1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 36 #include "pnode.h" 37 #include "internal.h" 38 39 /* Maximum number of mounts in a mount namespace */ 40 static unsigned int sysctl_mount_max __read_mostly = 100000; 41 42 static unsigned int m_hash_mask __read_mostly; 43 static unsigned int m_hash_shift __read_mostly; 44 static unsigned int mp_hash_mask __read_mostly; 45 static unsigned int mp_hash_shift __read_mostly; 46 47 static __initdata unsigned long mhash_entries; 48 static int __init set_mhash_entries(char *str) 49 { 50 if (!str) 51 return 0; 52 mhash_entries = simple_strtoul(str, &str, 0); 53 return 1; 54 } 55 __setup("mhash_entries=", set_mhash_entries); 56 57 static __initdata unsigned long mphash_entries; 58 static int __init set_mphash_entries(char *str) 59 { 60 if (!str) 61 return 0; 62 mphash_entries = simple_strtoul(str, &str, 0); 63 return 1; 64 } 65 __setup("mphash_entries=", set_mphash_entries); 66 67 static u64 event; 68 static DEFINE_IDA(mnt_id_ida); 69 static DEFINE_IDA(mnt_group_ida); 70 71 static struct hlist_head *mount_hashtable __read_mostly; 72 static struct hlist_head *mountpoint_hashtable __read_mostly; 73 static struct kmem_cache *mnt_cache __read_mostly; 74 static DECLARE_RWSEM(namespace_sem); 75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 77 78 struct mount_kattr { 79 unsigned int attr_set; 80 unsigned int attr_clr; 81 unsigned int propagation; 82 unsigned int lookup_flags; 83 bool recurse; 84 struct user_namespace *mnt_userns; 85 struct mnt_idmap *mnt_idmap; 86 }; 87 88 /* /sys/fs */ 89 struct kobject *fs_kobj; 90 EXPORT_SYMBOL_GPL(fs_kobj); 91 92 /* 93 * vfsmount lock may be taken for read to prevent changes to the 94 * vfsmount hash, ie. during mountpoint lookups or walking back 95 * up the tree. 96 * 97 * It should be taken for write in all cases where the vfsmount 98 * tree or hash is modified or when a vfsmount structure is modified. 99 */ 100 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 101 102 static inline void lock_mount_hash(void) 103 { 104 write_seqlock(&mount_lock); 105 } 106 107 static inline void unlock_mount_hash(void) 108 { 109 write_sequnlock(&mount_lock); 110 } 111 112 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 113 { 114 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 115 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 116 tmp = tmp + (tmp >> m_hash_shift); 117 return &mount_hashtable[tmp & m_hash_mask]; 118 } 119 120 static inline struct hlist_head *mp_hash(struct dentry *dentry) 121 { 122 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 123 tmp = tmp + (tmp >> mp_hash_shift); 124 return &mountpoint_hashtable[tmp & mp_hash_mask]; 125 } 126 127 static int mnt_alloc_id(struct mount *mnt) 128 { 129 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 130 131 if (res < 0) 132 return res; 133 mnt->mnt_id = res; 134 return 0; 135 } 136 137 static void mnt_free_id(struct mount *mnt) 138 { 139 ida_free(&mnt_id_ida, mnt->mnt_id); 140 } 141 142 /* 143 * Allocate a new peer group ID 144 */ 145 static int mnt_alloc_group_id(struct mount *mnt) 146 { 147 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 148 149 if (res < 0) 150 return res; 151 mnt->mnt_group_id = res; 152 return 0; 153 } 154 155 /* 156 * Release a peer group ID 157 */ 158 void mnt_release_group_id(struct mount *mnt) 159 { 160 ida_free(&mnt_group_ida, mnt->mnt_group_id); 161 mnt->mnt_group_id = 0; 162 } 163 164 /* 165 * vfsmount lock must be held for read 166 */ 167 static inline void mnt_add_count(struct mount *mnt, int n) 168 { 169 #ifdef CONFIG_SMP 170 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 171 #else 172 preempt_disable(); 173 mnt->mnt_count += n; 174 preempt_enable(); 175 #endif 176 } 177 178 /* 179 * vfsmount lock must be held for write 180 */ 181 int mnt_get_count(struct mount *mnt) 182 { 183 #ifdef CONFIG_SMP 184 int count = 0; 185 int cpu; 186 187 for_each_possible_cpu(cpu) { 188 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 189 } 190 191 return count; 192 #else 193 return mnt->mnt_count; 194 #endif 195 } 196 197 static struct mount *alloc_vfsmnt(const char *name) 198 { 199 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 200 if (mnt) { 201 int err; 202 203 err = mnt_alloc_id(mnt); 204 if (err) 205 goto out_free_cache; 206 207 if (name) { 208 mnt->mnt_devname = kstrdup_const(name, 209 GFP_KERNEL_ACCOUNT); 210 if (!mnt->mnt_devname) 211 goto out_free_id; 212 } 213 214 #ifdef CONFIG_SMP 215 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 216 if (!mnt->mnt_pcp) 217 goto out_free_devname; 218 219 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 220 #else 221 mnt->mnt_count = 1; 222 mnt->mnt_writers = 0; 223 #endif 224 225 INIT_HLIST_NODE(&mnt->mnt_hash); 226 INIT_LIST_HEAD(&mnt->mnt_child); 227 INIT_LIST_HEAD(&mnt->mnt_mounts); 228 INIT_LIST_HEAD(&mnt->mnt_list); 229 INIT_LIST_HEAD(&mnt->mnt_expire); 230 INIT_LIST_HEAD(&mnt->mnt_share); 231 INIT_LIST_HEAD(&mnt->mnt_slave_list); 232 INIT_LIST_HEAD(&mnt->mnt_slave); 233 INIT_HLIST_NODE(&mnt->mnt_mp_list); 234 INIT_LIST_HEAD(&mnt->mnt_umounting); 235 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 236 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 237 } 238 return mnt; 239 240 #ifdef CONFIG_SMP 241 out_free_devname: 242 kfree_const(mnt->mnt_devname); 243 #endif 244 out_free_id: 245 mnt_free_id(mnt); 246 out_free_cache: 247 kmem_cache_free(mnt_cache, mnt); 248 return NULL; 249 } 250 251 /* 252 * Most r/o checks on a fs are for operations that take 253 * discrete amounts of time, like a write() or unlink(). 254 * We must keep track of when those operations start 255 * (for permission checks) and when they end, so that 256 * we can determine when writes are able to occur to 257 * a filesystem. 258 */ 259 /* 260 * __mnt_is_readonly: check whether a mount is read-only 261 * @mnt: the mount to check for its write status 262 * 263 * This shouldn't be used directly ouside of the VFS. 264 * It does not guarantee that the filesystem will stay 265 * r/w, just that it is right *now*. This can not and 266 * should not be used in place of IS_RDONLY(inode). 267 * mnt_want/drop_write() will _keep_ the filesystem 268 * r/w. 269 */ 270 bool __mnt_is_readonly(struct vfsmount *mnt) 271 { 272 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 273 } 274 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 275 276 static inline void mnt_inc_writers(struct mount *mnt) 277 { 278 #ifdef CONFIG_SMP 279 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 280 #else 281 mnt->mnt_writers++; 282 #endif 283 } 284 285 static inline void mnt_dec_writers(struct mount *mnt) 286 { 287 #ifdef CONFIG_SMP 288 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 289 #else 290 mnt->mnt_writers--; 291 #endif 292 } 293 294 static unsigned int mnt_get_writers(struct mount *mnt) 295 { 296 #ifdef CONFIG_SMP 297 unsigned int count = 0; 298 int cpu; 299 300 for_each_possible_cpu(cpu) { 301 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 302 } 303 304 return count; 305 #else 306 return mnt->mnt_writers; 307 #endif 308 } 309 310 static int mnt_is_readonly(struct vfsmount *mnt) 311 { 312 if (mnt->mnt_sb->s_readonly_remount) 313 return 1; 314 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 315 smp_rmb(); 316 return __mnt_is_readonly(mnt); 317 } 318 319 /* 320 * Most r/o & frozen checks on a fs are for operations that take discrete 321 * amounts of time, like a write() or unlink(). We must keep track of when 322 * those operations start (for permission checks) and when they end, so that we 323 * can determine when writes are able to occur to a filesystem. 324 */ 325 /** 326 * __mnt_want_write - get write access to a mount without freeze protection 327 * @m: the mount on which to take a write 328 * 329 * This tells the low-level filesystem that a write is about to be performed to 330 * it, and makes sure that writes are allowed (mnt it read-write) before 331 * returning success. This operation does not protect against filesystem being 332 * frozen. When the write operation is finished, __mnt_drop_write() must be 333 * called. This is effectively a refcount. 334 */ 335 int __mnt_want_write(struct vfsmount *m) 336 { 337 struct mount *mnt = real_mount(m); 338 int ret = 0; 339 340 preempt_disable(); 341 mnt_inc_writers(mnt); 342 /* 343 * The store to mnt_inc_writers must be visible before we pass 344 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 345 * incremented count after it has set MNT_WRITE_HOLD. 346 */ 347 smp_mb(); 348 might_lock(&mount_lock.lock); 349 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { 350 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 351 cpu_relax(); 352 } else { 353 /* 354 * This prevents priority inversion, if the task 355 * setting MNT_WRITE_HOLD got preempted on a remote 356 * CPU, and it prevents life lock if the task setting 357 * MNT_WRITE_HOLD has a lower priority and is bound to 358 * the same CPU as the task that is spinning here. 359 */ 360 preempt_enable(); 361 lock_mount_hash(); 362 unlock_mount_hash(); 363 preempt_disable(); 364 } 365 } 366 /* 367 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 368 * be set to match its requirements. So we must not load that until 369 * MNT_WRITE_HOLD is cleared. 370 */ 371 smp_rmb(); 372 if (mnt_is_readonly(m)) { 373 mnt_dec_writers(mnt); 374 ret = -EROFS; 375 } 376 preempt_enable(); 377 378 return ret; 379 } 380 381 /** 382 * mnt_want_write - get write access to a mount 383 * @m: the mount on which to take a write 384 * 385 * This tells the low-level filesystem that a write is about to be performed to 386 * it, and makes sure that writes are allowed (mount is read-write, filesystem 387 * is not frozen) before returning success. When the write operation is 388 * finished, mnt_drop_write() must be called. This is effectively a refcount. 389 */ 390 int mnt_want_write(struct vfsmount *m) 391 { 392 int ret; 393 394 sb_start_write(m->mnt_sb); 395 ret = __mnt_want_write(m); 396 if (ret) 397 sb_end_write(m->mnt_sb); 398 return ret; 399 } 400 EXPORT_SYMBOL_GPL(mnt_want_write); 401 402 /** 403 * __mnt_want_write_file - get write access to a file's mount 404 * @file: the file who's mount on which to take a write 405 * 406 * This is like __mnt_want_write, but if the file is already open for writing it 407 * skips incrementing mnt_writers (since the open file already has a reference) 408 * and instead only does the check for emergency r/o remounts. This must be 409 * paired with __mnt_drop_write_file. 410 */ 411 int __mnt_want_write_file(struct file *file) 412 { 413 if (file->f_mode & FMODE_WRITER) { 414 /* 415 * Superblock may have become readonly while there are still 416 * writable fd's, e.g. due to a fs error with errors=remount-ro 417 */ 418 if (__mnt_is_readonly(file->f_path.mnt)) 419 return -EROFS; 420 return 0; 421 } 422 return __mnt_want_write(file->f_path.mnt); 423 } 424 425 /** 426 * mnt_want_write_file - get write access to a file's mount 427 * @file: the file who's mount on which to take a write 428 * 429 * This is like mnt_want_write, but if the file is already open for writing it 430 * skips incrementing mnt_writers (since the open file already has a reference) 431 * and instead only does the freeze protection and the check for emergency r/o 432 * remounts. This must be paired with mnt_drop_write_file. 433 */ 434 int mnt_want_write_file(struct file *file) 435 { 436 int ret; 437 438 sb_start_write(file_inode(file)->i_sb); 439 ret = __mnt_want_write_file(file); 440 if (ret) 441 sb_end_write(file_inode(file)->i_sb); 442 return ret; 443 } 444 EXPORT_SYMBOL_GPL(mnt_want_write_file); 445 446 /** 447 * __mnt_drop_write - give up write access to a mount 448 * @mnt: the mount on which to give up write access 449 * 450 * Tells the low-level filesystem that we are done 451 * performing writes to it. Must be matched with 452 * __mnt_want_write() call above. 453 */ 454 void __mnt_drop_write(struct vfsmount *mnt) 455 { 456 preempt_disable(); 457 mnt_dec_writers(real_mount(mnt)); 458 preempt_enable(); 459 } 460 461 /** 462 * mnt_drop_write - give up write access to a mount 463 * @mnt: the mount on which to give up write access 464 * 465 * Tells the low-level filesystem that we are done performing writes to it and 466 * also allows filesystem to be frozen again. Must be matched with 467 * mnt_want_write() call above. 468 */ 469 void mnt_drop_write(struct vfsmount *mnt) 470 { 471 __mnt_drop_write(mnt); 472 sb_end_write(mnt->mnt_sb); 473 } 474 EXPORT_SYMBOL_GPL(mnt_drop_write); 475 476 void __mnt_drop_write_file(struct file *file) 477 { 478 if (!(file->f_mode & FMODE_WRITER)) 479 __mnt_drop_write(file->f_path.mnt); 480 } 481 482 void mnt_drop_write_file(struct file *file) 483 { 484 __mnt_drop_write_file(file); 485 sb_end_write(file_inode(file)->i_sb); 486 } 487 EXPORT_SYMBOL(mnt_drop_write_file); 488 489 /** 490 * mnt_hold_writers - prevent write access to the given mount 491 * @mnt: mnt to prevent write access to 492 * 493 * Prevents write access to @mnt if there are no active writers for @mnt. 494 * This function needs to be called and return successfully before changing 495 * properties of @mnt that need to remain stable for callers with write access 496 * to @mnt. 497 * 498 * After this functions has been called successfully callers must pair it with 499 * a call to mnt_unhold_writers() in order to stop preventing write access to 500 * @mnt. 501 * 502 * Context: This function expects lock_mount_hash() to be held serializing 503 * setting MNT_WRITE_HOLD. 504 * Return: On success 0 is returned. 505 * On error, -EBUSY is returned. 506 */ 507 static inline int mnt_hold_writers(struct mount *mnt) 508 { 509 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 510 /* 511 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 512 * should be visible before we do. 513 */ 514 smp_mb(); 515 516 /* 517 * With writers on hold, if this value is zero, then there are 518 * definitely no active writers (although held writers may subsequently 519 * increment the count, they'll have to wait, and decrement it after 520 * seeing MNT_READONLY). 521 * 522 * It is OK to have counter incremented on one CPU and decremented on 523 * another: the sum will add up correctly. The danger would be when we 524 * sum up each counter, if we read a counter before it is incremented, 525 * but then read another CPU's count which it has been subsequently 526 * decremented from -- we would see more decrements than we should. 527 * MNT_WRITE_HOLD protects against this scenario, because 528 * mnt_want_write first increments count, then smp_mb, then spins on 529 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 530 * we're counting up here. 531 */ 532 if (mnt_get_writers(mnt) > 0) 533 return -EBUSY; 534 535 return 0; 536 } 537 538 /** 539 * mnt_unhold_writers - stop preventing write access to the given mount 540 * @mnt: mnt to stop preventing write access to 541 * 542 * Stop preventing write access to @mnt allowing callers to gain write access 543 * to @mnt again. 544 * 545 * This function can only be called after a successful call to 546 * mnt_hold_writers(). 547 * 548 * Context: This function expects lock_mount_hash() to be held. 549 */ 550 static inline void mnt_unhold_writers(struct mount *mnt) 551 { 552 /* 553 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 554 * that become unheld will see MNT_READONLY. 555 */ 556 smp_wmb(); 557 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 558 } 559 560 static int mnt_make_readonly(struct mount *mnt) 561 { 562 int ret; 563 564 ret = mnt_hold_writers(mnt); 565 if (!ret) 566 mnt->mnt.mnt_flags |= MNT_READONLY; 567 mnt_unhold_writers(mnt); 568 return ret; 569 } 570 571 int sb_prepare_remount_readonly(struct super_block *sb) 572 { 573 struct mount *mnt; 574 int err = 0; 575 576 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 577 if (atomic_long_read(&sb->s_remove_count)) 578 return -EBUSY; 579 580 lock_mount_hash(); 581 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 582 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 583 err = mnt_hold_writers(mnt); 584 if (err) 585 break; 586 } 587 } 588 if (!err && atomic_long_read(&sb->s_remove_count)) 589 err = -EBUSY; 590 591 if (!err) { 592 sb->s_readonly_remount = 1; 593 smp_wmb(); 594 } 595 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 596 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 597 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 598 } 599 unlock_mount_hash(); 600 601 return err; 602 } 603 604 static void free_vfsmnt(struct mount *mnt) 605 { 606 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 607 kfree_const(mnt->mnt_devname); 608 #ifdef CONFIG_SMP 609 free_percpu(mnt->mnt_pcp); 610 #endif 611 kmem_cache_free(mnt_cache, mnt); 612 } 613 614 static void delayed_free_vfsmnt(struct rcu_head *head) 615 { 616 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 617 } 618 619 /* call under rcu_read_lock */ 620 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 621 { 622 struct mount *mnt; 623 if (read_seqretry(&mount_lock, seq)) 624 return 1; 625 if (bastard == NULL) 626 return 0; 627 mnt = real_mount(bastard); 628 mnt_add_count(mnt, 1); 629 smp_mb(); // see mntput_no_expire() 630 if (likely(!read_seqretry(&mount_lock, seq))) 631 return 0; 632 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 633 mnt_add_count(mnt, -1); 634 return 1; 635 } 636 lock_mount_hash(); 637 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 638 mnt_add_count(mnt, -1); 639 unlock_mount_hash(); 640 return 1; 641 } 642 unlock_mount_hash(); 643 /* caller will mntput() */ 644 return -1; 645 } 646 647 /* call under rcu_read_lock */ 648 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 649 { 650 int res = __legitimize_mnt(bastard, seq); 651 if (likely(!res)) 652 return true; 653 if (unlikely(res < 0)) { 654 rcu_read_unlock(); 655 mntput(bastard); 656 rcu_read_lock(); 657 } 658 return false; 659 } 660 661 /** 662 * __lookup_mnt - find first child mount 663 * @mnt: parent mount 664 * @dentry: mountpoint 665 * 666 * If @mnt has a child mount @c mounted @dentry find and return it. 667 * 668 * Note that the child mount @c need not be unique. There are cases 669 * where shadow mounts are created. For example, during mount 670 * propagation when a source mount @mnt whose root got overmounted by a 671 * mount @o after path lookup but before @namespace_sem could be 672 * acquired gets copied and propagated. So @mnt gets copied including 673 * @o. When @mnt is propagated to a destination mount @d that already 674 * has another mount @n mounted at the same mountpoint then the source 675 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on 676 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt 677 * on @dentry. 678 * 679 * Return: The first child of @mnt mounted @dentry or NULL. 680 */ 681 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 682 { 683 struct hlist_head *head = m_hash(mnt, dentry); 684 struct mount *p; 685 686 hlist_for_each_entry_rcu(p, head, mnt_hash) 687 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 688 return p; 689 return NULL; 690 } 691 692 /* 693 * lookup_mnt - Return the first child mount mounted at path 694 * 695 * "First" means first mounted chronologically. If you create the 696 * following mounts: 697 * 698 * mount /dev/sda1 /mnt 699 * mount /dev/sda2 /mnt 700 * mount /dev/sda3 /mnt 701 * 702 * Then lookup_mnt() on the base /mnt dentry in the root mount will 703 * return successively the root dentry and vfsmount of /dev/sda1, then 704 * /dev/sda2, then /dev/sda3, then NULL. 705 * 706 * lookup_mnt takes a reference to the found vfsmount. 707 */ 708 struct vfsmount *lookup_mnt(const struct path *path) 709 { 710 struct mount *child_mnt; 711 struct vfsmount *m; 712 unsigned seq; 713 714 rcu_read_lock(); 715 do { 716 seq = read_seqbegin(&mount_lock); 717 child_mnt = __lookup_mnt(path->mnt, path->dentry); 718 m = child_mnt ? &child_mnt->mnt : NULL; 719 } while (!legitimize_mnt(m, seq)); 720 rcu_read_unlock(); 721 return m; 722 } 723 724 static inline void lock_ns_list(struct mnt_namespace *ns) 725 { 726 spin_lock(&ns->ns_lock); 727 } 728 729 static inline void unlock_ns_list(struct mnt_namespace *ns) 730 { 731 spin_unlock(&ns->ns_lock); 732 } 733 734 static inline bool mnt_is_cursor(struct mount *mnt) 735 { 736 return mnt->mnt.mnt_flags & MNT_CURSOR; 737 } 738 739 /* 740 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 741 * current mount namespace. 742 * 743 * The common case is dentries are not mountpoints at all and that 744 * test is handled inline. For the slow case when we are actually 745 * dealing with a mountpoint of some kind, walk through all of the 746 * mounts in the current mount namespace and test to see if the dentry 747 * is a mountpoint. 748 * 749 * The mount_hashtable is not usable in the context because we 750 * need to identify all mounts that may be in the current mount 751 * namespace not just a mount that happens to have some specified 752 * parent mount. 753 */ 754 bool __is_local_mountpoint(struct dentry *dentry) 755 { 756 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 757 struct mount *mnt; 758 bool is_covered = false; 759 760 down_read(&namespace_sem); 761 lock_ns_list(ns); 762 list_for_each_entry(mnt, &ns->list, mnt_list) { 763 if (mnt_is_cursor(mnt)) 764 continue; 765 is_covered = (mnt->mnt_mountpoint == dentry); 766 if (is_covered) 767 break; 768 } 769 unlock_ns_list(ns); 770 up_read(&namespace_sem); 771 772 return is_covered; 773 } 774 775 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 776 { 777 struct hlist_head *chain = mp_hash(dentry); 778 struct mountpoint *mp; 779 780 hlist_for_each_entry(mp, chain, m_hash) { 781 if (mp->m_dentry == dentry) { 782 mp->m_count++; 783 return mp; 784 } 785 } 786 return NULL; 787 } 788 789 static struct mountpoint *get_mountpoint(struct dentry *dentry) 790 { 791 struct mountpoint *mp, *new = NULL; 792 int ret; 793 794 if (d_mountpoint(dentry)) { 795 /* might be worth a WARN_ON() */ 796 if (d_unlinked(dentry)) 797 return ERR_PTR(-ENOENT); 798 mountpoint: 799 read_seqlock_excl(&mount_lock); 800 mp = lookup_mountpoint(dentry); 801 read_sequnlock_excl(&mount_lock); 802 if (mp) 803 goto done; 804 } 805 806 if (!new) 807 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 808 if (!new) 809 return ERR_PTR(-ENOMEM); 810 811 812 /* Exactly one processes may set d_mounted */ 813 ret = d_set_mounted(dentry); 814 815 /* Someone else set d_mounted? */ 816 if (ret == -EBUSY) 817 goto mountpoint; 818 819 /* The dentry is not available as a mountpoint? */ 820 mp = ERR_PTR(ret); 821 if (ret) 822 goto done; 823 824 /* Add the new mountpoint to the hash table */ 825 read_seqlock_excl(&mount_lock); 826 new->m_dentry = dget(dentry); 827 new->m_count = 1; 828 hlist_add_head(&new->m_hash, mp_hash(dentry)); 829 INIT_HLIST_HEAD(&new->m_list); 830 read_sequnlock_excl(&mount_lock); 831 832 mp = new; 833 new = NULL; 834 done: 835 kfree(new); 836 return mp; 837 } 838 839 /* 840 * vfsmount lock must be held. Additionally, the caller is responsible 841 * for serializing calls for given disposal list. 842 */ 843 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 844 { 845 if (!--mp->m_count) { 846 struct dentry *dentry = mp->m_dentry; 847 BUG_ON(!hlist_empty(&mp->m_list)); 848 spin_lock(&dentry->d_lock); 849 dentry->d_flags &= ~DCACHE_MOUNTED; 850 spin_unlock(&dentry->d_lock); 851 dput_to_list(dentry, list); 852 hlist_del(&mp->m_hash); 853 kfree(mp); 854 } 855 } 856 857 /* called with namespace_lock and vfsmount lock */ 858 static void put_mountpoint(struct mountpoint *mp) 859 { 860 __put_mountpoint(mp, &ex_mountpoints); 861 } 862 863 static inline int check_mnt(struct mount *mnt) 864 { 865 return mnt->mnt_ns == current->nsproxy->mnt_ns; 866 } 867 868 /* 869 * vfsmount lock must be held for write 870 */ 871 static void touch_mnt_namespace(struct mnt_namespace *ns) 872 { 873 if (ns) { 874 ns->event = ++event; 875 wake_up_interruptible(&ns->poll); 876 } 877 } 878 879 /* 880 * vfsmount lock must be held for write 881 */ 882 static void __touch_mnt_namespace(struct mnt_namespace *ns) 883 { 884 if (ns && ns->event != event) { 885 ns->event = event; 886 wake_up_interruptible(&ns->poll); 887 } 888 } 889 890 /* 891 * vfsmount lock must be held for write 892 */ 893 static struct mountpoint *unhash_mnt(struct mount *mnt) 894 { 895 struct mountpoint *mp; 896 mnt->mnt_parent = mnt; 897 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 898 list_del_init(&mnt->mnt_child); 899 hlist_del_init_rcu(&mnt->mnt_hash); 900 hlist_del_init(&mnt->mnt_mp_list); 901 mp = mnt->mnt_mp; 902 mnt->mnt_mp = NULL; 903 return mp; 904 } 905 906 /* 907 * vfsmount lock must be held for write 908 */ 909 static void umount_mnt(struct mount *mnt) 910 { 911 put_mountpoint(unhash_mnt(mnt)); 912 } 913 914 /* 915 * vfsmount lock must be held for write 916 */ 917 void mnt_set_mountpoint(struct mount *mnt, 918 struct mountpoint *mp, 919 struct mount *child_mnt) 920 { 921 mp->m_count++; 922 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 923 child_mnt->mnt_mountpoint = mp->m_dentry; 924 child_mnt->mnt_parent = mnt; 925 child_mnt->mnt_mp = mp; 926 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 927 } 928 929 static void __attach_mnt(struct mount *mnt, struct mount *parent) 930 { 931 hlist_add_head_rcu(&mnt->mnt_hash, 932 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 933 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 934 } 935 936 /* 937 * vfsmount lock must be held for write 938 */ 939 static void attach_mnt(struct mount *mnt, 940 struct mount *parent, 941 struct mountpoint *mp) 942 { 943 mnt_set_mountpoint(parent, mp, mnt); 944 __attach_mnt(mnt, parent); 945 } 946 947 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 948 { 949 struct mountpoint *old_mp = mnt->mnt_mp; 950 struct mount *old_parent = mnt->mnt_parent; 951 952 list_del_init(&mnt->mnt_child); 953 hlist_del_init(&mnt->mnt_mp_list); 954 hlist_del_init_rcu(&mnt->mnt_hash); 955 956 attach_mnt(mnt, parent, mp); 957 958 put_mountpoint(old_mp); 959 mnt_add_count(old_parent, -1); 960 } 961 962 /* 963 * vfsmount lock must be held for write 964 */ 965 static void commit_tree(struct mount *mnt) 966 { 967 struct mount *parent = mnt->mnt_parent; 968 struct mount *m; 969 LIST_HEAD(head); 970 struct mnt_namespace *n = parent->mnt_ns; 971 972 BUG_ON(parent == mnt); 973 974 list_add_tail(&head, &mnt->mnt_list); 975 list_for_each_entry(m, &head, mnt_list) 976 m->mnt_ns = n; 977 978 list_splice(&head, n->list.prev); 979 980 n->mounts += n->pending_mounts; 981 n->pending_mounts = 0; 982 983 __attach_mnt(mnt, parent); 984 touch_mnt_namespace(n); 985 } 986 987 static struct mount *next_mnt(struct mount *p, struct mount *root) 988 { 989 struct list_head *next = p->mnt_mounts.next; 990 if (next == &p->mnt_mounts) { 991 while (1) { 992 if (p == root) 993 return NULL; 994 next = p->mnt_child.next; 995 if (next != &p->mnt_parent->mnt_mounts) 996 break; 997 p = p->mnt_parent; 998 } 999 } 1000 return list_entry(next, struct mount, mnt_child); 1001 } 1002 1003 static struct mount *skip_mnt_tree(struct mount *p) 1004 { 1005 struct list_head *prev = p->mnt_mounts.prev; 1006 while (prev != &p->mnt_mounts) { 1007 p = list_entry(prev, struct mount, mnt_child); 1008 prev = p->mnt_mounts.prev; 1009 } 1010 return p; 1011 } 1012 1013 /** 1014 * vfs_create_mount - Create a mount for a configured superblock 1015 * @fc: The configuration context with the superblock attached 1016 * 1017 * Create a mount to an already configured superblock. If necessary, the 1018 * caller should invoke vfs_get_tree() before calling this. 1019 * 1020 * Note that this does not attach the mount to anything. 1021 */ 1022 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1023 { 1024 struct mount *mnt; 1025 1026 if (!fc->root) 1027 return ERR_PTR(-EINVAL); 1028 1029 mnt = alloc_vfsmnt(fc->source ?: "none"); 1030 if (!mnt) 1031 return ERR_PTR(-ENOMEM); 1032 1033 if (fc->sb_flags & SB_KERNMOUNT) 1034 mnt->mnt.mnt_flags = MNT_INTERNAL; 1035 1036 atomic_inc(&fc->root->d_sb->s_active); 1037 mnt->mnt.mnt_sb = fc->root->d_sb; 1038 mnt->mnt.mnt_root = dget(fc->root); 1039 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1040 mnt->mnt_parent = mnt; 1041 1042 lock_mount_hash(); 1043 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1044 unlock_mount_hash(); 1045 return &mnt->mnt; 1046 } 1047 EXPORT_SYMBOL(vfs_create_mount); 1048 1049 struct vfsmount *fc_mount(struct fs_context *fc) 1050 { 1051 int err = vfs_get_tree(fc); 1052 if (!err) { 1053 up_write(&fc->root->d_sb->s_umount); 1054 return vfs_create_mount(fc); 1055 } 1056 return ERR_PTR(err); 1057 } 1058 EXPORT_SYMBOL(fc_mount); 1059 1060 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1061 int flags, const char *name, 1062 void *data) 1063 { 1064 struct fs_context *fc; 1065 struct vfsmount *mnt; 1066 int ret = 0; 1067 1068 if (!type) 1069 return ERR_PTR(-EINVAL); 1070 1071 fc = fs_context_for_mount(type, flags); 1072 if (IS_ERR(fc)) 1073 return ERR_CAST(fc); 1074 1075 if (name) 1076 ret = vfs_parse_fs_string(fc, "source", 1077 name, strlen(name)); 1078 if (!ret) 1079 ret = parse_monolithic_mount_data(fc, data); 1080 if (!ret) 1081 mnt = fc_mount(fc); 1082 else 1083 mnt = ERR_PTR(ret); 1084 1085 put_fs_context(fc); 1086 return mnt; 1087 } 1088 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1089 1090 struct vfsmount * 1091 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1092 const char *name, void *data) 1093 { 1094 /* Until it is worked out how to pass the user namespace 1095 * through from the parent mount to the submount don't support 1096 * unprivileged mounts with submounts. 1097 */ 1098 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1099 return ERR_PTR(-EPERM); 1100 1101 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1102 } 1103 EXPORT_SYMBOL_GPL(vfs_submount); 1104 1105 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1106 int flag) 1107 { 1108 struct super_block *sb = old->mnt.mnt_sb; 1109 struct mount *mnt; 1110 int err; 1111 1112 mnt = alloc_vfsmnt(old->mnt_devname); 1113 if (!mnt) 1114 return ERR_PTR(-ENOMEM); 1115 1116 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1117 mnt->mnt_group_id = 0; /* not a peer of original */ 1118 else 1119 mnt->mnt_group_id = old->mnt_group_id; 1120 1121 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1122 err = mnt_alloc_group_id(mnt); 1123 if (err) 1124 goto out_free; 1125 } 1126 1127 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1128 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); 1129 1130 atomic_inc(&sb->s_active); 1131 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1132 1133 mnt->mnt.mnt_sb = sb; 1134 mnt->mnt.mnt_root = dget(root); 1135 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1136 mnt->mnt_parent = mnt; 1137 lock_mount_hash(); 1138 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1139 unlock_mount_hash(); 1140 1141 if ((flag & CL_SLAVE) || 1142 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1143 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1144 mnt->mnt_master = old; 1145 CLEAR_MNT_SHARED(mnt); 1146 } else if (!(flag & CL_PRIVATE)) { 1147 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1148 list_add(&mnt->mnt_share, &old->mnt_share); 1149 if (IS_MNT_SLAVE(old)) 1150 list_add(&mnt->mnt_slave, &old->mnt_slave); 1151 mnt->mnt_master = old->mnt_master; 1152 } else { 1153 CLEAR_MNT_SHARED(mnt); 1154 } 1155 if (flag & CL_MAKE_SHARED) 1156 set_mnt_shared(mnt); 1157 1158 /* stick the duplicate mount on the same expiry list 1159 * as the original if that was on one */ 1160 if (flag & CL_EXPIRE) { 1161 if (!list_empty(&old->mnt_expire)) 1162 list_add(&mnt->mnt_expire, &old->mnt_expire); 1163 } 1164 1165 return mnt; 1166 1167 out_free: 1168 mnt_free_id(mnt); 1169 free_vfsmnt(mnt); 1170 return ERR_PTR(err); 1171 } 1172 1173 static void cleanup_mnt(struct mount *mnt) 1174 { 1175 struct hlist_node *p; 1176 struct mount *m; 1177 /* 1178 * The warning here probably indicates that somebody messed 1179 * up a mnt_want/drop_write() pair. If this happens, the 1180 * filesystem was probably unable to make r/w->r/o transitions. 1181 * The locking used to deal with mnt_count decrement provides barriers, 1182 * so mnt_get_writers() below is safe. 1183 */ 1184 WARN_ON(mnt_get_writers(mnt)); 1185 if (unlikely(mnt->mnt_pins.first)) 1186 mnt_pin_kill(mnt); 1187 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1188 hlist_del(&m->mnt_umount); 1189 mntput(&m->mnt); 1190 } 1191 fsnotify_vfsmount_delete(&mnt->mnt); 1192 dput(mnt->mnt.mnt_root); 1193 deactivate_super(mnt->mnt.mnt_sb); 1194 mnt_free_id(mnt); 1195 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1196 } 1197 1198 static void __cleanup_mnt(struct rcu_head *head) 1199 { 1200 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1201 } 1202 1203 static LLIST_HEAD(delayed_mntput_list); 1204 static void delayed_mntput(struct work_struct *unused) 1205 { 1206 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1207 struct mount *m, *t; 1208 1209 llist_for_each_entry_safe(m, t, node, mnt_llist) 1210 cleanup_mnt(m); 1211 } 1212 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1213 1214 static void mntput_no_expire(struct mount *mnt) 1215 { 1216 LIST_HEAD(list); 1217 int count; 1218 1219 rcu_read_lock(); 1220 if (likely(READ_ONCE(mnt->mnt_ns))) { 1221 /* 1222 * Since we don't do lock_mount_hash() here, 1223 * ->mnt_ns can change under us. However, if it's 1224 * non-NULL, then there's a reference that won't 1225 * be dropped until after an RCU delay done after 1226 * turning ->mnt_ns NULL. So if we observe it 1227 * non-NULL under rcu_read_lock(), the reference 1228 * we are dropping is not the final one. 1229 */ 1230 mnt_add_count(mnt, -1); 1231 rcu_read_unlock(); 1232 return; 1233 } 1234 lock_mount_hash(); 1235 /* 1236 * make sure that if __legitimize_mnt() has not seen us grab 1237 * mount_lock, we'll see their refcount increment here. 1238 */ 1239 smp_mb(); 1240 mnt_add_count(mnt, -1); 1241 count = mnt_get_count(mnt); 1242 if (count != 0) { 1243 WARN_ON(count < 0); 1244 rcu_read_unlock(); 1245 unlock_mount_hash(); 1246 return; 1247 } 1248 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1249 rcu_read_unlock(); 1250 unlock_mount_hash(); 1251 return; 1252 } 1253 mnt->mnt.mnt_flags |= MNT_DOOMED; 1254 rcu_read_unlock(); 1255 1256 list_del(&mnt->mnt_instance); 1257 1258 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1259 struct mount *p, *tmp; 1260 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1261 __put_mountpoint(unhash_mnt(p), &list); 1262 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1263 } 1264 } 1265 unlock_mount_hash(); 1266 shrink_dentry_list(&list); 1267 1268 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1269 struct task_struct *task = current; 1270 if (likely(!(task->flags & PF_KTHREAD))) { 1271 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1272 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1273 return; 1274 } 1275 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1276 schedule_delayed_work(&delayed_mntput_work, 1); 1277 return; 1278 } 1279 cleanup_mnt(mnt); 1280 } 1281 1282 void mntput(struct vfsmount *mnt) 1283 { 1284 if (mnt) { 1285 struct mount *m = real_mount(mnt); 1286 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1287 if (unlikely(m->mnt_expiry_mark)) 1288 m->mnt_expiry_mark = 0; 1289 mntput_no_expire(m); 1290 } 1291 } 1292 EXPORT_SYMBOL(mntput); 1293 1294 struct vfsmount *mntget(struct vfsmount *mnt) 1295 { 1296 if (mnt) 1297 mnt_add_count(real_mount(mnt), 1); 1298 return mnt; 1299 } 1300 EXPORT_SYMBOL(mntget); 1301 1302 /* 1303 * Make a mount point inaccessible to new lookups. 1304 * Because there may still be current users, the caller MUST WAIT 1305 * for an RCU grace period before destroying the mount point. 1306 */ 1307 void mnt_make_shortterm(struct vfsmount *mnt) 1308 { 1309 if (mnt) 1310 real_mount(mnt)->mnt_ns = NULL; 1311 } 1312 1313 /** 1314 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1315 * @path: path to check 1316 * 1317 * d_mountpoint() can only be used reliably to establish if a dentry is 1318 * not mounted in any namespace and that common case is handled inline. 1319 * d_mountpoint() isn't aware of the possibility there may be multiple 1320 * mounts using a given dentry in a different namespace. This function 1321 * checks if the passed in path is a mountpoint rather than the dentry 1322 * alone. 1323 */ 1324 bool path_is_mountpoint(const struct path *path) 1325 { 1326 unsigned seq; 1327 bool res; 1328 1329 if (!d_mountpoint(path->dentry)) 1330 return false; 1331 1332 rcu_read_lock(); 1333 do { 1334 seq = read_seqbegin(&mount_lock); 1335 res = __path_is_mountpoint(path); 1336 } while (read_seqretry(&mount_lock, seq)); 1337 rcu_read_unlock(); 1338 1339 return res; 1340 } 1341 EXPORT_SYMBOL(path_is_mountpoint); 1342 1343 struct vfsmount *mnt_clone_internal(const struct path *path) 1344 { 1345 struct mount *p; 1346 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1347 if (IS_ERR(p)) 1348 return ERR_CAST(p); 1349 p->mnt.mnt_flags |= MNT_INTERNAL; 1350 return &p->mnt; 1351 } 1352 1353 #ifdef CONFIG_PROC_FS 1354 static struct mount *mnt_list_next(struct mnt_namespace *ns, 1355 struct list_head *p) 1356 { 1357 struct mount *mnt, *ret = NULL; 1358 1359 lock_ns_list(ns); 1360 list_for_each_continue(p, &ns->list) { 1361 mnt = list_entry(p, typeof(*mnt), mnt_list); 1362 if (!mnt_is_cursor(mnt)) { 1363 ret = mnt; 1364 break; 1365 } 1366 } 1367 unlock_ns_list(ns); 1368 1369 return ret; 1370 } 1371 1372 /* iterator; we want it to have access to namespace_sem, thus here... */ 1373 static void *m_start(struct seq_file *m, loff_t *pos) 1374 { 1375 struct proc_mounts *p = m->private; 1376 struct list_head *prev; 1377 1378 down_read(&namespace_sem); 1379 if (!*pos) { 1380 prev = &p->ns->list; 1381 } else { 1382 prev = &p->cursor.mnt_list; 1383 1384 /* Read after we'd reached the end? */ 1385 if (list_empty(prev)) 1386 return NULL; 1387 } 1388 1389 return mnt_list_next(p->ns, prev); 1390 } 1391 1392 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1393 { 1394 struct proc_mounts *p = m->private; 1395 struct mount *mnt = v; 1396 1397 ++*pos; 1398 return mnt_list_next(p->ns, &mnt->mnt_list); 1399 } 1400 1401 static void m_stop(struct seq_file *m, void *v) 1402 { 1403 struct proc_mounts *p = m->private; 1404 struct mount *mnt = v; 1405 1406 lock_ns_list(p->ns); 1407 if (mnt) 1408 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list); 1409 else 1410 list_del_init(&p->cursor.mnt_list); 1411 unlock_ns_list(p->ns); 1412 up_read(&namespace_sem); 1413 } 1414 1415 static int m_show(struct seq_file *m, void *v) 1416 { 1417 struct proc_mounts *p = m->private; 1418 struct mount *r = v; 1419 return p->show(m, &r->mnt); 1420 } 1421 1422 const struct seq_operations mounts_op = { 1423 .start = m_start, 1424 .next = m_next, 1425 .stop = m_stop, 1426 .show = m_show, 1427 }; 1428 1429 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor) 1430 { 1431 down_read(&namespace_sem); 1432 lock_ns_list(ns); 1433 list_del(&cursor->mnt_list); 1434 unlock_ns_list(ns); 1435 up_read(&namespace_sem); 1436 } 1437 #endif /* CONFIG_PROC_FS */ 1438 1439 /** 1440 * may_umount_tree - check if a mount tree is busy 1441 * @m: root of mount tree 1442 * 1443 * This is called to check if a tree of mounts has any 1444 * open files, pwds, chroots or sub mounts that are 1445 * busy. 1446 */ 1447 int may_umount_tree(struct vfsmount *m) 1448 { 1449 struct mount *mnt = real_mount(m); 1450 int actual_refs = 0; 1451 int minimum_refs = 0; 1452 struct mount *p; 1453 BUG_ON(!m); 1454 1455 /* write lock needed for mnt_get_count */ 1456 lock_mount_hash(); 1457 for (p = mnt; p; p = next_mnt(p, mnt)) { 1458 actual_refs += mnt_get_count(p); 1459 minimum_refs += 2; 1460 } 1461 unlock_mount_hash(); 1462 1463 if (actual_refs > minimum_refs) 1464 return 0; 1465 1466 return 1; 1467 } 1468 1469 EXPORT_SYMBOL(may_umount_tree); 1470 1471 /** 1472 * may_umount - check if a mount point is busy 1473 * @mnt: root of mount 1474 * 1475 * This is called to check if a mount point has any 1476 * open files, pwds, chroots or sub mounts. If the 1477 * mount has sub mounts this will return busy 1478 * regardless of whether the sub mounts are busy. 1479 * 1480 * Doesn't take quota and stuff into account. IOW, in some cases it will 1481 * give false negatives. The main reason why it's here is that we need 1482 * a non-destructive way to look for easily umountable filesystems. 1483 */ 1484 int may_umount(struct vfsmount *mnt) 1485 { 1486 int ret = 1; 1487 down_read(&namespace_sem); 1488 lock_mount_hash(); 1489 if (propagate_mount_busy(real_mount(mnt), 2)) 1490 ret = 0; 1491 unlock_mount_hash(); 1492 up_read(&namespace_sem); 1493 return ret; 1494 } 1495 1496 EXPORT_SYMBOL(may_umount); 1497 1498 static void namespace_unlock(void) 1499 { 1500 struct hlist_head head; 1501 struct hlist_node *p; 1502 struct mount *m; 1503 LIST_HEAD(list); 1504 1505 hlist_move_list(&unmounted, &head); 1506 list_splice_init(&ex_mountpoints, &list); 1507 1508 up_write(&namespace_sem); 1509 1510 shrink_dentry_list(&list); 1511 1512 if (likely(hlist_empty(&head))) 1513 return; 1514 1515 synchronize_rcu_expedited(); 1516 1517 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1518 hlist_del(&m->mnt_umount); 1519 mntput(&m->mnt); 1520 } 1521 } 1522 1523 static inline void namespace_lock(void) 1524 { 1525 down_write(&namespace_sem); 1526 } 1527 1528 enum umount_tree_flags { 1529 UMOUNT_SYNC = 1, 1530 UMOUNT_PROPAGATE = 2, 1531 UMOUNT_CONNECTED = 4, 1532 }; 1533 1534 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1535 { 1536 /* Leaving mounts connected is only valid for lazy umounts */ 1537 if (how & UMOUNT_SYNC) 1538 return true; 1539 1540 /* A mount without a parent has nothing to be connected to */ 1541 if (!mnt_has_parent(mnt)) 1542 return true; 1543 1544 /* Because the reference counting rules change when mounts are 1545 * unmounted and connected, umounted mounts may not be 1546 * connected to mounted mounts. 1547 */ 1548 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1549 return true; 1550 1551 /* Has it been requested that the mount remain connected? */ 1552 if (how & UMOUNT_CONNECTED) 1553 return false; 1554 1555 /* Is the mount locked such that it needs to remain connected? */ 1556 if (IS_MNT_LOCKED(mnt)) 1557 return false; 1558 1559 /* By default disconnect the mount */ 1560 return true; 1561 } 1562 1563 /* 1564 * mount_lock must be held 1565 * namespace_sem must be held for write 1566 */ 1567 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1568 { 1569 LIST_HEAD(tmp_list); 1570 struct mount *p; 1571 1572 if (how & UMOUNT_PROPAGATE) 1573 propagate_mount_unlock(mnt); 1574 1575 /* Gather the mounts to umount */ 1576 for (p = mnt; p; p = next_mnt(p, mnt)) { 1577 p->mnt.mnt_flags |= MNT_UMOUNT; 1578 list_move(&p->mnt_list, &tmp_list); 1579 } 1580 1581 /* Hide the mounts from mnt_mounts */ 1582 list_for_each_entry(p, &tmp_list, mnt_list) { 1583 list_del_init(&p->mnt_child); 1584 } 1585 1586 /* Add propogated mounts to the tmp_list */ 1587 if (how & UMOUNT_PROPAGATE) 1588 propagate_umount(&tmp_list); 1589 1590 while (!list_empty(&tmp_list)) { 1591 struct mnt_namespace *ns; 1592 bool disconnect; 1593 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1594 list_del_init(&p->mnt_expire); 1595 list_del_init(&p->mnt_list); 1596 ns = p->mnt_ns; 1597 if (ns) { 1598 ns->mounts--; 1599 __touch_mnt_namespace(ns); 1600 } 1601 p->mnt_ns = NULL; 1602 if (how & UMOUNT_SYNC) 1603 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1604 1605 disconnect = disconnect_mount(p, how); 1606 if (mnt_has_parent(p)) { 1607 mnt_add_count(p->mnt_parent, -1); 1608 if (!disconnect) { 1609 /* Don't forget about p */ 1610 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1611 } else { 1612 umount_mnt(p); 1613 } 1614 } 1615 change_mnt_propagation(p, MS_PRIVATE); 1616 if (disconnect) 1617 hlist_add_head(&p->mnt_umount, &unmounted); 1618 } 1619 } 1620 1621 static void shrink_submounts(struct mount *mnt); 1622 1623 static int do_umount_root(struct super_block *sb) 1624 { 1625 int ret = 0; 1626 1627 down_write(&sb->s_umount); 1628 if (!sb_rdonly(sb)) { 1629 struct fs_context *fc; 1630 1631 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1632 SB_RDONLY); 1633 if (IS_ERR(fc)) { 1634 ret = PTR_ERR(fc); 1635 } else { 1636 ret = parse_monolithic_mount_data(fc, NULL); 1637 if (!ret) 1638 ret = reconfigure_super(fc); 1639 put_fs_context(fc); 1640 } 1641 } 1642 up_write(&sb->s_umount); 1643 return ret; 1644 } 1645 1646 static int do_umount(struct mount *mnt, int flags) 1647 { 1648 struct super_block *sb = mnt->mnt.mnt_sb; 1649 int retval; 1650 1651 retval = security_sb_umount(&mnt->mnt, flags); 1652 if (retval) 1653 return retval; 1654 1655 /* 1656 * Allow userspace to request a mountpoint be expired rather than 1657 * unmounting unconditionally. Unmount only happens if: 1658 * (1) the mark is already set (the mark is cleared by mntput()) 1659 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1660 */ 1661 if (flags & MNT_EXPIRE) { 1662 if (&mnt->mnt == current->fs->root.mnt || 1663 flags & (MNT_FORCE | MNT_DETACH)) 1664 return -EINVAL; 1665 1666 /* 1667 * probably don't strictly need the lock here if we examined 1668 * all race cases, but it's a slowpath. 1669 */ 1670 lock_mount_hash(); 1671 if (mnt_get_count(mnt) != 2) { 1672 unlock_mount_hash(); 1673 return -EBUSY; 1674 } 1675 unlock_mount_hash(); 1676 1677 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1678 return -EAGAIN; 1679 } 1680 1681 /* 1682 * If we may have to abort operations to get out of this 1683 * mount, and they will themselves hold resources we must 1684 * allow the fs to do things. In the Unix tradition of 1685 * 'Gee thats tricky lets do it in userspace' the umount_begin 1686 * might fail to complete on the first run through as other tasks 1687 * must return, and the like. Thats for the mount program to worry 1688 * about for the moment. 1689 */ 1690 1691 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1692 sb->s_op->umount_begin(sb); 1693 } 1694 1695 /* 1696 * No sense to grab the lock for this test, but test itself looks 1697 * somewhat bogus. Suggestions for better replacement? 1698 * Ho-hum... In principle, we might treat that as umount + switch 1699 * to rootfs. GC would eventually take care of the old vfsmount. 1700 * Actually it makes sense, especially if rootfs would contain a 1701 * /reboot - static binary that would close all descriptors and 1702 * call reboot(9). Then init(8) could umount root and exec /reboot. 1703 */ 1704 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1705 /* 1706 * Special case for "unmounting" root ... 1707 * we just try to remount it readonly. 1708 */ 1709 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1710 return -EPERM; 1711 return do_umount_root(sb); 1712 } 1713 1714 namespace_lock(); 1715 lock_mount_hash(); 1716 1717 /* Recheck MNT_LOCKED with the locks held */ 1718 retval = -EINVAL; 1719 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1720 goto out; 1721 1722 event++; 1723 if (flags & MNT_DETACH) { 1724 if (!list_empty(&mnt->mnt_list)) 1725 umount_tree(mnt, UMOUNT_PROPAGATE); 1726 retval = 0; 1727 } else { 1728 shrink_submounts(mnt); 1729 retval = -EBUSY; 1730 if (!propagate_mount_busy(mnt, 2)) { 1731 if (!list_empty(&mnt->mnt_list)) 1732 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1733 retval = 0; 1734 } 1735 } 1736 out: 1737 unlock_mount_hash(); 1738 namespace_unlock(); 1739 return retval; 1740 } 1741 1742 /* 1743 * __detach_mounts - lazily unmount all mounts on the specified dentry 1744 * 1745 * During unlink, rmdir, and d_drop it is possible to loose the path 1746 * to an existing mountpoint, and wind up leaking the mount. 1747 * detach_mounts allows lazily unmounting those mounts instead of 1748 * leaking them. 1749 * 1750 * The caller may hold dentry->d_inode->i_mutex. 1751 */ 1752 void __detach_mounts(struct dentry *dentry) 1753 { 1754 struct mountpoint *mp; 1755 struct mount *mnt; 1756 1757 namespace_lock(); 1758 lock_mount_hash(); 1759 mp = lookup_mountpoint(dentry); 1760 if (!mp) 1761 goto out_unlock; 1762 1763 event++; 1764 while (!hlist_empty(&mp->m_list)) { 1765 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1766 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1767 umount_mnt(mnt); 1768 hlist_add_head(&mnt->mnt_umount, &unmounted); 1769 } 1770 else umount_tree(mnt, UMOUNT_CONNECTED); 1771 } 1772 put_mountpoint(mp); 1773 out_unlock: 1774 unlock_mount_hash(); 1775 namespace_unlock(); 1776 } 1777 1778 /* 1779 * Is the caller allowed to modify his namespace? 1780 */ 1781 bool may_mount(void) 1782 { 1783 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1784 } 1785 1786 /** 1787 * path_mounted - check whether path is mounted 1788 * @path: path to check 1789 * 1790 * Determine whether @path refers to the root of a mount. 1791 * 1792 * Return: true if @path is the root of a mount, false if not. 1793 */ 1794 static inline bool path_mounted(const struct path *path) 1795 { 1796 return path->mnt->mnt_root == path->dentry; 1797 } 1798 1799 static void warn_mandlock(void) 1800 { 1801 pr_warn_once("=======================================================\n" 1802 "WARNING: The mand mount option has been deprecated and\n" 1803 " and is ignored by this kernel. Remove the mand\n" 1804 " option from the mount to silence this warning.\n" 1805 "=======================================================\n"); 1806 } 1807 1808 static int can_umount(const struct path *path, int flags) 1809 { 1810 struct mount *mnt = real_mount(path->mnt); 1811 1812 if (!may_mount()) 1813 return -EPERM; 1814 if (!path_mounted(path)) 1815 return -EINVAL; 1816 if (!check_mnt(mnt)) 1817 return -EINVAL; 1818 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1819 return -EINVAL; 1820 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1821 return -EPERM; 1822 return 0; 1823 } 1824 1825 // caller is responsible for flags being sane 1826 int path_umount(struct path *path, int flags) 1827 { 1828 struct mount *mnt = real_mount(path->mnt); 1829 int ret; 1830 1831 ret = can_umount(path, flags); 1832 if (!ret) 1833 ret = do_umount(mnt, flags); 1834 1835 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1836 dput(path->dentry); 1837 mntput_no_expire(mnt); 1838 return ret; 1839 } 1840 1841 static int ksys_umount(char __user *name, int flags) 1842 { 1843 int lookup_flags = LOOKUP_MOUNTPOINT; 1844 struct path path; 1845 int ret; 1846 1847 // basic validity checks done first 1848 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1849 return -EINVAL; 1850 1851 if (!(flags & UMOUNT_NOFOLLOW)) 1852 lookup_flags |= LOOKUP_FOLLOW; 1853 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 1854 if (ret) 1855 return ret; 1856 return path_umount(&path, flags); 1857 } 1858 1859 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1860 { 1861 return ksys_umount(name, flags); 1862 } 1863 1864 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1865 1866 /* 1867 * The 2.0 compatible umount. No flags. 1868 */ 1869 SYSCALL_DEFINE1(oldumount, char __user *, name) 1870 { 1871 return ksys_umount(name, 0); 1872 } 1873 1874 #endif 1875 1876 static bool is_mnt_ns_file(struct dentry *dentry) 1877 { 1878 /* Is this a proxy for a mount namespace? */ 1879 return dentry->d_op == &ns_dentry_operations && 1880 dentry->d_fsdata == &mntns_operations; 1881 } 1882 1883 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1884 { 1885 return container_of(ns, struct mnt_namespace, ns); 1886 } 1887 1888 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 1889 { 1890 return &mnt->ns; 1891 } 1892 1893 static bool mnt_ns_loop(struct dentry *dentry) 1894 { 1895 /* Could bind mounting the mount namespace inode cause a 1896 * mount namespace loop? 1897 */ 1898 struct mnt_namespace *mnt_ns; 1899 if (!is_mnt_ns_file(dentry)) 1900 return false; 1901 1902 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1903 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1904 } 1905 1906 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1907 int flag) 1908 { 1909 struct mount *res, *p, *q, *r, *parent; 1910 1911 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1912 return ERR_PTR(-EINVAL); 1913 1914 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1915 return ERR_PTR(-EINVAL); 1916 1917 res = q = clone_mnt(mnt, dentry, flag); 1918 if (IS_ERR(q)) 1919 return q; 1920 1921 q->mnt_mountpoint = mnt->mnt_mountpoint; 1922 1923 p = mnt; 1924 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1925 struct mount *s; 1926 if (!is_subdir(r->mnt_mountpoint, dentry)) 1927 continue; 1928 1929 for (s = r; s; s = next_mnt(s, r)) { 1930 if (!(flag & CL_COPY_UNBINDABLE) && 1931 IS_MNT_UNBINDABLE(s)) { 1932 if (s->mnt.mnt_flags & MNT_LOCKED) { 1933 /* Both unbindable and locked. */ 1934 q = ERR_PTR(-EPERM); 1935 goto out; 1936 } else { 1937 s = skip_mnt_tree(s); 1938 continue; 1939 } 1940 } 1941 if (!(flag & CL_COPY_MNT_NS_FILE) && 1942 is_mnt_ns_file(s->mnt.mnt_root)) { 1943 s = skip_mnt_tree(s); 1944 continue; 1945 } 1946 while (p != s->mnt_parent) { 1947 p = p->mnt_parent; 1948 q = q->mnt_parent; 1949 } 1950 p = s; 1951 parent = q; 1952 q = clone_mnt(p, p->mnt.mnt_root, flag); 1953 if (IS_ERR(q)) 1954 goto out; 1955 lock_mount_hash(); 1956 list_add_tail(&q->mnt_list, &res->mnt_list); 1957 attach_mnt(q, parent, p->mnt_mp); 1958 unlock_mount_hash(); 1959 } 1960 } 1961 return res; 1962 out: 1963 if (res) { 1964 lock_mount_hash(); 1965 umount_tree(res, UMOUNT_SYNC); 1966 unlock_mount_hash(); 1967 } 1968 return q; 1969 } 1970 1971 /* Caller should check returned pointer for errors */ 1972 1973 struct vfsmount *collect_mounts(const struct path *path) 1974 { 1975 struct mount *tree; 1976 namespace_lock(); 1977 if (!check_mnt(real_mount(path->mnt))) 1978 tree = ERR_PTR(-EINVAL); 1979 else 1980 tree = copy_tree(real_mount(path->mnt), path->dentry, 1981 CL_COPY_ALL | CL_PRIVATE); 1982 namespace_unlock(); 1983 if (IS_ERR(tree)) 1984 return ERR_CAST(tree); 1985 return &tree->mnt; 1986 } 1987 1988 static void free_mnt_ns(struct mnt_namespace *); 1989 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 1990 1991 void dissolve_on_fput(struct vfsmount *mnt) 1992 { 1993 struct mnt_namespace *ns; 1994 namespace_lock(); 1995 lock_mount_hash(); 1996 ns = real_mount(mnt)->mnt_ns; 1997 if (ns) { 1998 if (is_anon_ns(ns)) 1999 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 2000 else 2001 ns = NULL; 2002 } 2003 unlock_mount_hash(); 2004 namespace_unlock(); 2005 if (ns) 2006 free_mnt_ns(ns); 2007 } 2008 2009 void drop_collected_mounts(struct vfsmount *mnt) 2010 { 2011 namespace_lock(); 2012 lock_mount_hash(); 2013 umount_tree(real_mount(mnt), 0); 2014 unlock_mount_hash(); 2015 namespace_unlock(); 2016 } 2017 2018 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2019 { 2020 struct mount *child; 2021 2022 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2023 if (!is_subdir(child->mnt_mountpoint, dentry)) 2024 continue; 2025 2026 if (child->mnt.mnt_flags & MNT_LOCKED) 2027 return true; 2028 } 2029 return false; 2030 } 2031 2032 /** 2033 * clone_private_mount - create a private clone of a path 2034 * @path: path to clone 2035 * 2036 * This creates a new vfsmount, which will be the clone of @path. The new mount 2037 * will not be attached anywhere in the namespace and will be private (i.e. 2038 * changes to the originating mount won't be propagated into this). 2039 * 2040 * Release with mntput(). 2041 */ 2042 struct vfsmount *clone_private_mount(const struct path *path) 2043 { 2044 struct mount *old_mnt = real_mount(path->mnt); 2045 struct mount *new_mnt; 2046 2047 down_read(&namespace_sem); 2048 if (IS_MNT_UNBINDABLE(old_mnt)) 2049 goto invalid; 2050 2051 if (!check_mnt(old_mnt)) 2052 goto invalid; 2053 2054 if (has_locked_children(old_mnt, path->dentry)) 2055 goto invalid; 2056 2057 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2058 up_read(&namespace_sem); 2059 2060 if (IS_ERR(new_mnt)) 2061 return ERR_CAST(new_mnt); 2062 2063 /* Longterm mount to be removed by kern_unmount*() */ 2064 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2065 2066 return &new_mnt->mnt; 2067 2068 invalid: 2069 up_read(&namespace_sem); 2070 return ERR_PTR(-EINVAL); 2071 } 2072 EXPORT_SYMBOL_GPL(clone_private_mount); 2073 2074 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2075 struct vfsmount *root) 2076 { 2077 struct mount *mnt; 2078 int res = f(root, arg); 2079 if (res) 2080 return res; 2081 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2082 res = f(&mnt->mnt, arg); 2083 if (res) 2084 return res; 2085 } 2086 return 0; 2087 } 2088 2089 static void lock_mnt_tree(struct mount *mnt) 2090 { 2091 struct mount *p; 2092 2093 for (p = mnt; p; p = next_mnt(p, mnt)) { 2094 int flags = p->mnt.mnt_flags; 2095 /* Don't allow unprivileged users to change mount flags */ 2096 flags |= MNT_LOCK_ATIME; 2097 2098 if (flags & MNT_READONLY) 2099 flags |= MNT_LOCK_READONLY; 2100 2101 if (flags & MNT_NODEV) 2102 flags |= MNT_LOCK_NODEV; 2103 2104 if (flags & MNT_NOSUID) 2105 flags |= MNT_LOCK_NOSUID; 2106 2107 if (flags & MNT_NOEXEC) 2108 flags |= MNT_LOCK_NOEXEC; 2109 /* Don't allow unprivileged users to reveal what is under a mount */ 2110 if (list_empty(&p->mnt_expire)) 2111 flags |= MNT_LOCKED; 2112 p->mnt.mnt_flags = flags; 2113 } 2114 } 2115 2116 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2117 { 2118 struct mount *p; 2119 2120 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2121 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2122 mnt_release_group_id(p); 2123 } 2124 } 2125 2126 static int invent_group_ids(struct mount *mnt, bool recurse) 2127 { 2128 struct mount *p; 2129 2130 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2131 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2132 int err = mnt_alloc_group_id(p); 2133 if (err) { 2134 cleanup_group_ids(mnt, p); 2135 return err; 2136 } 2137 } 2138 } 2139 2140 return 0; 2141 } 2142 2143 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2144 { 2145 unsigned int max = READ_ONCE(sysctl_mount_max); 2146 unsigned int mounts = 0; 2147 struct mount *p; 2148 2149 if (ns->mounts >= max) 2150 return -ENOSPC; 2151 max -= ns->mounts; 2152 if (ns->pending_mounts >= max) 2153 return -ENOSPC; 2154 max -= ns->pending_mounts; 2155 2156 for (p = mnt; p; p = next_mnt(p, mnt)) 2157 mounts++; 2158 2159 if (mounts > max) 2160 return -ENOSPC; 2161 2162 ns->pending_mounts += mounts; 2163 return 0; 2164 } 2165 2166 /* 2167 * @source_mnt : mount tree to be attached 2168 * @nd : place the mount tree @source_mnt is attached 2169 * @parent_nd : if non-null, detach the source_mnt from its parent and 2170 * store the parent mount and mountpoint dentry. 2171 * (done when source_mnt is moved) 2172 * 2173 * NOTE: in the table below explains the semantics when a source mount 2174 * of a given type is attached to a destination mount of a given type. 2175 * --------------------------------------------------------------------------- 2176 * | BIND MOUNT OPERATION | 2177 * |************************************************************************** 2178 * | source-->| shared | private | slave | unbindable | 2179 * | dest | | | | | 2180 * | | | | | | | 2181 * | v | | | | | 2182 * |************************************************************************** 2183 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2184 * | | | | | | 2185 * |non-shared| shared (+) | private | slave (*) | invalid | 2186 * *************************************************************************** 2187 * A bind operation clones the source mount and mounts the clone on the 2188 * destination mount. 2189 * 2190 * (++) the cloned mount is propagated to all the mounts in the propagation 2191 * tree of the destination mount and the cloned mount is added to 2192 * the peer group of the source mount. 2193 * (+) the cloned mount is created under the destination mount and is marked 2194 * as shared. The cloned mount is added to the peer group of the source 2195 * mount. 2196 * (+++) the mount is propagated to all the mounts in the propagation tree 2197 * of the destination mount and the cloned mount is made slave 2198 * of the same master as that of the source mount. The cloned mount 2199 * is marked as 'shared and slave'. 2200 * (*) the cloned mount is made a slave of the same master as that of the 2201 * source mount. 2202 * 2203 * --------------------------------------------------------------------------- 2204 * | MOVE MOUNT OPERATION | 2205 * |************************************************************************** 2206 * | source-->| shared | private | slave | unbindable | 2207 * | dest | | | | | 2208 * | | | | | | | 2209 * | v | | | | | 2210 * |************************************************************************** 2211 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2212 * | | | | | | 2213 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2214 * *************************************************************************** 2215 * 2216 * (+) the mount is moved to the destination. And is then propagated to 2217 * all the mounts in the propagation tree of the destination mount. 2218 * (+*) the mount is moved to the destination. 2219 * (+++) the mount is moved to the destination and is then propagated to 2220 * all the mounts belonging to the destination mount's propagation tree. 2221 * the mount is marked as 'shared and slave'. 2222 * (*) the mount continues to be a slave at the new location. 2223 * 2224 * if the source mount is a tree, the operations explained above is 2225 * applied to each mount in the tree. 2226 * Must be called without spinlocks held, since this function can sleep 2227 * in allocations. 2228 */ 2229 static int attach_recursive_mnt(struct mount *source_mnt, 2230 struct mount *dest_mnt, 2231 struct mountpoint *dest_mp, 2232 bool moving) 2233 { 2234 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2235 HLIST_HEAD(tree_list); 2236 struct mnt_namespace *ns = dest_mnt->mnt_ns; 2237 struct mountpoint *smp; 2238 struct mount *child, *p; 2239 struct hlist_node *n; 2240 int err; 2241 2242 /* Preallocate a mountpoint in case the new mounts need 2243 * to be tucked under other mounts. 2244 */ 2245 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2246 if (IS_ERR(smp)) 2247 return PTR_ERR(smp); 2248 2249 /* Is there space to add these mounts to the mount namespace? */ 2250 if (!moving) { 2251 err = count_mounts(ns, source_mnt); 2252 if (err) 2253 goto out; 2254 } 2255 2256 if (IS_MNT_SHARED(dest_mnt)) { 2257 err = invent_group_ids(source_mnt, true); 2258 if (err) 2259 goto out; 2260 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2261 lock_mount_hash(); 2262 if (err) 2263 goto out_cleanup_ids; 2264 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2265 set_mnt_shared(p); 2266 } else { 2267 lock_mount_hash(); 2268 } 2269 if (moving) { 2270 unhash_mnt(source_mnt); 2271 attach_mnt(source_mnt, dest_mnt, dest_mp); 2272 touch_mnt_namespace(source_mnt->mnt_ns); 2273 } else { 2274 if (source_mnt->mnt_ns) { 2275 /* move from anon - the caller will destroy */ 2276 list_del_init(&source_mnt->mnt_ns->list); 2277 } 2278 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2279 commit_tree(source_mnt); 2280 } 2281 2282 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2283 struct mount *q; 2284 hlist_del_init(&child->mnt_hash); 2285 q = __lookup_mnt(&child->mnt_parent->mnt, 2286 child->mnt_mountpoint); 2287 if (q) 2288 mnt_change_mountpoint(child, smp, q); 2289 /* Notice when we are propagating across user namespaces */ 2290 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2291 lock_mnt_tree(child); 2292 child->mnt.mnt_flags &= ~MNT_LOCKED; 2293 commit_tree(child); 2294 } 2295 put_mountpoint(smp); 2296 unlock_mount_hash(); 2297 2298 return 0; 2299 2300 out_cleanup_ids: 2301 while (!hlist_empty(&tree_list)) { 2302 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2303 child->mnt_parent->mnt_ns->pending_mounts = 0; 2304 umount_tree(child, UMOUNT_SYNC); 2305 } 2306 unlock_mount_hash(); 2307 cleanup_group_ids(source_mnt, NULL); 2308 out: 2309 ns->pending_mounts = 0; 2310 2311 read_seqlock_excl(&mount_lock); 2312 put_mountpoint(smp); 2313 read_sequnlock_excl(&mount_lock); 2314 2315 return err; 2316 } 2317 2318 static struct mountpoint *lock_mount(struct path *path) 2319 { 2320 struct vfsmount *mnt; 2321 struct dentry *dentry; 2322 struct mountpoint *mp; 2323 2324 for (;;) { 2325 dentry = path->dentry; 2326 inode_lock(dentry->d_inode); 2327 if (unlikely(cant_mount(dentry))) { 2328 inode_unlock(dentry->d_inode); 2329 return ERR_PTR(-ENOENT); 2330 } 2331 2332 namespace_lock(); 2333 2334 mnt = lookup_mnt(path); 2335 if (likely(!mnt)) 2336 break; 2337 2338 namespace_unlock(); 2339 inode_unlock(dentry->d_inode); 2340 path_put(path); 2341 path->mnt = mnt; 2342 path->dentry = dget(mnt->mnt_root); 2343 } 2344 2345 mp = get_mountpoint(dentry); 2346 if (IS_ERR(mp)) { 2347 namespace_unlock(); 2348 inode_unlock(dentry->d_inode); 2349 } 2350 2351 return mp; 2352 } 2353 2354 static void unlock_mount(struct mountpoint *where) 2355 { 2356 struct dentry *dentry = where->m_dentry; 2357 2358 read_seqlock_excl(&mount_lock); 2359 put_mountpoint(where); 2360 read_sequnlock_excl(&mount_lock); 2361 2362 namespace_unlock(); 2363 inode_unlock(dentry->d_inode); 2364 } 2365 2366 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2367 { 2368 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2369 return -EINVAL; 2370 2371 if (d_is_dir(mp->m_dentry) != 2372 d_is_dir(mnt->mnt.mnt_root)) 2373 return -ENOTDIR; 2374 2375 return attach_recursive_mnt(mnt, p, mp, false); 2376 } 2377 2378 /* 2379 * Sanity check the flags to change_mnt_propagation. 2380 */ 2381 2382 static int flags_to_propagation_type(int ms_flags) 2383 { 2384 int type = ms_flags & ~(MS_REC | MS_SILENT); 2385 2386 /* Fail if any non-propagation flags are set */ 2387 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2388 return 0; 2389 /* Only one propagation flag should be set */ 2390 if (!is_power_of_2(type)) 2391 return 0; 2392 return type; 2393 } 2394 2395 /* 2396 * recursively change the type of the mountpoint. 2397 */ 2398 static int do_change_type(struct path *path, int ms_flags) 2399 { 2400 struct mount *m; 2401 struct mount *mnt = real_mount(path->mnt); 2402 int recurse = ms_flags & MS_REC; 2403 int type; 2404 int err = 0; 2405 2406 if (!path_mounted(path)) 2407 return -EINVAL; 2408 2409 type = flags_to_propagation_type(ms_flags); 2410 if (!type) 2411 return -EINVAL; 2412 2413 namespace_lock(); 2414 if (type == MS_SHARED) { 2415 err = invent_group_ids(mnt, recurse); 2416 if (err) 2417 goto out_unlock; 2418 } 2419 2420 lock_mount_hash(); 2421 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2422 change_mnt_propagation(m, type); 2423 unlock_mount_hash(); 2424 2425 out_unlock: 2426 namespace_unlock(); 2427 return err; 2428 } 2429 2430 static struct mount *__do_loopback(struct path *old_path, int recurse) 2431 { 2432 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2433 2434 if (IS_MNT_UNBINDABLE(old)) 2435 return mnt; 2436 2437 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2438 return mnt; 2439 2440 if (!recurse && has_locked_children(old, old_path->dentry)) 2441 return mnt; 2442 2443 if (recurse) 2444 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2445 else 2446 mnt = clone_mnt(old, old_path->dentry, 0); 2447 2448 if (!IS_ERR(mnt)) 2449 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2450 2451 return mnt; 2452 } 2453 2454 /* 2455 * do loopback mount. 2456 */ 2457 static int do_loopback(struct path *path, const char *old_name, 2458 int recurse) 2459 { 2460 struct path old_path; 2461 struct mount *mnt = NULL, *parent; 2462 struct mountpoint *mp; 2463 int err; 2464 if (!old_name || !*old_name) 2465 return -EINVAL; 2466 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2467 if (err) 2468 return err; 2469 2470 err = -EINVAL; 2471 if (mnt_ns_loop(old_path.dentry)) 2472 goto out; 2473 2474 mp = lock_mount(path); 2475 if (IS_ERR(mp)) { 2476 err = PTR_ERR(mp); 2477 goto out; 2478 } 2479 2480 parent = real_mount(path->mnt); 2481 if (!check_mnt(parent)) 2482 goto out2; 2483 2484 mnt = __do_loopback(&old_path, recurse); 2485 if (IS_ERR(mnt)) { 2486 err = PTR_ERR(mnt); 2487 goto out2; 2488 } 2489 2490 err = graft_tree(mnt, parent, mp); 2491 if (err) { 2492 lock_mount_hash(); 2493 umount_tree(mnt, UMOUNT_SYNC); 2494 unlock_mount_hash(); 2495 } 2496 out2: 2497 unlock_mount(mp); 2498 out: 2499 path_put(&old_path); 2500 return err; 2501 } 2502 2503 static struct file *open_detached_copy(struct path *path, bool recursive) 2504 { 2505 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2506 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2507 struct mount *mnt, *p; 2508 struct file *file; 2509 2510 if (IS_ERR(ns)) 2511 return ERR_CAST(ns); 2512 2513 namespace_lock(); 2514 mnt = __do_loopback(path, recursive); 2515 if (IS_ERR(mnt)) { 2516 namespace_unlock(); 2517 free_mnt_ns(ns); 2518 return ERR_CAST(mnt); 2519 } 2520 2521 lock_mount_hash(); 2522 for (p = mnt; p; p = next_mnt(p, mnt)) { 2523 p->mnt_ns = ns; 2524 ns->mounts++; 2525 } 2526 ns->root = mnt; 2527 list_add_tail(&ns->list, &mnt->mnt_list); 2528 mntget(&mnt->mnt); 2529 unlock_mount_hash(); 2530 namespace_unlock(); 2531 2532 mntput(path->mnt); 2533 path->mnt = &mnt->mnt; 2534 file = dentry_open(path, O_PATH, current_cred()); 2535 if (IS_ERR(file)) 2536 dissolve_on_fput(path->mnt); 2537 else 2538 file->f_mode |= FMODE_NEED_UNMOUNT; 2539 return file; 2540 } 2541 2542 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2543 { 2544 struct file *file; 2545 struct path path; 2546 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2547 bool detached = flags & OPEN_TREE_CLONE; 2548 int error; 2549 int fd; 2550 2551 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2552 2553 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2554 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2555 OPEN_TREE_CLOEXEC)) 2556 return -EINVAL; 2557 2558 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2559 return -EINVAL; 2560 2561 if (flags & AT_NO_AUTOMOUNT) 2562 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2563 if (flags & AT_SYMLINK_NOFOLLOW) 2564 lookup_flags &= ~LOOKUP_FOLLOW; 2565 if (flags & AT_EMPTY_PATH) 2566 lookup_flags |= LOOKUP_EMPTY; 2567 2568 if (detached && !may_mount()) 2569 return -EPERM; 2570 2571 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2572 if (fd < 0) 2573 return fd; 2574 2575 error = user_path_at(dfd, filename, lookup_flags, &path); 2576 if (unlikely(error)) { 2577 file = ERR_PTR(error); 2578 } else { 2579 if (detached) 2580 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2581 else 2582 file = dentry_open(&path, O_PATH, current_cred()); 2583 path_put(&path); 2584 } 2585 if (IS_ERR(file)) { 2586 put_unused_fd(fd); 2587 return PTR_ERR(file); 2588 } 2589 fd_install(fd, file); 2590 return fd; 2591 } 2592 2593 /* 2594 * Don't allow locked mount flags to be cleared. 2595 * 2596 * No locks need to be held here while testing the various MNT_LOCK 2597 * flags because those flags can never be cleared once they are set. 2598 */ 2599 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2600 { 2601 unsigned int fl = mnt->mnt.mnt_flags; 2602 2603 if ((fl & MNT_LOCK_READONLY) && 2604 !(mnt_flags & MNT_READONLY)) 2605 return false; 2606 2607 if ((fl & MNT_LOCK_NODEV) && 2608 !(mnt_flags & MNT_NODEV)) 2609 return false; 2610 2611 if ((fl & MNT_LOCK_NOSUID) && 2612 !(mnt_flags & MNT_NOSUID)) 2613 return false; 2614 2615 if ((fl & MNT_LOCK_NOEXEC) && 2616 !(mnt_flags & MNT_NOEXEC)) 2617 return false; 2618 2619 if ((fl & MNT_LOCK_ATIME) && 2620 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2621 return false; 2622 2623 return true; 2624 } 2625 2626 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2627 { 2628 bool readonly_request = (mnt_flags & MNT_READONLY); 2629 2630 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2631 return 0; 2632 2633 if (readonly_request) 2634 return mnt_make_readonly(mnt); 2635 2636 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2637 return 0; 2638 } 2639 2640 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2641 { 2642 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2643 mnt->mnt.mnt_flags = mnt_flags; 2644 touch_mnt_namespace(mnt->mnt_ns); 2645 } 2646 2647 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2648 { 2649 struct super_block *sb = mnt->mnt_sb; 2650 2651 if (!__mnt_is_readonly(mnt) && 2652 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 2653 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2654 char *buf = (char *)__get_free_page(GFP_KERNEL); 2655 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM); 2656 2657 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", 2658 sb->s_type->name, 2659 is_mounted(mnt) ? "remounted" : "mounted", 2660 mntpath, &sb->s_time_max, 2661 (unsigned long long)sb->s_time_max); 2662 2663 free_page((unsigned long)buf); 2664 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 2665 } 2666 } 2667 2668 /* 2669 * Handle reconfiguration of the mountpoint only without alteration of the 2670 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2671 * to mount(2). 2672 */ 2673 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2674 { 2675 struct super_block *sb = path->mnt->mnt_sb; 2676 struct mount *mnt = real_mount(path->mnt); 2677 int ret; 2678 2679 if (!check_mnt(mnt)) 2680 return -EINVAL; 2681 2682 if (!path_mounted(path)) 2683 return -EINVAL; 2684 2685 if (!can_change_locked_flags(mnt, mnt_flags)) 2686 return -EPERM; 2687 2688 /* 2689 * We're only checking whether the superblock is read-only not 2690 * changing it, so only take down_read(&sb->s_umount). 2691 */ 2692 down_read(&sb->s_umount); 2693 lock_mount_hash(); 2694 ret = change_mount_ro_state(mnt, mnt_flags); 2695 if (ret == 0) 2696 set_mount_attributes(mnt, mnt_flags); 2697 unlock_mount_hash(); 2698 up_read(&sb->s_umount); 2699 2700 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2701 2702 return ret; 2703 } 2704 2705 /* 2706 * change filesystem flags. dir should be a physical root of filesystem. 2707 * If you've mounted a non-root directory somewhere and want to do remount 2708 * on it - tough luck. 2709 */ 2710 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2711 int mnt_flags, void *data) 2712 { 2713 int err; 2714 struct super_block *sb = path->mnt->mnt_sb; 2715 struct mount *mnt = real_mount(path->mnt); 2716 struct fs_context *fc; 2717 2718 if (!check_mnt(mnt)) 2719 return -EINVAL; 2720 2721 if (!path_mounted(path)) 2722 return -EINVAL; 2723 2724 if (!can_change_locked_flags(mnt, mnt_flags)) 2725 return -EPERM; 2726 2727 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 2728 if (IS_ERR(fc)) 2729 return PTR_ERR(fc); 2730 2731 fc->oldapi = true; 2732 err = parse_monolithic_mount_data(fc, data); 2733 if (!err) { 2734 down_write(&sb->s_umount); 2735 err = -EPERM; 2736 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 2737 err = reconfigure_super(fc); 2738 if (!err) { 2739 lock_mount_hash(); 2740 set_mount_attributes(mnt, mnt_flags); 2741 unlock_mount_hash(); 2742 } 2743 } 2744 up_write(&sb->s_umount); 2745 } 2746 2747 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2748 2749 put_fs_context(fc); 2750 return err; 2751 } 2752 2753 static inline int tree_contains_unbindable(struct mount *mnt) 2754 { 2755 struct mount *p; 2756 for (p = mnt; p; p = next_mnt(p, mnt)) { 2757 if (IS_MNT_UNBINDABLE(p)) 2758 return 1; 2759 } 2760 return 0; 2761 } 2762 2763 /* 2764 * Check that there aren't references to earlier/same mount namespaces in the 2765 * specified subtree. Such references can act as pins for mount namespaces 2766 * that aren't checked by the mount-cycle checking code, thereby allowing 2767 * cycles to be made. 2768 */ 2769 static bool check_for_nsfs_mounts(struct mount *subtree) 2770 { 2771 struct mount *p; 2772 bool ret = false; 2773 2774 lock_mount_hash(); 2775 for (p = subtree; p; p = next_mnt(p, subtree)) 2776 if (mnt_ns_loop(p->mnt.mnt_root)) 2777 goto out; 2778 2779 ret = true; 2780 out: 2781 unlock_mount_hash(); 2782 return ret; 2783 } 2784 2785 static int do_set_group(struct path *from_path, struct path *to_path) 2786 { 2787 struct mount *from, *to; 2788 int err; 2789 2790 from = real_mount(from_path->mnt); 2791 to = real_mount(to_path->mnt); 2792 2793 namespace_lock(); 2794 2795 err = -EINVAL; 2796 /* To and From must be mounted */ 2797 if (!is_mounted(&from->mnt)) 2798 goto out; 2799 if (!is_mounted(&to->mnt)) 2800 goto out; 2801 2802 err = -EPERM; 2803 /* We should be allowed to modify mount namespaces of both mounts */ 2804 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2805 goto out; 2806 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 2807 goto out; 2808 2809 err = -EINVAL; 2810 /* To and From paths should be mount roots */ 2811 if (!path_mounted(from_path)) 2812 goto out; 2813 if (!path_mounted(to_path)) 2814 goto out; 2815 2816 /* Setting sharing groups is only allowed across same superblock */ 2817 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 2818 goto out; 2819 2820 /* From mount root should be wider than To mount root */ 2821 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 2822 goto out; 2823 2824 /* From mount should not have locked children in place of To's root */ 2825 if (has_locked_children(from, to->mnt.mnt_root)) 2826 goto out; 2827 2828 /* Setting sharing groups is only allowed on private mounts */ 2829 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 2830 goto out; 2831 2832 /* From should not be private */ 2833 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 2834 goto out; 2835 2836 if (IS_MNT_SLAVE(from)) { 2837 struct mount *m = from->mnt_master; 2838 2839 list_add(&to->mnt_slave, &m->mnt_slave_list); 2840 to->mnt_master = m; 2841 } 2842 2843 if (IS_MNT_SHARED(from)) { 2844 to->mnt_group_id = from->mnt_group_id; 2845 list_add(&to->mnt_share, &from->mnt_share); 2846 lock_mount_hash(); 2847 set_mnt_shared(to); 2848 unlock_mount_hash(); 2849 } 2850 2851 err = 0; 2852 out: 2853 namespace_unlock(); 2854 return err; 2855 } 2856 2857 static int do_move_mount(struct path *old_path, struct path *new_path) 2858 { 2859 struct mnt_namespace *ns; 2860 struct mount *p; 2861 struct mount *old; 2862 struct mount *parent; 2863 struct mountpoint *mp, *old_mp; 2864 int err; 2865 bool attached; 2866 2867 mp = lock_mount(new_path); 2868 if (IS_ERR(mp)) 2869 return PTR_ERR(mp); 2870 2871 old = real_mount(old_path->mnt); 2872 p = real_mount(new_path->mnt); 2873 parent = old->mnt_parent; 2874 attached = mnt_has_parent(old); 2875 old_mp = old->mnt_mp; 2876 ns = old->mnt_ns; 2877 2878 err = -EINVAL; 2879 /* The mountpoint must be in our namespace. */ 2880 if (!check_mnt(p)) 2881 goto out; 2882 2883 /* The thing moved must be mounted... */ 2884 if (!is_mounted(&old->mnt)) 2885 goto out; 2886 2887 /* ... and either ours or the root of anon namespace */ 2888 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 2889 goto out; 2890 2891 if (old->mnt.mnt_flags & MNT_LOCKED) 2892 goto out; 2893 2894 if (!path_mounted(old_path)) 2895 goto out; 2896 2897 if (d_is_dir(new_path->dentry) != 2898 d_is_dir(old_path->dentry)) 2899 goto out; 2900 /* 2901 * Don't move a mount residing in a shared parent. 2902 */ 2903 if (attached && IS_MNT_SHARED(parent)) 2904 goto out; 2905 /* 2906 * Don't move a mount tree containing unbindable mounts to a destination 2907 * mount which is shared. 2908 */ 2909 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2910 goto out; 2911 err = -ELOOP; 2912 if (!check_for_nsfs_mounts(old)) 2913 goto out; 2914 for (; mnt_has_parent(p); p = p->mnt_parent) 2915 if (p == old) 2916 goto out; 2917 2918 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, 2919 attached); 2920 if (err) 2921 goto out; 2922 2923 /* if the mount is moved, it should no longer be expire 2924 * automatically */ 2925 list_del_init(&old->mnt_expire); 2926 if (attached) 2927 put_mountpoint(old_mp); 2928 out: 2929 unlock_mount(mp); 2930 if (!err) { 2931 if (attached) 2932 mntput_no_expire(parent); 2933 else 2934 free_mnt_ns(ns); 2935 } 2936 return err; 2937 } 2938 2939 static int do_move_mount_old(struct path *path, const char *old_name) 2940 { 2941 struct path old_path; 2942 int err; 2943 2944 if (!old_name || !*old_name) 2945 return -EINVAL; 2946 2947 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2948 if (err) 2949 return err; 2950 2951 err = do_move_mount(&old_path, path); 2952 path_put(&old_path); 2953 return err; 2954 } 2955 2956 /* 2957 * add a mount into a namespace's mount tree 2958 */ 2959 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 2960 const struct path *path, int mnt_flags) 2961 { 2962 struct mount *parent = real_mount(path->mnt); 2963 2964 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2965 2966 if (unlikely(!check_mnt(parent))) { 2967 /* that's acceptable only for automounts done in private ns */ 2968 if (!(mnt_flags & MNT_SHRINKABLE)) 2969 return -EINVAL; 2970 /* ... and for those we'd better have mountpoint still alive */ 2971 if (!parent->mnt_ns) 2972 return -EINVAL; 2973 } 2974 2975 /* Refuse the same filesystem on the same mount point */ 2976 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) 2977 return -EBUSY; 2978 2979 if (d_is_symlink(newmnt->mnt.mnt_root)) 2980 return -EINVAL; 2981 2982 newmnt->mnt.mnt_flags = mnt_flags; 2983 return graft_tree(newmnt, parent, mp); 2984 } 2985 2986 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 2987 2988 /* 2989 * Create a new mount using a superblock configuration and request it 2990 * be added to the namespace tree. 2991 */ 2992 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 2993 unsigned int mnt_flags) 2994 { 2995 struct vfsmount *mnt; 2996 struct mountpoint *mp; 2997 struct super_block *sb = fc->root->d_sb; 2998 int error; 2999 3000 error = security_sb_kern_mount(sb); 3001 if (!error && mount_too_revealing(sb, &mnt_flags)) 3002 error = -EPERM; 3003 3004 if (unlikely(error)) { 3005 fc_drop_locked(fc); 3006 return error; 3007 } 3008 3009 up_write(&sb->s_umount); 3010 3011 mnt = vfs_create_mount(fc); 3012 if (IS_ERR(mnt)) 3013 return PTR_ERR(mnt); 3014 3015 mnt_warn_timestamp_expiry(mountpoint, mnt); 3016 3017 mp = lock_mount(mountpoint); 3018 if (IS_ERR(mp)) { 3019 mntput(mnt); 3020 return PTR_ERR(mp); 3021 } 3022 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 3023 unlock_mount(mp); 3024 if (error < 0) 3025 mntput(mnt); 3026 return error; 3027 } 3028 3029 /* 3030 * create a new mount for userspace and request it to be added into the 3031 * namespace's tree 3032 */ 3033 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 3034 int mnt_flags, const char *name, void *data) 3035 { 3036 struct file_system_type *type; 3037 struct fs_context *fc; 3038 const char *subtype = NULL; 3039 int err = 0; 3040 3041 if (!fstype) 3042 return -EINVAL; 3043 3044 type = get_fs_type(fstype); 3045 if (!type) 3046 return -ENODEV; 3047 3048 if (type->fs_flags & FS_HAS_SUBTYPE) { 3049 subtype = strchr(fstype, '.'); 3050 if (subtype) { 3051 subtype++; 3052 if (!*subtype) { 3053 put_filesystem(type); 3054 return -EINVAL; 3055 } 3056 } 3057 } 3058 3059 fc = fs_context_for_mount(type, sb_flags); 3060 put_filesystem(type); 3061 if (IS_ERR(fc)) 3062 return PTR_ERR(fc); 3063 3064 if (subtype) 3065 err = vfs_parse_fs_string(fc, "subtype", 3066 subtype, strlen(subtype)); 3067 if (!err && name) 3068 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3069 if (!err) 3070 err = parse_monolithic_mount_data(fc, data); 3071 if (!err && !mount_capable(fc)) 3072 err = -EPERM; 3073 if (!err) 3074 err = vfs_get_tree(fc); 3075 if (!err) 3076 err = do_new_mount_fc(fc, path, mnt_flags); 3077 3078 put_fs_context(fc); 3079 return err; 3080 } 3081 3082 int finish_automount(struct vfsmount *m, const struct path *path) 3083 { 3084 struct dentry *dentry = path->dentry; 3085 struct mountpoint *mp; 3086 struct mount *mnt; 3087 int err; 3088 3089 if (!m) 3090 return 0; 3091 if (IS_ERR(m)) 3092 return PTR_ERR(m); 3093 3094 mnt = real_mount(m); 3095 /* The new mount record should have at least 2 refs to prevent it being 3096 * expired before we get a chance to add it 3097 */ 3098 BUG_ON(mnt_get_count(mnt) < 2); 3099 3100 if (m->mnt_sb == path->mnt->mnt_sb && 3101 m->mnt_root == dentry) { 3102 err = -ELOOP; 3103 goto discard; 3104 } 3105 3106 /* 3107 * we don't want to use lock_mount() - in this case finding something 3108 * that overmounts our mountpoint to be means "quitely drop what we've 3109 * got", not "try to mount it on top". 3110 */ 3111 inode_lock(dentry->d_inode); 3112 namespace_lock(); 3113 if (unlikely(cant_mount(dentry))) { 3114 err = -ENOENT; 3115 goto discard_locked; 3116 } 3117 rcu_read_lock(); 3118 if (unlikely(__lookup_mnt(path->mnt, dentry))) { 3119 rcu_read_unlock(); 3120 err = 0; 3121 goto discard_locked; 3122 } 3123 rcu_read_unlock(); 3124 mp = get_mountpoint(dentry); 3125 if (IS_ERR(mp)) { 3126 err = PTR_ERR(mp); 3127 goto discard_locked; 3128 } 3129 3130 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3131 unlock_mount(mp); 3132 if (unlikely(err)) 3133 goto discard; 3134 mntput(m); 3135 return 0; 3136 3137 discard_locked: 3138 namespace_unlock(); 3139 inode_unlock(dentry->d_inode); 3140 discard: 3141 /* remove m from any expiration list it may be on */ 3142 if (!list_empty(&mnt->mnt_expire)) { 3143 namespace_lock(); 3144 list_del_init(&mnt->mnt_expire); 3145 namespace_unlock(); 3146 } 3147 mntput(m); 3148 mntput(m); 3149 return err; 3150 } 3151 3152 /** 3153 * mnt_set_expiry - Put a mount on an expiration list 3154 * @mnt: The mount to list. 3155 * @expiry_list: The list to add the mount to. 3156 */ 3157 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3158 { 3159 namespace_lock(); 3160 3161 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3162 3163 namespace_unlock(); 3164 } 3165 EXPORT_SYMBOL(mnt_set_expiry); 3166 3167 /* 3168 * process a list of expirable mountpoints with the intent of discarding any 3169 * mountpoints that aren't in use and haven't been touched since last we came 3170 * here 3171 */ 3172 void mark_mounts_for_expiry(struct list_head *mounts) 3173 { 3174 struct mount *mnt, *next; 3175 LIST_HEAD(graveyard); 3176 3177 if (list_empty(mounts)) 3178 return; 3179 3180 namespace_lock(); 3181 lock_mount_hash(); 3182 3183 /* extract from the expiration list every vfsmount that matches the 3184 * following criteria: 3185 * - only referenced by its parent vfsmount 3186 * - still marked for expiry (marked on the last call here; marks are 3187 * cleared by mntput()) 3188 */ 3189 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3190 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3191 propagate_mount_busy(mnt, 1)) 3192 continue; 3193 list_move(&mnt->mnt_expire, &graveyard); 3194 } 3195 while (!list_empty(&graveyard)) { 3196 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3197 touch_mnt_namespace(mnt->mnt_ns); 3198 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3199 } 3200 unlock_mount_hash(); 3201 namespace_unlock(); 3202 } 3203 3204 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3205 3206 /* 3207 * Ripoff of 'select_parent()' 3208 * 3209 * search the list of submounts for a given mountpoint, and move any 3210 * shrinkable submounts to the 'graveyard' list. 3211 */ 3212 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3213 { 3214 struct mount *this_parent = parent; 3215 struct list_head *next; 3216 int found = 0; 3217 3218 repeat: 3219 next = this_parent->mnt_mounts.next; 3220 resume: 3221 while (next != &this_parent->mnt_mounts) { 3222 struct list_head *tmp = next; 3223 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3224 3225 next = tmp->next; 3226 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3227 continue; 3228 /* 3229 * Descend a level if the d_mounts list is non-empty. 3230 */ 3231 if (!list_empty(&mnt->mnt_mounts)) { 3232 this_parent = mnt; 3233 goto repeat; 3234 } 3235 3236 if (!propagate_mount_busy(mnt, 1)) { 3237 list_move_tail(&mnt->mnt_expire, graveyard); 3238 found++; 3239 } 3240 } 3241 /* 3242 * All done at this level ... ascend and resume the search 3243 */ 3244 if (this_parent != parent) { 3245 next = this_parent->mnt_child.next; 3246 this_parent = this_parent->mnt_parent; 3247 goto resume; 3248 } 3249 return found; 3250 } 3251 3252 /* 3253 * process a list of expirable mountpoints with the intent of discarding any 3254 * submounts of a specific parent mountpoint 3255 * 3256 * mount_lock must be held for write 3257 */ 3258 static void shrink_submounts(struct mount *mnt) 3259 { 3260 LIST_HEAD(graveyard); 3261 struct mount *m; 3262 3263 /* extract submounts of 'mountpoint' from the expiration list */ 3264 while (select_submounts(mnt, &graveyard)) { 3265 while (!list_empty(&graveyard)) { 3266 m = list_first_entry(&graveyard, struct mount, 3267 mnt_expire); 3268 touch_mnt_namespace(m->mnt_ns); 3269 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3270 } 3271 } 3272 } 3273 3274 static void *copy_mount_options(const void __user * data) 3275 { 3276 char *copy; 3277 unsigned left, offset; 3278 3279 if (!data) 3280 return NULL; 3281 3282 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3283 if (!copy) 3284 return ERR_PTR(-ENOMEM); 3285 3286 left = copy_from_user(copy, data, PAGE_SIZE); 3287 3288 /* 3289 * Not all architectures have an exact copy_from_user(). Resort to 3290 * byte at a time. 3291 */ 3292 offset = PAGE_SIZE - left; 3293 while (left) { 3294 char c; 3295 if (get_user(c, (const char __user *)data + offset)) 3296 break; 3297 copy[offset] = c; 3298 left--; 3299 offset++; 3300 } 3301 3302 if (left == PAGE_SIZE) { 3303 kfree(copy); 3304 return ERR_PTR(-EFAULT); 3305 } 3306 3307 return copy; 3308 } 3309 3310 static char *copy_mount_string(const void __user *data) 3311 { 3312 return data ? strndup_user(data, PATH_MAX) : NULL; 3313 } 3314 3315 /* 3316 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3317 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3318 * 3319 * data is a (void *) that can point to any structure up to 3320 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3321 * information (or be NULL). 3322 * 3323 * Pre-0.97 versions of mount() didn't have a flags word. 3324 * When the flags word was introduced its top half was required 3325 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3326 * Therefore, if this magic number is present, it carries no information 3327 * and must be discarded. 3328 */ 3329 int path_mount(const char *dev_name, struct path *path, 3330 const char *type_page, unsigned long flags, void *data_page) 3331 { 3332 unsigned int mnt_flags = 0, sb_flags; 3333 int ret; 3334 3335 /* Discard magic */ 3336 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3337 flags &= ~MS_MGC_MSK; 3338 3339 /* Basic sanity checks */ 3340 if (data_page) 3341 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3342 3343 if (flags & MS_NOUSER) 3344 return -EINVAL; 3345 3346 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3347 if (ret) 3348 return ret; 3349 if (!may_mount()) 3350 return -EPERM; 3351 if (flags & SB_MANDLOCK) 3352 warn_mandlock(); 3353 3354 /* Default to relatime unless overriden */ 3355 if (!(flags & MS_NOATIME)) 3356 mnt_flags |= MNT_RELATIME; 3357 3358 /* Separate the per-mountpoint flags */ 3359 if (flags & MS_NOSUID) 3360 mnt_flags |= MNT_NOSUID; 3361 if (flags & MS_NODEV) 3362 mnt_flags |= MNT_NODEV; 3363 if (flags & MS_NOEXEC) 3364 mnt_flags |= MNT_NOEXEC; 3365 if (flags & MS_NOATIME) 3366 mnt_flags |= MNT_NOATIME; 3367 if (flags & MS_NODIRATIME) 3368 mnt_flags |= MNT_NODIRATIME; 3369 if (flags & MS_STRICTATIME) 3370 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3371 if (flags & MS_RDONLY) 3372 mnt_flags |= MNT_READONLY; 3373 if (flags & MS_NOSYMFOLLOW) 3374 mnt_flags |= MNT_NOSYMFOLLOW; 3375 3376 /* The default atime for remount is preservation */ 3377 if ((flags & MS_REMOUNT) && 3378 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3379 MS_STRICTATIME)) == 0)) { 3380 mnt_flags &= ~MNT_ATIME_MASK; 3381 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3382 } 3383 3384 sb_flags = flags & (SB_RDONLY | 3385 SB_SYNCHRONOUS | 3386 SB_MANDLOCK | 3387 SB_DIRSYNC | 3388 SB_SILENT | 3389 SB_POSIXACL | 3390 SB_LAZYTIME | 3391 SB_I_VERSION); 3392 3393 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3394 return do_reconfigure_mnt(path, mnt_flags); 3395 if (flags & MS_REMOUNT) 3396 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3397 if (flags & MS_BIND) 3398 return do_loopback(path, dev_name, flags & MS_REC); 3399 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3400 return do_change_type(path, flags); 3401 if (flags & MS_MOVE) 3402 return do_move_mount_old(path, dev_name); 3403 3404 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3405 data_page); 3406 } 3407 3408 long do_mount(const char *dev_name, const char __user *dir_name, 3409 const char *type_page, unsigned long flags, void *data_page) 3410 { 3411 struct path path; 3412 int ret; 3413 3414 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3415 if (ret) 3416 return ret; 3417 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3418 path_put(&path); 3419 return ret; 3420 } 3421 3422 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3423 { 3424 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3425 } 3426 3427 static void dec_mnt_namespaces(struct ucounts *ucounts) 3428 { 3429 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3430 } 3431 3432 static void free_mnt_ns(struct mnt_namespace *ns) 3433 { 3434 if (!is_anon_ns(ns)) 3435 ns_free_inum(&ns->ns); 3436 dec_mnt_namespaces(ns->ucounts); 3437 put_user_ns(ns->user_ns); 3438 kfree(ns); 3439 } 3440 3441 /* 3442 * Assign a sequence number so we can detect when we attempt to bind 3443 * mount a reference to an older mount namespace into the current 3444 * mount namespace, preventing reference counting loops. A 64bit 3445 * number incrementing at 10Ghz will take 12,427 years to wrap which 3446 * is effectively never, so we can ignore the possibility. 3447 */ 3448 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3449 3450 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3451 { 3452 struct mnt_namespace *new_ns; 3453 struct ucounts *ucounts; 3454 int ret; 3455 3456 ucounts = inc_mnt_namespaces(user_ns); 3457 if (!ucounts) 3458 return ERR_PTR(-ENOSPC); 3459 3460 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 3461 if (!new_ns) { 3462 dec_mnt_namespaces(ucounts); 3463 return ERR_PTR(-ENOMEM); 3464 } 3465 if (!anon) { 3466 ret = ns_alloc_inum(&new_ns->ns); 3467 if (ret) { 3468 kfree(new_ns); 3469 dec_mnt_namespaces(ucounts); 3470 return ERR_PTR(ret); 3471 } 3472 } 3473 new_ns->ns.ops = &mntns_operations; 3474 if (!anon) 3475 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3476 refcount_set(&new_ns->ns.count, 1); 3477 INIT_LIST_HEAD(&new_ns->list); 3478 init_waitqueue_head(&new_ns->poll); 3479 spin_lock_init(&new_ns->ns_lock); 3480 new_ns->user_ns = get_user_ns(user_ns); 3481 new_ns->ucounts = ucounts; 3482 return new_ns; 3483 } 3484 3485 __latent_entropy 3486 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3487 struct user_namespace *user_ns, struct fs_struct *new_fs) 3488 { 3489 struct mnt_namespace *new_ns; 3490 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3491 struct mount *p, *q; 3492 struct mount *old; 3493 struct mount *new; 3494 int copy_flags; 3495 3496 BUG_ON(!ns); 3497 3498 if (likely(!(flags & CLONE_NEWNS))) { 3499 get_mnt_ns(ns); 3500 return ns; 3501 } 3502 3503 old = ns->root; 3504 3505 new_ns = alloc_mnt_ns(user_ns, false); 3506 if (IS_ERR(new_ns)) 3507 return new_ns; 3508 3509 namespace_lock(); 3510 /* First pass: copy the tree topology */ 3511 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3512 if (user_ns != ns->user_ns) 3513 copy_flags |= CL_SHARED_TO_SLAVE; 3514 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3515 if (IS_ERR(new)) { 3516 namespace_unlock(); 3517 free_mnt_ns(new_ns); 3518 return ERR_CAST(new); 3519 } 3520 if (user_ns != ns->user_ns) { 3521 lock_mount_hash(); 3522 lock_mnt_tree(new); 3523 unlock_mount_hash(); 3524 } 3525 new_ns->root = new; 3526 list_add_tail(&new_ns->list, &new->mnt_list); 3527 3528 /* 3529 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3530 * as belonging to new namespace. We have already acquired a private 3531 * fs_struct, so tsk->fs->lock is not needed. 3532 */ 3533 p = old; 3534 q = new; 3535 while (p) { 3536 q->mnt_ns = new_ns; 3537 new_ns->mounts++; 3538 if (new_fs) { 3539 if (&p->mnt == new_fs->root.mnt) { 3540 new_fs->root.mnt = mntget(&q->mnt); 3541 rootmnt = &p->mnt; 3542 } 3543 if (&p->mnt == new_fs->pwd.mnt) { 3544 new_fs->pwd.mnt = mntget(&q->mnt); 3545 pwdmnt = &p->mnt; 3546 } 3547 } 3548 p = next_mnt(p, old); 3549 q = next_mnt(q, new); 3550 if (!q) 3551 break; 3552 // an mntns binding we'd skipped? 3553 while (p->mnt.mnt_root != q->mnt.mnt_root) 3554 p = next_mnt(skip_mnt_tree(p), old); 3555 } 3556 namespace_unlock(); 3557 3558 if (rootmnt) 3559 mntput(rootmnt); 3560 if (pwdmnt) 3561 mntput(pwdmnt); 3562 3563 return new_ns; 3564 } 3565 3566 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3567 { 3568 struct mount *mnt = real_mount(m); 3569 struct mnt_namespace *ns; 3570 struct super_block *s; 3571 struct path path; 3572 int err; 3573 3574 ns = alloc_mnt_ns(&init_user_ns, true); 3575 if (IS_ERR(ns)) { 3576 mntput(m); 3577 return ERR_CAST(ns); 3578 } 3579 mnt->mnt_ns = ns; 3580 ns->root = mnt; 3581 ns->mounts++; 3582 list_add(&mnt->mnt_list, &ns->list); 3583 3584 err = vfs_path_lookup(m->mnt_root, m, 3585 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3586 3587 put_mnt_ns(ns); 3588 3589 if (err) 3590 return ERR_PTR(err); 3591 3592 /* trade a vfsmount reference for active sb one */ 3593 s = path.mnt->mnt_sb; 3594 atomic_inc(&s->s_active); 3595 mntput(path.mnt); 3596 /* lock the sucker */ 3597 down_write(&s->s_umount); 3598 /* ... and return the root of (sub)tree on it */ 3599 return path.dentry; 3600 } 3601 EXPORT_SYMBOL(mount_subtree); 3602 3603 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 3604 char __user *, type, unsigned long, flags, void __user *, data) 3605 { 3606 int ret; 3607 char *kernel_type; 3608 char *kernel_dev; 3609 void *options; 3610 3611 kernel_type = copy_mount_string(type); 3612 ret = PTR_ERR(kernel_type); 3613 if (IS_ERR(kernel_type)) 3614 goto out_type; 3615 3616 kernel_dev = copy_mount_string(dev_name); 3617 ret = PTR_ERR(kernel_dev); 3618 if (IS_ERR(kernel_dev)) 3619 goto out_dev; 3620 3621 options = copy_mount_options(data); 3622 ret = PTR_ERR(options); 3623 if (IS_ERR(options)) 3624 goto out_data; 3625 3626 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 3627 3628 kfree(options); 3629 out_data: 3630 kfree(kernel_dev); 3631 out_dev: 3632 kfree(kernel_type); 3633 out_type: 3634 return ret; 3635 } 3636 3637 #define FSMOUNT_VALID_FLAGS \ 3638 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 3639 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 3640 MOUNT_ATTR_NOSYMFOLLOW) 3641 3642 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 3643 3644 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 3645 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 3646 3647 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 3648 { 3649 unsigned int mnt_flags = 0; 3650 3651 if (attr_flags & MOUNT_ATTR_RDONLY) 3652 mnt_flags |= MNT_READONLY; 3653 if (attr_flags & MOUNT_ATTR_NOSUID) 3654 mnt_flags |= MNT_NOSUID; 3655 if (attr_flags & MOUNT_ATTR_NODEV) 3656 mnt_flags |= MNT_NODEV; 3657 if (attr_flags & MOUNT_ATTR_NOEXEC) 3658 mnt_flags |= MNT_NOEXEC; 3659 if (attr_flags & MOUNT_ATTR_NODIRATIME) 3660 mnt_flags |= MNT_NODIRATIME; 3661 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 3662 mnt_flags |= MNT_NOSYMFOLLOW; 3663 3664 return mnt_flags; 3665 } 3666 3667 /* 3668 * Create a kernel mount representation for a new, prepared superblock 3669 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 3670 */ 3671 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 3672 unsigned int, attr_flags) 3673 { 3674 struct mnt_namespace *ns; 3675 struct fs_context *fc; 3676 struct file *file; 3677 struct path newmount; 3678 struct mount *mnt; 3679 struct fd f; 3680 unsigned int mnt_flags = 0; 3681 long ret; 3682 3683 if (!may_mount()) 3684 return -EPERM; 3685 3686 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 3687 return -EINVAL; 3688 3689 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 3690 return -EINVAL; 3691 3692 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 3693 3694 switch (attr_flags & MOUNT_ATTR__ATIME) { 3695 case MOUNT_ATTR_STRICTATIME: 3696 break; 3697 case MOUNT_ATTR_NOATIME: 3698 mnt_flags |= MNT_NOATIME; 3699 break; 3700 case MOUNT_ATTR_RELATIME: 3701 mnt_flags |= MNT_RELATIME; 3702 break; 3703 default: 3704 return -EINVAL; 3705 } 3706 3707 f = fdget(fs_fd); 3708 if (!f.file) 3709 return -EBADF; 3710 3711 ret = -EINVAL; 3712 if (f.file->f_op != &fscontext_fops) 3713 goto err_fsfd; 3714 3715 fc = f.file->private_data; 3716 3717 ret = mutex_lock_interruptible(&fc->uapi_mutex); 3718 if (ret < 0) 3719 goto err_fsfd; 3720 3721 /* There must be a valid superblock or we can't mount it */ 3722 ret = -EINVAL; 3723 if (!fc->root) 3724 goto err_unlock; 3725 3726 ret = -EPERM; 3727 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 3728 pr_warn("VFS: Mount too revealing\n"); 3729 goto err_unlock; 3730 } 3731 3732 ret = -EBUSY; 3733 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 3734 goto err_unlock; 3735 3736 if (fc->sb_flags & SB_MANDLOCK) 3737 warn_mandlock(); 3738 3739 newmount.mnt = vfs_create_mount(fc); 3740 if (IS_ERR(newmount.mnt)) { 3741 ret = PTR_ERR(newmount.mnt); 3742 goto err_unlock; 3743 } 3744 newmount.dentry = dget(fc->root); 3745 newmount.mnt->mnt_flags = mnt_flags; 3746 3747 /* We've done the mount bit - now move the file context into more or 3748 * less the same state as if we'd done an fspick(). We don't want to 3749 * do any memory allocation or anything like that at this point as we 3750 * don't want to have to handle any errors incurred. 3751 */ 3752 vfs_clean_context(fc); 3753 3754 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 3755 if (IS_ERR(ns)) { 3756 ret = PTR_ERR(ns); 3757 goto err_path; 3758 } 3759 mnt = real_mount(newmount.mnt); 3760 mnt->mnt_ns = ns; 3761 ns->root = mnt; 3762 ns->mounts = 1; 3763 list_add(&mnt->mnt_list, &ns->list); 3764 mntget(newmount.mnt); 3765 3766 /* Attach to an apparent O_PATH fd with a note that we need to unmount 3767 * it, not just simply put it. 3768 */ 3769 file = dentry_open(&newmount, O_PATH, fc->cred); 3770 if (IS_ERR(file)) { 3771 dissolve_on_fput(newmount.mnt); 3772 ret = PTR_ERR(file); 3773 goto err_path; 3774 } 3775 file->f_mode |= FMODE_NEED_UNMOUNT; 3776 3777 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 3778 if (ret >= 0) 3779 fd_install(ret, file); 3780 else 3781 fput(file); 3782 3783 err_path: 3784 path_put(&newmount); 3785 err_unlock: 3786 mutex_unlock(&fc->uapi_mutex); 3787 err_fsfd: 3788 fdput(f); 3789 return ret; 3790 } 3791 3792 /* 3793 * Move a mount from one place to another. In combination with 3794 * fsopen()/fsmount() this is used to install a new mount and in combination 3795 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 3796 * a mount subtree. 3797 * 3798 * Note the flags value is a combination of MOVE_MOUNT_* flags. 3799 */ 3800 SYSCALL_DEFINE5(move_mount, 3801 int, from_dfd, const char __user *, from_pathname, 3802 int, to_dfd, const char __user *, to_pathname, 3803 unsigned int, flags) 3804 { 3805 struct path from_path, to_path; 3806 unsigned int lflags; 3807 int ret = 0; 3808 3809 if (!may_mount()) 3810 return -EPERM; 3811 3812 if (flags & ~MOVE_MOUNT__MASK) 3813 return -EINVAL; 3814 3815 /* If someone gives a pathname, they aren't permitted to move 3816 * from an fd that requires unmount as we can't get at the flag 3817 * to clear it afterwards. 3818 */ 3819 lflags = 0; 3820 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3821 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3822 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3823 3824 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 3825 if (ret < 0) 3826 return ret; 3827 3828 lflags = 0; 3829 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 3830 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 3831 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 3832 3833 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 3834 if (ret < 0) 3835 goto out_from; 3836 3837 ret = security_move_mount(&from_path, &to_path); 3838 if (ret < 0) 3839 goto out_to; 3840 3841 if (flags & MOVE_MOUNT_SET_GROUP) 3842 ret = do_set_group(&from_path, &to_path); 3843 else 3844 ret = do_move_mount(&from_path, &to_path); 3845 3846 out_to: 3847 path_put(&to_path); 3848 out_from: 3849 path_put(&from_path); 3850 return ret; 3851 } 3852 3853 /* 3854 * Return true if path is reachable from root 3855 * 3856 * namespace_sem or mount_lock is held 3857 */ 3858 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 3859 const struct path *root) 3860 { 3861 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 3862 dentry = mnt->mnt_mountpoint; 3863 mnt = mnt->mnt_parent; 3864 } 3865 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 3866 } 3867 3868 bool path_is_under(const struct path *path1, const struct path *path2) 3869 { 3870 bool res; 3871 read_seqlock_excl(&mount_lock); 3872 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 3873 read_sequnlock_excl(&mount_lock); 3874 return res; 3875 } 3876 EXPORT_SYMBOL(path_is_under); 3877 3878 /* 3879 * pivot_root Semantics: 3880 * Moves the root file system of the current process to the directory put_old, 3881 * makes new_root as the new root file system of the current process, and sets 3882 * root/cwd of all processes which had them on the current root to new_root. 3883 * 3884 * Restrictions: 3885 * The new_root and put_old must be directories, and must not be on the 3886 * same file system as the current process root. The put_old must be 3887 * underneath new_root, i.e. adding a non-zero number of /.. to the string 3888 * pointed to by put_old must yield the same directory as new_root. No other 3889 * file system may be mounted on put_old. After all, new_root is a mountpoint. 3890 * 3891 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 3892 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 3893 * in this situation. 3894 * 3895 * Notes: 3896 * - we don't move root/cwd if they are not at the root (reason: if something 3897 * cared enough to change them, it's probably wrong to force them elsewhere) 3898 * - it's okay to pick a root that isn't the root of a file system, e.g. 3899 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 3900 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 3901 * first. 3902 */ 3903 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 3904 const char __user *, put_old) 3905 { 3906 struct path new, old, root; 3907 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 3908 struct mountpoint *old_mp, *root_mp; 3909 int error; 3910 3911 if (!may_mount()) 3912 return -EPERM; 3913 3914 error = user_path_at(AT_FDCWD, new_root, 3915 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 3916 if (error) 3917 goto out0; 3918 3919 error = user_path_at(AT_FDCWD, put_old, 3920 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 3921 if (error) 3922 goto out1; 3923 3924 error = security_sb_pivotroot(&old, &new); 3925 if (error) 3926 goto out2; 3927 3928 get_fs_root(current->fs, &root); 3929 old_mp = lock_mount(&old); 3930 error = PTR_ERR(old_mp); 3931 if (IS_ERR(old_mp)) 3932 goto out3; 3933 3934 error = -EINVAL; 3935 new_mnt = real_mount(new.mnt); 3936 root_mnt = real_mount(root.mnt); 3937 old_mnt = real_mount(old.mnt); 3938 ex_parent = new_mnt->mnt_parent; 3939 root_parent = root_mnt->mnt_parent; 3940 if (IS_MNT_SHARED(old_mnt) || 3941 IS_MNT_SHARED(ex_parent) || 3942 IS_MNT_SHARED(root_parent)) 3943 goto out4; 3944 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3945 goto out4; 3946 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3947 goto out4; 3948 error = -ENOENT; 3949 if (d_unlinked(new.dentry)) 3950 goto out4; 3951 error = -EBUSY; 3952 if (new_mnt == root_mnt || old_mnt == root_mnt) 3953 goto out4; /* loop, on the same file system */ 3954 error = -EINVAL; 3955 if (!path_mounted(&root)) 3956 goto out4; /* not a mountpoint */ 3957 if (!mnt_has_parent(root_mnt)) 3958 goto out4; /* not attached */ 3959 if (!path_mounted(&new)) 3960 goto out4; /* not a mountpoint */ 3961 if (!mnt_has_parent(new_mnt)) 3962 goto out4; /* not attached */ 3963 /* make sure we can reach put_old from new_root */ 3964 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3965 goto out4; 3966 /* make certain new is below the root */ 3967 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3968 goto out4; 3969 lock_mount_hash(); 3970 umount_mnt(new_mnt); 3971 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 3972 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3973 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3974 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3975 } 3976 /* mount old root on put_old */ 3977 attach_mnt(root_mnt, old_mnt, old_mp); 3978 /* mount new_root on / */ 3979 attach_mnt(new_mnt, root_parent, root_mp); 3980 mnt_add_count(root_parent, -1); 3981 touch_mnt_namespace(current->nsproxy->mnt_ns); 3982 /* A moved mount should not expire automatically */ 3983 list_del_init(&new_mnt->mnt_expire); 3984 put_mountpoint(root_mp); 3985 unlock_mount_hash(); 3986 chroot_fs_refs(&root, &new); 3987 error = 0; 3988 out4: 3989 unlock_mount(old_mp); 3990 if (!error) 3991 mntput_no_expire(ex_parent); 3992 out3: 3993 path_put(&root); 3994 out2: 3995 path_put(&old); 3996 out1: 3997 path_put(&new); 3998 out0: 3999 return error; 4000 } 4001 4002 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4003 { 4004 unsigned int flags = mnt->mnt.mnt_flags; 4005 4006 /* flags to clear */ 4007 flags &= ~kattr->attr_clr; 4008 /* flags to raise */ 4009 flags |= kattr->attr_set; 4010 4011 return flags; 4012 } 4013 4014 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4015 { 4016 struct vfsmount *m = &mnt->mnt; 4017 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4018 4019 if (!kattr->mnt_idmap) 4020 return 0; 4021 4022 /* 4023 * Creating an idmapped mount with the filesystem wide idmapping 4024 * doesn't make sense so block that. We don't allow mushy semantics. 4025 */ 4026 if (!check_fsmapping(kattr->mnt_idmap, m->mnt_sb)) 4027 return -EINVAL; 4028 4029 /* 4030 * Once a mount has been idmapped we don't allow it to change its 4031 * mapping. It makes things simpler and callers can just create 4032 * another bind-mount they can idmap if they want to. 4033 */ 4034 if (is_idmapped_mnt(m)) 4035 return -EPERM; 4036 4037 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4038 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4039 return -EINVAL; 4040 4041 /* We're not controlling the superblock. */ 4042 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4043 return -EPERM; 4044 4045 /* Mount has already been visible in the filesystem hierarchy. */ 4046 if (!is_anon_ns(mnt->mnt_ns)) 4047 return -EINVAL; 4048 4049 return 0; 4050 } 4051 4052 /** 4053 * mnt_allow_writers() - check whether the attribute change allows writers 4054 * @kattr: the new mount attributes 4055 * @mnt: the mount to which @kattr will be applied 4056 * 4057 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4058 * 4059 * Return: true if writers need to be held, false if not 4060 */ 4061 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4062 const struct mount *mnt) 4063 { 4064 return (!(kattr->attr_set & MNT_READONLY) || 4065 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4066 !kattr->mnt_idmap; 4067 } 4068 4069 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4070 { 4071 struct mount *m; 4072 int err; 4073 4074 for (m = mnt; m; m = next_mnt(m, mnt)) { 4075 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4076 err = -EPERM; 4077 break; 4078 } 4079 4080 err = can_idmap_mount(kattr, m); 4081 if (err) 4082 break; 4083 4084 if (!mnt_allow_writers(kattr, m)) { 4085 err = mnt_hold_writers(m); 4086 if (err) 4087 break; 4088 } 4089 4090 if (!kattr->recurse) 4091 return 0; 4092 } 4093 4094 if (err) { 4095 struct mount *p; 4096 4097 /* 4098 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will 4099 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all 4100 * mounts and needs to take care to include the first mount. 4101 */ 4102 for (p = mnt; p; p = next_mnt(p, mnt)) { 4103 /* If we had to hold writers unblock them. */ 4104 if (p->mnt.mnt_flags & MNT_WRITE_HOLD) 4105 mnt_unhold_writers(p); 4106 4107 /* 4108 * We're done once the first mount we changed got 4109 * MNT_WRITE_HOLD unset. 4110 */ 4111 if (p == m) 4112 break; 4113 } 4114 } 4115 return err; 4116 } 4117 4118 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4119 { 4120 if (!kattr->mnt_idmap) 4121 return; 4122 4123 /* 4124 * Pairs with smp_load_acquire() in mnt_idmap(). 4125 * 4126 * Since we only allow a mount to change the idmapping once and 4127 * verified this in can_idmap_mount() we know that the mount has 4128 * @nop_mnt_idmap attached to it. So there's no need to drop any 4129 * references. 4130 */ 4131 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4132 } 4133 4134 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4135 { 4136 struct mount *m; 4137 4138 for (m = mnt; m; m = next_mnt(m, mnt)) { 4139 unsigned int flags; 4140 4141 do_idmap_mount(kattr, m); 4142 flags = recalc_flags(kattr, m); 4143 WRITE_ONCE(m->mnt.mnt_flags, flags); 4144 4145 /* If we had to hold writers unblock them. */ 4146 if (m->mnt.mnt_flags & MNT_WRITE_HOLD) 4147 mnt_unhold_writers(m); 4148 4149 if (kattr->propagation) 4150 change_mnt_propagation(m, kattr->propagation); 4151 if (!kattr->recurse) 4152 break; 4153 } 4154 touch_mnt_namespace(mnt->mnt_ns); 4155 } 4156 4157 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4158 { 4159 struct mount *mnt = real_mount(path->mnt); 4160 int err = 0; 4161 4162 if (!path_mounted(path)) 4163 return -EINVAL; 4164 4165 if (kattr->mnt_userns) { 4166 struct mnt_idmap *mnt_idmap; 4167 4168 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 4169 if (IS_ERR(mnt_idmap)) 4170 return PTR_ERR(mnt_idmap); 4171 kattr->mnt_idmap = mnt_idmap; 4172 } 4173 4174 if (kattr->propagation) { 4175 /* 4176 * Only take namespace_lock() if we're actually changing 4177 * propagation. 4178 */ 4179 namespace_lock(); 4180 if (kattr->propagation == MS_SHARED) { 4181 err = invent_group_ids(mnt, kattr->recurse); 4182 if (err) { 4183 namespace_unlock(); 4184 return err; 4185 } 4186 } 4187 } 4188 4189 err = -EINVAL; 4190 lock_mount_hash(); 4191 4192 /* Ensure that this isn't anything purely vfs internal. */ 4193 if (!is_mounted(&mnt->mnt)) 4194 goto out; 4195 4196 /* 4197 * If this is an attached mount make sure it's located in the callers 4198 * mount namespace. If it's not don't let the caller interact with it. 4199 * If this is a detached mount make sure it has an anonymous mount 4200 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE. 4201 */ 4202 if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns))) 4203 goto out; 4204 4205 /* 4206 * First, we get the mount tree in a shape where we can change mount 4207 * properties without failure. If we succeeded to do so we commit all 4208 * changes and if we failed we clean up. 4209 */ 4210 err = mount_setattr_prepare(kattr, mnt); 4211 if (!err) 4212 mount_setattr_commit(kattr, mnt); 4213 4214 out: 4215 unlock_mount_hash(); 4216 4217 if (kattr->propagation) { 4218 if (err) 4219 cleanup_group_ids(mnt, NULL); 4220 namespace_unlock(); 4221 } 4222 4223 return err; 4224 } 4225 4226 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4227 struct mount_kattr *kattr, unsigned int flags) 4228 { 4229 int err = 0; 4230 struct ns_common *ns; 4231 struct user_namespace *mnt_userns; 4232 struct fd f; 4233 4234 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4235 return 0; 4236 4237 /* 4238 * We currently do not support clearing an idmapped mount. If this ever 4239 * is a use-case we can revisit this but for now let's keep it simple 4240 * and not allow it. 4241 */ 4242 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4243 return -EINVAL; 4244 4245 if (attr->userns_fd > INT_MAX) 4246 return -EINVAL; 4247 4248 f = fdget(attr->userns_fd); 4249 if (!f.file) 4250 return -EBADF; 4251 4252 if (!proc_ns_file(f.file)) { 4253 err = -EINVAL; 4254 goto out_fput; 4255 } 4256 4257 ns = get_proc_ns(file_inode(f.file)); 4258 if (ns->ops->type != CLONE_NEWUSER) { 4259 err = -EINVAL; 4260 goto out_fput; 4261 } 4262 4263 /* 4264 * The initial idmapping cannot be used to create an idmapped 4265 * mount. We use the initial idmapping as an indicator of a mount 4266 * that is not idmapped. It can simply be passed into helpers that 4267 * are aware of idmapped mounts as a convenient shortcut. A user 4268 * can just create a dedicated identity mapping to achieve the same 4269 * result. 4270 */ 4271 mnt_userns = container_of(ns, struct user_namespace, ns); 4272 if (mnt_userns == &init_user_ns) { 4273 err = -EPERM; 4274 goto out_fput; 4275 } 4276 4277 /* We're not controlling the target namespace. */ 4278 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) { 4279 err = -EPERM; 4280 goto out_fput; 4281 } 4282 4283 kattr->mnt_userns = get_user_ns(mnt_userns); 4284 4285 out_fput: 4286 fdput(f); 4287 return err; 4288 } 4289 4290 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4291 struct mount_kattr *kattr, unsigned int flags) 4292 { 4293 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4294 4295 if (flags & AT_NO_AUTOMOUNT) 4296 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4297 if (flags & AT_SYMLINK_NOFOLLOW) 4298 lookup_flags &= ~LOOKUP_FOLLOW; 4299 if (flags & AT_EMPTY_PATH) 4300 lookup_flags |= LOOKUP_EMPTY; 4301 4302 *kattr = (struct mount_kattr) { 4303 .lookup_flags = lookup_flags, 4304 .recurse = !!(flags & AT_RECURSIVE), 4305 }; 4306 4307 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4308 return -EINVAL; 4309 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4310 return -EINVAL; 4311 kattr->propagation = attr->propagation; 4312 4313 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4314 return -EINVAL; 4315 4316 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4317 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4318 4319 /* 4320 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4321 * users wanting to transition to a different atime setting cannot 4322 * simply specify the atime setting in @attr_set, but must also 4323 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4324 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4325 * @attr_clr and that @attr_set can't have any atime bits set if 4326 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4327 */ 4328 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4329 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4330 return -EINVAL; 4331 4332 /* 4333 * Clear all previous time settings as they are mutually 4334 * exclusive. 4335 */ 4336 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4337 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4338 case MOUNT_ATTR_RELATIME: 4339 kattr->attr_set |= MNT_RELATIME; 4340 break; 4341 case MOUNT_ATTR_NOATIME: 4342 kattr->attr_set |= MNT_NOATIME; 4343 break; 4344 case MOUNT_ATTR_STRICTATIME: 4345 break; 4346 default: 4347 return -EINVAL; 4348 } 4349 } else { 4350 if (attr->attr_set & MOUNT_ATTR__ATIME) 4351 return -EINVAL; 4352 } 4353 4354 return build_mount_idmapped(attr, usize, kattr, flags); 4355 } 4356 4357 static void finish_mount_kattr(struct mount_kattr *kattr) 4358 { 4359 put_user_ns(kattr->mnt_userns); 4360 kattr->mnt_userns = NULL; 4361 4362 if (kattr->mnt_idmap) 4363 mnt_idmap_put(kattr->mnt_idmap); 4364 } 4365 4366 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4367 unsigned int, flags, struct mount_attr __user *, uattr, 4368 size_t, usize) 4369 { 4370 int err; 4371 struct path target; 4372 struct mount_attr attr; 4373 struct mount_kattr kattr; 4374 4375 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4376 4377 if (flags & ~(AT_EMPTY_PATH | 4378 AT_RECURSIVE | 4379 AT_SYMLINK_NOFOLLOW | 4380 AT_NO_AUTOMOUNT)) 4381 return -EINVAL; 4382 4383 if (unlikely(usize > PAGE_SIZE)) 4384 return -E2BIG; 4385 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4386 return -EINVAL; 4387 4388 if (!may_mount()) 4389 return -EPERM; 4390 4391 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4392 if (err) 4393 return err; 4394 4395 /* Don't bother walking through the mounts if this is a nop. */ 4396 if (attr.attr_set == 0 && 4397 attr.attr_clr == 0 && 4398 attr.propagation == 0) 4399 return 0; 4400 4401 err = build_mount_kattr(&attr, usize, &kattr, flags); 4402 if (err) 4403 return err; 4404 4405 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4406 if (!err) { 4407 err = do_mount_setattr(&target, &kattr); 4408 path_put(&target); 4409 } 4410 finish_mount_kattr(&kattr); 4411 return err; 4412 } 4413 4414 static void __init init_mount_tree(void) 4415 { 4416 struct vfsmount *mnt; 4417 struct mount *m; 4418 struct mnt_namespace *ns; 4419 struct path root; 4420 4421 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 4422 if (IS_ERR(mnt)) 4423 panic("Can't create rootfs"); 4424 4425 ns = alloc_mnt_ns(&init_user_ns, false); 4426 if (IS_ERR(ns)) 4427 panic("Can't allocate initial namespace"); 4428 m = real_mount(mnt); 4429 m->mnt_ns = ns; 4430 ns->root = m; 4431 ns->mounts = 1; 4432 list_add(&m->mnt_list, &ns->list); 4433 init_task.nsproxy->mnt_ns = ns; 4434 get_mnt_ns(ns); 4435 4436 root.mnt = mnt; 4437 root.dentry = mnt->mnt_root; 4438 mnt->mnt_flags |= MNT_LOCKED; 4439 4440 set_fs_pwd(current->fs, &root); 4441 set_fs_root(current->fs, &root); 4442 } 4443 4444 void __init mnt_init(void) 4445 { 4446 int err; 4447 4448 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 4449 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 4450 4451 mount_hashtable = alloc_large_system_hash("Mount-cache", 4452 sizeof(struct hlist_head), 4453 mhash_entries, 19, 4454 HASH_ZERO, 4455 &m_hash_shift, &m_hash_mask, 0, 0); 4456 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 4457 sizeof(struct hlist_head), 4458 mphash_entries, 19, 4459 HASH_ZERO, 4460 &mp_hash_shift, &mp_hash_mask, 0, 0); 4461 4462 if (!mount_hashtable || !mountpoint_hashtable) 4463 panic("Failed to allocate mount hash table\n"); 4464 4465 kernfs_init(); 4466 4467 err = sysfs_init(); 4468 if (err) 4469 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 4470 __func__, err); 4471 fs_kobj = kobject_create_and_add("fs", NULL); 4472 if (!fs_kobj) 4473 printk(KERN_WARNING "%s: kobj create error\n", __func__); 4474 shmem_init(); 4475 init_rootfs(); 4476 init_mount_tree(); 4477 } 4478 4479 void put_mnt_ns(struct mnt_namespace *ns) 4480 { 4481 if (!refcount_dec_and_test(&ns->ns.count)) 4482 return; 4483 drop_collected_mounts(&ns->root->mnt); 4484 free_mnt_ns(ns); 4485 } 4486 4487 struct vfsmount *kern_mount(struct file_system_type *type) 4488 { 4489 struct vfsmount *mnt; 4490 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 4491 if (!IS_ERR(mnt)) { 4492 /* 4493 * it is a longterm mount, don't release mnt until 4494 * we unmount before file sys is unregistered 4495 */ 4496 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 4497 } 4498 return mnt; 4499 } 4500 EXPORT_SYMBOL_GPL(kern_mount); 4501 4502 void kern_unmount(struct vfsmount *mnt) 4503 { 4504 /* release long term mount so mount point can be released */ 4505 if (!IS_ERR(mnt)) { 4506 mnt_make_shortterm(mnt); 4507 synchronize_rcu(); /* yecchhh... */ 4508 mntput(mnt); 4509 } 4510 } 4511 EXPORT_SYMBOL(kern_unmount); 4512 4513 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 4514 { 4515 unsigned int i; 4516 4517 for (i = 0; i < num; i++) 4518 mnt_make_shortterm(mnt[i]); 4519 synchronize_rcu_expedited(); 4520 for (i = 0; i < num; i++) 4521 mntput(mnt[i]); 4522 } 4523 EXPORT_SYMBOL(kern_unmount_array); 4524 4525 bool our_mnt(struct vfsmount *mnt) 4526 { 4527 return check_mnt(real_mount(mnt)); 4528 } 4529 4530 bool current_chrooted(void) 4531 { 4532 /* Does the current process have a non-standard root */ 4533 struct path ns_root; 4534 struct path fs_root; 4535 bool chrooted; 4536 4537 /* Find the namespace root */ 4538 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 4539 ns_root.dentry = ns_root.mnt->mnt_root; 4540 path_get(&ns_root); 4541 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 4542 ; 4543 4544 get_fs_root(current->fs, &fs_root); 4545 4546 chrooted = !path_equal(&fs_root, &ns_root); 4547 4548 path_put(&fs_root); 4549 path_put(&ns_root); 4550 4551 return chrooted; 4552 } 4553 4554 static bool mnt_already_visible(struct mnt_namespace *ns, 4555 const struct super_block *sb, 4556 int *new_mnt_flags) 4557 { 4558 int new_flags = *new_mnt_flags; 4559 struct mount *mnt; 4560 bool visible = false; 4561 4562 down_read(&namespace_sem); 4563 lock_ns_list(ns); 4564 list_for_each_entry(mnt, &ns->list, mnt_list) { 4565 struct mount *child; 4566 int mnt_flags; 4567 4568 if (mnt_is_cursor(mnt)) 4569 continue; 4570 4571 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 4572 continue; 4573 4574 /* This mount is not fully visible if it's root directory 4575 * is not the root directory of the filesystem. 4576 */ 4577 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 4578 continue; 4579 4580 /* A local view of the mount flags */ 4581 mnt_flags = mnt->mnt.mnt_flags; 4582 4583 /* Don't miss readonly hidden in the superblock flags */ 4584 if (sb_rdonly(mnt->mnt.mnt_sb)) 4585 mnt_flags |= MNT_LOCK_READONLY; 4586 4587 /* Verify the mount flags are equal to or more permissive 4588 * than the proposed new mount. 4589 */ 4590 if ((mnt_flags & MNT_LOCK_READONLY) && 4591 !(new_flags & MNT_READONLY)) 4592 continue; 4593 if ((mnt_flags & MNT_LOCK_ATIME) && 4594 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 4595 continue; 4596 4597 /* This mount is not fully visible if there are any 4598 * locked child mounts that cover anything except for 4599 * empty directories. 4600 */ 4601 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 4602 struct inode *inode = child->mnt_mountpoint->d_inode; 4603 /* Only worry about locked mounts */ 4604 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 4605 continue; 4606 /* Is the directory permanetly empty? */ 4607 if (!is_empty_dir_inode(inode)) 4608 goto next; 4609 } 4610 /* Preserve the locked attributes */ 4611 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 4612 MNT_LOCK_ATIME); 4613 visible = true; 4614 goto found; 4615 next: ; 4616 } 4617 found: 4618 unlock_ns_list(ns); 4619 up_read(&namespace_sem); 4620 return visible; 4621 } 4622 4623 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 4624 { 4625 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 4626 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 4627 unsigned long s_iflags; 4628 4629 if (ns->user_ns == &init_user_ns) 4630 return false; 4631 4632 /* Can this filesystem be too revealing? */ 4633 s_iflags = sb->s_iflags; 4634 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 4635 return false; 4636 4637 if ((s_iflags & required_iflags) != required_iflags) { 4638 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 4639 required_iflags); 4640 return true; 4641 } 4642 4643 return !mnt_already_visible(ns, sb, new_mnt_flags); 4644 } 4645 4646 bool mnt_may_suid(struct vfsmount *mnt) 4647 { 4648 /* 4649 * Foreign mounts (accessed via fchdir or through /proc 4650 * symlinks) are always treated as if they are nosuid. This 4651 * prevents namespaces from trusting potentially unsafe 4652 * suid/sgid bits, file caps, or security labels that originate 4653 * in other namespaces. 4654 */ 4655 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 4656 current_in_userns(mnt->mnt_sb->s_user_ns); 4657 } 4658 4659 static struct ns_common *mntns_get(struct task_struct *task) 4660 { 4661 struct ns_common *ns = NULL; 4662 struct nsproxy *nsproxy; 4663 4664 task_lock(task); 4665 nsproxy = task->nsproxy; 4666 if (nsproxy) { 4667 ns = &nsproxy->mnt_ns->ns; 4668 get_mnt_ns(to_mnt_ns(ns)); 4669 } 4670 task_unlock(task); 4671 4672 return ns; 4673 } 4674 4675 static void mntns_put(struct ns_common *ns) 4676 { 4677 put_mnt_ns(to_mnt_ns(ns)); 4678 } 4679 4680 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 4681 { 4682 struct nsproxy *nsproxy = nsset->nsproxy; 4683 struct fs_struct *fs = nsset->fs; 4684 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 4685 struct user_namespace *user_ns = nsset->cred->user_ns; 4686 struct path root; 4687 int err; 4688 4689 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 4690 !ns_capable(user_ns, CAP_SYS_CHROOT) || 4691 !ns_capable(user_ns, CAP_SYS_ADMIN)) 4692 return -EPERM; 4693 4694 if (is_anon_ns(mnt_ns)) 4695 return -EINVAL; 4696 4697 if (fs->users != 1) 4698 return -EINVAL; 4699 4700 get_mnt_ns(mnt_ns); 4701 old_mnt_ns = nsproxy->mnt_ns; 4702 nsproxy->mnt_ns = mnt_ns; 4703 4704 /* Find the root */ 4705 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 4706 "/", LOOKUP_DOWN, &root); 4707 if (err) { 4708 /* revert to old namespace */ 4709 nsproxy->mnt_ns = old_mnt_ns; 4710 put_mnt_ns(mnt_ns); 4711 return err; 4712 } 4713 4714 put_mnt_ns(old_mnt_ns); 4715 4716 /* Update the pwd and root */ 4717 set_fs_pwd(fs, &root); 4718 set_fs_root(fs, &root); 4719 4720 path_put(&root); 4721 return 0; 4722 } 4723 4724 static struct user_namespace *mntns_owner(struct ns_common *ns) 4725 { 4726 return to_mnt_ns(ns)->user_ns; 4727 } 4728 4729 const struct proc_ns_operations mntns_operations = { 4730 .name = "mnt", 4731 .type = CLONE_NEWNS, 4732 .get = mntns_get, 4733 .put = mntns_put, 4734 .install = mntns_install, 4735 .owner = mntns_owner, 4736 }; 4737 4738 #ifdef CONFIG_SYSCTL 4739 static struct ctl_table fs_namespace_sysctls[] = { 4740 { 4741 .procname = "mount-max", 4742 .data = &sysctl_mount_max, 4743 .maxlen = sizeof(unsigned int), 4744 .mode = 0644, 4745 .proc_handler = proc_dointvec_minmax, 4746 .extra1 = SYSCTL_ONE, 4747 }, 4748 { } 4749 }; 4750 4751 static int __init init_fs_namespace_sysctls(void) 4752 { 4753 register_sysctl_init("fs", fs_namespace_sysctls); 4754 return 0; 4755 } 4756 fs_initcall(init_fs_namespace_sysctls); 4757 4758 #endif /* CONFIG_SYSCTL */ 4759