnt_count += n;
174 	preempt_enable();
175 #endif
176 }
177 
178 /*
179  * vfsmount lock must be held for write
180  */
181 int mnt_get_count(struct mount *mnt)
182 {
183 #ifdef CONFIG_SMP
184 	int count = 0;
185 	int cpu;
186 
187 	for_each_possible_cpu(cpu) {
188 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
189 	}
190 
191 	return count;
192 #else
193 	return mnt->mnt_count;
194 #endif
195 }
196 
197 static struct mount *alloc_vfsmnt(const char *name)
198 {
199 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
200 	if (mnt) {
201 		int err;
202 
203 		err = mnt_alloc_id(mnt);
204 		if (err)
205 			goto out_free_cache;
206 
207 		if (name) {
208 			mnt->mnt_devname = kstrdup_const(name,
209 							 GFP_KERNEL_ACCOUNT);
210 			if (!mnt->mnt_devname)
211 				goto out_free_id;
212 		}
213 
214 #ifdef CONFIG_SMP
215 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
216 		if (!mnt->mnt_pcp)
217 			goto out_free_devname;
218 
219 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
220 #else
221 		mnt->mnt_count = 1;
222 		mnt->mnt_writers = 0;
223 #endif
224 
225 		INIT_HLIST_NODE(&mnt->mnt_hash);
226 		INIT_LIST_HEAD(&mnt->mnt_child);
227 		INIT_LIST_HEAD(&mnt->mnt_mounts);
228 		INIT_LIST_HEAD(&mnt->mnt_list);
229 		INIT_LIST_HEAD(&mnt->mnt_expire);
230 		INIT_LIST_HEAD(&mnt->mnt_share);
231 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
232 		INIT_LIST_HEAD(&mnt->mnt_slave);
233 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
234 		INIT_LIST_HEAD(&mnt->mnt_umounting);
235 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
236 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
237 	}
238 	return mnt;
239 
240 #ifdef CONFIG_SMP
241 out_free_devname:
242 	kfree_const(mnt->mnt_devname);
243 #endif
244 out_free_id:
245 	mnt_free_id(mnt);
246 out_free_cache:
247 	kmem_cache_free(mnt_cache, mnt);
248 	return NULL;
249 }
250 
251 /*
252  * Most r/o checks on a fs are for operations that take
253  * discrete amounts of time, like a write() or unlink().
254  * We must keep track of when those operations start
255  * (for permission checks) and when they end, so that
256  * we can determine when writes are able to occur to
257  * a filesystem.
258  */
259 /*
260  * __mnt_is_readonly: check whether a mount is read-only
261  * @mnt: the mount to check for its write status
262  *
263  * This shouldn't be used directly ouside of the VFS.
264  * It does not guarantee that the filesystem will stay
265  * r/w, just that it is right *now*.  This can not and
266  * should not be used in place of IS_RDONLY(inode).
267  * mnt_want/drop_write() will _keep_ the filesystem
268  * r/w.
269  */
270 bool __mnt_is_readonly(struct vfsmount *mnt)
271 {
272 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
273 }
274 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
275 
276 static inline void mnt_inc_writers(struct mount *mnt)
277 {
278 #ifdef CONFIG_SMP
279 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
280 #else
281 	mnt->mnt_writers++;
282 #endif
283 }
284 
285 static inline void mnt_dec_writers(struct mount *mnt)
286 {
287 #ifdef CONFIG_SMP
288 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
289 #else
290 	mnt->mnt_writers--;
291 #endif
292 }
293 
294 static unsigned int mnt_get_writers(struct mount *mnt)
295 {
296 #ifdef CONFIG_SMP
297 	unsigned int count = 0;
298 	int cpu;
299 
300 	for_each_possible_cpu(cpu) {
301 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
302 	}
303 
304 	return count;
305 #else
306 	return mnt->mnt_writers;
307 #endif
308 }
309 
310 static int mnt_is_readonly(struct vfsmount *mnt)
311 {
312 	if (mnt->mnt_sb->s_readonly_remount)
313 		return 1;
314 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
315 	smp_rmb();
316 	return __mnt_is_readonly(mnt);
317 }
318 
319 /*
320  * Most r/o & frozen checks on a fs are for operations that take discrete
321  * amounts of time, like a write() or unlink().  We must keep track of when
322  * those operations start (for permission checks) and when they end, so that we
323  * can determine when writes are able to occur to a filesystem.
324  */
325 /**
326  * __mnt_want_write - get write access to a mount without freeze protection
327  * @m: the mount on which to take a write
328  *
329  * This tells the low-level filesystem that a write is about to be performed to
330  * it, and makes sure that writes are allowed (mnt it read-write) before
331  * returning success. This operation does not protect against filesystem being
332  * frozen. When the write operation is finished, __mnt_drop_write() must be
333  * called. This is effectively a refcount.
334  */
335 int __mnt_want_write(struct vfsmount *m)
336 {
337 	struct mount *mnt = real_mount(m);
338 	int ret = 0;
339 
340 	preempt_disable();
341 	mnt_inc_writers(mnt);
342 	/*
343 	 * The store to mnt_inc_writers must be visible before we pass
344 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
345 	 * incremented count after it has set MNT_WRITE_HOLD.
346 	 */
347 	smp_mb();
348 	might_lock(&mount_lock.lock);
349 	while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
350 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
351 			cpu_relax();
352 		} else {
353 			/*
354 			 * This prevents priority inversion, if the task
355 			 * setting MNT_WRITE_HOLD got preempted on a remote
356 			 * CPU, and it prevents life lock if the task setting
357 			 * MNT_WRITE_HOLD has a lower priority and is bound to
358 			 * the same CPU as the task that is spinning here.
359 			 */
360 			preempt_enable();
361 			lock_mount_hash();
362 			unlock_mount_hash();
363 			preempt_disable();
364 		}
365 	}
366 	/*
367 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
368 	 * be set to match its requirements. So we must not load that until
369 	 * MNT_WRITE_HOLD is cleared.
370 	 */
371 	smp_rmb();
372 	if (mnt_is_readonly(m)) {
373 		mnt_dec_writers(mnt);
374 		ret = -EROFS;
375 	}
376 	preempt_enable();
377 
378 	return ret;
379 }
380 
381 /**
382  * mnt_want_write - get write access to a mount
383  * @m: the mount on which to take a write
384  *
385  * This tells the low-level filesystem that a write is about to be performed to
386  * it, and makes sure that writes are allowed (mount is read-write, filesystem
387  * is not frozen) before returning success.  When the write operation is
388  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
389  */
390 int mnt_want_write(struct vfsmount *m)
391 {
392 	int ret;
393 
394 	sb_start_write(m->mnt_sb);
395 	ret = __mnt_want_write(m);
396 	if (ret)
397 		sb_end_write(m->mnt_sb);
398 	return ret;
399 }
400 EXPORT_SYMBOL_GPL(mnt_want_write);
401 
402 /**
403  * __mnt_want_write_file - get write access to a file's mount
404  * @file: the file who's mount on which to take a write
405  *
406  * This is like __mnt_want_write, but if the file is already open for writing it
407  * skips incrementing mnt_writers (since the open file already has a reference)
408  * and instead only does the check for emergency r/o remounts.  This must be
409  * paired with __mnt_drop_write_file.
410  */
411 int __mnt_want_write_file(struct file *file)
412 {
413 	if (file->f_mode & FMODE_WRITER) {
414 		/*
415 		 * Superblock may have become readonly while there are still
416 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
417 		 */
418 		if (__mnt_is_readonly(file->f_path.mnt))
419 			return -EROFS;
420 		return 0;
421 	}
422 	return __mnt_want_write(file->f_path.mnt);
423 }
424 
425 /**
426  * mnt_want_write_file - get write access to a file's mount
427  * @file: the file who's mount on which to take a write
428  *
429  * This is like mnt_want_write, but if the file is already open for writing it
430  * skips incrementing mnt_writers (since the open file already has a reference)
431  * and instead only does the freeze protection and the check for emergency r/o
432  * remounts.  This must be paired with mnt_drop_write_file.
433  */
434 int mnt_want_write_file(struct file *file)
435 {
436 	int ret;
437 
438 	sb_start_write(file_inode(file)->i_sb);
439 	ret = __mnt_want_write_file(file);
440 	if (ret)
441 		sb_end_write(file_inode(file)->i_sb);
442 	return ret;
443 }
444 EXPORT_SYMBOL_GPL(mnt_want_write_file);
445 
446 /**
447  * __mnt_drop_write - give up write access to a mount
448  * @mnt: the mount on which to give up write access
449  *
450  * Tells the low-level filesystem that we are done
451  * performing writes to it.  Must be matched with
452  * __mnt_want_write() call above.
453  */
454 void __mnt_drop_write(struct vfsmount *mnt)
455 {
456 	preempt_disable();
457 	mnt_dec_writers(real_mount(mnt));
458 	preempt_enable();
459 }
460 
461 /**
462  * mnt_drop_write - give up write access to a mount
463  * @mnt: the mount on which to give up write access
464  *
465  * Tells the low-level filesystem that we are done performing writes to it and
466  * also allows filesystem to be frozen again.  Must be matched with
467  * mnt_want_write() call above.
468  */
469 void mnt_drop_write(struct vfsmount *mnt)
470 {
471 	__mnt_drop_write(mnt);
472 	sb_end_write(mnt->mnt_sb);
473 }
474 EXPORT_SYMBOL_GPL(mnt_drop_write);
475 
476 void __mnt_drop_write_file(struct file *file)
477 {
478 	if (!(file->f_mode & FMODE_WRITER))
479 		__mnt_drop_write(file->f_path.mnt);
480 }
481 
482 void mnt_drop_write_file(struct file *file)
483 {
484 	__mnt_drop_write_file(file);
485 	sb_end_write(file_inode(file)->i_sb);
486 }
487 EXPORT_SYMBOL(mnt_drop_write_file);
488 
489 /**
490  * mnt_hold_writers - prevent write access to the given mount
491  * @mnt: mnt to prevent write access to
492  *
493  * Prevents write access to @mnt if there are no active writers for @mnt.
494  * This function needs to be called and return successfully before changing
495  * properties of @mnt that need to remain stable for callers with write access
496  * to @mnt.
497  *
498  * After this functions has been called successfully callers must pair it with
499  * a call to mnt_unhold_writers() in order to stop preventing write access to
500  * @mnt.
501  *
502  * Context: This function expects lock_mount_hash() to be held serializing
503  *          setting MNT_WRITE_HOLD.
504  * Return: On success 0 is returned.
505  *	   On error, -EBUSY is returned.
506  */
507 static inline int mnt_hold_writers(struct mount *mnt)
508 {
509 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
510 	/*
511 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
512 	 * should be visible before we do.
513 	 */
514 	smp_mb();
515 
516 	/*
517 	 * With writers on hold, if this value is zero, then there are
518 	 * definitely no active writers (although held writers may subsequently
519 	 * increment the count, they'll have to wait, and decrement it after
520 	 * seeing MNT_READONLY).
521 	 *
522 	 * It is OK to have counter incremented on one CPU and decremented on
523 	 * another: the sum will add up correctly. The danger would be when we
524 	 * sum up each counter, if we read a counter before it is incremented,
525 	 * but then read another CPU's count which it has been subsequently
526 	 * decremented from -- we would see more decrements than we should.
527 	 * MNT_WRITE_HOLD protects against this scenario, because
528 	 * mnt_want_write first increments count, then smp_mb, then spins on
529 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
530 	 * we're counting up here.
531 	 */
532 	if (mnt_get_writers(mnt) > 0)
533 		return -EBUSY;
534 
535 	return 0;
536 }
537 
538 /**
539  * mnt_unhold_writers - stop preventing write access to the given mount
540  * @mnt: mnt to stop preventing write access to
541  *
542  * Stop preventing write access to @mnt allowing callers to gain write access
543  * to @mnt again.
544  *
545  * This function can only be called after a successful call to
546  * mnt_hold_writers().
547  *
548  * Context: This function expects lock_mount_hash() to be held.
549  */
550 static inline void mnt_unhold_writers(struct mount *mnt)
551 {
552 	/*
553 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
554 	 * that become unheld will see MNT_READONLY.
555 	 */
556 	smp_wmb();
557 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
558 }
559 
560 static int mnt_make_readonly(struct mount *mnt)
561 {
562 	int ret;
563 
564 	ret = mnt_hold_writers(mnt);
565 	if (!ret)
566 		mnt->mnt.mnt_flags |= MNT_READONLY;
567 	mnt_unhold_writers(mnt);
568 	return ret;
569 }
570 
571 int sb_prepare_remount_readonly(struct super_block *sb)
572 {
573 	struct mount *mnt;
574 	int err = 0;
575 
576 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
577 	if (atomic_long_read(&sb->s_remove_count))
578 		return -EBUSY;
579 
580 	lock_mount_hash();
581 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
582 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
583 			err = mnt_hold_writers(mnt);
584 			if (err)
585 				break;
586 		}
587 	}
588 	if (!err && atomic_long_read(&sb->s_remove_count))
589 		err = -EBUSY;
590 
591 	if (!err) {
592 		sb->s_readonly_remount = 1;
593 		smp_wmb();
594 	}
595 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
596 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
597 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
598 	}
599 	unlock_mount_hash();
600 
601 	return err;
602 }
603 
604 static void free_vfsmnt(struct mount *mnt)
605 {
606 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
607 	kfree_const(mnt->mnt_devname);
608 #ifdef CONFIG_SMP
609 	free_percpu(mnt->mnt_pcp);
610 #endif
611 	kmem_cache_free(mnt_cache, mnt);
612 }
613 
614 static void delayed_free_vfsmnt(struct rcu_head *head)
615 {
616 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
617 }
618 
619 /* call under rcu_read_lock */
620 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
621 {
622 	struct mount *mnt;
623 	if (read_seqretry(&mount_lock, seq))
624 		return 1;
625 	if (bastard == NULL)
626 		return 0;
627 	mnt = real_mount(bastard);
628 	mnt_add_count(mnt, 1);
629 	smp_mb();			// see mntput_no_expire()
630 	if (likely(!read_seqretry(&mount_lock, seq)))
631 		return 0;
632 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
633 		mnt_add_count(mnt, -1);
634 		return 1;
635 	}
636 	lock_mount_hash();
637 	if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
638 		mnt_add_count(mnt, -1);
639 		unlock_mount_hash();
640 		return 1;
641 	}
642 	unlock_mount_hash();
643 	/* caller will mntput() */
644 	return -1;
645 }
646 
647 /* call under rcu_read_lock */
648 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
649 {
650 	int res = __legitimize_mnt(bastard, seq);
651 	if (likely(!res))
652 		return true;
653 	if (unlikely(res < 0)) {
654 		rcu_read_unlock();
655 		mntput(bastard);
656 		rcu_read_lock();
657 	}
658 	return false;
659 }
660 
661 /**
662  * __lookup_mnt - find first child mount
663  * @mnt:	parent mount
664  * @dentry:	mountpoint
665  *
666  * If @mnt has a child mount @c mounted @dentry find and return it.
667  *
668  * Note that the child mount @c need not be unique. There are cases
669  * where shadow mounts are created. For example, during mount
670  * propagation when a source mount @mnt whose root got overmounted by a
671  * mount @o after path lookup but before @namespace_sem could be
672  * acquired gets copied and propagated. So @mnt gets copied including
673  * @o. When @mnt is propagated to a destination mount @d that already
674  * has another mount @n mounted at the same mountpoint then the source
675  * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
676  * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
677  * on @dentry.
678  *
679  * Return: The first child of @mnt mounted @dentry or NULL.
680  */
681 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
682 {
683 	struct hlist_head *head = m_hash(mnt, dentry);
684 	struct mount *p;
685 
686 	hlist_for_each_entry_rcu(p, head, mnt_hash)
687 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
688 			return p;
689 	return NULL;
690 }
691 
692 /*
693  * lookup_mnt - Return the first child mount mounted at path
694  *
695  * "First" means first mounted chronologically.  If you create the
696  * following mounts:
697  *
698  * mount /dev/sda1 /mnt
699  * mount /dev/sda2 /mnt
700  * mount /dev/sda3 /mnt
701  *
702  * Then lookup_mnt() on the base /mnt dentry in the root mount will
703  * return successively the root dentry and vfsmount of /dev/sda1, then
704  * /dev/sda2, then /dev/sda3, then NULL.
705  *
706  * lookup_mnt takes a reference to the found vfsmount.
707  */
708 struct vfsmount *lookup_mnt(const struct path *path)
709 {
710 	struct mount *child_mnt;
711 	struct vfsmount *m;
712 	unsigned seq;
713 
714 	rcu_read_lock();
715 	do {
716 		seq = read_seqbegin(&mount_lock);
717 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
718 		m = child_mnt ? &child_mnt->mnt : NULL;
719 	} while (!legitimize_mnt(m, seq));
720 	rcu_read_unlock();
721 	return m;
722 }
723 
724 static inline void lock_ns_list(struct mnt_namespace *ns)
725 {
726 	spin_lock(&ns->ns_lock);
727 }
728 
729 static inline void unlock_ns_list(struct mnt_namespace *ns)
730 {
731 	spin_unlock(&ns->ns_lock);
732 }
733 
734 static inline bool mnt_is_cursor(struct mount *mnt)
735 {
736 	return mnt->mnt.mnt_flags & MNT_CURSOR;
737 }
738 
739 /*
740  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
741  *                         current mount namespace.
742  *
743  * The common case is dentries are not mountpoints at all and that
744  * test is handled inline.  For the slow case when we are actually
745  * dealing with a mountpoint of some kind, walk through all of the
746  * mounts in the current mount namespace and test to see if the dentry
747  * is a mountpoint.
748  *
749  * The mount_hashtable is not usable in the context because we
750  * need to identify all mounts that may be in the current mount
751  * namespace not just a mount that happens to have some specified
752  * parent mount.
753  */
754 bool __is_local_mountpoint(struct dentry *dentry)
755 {
756 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
757 	struct mount *mnt;
758 	bool is_covered = false;
759 
760 	down_read(&namespace_sem);
761 	lock_ns_list(ns);
762 	list_for_each_entry(mnt, &ns->list, mnt_list) {
763 		if (mnt_is_cursor(mnt))
764 			continue;
765 		is_covered = (mnt->mnt_mountpoint == dentry);
766 		if (is_covered)
767 			break;
768 	}
769 	unlock_ns_list(ns);
770 	up_read(&namespace_sem);
771 
772 	return is_covered;
773 }
774 
775 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
776 {
777 	struct hlist_head *chain = mp_hash(dentry);
778 	struct mountpoint *mp;
779 
780 	hlist_for_each_entry(mp, chain, m_hash) {
781 		if (mp->m_dentry == dentry) {
782 			mp->m_count++;
783 			return mp;
784 		}
785 	}
786 	return NULL;
787 }
788 
789 static struct mountpoint *get_mountpoint(struct dentry *dentry)
790 {
791 	struct mountpoint *mp, *new = NULL;
792 	int ret;
793 
794 	if (d_mountpoint(dentry)) {
795 		/* might be worth a WARN_ON() */
796 		if (d_unlinked(dentry))
797 			return ERR_PTR(-ENOENT);
798 mountpoint:
799 		read_seqlock_excl(&mount_lock);
800 		mp = lookup_mountpoint(dentry);
801 		read_sequnlock_excl(&mount_lock);
802 		if (mp)
803 			goto done;
804 	}
805 
806 	if (!new)
807 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
808 	if (!new)
809 		return ERR_PTR(-ENOMEM);
810 
811 
812 	/* Exactly one processes may set d_mounted */
813 	ret = d_set_mounted(dentry);
814 
815 	/* Someone else set d_mounted? */
816 	if (ret == -EBUSY)
817 		goto mountpoint;
818 
819 	/* The dentry is not available as a mountpoint? */
820 	mp = ERR_PTR(ret);
821 	if (ret)
822 		goto done;
823 
824 	/* Add the new mountpoint to the hash table */
825 	read_seqlock_excl(&mount_lock);
826 	new->m_dentry = dget(dentry);
827 	new->m_count = 1;
828 	hlist_add_head(&new->m_hash, mp_hash(dentry));
829 	INIT_HLIST_HEAD(&new->m_list);
830 	read_sequnlock_excl(&mount_lock);
831 
832 	mp = new;
833 	new = NULL;
834 done:
835 	kfree(new);
836 	return mp;
837 }
838 
839 /*
840  * vfsmount lock must be held.  Additionally, the caller is responsible
841  * for serializing calls for given disposal list.
842  */
843 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
844 {
845 	if (!--mp->m_count) {
846 		struct dentry *dentry = mp->m_dentry;
847 		BUG_ON(!hlist_empty(&mp->m_list));
848 		spin_lock(&dentry->d_lock);
849 		dentry->d_flags &= ~DCACHE_MOUNTED;
850 		spin_unlock(&dentry->d_lock);
851 		dput_to_list(dentry, list);
852 		hlist_del(&mp->m_hash);
853 		kfree(mp);
854 	}
855 }
856 
857 /* called with namespace_lock and vfsmount lock */
858 static void put_mountpoint(struct mountpoint *mp)
859 {
860 	__put_mountpoint(mp, &ex_mountpoints);
861 }
862 
863 static inline int check_mnt(struct mount *mnt)
864 {
865 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
866 }
867 
868 /*
869  * vfsmount lock must be held for write
870  */
871 static void touch_mnt_namespace(struct mnt_namespace *ns)
872 {
873 	if (ns) {
874 		ns->event = ++event;
875 		wake_up_interruptible(&ns->poll);
876 	}
877 }
878 
879 /*
880  * vfsmount lock must be held for write
881  */
882 static void __touch_mnt_namespace(struct mnt_namespace *ns)
883 {
884 	if (ns && ns->event != event) {
885 		ns->event = event;
886 		wake_up_interruptible(&ns->poll);
887 	}
888 }
889 
890 /*
891  * vfsmount lock must be held for write
892  */
893 static struct mountpoint *unhash_mnt(struct mount *mnt)
894 {
895 	struct mountpoint *mp;
896 	mnt->mnt_parent = mnt;
897 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
898 	list_del_init(&mnt->mnt_child);
899 	hlist_del_init_rcu(&mnt->mnt_hash);
900 	hlist_del_init(&mnt->mnt_mp_list);
901 	mp = mnt->mnt_mp;
902 	mnt->mnt_mp = NULL;
903 	return mp;
904 }
905 
906 /*
907  * vfsmount lock must be held for write
908  */
909 static void umount_mnt(struct mount *mnt)
910 {
911 	put_mountpoint(unhash_mnt(mnt));
912 }
913 
914 /*
915  * vfsmount lock must be held for write
916  */
917 void mnt_set_mountpoint(struct mount *mnt,
918 			struct mountpoint *mp,
919 			struct mount *child_mnt)
920 {
921 	mp->m_count++;
922 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
923 	child_mnt->mnt_mountpoint = mp->m_dentry;
924 	child_mnt->mnt_parent = mnt;
925 	child_mnt->mnt_mp = mp;
926 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
927 }
928 
929 static void __attach_mnt(struct mount *mnt, struct mount *parent)
930 {
931 	hlist_add_head_rcu(&mnt->mnt_hash,
932 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
933 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
934 }
935 
936 /*
937  * vfsmount lock must be held for write
938  */
939 static void attach_mnt(struct mount *mnt,
940 			struct mount *parent,
941 			struct mountpoint *mp)
942 {
943 	mnt_set_mountpoint(parent, mp, mnt);
944 	__attach_mnt(mnt, parent);
945 }
946 
947 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
948 {
949 	struct mountpoint *old_mp = mnt->mnt_mp;
950 	struct mount *old_parent = mnt->mnt_parent;
951 
952 	list_del_init(&mnt->mnt_child);
953 	hlist_del_init(&mnt->mnt_mp_list);
954 	hlist_del_init_rcu(&mnt->mnt_hash);
955 
956 	attach_mnt(mnt, parent, mp);
957 
958 	put_mountpoint(old_mp);
959 	mnt_add_count(old_parent, -1);
960 }
961 
962 /*
963  * vfsmount lock must be held for write
964  */
965 static void commit_tree(struct mount *mnt)
966 {
967 	struct mount *parent = mnt->mnt_parent;
968 	struct mount *m;
969 	LIST_HEAD(head);
970 	struct mnt_namespace *n = parent->mnt_ns;
971 
972 	BUG_ON(parent == mnt);
973 
974 	list_add_tail(&head, &mnt->mnt_list);
975 	list_for_each_entry(m, &head, mnt_list)
976 		m->mnt_ns = n;
977 
978 	list_splice(&head, n->list.prev);
979 
980 	n->mounts += n->pending_mounts;
981 	n->pending_mounts = 0;
982 
983 	__attach_mnt(mnt, parent);
984 	touch_mnt_namespace(n);
985 }
986 
987 static struct mount *next_mnt(struct mount *p, struct mount *root)
988 {
989 	struct list_head *next = p->mnt_mounts.next;
990 	if (next == &p->mnt_mounts) {
991 		while (1) {
992 			if (p == root)
993 				return NULL;
994 			next = p->mnt_child.next;
995 			if (next != &p->mnt_parent->mnt_mounts)
996 				break;
997 			p = p->mnt_parent;
998 		}
999 	}
1000 	return list_entry(next, struct mount, mnt_child);
1001 }
1002 
1003 static struct mount *skip_mnt_tree(struct mount *p)
1004 {
1005 	struct list_head *prev = p->mnt_mounts.prev;
1006 	while (prev != &p->mnt_mounts) {
1007 		p = list_entry(prev, struct mount, mnt_child);
1008 		prev = p->mnt_mounts.prev;
1009 	}
1010 	return p;
1011 }
1012 
1013 /**
1014  * vfs_create_mount - Create a mount for a configured superblock
1015  * @fc: The configuration context with the superblock attached
1016  *
1017  * Create a mount to an already configured superblock.  If necessary, the
1018  * caller should invoke vfs_get_tree() before calling this.
1019  *
1020  * Note that this does not attach the mount to anything.
1021  */
1022 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1023 {
1024 	struct mount *mnt;
1025 
1026 	if (!fc->root)
1027 		return ERR_PTR(-EINVAL);
1028 
1029 	mnt = alloc_vfsmnt(fc->source ?: "none");
1030 	if (!mnt)
1031 		return ERR_PTR(-ENOMEM);
1032 
1033 	if (fc->sb_flags & SB_KERNMOUNT)
1034 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1035 
1036 	atomic_inc(&fc->root->d_sb->s_active);
1037 	mnt->mnt.mnt_sb		= fc->root->d_sb;
1038 	mnt->mnt.mnt_root	= dget(fc->root);
1039 	mnt->mnt_mountpoint	= mnt->mnt.mnt_root;
1040 	mnt->mnt_parent		= mnt;
1041 
1042 	lock_mount_hash();
1043 	list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1044 	unlock_mount_hash();
1045 	return &mnt->mnt;
1046 }
1047 EXPORT_SYMBOL(vfs_create_mount);
1048 
1049 struct vfsmount *fc_mount(struct fs_context *fc)
1050 {
1051 	int err = vfs_get_tree(fc);
1052 	if (!err) {
1053 		up_write(&fc->root->d_sb->s_umount);
1054 		return vfs_create_mount(fc);
1055 	}
1056 	return ERR_PTR(err);
1057 }
1058 EXPORT_SYMBOL(fc_mount);
1059 
1060 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1061 				int flags, const char *name,
1062 				void *data)
1063 {
1064 	struct fs_context *fc;
1065 	struct vfsmount *mnt;
1066 	int ret = 0;
1067 
1068 	if (!type)
1069 		return ERR_PTR(-EINVAL);
1070 
1071 	fc = fs_context_for_mount(type, flags);
1072 	if (IS_ERR(fc))
1073 		return ERR_CAST(fc);
1074 
1075 	if (name)
1076 		ret = vfs_parse_fs_string(fc, "source",
1077 					  name, strlen(name));
1078 	if (!ret)
1079 		ret = parse_monolithic_mount_data(fc, data);
1080 	if (!ret)
1081 		mnt = fc_mount(fc);
1082 	else
1083 		mnt = ERR_PTR(ret);
1084 
1085 	put_fs_context(fc);
1086 	return mnt;
1087 }
1088 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1089 
1090 struct vfsmount *
1091 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1092 	     const char *name, void *data)
1093 {
1094 	/* Until it is worked out how to pass the user namespace
1095 	 * through from the parent mount to the submount don't support
1096 	 * unprivileged mounts with submounts.
1097 	 */
1098 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1099 		return ERR_PTR(-EPERM);
1100 
1101 	return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1102 }
1103 EXPORT_SYMBOL_GPL(vfs_submount);
1104 
1105 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1106 					int flag)
1107 {
1108 	struct super_block *sb = old->mnt.mnt_sb;
1109 	struct mount *mnt;
1110 	int err;
1111 
1112 	mnt = alloc_vfsmnt(old->mnt_devname);
1113 	if (!mnt)
1114 		return ERR_PTR(-ENOMEM);
1115 
1116 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1117 		mnt->mnt_group_id = 0; /* not a peer of original */
1118 	else
1119 		mnt->mnt_group_id = old->mnt_group_id;
1120 
1121 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1122 		err = mnt_alloc_group_id(mnt);
1123 		if (err)
1124 			goto out_free;
1125 	}
1126 
1127 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1128 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1129 
1130 	atomic_inc(&sb->s_active);
1131 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1132 
1133 	mnt->mnt.mnt_sb = sb;
1134 	mnt->mnt.mnt_root = dget(root);
1135 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1136 	mnt->mnt_parent = mnt;
1137 	lock_mount_hash();
1138 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1139 	unlock_mount_hash();
1140 
1141 	if ((flag & CL_SLAVE) ||
1142 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1143 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1144 		mnt->mnt_master = old;
1145 		CLEAR_MNT_SHARED(mnt);
1146 	} else if (!(flag & CL_PRIVATE)) {
1147 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1148 			list_add(&mnt->mnt_share, &old->mnt_share);
1149 		if (IS_MNT_SLAVE(old))
1150 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1151 		mnt->mnt_master = old->mnt_master;
1152 	} else {
1153 		CLEAR_MNT_SHARED(mnt);
1154 	}
1155 	if (flag & CL_MAKE_SHARED)
1156 		set_mnt_shared(mnt);
1157 
1158 	/* stick the duplicate mount on the same expiry list
1159 	 * as the original if that was on one */
1160 	if (flag & CL_EXPIRE) {
1161 		if (!list_empty(&old->mnt_expire))
1162 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1163 	}
1164 
1165 	return mnt;
1166 
1167  out_free:
1168 	mnt_free_id(mnt);
1169 	free_vfsmnt(mnt);
1170 	return ERR_PTR(err);
1171 }
1172 
1173 static void cleanup_mnt(struct mount *mnt)
1174 {
1175 	struct hlist_node *p;
1176 	struct mount *m;
1177 	/*
1178 	 * The warning here probably indicates that somebody messed
1179 	 * up a mnt_want/drop_write() pair.  If this happens, the
1180 	 * filesystem was probably unable to make r/w->r/o transitions.
1181 	 * The locking used to deal with mnt_count decrement provides barriers,
1182 	 * so mnt_get_writers() below is safe.
1183 	 */
1184 	WARN_ON(mnt_get_writers(mnt));
1185 	if (unlikely(mnt->mnt_pins.first))
1186 		mnt_pin_kill(mnt);
1187 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1188 		hlist_del(&m->mnt_umount);
1189 		mntput(&m->mnt);
1190 	}
1191 	fsnotify_vfsmount_delete(&mnt->mnt);
1192 	dput(mnt->mnt.mnt_root);
1193 	deactivate_super(mnt->mnt.mnt_sb);
1194 	mnt_free_id(mnt);
1195 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1196 }
1197 
1198 static void __cleanup_mnt(struct rcu_head *head)
1199 {
1200 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1201 }
1202 
1203 static LLIST_HEAD(delayed_mntput_list);
1204 static void delayed_mntput(struct work_struct *unused)
1205 {
1206 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1207 	struct mount *m, *t;
1208 
1209 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1210 		cleanup_mnt(m);
1211 }
1212 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1213 
1214 static void mntput_no_expire(struct mount *mnt)
1215 {
1216 	LIST_HEAD(list);
1217 	int count;
1218 
1219 	rcu_read_lock();
1220 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1221 		/*
1222 		 * Since we don't do lock_mount_hash() here,
1223 		 * ->mnt_ns can change under us.  However, if it's
1224 		 * non-NULL, then there's a reference that won't
1225 		 * be dropped until after an RCU delay done after
1226 		 * turning ->mnt_ns NULL.  So if we observe it
1227 		 * non-NULL under rcu_read_lock(), the reference
1228 		 * we are dropping is not the final one.
1229 		 */
1230 		mnt_add_count(mnt, -1);
1231 		rcu_read_unlock();
1232 		return;
1233 	}
1234 	lock_mount_hash();
1235 	/*
1236 	 * make sure that if __legitimize_mnt() has not seen us grab
1237 	 * mount_lock, we'll see their refcount increment here.
1238 	 */
1239 	smp_mb();
1240 	mnt_add_count(mnt, -1);
1241 	count = mnt_get_count(mnt);
1242 	if (count != 0) {
1243 		WARN_ON(count < 0);
1244 		rcu_read_unlock();
1245 		unlock_mount_hash();
1246 		return;
1247 	}
1248 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1249 		rcu_read_unlock();
1250 		unlock_mount_hash();
1251 		return;
1252 	}
1253 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1254 	rcu_read_unlock();
1255 
1256 	list_del(&mnt->mnt_instance);
1257 
1258 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1259 		struct mount *p, *tmp;
1260 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1261 			__put_mountpoint(unhash_mnt(p), &list);
1262 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1263 		}
1264 	}
1265 	unlock_mount_hash();
1266 	shrink_dentry_list(&list);
1267 
1268 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1269 		struct task_struct *task = current;
1270 		if (likely(!(task->flags & PF_KTHREAD))) {
1271 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1272 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1273 				return;
1274 		}
1275 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1276 			schedule_delayed_work(&delayed_mntput_work, 1);
1277 		return;
1278 	}
1279 	cleanup_mnt(mnt);
1280 }
1281 
1282 void mntput(struct vfsmount *mnt)
1283 {
1284 	if (mnt) {
1285 		struct mount *m = real_mount(mnt);
1286 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1287 		if (unlikely(m->mnt_expiry_mark))
1288 			m->mnt_expiry_mark = 0;
1289 		mntput_no_expire(m);
1290 	}
1291 }
1292 EXPORT_SYMBOL(mntput);
1293 
1294 struct vfsmount *mntget(struct vfsmount *mnt)
1295 {
1296 	if (mnt)
1297 		mnt_add_count(real_mount(mnt), 1);
1298 	return mnt;
1299 }
1300 EXPORT_SYMBOL(mntget);
1301 
1302 /*
1303  * Make a mount point inaccessible to new lookups.
1304  * Because there may still be current users, the caller MUST WAIT
1305  * for an RCU grace period before destroying the mount point.
1306  */
1307 void mnt_make_shortterm(struct vfsmount *mnt)
1308 {
1309 	if (mnt)
1310 		real_mount(mnt)->mnt_ns = NULL;
1311 }
1312 
1313 /**
1314  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1315  * @path: path to check
1316  *
1317  *  d_mountpoint() can only be used reliably to establish if a dentry is
1318  *  not mounted in any namespace and that common case is handled inline.
1319  *  d_mountpoint() isn't aware of the possibility there may be multiple
1320  *  mounts using a given dentry in a different namespace. This function
1321  *  checks if the passed in path is a mountpoint rather than the dentry
1322  *  alone.
1323  */
1324 bool path_is_mountpoint(const struct path *path)
1325 {
1326 	unsigned seq;
1327 	bool res;
1328 
1329 	if (!d_mountpoint(path->dentry))
1330 		return false;
1331 
1332 	rcu_read_lock();
1333 	do {
1334 		seq = read_seqbegin(&mount_lock);
1335 		res = __path_is_mountpoint(path);
1336 	} while (read_seqretry(&mount_lock, seq));
1337 	rcu_read_unlock();
1338 
1339 	return res;
1340 }
1341 EXPORT_SYMBOL(path_is_mountpoint);
1342 
1343 struct vfsmount *mnt_clone_internal(const struct path *path)
1344 {
1345 	struct mount *p;
1346 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1347 	if (IS_ERR(p))
1348 		return ERR_CAST(p);
1349 	p->mnt.mnt_flags |= MNT_INTERNAL;
1350 	return &p->mnt;
1351 }
1352 
1353 #ifdef CONFIG_PROC_FS
1354 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1355 				   struct list_head *p)
1356 {
1357 	struct mount *mnt, *ret = NULL;
1358 
1359 	lock_ns_list(ns);
1360 	list_for_each_continue(p, &ns->list) {
1361 		mnt = list_entry(p, typeof(*mnt), mnt_list);
1362 		if (!mnt_is_cursor(mnt)) {
1363 			ret = mnt;
1364 			break;
1365 		}
1366 	}
1367 	unlock_ns_list(ns);
1368 
1369 	return ret;
1370 }
1371 
1372 /* iterator; we want it to have access to namespace_sem, thus here... */
1373 static void *m_start(struct seq_file *m, loff_t *pos)
1374 {
1375 	struct proc_mounts *p = m->private;
1376 	struct list_head *prev;
1377 
1378 	down_read(&namespace_sem);
1379 	if (!*pos) {
1380 		prev = &p->ns->list;
1381 	} else {
1382 		prev = &p->cursor.mnt_list;
1383 
1384 		/* Read after we'd reached the end? */
1385 		if (list_empty(prev))
1386 			return NULL;
1387 	}
1388 
1389 	return mnt_list_next(p->ns, prev);
1390 }
1391 
1392 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1393 {
1394 	struct proc_mounts *p = m->private;
1395 	struct mount *mnt = v;
1396 
1397 	++*pos;
1398 	return mnt_list_next(p->ns, &mnt->mnt_list);
1399 }
1400 
1401 static void m_stop(struct seq_file *m, void *v)
1402 {
1403 	struct proc_mounts *p = m->private;
1404 	struct mount *mnt = v;
1405 
1406 	lock_ns_list(p->ns);
1407 	if (mnt)
1408 		list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1409 	else
1410 		list_del_init(&p->cursor.mnt_list);
1411 	unlock_ns_list(p->ns);
1412 	up_read(&namespace_sem);
1413 }
1414 
1415 static int m_show(struct seq_file *m, void *v)
1416 {
1417 	struct proc_mounts *p = m->private;
1418 	struct mount *r = v;
1419 	return p->show(m, &r->mnt);
1420 }
1421 
1422 const struct seq_operations mounts_op = {
1423 	.start	= m_start,
1424 	.next	= m_next,
1425 	.stop	= m_stop,
1426 	.show	= m_show,
1427 };
1428 
1429 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1430 {
1431 	down_read(&namespace_sem);
1432 	lock_ns_list(ns);
1433 	list_del(&cursor->mnt_list);
1434 	unlock_ns_list(ns);
1435 	up_read(&namespace_sem);
1436 }
1437 #endif  /* CONFIG_PROC_FS */
1438 
1439 /**
1440  * may_umount_tree - check if a mount tree is busy
1441  * @m: root of mount tree
1442  *
1443  * This is called to check if a tree of mounts has any
1444  * open files, pwds, chroots or sub mounts that are
1445  * busy.
1446  */
1447 int may_umount_tree(struct vfsmount *m)
1448 {
1449 	struct mount *mnt = real_mount(m);
1450 	int actual_refs = 0;
1451 	int minimum_refs = 0;
1452 	struct mount *p;
1453 	BUG_ON(!m);
1454 
1455 	/* write lock needed for mnt_get_count */
1456 	lock_mount_hash();
1457 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1458 		actual_refs += mnt_get_count(p);
1459 		minimum_refs += 2;
1460 	}
1461 	unlock_mount_hash();
1462 
1463 	if (actual_refs > minimum_refs)
1464 		return 0;
1465 
1466 	return 1;
1467 }
1468 
1469 EXPORT_SYMBOL(may_umount_tree);
1470 
1471 /**
1472  * may_umount - check if a mount point is busy
1473  * @mnt: root of mount
1474  *
1475  * This is called to check if a mount point has any
1476  * open files, pwds, chroots or sub mounts. If the
1477  * mount has sub mounts this will return busy
1478  * regardless of whether the sub mounts are busy.
1479  *
1480  * Doesn't take quota and stuff into account. IOW, in some cases it will
1481  * give false negatives. The main reason why it's here is that we need
1482  * a non-destructive way to look for easily umountable filesystems.
1483  */
1484 int may_umount(struct vfsmount *mnt)
1485 {
1486 	int ret = 1;
1487 	down_read(&namespace_sem);
1488 	lock_mount_hash();
1489 	if (propagate_mount_busy(real_mount(mnt), 2))
1490 		ret = 0;
1491 	unlock_mount_hash();
1492 	up_read(&namespace_sem);
1493 	return ret;
1494 }
1495 
1496 EXPORT_SYMBOL(may_umount);
1497 
1498 static void namespace_unlock(void)
1499 {
1500 	struct hlist_head head;
1501 	struct hlist_node *p;
1502 	struct mount *m;
1503 	LIST_HEAD(list);
1504 
1505 	hlist_move_list(&unmounted, &head);
1506 	list_splice_init(&ex_mountpoints, &list);
1507 
1508 	up_write(&namespace_sem);
1509 
1510 	shrink_dentry_list(&list);
1511 
1512 	if (likely(hlist_empty(&head)))
1513 		return;
1514 
1515 	synchronize_rcu_expedited();
1516 
1517 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1518 		hlist_del(&m->mnt_umount);
1519 		mntput(&m->mnt);
1520 	}
1521 }
1522 
1523 static inline void namespace_lock(void)
1524 {
1525 	down_write(&namespace_sem);
1526 }
1527 
1528 enum umount_tree_flags {
1529 	UMOUNT_SYNC = 1,
1530 	UMOUNT_PROPAGATE = 2,
1531 	UMOUNT_CONNECTED = 4,
1532 };
1533 
1534 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1535 {
1536 	/* Leaving mounts connected is only valid for lazy umounts */
1537 	if (how & UMOUNT_SYNC)
1538 		return true;
1539 
1540 	/* A mount without a parent has nothing to be connected to */
1541 	if (!mnt_has_parent(mnt))
1542 		return true;
1543 
1544 	/* Because the reference counting rules change when mounts are
1545 	 * unmounted and connected, umounted mounts may not be
1546 	 * connected to mounted mounts.
1547 	 */
1548 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1549 		return true;
1550 
1551 	/* Has it been requested that the mount remain connected? */
1552 	if (how & UMOUNT_CONNECTED)
1553 		return false;
1554 
1555 	/* Is the mount locked such that it needs to remain connected? */
1556 	if (IS_MNT_LOCKED(mnt))
1557 		return false;
1558 
1559 	/* By default disconnect the mount */
1560 	return true;
1561 }
1562 
1563 /*
1564  * mount_lock must be held
1565  * namespace_sem must be held for write
1566  */
1567 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1568 {
1569 	LIST_HEAD(tmp_list);
1570 	struct mount *p;
1571 
1572 	if (how & UMOUNT_PROPAGATE)
1573 		propagate_mount_unlock(mnt);
1574 
1575 	/* Gather the mounts to umount */
1576 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1577 		p->mnt.mnt_flags |= MNT_UMOUNT;
1578 		list_move(&p->mnt_list, &tmp_list);
1579 	}
1580 
1581 	/* Hide the mounts from mnt_mounts */
1582 	list_for_each_entry(p, &tmp_list, mnt_list) {
1583 		list_del_init(&p->mnt_child);
1584 	}
1585 
1586 	/* Add propogated mounts to the tmp_list */
1587 	if (how & UMOUNT_PROPAGATE)
1588 		propagate_umount(&tmp_list);
1589 
1590 	while (!list_empty(&tmp_list)) {
1591 		struct mnt_namespace *ns;
1592 		bool disconnect;
1593 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1594 		list_del_init(&p->mnt_expire);
1595 		list_del_init(&p->mnt_list);
1596 		ns = p->mnt_ns;
1597 		if (ns) {
1598 			ns->mounts--;
1599 			__touch_mnt_namespace(ns);
1600 		}
1601 		p->mnt_ns = NULL;
1602 		if (how & UMOUNT_SYNC)
1603 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1604 
1605 		disconnect = disconnect_mount(p, how);
1606 		if (mnt_has_parent(p)) {
1607 			mnt_add_count(p->mnt_parent, -1);
1608 			if (!disconnect) {
1609 				/* Don't forget about p */
1610 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1611 			} else {
1612 				umount_mnt(p);
1613 			}
1614 		}
1615 		change_mnt_propagation(p, MS_PRIVATE);
1616 		if (disconnect)
1617 			hlist_add_head(&p->mnt_umount, &unmounted);
1618 	}
1619 }
1620 
1621 static void shrink_submounts(struct mount *mnt);
1622 
1623 static int do_umount_root(struct super_block *sb)
1624 {
1625 	int ret = 0;
1626 
1627 	down_write(&sb->s_umount);
1628 	if (!sb_rdonly(sb)) {
1629 		struct fs_context *fc;
1630 
1631 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1632 						SB_RDONLY);
1633 		if (IS_ERR(fc)) {
1634 			ret = PTR_ERR(fc);
1635 		} else {
1636 			ret = parse_monolithic_mount_data(fc, NULL);
1637 			if (!ret)
1638 				ret = reconfigure_super(fc);
1639 			put_fs_context(fc);
1640 		}
1641 	}
1642 	up_write(&sb->s_umount);
1643 	return ret;
1644 }
1645 
1646 static int do_umount(struct mount *mnt, int flags)
1647 {
1648 	struct super_block *sb = mnt->mnt.mnt_sb;
1649 	int retval;
1650 
1651 	retval = security_sb_umount(&mnt->mnt, flags);
1652 	if (retval)
1653 		return retval;
1654 
1655 	/*
1656 	 * Allow userspace to request a mountpoint be expired rather than
1657 	 * unmounting unconditionally. Unmount only happens if:
1658 	 *  (1) the mark is already set (the mark is cleared by mntput())
1659 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1660 	 */
1661 	if (flags & MNT_EXPIRE) {
1662 		if (&mnt->mnt == current->fs->root.mnt ||
1663 		    flags & (MNT_FORCE | MNT_DETACH))
1664 			return -EINVAL;
1665 
1666 		/*
1667 		 * probably don't strictly need the lock here if we examined
1668 		 * all race cases, but it's a slowpath.
1669 		 */
1670 		lock_mount_hash();
1671 		if (mnt_get_count(mnt) != 2) {
1672 			unlock_mount_hash();
1673 			return -EBUSY;
1674 		}
1675 		unlock_mount_hash();
1676 
1677 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1678 			return -EAGAIN;
1679 	}
1680 
1681 	/*
1682 	 * If we may have to abort operations to get out of this
1683 	 * mount, and they will themselves hold resources we must
1684 	 * allow the fs to do things. In the Unix tradition of
1685 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1686 	 * might fail to complete on the first run through as other tasks
1687 	 * must return, and the like. Thats for the mount program to worry
1688 	 * about for the moment.
1689 	 */
1690 
1691 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1692 		sb->s_op->umount_begin(sb);
1693 	}
1694 
1695 	/*
1696 	 * No sense to grab the lock for this test, but test itself looks
1697 	 * somewhat bogus. Suggestions for better replacement?
1698 	 * Ho-hum... In principle, we might treat that as umount + switch
1699 	 * to rootfs. GC would eventually take care of the old vfsmount.
1700 	 * Actually it makes sense, especially if rootfs would contain a
1701 	 * /reboot - static binary that would close all descriptors and
1702 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1703 	 */
1704 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1705 		/*
1706 		 * Special case for "unmounting" root ...
1707 		 * we just try to remount it readonly.
1708 		 */
1709 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1710 			return -EPERM;
1711 		return do_umount_root(sb);
1712 	}
1713 
1714 	namespace_lock();
1715 	lock_mount_hash();
1716 
1717 	/* Recheck MNT_LOCKED with the locks held */
1718 	retval = -EINVAL;
1719 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1720 		goto out;
1721 
1722 	event++;
1723 	if (flags & MNT_DETACH) {
1724 		if (!list_empty(&mnt->mnt_list))
1725 			umount_tree(mnt, UMOUNT_PROPAGATE);
1726 		retval = 0;
1727 	} else {
1728 		shrink_submounts(mnt);
1729 		retval = -EBUSY;
1730 		if (!propagate_mount_busy(mnt, 2)) {
1731 			if (!list_empty(&mnt->mnt_list))
1732 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1733 			retval = 0;
1734 		}
1735 	}
1736 out:
1737 	unlock_mount_hash();
1738 	namespace_unlock();
1739 	return retval;
1740 }
1741 
1742 /*
1743  * __detach_mounts - lazily unmount all mounts on the specified dentry
1744  *
1745  * During unlink, rmdir, and d_drop it is possible to loose the path
1746  * to an existing mountpoint, and wind up leaking the mount.
1747  * detach_mounts allows lazily unmounting those mounts instead of
1748  * leaking them.
1749  *
1750  * The caller may hold dentry->d_inode->i_mutex.
1751  */
1752 void __detach_mounts(struct dentry *dentry)
1753 {
1754 	struct mountpoint *mp;
1755 	struct mount *mnt;
1756 
1757 	namespace_lock();
1758 	lock_mount_hash();
1759 	mp = lookup_mountpoint(dentry);
1760 	if (!mp)
1761 		goto out_unlock;
1762 
1763 	event++;
1764 	while (!hlist_empty(&mp->m_list)) {
1765 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1766 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1767 			umount_mnt(mnt);
1768 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1769 		}
1770 		else umount_tree(mnt, UMOUNT_CONNECTED);
1771 	}
1772 	put_mountpoint(mp);
1773 out_unlock:
1774 	unlock_mount_hash();
1775 	namespace_unlock();
1776 }
1777 
1778 /*
1779  * Is the caller allowed to modify his namespace?
1780  */
1781 bool may_mount(void)
1782 {
1783 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1784 }
1785 
1786 /**
1787  * path_mounted - check whether path is mounted
1788  * @path: path to check
1789  *
1790  * Determine whether @path refers to the root of a mount.
1791  *
1792  * Return: true if @path is the root of a mount, false if not.
1793  */
1794 static inline bool path_mounted(const struct path *path)
1795 {
1796 	return path->mnt->mnt_root == path->dentry;
1797 }
1798 
1799 static void warn_mandlock(void)
1800 {
1801 	pr_warn_once("=======================================================\n"
1802 		     "WARNING: The mand mount option has been deprecated and\n"
1803 		     "         and is ignored by this kernel. Remove the mand\n"
1804 		     "         option from the mount to silence this warning.\n"
1805 		     "=======================================================\n");
1806 }
1807 
1808 static int can_umount(const struct path *path, int flags)
1809 {
1810 	struct mount *mnt = real_mount(path->mnt);
1811 
1812 	if (!may_mount())
1813 		return -EPERM;
1814 	if (!path_mounted(path))
1815 		return -EINVAL;
1816 	if (!check_mnt(mnt))
1817 		return -EINVAL;
1818 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1819 		return -EINVAL;
1820 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1821 		return -EPERM;
1822 	return 0;
1823 }
1824 
1825 // caller is responsible for flags being sane
1826 int path_umount(struct path *path, int flags)
1827 {
1828 	struct mount *mnt = real_mount(path->mnt);
1829 	int ret;
1830 
1831 	ret = can_umount(path, flags);
1832 	if (!ret)
1833 		ret = do_umount(mnt, flags);
1834 
1835 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1836 	dput(path->dentry);
1837 	mntput_no_expire(mnt);
1838 	return ret;
1839 }
1840 
1841 static int ksys_umount(char __user *name, int flags)
1842 {
1843 	int lookup_flags = LOOKUP_MOUNTPOINT;
1844 	struct path path;
1845 	int ret;
1846 
1847 	// basic validity checks done first
1848 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1849 		return -EINVAL;
1850 
1851 	if (!(flags & UMOUNT_NOFOLLOW))
1852 		lookup_flags |= LOOKUP_FOLLOW;
1853 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1854 	if (ret)
1855 		return ret;
1856 	return path_umount(&path, flags);
1857 }
1858 
1859 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1860 {
1861 	return ksys_umount(name, flags);
1862 }
1863 
1864 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1865 
1866 /*
1867  *	The 2.0 compatible umount. No flags.
1868  */
1869 SYSCALL_DEFINE1(oldumount, char __user *, name)
1870 {
1871 	return ksys_umount(name, 0);
1872 }
1873 
1874 #endif
1875 
1876 static bool is_mnt_ns_file(struct dentry *dentry)
1877 {
1878 	/* Is this a proxy for a mount namespace? */
1879 	return dentry->d_op == &ns_dentry_operations &&
1880 	       dentry->d_fsdata == &mntns_operations;
1881 }
1882 
1883 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1884 {
1885 	return container_of(ns, struct mnt_namespace, ns);
1886 }
1887 
1888 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1889 {
1890 	return &mnt->ns;
1891 }
1892 
1893 static bool mnt_ns_loop(struct dentry *dentry)
1894 {
1895 	/* Could bind mounting the mount namespace inode cause a
1896 	 * mount namespace loop?
1897 	 */
1898 	struct mnt_namespace *mnt_ns;
1899 	if (!is_mnt_ns_file(dentry))
1900 		return false;
1901 
1902 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1903 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1904 }
1905 
1906 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1907 					int flag)
1908 {
1909 	struct mount *res, *p, *q, *r, *parent;
1910 
1911 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1912 		return ERR_PTR(-EINVAL);
1913 
1914 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1915 		return ERR_PTR(-EINVAL);
1916 
1917 	res = q = clone_mnt(mnt, dentry, flag);
1918 	if (IS_ERR(q))
1919 		return q;
1920 
1921 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1922 
1923 	p = mnt;
1924 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1925 		struct mount *s;
1926 		if (!is_subdir(r->mnt_mountpoint, dentry))
1927 			continue;
1928 
1929 		for (s = r; s; s = next_mnt(s, r)) {
1930 			if (!(flag & CL_COPY_UNBINDABLE) &&
1931 			    IS_MNT_UNBINDABLE(s)) {
1932 				if (s->mnt.mnt_flags & MNT_LOCKED) {
1933 					/* Both unbindable and locked. */
1934 					q = ERR_PTR(-EPERM);
1935 					goto out;
1936 				} else {
1937 					s = skip_mnt_tree(s);
1938 					continue;
1939 				}
1940 			}
1941 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1942 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1943 				s = skip_mnt_tree(s);
1944 				continue;
1945 			}
1946 			while (p != s->mnt_parent) {
1947 				p = p->mnt_parent;
1948 				q = q->mnt_parent;
1949 			}
1950 			p = s;
1951 			parent = q;
1952 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1953 			if (IS_ERR(q))
1954 				goto out;
1955 			lock_mount_hash();
1956 			list_add_tail(&q->mnt_list, &res->mnt_list);
1957 			attach_mnt(q, parent, p->mnt_mp);
1958 			unlock_mount_hash();
1959 		}
1960 	}
1961 	return res;
1962 out:
1963 	if (res) {
1964 		lock_mount_hash();
1965 		umount_tree(res, UMOUNT_SYNC);
1966 		unlock_mount_hash();
1967 	}
1968 	return q;
1969 }
1970 
1971 /* Caller should check returned pointer for errors */
1972 
1973 struct vfsmount *collect_mounts(const struct path *path)
1974 {
1975 	struct mount *tree;
1976 	namespace_lock();
1977 	if (!check_mnt(real_mount(path->mnt)))
1978 		tree = ERR_PTR(-EINVAL);
1979 	else
1980 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1981 				 CL_COPY_ALL | CL_PRIVATE);
1982 	namespace_unlock();
1983 	if (IS_ERR(tree))
1984 		return ERR_CAST(tree);
1985 	return &tree->mnt;
1986 }
1987 
1988 static void free_mnt_ns(struct mnt_namespace *);
1989 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1990 
1991 void dissolve_on_fput(struct vfsmount *mnt)
1992 {
1993 	struct mnt_namespace *ns;
1994 	namespace_lock();
1995 	lock_mount_hash();
1996 	ns = real_mount(mnt)->mnt_ns;
1997 	if (ns) {
1998 		if (is_anon_ns(ns))
1999 			umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
2000 		else
2001 			ns = NULL;
2002 	}
2003 	unlock_mount_hash();
2004 	namespace_unlock();
2005 	if (ns)
2006 		free_mnt_ns(ns);
2007 }
2008 
2009 void drop_collected_mounts(struct vfsmount *mnt)
2010 {
2011 	namespace_lock();
2012 	lock_mount_hash();
2013 	umount_tree(real_mount(mnt), 0);
2014 	unlock_mount_hash();
2015 	namespace_unlock();
2016 }
2017 
2018 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2019 {
2020 	struct mount *child;
2021 
2022 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2023 		if (!is_subdir(child->mnt_mountpoint, dentry))
2024 			continue;
2025 
2026 		if (child->mnt.mnt_flags & MNT_LOCKED)
2027 			return true;
2028 	}
2029 	return false;
2030 }
2031 
2032 /**
2033  * clone_private_mount - create a private clone of a path
2034  * @path: path to clone
2035  *
2036  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2037  * will not be attached anywhere in the namespace and will be private (i.e.
2038  * changes to the originating mount won't be propagated into this).
2039  *
2040  * Release with mntput().
2041  */
2042 struct vfsmount *clone_private_mount(const struct path *path)
2043 {
2044 	struct mount *old_mnt = real_mount(path->mnt);
2045 	struct mount *new_mnt;
2046 
2047 	down_read(&namespace_sem);
2048 	if (IS_MNT_UNBINDABLE(old_mnt))
2049 		goto invalid;
2050 
2051 	if (!check_mnt(old_mnt))
2052 		goto invalid;
2053 
2054 	if (has_locked_children(old_mnt, path->dentry))
2055 		goto invalid;
2056 
2057 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2058 	up_read(&namespace_sem);
2059 
2060 	if (IS_ERR(new_mnt))
2061 		return ERR_CAST(new_mnt);
2062 
2063 	/* Longterm mount to be removed by kern_unmount*() */
2064 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2065 
2066 	return &new_mnt->mnt;
2067 
2068 invalid:
2069 	up_read(&namespace_sem);
2070 	return ERR_PTR(-EINVAL);
2071 }
2072 EXPORT_SYMBOL_GPL(clone_private_mount);
2073 
2074 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2075 		   struct vfsmount *root)
2076 {
2077 	struct mount *mnt;
2078 	int res = f(root, arg);
2079 	if (res)
2080 		return res;
2081 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2082 		res = f(&mnt->mnt, arg);
2083 		if (res)
2084 			return res;
2085 	}
2086 	return 0;
2087 }
2088 
2089 static void lock_mnt_tree(struct mount *mnt)
2090 {
2091 	struct mount *p;
2092 
2093 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2094 		int flags = p->mnt.mnt_flags;
2095 		/* Don't allow unprivileged users to change mount flags */
2096 		flags |= MNT_LOCK_ATIME;
2097 
2098 		if (flags & MNT_READONLY)
2099 			flags |= MNT_LOCK_READONLY;
2100 
2101 		if (flags & MNT_NODEV)
2102 			flags |= MNT_LOCK_NODEV;
2103 
2104 		if (flags & MNT_NOSUID)
2105 			flags |= MNT_LOCK_NOSUID;
2106 
2107 		if (flags & MNT_NOEXEC)
2108 			flags |= MNT_LOCK_NOEXEC;
2109 		/* Don't allow unprivileged users to reveal what is under a mount */
2110 		if (list_empty(&p->mnt_expire))
2111 			flags |= MNT_LOCKED;
2112 		p->mnt.mnt_flags = flags;
2113 	}
2114 }
2115 
2116 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2117 {
2118 	struct mount *p;
2119 
2120 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2121 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2122 			mnt_release_group_id(p);
2123 	}
2124 }
2125 
2126 static int invent_group_ids(struct mount *mnt, bool recurse)
2127 {
2128 	struct mount *p;
2129 
2130 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2131 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2132 			int err = mnt_alloc_group_id(p);
2133 			if (err) {
2134 				cleanup_group_ids(mnt, p);
2135 				return err;
2136 			}
2137 		}
2138 	}
2139 
2140 	return 0;
2141 }
2142 
2143 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2144 {
2145 	unsigned int max = READ_ONCE(sysctl_mount_max);
2146 	unsigned int mounts = 0;
2147 	struct mount *p;
2148 
2149 	if (ns->mounts >= max)
2150 		return -ENOSPC;
2151 	max -= ns->mounts;
2152 	if (ns->pending_mounts >= max)
2153 		return -ENOSPC;
2154 	max -= ns->pending_mounts;
2155 
2156 	for (p = mnt; p; p = next_mnt(p, mnt))
2157 		mounts++;
2158 
2159 	if (mounts > max)
2160 		return -ENOSPC;
2161 
2162 	ns->pending_mounts += mounts;
2163 	return 0;
2164 }
2165 
2166 /*
2167  *  @source_mnt : mount tree to be attached
2168  *  @nd         : place the mount tree @source_mnt is attached
2169  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2170  *  		   store the parent mount and mountpoint dentry.
2171  *  		   (done when source_mnt is moved)
2172  *
2173  *  NOTE: in the table below explains the semantics when a source mount
2174  *  of a given type is attached to a destination mount of a given type.
2175  * ---------------------------------------------------------------------------
2176  * |         BIND MOUNT OPERATION                                            |
2177  * |**************************************************************************
2178  * | source-->| shared        |       private  |       slave    | unbindable |
2179  * | dest     |               |                |                |            |
2180  * |   |      |               |                |                |            |
2181  * |   v      |               |                |                |            |
2182  * |**************************************************************************
2183  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2184  * |          |               |                |                |            |
2185  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2186  * ***************************************************************************
2187  * A bind operation clones the source mount and mounts the clone on the
2188  * destination mount.
2189  *
2190  * (++)  the cloned mount is propagated to all the mounts in the propagation
2191  * 	 tree of the destination mount and the cloned mount is added to
2192  * 	 the peer group of the source mount.
2193  * (+)   the cloned mount is created under the destination mount and is marked
2194  *       as shared. The cloned mount is added to the peer group of the source
2195  *       mount.
2196  * (+++) the mount is propagated to all the mounts in the propagation tree
2197  *       of the destination mount and the cloned mount is made slave
2198  *       of the same master as that of the source mount. The cloned mount
2199  *       is marked as 'shared and slave'.
2200  * (*)   the cloned mount is made a slave of the same master as that of the
2201  * 	 source mount.
2202  *
2203  * ---------------------------------------------------------------------------
2204  * |         		MOVE MOUNT OPERATION                                 |
2205  * |**************************************************************************
2206  * | source-->| shared        |       private  |       slave    | unbindable |
2207  * | dest     |               |                |                |            |
2208  * |   |      |               |                |                |            |
2209  * |   v      |               |                |                |            |
2210  * |**************************************************************************
2211  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2212  * |          |               |                |                |            |
2213  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2214  * ***************************************************************************
2215  *
2216  * (+)  the mount is moved to the destination. And is then propagated to
2217  * 	all the mounts in the propagation tree of the destination mount.
2218  * (+*)  the mount is moved to the destination.
2219  * (+++)  the mount is moved to the destination and is then propagated to
2220  * 	all the mounts belonging to the destination mount's propagation tree.
2221  * 	the mount is marked as 'shared and slave'.
2222  * (*)	the mount continues to be a slave at the new location.
2223  *
2224  * if the source mount is a tree, the operations explained above is
2225  * applied to each mount in the tree.
2226  * Must be called without spinlocks held, since this function can sleep
2227  * in allocations.
2228  */
2229 static int attach_recursive_mnt(struct mount *source_mnt,
2230 			struct mount *dest_mnt,
2231 			struct mountpoint *dest_mp,
2232 			bool moving)
2233 {
2234 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2235 	HLIST_HEAD(tree_list);
2236 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2237 	struct mountpoint *smp;
2238 	struct mount *child, *p;
2239 	struct hlist_node *n;
2240 	int err;
2241 
2242 	/* Preallocate a mountpoint in case the new mounts need
2243 	 * to be tucked under other mounts.
2244 	 */
2245 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2246 	if (IS_ERR(smp))
2247 		return PTR_ERR(smp);
2248 
2249 	/* Is there space to add these mounts to the mount namespace? */
2250 	if (!moving) {
2251 		err = count_mounts(ns, source_mnt);
2252 		if (err)
2253 			goto out;
2254 	}
2255 
2256 	if (IS_MNT_SHARED(dest_mnt)) {
2257 		err = invent_group_ids(source_mnt, true);
2258 		if (err)
2259 			goto out;
2260 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2261 		lock_mount_hash();
2262 		if (err)
2263 			goto out_cleanup_ids;
2264 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2265 			set_mnt_shared(p);
2266 	} else {
2267 		lock_mount_hash();
2268 	}
2269 	if (moving) {
2270 		unhash_mnt(source_mnt);
2271 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2272 		touch_mnt_namespace(source_mnt->mnt_ns);
2273 	} else {
2274 		if (source_mnt->mnt_ns) {
2275 			/* move from anon - the caller will destroy */
2276 			list_del_init(&source_mnt->mnt_ns->list);
2277 		}
2278 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2279 		commit_tree(source_mnt);
2280 	}
2281 
2282 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2283 		struct mount *q;
2284 		hlist_del_init(&child->mnt_hash);
2285 		q = __lookup_mnt(&child->mnt_parent->mnt,
2286 				 child->mnt_mountpoint);
2287 		if (q)
2288 			mnt_change_mountpoint(child, smp, q);
2289 		/* Notice when we are propagating across user namespaces */
2290 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2291 			lock_mnt_tree(child);
2292 		child->mnt.mnt_flags &= ~MNT_LOCKED;
2293 		commit_tree(child);
2294 	}
2295 	put_mountpoint(smp);
2296 	unlock_mount_hash();
2297 
2298 	return 0;
2299 
2300  out_cleanup_ids:
2301 	while (!hlist_empty(&tree_list)) {
2302 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2303 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2304 		umount_tree(child, UMOUNT_SYNC);
2305 	}
2306 	unlock_mount_hash();
2307 	cleanup_group_ids(source_mnt, NULL);
2308  out:
2309 	ns->pending_mounts = 0;
2310 
2311 	read_seqlock_excl(&mount_lock);
2312 	put_mountpoint(smp);
2313 	read_sequnlock_excl(&mount_lock);
2314 
2315 	return err;
2316 }
2317 
2318 static struct mountpoint *lock_mount(struct path *path)
2319 {
2320 	struct vfsmount *mnt;
2321 	struct dentry *dentry;
2322 	struct mountpoint *mp;
2323 
2324 	for (;;) {
2325 		dentry = path->dentry;
2326 		inode_lock(dentry->d_inode);
2327 		if (unlikely(cant_mount(dentry))) {
2328 			inode_unlock(dentry->d_inode);
2329 			return ERR_PTR(-ENOENT);
2330 		}
2331 
2332 		namespace_lock();
2333 
2334 		mnt = lookup_mnt(path);
2335 		if (likely(!mnt))
2336 			break;
2337 
2338 		namespace_unlock();
2339 		inode_unlock(dentry->d_inode);
2340 		path_put(path);
2341 		path->mnt = mnt;
2342 		path->dentry = dget(mnt->mnt_root);
2343 	}
2344 
2345 	mp = get_mountpoint(dentry);
2346 	if (IS_ERR(mp)) {
2347 		namespace_unlock();
2348 		inode_unlock(dentry->d_inode);
2349 	}
2350 
2351 	return mp;
2352 }
2353 
2354 static void unlock_mount(struct mountpoint *where)
2355 {
2356 	struct dentry *dentry = where->m_dentry;
2357 
2358 	read_seqlock_excl(&mount_lock);
2359 	put_mountpoint(where);
2360 	read_sequnlock_excl(&mount_lock);
2361 
2362 	namespace_unlock();
2363 	inode_unlock(dentry->d_inode);
2364 }
2365 
2366 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2367 {
2368 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2369 		return -EINVAL;
2370 
2371 	if (d_is_dir(mp->m_dentry) !=
2372 	      d_is_dir(mnt->mnt.mnt_root))
2373 		return -ENOTDIR;
2374 
2375 	return attach_recursive_mnt(mnt, p, mp, false);
2376 }
2377 
2378 /*
2379  * Sanity check the flags to change_mnt_propagation.
2380  */
2381 
2382 static int flags_to_propagation_type(int ms_flags)
2383 {
2384 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2385 
2386 	/* Fail if any non-propagation flags are set */
2387 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2388 		return 0;
2389 	/* Only one propagation flag should be set */
2390 	if (!is_power_of_2(type))
2391 		return 0;
2392 	return type;
2393 }
2394 
2395 /*
2396  * recursively change the type of the mountpoint.
2397  */
2398 static int do_change_type(struct path *path, int ms_flags)
2399 {
2400 	struct mount *m;
2401 	struct mount *mnt = real_mount(path->mnt);
2402 	int recurse = ms_flags & MS_REC;
2403 	int type;
2404 	int err = 0;
2405 
2406 	if (!path_mounted(path))
2407 		return -EINVAL;
2408 
2409 	type = flags_to_propagation_type(ms_flags);
2410 	if (!type)
2411 		return -EINVAL;
2412 
2413 	namespace_lock();
2414 	if (type == MS_SHARED) {
2415 		err = invent_group_ids(mnt, recurse);
2416 		if (err)
2417 			goto out_unlock;
2418 	}
2419 
2420 	lock_mount_hash();
2421 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2422 		change_mnt_propagation(m, type);
2423 	unlock_mount_hash();
2424 
2425  out_unlock:
2426 	namespace_unlock();
2427 	return err;
2428 }
2429 
2430 static struct mount *__do_loopback(struct path *old_path, int recurse)
2431 {
2432 	struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2433 
2434 	if (IS_MNT_UNBINDABLE(old))
2435 		return mnt;
2436 
2437 	if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2438 		return mnt;
2439 
2440 	if (!recurse && has_locked_children(old, old_path->dentry))
2441 		return mnt;
2442 
2443 	if (recurse)
2444 		mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2445 	else
2446 		mnt = clone_mnt(old, old_path->dentry, 0);
2447 
2448 	if (!IS_ERR(mnt))
2449 		mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2450 
2451 	return mnt;
2452 }
2453 
2454 /*
2455  * do loopback mount.
2456  */
2457 static int do_loopback(struct path *path, const char *old_name,
2458 				int recurse)
2459 {
2460 	struct path old_path;
2461 	struct mount *mnt = NULL, *parent;
2462 	struct mountpoint *mp;
2463 	int err;
2464 	if (!old_name || !*old_name)
2465 		return -EINVAL;
2466 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2467 	if (err)
2468 		return err;
2469 
2470 	err = -EINVAL;
2471 	if (mnt_ns_loop(old_path.dentry))
2472 		goto out;
2473 
2474 	mp = lock_mount(path);
2475 	if (IS_ERR(mp)) {
2476 		err = PTR_ERR(mp);
2477 		goto out;
2478 	}
2479 
2480 	parent = real_mount(path->mnt);
2481 	if (!check_mnt(parent))
2482 		goto out2;
2483 
2484 	mnt = __do_loopback(&old_path, recurse);
2485 	if (IS_ERR(mnt)) {
2486 		err = PTR_ERR(mnt);
2487 		goto out2;
2488 	}
2489 
2490 	err = graft_tree(mnt, parent, mp);
2491 	if (err) {
2492 		lock_mount_hash();
2493 		umount_tree(mnt, UMOUNT_SYNC);
2494 		unlock_mount_hash();
2495 	}
2496 out2:
2497 	unlock_mount(mp);
2498 out:
2499 	path_put(&old_path);
2500 	return err;
2501 }
2502 
2503 static struct file *open_detached_copy(struct path *path, bool recursive)
2504 {
2505 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2506 	struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2507 	struct mount *mnt, *p;
2508 	struct file *file;
2509 
2510 	if (IS_ERR(ns))
2511 		return ERR_CAST(ns);
2512 
2513 	namespace_lock();
2514 	mnt = __do_loopback(path, recursive);
2515 	if (IS_ERR(mnt)) {
2516 		namespace_unlock();
2517 		free_mnt_ns(ns);
2518 		return ERR_CAST(mnt);
2519 	}
2520 
2521 	lock_mount_hash();
2522 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2523 		p->mnt_ns = ns;
2524 		ns->mounts++;
2525 	}
2526 	ns->root = mnt;
2527 	list_add_tail(&ns->list, &mnt->mnt_list);
2528 	mntget(&mnt->mnt);
2529 	unlock_mount_hash();
2530 	namespace_unlock();
2531 
2532 	mntput(path->mnt);
2533 	path->mnt = &mnt->mnt;
2534 	file = dentry_open(path, O_PATH, current_cred());
2535 	if (IS_ERR(file))
2536 		dissolve_on_fput(path->mnt);
2537 	else
2538 		file->f_mode |= FMODE_NEED_UNMOUNT;
2539 	return file;
2540 }
2541 
2542 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2543 {
2544 	struct file *file;
2545 	struct path path;
2546 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2547 	bool detached = flags & OPEN_TREE_CLONE;
2548 	int error;
2549 	int fd;
2550 
2551 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2552 
2553 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2554 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2555 		      OPEN_TREE_CLOEXEC))
2556 		return -EINVAL;
2557 
2558 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2559 		return -EINVAL;
2560 
2561 	if (flags & AT_NO_AUTOMOUNT)
2562 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
2563 	if (flags & AT_SYMLINK_NOFOLLOW)
2564 		lookup_flags &= ~LOOKUP_FOLLOW;
2565 	if (flags & AT_EMPTY_PATH)
2566 		lookup_flags |= LOOKUP_EMPTY;
2567 
2568 	if (detached && !may_mount())
2569 		return -EPERM;
2570 
2571 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
2572 	if (fd < 0)
2573 		return fd;
2574 
2575 	error = user_path_at(dfd, filename, lookup_flags, &path);
2576 	if (unlikely(error)) {
2577 		file = ERR_PTR(error);
2578 	} else {
2579 		if (detached)
2580 			file = open_detached_copy(&path, flags & AT_RECURSIVE);
2581 		else
2582 			file = dentry_open(&path, O_PATH, current_cred());
2583 		path_put(&path);
2584 	}
2585 	if (IS_ERR(file)) {
2586 		put_unused_fd(fd);
2587 		return PTR_ERR(file);
2588 	}
2589 	fd_install(fd, file);
2590 	return fd;
2591 }
2592 
2593 /*
2594  * Don't allow locked mount flags to be cleared.
2595  *
2596  * No locks need to be held here while testing the various MNT_LOCK
2597  * flags because those flags can never be cleared once they are set.
2598  */
2599 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2600 {
2601 	unsigned int fl = mnt->mnt.mnt_flags;
2602 
2603 	if ((fl & MNT_LOCK_READONLY) &&
2604 	    !(mnt_flags & MNT_READONLY))
2605 		return false;
2606 
2607 	if ((fl & MNT_LOCK_NODEV) &&
2608 	    !(mnt_flags & MNT_NODEV))
2609 		return false;
2610 
2611 	if ((fl & MNT_LOCK_NOSUID) &&
2612 	    !(mnt_flags & MNT_NOSUID))
2613 		return false;
2614 
2615 	if ((fl & MNT_LOCK_NOEXEC) &&
2616 	    !(mnt_flags & MNT_NOEXEC))
2617 		return false;
2618 
2619 	if ((fl & MNT_LOCK_ATIME) &&
2620 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2621 		return false;
2622 
2623 	return true;
2624 }
2625 
2626 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2627 {
2628 	bool readonly_request = (mnt_flags & MNT_READONLY);
2629 
2630 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2631 		return 0;
2632 
2633 	if (readonly_request)
2634 		return mnt_make_readonly(mnt);
2635 
2636 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
2637 	return 0;
2638 }
2639 
2640 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2641 {
2642 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2643 	mnt->mnt.mnt_flags = mnt_flags;
2644 	touch_mnt_namespace(mnt->mnt_ns);
2645 }
2646 
2647 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2648 {
2649 	struct super_block *sb = mnt->mnt_sb;
2650 
2651 	if (!__mnt_is_readonly(mnt) &&
2652 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2653 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2654 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2655 		char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2656 
2657 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
2658 			sb->s_type->name,
2659 			is_mounted(mnt) ? "remounted" : "mounted",
2660 			mntpath, &sb->s_time_max,
2661 			(unsigned long long)sb->s_time_max);
2662 
2663 		free_page((unsigned long)buf);
2664 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2665 	}
2666 }
2667 
2668 /*
2669  * Handle reconfiguration of the mountpoint only without alteration of the
2670  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2671  * to mount(2).
2672  */
2673 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2674 {
2675 	struct super_block *sb = path->mnt->mnt_sb;
2676 	struct mount *mnt = real_mount(path->mnt);
2677 	int ret;
2678 
2679 	if (!check_mnt(mnt))
2680 		return -EINVAL;
2681 
2682 	if (!path_mounted(path))
2683 		return -EINVAL;
2684 
2685 	if (!can_change_locked_flags(mnt, mnt_flags))
2686 		return -EPERM;
2687 
2688 	/*
2689 	 * We're only checking whether the superblock is read-only not
2690 	 * changing it, so only take down_read(&sb->s_umount).
2691 	 */
2692 	down_read(&sb->s_umount);
2693 	lock_mount_hash();
2694 	ret = change_mount_ro_state(mnt, mnt_flags);
2695 	if (ret == 0)
2696 		set_mount_attributes(mnt, mnt_flags);
2697 	unlock_mount_hash();
2698 	up_read(&sb->s_umount);
2699 
2700 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2701 
2702 	return ret;
2703 }
2704 
2705 /*
2706  * change filesystem flags. dir should be a physical root of filesystem.
2707  * If you've mounted a non-root directory somewhere and want to do remount
2708  * on it - tough luck.
2709  */
2710 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2711 		      int mnt_flags, void *data)
2712 {
2713 	int err;
2714 	struct super_block *sb = path->mnt->mnt_sb;
2715 	struct mount *mnt = real_mount(path->mnt);
2716 	struct fs_context *fc;
2717 
2718 	if (!check_mnt(mnt))
2719 		return -EINVAL;
2720 
2721 	if (!path_mounted(path))
2722 		return -EINVAL;
2723 
2724 	if (!can_change_locked_flags(mnt, mnt_flags))
2725 		return -EPERM;
2726 
2727 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2728 	if (IS_ERR(fc))
2729 		return PTR_ERR(fc);
2730 
2731 	fc->oldapi = true;
2732 	err = parse_monolithic_mount_data(fc, data);
2733 	if (!err) {
2734 		down_write(&sb->s_umount);
2735 		err = -EPERM;
2736 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2737 			err = reconfigure_super(fc);
2738 			if (!err) {
2739 				lock_mount_hash();
2740 				set_mount_attributes(mnt, mnt_flags);
2741 				unlock_mount_hash();
2742 			}
2743 		}
2744 		up_write(&sb->s_umount);
2745 	}
2746 
2747 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
2748 
2749 	put_fs_context(fc);
2750 	return err;
2751 }
2752 
2753 static inline int tree_contains_unbindable(struct mount *mnt)
2754 {
2755 	struct mount *p;
2756 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2757 		if (IS_MNT_UNBINDABLE(p))
2758 			return 1;
2759 	}
2760 	return 0;
2761 }
2762 
2763 /*
2764  * Check that there aren't references to earlier/same mount namespaces in the
2765  * specified subtree.  Such references can act as pins for mount namespaces
2766  * that aren't checked by the mount-cycle checking code, thereby allowing
2767  * cycles to be made.
2768  */
2769 static bool check_for_nsfs_mounts(struct mount *subtree)
2770 {
2771 	struct mount *p;
2772 	bool ret = false;
2773 
2774 	lock_mount_hash();
2775 	for (p = subtree; p; p = next_mnt(p, subtree))
2776 		if (mnt_ns_loop(p->mnt.mnt_root))
2777 			goto out;
2778 
2779 	ret = true;
2780 out:
2781 	unlock_mount_hash();
2782 	return ret;
2783 }
2784 
2785 static int do_set_group(struct path *from_path, struct path *to_path)
2786 {
2787 	struct mount *from, *to;
2788 	int err;
2789 
2790 	from = real_mount(from_path->mnt);
2791 	to = real_mount(to_path->mnt);
2792 
2793 	namespace_lock();
2794 
2795 	err = -EINVAL;
2796 	/* To and From must be mounted */
2797 	if (!is_mounted(&from->mnt))
2798 		goto out;
2799 	if (!is_mounted(&to->mnt))
2800 		goto out;
2801 
2802 	err = -EPERM;
2803 	/* We should be allowed to modify mount namespaces of both mounts */
2804 	if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2805 		goto out;
2806 	if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2807 		goto out;
2808 
2809 	err = -EINVAL;
2810 	/* To and From paths should be mount roots */
2811 	if (!path_mounted(from_path))
2812 		goto out;
2813 	if (!path_mounted(to_path))
2814 		goto out;
2815 
2816 	/* Setting sharing groups is only allowed across same superblock */
2817 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2818 		goto out;
2819 
2820 	/* From mount root should be wider than To mount root */
2821 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2822 		goto out;
2823 
2824 	/* From mount should not have locked children in place of To's root */
2825 	if (has_locked_children(from, to->mnt.mnt_root))
2826 		goto out;
2827 
2828 	/* Setting sharing groups is only allowed on private mounts */
2829 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2830 		goto out;
2831 
2832 	/* From should not be private */
2833 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2834 		goto out;
2835 
2836 	if (IS_MNT_SLAVE(from)) {
2837 		struct mount *m = from->mnt_master;
2838 
2839 		list_add(&to->mnt_slave, &m->mnt_slave_list);
2840 		to->mnt_master = m;
2841 	}
2842 
2843 	if (IS_MNT_SHARED(from)) {
2844 		to->mnt_group_id = from->mnt_group_id;
2845 		list_add(&to->mnt_share, &from->mnt_share);
2846 		lock_mount_hash();
2847 		set_mnt_shared(to);
2848 		unlock_mount_hash();
2849 	}
2850 
2851 	err = 0;
2852 out:
2853 	namespace_unlock();
2854 	return err;
2855 }
2856 
2857 static int do_move_mount(struct path *old_path, struct path *new_path)
2858 {
2859 	struct mnt_namespace *ns;
2860 	struct mount *p;
2861 	struct mount *old;
2862 	struct mount *parent;
2863 	struct mountpoint *mp, *old_mp;
2864 	int err;
2865 	bool attached;
2866 
2867 	mp = lock_mount(new_path);
2868 	if (IS_ERR(mp))
2869 		return PTR_ERR(mp);
2870 
2871 	old = real_mount(old_path->mnt);
2872 	p = real_mount(new_path->mnt);
2873 	parent = old->mnt_parent;
2874 	attached = mnt_has_parent(old);
2875 	old_mp = old->mnt_mp;
2876 	ns = old->mnt_ns;
2877 
2878 	err = -EINVAL;
2879 	/* The mountpoint must be in our namespace. */
2880 	if (!check_mnt(p))
2881 		goto out;
2882 
2883 	/* The thing moved must be mounted... */
2884 	if (!is_mounted(&old->mnt))
2885 		goto out;
2886 
2887 	/* ... and either ours or the root of anon namespace */
2888 	if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2889 		goto out;
2890 
2891 	if (old->mnt.mnt_flags & MNT_LOCKED)
2892 		goto out;
2893 
2894 	if (!path_mounted(old_path))
2895 		goto out;
2896 
2897 	if (d_is_dir(new_path->dentry) !=
2898 	    d_is_dir(old_path->dentry))
2899 		goto out;
2900 	/*
2901 	 * Don't move a mount residing in a shared parent.
2902 	 */
2903 	if (attached && IS_MNT_SHARED(parent))
2904 		goto out;
2905 	/*
2906 	 * Don't move a mount tree containing unbindable mounts to a destination
2907 	 * mount which is shared.
2908 	 */
2909 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2910 		goto out;
2911 	err = -ELOOP;
2912 	if (!check_for_nsfs_mounts(old))
2913 		goto out;
2914 	for (; mnt_has_parent(p); p = p->mnt_parent)
2915 		if (p == old)
2916 			goto out;
2917 
2918 	err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2919 				   attached);
2920 	if (err)
2921 		goto out;
2922 
2923 	/* if the mount is moved, it should no longer be expire
2924 	 * automatically */
2925 	list_del_init(&old->mnt_expire);
2926 	if (attached)
2927 		put_mountpoint(old_mp);
2928 out:
2929 	unlock_mount(mp);
2930 	if (!err) {
2931 		if (attached)
2932 			mntput_no_expire(parent);
2933 		else
2934 			free_mnt_ns(ns);
2935 	}
2936 	return err;
2937 }
2938 
2939 static int do_move_mount_old(struct path *path, const char *old_name)
2940 {
2941 	struct path old_path;
2942 	int err;
2943 
2944 	if (!old_name || !*old_name)
2945 		return -EINVAL;
2946 
2947 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2948 	if (err)
2949 		return err;
2950 
2951 	err = do_move_mount(&old_path, path);
2952 	path_put(&old_path);
2953 	return err;
2954 }
2955 
2956 /*
2957  * add a mount into a namespace's mount tree
2958  */
2959 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2960 			const struct path *path, int mnt_flags)
2961 {
2962 	struct mount *parent = real_mount(path->mnt);
2963 
2964 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2965 
2966 	if (unlikely(!check_mnt(parent))) {
2967 		/* that's acceptable only for automounts done in private ns */
2968 		if (!(mnt_flags & MNT_SHRINKABLE))
2969 			return -EINVAL;
2970 		/* ... and for those we'd better have mountpoint still alive */
2971 		if (!parent->mnt_ns)
2972 			return -EINVAL;
2973 	}
2974 
2975 	/* Refuse the same filesystem on the same mount point */
2976 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
2977 		return -EBUSY;
2978 
2979 	if (d_is_symlink(newmnt->mnt.mnt_root))
2980 		return -EINVAL;
2981 
2982 	newmnt->mnt.mnt_flags = mnt_flags;
2983 	return graft_tree(newmnt, parent, mp);
2984 }
2985 
2986 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2987 
2988 /*
2989  * Create a new mount using a superblock configuration and request it
2990  * be added to the namespace tree.
2991  */
2992 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2993 			   unsigned int mnt_flags)
2994 {
2995 	struct vfsmount *mnt;
2996 	struct mountpoint *mp;
2997 	struct super_block *sb = fc->root->d_sb;
2998 	int error;
2999 
3000 	error = security_sb_kern_mount(sb);
3001 	if (!error && mount_too_revealing(sb, &mnt_flags))
3002 		error = -EPERM;
3003 
3004 	if (unlikely(error)) {
3005 		fc_drop_locked(fc);
3006 		return error;
3007 	}
3008 
3009 	up_write(&sb->s_umount);
3010 
3011 	mnt = vfs_create_mount(fc);
3012 	if (IS_ERR(mnt))
3013 		return PTR_ERR(mnt);
3014 
3015 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3016 
3017 	mp = lock_mount(mountpoint);
3018 	if (IS_ERR(mp)) {
3019 		mntput(mnt);
3020 		return PTR_ERR(mp);
3021 	}
3022 	error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3023 	unlock_mount(mp);
3024 	if (error < 0)
3025 		mntput(mnt);
3026 	return error;
3027 }
3028 
3029 /*
3030  * create a new mount for userspace and request it to be added into the
3031  * namespace's tree
3032  */
3033 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3034 			int mnt_flags, const char *name, void *data)
3035 {
3036 	struct file_system_type *type;
3037 	struct fs_context *fc;
3038 	const char *subtype = NULL;
3039 	int err = 0;
3040 
3041 	if (!fstype)
3042 		return -EINVAL;
3043 
3044 	type = get_fs_type(fstype);
3045 	if (!type)
3046 		return -ENODEV;
3047 
3048 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3049 		subtype = strchr(fstype, '.');
3050 		if (subtype) {
3051 			subtype++;
3052 			if (!*subtype) {
3053 				put_filesystem(type);
3054 				return -EINVAL;
3055 			}
3056 		}
3057 	}
3058 
3059 	fc = fs_context_for_mount(type, sb_flags);
3060 	put_filesystem(type);
3061 	if (IS_ERR(fc))
3062 		return PTR_ERR(fc);
3063 
3064 	if (subtype)
3065 		err = vfs_parse_fs_string(fc, "subtype",
3066 					  subtype, strlen(subtype));
3067 	if (!err && name)
3068 		err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3069 	if (!err)
3070 		err = parse_monolithic_mount_data(fc, data);
3071 	if (!err && !mount_capable(fc))
3072 		err = -EPERM;
3073 	if (!err)
3074 		err = vfs_get_tree(fc);
3075 	if (!err)
3076 		err = do_new_mount_fc(fc, path, mnt_flags);
3077 
3078 	put_fs_context(fc);
3079 	return err;
3080 }
3081 
3082 int finish_automount(struct vfsmount *m, const struct path *path)
3083 {
3084 	struct dentry *dentry = path->dentry;
3085 	struct mountpoint *mp;
3086 	struct mount *mnt;
3087 	int err;
3088 
3089 	if (!m)
3090 		return 0;
3091 	if (IS_ERR(m))
3092 		return PTR_ERR(m);
3093 
3094 	mnt = real_mount(m);
3095 	/* The new mount record should have at least 2 refs to prevent it being
3096 	 * expired before we get a chance to add it
3097 	 */
3098 	BUG_ON(mnt_get_count(mnt) < 2);
3099 
3100 	if (m->mnt_sb == path->mnt->mnt_sb &&
3101 	    m->mnt_root == dentry) {
3102 		err = -ELOOP;
3103 		goto discard;
3104 	}
3105 
3106 	/*
3107 	 * we don't want to use lock_mount() - in this case finding something
3108 	 * that overmounts our mountpoint to be means "quitely drop what we've
3109 	 * got", not "try to mount it on top".
3110 	 */
3111 	inode_lock(dentry->d_inode);
3112 	namespace_lock();
3113 	if (unlikely(cant_mount(dentry))) {
3114 		err = -ENOENT;
3115 		goto discard_locked;
3116 	}
3117 	rcu_read_lock();
3118 	if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3119 		rcu_read_unlock();
3120 		err = 0;
3121 		goto discard_locked;
3122 	}
3123 	rcu_read_unlock();
3124 	mp = get_mountpoint(dentry);
3125 	if (IS_ERR(mp)) {
3126 		err = PTR_ERR(mp);
3127 		goto discard_locked;
3128 	}
3129 
3130 	err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3131 	unlock_mount(mp);
3132 	if (unlikely(err))
3133 		goto discard;
3134 	mntput(m);
3135 	return 0;
3136 
3137 discard_locked:
3138 	namespace_unlock();
3139 	inode_unlock(dentry->d_inode);
3140 discard:
3141 	/* remove m from any expiration list it may be on */
3142 	if (!list_empty(&mnt->mnt_expire)) {
3143 		namespace_lock();
3144 		list_del_init(&mnt->mnt_expire);
3145 		namespace_unlock();
3146 	}
3147 	mntput(m);
3148 	mntput(m);
3149 	return err;
3150 }
3151 
3152 /**
3153  * mnt_set_expiry - Put a mount on an expiration list
3154  * @mnt: The mount to list.
3155  * @expiry_list: The list to add the mount to.
3156  */
3157 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3158 {
3159 	namespace_lock();
3160 
3161 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3162 
3163 	namespace_unlock();
3164 }
3165 EXPORT_SYMBOL(mnt_set_expiry);
3166 
3167 /*
3168  * process a list of expirable mountpoints with the intent of discarding any
3169  * mountpoints that aren't in use and haven't been touched since last we came
3170  * here
3171  */
3172 void mark_mounts_for_expiry(struct list_head *mounts)
3173 {
3174 	struct mount *mnt, *next;
3175 	LIST_HEAD(graveyard);
3176 
3177 	if (list_empty(mounts))
3178 		return;
3179 
3180 	namespace_lock();
3181 	lock_mount_hash();
3182 
3183 	/* extract from the expiration list every vfsmount that matches the
3184 	 * following criteria:
3185 	 * - only referenced by its parent vfsmount
3186 	 * - still marked for expiry (marked on the last call here; marks are
3187 	 *   cleared by mntput())
3188 	 */
3189 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3190 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3191 			propagate_mount_busy(mnt, 1))
3192 			continue;
3193 		list_move(&mnt->mnt_expire, &graveyard);
3194 	}
3195 	while (!list_empty(&graveyard)) {
3196 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3197 		touch_mnt_namespace(mnt->mnt_ns);
3198 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3199 	}
3200 	unlock_mount_hash();
3201 	namespace_unlock();
3202 }
3203 
3204 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3205 
3206 /*
3207  * Ripoff of 'select_parent()'
3208  *
3209  * search the list of submounts for a given mountpoint, and move any
3210  * shrinkable submounts to the 'graveyard' list.
3211  */
3212 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3213 {
3214 	struct mount *this_parent = parent;
3215 	struct list_head *next;
3216 	int found = 0;
3217 
3218 repeat:
3219 	next = this_parent->mnt_mounts.next;
3220 resume:
3221 	while (next != &this_parent->mnt_mounts) {
3222 		struct list_head *tmp = next;
3223 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3224 
3225 		next = tmp->next;
3226 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3227 			continue;
3228 		/*
3229 		 * Descend a level if the d_mounts list is non-empty.
3230 		 */
3231 		if (!list_empty(&mnt->mnt_mounts)) {
3232 			this_parent = mnt;
3233 			goto repeat;
3234 		}
3235 
3236 		if (!propagate_mount_busy(mnt, 1)) {
3237 			list_move_tail(&mnt->mnt_expire, graveyard);
3238 			found++;
3239 		}
3240 	}
3241 	/*
3242 	 * All done at this level ... ascend and resume the search
3243 	 */
3244 	if (this_parent != parent) {
3245 		next = this_parent->mnt_child.next;
3246 		this_parent = this_parent->mnt_parent;
3247 		goto resume;
3248 	}
3249 	return found;
3250 }
3251 
3252 /*
3253  * process a list of expirable mountpoints with the intent of discarding any
3254  * submounts of a specific parent mountpoint
3255  *
3256  * mount_lock must be held for write
3257  */
3258 static void shrink_submounts(struct mount *mnt)
3259 {
3260 	LIST_HEAD(graveyard);
3261 	struct mount *m;
3262 
3263 	/* extract submounts of 'mountpoint' from the expiration list */
3264 	while (select_submounts(mnt, &graveyard)) {
3265 		while (!list_empty(&graveyard)) {
3266 			m = list_first_entry(&graveyard, struct mount,
3267 						mnt_expire);
3268 			touch_mnt_namespace(m->mnt_ns);
3269 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3270 		}
3271 	}
3272 }
3273 
3274 static void *copy_mount_options(const void __user * data)
3275 {
3276 	char *copy;
3277 	unsigned left, offset;
3278 
3279 	if (!data)
3280 		return NULL;
3281 
3282 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3283 	if (!copy)
3284 		return ERR_PTR(-ENOMEM);
3285 
3286 	left = copy_from_user(copy, data, PAGE_SIZE);
3287 
3288 	/*
3289 	 * Not all architectures have an exact copy_from_user(). Resort to
3290 	 * byte at a time.
3291 	 */
3292 	offset = PAGE_SIZE - left;
3293 	while (left) {
3294 		char c;
3295 		if (get_user(c, (const char __user *)data + offset))
3296 			break;
3297 		copy[offset] = c;
3298 		left--;
3299 		offset++;
3300 	}
3301 
3302 	if (left == PAGE_SIZE) {
3303 		kfree(copy);
3304 		return ERR_PTR(-EFAULT);
3305 	}
3306 
3307 	return copy;
3308 }
3309 
3310 static char *copy_mount_string(const void __user *data)
3311 {
3312 	return data ? strndup_user(data, PATH_MAX) : NULL;
3313 }
3314 
3315 /*
3316  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3317  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3318  *
3319  * data is a (void *) that can point to any structure up to
3320  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3321  * information (or be NULL).
3322  *
3323  * Pre-0.97 versions of mount() didn't have a flags word.
3324  * When the flags word was introduced its top half was required
3325  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3326  * Therefore, if this magic number is present, it carries no information
3327  * and must be discarded.
3328  */
3329 int path_mount(const char *dev_name, struct path *path,
3330 		const char *type_page, unsigned long flags, void *data_page)
3331 {
3332 	unsigned int mnt_flags = 0, sb_flags;
3333 	int ret;
3334 
3335 	/* Discard magic */
3336 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3337 		flags &= ~MS_MGC_MSK;
3338 
3339 	/* Basic sanity checks */
3340 	if (data_page)
3341 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3342 
3343 	if (flags & MS_NOUSER)
3344 		return -EINVAL;
3345 
3346 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3347 	if (ret)
3348 		return ret;
3349 	if (!may_mount())
3350 		return -EPERM;
3351 	if (flags & SB_MANDLOCK)
3352 		warn_mandlock();
3353 
3354 	/* Default to relatime unless overriden */
3355 	if (!(flags & MS_NOATIME))
3356 		mnt_flags |= MNT_RELATIME;
3357 
3358 	/* Separate the per-mountpoint flags */
3359 	if (flags & MS_NOSUID)
3360 		mnt_flags |= MNT_NOSUID;
3361 	if (flags & MS_NODEV)
3362 		mnt_flags |= MNT_NODEV;
3363 	if (flags & MS_NOEXEC)
3364 		mnt_flags |= MNT_NOEXEC;
3365 	if (flags & MS_NOATIME)
3366 		mnt_flags |= MNT_NOATIME;
3367 	if (flags & MS_NODIRATIME)
3368 		mnt_flags |= MNT_NODIRATIME;
3369 	if (flags & MS_STRICTATIME)
3370 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3371 	if (flags & MS_RDONLY)
3372 		mnt_flags |= MNT_READONLY;
3373 	if (flags & MS_NOSYMFOLLOW)
3374 		mnt_flags |= MNT_NOSYMFOLLOW;
3375 
3376 	/* The default atime for remount is preservation */
3377 	if ((flags & MS_REMOUNT) &&
3378 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3379 		       MS_STRICTATIME)) == 0)) {
3380 		mnt_flags &= ~MNT_ATIME_MASK;
3381 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3382 	}
3383 
3384 	sb_flags = flags & (SB_RDONLY |
3385 			    SB_SYNCHRONOUS |
3386 			    SB_MANDLOCK |
3387 			    SB_DIRSYNC |
3388 			    SB_SILENT |
3389 			    SB_POSIXACL |
3390 			    SB_LAZYTIME |
3391 			    SB_I_VERSION);
3392 
3393 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3394 		return do_reconfigure_mnt(path, mnt_flags);
3395 	if (flags & MS_REMOUNT)
3396 		return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3397 	if (flags & MS_BIND)
3398 		return do_loopback(path, dev_name, flags & MS_REC);
3399 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3400 		return do_change_type(path, flags);
3401 	if (flags & MS_MOVE)
3402 		return do_move_mount_old(path, dev_name);
3403 
3404 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3405 			    data_page);
3406 }
3407 
3408 long do_mount(const char *dev_name, const char __user *dir_name,
3409 		const char *type_page, unsigned long flags, void *data_page)
3410 {
3411 	struct path path;
3412 	int ret;
3413 
3414 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3415 	if (ret)
3416 		return ret;
3417 	ret = path_mount(dev_name, &path, type_page, flags, data_page);
3418 	path_put(&path);
3419 	return ret;
3420 }
3421 
3422 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3423 {
3424 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3425 }
3426 
3427 static void dec_mnt_namespaces(struct ucounts *ucounts)
3428 {
3429 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3430 }
3431 
3432 static void free_mnt_ns(struct mnt_namespace *ns)
3433 {
3434 	if (!is_anon_ns(ns))
3435 		ns_free_inum(&ns->ns);
3436 	dec_mnt_namespaces(ns->ucounts);
3437 	put_user_ns(ns->user_ns);
3438 	kfree(ns);
3439 }
3440 
3441 /*
3442  * Assign a sequence number so we can detect when we attempt to bind
3443  * mount a reference to an older mount namespace into the current
3444  * mount namespace, preventing reference counting loops.  A 64bit
3445  * number incrementing at 10Ghz will take 12,427 years to wrap which
3446  * is effectively never, so we can ignore the possibility.
3447  */
3448 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3449 
3450 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3451 {
3452 	struct mnt_namespace *new_ns;
3453 	struct ucounts *ucounts;
3454 	int ret;
3455 
3456 	ucounts = inc_mnt_namespaces(user_ns);
3457 	if (!ucounts)
3458 		return ERR_PTR(-ENOSPC);
3459 
3460 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3461 	if (!new_ns) {
3462 		dec_mnt_namespaces(ucounts);
3463 		return ERR_PTR(-ENOMEM);
3464 	}
3465 	if (!anon) {
3466 		ret = ns_alloc_inum(&new_ns->ns);
3467 		if (ret) {
3468 			kfree(new_ns);
3469 			dec_mnt_namespaces(ucounts);
3470 			return ERR_PTR(ret);
3471 		}
3472 	}
3473 	new_ns->ns.ops = &mntns_operations;
3474 	if (!anon)
3475 		new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3476 	refcount_set(&new_ns->ns.count, 1);
3477 	INIT_LIST_HEAD(&new_ns->list);
3478 	init_waitqueue_head(&new_ns->poll);
3479 	spin_lock_init(&new_ns->ns_lock);
3480 	new_ns->user_ns = get_user_ns(user_ns);
3481 	new_ns->ucounts = ucounts;
3482 	return new_ns;
3483 }
3484 
3485 __latent_entropy
3486 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3487 		struct user_namespace *user_ns, struct fs_struct *new_fs)
3488 {
3489 	struct mnt_namespace *new_ns;
3490 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3491 	struct mount *p, *q;
3492 	struct mount *old;
3493 	struct mount *new;
3494 	int copy_flags;
3495 
3496 	BUG_ON(!ns);
3497 
3498 	if (likely(!(flags & CLONE_NEWNS))) {
3499 		get_mnt_ns(ns);
3500 		return ns;
3501 	}
3502 
3503 	old = ns->root;
3504 
3505 	new_ns = alloc_mnt_ns(user_ns, false);
3506 	if (IS_ERR(new_ns))
3507 		return new_ns;
3508 
3509 	namespace_lock();
3510 	/* First pass: copy the tree topology */
3511 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3512 	if (user_ns != ns->user_ns)
3513 		copy_flags |= CL_SHARED_TO_SLAVE;
3514 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3515 	if (IS_ERR(new)) {
3516 		namespace_unlock();
3517 		free_mnt_ns(new_ns);
3518 		return ERR_CAST(new);
3519 	}
3520 	if (user_ns != ns->user_ns) {
3521 		lock_mount_hash();
3522 		lock_mnt_tree(new);
3523 		unlock_mount_hash();
3524 	}
3525 	new_ns->root = new;
3526 	list_add_tail(&new_ns->list, &new->mnt_list);
3527 
3528 	/*
3529 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3530 	 * as belonging to new namespace.  We have already acquired a private
3531 	 * fs_struct, so tsk->fs->lock is not needed.
3532 	 */
3533 	p = old;
3534 	q = new;
3535 	while (p) {
3536 		q->mnt_ns = new_ns;
3537 		new_ns->mounts++;
3538 		if (new_fs) {
3539 			if (&p->mnt == new_fs->root.mnt) {
3540 				new_fs->root.mnt = mntget(&q->mnt);
3541 				rootmnt = &p->mnt;
3542 			}
3543 			if (&p->mnt == new_fs->pwd.mnt) {
3544 				new_fs->pwd.mnt = mntget(&q->mnt);
3545 				pwdmnt = &p->mnt;
3546 			}
3547 		}
3548 		p = next_mnt(p, old);
3549 		q = next_mnt(q, new);
3550 		if (!q)
3551 			break;
3552 		// an mntns binding we'd skipped?
3553 		while (p->mnt.mnt_root != q->mnt.mnt_root)
3554 			p = next_mnt(skip_mnt_tree(p), old);
3555 	}
3556 	namespace_unlock();
3557 
3558 	if (rootmnt)
3559 		mntput(rootmnt);
3560 	if (pwdmnt)
3561 		mntput(pwdmnt);
3562 
3563 	return new_ns;
3564 }
3565 
3566 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3567 {
3568 	struct mount *mnt = real_mount(m);
3569 	struct mnt_namespace *ns;
3570 	struct super_block *s;
3571 	struct path path;
3572 	int err;
3573 
3574 	ns = alloc_mnt_ns(&init_user_ns, true);
3575 	if (IS_ERR(ns)) {
3576 		mntput(m);
3577 		return ERR_CAST(ns);
3578 	}
3579 	mnt->mnt_ns = ns;
3580 	ns->root = mnt;
3581 	ns->mounts++;
3582 	list_add(&mnt->mnt_list, &ns->list);
3583 
3584 	err = vfs_path_lookup(m->mnt_root, m,
3585 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3586 
3587 	put_mnt_ns(ns);
3588 
3589 	if (err)
3590 		return ERR_PTR(err);
3591 
3592 	/* trade a vfsmount reference for active sb one */
3593 	s = path.mnt->mnt_sb;
3594 	atomic_inc(&s->s_active);
3595 	mntput(path.mnt);
3596 	/* lock the sucker */
3597 	down_write(&s->s_umount);
3598 	/* ... and return the root of (sub)tree on it */
3599 	return path.dentry;
3600 }
3601 EXPORT_SYMBOL(mount_subtree);
3602 
3603 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3604 		char __user *, type, unsigned long, flags, void __user *, data)
3605 {
3606 	int ret;
3607 	char *kernel_type;
3608 	char *kernel_dev;
3609 	void *options;
3610 
3611 	kernel_type = copy_mount_string(type);
3612 	ret = PTR_ERR(kernel_type);
3613 	if (IS_ERR(kernel_type))
3614 		goto out_type;
3615 
3616 	kernel_dev = copy_mount_string(dev_name);
3617 	ret = PTR_ERR(kernel_dev);
3618 	if (IS_ERR(kernel_dev))
3619 		goto out_dev;
3620 
3621 	options = copy_mount_options(data);
3622 	ret = PTR_ERR(options);
3623 	if (IS_ERR(options))
3624 		goto out_data;
3625 
3626 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3627 
3628 	kfree(options);
3629 out_data:
3630 	kfree(kernel_dev);
3631 out_dev:
3632 	kfree(kernel_type);
3633 out_type:
3634 	return ret;
3635 }
3636 
3637 #define FSMOUNT_VALID_FLAGS                                                    \
3638 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3639 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3640 	 MOUNT_ATTR_NOSYMFOLLOW)
3641 
3642 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3643 
3644 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3645 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3646 
3647 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3648 {
3649 	unsigned int mnt_flags = 0;
3650 
3651 	if (attr_flags & MOUNT_ATTR_RDONLY)
3652 		mnt_flags |= MNT_READONLY;
3653 	if (attr_flags & MOUNT_ATTR_NOSUID)
3654 		mnt_flags |= MNT_NOSUID;
3655 	if (attr_flags & MOUNT_ATTR_NODEV)
3656 		mnt_flags |= MNT_NODEV;
3657 	if (attr_flags & MOUNT_ATTR_NOEXEC)
3658 		mnt_flags |= MNT_NOEXEC;
3659 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
3660 		mnt_flags |= MNT_NODIRATIME;
3661 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3662 		mnt_flags |= MNT_NOSYMFOLLOW;
3663 
3664 	return mnt_flags;
3665 }
3666 
3667 /*
3668  * Create a kernel mount representation for a new, prepared superblock
3669  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3670  */
3671 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3672 		unsigned int, attr_flags)
3673 {
3674 	struct mnt_namespace *ns;
3675 	struct fs_context *fc;
3676 	struct file *file;
3677 	struct path newmount;
3678 	struct mount *mnt;
3679 	struct fd f;
3680 	unsigned int mnt_flags = 0;
3681 	long ret;
3682 
3683 	if (!may_mount())
3684 		return -EPERM;
3685 
3686 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3687 		return -EINVAL;
3688 
3689 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3690 		return -EINVAL;
3691 
3692 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3693 
3694 	switch (attr_flags & MOUNT_ATTR__ATIME) {
3695 	case MOUNT_ATTR_STRICTATIME:
3696 		break;
3697 	case MOUNT_ATTR_NOATIME:
3698 		mnt_flags |= MNT_NOATIME;
3699 		break;
3700 	case MOUNT_ATTR_RELATIME:
3701 		mnt_flags |= MNT_RELATIME;
3702 		break;
3703 	default:
3704 		return -EINVAL;
3705 	}
3706 
3707 	f = fdget(fs_fd);
3708 	if (!f.file)
3709 		return -EBADF;
3710 
3711 	ret = -EINVAL;
3712 	if (f.file->f_op != &fscontext_fops)
3713 		goto err_fsfd;
3714 
3715 	fc = f.file->private_data;
3716 
3717 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
3718 	if (ret < 0)
3719 		goto err_fsfd;
3720 
3721 	/* There must be a valid superblock or we can't mount it */
3722 	ret = -EINVAL;
3723 	if (!fc->root)
3724 		goto err_unlock;
3725 
3726 	ret = -EPERM;
3727 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3728 		pr_warn("VFS: Mount too revealing\n");
3729 		goto err_unlock;
3730 	}
3731 
3732 	ret = -EBUSY;
3733 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3734 		goto err_unlock;
3735 
3736 	if (fc->sb_flags & SB_MANDLOCK)
3737 		warn_mandlock();
3738 
3739 	newmount.mnt = vfs_create_mount(fc);
3740 	if (IS_ERR(newmount.mnt)) {
3741 		ret = PTR_ERR(newmount.mnt);
3742 		goto err_unlock;
3743 	}
3744 	newmount.dentry = dget(fc->root);
3745 	newmount.mnt->mnt_flags = mnt_flags;
3746 
3747 	/* We've done the mount bit - now move the file context into more or
3748 	 * less the same state as if we'd done an fspick().  We don't want to
3749 	 * do any memory allocation or anything like that at this point as we
3750 	 * don't want to have to handle any errors incurred.
3751 	 */
3752 	vfs_clean_context(fc);
3753 
3754 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3755 	if (IS_ERR(ns)) {
3756 		ret = PTR_ERR(ns);
3757 		goto err_path;
3758 	}
3759 	mnt = real_mount(newmount.mnt);
3760 	mnt->mnt_ns = ns;
3761 	ns->root = mnt;
3762 	ns->mounts = 1;
3763 	list_add(&mnt->mnt_list, &ns->list);
3764 	mntget(newmount.mnt);
3765 
3766 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
3767 	 * it, not just simply put it.
3768 	 */
3769 	file = dentry_open(&newmount, O_PATH, fc->cred);
3770 	if (IS_ERR(file)) {
3771 		dissolve_on_fput(newmount.mnt);
3772 		ret = PTR_ERR(file);
3773 		goto err_path;
3774 	}
3775 	file->f_mode |= FMODE_NEED_UNMOUNT;
3776 
3777 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3778 	if (ret >= 0)
3779 		fd_install(ret, file);
3780 	else
3781 		fput(file);
3782 
3783 err_path:
3784 	path_put(&newmount);
3785 err_unlock:
3786 	mutex_unlock(&fc->uapi_mutex);
3787 err_fsfd:
3788 	fdput(f);
3789 	return ret;
3790 }
3791 
3792 /*
3793  * Move a mount from one place to another.  In combination with
3794  * fsopen()/fsmount() this is used to install a new mount and in combination
3795  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3796  * a mount subtree.
3797  *
3798  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3799  */
3800 SYSCALL_DEFINE5(move_mount,
3801 		int, from_dfd, const char __user *, from_pathname,
3802 		int, to_dfd, const char __user *, to_pathname,
3803 		unsigned int, flags)
3804 {
3805 	struct path from_path, to_path;
3806 	unsigned int lflags;
3807 	int ret = 0;
3808 
3809 	if (!may_mount())
3810 		return -EPERM;
3811 
3812 	if (flags & ~MOVE_MOUNT__MASK)
3813 		return -EINVAL;
3814 
3815 	/* If someone gives a pathname, they aren't permitted to move
3816 	 * from an fd that requires unmount as we can't get at the flag
3817 	 * to clear it afterwards.
3818 	 */
3819 	lflags = 0;
3820 	if (flags & MOVE_MOUNT_F_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3821 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3822 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3823 
3824 	ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3825 	if (ret < 0)
3826 		return ret;
3827 
3828 	lflags = 0;
3829 	if (flags & MOVE_MOUNT_T_SYMLINKS)	lflags |= LOOKUP_FOLLOW;
3830 	if (flags & MOVE_MOUNT_T_AUTOMOUNTS)	lflags |= LOOKUP_AUTOMOUNT;
3831 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)	lflags |= LOOKUP_EMPTY;
3832 
3833 	ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3834 	if (ret < 0)
3835 		goto out_from;
3836 
3837 	ret = security_move_mount(&from_path, &to_path);
3838 	if (ret < 0)
3839 		goto out_to;
3840 
3841 	if (flags & MOVE_MOUNT_SET_GROUP)
3842 		ret = do_set_group(&from_path, &to_path);
3843 	else
3844 		ret = do_move_mount(&from_path, &to_path);
3845 
3846 out_to:
3847 	path_put(&to_path);
3848 out_from:
3849 	path_put(&from_path);
3850 	return ret;
3851 }
3852 
3853 /*
3854  * Return true if path is reachable from root
3855  *
3856  * namespace_sem or mount_lock is held
3857  */
3858 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3859 			 const struct path *root)
3860 {
3861 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3862 		dentry = mnt->mnt_mountpoint;
3863 		mnt = mnt->mnt_parent;
3864 	}
3865 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3866 }
3867 
3868 bool path_is_under(const struct path *path1, const struct path *path2)
3869 {
3870 	bool res;
3871 	read_seqlock_excl(&mount_lock);
3872 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3873 	read_sequnlock_excl(&mount_lock);
3874 	return res;
3875 }
3876 EXPORT_SYMBOL(path_is_under);
3877 
3878 /*
3879  * pivot_root Semantics:
3880  * Moves the root file system of the current process to the directory put_old,
3881  * makes new_root as the new root file system of the current process, and sets
3882  * root/cwd of all processes which had them on the current root to new_root.
3883  *
3884  * Restrictions:
3885  * The new_root and put_old must be directories, and  must not be on the
3886  * same file  system as the current process root. The put_old  must  be
3887  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3888  * pointed to by put_old must yield the same directory as new_root. No other
3889  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3890  *
3891  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3892  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3893  * in this situation.
3894  *
3895  * Notes:
3896  *  - we don't move root/cwd if they are not at the root (reason: if something
3897  *    cared enough to change them, it's probably wrong to force them elsewhere)
3898  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3899  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3900  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3901  *    first.
3902  */
3903 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3904 		const char __user *, put_old)
3905 {
3906 	struct path new, old, root;
3907 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3908 	struct mountpoint *old_mp, *root_mp;
3909 	int error;
3910 
3911 	if (!may_mount())
3912 		return -EPERM;
3913 
3914 	error = user_path_at(AT_FDCWD, new_root,
3915 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3916 	if (error)
3917 		goto out0;
3918 
3919 	error = user_path_at(AT_FDCWD, put_old,
3920 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3921 	if (error)
3922 		goto out1;
3923 
3924 	error = security_sb_pivotroot(&old, &new);
3925 	if (error)
3926 		goto out2;
3927 
3928 	get_fs_root(current->fs, &root);
3929 	old_mp = lock_mount(&old);
3930 	error = PTR_ERR(old_mp);
3931 	if (IS_ERR(old_mp))
3932 		goto out3;
3933 
3934 	error = -EINVAL;
3935 	new_mnt = real_mount(new.mnt);
3936 	root_mnt = real_mount(root.mnt);
3937 	old_mnt = real_mount(old.mnt);
3938 	ex_parent = new_mnt->mnt_parent;
3939 	root_parent = root_mnt->mnt_parent;
3940 	if (IS_MNT_SHARED(old_mnt) ||
3941 		IS_MNT_SHARED(ex_parent) ||
3942 		IS_MNT_SHARED(root_parent))
3943 		goto out4;
3944 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3945 		goto out4;
3946 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3947 		goto out4;
3948 	error = -ENOENT;
3949 	if (d_unlinked(new.dentry))
3950 		goto out4;
3951 	error = -EBUSY;
3952 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3953 		goto out4; /* loop, on the same file system  */
3954 	error = -EINVAL;
3955 	if (!path_mounted(&root))
3956 		goto out4; /* not a mountpoint */
3957 	if (!mnt_has_parent(root_mnt))
3958 		goto out4; /* not attached */
3959 	if (!path_mounted(&new))
3960 		goto out4; /* not a mountpoint */
3961 	if (!mnt_has_parent(new_mnt))
3962 		goto out4; /* not attached */
3963 	/* make sure we can reach put_old from new_root */
3964 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3965 		goto out4;
3966 	/* make certain new is below the root */
3967 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3968 		goto out4;
3969 	lock_mount_hash();
3970 	umount_mnt(new_mnt);
3971 	root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3972 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3973 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3974 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3975 	}
3976 	/* mount old root on put_old */
3977 	attach_mnt(root_mnt, old_mnt, old_mp);
3978 	/* mount new_root on / */
3979 	attach_mnt(new_mnt, root_parent, root_mp);
3980 	mnt_add_count(root_parent, -1);
3981 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3982 	/* A moved mount should not expire automatically */
3983 	list_del_init(&new_mnt->mnt_expire);
3984 	put_mountpoint(root_mp);
3985 	unlock_mount_hash();
3986 	chroot_fs_refs(&root, &new);
3987 	error = 0;
3988 out4:
3989 	unlock_mount(old_mp);
3990 	if (!error)
3991 		mntput_no_expire(ex_parent);
3992 out3:
3993 	path_put(&root);
3994 out2:
3995 	path_put(&old);
3996 out1:
3997 	path_put(&new);
3998 out0:
3999 	return error;
4000 }
4001 
4002 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4003 {
4004 	unsigned int flags = mnt->mnt.mnt_flags;
4005 
4006 	/*  flags to clear */
4007 	flags &= ~kattr->attr_clr;
4008 	/* flags to raise */
4009 	flags |= kattr->attr_set;
4010 
4011 	return flags;
4012 }
4013 
4014 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4015 {
4016 	struct vfsmount *m = &mnt->mnt;
4017 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4018 
4019 	if (!kattr->mnt_idmap)
4020 		return 0;
4021 
4022 	/*
4023 	 * Creating an idmapped mount with the filesystem wide idmapping
4024 	 * doesn't make sense so block that. We don't allow mushy semantics.
4025 	 */
4026 	if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb))
4027 		return -EINVAL;
4028 
4029 	/*
4030 	 * Once a mount has been idmapped we don't allow it to change its
4031 	 * mapping. It makes things simpler and callers can just create
4032 	 * another bind-mount they can idmap if they want to.
4033 	 */
4034 	if (is_idmapped_mnt(m))
4035 		return -EPERM;
4036 
4037 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4038 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4039 		return -EINVAL;
4040 
4041 	/* We're not controlling the superblock. */
4042 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4043 		return -EPERM;
4044 
4045 	/* Mount has already been visible in the filesystem hierarchy. */
4046 	if (!is_anon_ns(mnt->mnt_ns))
4047 		return -EINVAL;
4048 
4049 	return 0;
4050 }
4051 
4052 /**
4053  * mnt_allow_writers() - check whether the attribute change allows writers
4054  * @kattr: the new mount attributes
4055  * @mnt: the mount to which @kattr will be applied
4056  *
4057  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4058  *
4059  * Return: true if writers need to be held, false if not
4060  */
4061 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4062 				     const struct mount *mnt)
4063 {
4064 	return (!(kattr->attr_set & MNT_READONLY) ||
4065 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4066 	       !kattr->mnt_idmap;
4067 }
4068 
4069 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4070 {
4071 	struct mount *m;
4072 	int err;
4073 
4074 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4075 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4076 			err = -EPERM;
4077 			break;
4078 		}
4079 
4080 		err = can_idmap_mount(kattr, m);
4081 		if (err)
4082 			break;
4083 
4084 		if (!mnt_allow_writers(kattr, m)) {
4085 			err = mnt_hold_writers(m);
4086 			if (err)
4087 				break;
4088 		}
4089 
4090 		if (!kattr->recurse)
4091 			return 0;
4092 	}
4093 
4094 	if (err) {
4095 		struct mount *p;
4096 
4097 		/*
4098 		 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4099 		 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4100 		 * mounts and needs to take care to include the first mount.
4101 		 */
4102 		for (p = mnt; p; p = next_mnt(p, mnt)) {
4103 			/* If we had to hold writers unblock them. */
4104 			if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4105 				mnt_unhold_writers(p);
4106 
4107 			/*
4108 			 * We're done once the first mount we changed got
4109 			 * MNT_WRITE_HOLD unset.
4110 			 */
4111 			if (p == m)
4112 				break;
4113 		}
4114 	}
4115 	return err;
4116 }
4117 
4118 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4119 {
4120 	if (!kattr->mnt_idmap)
4121 		return;
4122 
4123 	/*
4124 	 * Pairs with smp_load_acquire() in mnt_idmap().
4125 	 *
4126 	 * Since we only allow a mount to change the idmapping once and
4127 	 * verified this in can_idmap_mount() we know that the mount has
4128 	 * @nop_mnt_idmap attached to it. So there's no need to drop any
4129 	 * references.
4130 	 */
4131 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4132 }
4133 
4134 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4135 {
4136 	struct mount *m;
4137 
4138 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4139 		unsigned int flags;
4140 
4141 		do_idmap_mount(kattr, m);
4142 		flags = recalc_flags(kattr, m);
4143 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4144 
4145 		/* If we had to hold writers unblock them. */
4146 		if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4147 			mnt_unhold_writers(m);
4148 
4149 		if (kattr->propagation)
4150 			change_mnt_propagation(m, kattr->propagation);
4151 		if (!kattr->recurse)
4152 			break;
4153 	}
4154 	touch_mnt_namespace(mnt->mnt_ns);
4155 }
4156 
4157 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4158 {
4159 	struct mount *mnt = real_mount(path->mnt);
4160 	int err = 0;
4161 
4162 	if (!path_mounted(path))
4163 		return -EINVAL;
4164 
4165 	if (kattr->mnt_userns) {
4166 		struct mnt_idmap *mnt_idmap;
4167 
4168 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4169 		if (IS_ERR(mnt_idmap))
4170 			return PTR_ERR(mnt_idmap);
4171 		kattr->mnt_idmap = mnt_idmap;
4172 	}
4173 
4174 	if (kattr->propagation) {
4175 		/*
4176 		 * Only take namespace_lock() if we're actually changing
4177 		 * propagation.
4178 		 */
4179 		namespace_lock();
4180 		if (kattr->propagation == MS_SHARED) {
4181 			err = invent_group_ids(mnt, kattr->recurse);
4182 			if (err) {
4183 				namespace_unlock();
4184 				return err;
4185 			}
4186 		}
4187 	}
4188 
4189 	err = -EINVAL;
4190 	lock_mount_hash();
4191 
4192 	/* Ensure that this isn't anything purely vfs internal. */
4193 	if (!is_mounted(&mnt->mnt))
4194 		goto out;
4195 
4196 	/*
4197 	 * If this is an attached mount make sure it's located in the callers
4198 	 * mount namespace. If it's not don't let the caller interact with it.
4199 	 * If this is a detached mount make sure it has an anonymous mount
4200 	 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4201 	 */
4202 	if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4203 		goto out;
4204 
4205 	/*
4206 	 * First, we get the mount tree in a shape where we can change mount
4207 	 * properties without failure. If we succeeded to do so we commit all
4208 	 * changes and if we failed we clean up.
4209 	 */
4210 	err = mount_setattr_prepare(kattr, mnt);
4211 	if (!err)
4212 		mount_setattr_commit(kattr, mnt);
4213 
4214 out:
4215 	unlock_mount_hash();
4216 
4217 	if (kattr->propagation) {
4218 		if (err)
4219 			cleanup_group_ids(mnt, NULL);
4220 		namespace_unlock();
4221 	}
4222 
4223 	return err;
4224 }
4225 
4226 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4227 				struct mount_kattr *kattr, unsigned int flags)
4228 {
4229 	int err = 0;
4230 	struct ns_common *ns;
4231 	struct user_namespace *mnt_userns;
4232 	struct fd f;
4233 
4234 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4235 		return 0;
4236 
4237 	/*
4238 	 * We currently do not support clearing an idmapped mount. If this ever
4239 	 * is a use-case we can revisit this but for now let's keep it simple
4240 	 * and not allow it.
4241 	 */
4242 	if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4243 		return -EINVAL;
4244 
4245 	if (attr->userns_fd > INT_MAX)
4246 		return -EINVAL;
4247 
4248 	f = fdget(attr->userns_fd);
4249 	if (!f.file)
4250 		return -EBADF;
4251 
4252 	if (!proc_ns_file(f.file)) {
4253 		err = -EINVAL;
4254 		goto out_fput;
4255 	}
4256 
4257 	ns = get_proc_ns(file_inode(f.file));
4258 	if (ns->ops->type != CLONE_NEWUSER) {
4259 		err = -EINVAL;
4260 		goto out_fput;
4261 	}
4262 
4263 	/*
4264 	 * The initial idmapping cannot be used to create an idmapped
4265 	 * mount. We use the initial idmapping as an indicator of a mount
4266 	 * that is not idmapped. It can simply be passed into helpers that
4267 	 * are aware of idmapped mounts as a convenient shortcut. A user
4268 	 * can just create a dedicated identity mapping to achieve the same
4269 	 * result.
4270 	 */
4271 	mnt_userns = container_of(ns, struct user_namespace, ns);
4272 	if (mnt_userns == &init_user_ns) {
4273 		err = -EPERM;
4274 		goto out_fput;
4275 	}
4276 
4277 	/* We're not controlling the target namespace. */
4278 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4279 		err = -EPERM;
4280 		goto out_fput;
4281 	}
4282 
4283 	kattr->mnt_userns = get_user_ns(mnt_userns);
4284 
4285 out_fput:
4286 	fdput(f);
4287 	return err;
4288 }
4289 
4290 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4291 			     struct mount_kattr *kattr, unsigned int flags)
4292 {
4293 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4294 
4295 	if (flags & AT_NO_AUTOMOUNT)
4296 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
4297 	if (flags & AT_SYMLINK_NOFOLLOW)
4298 		lookup_flags &= ~LOOKUP_FOLLOW;
4299 	if (flags & AT_EMPTY_PATH)
4300 		lookup_flags |= LOOKUP_EMPTY;
4301 
4302 	*kattr = (struct mount_kattr) {
4303 		.lookup_flags	= lookup_flags,
4304 		.recurse	= !!(flags & AT_RECURSIVE),
4305 	};
4306 
4307 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4308 		return -EINVAL;
4309 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4310 		return -EINVAL;
4311 	kattr->propagation = attr->propagation;
4312 
4313 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4314 		return -EINVAL;
4315 
4316 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4317 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4318 
4319 	/*
4320 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4321 	 * users wanting to transition to a different atime setting cannot
4322 	 * simply specify the atime setting in @attr_set, but must also
4323 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4324 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4325 	 * @attr_clr and that @attr_set can't have any atime bits set if
4326 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4327 	 */
4328 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4329 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4330 			return -EINVAL;
4331 
4332 		/*
4333 		 * Clear all previous time settings as they are mutually
4334 		 * exclusive.
4335 		 */
4336 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4337 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4338 		case MOUNT_ATTR_RELATIME:
4339 			kattr->attr_set |= MNT_RELATIME;
4340 			break;
4341 		case MOUNT_ATTR_NOATIME:
4342 			kattr->attr_set |= MNT_NOATIME;
4343 			break;
4344 		case MOUNT_ATTR_STRICTATIME:
4345 			break;
4346 		default:
4347 			return -EINVAL;
4348 		}
4349 	} else {
4350 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4351 			return -EINVAL;
4352 	}
4353 
4354 	return build_mount_idmapped(attr, usize, kattr, flags);
4355 }
4356 
4357 static void finish_mount_kattr(struct mount_kattr *kattr)
4358 {
4359 	put_user_ns(kattr->mnt_userns);
4360 	kattr->mnt_userns = NULL;
4361 
4362 	if (kattr->mnt_idmap)
4363 		mnt_idmap_put(kattr->mnt_idmap);
4364 }
4365 
4366 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4367 		unsigned int, flags, struct mount_attr __user *, uattr,
4368 		size_t, usize)
4369 {
4370 	int err;
4371 	struct path target;
4372 	struct mount_attr attr;
4373 	struct mount_kattr kattr;
4374 
4375 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4376 
4377 	if (flags & ~(AT_EMPTY_PATH |
4378 		      AT_RECURSIVE |
4379 		      AT_SYMLINK_NOFOLLOW |
4380 		      AT_NO_AUTOMOUNT))
4381 		return -EINVAL;
4382 
4383 	if (unlikely(usize > PAGE_SIZE))
4384 		return -E2BIG;
4385 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4386 		return -EINVAL;
4387 
4388 	if (!may_mount())
4389 		return -EPERM;
4390 
4391 	err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4392 	if (err)
4393 		return err;
4394 
4395 	/* Don't bother walking through the mounts if this is a nop. */
4396 	if (attr.attr_set == 0 &&
4397 	    attr.attr_clr == 0 &&
4398 	    attr.propagation == 0)
4399 		return 0;
4400 
4401 	err = build_mount_kattr(&attr, usize, &kattr, flags);
4402 	if (err)
4403 		return err;
4404 
4405 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4406 	if (!err) {
4407 		err = do_mount_setattr(&target, &kattr);
4408 		path_put(&target);
4409 	}
4410 	finish_mount_kattr(&kattr);
4411 	return err;
4412 }
4413 
4414 static void __init init_mount_tree(void)
4415 {
4416 	struct vfsmount *mnt;
4417 	struct mount *m;
4418 	struct mnt_namespace *ns;
4419 	struct path root;
4420 
4421 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4422 	if (IS_ERR(mnt))
4423 		panic("Can't create rootfs");
4424 
4425 	ns = alloc_mnt_ns(&init_user_ns, false);
4426 	if (IS_ERR(ns))
4427 		panic("Can't allocate initial namespace");
4428 	m = real_mount(mnt);
4429 	m->mnt_ns = ns;
4430 	ns->root = m;
4431 	ns->mounts = 1;
4432 	list_add(&m->mnt_list, &ns->list);
4433 	init_task.nsproxy->mnt_ns = ns;
4434 	get_mnt_ns(ns);
4435 
4436 	root.mnt = mnt;
4437 	root.dentry = mnt->mnt_root;
4438 	mnt->mnt_flags |= MNT_LOCKED;
4439 
4440 	set_fs_pwd(current->fs, &root);
4441 	set_fs_root(current->fs, &root);
4442 }
4443 
4444 void __init mnt_init(void)
4445 {
4446 	int err;
4447 
4448 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4449 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4450 
4451 	mount_hashtable = alloc_large_system_hash("Mount-cache",
4452 				sizeof(struct hlist_head),
4453 				mhash_entries, 19,
4454 				HASH_ZERO,
4455 				&m_hash_shift, &m_hash_mask, 0, 0);
4456 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4457 				sizeof(struct hlist_head),
4458 				mphash_entries, 19,
4459 				HASH_ZERO,
4460 				&mp_hash_shift, &mp_hash_mask, 0, 0);
4461 
4462 	if (!mount_hashtable || !mountpoint_hashtable)
4463 		panic("Failed to allocate mount hash table\n");
4464 
4465 	kernfs_init();
4466 
4467 	err = sysfs_init();
4468 	if (err)
4469 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4470 			__func__, err);
4471 	fs_kobj = kobject_create_and_add("fs", NULL);
4472 	if (!fs_kobj)
4473 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
4474 	shmem_init();
4475 	init_rootfs();
4476 	init_mount_tree();
4477 }
4478 
4479 void put_mnt_ns(struct mnt_namespace *ns)
4480 {
4481 	if (!refcount_dec_and_test(&ns->ns.count))
4482 		return;
4483 	drop_collected_mounts(&ns->root->mnt);
4484 	free_mnt_ns(ns);
4485 }
4486 
4487 struct vfsmount *kern_mount(struct file_system_type *type)
4488 {
4489 	struct vfsmount *mnt;
4490 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4491 	if (!IS_ERR(mnt)) {
4492 		/*
4493 		 * it is a longterm mount, don't release mnt until
4494 		 * we unmount before file sys is unregistered
4495 		*/
4496 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4497 	}
4498 	return mnt;
4499 }
4500 EXPORT_SYMBOL_GPL(kern_mount);
4501 
4502 void kern_unmount(struct vfsmount *mnt)
4503 {
4504 	/* release long term mount so mount point can be released */
4505 	if (!IS_ERR(mnt)) {
4506 		mnt_make_shortterm(mnt);
4507 		synchronize_rcu();	/* yecchhh... */
4508 		mntput(mnt);
4509 	}
4510 }
4511 EXPORT_SYMBOL(kern_unmount);
4512 
4513 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4514 {
4515 	unsigned int i;
4516 
4517 	for (i = 0; i < num; i++)
4518 		mnt_make_shortterm(mnt[i]);
4519 	synchronize_rcu_expedited();
4520 	for (i = 0; i < num; i++)
4521 		mntput(mnt[i]);
4522 }
4523 EXPORT_SYMBOL(kern_unmount_array);
4524 
4525 bool our_mnt(struct vfsmount *mnt)
4526 {
4527 	return check_mnt(real_mount(mnt));
4528 }
4529 
4530 bool current_chrooted(void)
4531 {
4532 	/* Does the current process have a non-standard root */
4533 	struct path ns_root;
4534 	struct path fs_root;
4535 	bool chrooted;
4536 
4537 	/* Find the namespace root */
4538 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4539 	ns_root.dentry = ns_root.mnt->mnt_root;
4540 	path_get(&ns_root);
4541 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4542 		;
4543 
4544 	get_fs_root(current->fs, &fs_root);
4545 
4546 	chrooted = !path_equal(&fs_root, &ns_root);
4547 
4548 	path_put(&fs_root);
4549 	path_put(&ns_root);
4550 
4551 	return chrooted;
4552 }
4553 
4554 static bool mnt_already_visible(struct mnt_namespace *ns,
4555 				const struct super_block *sb,
4556 				int *new_mnt_flags)
4557 {
4558 	int new_flags = *new_mnt_flags;
4559 	struct mount *mnt;
4560 	bool visible = false;
4561 
4562 	down_read(&namespace_sem);
4563 	lock_ns_list(ns);
4564 	list_for_each_entry(mnt, &ns->list, mnt_list) {
4565 		struct mount *child;
4566 		int mnt_flags;
4567 
4568 		if (mnt_is_cursor(mnt))
4569 			continue;
4570 
4571 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4572 			continue;
4573 
4574 		/* This mount is not fully visible if it's root directory
4575 		 * is not the root directory of the filesystem.
4576 		 */
4577 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4578 			continue;
4579 
4580 		/* A local view of the mount flags */
4581 		mnt_flags = mnt->mnt.mnt_flags;
4582 
4583 		/* Don't miss readonly hidden in the superblock flags */
4584 		if (sb_rdonly(mnt->mnt.mnt_sb))
4585 			mnt_flags |= MNT_LOCK_READONLY;
4586 
4587 		/* Verify the mount flags are equal to or more permissive
4588 		 * than the proposed new mount.
4589 		 */
4590 		if ((mnt_flags & MNT_LOCK_READONLY) &&
4591 		    !(new_flags & MNT_READONLY))
4592 			continue;
4593 		if ((mnt_flags & MNT_LOCK_ATIME) &&
4594 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4595 			continue;
4596 
4597 		/* This mount is not fully visible if there are any
4598 		 * locked child mounts that cover anything except for
4599 		 * empty directories.
4600 		 */
4601 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4602 			struct inode *inode = child->mnt_mountpoint->d_inode;
4603 			/* Only worry about locked mounts */
4604 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
4605 				continue;
4606 			/* Is the directory permanetly empty? */
4607 			if (!is_empty_dir_inode(inode))
4608 				goto next;
4609 		}
4610 		/* Preserve the locked attributes */
4611 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4612 					       MNT_LOCK_ATIME);
4613 		visible = true;
4614 		goto found;
4615 	next:	;
4616 	}
4617 found:
4618 	unlock_ns_list(ns);
4619 	up_read(&namespace_sem);
4620 	return visible;
4621 }
4622 
4623 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4624 {
4625 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4626 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4627 	unsigned long s_iflags;
4628 
4629 	if (ns->user_ns == &init_user_ns)
4630 		return false;
4631 
4632 	/* Can this filesystem be too revealing? */
4633 	s_iflags = sb->s_iflags;
4634 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
4635 		return false;
4636 
4637 	if ((s_iflags & required_iflags) != required_iflags) {
4638 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4639 			  required_iflags);
4640 		return true;
4641 	}
4642 
4643 	return !mnt_already_visible(ns, sb, new_mnt_flags);
4644 }
4645 
4646 bool mnt_may_suid(struct vfsmount *mnt)
4647 {
4648 	/*
4649 	 * Foreign mounts (accessed via fchdir or through /proc
4650 	 * symlinks) are always treated as if they are nosuid.  This
4651 	 * prevents namespaces from trusting potentially unsafe
4652 	 * suid/sgid bits, file caps, or security labels that originate
4653 	 * in other namespaces.
4654 	 */
4655 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4656 	       current_in_userns(mnt->mnt_sb->s_user_ns);
4657 }
4658 
4659 static struct ns_common *mntns_get(struct task_struct *task)
4660 {
4661 	struct ns_common *ns = NULL;
4662 	struct nsproxy *nsproxy;
4663 
4664 	task_lock(task);
4665 	nsproxy = task->nsproxy;
4666 	if (nsproxy) {
4667 		ns = &nsproxy->mnt_ns->ns;
4668 		get_mnt_ns(to_mnt_ns(ns));
4669 	}
4670 	task_unlock(task);
4671 
4672 	return ns;
4673 }
4674 
4675 static void mntns_put(struct ns_common *ns)
4676 {
4677 	put_mnt_ns(to_mnt_ns(ns));
4678 }
4679 
4680 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4681 {
4682 	struct nsproxy *nsproxy = nsset->nsproxy;
4683 	struct fs_struct *fs = nsset->fs;
4684 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4685 	struct user_namespace *user_ns = nsset->cred->user_ns;
4686 	struct path root;
4687 	int err;
4688 
4689 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4690 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4691 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
4692 		return -EPERM;
4693 
4694 	if (is_anon_ns(mnt_ns))
4695 		return -EINVAL;
4696 
4697 	if (fs->users != 1)
4698 		return -EINVAL;
4699 
4700 	get_mnt_ns(mnt_ns);
4701 	old_mnt_ns = nsproxy->mnt_ns;
4702 	nsproxy->mnt_ns = mnt_ns;
4703 
4704 	/* Find the root */
4705 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4706 				"/", LOOKUP_DOWN, &root);
4707 	if (err) {
4708 		/* revert to old namespace */
4709 		nsproxy->mnt_ns = old_mnt_ns;
4710 		put_mnt_ns(mnt_ns);
4711 		return err;
4712 	}
4713 
4714 	put_mnt_ns(old_mnt_ns);
4715 
4716 	/* Update the pwd and root */
4717 	set_fs_pwd(fs, &root);
4718 	set_fs_root(fs, &root);
4719 
4720 	path_put(&root);
4721 	return 0;
4722 }
4723 
4724 static struct user_namespace *mntns_owner(struct ns_common *ns)
4725 {
4726 	return to_mnt_ns(ns)->user_ns;
4727 }
4728 
4729 const struct proc_ns_operations mntns_operations = {
4730 	.name		= "mnt",
4731 	.type		= CLONE_NEWNS,
4732 	.get		= mntns_get,
4733 	.put		= mntns_put,
4734 	.install	= mntns_install,
4735 	.owner		= mntns_owner,
4736 };
4737 
4738 #ifdef CONFIG_SYSCTL
4739 static struct ctl_table fs_namespace_sysctls[] = {
4740 	{
4741 		.procname	= "mount-max",
4742 		.data		= &sysctl_mount_max,
4743 		.maxlen		= sizeof(unsigned int),
4744 		.mode		= 0644,
4745 		.proc_handler	= proc_dointvec_minmax,
4746 		.extra1		= SYSCTL_ONE,
4747 	},
4748 	{ }
4749 };
4750 
4751 static int __init init_fs_namespace_sysctls(void)
4752 {
4753 	register_sysctl_init("fs", fs_namespace_sysctls);
4754 	return 0;
4755 }
4756 fs_initcall(init_fs_namespace_sysctls);
4757 
4758 #endif /* CONFIG_SYSCTL */
4759