1 /* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/idr.h> 19 #include <linux/init.h> /* init_rootfs */ 20 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 22 #include <linux/uaccess.h> 23 #include <linux/proc_ns.h> 24 #include <linux/magic.h> 25 #include <linux/bootmem.h> 26 #include <linux/task_work.h> 27 #include "pnode.h" 28 #include "internal.h" 29 30 static unsigned int m_hash_mask __read_mostly; 31 static unsigned int m_hash_shift __read_mostly; 32 static unsigned int mp_hash_mask __read_mostly; 33 static unsigned int mp_hash_shift __read_mostly; 34 35 static __initdata unsigned long mhash_entries; 36 static int __init set_mhash_entries(char *str) 37 { 38 if (!str) 39 return 0; 40 mhash_entries = simple_strtoul(str, &str, 0); 41 return 1; 42 } 43 __setup("mhash_entries=", set_mhash_entries); 44 45 static __initdata unsigned long mphash_entries; 46 static int __init set_mphash_entries(char *str) 47 { 48 if (!str) 49 return 0; 50 mphash_entries = simple_strtoul(str, &str, 0); 51 return 1; 52 } 53 __setup("mphash_entries=", set_mphash_entries); 54 55 static u64 event; 56 static DEFINE_IDA(mnt_id_ida); 57 static DEFINE_IDA(mnt_group_ida); 58 static DEFINE_SPINLOCK(mnt_id_lock); 59 static int mnt_id_start = 0; 60 static int mnt_group_start = 1; 61 62 static struct hlist_head *mount_hashtable __read_mostly; 63 static struct hlist_head *mountpoint_hashtable __read_mostly; 64 static struct kmem_cache *mnt_cache __read_mostly; 65 static DECLARE_RWSEM(namespace_sem); 66 67 /* /sys/fs */ 68 struct kobject *fs_kobj; 69 EXPORT_SYMBOL_GPL(fs_kobj); 70 71 /* 72 * vfsmount lock may be taken for read to prevent changes to the 73 * vfsmount hash, ie. during mountpoint lookups or walking back 74 * up the tree. 75 * 76 * It should be taken for write in all cases where the vfsmount 77 * tree or hash is modified or when a vfsmount structure is modified. 78 */ 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 80 81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 82 { 83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 85 tmp = tmp + (tmp >> m_hash_shift); 86 return &mount_hashtable[tmp & m_hash_mask]; 87 } 88 89 static inline struct hlist_head *mp_hash(struct dentry *dentry) 90 { 91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 92 tmp = tmp + (tmp >> mp_hash_shift); 93 return &mountpoint_hashtable[tmp & mp_hash_mask]; 94 } 95 96 /* 97 * allocation is serialized by namespace_sem, but we need the spinlock to 98 * serialize with freeing. 99 */ 100 static int mnt_alloc_id(struct mount *mnt) 101 { 102 int res; 103 104 retry: 105 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 106 spin_lock(&mnt_id_lock); 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 108 if (!res) 109 mnt_id_start = mnt->mnt_id + 1; 110 spin_unlock(&mnt_id_lock); 111 if (res == -EAGAIN) 112 goto retry; 113 114 return res; 115 } 116 117 static void mnt_free_id(struct mount *mnt) 118 { 119 int id = mnt->mnt_id; 120 spin_lock(&mnt_id_lock); 121 ida_remove(&mnt_id_ida, id); 122 if (mnt_id_start > id) 123 mnt_id_start = id; 124 spin_unlock(&mnt_id_lock); 125 } 126 127 /* 128 * Allocate a new peer group ID 129 * 130 * mnt_group_ida is protected by namespace_sem 131 */ 132 static int mnt_alloc_group_id(struct mount *mnt) 133 { 134 int res; 135 136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 137 return -ENOMEM; 138 139 res = ida_get_new_above(&mnt_group_ida, 140 mnt_group_start, 141 &mnt->mnt_group_id); 142 if (!res) 143 mnt_group_start = mnt->mnt_group_id + 1; 144 145 return res; 146 } 147 148 /* 149 * Release a peer group ID 150 */ 151 void mnt_release_group_id(struct mount *mnt) 152 { 153 int id = mnt->mnt_group_id; 154 ida_remove(&mnt_group_ida, id); 155 if (mnt_group_start > id) 156 mnt_group_start = id; 157 mnt->mnt_group_id = 0; 158 } 159 160 /* 161 * vfsmount lock must be held for read 162 */ 163 static inline void mnt_add_count(struct mount *mnt, int n) 164 { 165 #ifdef CONFIG_SMP 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 167 #else 168 preempt_disable(); 169 mnt->mnt_count += n; 170 preempt_enable(); 171 #endif 172 } 173 174 /* 175 * vfsmount lock must be held for write 176 */ 177 unsigned int mnt_get_count(struct mount *mnt) 178 { 179 #ifdef CONFIG_SMP 180 unsigned int count = 0; 181 int cpu; 182 183 for_each_possible_cpu(cpu) { 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 185 } 186 187 return count; 188 #else 189 return mnt->mnt_count; 190 #endif 191 } 192 193 static struct mount *alloc_vfsmnt(const char *name) 194 { 195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 196 if (mnt) { 197 int err; 198 199 err = mnt_alloc_id(mnt); 200 if (err) 201 goto out_free_cache; 202 203 if (name) { 204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL); 205 if (!mnt->mnt_devname) 206 goto out_free_id; 207 } 208 209 #ifdef CONFIG_SMP 210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 211 if (!mnt->mnt_pcp) 212 goto out_free_devname; 213 214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 215 #else 216 mnt->mnt_count = 1; 217 mnt->mnt_writers = 0; 218 #endif 219 220 INIT_HLIST_NODE(&mnt->mnt_hash); 221 INIT_LIST_HEAD(&mnt->mnt_child); 222 INIT_LIST_HEAD(&mnt->mnt_mounts); 223 INIT_LIST_HEAD(&mnt->mnt_list); 224 INIT_LIST_HEAD(&mnt->mnt_expire); 225 INIT_LIST_HEAD(&mnt->mnt_share); 226 INIT_LIST_HEAD(&mnt->mnt_slave_list); 227 INIT_LIST_HEAD(&mnt->mnt_slave); 228 INIT_HLIST_NODE(&mnt->mnt_mp_list); 229 #ifdef CONFIG_FSNOTIFY 230 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 231 #endif 232 } 233 return mnt; 234 235 #ifdef CONFIG_SMP 236 out_free_devname: 237 kfree(mnt->mnt_devname); 238 #endif 239 out_free_id: 240 mnt_free_id(mnt); 241 out_free_cache: 242 kmem_cache_free(mnt_cache, mnt); 243 return NULL; 244 } 245 246 /* 247 * Most r/o checks on a fs are for operations that take 248 * discrete amounts of time, like a write() or unlink(). 249 * We must keep track of when those operations start 250 * (for permission checks) and when they end, so that 251 * we can determine when writes are able to occur to 252 * a filesystem. 253 */ 254 /* 255 * __mnt_is_readonly: check whether a mount is read-only 256 * @mnt: the mount to check for its write status 257 * 258 * This shouldn't be used directly ouside of the VFS. 259 * It does not guarantee that the filesystem will stay 260 * r/w, just that it is right *now*. This can not and 261 * should not be used in place of IS_RDONLY(inode). 262 * mnt_want/drop_write() will _keep_ the filesystem 263 * r/w. 264 */ 265 int __mnt_is_readonly(struct vfsmount *mnt) 266 { 267 if (mnt->mnt_flags & MNT_READONLY) 268 return 1; 269 if (mnt->mnt_sb->s_flags & MS_RDONLY) 270 return 1; 271 return 0; 272 } 273 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 274 275 static inline void mnt_inc_writers(struct mount *mnt) 276 { 277 #ifdef CONFIG_SMP 278 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 279 #else 280 mnt->mnt_writers++; 281 #endif 282 } 283 284 static inline void mnt_dec_writers(struct mount *mnt) 285 { 286 #ifdef CONFIG_SMP 287 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 288 #else 289 mnt->mnt_writers--; 290 #endif 291 } 292 293 static unsigned int mnt_get_writers(struct mount *mnt) 294 { 295 #ifdef CONFIG_SMP 296 unsigned int count = 0; 297 int cpu; 298 299 for_each_possible_cpu(cpu) { 300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 301 } 302 303 return count; 304 #else 305 return mnt->mnt_writers; 306 #endif 307 } 308 309 static int mnt_is_readonly(struct vfsmount *mnt) 310 { 311 if (mnt->mnt_sb->s_readonly_remount) 312 return 1; 313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 314 smp_rmb(); 315 return __mnt_is_readonly(mnt); 316 } 317 318 /* 319 * Most r/o & frozen checks on a fs are for operations that take discrete 320 * amounts of time, like a write() or unlink(). We must keep track of when 321 * those operations start (for permission checks) and when they end, so that we 322 * can determine when writes are able to occur to a filesystem. 323 */ 324 /** 325 * __mnt_want_write - get write access to a mount without freeze protection 326 * @m: the mount on which to take a write 327 * 328 * This tells the low-level filesystem that a write is about to be performed to 329 * it, and makes sure that writes are allowed (mnt it read-write) before 330 * returning success. This operation does not protect against filesystem being 331 * frozen. When the write operation is finished, __mnt_drop_write() must be 332 * called. This is effectively a refcount. 333 */ 334 int __mnt_want_write(struct vfsmount *m) 335 { 336 struct mount *mnt = real_mount(m); 337 int ret = 0; 338 339 preempt_disable(); 340 mnt_inc_writers(mnt); 341 /* 342 * The store to mnt_inc_writers must be visible before we pass 343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 344 * incremented count after it has set MNT_WRITE_HOLD. 345 */ 346 smp_mb(); 347 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 348 cpu_relax(); 349 /* 350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 351 * be set to match its requirements. So we must not load that until 352 * MNT_WRITE_HOLD is cleared. 353 */ 354 smp_rmb(); 355 if (mnt_is_readonly(m)) { 356 mnt_dec_writers(mnt); 357 ret = -EROFS; 358 } 359 preempt_enable(); 360 361 return ret; 362 } 363 364 /** 365 * mnt_want_write - get write access to a mount 366 * @m: the mount on which to take a write 367 * 368 * This tells the low-level filesystem that a write is about to be performed to 369 * it, and makes sure that writes are allowed (mount is read-write, filesystem 370 * is not frozen) before returning success. When the write operation is 371 * finished, mnt_drop_write() must be called. This is effectively a refcount. 372 */ 373 int mnt_want_write(struct vfsmount *m) 374 { 375 int ret; 376 377 sb_start_write(m->mnt_sb); 378 ret = __mnt_want_write(m); 379 if (ret) 380 sb_end_write(m->mnt_sb); 381 return ret; 382 } 383 EXPORT_SYMBOL_GPL(mnt_want_write); 384 385 /** 386 * mnt_clone_write - get write access to a mount 387 * @mnt: the mount on which to take a write 388 * 389 * This is effectively like mnt_want_write, except 390 * it must only be used to take an extra write reference 391 * on a mountpoint that we already know has a write reference 392 * on it. This allows some optimisation. 393 * 394 * After finished, mnt_drop_write must be called as usual to 395 * drop the reference. 396 */ 397 int mnt_clone_write(struct vfsmount *mnt) 398 { 399 /* superblock may be r/o */ 400 if (__mnt_is_readonly(mnt)) 401 return -EROFS; 402 preempt_disable(); 403 mnt_inc_writers(real_mount(mnt)); 404 preempt_enable(); 405 return 0; 406 } 407 EXPORT_SYMBOL_GPL(mnt_clone_write); 408 409 /** 410 * __mnt_want_write_file - get write access to a file's mount 411 * @file: the file who's mount on which to take a write 412 * 413 * This is like __mnt_want_write, but it takes a file and can 414 * do some optimisations if the file is open for write already 415 */ 416 int __mnt_want_write_file(struct file *file) 417 { 418 if (!(file->f_mode & FMODE_WRITER)) 419 return __mnt_want_write(file->f_path.mnt); 420 else 421 return mnt_clone_write(file->f_path.mnt); 422 } 423 424 /** 425 * mnt_want_write_file - get write access to a file's mount 426 * @file: the file who's mount on which to take a write 427 * 428 * This is like mnt_want_write, but it takes a file and can 429 * do some optimisations if the file is open for write already 430 */ 431 int mnt_want_write_file(struct file *file) 432 { 433 int ret; 434 435 sb_start_write(file->f_path.mnt->mnt_sb); 436 ret = __mnt_want_write_file(file); 437 if (ret) 438 sb_end_write(file->f_path.mnt->mnt_sb); 439 return ret; 440 } 441 EXPORT_SYMBOL_GPL(mnt_want_write_file); 442 443 /** 444 * __mnt_drop_write - give up write access to a mount 445 * @mnt: the mount on which to give up write access 446 * 447 * Tells the low-level filesystem that we are done 448 * performing writes to it. Must be matched with 449 * __mnt_want_write() call above. 450 */ 451 void __mnt_drop_write(struct vfsmount *mnt) 452 { 453 preempt_disable(); 454 mnt_dec_writers(real_mount(mnt)); 455 preempt_enable(); 456 } 457 458 /** 459 * mnt_drop_write - give up write access to a mount 460 * @mnt: the mount on which to give up write access 461 * 462 * Tells the low-level filesystem that we are done performing writes to it and 463 * also allows filesystem to be frozen again. Must be matched with 464 * mnt_want_write() call above. 465 */ 466 void mnt_drop_write(struct vfsmount *mnt) 467 { 468 __mnt_drop_write(mnt); 469 sb_end_write(mnt->mnt_sb); 470 } 471 EXPORT_SYMBOL_GPL(mnt_drop_write); 472 473 void __mnt_drop_write_file(struct file *file) 474 { 475 __mnt_drop_write(file->f_path.mnt); 476 } 477 478 void mnt_drop_write_file(struct file *file) 479 { 480 mnt_drop_write(file->f_path.mnt); 481 } 482 EXPORT_SYMBOL(mnt_drop_write_file); 483 484 static int mnt_make_readonly(struct mount *mnt) 485 { 486 int ret = 0; 487 488 lock_mount_hash(); 489 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 490 /* 491 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 492 * should be visible before we do. 493 */ 494 smp_mb(); 495 496 /* 497 * With writers on hold, if this value is zero, then there are 498 * definitely no active writers (although held writers may subsequently 499 * increment the count, they'll have to wait, and decrement it after 500 * seeing MNT_READONLY). 501 * 502 * It is OK to have counter incremented on one CPU and decremented on 503 * another: the sum will add up correctly. The danger would be when we 504 * sum up each counter, if we read a counter before it is incremented, 505 * but then read another CPU's count which it has been subsequently 506 * decremented from -- we would see more decrements than we should. 507 * MNT_WRITE_HOLD protects against this scenario, because 508 * mnt_want_write first increments count, then smp_mb, then spins on 509 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 510 * we're counting up here. 511 */ 512 if (mnt_get_writers(mnt) > 0) 513 ret = -EBUSY; 514 else 515 mnt->mnt.mnt_flags |= MNT_READONLY; 516 /* 517 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 518 * that become unheld will see MNT_READONLY. 519 */ 520 smp_wmb(); 521 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 522 unlock_mount_hash(); 523 return ret; 524 } 525 526 static void __mnt_unmake_readonly(struct mount *mnt) 527 { 528 lock_mount_hash(); 529 mnt->mnt.mnt_flags &= ~MNT_READONLY; 530 unlock_mount_hash(); 531 } 532 533 int sb_prepare_remount_readonly(struct super_block *sb) 534 { 535 struct mount *mnt; 536 int err = 0; 537 538 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 539 if (atomic_long_read(&sb->s_remove_count)) 540 return -EBUSY; 541 542 lock_mount_hash(); 543 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 544 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 545 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 546 smp_mb(); 547 if (mnt_get_writers(mnt) > 0) { 548 err = -EBUSY; 549 break; 550 } 551 } 552 } 553 if (!err && atomic_long_read(&sb->s_remove_count)) 554 err = -EBUSY; 555 556 if (!err) { 557 sb->s_readonly_remount = 1; 558 smp_wmb(); 559 } 560 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 561 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 562 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 563 } 564 unlock_mount_hash(); 565 566 return err; 567 } 568 569 static void free_vfsmnt(struct mount *mnt) 570 { 571 kfree(mnt->mnt_devname); 572 #ifdef CONFIG_SMP 573 free_percpu(mnt->mnt_pcp); 574 #endif 575 kmem_cache_free(mnt_cache, mnt); 576 } 577 578 static void delayed_free_vfsmnt(struct rcu_head *head) 579 { 580 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 581 } 582 583 /* call under rcu_read_lock */ 584 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 585 { 586 struct mount *mnt; 587 if (read_seqretry(&mount_lock, seq)) 588 return false; 589 if (bastard == NULL) 590 return true; 591 mnt = real_mount(bastard); 592 mnt_add_count(mnt, 1); 593 if (likely(!read_seqretry(&mount_lock, seq))) 594 return true; 595 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 596 mnt_add_count(mnt, -1); 597 return false; 598 } 599 rcu_read_unlock(); 600 mntput(bastard); 601 rcu_read_lock(); 602 return false; 603 } 604 605 /* 606 * find the first mount at @dentry on vfsmount @mnt. 607 * call under rcu_read_lock() 608 */ 609 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 610 { 611 struct hlist_head *head = m_hash(mnt, dentry); 612 struct mount *p; 613 614 hlist_for_each_entry_rcu(p, head, mnt_hash) 615 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 616 return p; 617 return NULL; 618 } 619 620 /* 621 * find the last mount at @dentry on vfsmount @mnt. 622 * mount_lock must be held. 623 */ 624 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry) 625 { 626 struct mount *p, *res; 627 res = p = __lookup_mnt(mnt, dentry); 628 if (!p) 629 goto out; 630 hlist_for_each_entry_continue(p, mnt_hash) { 631 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry) 632 break; 633 res = p; 634 } 635 out: 636 return res; 637 } 638 639 /* 640 * lookup_mnt - Return the first child mount mounted at path 641 * 642 * "First" means first mounted chronologically. If you create the 643 * following mounts: 644 * 645 * mount /dev/sda1 /mnt 646 * mount /dev/sda2 /mnt 647 * mount /dev/sda3 /mnt 648 * 649 * Then lookup_mnt() on the base /mnt dentry in the root mount will 650 * return successively the root dentry and vfsmount of /dev/sda1, then 651 * /dev/sda2, then /dev/sda3, then NULL. 652 * 653 * lookup_mnt takes a reference to the found vfsmount. 654 */ 655 struct vfsmount *lookup_mnt(struct path *path) 656 { 657 struct mount *child_mnt; 658 struct vfsmount *m; 659 unsigned seq; 660 661 rcu_read_lock(); 662 do { 663 seq = read_seqbegin(&mount_lock); 664 child_mnt = __lookup_mnt(path->mnt, path->dentry); 665 m = child_mnt ? &child_mnt->mnt : NULL; 666 } while (!legitimize_mnt(m, seq)); 667 rcu_read_unlock(); 668 return m; 669 } 670 671 /* 672 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 673 * current mount namespace. 674 * 675 * The common case is dentries are not mountpoints at all and that 676 * test is handled inline. For the slow case when we are actually 677 * dealing with a mountpoint of some kind, walk through all of the 678 * mounts in the current mount namespace and test to see if the dentry 679 * is a mountpoint. 680 * 681 * The mount_hashtable is not usable in the context because we 682 * need to identify all mounts that may be in the current mount 683 * namespace not just a mount that happens to have some specified 684 * parent mount. 685 */ 686 bool __is_local_mountpoint(struct dentry *dentry) 687 { 688 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 689 struct mount *mnt; 690 bool is_covered = false; 691 692 if (!d_mountpoint(dentry)) 693 goto out; 694 695 down_read(&namespace_sem); 696 list_for_each_entry(mnt, &ns->list, mnt_list) { 697 is_covered = (mnt->mnt_mountpoint == dentry); 698 if (is_covered) 699 break; 700 } 701 up_read(&namespace_sem); 702 out: 703 return is_covered; 704 } 705 706 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 707 { 708 struct hlist_head *chain = mp_hash(dentry); 709 struct mountpoint *mp; 710 711 hlist_for_each_entry(mp, chain, m_hash) { 712 if (mp->m_dentry == dentry) { 713 /* might be worth a WARN_ON() */ 714 if (d_unlinked(dentry)) 715 return ERR_PTR(-ENOENT); 716 mp->m_count++; 717 return mp; 718 } 719 } 720 return NULL; 721 } 722 723 static struct mountpoint *new_mountpoint(struct dentry *dentry) 724 { 725 struct hlist_head *chain = mp_hash(dentry); 726 struct mountpoint *mp; 727 int ret; 728 729 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 730 if (!mp) 731 return ERR_PTR(-ENOMEM); 732 733 ret = d_set_mounted(dentry); 734 if (ret) { 735 kfree(mp); 736 return ERR_PTR(ret); 737 } 738 739 mp->m_dentry = dentry; 740 mp->m_count = 1; 741 hlist_add_head(&mp->m_hash, chain); 742 INIT_HLIST_HEAD(&mp->m_list); 743 return mp; 744 } 745 746 static void put_mountpoint(struct mountpoint *mp) 747 { 748 if (!--mp->m_count) { 749 struct dentry *dentry = mp->m_dentry; 750 BUG_ON(!hlist_empty(&mp->m_list)); 751 spin_lock(&dentry->d_lock); 752 dentry->d_flags &= ~DCACHE_MOUNTED; 753 spin_unlock(&dentry->d_lock); 754 hlist_del(&mp->m_hash); 755 kfree(mp); 756 } 757 } 758 759 static inline int check_mnt(struct mount *mnt) 760 { 761 return mnt->mnt_ns == current->nsproxy->mnt_ns; 762 } 763 764 /* 765 * vfsmount lock must be held for write 766 */ 767 static void touch_mnt_namespace(struct mnt_namespace *ns) 768 { 769 if (ns) { 770 ns->event = ++event; 771 wake_up_interruptible(&ns->poll); 772 } 773 } 774 775 /* 776 * vfsmount lock must be held for write 777 */ 778 static void __touch_mnt_namespace(struct mnt_namespace *ns) 779 { 780 if (ns && ns->event != event) { 781 ns->event = event; 782 wake_up_interruptible(&ns->poll); 783 } 784 } 785 786 /* 787 * vfsmount lock must be held for write 788 */ 789 static void detach_mnt(struct mount *mnt, struct path *old_path) 790 { 791 old_path->dentry = mnt->mnt_mountpoint; 792 old_path->mnt = &mnt->mnt_parent->mnt; 793 mnt->mnt_parent = mnt; 794 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 795 list_del_init(&mnt->mnt_child); 796 hlist_del_init_rcu(&mnt->mnt_hash); 797 hlist_del_init(&mnt->mnt_mp_list); 798 put_mountpoint(mnt->mnt_mp); 799 mnt->mnt_mp = NULL; 800 } 801 802 /* 803 * vfsmount lock must be held for write 804 */ 805 void mnt_set_mountpoint(struct mount *mnt, 806 struct mountpoint *mp, 807 struct mount *child_mnt) 808 { 809 mp->m_count++; 810 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 811 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 812 child_mnt->mnt_parent = mnt; 813 child_mnt->mnt_mp = mp; 814 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 815 } 816 817 /* 818 * vfsmount lock must be held for write 819 */ 820 static void attach_mnt(struct mount *mnt, 821 struct mount *parent, 822 struct mountpoint *mp) 823 { 824 mnt_set_mountpoint(parent, mp, mnt); 825 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry)); 826 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 827 } 828 829 static void attach_shadowed(struct mount *mnt, 830 struct mount *parent, 831 struct mount *shadows) 832 { 833 if (shadows) { 834 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash); 835 list_add(&mnt->mnt_child, &shadows->mnt_child); 836 } else { 837 hlist_add_head_rcu(&mnt->mnt_hash, 838 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 839 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 840 } 841 } 842 843 /* 844 * vfsmount lock must be held for write 845 */ 846 static void commit_tree(struct mount *mnt, struct mount *shadows) 847 { 848 struct mount *parent = mnt->mnt_parent; 849 struct mount *m; 850 LIST_HEAD(head); 851 struct mnt_namespace *n = parent->mnt_ns; 852 853 BUG_ON(parent == mnt); 854 855 list_add_tail(&head, &mnt->mnt_list); 856 list_for_each_entry(m, &head, mnt_list) 857 m->mnt_ns = n; 858 859 list_splice(&head, n->list.prev); 860 861 attach_shadowed(mnt, parent, shadows); 862 touch_mnt_namespace(n); 863 } 864 865 static struct mount *next_mnt(struct mount *p, struct mount *root) 866 { 867 struct list_head *next = p->mnt_mounts.next; 868 if (next == &p->mnt_mounts) { 869 while (1) { 870 if (p == root) 871 return NULL; 872 next = p->mnt_child.next; 873 if (next != &p->mnt_parent->mnt_mounts) 874 break; 875 p = p->mnt_parent; 876 } 877 } 878 return list_entry(next, struct mount, mnt_child); 879 } 880 881 static struct mount *skip_mnt_tree(struct mount *p) 882 { 883 struct list_head *prev = p->mnt_mounts.prev; 884 while (prev != &p->mnt_mounts) { 885 p = list_entry(prev, struct mount, mnt_child); 886 prev = p->mnt_mounts.prev; 887 } 888 return p; 889 } 890 891 struct vfsmount * 892 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 893 { 894 struct mount *mnt; 895 struct dentry *root; 896 897 if (!type) 898 return ERR_PTR(-ENODEV); 899 900 mnt = alloc_vfsmnt(name); 901 if (!mnt) 902 return ERR_PTR(-ENOMEM); 903 904 if (flags & MS_KERNMOUNT) 905 mnt->mnt.mnt_flags = MNT_INTERNAL; 906 907 root = mount_fs(type, flags, name, data); 908 if (IS_ERR(root)) { 909 mnt_free_id(mnt); 910 free_vfsmnt(mnt); 911 return ERR_CAST(root); 912 } 913 914 mnt->mnt.mnt_root = root; 915 mnt->mnt.mnt_sb = root->d_sb; 916 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 917 mnt->mnt_parent = mnt; 918 lock_mount_hash(); 919 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 920 unlock_mount_hash(); 921 return &mnt->mnt; 922 } 923 EXPORT_SYMBOL_GPL(vfs_kern_mount); 924 925 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 926 int flag) 927 { 928 struct super_block *sb = old->mnt.mnt_sb; 929 struct mount *mnt; 930 int err; 931 932 mnt = alloc_vfsmnt(old->mnt_devname); 933 if (!mnt) 934 return ERR_PTR(-ENOMEM); 935 936 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 937 mnt->mnt_group_id = 0; /* not a peer of original */ 938 else 939 mnt->mnt_group_id = old->mnt_group_id; 940 941 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 942 err = mnt_alloc_group_id(mnt); 943 if (err) 944 goto out_free; 945 } 946 947 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 948 /* Don't allow unprivileged users to change mount flags */ 949 if (flag & CL_UNPRIVILEGED) { 950 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 951 952 if (mnt->mnt.mnt_flags & MNT_READONLY) 953 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 954 955 if (mnt->mnt.mnt_flags & MNT_NODEV) 956 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 957 958 if (mnt->mnt.mnt_flags & MNT_NOSUID) 959 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 960 961 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 962 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 963 } 964 965 /* Don't allow unprivileged users to reveal what is under a mount */ 966 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire)) 967 mnt->mnt.mnt_flags |= MNT_LOCKED; 968 969 atomic_inc(&sb->s_active); 970 mnt->mnt.mnt_sb = sb; 971 mnt->mnt.mnt_root = dget(root); 972 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 973 mnt->mnt_parent = mnt; 974 lock_mount_hash(); 975 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 976 unlock_mount_hash(); 977 978 if ((flag & CL_SLAVE) || 979 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 980 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 981 mnt->mnt_master = old; 982 CLEAR_MNT_SHARED(mnt); 983 } else if (!(flag & CL_PRIVATE)) { 984 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 985 list_add(&mnt->mnt_share, &old->mnt_share); 986 if (IS_MNT_SLAVE(old)) 987 list_add(&mnt->mnt_slave, &old->mnt_slave); 988 mnt->mnt_master = old->mnt_master; 989 } 990 if (flag & CL_MAKE_SHARED) 991 set_mnt_shared(mnt); 992 993 /* stick the duplicate mount on the same expiry list 994 * as the original if that was on one */ 995 if (flag & CL_EXPIRE) { 996 if (!list_empty(&old->mnt_expire)) 997 list_add(&mnt->mnt_expire, &old->mnt_expire); 998 } 999 1000 return mnt; 1001 1002 out_free: 1003 mnt_free_id(mnt); 1004 free_vfsmnt(mnt); 1005 return ERR_PTR(err); 1006 } 1007 1008 static void cleanup_mnt(struct mount *mnt) 1009 { 1010 /* 1011 * This probably indicates that somebody messed 1012 * up a mnt_want/drop_write() pair. If this 1013 * happens, the filesystem was probably unable 1014 * to make r/w->r/o transitions. 1015 */ 1016 /* 1017 * The locking used to deal with mnt_count decrement provides barriers, 1018 * so mnt_get_writers() below is safe. 1019 */ 1020 WARN_ON(mnt_get_writers(mnt)); 1021 if (unlikely(mnt->mnt_pins.first)) 1022 mnt_pin_kill(mnt); 1023 fsnotify_vfsmount_delete(&mnt->mnt); 1024 dput(mnt->mnt.mnt_root); 1025 deactivate_super(mnt->mnt.mnt_sb); 1026 mnt_free_id(mnt); 1027 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1028 } 1029 1030 static void __cleanup_mnt(struct rcu_head *head) 1031 { 1032 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1033 } 1034 1035 static LLIST_HEAD(delayed_mntput_list); 1036 static void delayed_mntput(struct work_struct *unused) 1037 { 1038 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1039 struct llist_node *next; 1040 1041 for (; node; node = next) { 1042 next = llist_next(node); 1043 cleanup_mnt(llist_entry(node, struct mount, mnt_llist)); 1044 } 1045 } 1046 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1047 1048 static void mntput_no_expire(struct mount *mnt) 1049 { 1050 rcu_read_lock(); 1051 mnt_add_count(mnt, -1); 1052 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 1053 rcu_read_unlock(); 1054 return; 1055 } 1056 lock_mount_hash(); 1057 if (mnt_get_count(mnt)) { 1058 rcu_read_unlock(); 1059 unlock_mount_hash(); 1060 return; 1061 } 1062 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1063 rcu_read_unlock(); 1064 unlock_mount_hash(); 1065 return; 1066 } 1067 mnt->mnt.mnt_flags |= MNT_DOOMED; 1068 rcu_read_unlock(); 1069 1070 list_del(&mnt->mnt_instance); 1071 unlock_mount_hash(); 1072 1073 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1074 struct task_struct *task = current; 1075 if (likely(!(task->flags & PF_KTHREAD))) { 1076 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1077 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1078 return; 1079 } 1080 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1081 schedule_delayed_work(&delayed_mntput_work, 1); 1082 return; 1083 } 1084 cleanup_mnt(mnt); 1085 } 1086 1087 void mntput(struct vfsmount *mnt) 1088 { 1089 if (mnt) { 1090 struct mount *m = real_mount(mnt); 1091 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1092 if (unlikely(m->mnt_expiry_mark)) 1093 m->mnt_expiry_mark = 0; 1094 mntput_no_expire(m); 1095 } 1096 } 1097 EXPORT_SYMBOL(mntput); 1098 1099 struct vfsmount *mntget(struct vfsmount *mnt) 1100 { 1101 if (mnt) 1102 mnt_add_count(real_mount(mnt), 1); 1103 return mnt; 1104 } 1105 EXPORT_SYMBOL(mntget); 1106 1107 struct vfsmount *mnt_clone_internal(struct path *path) 1108 { 1109 struct mount *p; 1110 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1111 if (IS_ERR(p)) 1112 return ERR_CAST(p); 1113 p->mnt.mnt_flags |= MNT_INTERNAL; 1114 return &p->mnt; 1115 } 1116 1117 static inline void mangle(struct seq_file *m, const char *s) 1118 { 1119 seq_escape(m, s, " \t\n\\"); 1120 } 1121 1122 /* 1123 * Simple .show_options callback for filesystems which don't want to 1124 * implement more complex mount option showing. 1125 * 1126 * See also save_mount_options(). 1127 */ 1128 int generic_show_options(struct seq_file *m, struct dentry *root) 1129 { 1130 const char *options; 1131 1132 rcu_read_lock(); 1133 options = rcu_dereference(root->d_sb->s_options); 1134 1135 if (options != NULL && options[0]) { 1136 seq_putc(m, ','); 1137 mangle(m, options); 1138 } 1139 rcu_read_unlock(); 1140 1141 return 0; 1142 } 1143 EXPORT_SYMBOL(generic_show_options); 1144 1145 /* 1146 * If filesystem uses generic_show_options(), this function should be 1147 * called from the fill_super() callback. 1148 * 1149 * The .remount_fs callback usually needs to be handled in a special 1150 * way, to make sure, that previous options are not overwritten if the 1151 * remount fails. 1152 * 1153 * Also note, that if the filesystem's .remount_fs function doesn't 1154 * reset all options to their default value, but changes only newly 1155 * given options, then the displayed options will not reflect reality 1156 * any more. 1157 */ 1158 void save_mount_options(struct super_block *sb, char *options) 1159 { 1160 BUG_ON(sb->s_options); 1161 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1162 } 1163 EXPORT_SYMBOL(save_mount_options); 1164 1165 void replace_mount_options(struct super_block *sb, char *options) 1166 { 1167 char *old = sb->s_options; 1168 rcu_assign_pointer(sb->s_options, options); 1169 if (old) { 1170 synchronize_rcu(); 1171 kfree(old); 1172 } 1173 } 1174 EXPORT_SYMBOL(replace_mount_options); 1175 1176 #ifdef CONFIG_PROC_FS 1177 /* iterator; we want it to have access to namespace_sem, thus here... */ 1178 static void *m_start(struct seq_file *m, loff_t *pos) 1179 { 1180 struct proc_mounts *p = proc_mounts(m); 1181 1182 down_read(&namespace_sem); 1183 if (p->cached_event == p->ns->event) { 1184 void *v = p->cached_mount; 1185 if (*pos == p->cached_index) 1186 return v; 1187 if (*pos == p->cached_index + 1) { 1188 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1189 return p->cached_mount = v; 1190 } 1191 } 1192 1193 p->cached_event = p->ns->event; 1194 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1195 p->cached_index = *pos; 1196 return p->cached_mount; 1197 } 1198 1199 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1200 { 1201 struct proc_mounts *p = proc_mounts(m); 1202 1203 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1204 p->cached_index = *pos; 1205 return p->cached_mount; 1206 } 1207 1208 static void m_stop(struct seq_file *m, void *v) 1209 { 1210 up_read(&namespace_sem); 1211 } 1212 1213 static int m_show(struct seq_file *m, void *v) 1214 { 1215 struct proc_mounts *p = proc_mounts(m); 1216 struct mount *r = list_entry(v, struct mount, mnt_list); 1217 return p->show(m, &r->mnt); 1218 } 1219 1220 const struct seq_operations mounts_op = { 1221 .start = m_start, 1222 .next = m_next, 1223 .stop = m_stop, 1224 .show = m_show, 1225 }; 1226 #endif /* CONFIG_PROC_FS */ 1227 1228 /** 1229 * may_umount_tree - check if a mount tree is busy 1230 * @mnt: root of mount tree 1231 * 1232 * This is called to check if a tree of mounts has any 1233 * open files, pwds, chroots or sub mounts that are 1234 * busy. 1235 */ 1236 int may_umount_tree(struct vfsmount *m) 1237 { 1238 struct mount *mnt = real_mount(m); 1239 int actual_refs = 0; 1240 int minimum_refs = 0; 1241 struct mount *p; 1242 BUG_ON(!m); 1243 1244 /* write lock needed for mnt_get_count */ 1245 lock_mount_hash(); 1246 for (p = mnt; p; p = next_mnt(p, mnt)) { 1247 actual_refs += mnt_get_count(p); 1248 minimum_refs += 2; 1249 } 1250 unlock_mount_hash(); 1251 1252 if (actual_refs > minimum_refs) 1253 return 0; 1254 1255 return 1; 1256 } 1257 1258 EXPORT_SYMBOL(may_umount_tree); 1259 1260 /** 1261 * may_umount - check if a mount point is busy 1262 * @mnt: root of mount 1263 * 1264 * This is called to check if a mount point has any 1265 * open files, pwds, chroots or sub mounts. If the 1266 * mount has sub mounts this will return busy 1267 * regardless of whether the sub mounts are busy. 1268 * 1269 * Doesn't take quota and stuff into account. IOW, in some cases it will 1270 * give false negatives. The main reason why it's here is that we need 1271 * a non-destructive way to look for easily umountable filesystems. 1272 */ 1273 int may_umount(struct vfsmount *mnt) 1274 { 1275 int ret = 1; 1276 down_read(&namespace_sem); 1277 lock_mount_hash(); 1278 if (propagate_mount_busy(real_mount(mnt), 2)) 1279 ret = 0; 1280 unlock_mount_hash(); 1281 up_read(&namespace_sem); 1282 return ret; 1283 } 1284 1285 EXPORT_SYMBOL(may_umount); 1286 1287 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1288 1289 static void namespace_unlock(void) 1290 { 1291 struct mount *mnt; 1292 struct hlist_head head = unmounted; 1293 1294 if (likely(hlist_empty(&head))) { 1295 up_write(&namespace_sem); 1296 return; 1297 } 1298 1299 head.first->pprev = &head.first; 1300 INIT_HLIST_HEAD(&unmounted); 1301 1302 /* undo decrements we'd done in umount_tree() */ 1303 hlist_for_each_entry(mnt, &head, mnt_hash) 1304 if (mnt->mnt_ex_mountpoint.mnt) 1305 mntget(mnt->mnt_ex_mountpoint.mnt); 1306 1307 up_write(&namespace_sem); 1308 1309 synchronize_rcu(); 1310 1311 while (!hlist_empty(&head)) { 1312 mnt = hlist_entry(head.first, struct mount, mnt_hash); 1313 hlist_del_init(&mnt->mnt_hash); 1314 if (mnt->mnt_ex_mountpoint.mnt) 1315 path_put(&mnt->mnt_ex_mountpoint); 1316 mntput(&mnt->mnt); 1317 } 1318 } 1319 1320 static inline void namespace_lock(void) 1321 { 1322 down_write(&namespace_sem); 1323 } 1324 1325 /* 1326 * mount_lock must be held 1327 * namespace_sem must be held for write 1328 * how = 0 => just this tree, don't propagate 1329 * how = 1 => propagate; we know that nobody else has reference to any victims 1330 * how = 2 => lazy umount 1331 */ 1332 void umount_tree(struct mount *mnt, int how) 1333 { 1334 HLIST_HEAD(tmp_list); 1335 struct mount *p; 1336 struct mount *last = NULL; 1337 1338 for (p = mnt; p; p = next_mnt(p, mnt)) { 1339 hlist_del_init_rcu(&p->mnt_hash); 1340 hlist_add_head(&p->mnt_hash, &tmp_list); 1341 } 1342 1343 hlist_for_each_entry(p, &tmp_list, mnt_hash) 1344 list_del_init(&p->mnt_child); 1345 1346 if (how) 1347 propagate_umount(&tmp_list); 1348 1349 hlist_for_each_entry(p, &tmp_list, mnt_hash) { 1350 list_del_init(&p->mnt_expire); 1351 list_del_init(&p->mnt_list); 1352 __touch_mnt_namespace(p->mnt_ns); 1353 p->mnt_ns = NULL; 1354 if (how < 2) 1355 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1356 if (mnt_has_parent(p)) { 1357 hlist_del_init(&p->mnt_mp_list); 1358 put_mountpoint(p->mnt_mp); 1359 mnt_add_count(p->mnt_parent, -1); 1360 /* move the reference to mountpoint into ->mnt_ex_mountpoint */ 1361 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint; 1362 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt; 1363 p->mnt_mountpoint = p->mnt.mnt_root; 1364 p->mnt_parent = p; 1365 p->mnt_mp = NULL; 1366 } 1367 change_mnt_propagation(p, MS_PRIVATE); 1368 last = p; 1369 } 1370 if (last) { 1371 last->mnt_hash.next = unmounted.first; 1372 unmounted.first = tmp_list.first; 1373 unmounted.first->pprev = &unmounted.first; 1374 } 1375 } 1376 1377 static void shrink_submounts(struct mount *mnt); 1378 1379 static int do_umount(struct mount *mnt, int flags) 1380 { 1381 struct super_block *sb = mnt->mnt.mnt_sb; 1382 int retval; 1383 1384 retval = security_sb_umount(&mnt->mnt, flags); 1385 if (retval) 1386 return retval; 1387 1388 /* 1389 * Allow userspace to request a mountpoint be expired rather than 1390 * unmounting unconditionally. Unmount only happens if: 1391 * (1) the mark is already set (the mark is cleared by mntput()) 1392 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1393 */ 1394 if (flags & MNT_EXPIRE) { 1395 if (&mnt->mnt == current->fs->root.mnt || 1396 flags & (MNT_FORCE | MNT_DETACH)) 1397 return -EINVAL; 1398 1399 /* 1400 * probably don't strictly need the lock here if we examined 1401 * all race cases, but it's a slowpath. 1402 */ 1403 lock_mount_hash(); 1404 if (mnt_get_count(mnt) != 2) { 1405 unlock_mount_hash(); 1406 return -EBUSY; 1407 } 1408 unlock_mount_hash(); 1409 1410 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1411 return -EAGAIN; 1412 } 1413 1414 /* 1415 * If we may have to abort operations to get out of this 1416 * mount, and they will themselves hold resources we must 1417 * allow the fs to do things. In the Unix tradition of 1418 * 'Gee thats tricky lets do it in userspace' the umount_begin 1419 * might fail to complete on the first run through as other tasks 1420 * must return, and the like. Thats for the mount program to worry 1421 * about for the moment. 1422 */ 1423 1424 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1425 sb->s_op->umount_begin(sb); 1426 } 1427 1428 /* 1429 * No sense to grab the lock for this test, but test itself looks 1430 * somewhat bogus. Suggestions for better replacement? 1431 * Ho-hum... In principle, we might treat that as umount + switch 1432 * to rootfs. GC would eventually take care of the old vfsmount. 1433 * Actually it makes sense, especially if rootfs would contain a 1434 * /reboot - static binary that would close all descriptors and 1435 * call reboot(9). Then init(8) could umount root and exec /reboot. 1436 */ 1437 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1438 /* 1439 * Special case for "unmounting" root ... 1440 * we just try to remount it readonly. 1441 */ 1442 if (!capable(CAP_SYS_ADMIN)) 1443 return -EPERM; 1444 down_write(&sb->s_umount); 1445 if (!(sb->s_flags & MS_RDONLY)) 1446 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1447 up_write(&sb->s_umount); 1448 return retval; 1449 } 1450 1451 namespace_lock(); 1452 lock_mount_hash(); 1453 event++; 1454 1455 if (flags & MNT_DETACH) { 1456 if (!list_empty(&mnt->mnt_list)) 1457 umount_tree(mnt, 2); 1458 retval = 0; 1459 } else { 1460 shrink_submounts(mnt); 1461 retval = -EBUSY; 1462 if (!propagate_mount_busy(mnt, 2)) { 1463 if (!list_empty(&mnt->mnt_list)) 1464 umount_tree(mnt, 1); 1465 retval = 0; 1466 } 1467 } 1468 unlock_mount_hash(); 1469 namespace_unlock(); 1470 return retval; 1471 } 1472 1473 /* 1474 * __detach_mounts - lazily unmount all mounts on the specified dentry 1475 * 1476 * During unlink, rmdir, and d_drop it is possible to loose the path 1477 * to an existing mountpoint, and wind up leaking the mount. 1478 * detach_mounts allows lazily unmounting those mounts instead of 1479 * leaking them. 1480 * 1481 * The caller may hold dentry->d_inode->i_mutex. 1482 */ 1483 void __detach_mounts(struct dentry *dentry) 1484 { 1485 struct mountpoint *mp; 1486 struct mount *mnt; 1487 1488 namespace_lock(); 1489 mp = lookup_mountpoint(dentry); 1490 if (!mp) 1491 goto out_unlock; 1492 1493 lock_mount_hash(); 1494 while (!hlist_empty(&mp->m_list)) { 1495 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1496 umount_tree(mnt, 2); 1497 } 1498 unlock_mount_hash(); 1499 put_mountpoint(mp); 1500 out_unlock: 1501 namespace_unlock(); 1502 } 1503 1504 /* 1505 * Is the caller allowed to modify his namespace? 1506 */ 1507 static inline bool may_mount(void) 1508 { 1509 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1510 } 1511 1512 /* 1513 * Now umount can handle mount points as well as block devices. 1514 * This is important for filesystems which use unnamed block devices. 1515 * 1516 * We now support a flag for forced unmount like the other 'big iron' 1517 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1518 */ 1519 1520 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1521 { 1522 struct path path; 1523 struct mount *mnt; 1524 int retval; 1525 int lookup_flags = 0; 1526 1527 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1528 return -EINVAL; 1529 1530 if (!may_mount()) 1531 return -EPERM; 1532 1533 if (!(flags & UMOUNT_NOFOLLOW)) 1534 lookup_flags |= LOOKUP_FOLLOW; 1535 1536 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1537 if (retval) 1538 goto out; 1539 mnt = real_mount(path.mnt); 1540 retval = -EINVAL; 1541 if (path.dentry != path.mnt->mnt_root) 1542 goto dput_and_out; 1543 if (!check_mnt(mnt)) 1544 goto dput_and_out; 1545 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1546 goto dput_and_out; 1547 1548 retval = do_umount(mnt, flags); 1549 dput_and_out: 1550 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1551 dput(path.dentry); 1552 mntput_no_expire(mnt); 1553 out: 1554 return retval; 1555 } 1556 1557 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 1558 1559 /* 1560 * The 2.0 compatible umount. No flags. 1561 */ 1562 SYSCALL_DEFINE1(oldumount, char __user *, name) 1563 { 1564 return sys_umount(name, 0); 1565 } 1566 1567 #endif 1568 1569 static bool is_mnt_ns_file(struct dentry *dentry) 1570 { 1571 /* Is this a proxy for a mount namespace? */ 1572 struct inode *inode = dentry->d_inode; 1573 struct proc_ns *ei; 1574 1575 if (!proc_ns_inode(inode)) 1576 return false; 1577 1578 ei = get_proc_ns(inode); 1579 if (ei->ns_ops != &mntns_operations) 1580 return false; 1581 1582 return true; 1583 } 1584 1585 struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1586 { 1587 return container_of(ns, struct mnt_namespace, ns); 1588 } 1589 1590 static bool mnt_ns_loop(struct dentry *dentry) 1591 { 1592 /* Could bind mounting the mount namespace inode cause a 1593 * mount namespace loop? 1594 */ 1595 struct mnt_namespace *mnt_ns; 1596 if (!is_mnt_ns_file(dentry)) 1597 return false; 1598 1599 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)->ns); 1600 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1601 } 1602 1603 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1604 int flag) 1605 { 1606 struct mount *res, *p, *q, *r, *parent; 1607 1608 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1609 return ERR_PTR(-EINVAL); 1610 1611 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1612 return ERR_PTR(-EINVAL); 1613 1614 res = q = clone_mnt(mnt, dentry, flag); 1615 if (IS_ERR(q)) 1616 return q; 1617 1618 q->mnt.mnt_flags &= ~MNT_LOCKED; 1619 q->mnt_mountpoint = mnt->mnt_mountpoint; 1620 1621 p = mnt; 1622 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1623 struct mount *s; 1624 if (!is_subdir(r->mnt_mountpoint, dentry)) 1625 continue; 1626 1627 for (s = r; s; s = next_mnt(s, r)) { 1628 struct mount *t = NULL; 1629 if (!(flag & CL_COPY_UNBINDABLE) && 1630 IS_MNT_UNBINDABLE(s)) { 1631 s = skip_mnt_tree(s); 1632 continue; 1633 } 1634 if (!(flag & CL_COPY_MNT_NS_FILE) && 1635 is_mnt_ns_file(s->mnt.mnt_root)) { 1636 s = skip_mnt_tree(s); 1637 continue; 1638 } 1639 while (p != s->mnt_parent) { 1640 p = p->mnt_parent; 1641 q = q->mnt_parent; 1642 } 1643 p = s; 1644 parent = q; 1645 q = clone_mnt(p, p->mnt.mnt_root, flag); 1646 if (IS_ERR(q)) 1647 goto out; 1648 lock_mount_hash(); 1649 list_add_tail(&q->mnt_list, &res->mnt_list); 1650 mnt_set_mountpoint(parent, p->mnt_mp, q); 1651 if (!list_empty(&parent->mnt_mounts)) { 1652 t = list_last_entry(&parent->mnt_mounts, 1653 struct mount, mnt_child); 1654 if (t->mnt_mp != p->mnt_mp) 1655 t = NULL; 1656 } 1657 attach_shadowed(q, parent, t); 1658 unlock_mount_hash(); 1659 } 1660 } 1661 return res; 1662 out: 1663 if (res) { 1664 lock_mount_hash(); 1665 umount_tree(res, 0); 1666 unlock_mount_hash(); 1667 } 1668 return q; 1669 } 1670 1671 /* Caller should check returned pointer for errors */ 1672 1673 struct vfsmount *collect_mounts(struct path *path) 1674 { 1675 struct mount *tree; 1676 namespace_lock(); 1677 tree = copy_tree(real_mount(path->mnt), path->dentry, 1678 CL_COPY_ALL | CL_PRIVATE); 1679 namespace_unlock(); 1680 if (IS_ERR(tree)) 1681 return ERR_CAST(tree); 1682 return &tree->mnt; 1683 } 1684 1685 void drop_collected_mounts(struct vfsmount *mnt) 1686 { 1687 namespace_lock(); 1688 lock_mount_hash(); 1689 umount_tree(real_mount(mnt), 0); 1690 unlock_mount_hash(); 1691 namespace_unlock(); 1692 } 1693 1694 /** 1695 * clone_private_mount - create a private clone of a path 1696 * 1697 * This creates a new vfsmount, which will be the clone of @path. The new will 1698 * not be attached anywhere in the namespace and will be private (i.e. changes 1699 * to the originating mount won't be propagated into this). 1700 * 1701 * Release with mntput(). 1702 */ 1703 struct vfsmount *clone_private_mount(struct path *path) 1704 { 1705 struct mount *old_mnt = real_mount(path->mnt); 1706 struct mount *new_mnt; 1707 1708 if (IS_MNT_UNBINDABLE(old_mnt)) 1709 return ERR_PTR(-EINVAL); 1710 1711 down_read(&namespace_sem); 1712 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1713 up_read(&namespace_sem); 1714 if (IS_ERR(new_mnt)) 1715 return ERR_CAST(new_mnt); 1716 1717 return &new_mnt->mnt; 1718 } 1719 EXPORT_SYMBOL_GPL(clone_private_mount); 1720 1721 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1722 struct vfsmount *root) 1723 { 1724 struct mount *mnt; 1725 int res = f(root, arg); 1726 if (res) 1727 return res; 1728 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1729 res = f(&mnt->mnt, arg); 1730 if (res) 1731 return res; 1732 } 1733 return 0; 1734 } 1735 1736 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1737 { 1738 struct mount *p; 1739 1740 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1741 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1742 mnt_release_group_id(p); 1743 } 1744 } 1745 1746 static int invent_group_ids(struct mount *mnt, bool recurse) 1747 { 1748 struct mount *p; 1749 1750 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1751 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1752 int err = mnt_alloc_group_id(p); 1753 if (err) { 1754 cleanup_group_ids(mnt, p); 1755 return err; 1756 } 1757 } 1758 } 1759 1760 return 0; 1761 } 1762 1763 /* 1764 * @source_mnt : mount tree to be attached 1765 * @nd : place the mount tree @source_mnt is attached 1766 * @parent_nd : if non-null, detach the source_mnt from its parent and 1767 * store the parent mount and mountpoint dentry. 1768 * (done when source_mnt is moved) 1769 * 1770 * NOTE: in the table below explains the semantics when a source mount 1771 * of a given type is attached to a destination mount of a given type. 1772 * --------------------------------------------------------------------------- 1773 * | BIND MOUNT OPERATION | 1774 * |************************************************************************** 1775 * | source-->| shared | private | slave | unbindable | 1776 * | dest | | | | | 1777 * | | | | | | | 1778 * | v | | | | | 1779 * |************************************************************************** 1780 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1781 * | | | | | | 1782 * |non-shared| shared (+) | private | slave (*) | invalid | 1783 * *************************************************************************** 1784 * A bind operation clones the source mount and mounts the clone on the 1785 * destination mount. 1786 * 1787 * (++) the cloned mount is propagated to all the mounts in the propagation 1788 * tree of the destination mount and the cloned mount is added to 1789 * the peer group of the source mount. 1790 * (+) the cloned mount is created under the destination mount and is marked 1791 * as shared. The cloned mount is added to the peer group of the source 1792 * mount. 1793 * (+++) the mount is propagated to all the mounts in the propagation tree 1794 * of the destination mount and the cloned mount is made slave 1795 * of the same master as that of the source mount. The cloned mount 1796 * is marked as 'shared and slave'. 1797 * (*) the cloned mount is made a slave of the same master as that of the 1798 * source mount. 1799 * 1800 * --------------------------------------------------------------------------- 1801 * | MOVE MOUNT OPERATION | 1802 * |************************************************************************** 1803 * | source-->| shared | private | slave | unbindable | 1804 * | dest | | | | | 1805 * | | | | | | | 1806 * | v | | | | | 1807 * |************************************************************************** 1808 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1809 * | | | | | | 1810 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1811 * *************************************************************************** 1812 * 1813 * (+) the mount is moved to the destination. And is then propagated to 1814 * all the mounts in the propagation tree of the destination mount. 1815 * (+*) the mount is moved to the destination. 1816 * (+++) the mount is moved to the destination and is then propagated to 1817 * all the mounts belonging to the destination mount's propagation tree. 1818 * the mount is marked as 'shared and slave'. 1819 * (*) the mount continues to be a slave at the new location. 1820 * 1821 * if the source mount is a tree, the operations explained above is 1822 * applied to each mount in the tree. 1823 * Must be called without spinlocks held, since this function can sleep 1824 * in allocations. 1825 */ 1826 static int attach_recursive_mnt(struct mount *source_mnt, 1827 struct mount *dest_mnt, 1828 struct mountpoint *dest_mp, 1829 struct path *parent_path) 1830 { 1831 HLIST_HEAD(tree_list); 1832 struct mount *child, *p; 1833 struct hlist_node *n; 1834 int err; 1835 1836 if (IS_MNT_SHARED(dest_mnt)) { 1837 err = invent_group_ids(source_mnt, true); 1838 if (err) 1839 goto out; 1840 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1841 lock_mount_hash(); 1842 if (err) 1843 goto out_cleanup_ids; 1844 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1845 set_mnt_shared(p); 1846 } else { 1847 lock_mount_hash(); 1848 } 1849 if (parent_path) { 1850 detach_mnt(source_mnt, parent_path); 1851 attach_mnt(source_mnt, dest_mnt, dest_mp); 1852 touch_mnt_namespace(source_mnt->mnt_ns); 1853 } else { 1854 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1855 commit_tree(source_mnt, NULL); 1856 } 1857 1858 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 1859 struct mount *q; 1860 hlist_del_init(&child->mnt_hash); 1861 q = __lookup_mnt_last(&child->mnt_parent->mnt, 1862 child->mnt_mountpoint); 1863 commit_tree(child, q); 1864 } 1865 unlock_mount_hash(); 1866 1867 return 0; 1868 1869 out_cleanup_ids: 1870 while (!hlist_empty(&tree_list)) { 1871 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 1872 umount_tree(child, 0); 1873 } 1874 unlock_mount_hash(); 1875 cleanup_group_ids(source_mnt, NULL); 1876 out: 1877 return err; 1878 } 1879 1880 static struct mountpoint *lock_mount(struct path *path) 1881 { 1882 struct vfsmount *mnt; 1883 struct dentry *dentry = path->dentry; 1884 retry: 1885 mutex_lock(&dentry->d_inode->i_mutex); 1886 if (unlikely(cant_mount(dentry))) { 1887 mutex_unlock(&dentry->d_inode->i_mutex); 1888 return ERR_PTR(-ENOENT); 1889 } 1890 namespace_lock(); 1891 mnt = lookup_mnt(path); 1892 if (likely(!mnt)) { 1893 struct mountpoint *mp = lookup_mountpoint(dentry); 1894 if (!mp) 1895 mp = new_mountpoint(dentry); 1896 if (IS_ERR(mp)) { 1897 namespace_unlock(); 1898 mutex_unlock(&dentry->d_inode->i_mutex); 1899 return mp; 1900 } 1901 return mp; 1902 } 1903 namespace_unlock(); 1904 mutex_unlock(&path->dentry->d_inode->i_mutex); 1905 path_put(path); 1906 path->mnt = mnt; 1907 dentry = path->dentry = dget(mnt->mnt_root); 1908 goto retry; 1909 } 1910 1911 static void unlock_mount(struct mountpoint *where) 1912 { 1913 struct dentry *dentry = where->m_dentry; 1914 put_mountpoint(where); 1915 namespace_unlock(); 1916 mutex_unlock(&dentry->d_inode->i_mutex); 1917 } 1918 1919 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 1920 { 1921 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1922 return -EINVAL; 1923 1924 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) != 1925 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode)) 1926 return -ENOTDIR; 1927 1928 return attach_recursive_mnt(mnt, p, mp, NULL); 1929 } 1930 1931 /* 1932 * Sanity check the flags to change_mnt_propagation. 1933 */ 1934 1935 static int flags_to_propagation_type(int flags) 1936 { 1937 int type = flags & ~(MS_REC | MS_SILENT); 1938 1939 /* Fail if any non-propagation flags are set */ 1940 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 1941 return 0; 1942 /* Only one propagation flag should be set */ 1943 if (!is_power_of_2(type)) 1944 return 0; 1945 return type; 1946 } 1947 1948 /* 1949 * recursively change the type of the mountpoint. 1950 */ 1951 static int do_change_type(struct path *path, int flag) 1952 { 1953 struct mount *m; 1954 struct mount *mnt = real_mount(path->mnt); 1955 int recurse = flag & MS_REC; 1956 int type; 1957 int err = 0; 1958 1959 if (path->dentry != path->mnt->mnt_root) 1960 return -EINVAL; 1961 1962 type = flags_to_propagation_type(flag); 1963 if (!type) 1964 return -EINVAL; 1965 1966 namespace_lock(); 1967 if (type == MS_SHARED) { 1968 err = invent_group_ids(mnt, recurse); 1969 if (err) 1970 goto out_unlock; 1971 } 1972 1973 lock_mount_hash(); 1974 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 1975 change_mnt_propagation(m, type); 1976 unlock_mount_hash(); 1977 1978 out_unlock: 1979 namespace_unlock(); 1980 return err; 1981 } 1982 1983 static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 1984 { 1985 struct mount *child; 1986 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 1987 if (!is_subdir(child->mnt_mountpoint, dentry)) 1988 continue; 1989 1990 if (child->mnt.mnt_flags & MNT_LOCKED) 1991 return true; 1992 } 1993 return false; 1994 } 1995 1996 /* 1997 * do loopback mount. 1998 */ 1999 static int do_loopback(struct path *path, const char *old_name, 2000 int recurse) 2001 { 2002 struct path old_path; 2003 struct mount *mnt = NULL, *old, *parent; 2004 struct mountpoint *mp; 2005 int err; 2006 if (!old_name || !*old_name) 2007 return -EINVAL; 2008 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2009 if (err) 2010 return err; 2011 2012 err = -EINVAL; 2013 if (mnt_ns_loop(old_path.dentry)) 2014 goto out; 2015 2016 mp = lock_mount(path); 2017 err = PTR_ERR(mp); 2018 if (IS_ERR(mp)) 2019 goto out; 2020 2021 old = real_mount(old_path.mnt); 2022 parent = real_mount(path->mnt); 2023 2024 err = -EINVAL; 2025 if (IS_MNT_UNBINDABLE(old)) 2026 goto out2; 2027 2028 if (!check_mnt(parent) || !check_mnt(old)) 2029 goto out2; 2030 2031 if (!recurse && has_locked_children(old, old_path.dentry)) 2032 goto out2; 2033 2034 if (recurse) 2035 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2036 else 2037 mnt = clone_mnt(old, old_path.dentry, 0); 2038 2039 if (IS_ERR(mnt)) { 2040 err = PTR_ERR(mnt); 2041 goto out2; 2042 } 2043 2044 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2045 2046 err = graft_tree(mnt, parent, mp); 2047 if (err) { 2048 lock_mount_hash(); 2049 umount_tree(mnt, 0); 2050 unlock_mount_hash(); 2051 } 2052 out2: 2053 unlock_mount(mp); 2054 out: 2055 path_put(&old_path); 2056 return err; 2057 } 2058 2059 static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2060 { 2061 int error = 0; 2062 int readonly_request = 0; 2063 2064 if (ms_flags & MS_RDONLY) 2065 readonly_request = 1; 2066 if (readonly_request == __mnt_is_readonly(mnt)) 2067 return 0; 2068 2069 if (readonly_request) 2070 error = mnt_make_readonly(real_mount(mnt)); 2071 else 2072 __mnt_unmake_readonly(real_mount(mnt)); 2073 return error; 2074 } 2075 2076 /* 2077 * change filesystem flags. dir should be a physical root of filesystem. 2078 * If you've mounted a non-root directory somewhere and want to do remount 2079 * on it - tough luck. 2080 */ 2081 static int do_remount(struct path *path, int flags, int mnt_flags, 2082 void *data) 2083 { 2084 int err; 2085 struct super_block *sb = path->mnt->mnt_sb; 2086 struct mount *mnt = real_mount(path->mnt); 2087 2088 if (!check_mnt(mnt)) 2089 return -EINVAL; 2090 2091 if (path->dentry != path->mnt->mnt_root) 2092 return -EINVAL; 2093 2094 /* Don't allow changing of locked mnt flags. 2095 * 2096 * No locks need to be held here while testing the various 2097 * MNT_LOCK flags because those flags can never be cleared 2098 * once they are set. 2099 */ 2100 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2101 !(mnt_flags & MNT_READONLY)) { 2102 return -EPERM; 2103 } 2104 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2105 !(mnt_flags & MNT_NODEV)) { 2106 return -EPERM; 2107 } 2108 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2109 !(mnt_flags & MNT_NOSUID)) { 2110 return -EPERM; 2111 } 2112 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2113 !(mnt_flags & MNT_NOEXEC)) { 2114 return -EPERM; 2115 } 2116 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2117 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2118 return -EPERM; 2119 } 2120 2121 err = security_sb_remount(sb, data); 2122 if (err) 2123 return err; 2124 2125 down_write(&sb->s_umount); 2126 if (flags & MS_BIND) 2127 err = change_mount_flags(path->mnt, flags); 2128 else if (!capable(CAP_SYS_ADMIN)) 2129 err = -EPERM; 2130 else 2131 err = do_remount_sb(sb, flags, data, 0); 2132 if (!err) { 2133 lock_mount_hash(); 2134 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2135 mnt->mnt.mnt_flags = mnt_flags; 2136 touch_mnt_namespace(mnt->mnt_ns); 2137 unlock_mount_hash(); 2138 } 2139 up_write(&sb->s_umount); 2140 return err; 2141 } 2142 2143 static inline int tree_contains_unbindable(struct mount *mnt) 2144 { 2145 struct mount *p; 2146 for (p = mnt; p; p = next_mnt(p, mnt)) { 2147 if (IS_MNT_UNBINDABLE(p)) 2148 return 1; 2149 } 2150 return 0; 2151 } 2152 2153 static int do_move_mount(struct path *path, const char *old_name) 2154 { 2155 struct path old_path, parent_path; 2156 struct mount *p; 2157 struct mount *old; 2158 struct mountpoint *mp; 2159 int err; 2160 if (!old_name || !*old_name) 2161 return -EINVAL; 2162 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2163 if (err) 2164 return err; 2165 2166 mp = lock_mount(path); 2167 err = PTR_ERR(mp); 2168 if (IS_ERR(mp)) 2169 goto out; 2170 2171 old = real_mount(old_path.mnt); 2172 p = real_mount(path->mnt); 2173 2174 err = -EINVAL; 2175 if (!check_mnt(p) || !check_mnt(old)) 2176 goto out1; 2177 2178 if (old->mnt.mnt_flags & MNT_LOCKED) 2179 goto out1; 2180 2181 err = -EINVAL; 2182 if (old_path.dentry != old_path.mnt->mnt_root) 2183 goto out1; 2184 2185 if (!mnt_has_parent(old)) 2186 goto out1; 2187 2188 if (S_ISDIR(path->dentry->d_inode->i_mode) != 2189 S_ISDIR(old_path.dentry->d_inode->i_mode)) 2190 goto out1; 2191 /* 2192 * Don't move a mount residing in a shared parent. 2193 */ 2194 if (IS_MNT_SHARED(old->mnt_parent)) 2195 goto out1; 2196 /* 2197 * Don't move a mount tree containing unbindable mounts to a destination 2198 * mount which is shared. 2199 */ 2200 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2201 goto out1; 2202 err = -ELOOP; 2203 for (; mnt_has_parent(p); p = p->mnt_parent) 2204 if (p == old) 2205 goto out1; 2206 2207 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2208 if (err) 2209 goto out1; 2210 2211 /* if the mount is moved, it should no longer be expire 2212 * automatically */ 2213 list_del_init(&old->mnt_expire); 2214 out1: 2215 unlock_mount(mp); 2216 out: 2217 if (!err) 2218 path_put(&parent_path); 2219 path_put(&old_path); 2220 return err; 2221 } 2222 2223 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2224 { 2225 int err; 2226 const char *subtype = strchr(fstype, '.'); 2227 if (subtype) { 2228 subtype++; 2229 err = -EINVAL; 2230 if (!subtype[0]) 2231 goto err; 2232 } else 2233 subtype = ""; 2234 2235 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2236 err = -ENOMEM; 2237 if (!mnt->mnt_sb->s_subtype) 2238 goto err; 2239 return mnt; 2240 2241 err: 2242 mntput(mnt); 2243 return ERR_PTR(err); 2244 } 2245 2246 /* 2247 * add a mount into a namespace's mount tree 2248 */ 2249 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2250 { 2251 struct mountpoint *mp; 2252 struct mount *parent; 2253 int err; 2254 2255 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2256 2257 mp = lock_mount(path); 2258 if (IS_ERR(mp)) 2259 return PTR_ERR(mp); 2260 2261 parent = real_mount(path->mnt); 2262 err = -EINVAL; 2263 if (unlikely(!check_mnt(parent))) { 2264 /* that's acceptable only for automounts done in private ns */ 2265 if (!(mnt_flags & MNT_SHRINKABLE)) 2266 goto unlock; 2267 /* ... and for those we'd better have mountpoint still alive */ 2268 if (!parent->mnt_ns) 2269 goto unlock; 2270 } 2271 2272 /* Refuse the same filesystem on the same mount point */ 2273 err = -EBUSY; 2274 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2275 path->mnt->mnt_root == path->dentry) 2276 goto unlock; 2277 2278 err = -EINVAL; 2279 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode)) 2280 goto unlock; 2281 2282 newmnt->mnt.mnt_flags = mnt_flags; 2283 err = graft_tree(newmnt, parent, mp); 2284 2285 unlock: 2286 unlock_mount(mp); 2287 return err; 2288 } 2289 2290 /* 2291 * create a new mount for userspace and request it to be added into the 2292 * namespace's tree 2293 */ 2294 static int do_new_mount(struct path *path, const char *fstype, int flags, 2295 int mnt_flags, const char *name, void *data) 2296 { 2297 struct file_system_type *type; 2298 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2299 struct vfsmount *mnt; 2300 int err; 2301 2302 if (!fstype) 2303 return -EINVAL; 2304 2305 type = get_fs_type(fstype); 2306 if (!type) 2307 return -ENODEV; 2308 2309 if (user_ns != &init_user_ns) { 2310 if (!(type->fs_flags & FS_USERNS_MOUNT)) { 2311 put_filesystem(type); 2312 return -EPERM; 2313 } 2314 /* Only in special cases allow devices from mounts 2315 * created outside the initial user namespace. 2316 */ 2317 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { 2318 flags |= MS_NODEV; 2319 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV; 2320 } 2321 } 2322 2323 mnt = vfs_kern_mount(type, flags, name, data); 2324 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2325 !mnt->mnt_sb->s_subtype) 2326 mnt = fs_set_subtype(mnt, fstype); 2327 2328 put_filesystem(type); 2329 if (IS_ERR(mnt)) 2330 return PTR_ERR(mnt); 2331 2332 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2333 if (err) 2334 mntput(mnt); 2335 return err; 2336 } 2337 2338 int finish_automount(struct vfsmount *m, struct path *path) 2339 { 2340 struct mount *mnt = real_mount(m); 2341 int err; 2342 /* The new mount record should have at least 2 refs to prevent it being 2343 * expired before we get a chance to add it 2344 */ 2345 BUG_ON(mnt_get_count(mnt) < 2); 2346 2347 if (m->mnt_sb == path->mnt->mnt_sb && 2348 m->mnt_root == path->dentry) { 2349 err = -ELOOP; 2350 goto fail; 2351 } 2352 2353 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2354 if (!err) 2355 return 0; 2356 fail: 2357 /* remove m from any expiration list it may be on */ 2358 if (!list_empty(&mnt->mnt_expire)) { 2359 namespace_lock(); 2360 list_del_init(&mnt->mnt_expire); 2361 namespace_unlock(); 2362 } 2363 mntput(m); 2364 mntput(m); 2365 return err; 2366 } 2367 2368 /** 2369 * mnt_set_expiry - Put a mount on an expiration list 2370 * @mnt: The mount to list. 2371 * @expiry_list: The list to add the mount to. 2372 */ 2373 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2374 { 2375 namespace_lock(); 2376 2377 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2378 2379 namespace_unlock(); 2380 } 2381 EXPORT_SYMBOL(mnt_set_expiry); 2382 2383 /* 2384 * process a list of expirable mountpoints with the intent of discarding any 2385 * mountpoints that aren't in use and haven't been touched since last we came 2386 * here 2387 */ 2388 void mark_mounts_for_expiry(struct list_head *mounts) 2389 { 2390 struct mount *mnt, *next; 2391 LIST_HEAD(graveyard); 2392 2393 if (list_empty(mounts)) 2394 return; 2395 2396 namespace_lock(); 2397 lock_mount_hash(); 2398 2399 /* extract from the expiration list every vfsmount that matches the 2400 * following criteria: 2401 * - only referenced by its parent vfsmount 2402 * - still marked for expiry (marked on the last call here; marks are 2403 * cleared by mntput()) 2404 */ 2405 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2406 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2407 propagate_mount_busy(mnt, 1)) 2408 continue; 2409 list_move(&mnt->mnt_expire, &graveyard); 2410 } 2411 while (!list_empty(&graveyard)) { 2412 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2413 touch_mnt_namespace(mnt->mnt_ns); 2414 umount_tree(mnt, 1); 2415 } 2416 unlock_mount_hash(); 2417 namespace_unlock(); 2418 } 2419 2420 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2421 2422 /* 2423 * Ripoff of 'select_parent()' 2424 * 2425 * search the list of submounts for a given mountpoint, and move any 2426 * shrinkable submounts to the 'graveyard' list. 2427 */ 2428 static int select_submounts(struct mount *parent, struct list_head *graveyard) 2429 { 2430 struct mount *this_parent = parent; 2431 struct list_head *next; 2432 int found = 0; 2433 2434 repeat: 2435 next = this_parent->mnt_mounts.next; 2436 resume: 2437 while (next != &this_parent->mnt_mounts) { 2438 struct list_head *tmp = next; 2439 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2440 2441 next = tmp->next; 2442 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2443 continue; 2444 /* 2445 * Descend a level if the d_mounts list is non-empty. 2446 */ 2447 if (!list_empty(&mnt->mnt_mounts)) { 2448 this_parent = mnt; 2449 goto repeat; 2450 } 2451 2452 if (!propagate_mount_busy(mnt, 1)) { 2453 list_move_tail(&mnt->mnt_expire, graveyard); 2454 found++; 2455 } 2456 } 2457 /* 2458 * All done at this level ... ascend and resume the search 2459 */ 2460 if (this_parent != parent) { 2461 next = this_parent->mnt_child.next; 2462 this_parent = this_parent->mnt_parent; 2463 goto resume; 2464 } 2465 return found; 2466 } 2467 2468 /* 2469 * process a list of expirable mountpoints with the intent of discarding any 2470 * submounts of a specific parent mountpoint 2471 * 2472 * mount_lock must be held for write 2473 */ 2474 static void shrink_submounts(struct mount *mnt) 2475 { 2476 LIST_HEAD(graveyard); 2477 struct mount *m; 2478 2479 /* extract submounts of 'mountpoint' from the expiration list */ 2480 while (select_submounts(mnt, &graveyard)) { 2481 while (!list_empty(&graveyard)) { 2482 m = list_first_entry(&graveyard, struct mount, 2483 mnt_expire); 2484 touch_mnt_namespace(m->mnt_ns); 2485 umount_tree(m, 1); 2486 } 2487 } 2488 } 2489 2490 /* 2491 * Some copy_from_user() implementations do not return the exact number of 2492 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2493 * Note that this function differs from copy_from_user() in that it will oops 2494 * on bad values of `to', rather than returning a short copy. 2495 */ 2496 static long exact_copy_from_user(void *to, const void __user * from, 2497 unsigned long n) 2498 { 2499 char *t = to; 2500 const char __user *f = from; 2501 char c; 2502 2503 if (!access_ok(VERIFY_READ, from, n)) 2504 return n; 2505 2506 while (n) { 2507 if (__get_user(c, f)) { 2508 memset(t, 0, n); 2509 break; 2510 } 2511 *t++ = c; 2512 f++; 2513 n--; 2514 } 2515 return n; 2516 } 2517 2518 int copy_mount_options(const void __user * data, unsigned long *where) 2519 { 2520 int i; 2521 unsigned long page; 2522 unsigned long size; 2523 2524 *where = 0; 2525 if (!data) 2526 return 0; 2527 2528 if (!(page = __get_free_page(GFP_KERNEL))) 2529 return -ENOMEM; 2530 2531 /* We only care that *some* data at the address the user 2532 * gave us is valid. Just in case, we'll zero 2533 * the remainder of the page. 2534 */ 2535 /* copy_from_user cannot cross TASK_SIZE ! */ 2536 size = TASK_SIZE - (unsigned long)data; 2537 if (size > PAGE_SIZE) 2538 size = PAGE_SIZE; 2539 2540 i = size - exact_copy_from_user((void *)page, data, size); 2541 if (!i) { 2542 free_page(page); 2543 return -EFAULT; 2544 } 2545 if (i != PAGE_SIZE) 2546 memset((char *)page + i, 0, PAGE_SIZE - i); 2547 *where = page; 2548 return 0; 2549 } 2550 2551 char *copy_mount_string(const void __user *data) 2552 { 2553 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2554 } 2555 2556 /* 2557 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2558 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2559 * 2560 * data is a (void *) that can point to any structure up to 2561 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2562 * information (or be NULL). 2563 * 2564 * Pre-0.97 versions of mount() didn't have a flags word. 2565 * When the flags word was introduced its top half was required 2566 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2567 * Therefore, if this magic number is present, it carries no information 2568 * and must be discarded. 2569 */ 2570 long do_mount(const char *dev_name, const char __user *dir_name, 2571 const char *type_page, unsigned long flags, void *data_page) 2572 { 2573 struct path path; 2574 int retval = 0; 2575 int mnt_flags = 0; 2576 2577 /* Discard magic */ 2578 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2579 flags &= ~MS_MGC_MSK; 2580 2581 /* Basic sanity checks */ 2582 if (data_page) 2583 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2584 2585 /* ... and get the mountpoint */ 2586 retval = user_path(dir_name, &path); 2587 if (retval) 2588 return retval; 2589 2590 retval = security_sb_mount(dev_name, &path, 2591 type_page, flags, data_page); 2592 if (!retval && !may_mount()) 2593 retval = -EPERM; 2594 if (retval) 2595 goto dput_out; 2596 2597 /* Default to relatime unless overriden */ 2598 if (!(flags & MS_NOATIME)) 2599 mnt_flags |= MNT_RELATIME; 2600 2601 /* Separate the per-mountpoint flags */ 2602 if (flags & MS_NOSUID) 2603 mnt_flags |= MNT_NOSUID; 2604 if (flags & MS_NODEV) 2605 mnt_flags |= MNT_NODEV; 2606 if (flags & MS_NOEXEC) 2607 mnt_flags |= MNT_NOEXEC; 2608 if (flags & MS_NOATIME) 2609 mnt_flags |= MNT_NOATIME; 2610 if (flags & MS_NODIRATIME) 2611 mnt_flags |= MNT_NODIRATIME; 2612 if (flags & MS_STRICTATIME) 2613 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2614 if (flags & MS_RDONLY) 2615 mnt_flags |= MNT_READONLY; 2616 2617 /* The default atime for remount is preservation */ 2618 if ((flags & MS_REMOUNT) && 2619 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2620 MS_STRICTATIME)) == 0)) { 2621 mnt_flags &= ~MNT_ATIME_MASK; 2622 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2623 } 2624 2625 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2626 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2627 MS_STRICTATIME); 2628 2629 if (flags & MS_REMOUNT) 2630 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2631 data_page); 2632 else if (flags & MS_BIND) 2633 retval = do_loopback(&path, dev_name, flags & MS_REC); 2634 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2635 retval = do_change_type(&path, flags); 2636 else if (flags & MS_MOVE) 2637 retval = do_move_mount(&path, dev_name); 2638 else 2639 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2640 dev_name, data_page); 2641 dput_out: 2642 path_put(&path); 2643 return retval; 2644 } 2645 2646 static void free_mnt_ns(struct mnt_namespace *ns) 2647 { 2648 proc_free_inum(ns->ns.inum); 2649 put_user_ns(ns->user_ns); 2650 kfree(ns); 2651 } 2652 2653 /* 2654 * Assign a sequence number so we can detect when we attempt to bind 2655 * mount a reference to an older mount namespace into the current 2656 * mount namespace, preventing reference counting loops. A 64bit 2657 * number incrementing at 10Ghz will take 12,427 years to wrap which 2658 * is effectively never, so we can ignore the possibility. 2659 */ 2660 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2661 2662 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2663 { 2664 struct mnt_namespace *new_ns; 2665 int ret; 2666 2667 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2668 if (!new_ns) 2669 return ERR_PTR(-ENOMEM); 2670 ret = proc_alloc_inum(&new_ns->ns.inum); 2671 if (ret) { 2672 kfree(new_ns); 2673 return ERR_PTR(ret); 2674 } 2675 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2676 atomic_set(&new_ns->count, 1); 2677 new_ns->root = NULL; 2678 INIT_LIST_HEAD(&new_ns->list); 2679 init_waitqueue_head(&new_ns->poll); 2680 new_ns->event = 0; 2681 new_ns->user_ns = get_user_ns(user_ns); 2682 return new_ns; 2683 } 2684 2685 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2686 struct user_namespace *user_ns, struct fs_struct *new_fs) 2687 { 2688 struct mnt_namespace *new_ns; 2689 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2690 struct mount *p, *q; 2691 struct mount *old; 2692 struct mount *new; 2693 int copy_flags; 2694 2695 BUG_ON(!ns); 2696 2697 if (likely(!(flags & CLONE_NEWNS))) { 2698 get_mnt_ns(ns); 2699 return ns; 2700 } 2701 2702 old = ns->root; 2703 2704 new_ns = alloc_mnt_ns(user_ns); 2705 if (IS_ERR(new_ns)) 2706 return new_ns; 2707 2708 namespace_lock(); 2709 /* First pass: copy the tree topology */ 2710 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2711 if (user_ns != ns->user_ns) 2712 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2713 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2714 if (IS_ERR(new)) { 2715 namespace_unlock(); 2716 free_mnt_ns(new_ns); 2717 return ERR_CAST(new); 2718 } 2719 new_ns->root = new; 2720 list_add_tail(&new_ns->list, &new->mnt_list); 2721 2722 /* 2723 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2724 * as belonging to new namespace. We have already acquired a private 2725 * fs_struct, so tsk->fs->lock is not needed. 2726 */ 2727 p = old; 2728 q = new; 2729 while (p) { 2730 q->mnt_ns = new_ns; 2731 if (new_fs) { 2732 if (&p->mnt == new_fs->root.mnt) { 2733 new_fs->root.mnt = mntget(&q->mnt); 2734 rootmnt = &p->mnt; 2735 } 2736 if (&p->mnt == new_fs->pwd.mnt) { 2737 new_fs->pwd.mnt = mntget(&q->mnt); 2738 pwdmnt = &p->mnt; 2739 } 2740 } 2741 p = next_mnt(p, old); 2742 q = next_mnt(q, new); 2743 if (!q) 2744 break; 2745 while (p->mnt.mnt_root != q->mnt.mnt_root) 2746 p = next_mnt(p, old); 2747 } 2748 namespace_unlock(); 2749 2750 if (rootmnt) 2751 mntput(rootmnt); 2752 if (pwdmnt) 2753 mntput(pwdmnt); 2754 2755 return new_ns; 2756 } 2757 2758 /** 2759 * create_mnt_ns - creates a private namespace and adds a root filesystem 2760 * @mnt: pointer to the new root filesystem mountpoint 2761 */ 2762 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2763 { 2764 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2765 if (!IS_ERR(new_ns)) { 2766 struct mount *mnt = real_mount(m); 2767 mnt->mnt_ns = new_ns; 2768 new_ns->root = mnt; 2769 list_add(&mnt->mnt_list, &new_ns->list); 2770 } else { 2771 mntput(m); 2772 } 2773 return new_ns; 2774 } 2775 2776 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2777 { 2778 struct mnt_namespace *ns; 2779 struct super_block *s; 2780 struct path path; 2781 int err; 2782 2783 ns = create_mnt_ns(mnt); 2784 if (IS_ERR(ns)) 2785 return ERR_CAST(ns); 2786 2787 err = vfs_path_lookup(mnt->mnt_root, mnt, 2788 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2789 2790 put_mnt_ns(ns); 2791 2792 if (err) 2793 return ERR_PTR(err); 2794 2795 /* trade a vfsmount reference for active sb one */ 2796 s = path.mnt->mnt_sb; 2797 atomic_inc(&s->s_active); 2798 mntput(path.mnt); 2799 /* lock the sucker */ 2800 down_write(&s->s_umount); 2801 /* ... and return the root of (sub)tree on it */ 2802 return path.dentry; 2803 } 2804 EXPORT_SYMBOL(mount_subtree); 2805 2806 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2807 char __user *, type, unsigned long, flags, void __user *, data) 2808 { 2809 int ret; 2810 char *kernel_type; 2811 char *kernel_dev; 2812 unsigned long data_page; 2813 2814 kernel_type = copy_mount_string(type); 2815 ret = PTR_ERR(kernel_type); 2816 if (IS_ERR(kernel_type)) 2817 goto out_type; 2818 2819 kernel_dev = copy_mount_string(dev_name); 2820 ret = PTR_ERR(kernel_dev); 2821 if (IS_ERR(kernel_dev)) 2822 goto out_dev; 2823 2824 ret = copy_mount_options(data, &data_page); 2825 if (ret < 0) 2826 goto out_data; 2827 2828 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, 2829 (void *) data_page); 2830 2831 free_page(data_page); 2832 out_data: 2833 kfree(kernel_dev); 2834 out_dev: 2835 kfree(kernel_type); 2836 out_type: 2837 return ret; 2838 } 2839 2840 /* 2841 * Return true if path is reachable from root 2842 * 2843 * namespace_sem or mount_lock is held 2844 */ 2845 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2846 const struct path *root) 2847 { 2848 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2849 dentry = mnt->mnt_mountpoint; 2850 mnt = mnt->mnt_parent; 2851 } 2852 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2853 } 2854 2855 int path_is_under(struct path *path1, struct path *path2) 2856 { 2857 int res; 2858 read_seqlock_excl(&mount_lock); 2859 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2860 read_sequnlock_excl(&mount_lock); 2861 return res; 2862 } 2863 EXPORT_SYMBOL(path_is_under); 2864 2865 /* 2866 * pivot_root Semantics: 2867 * Moves the root file system of the current process to the directory put_old, 2868 * makes new_root as the new root file system of the current process, and sets 2869 * root/cwd of all processes which had them on the current root to new_root. 2870 * 2871 * Restrictions: 2872 * The new_root and put_old must be directories, and must not be on the 2873 * same file system as the current process root. The put_old must be 2874 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2875 * pointed to by put_old must yield the same directory as new_root. No other 2876 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2877 * 2878 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2879 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2880 * in this situation. 2881 * 2882 * Notes: 2883 * - we don't move root/cwd if they are not at the root (reason: if something 2884 * cared enough to change them, it's probably wrong to force them elsewhere) 2885 * - it's okay to pick a root that isn't the root of a file system, e.g. 2886 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2887 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2888 * first. 2889 */ 2890 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2891 const char __user *, put_old) 2892 { 2893 struct path new, old, parent_path, root_parent, root; 2894 struct mount *new_mnt, *root_mnt, *old_mnt; 2895 struct mountpoint *old_mp, *root_mp; 2896 int error; 2897 2898 if (!may_mount()) 2899 return -EPERM; 2900 2901 error = user_path_dir(new_root, &new); 2902 if (error) 2903 goto out0; 2904 2905 error = user_path_dir(put_old, &old); 2906 if (error) 2907 goto out1; 2908 2909 error = security_sb_pivotroot(&old, &new); 2910 if (error) 2911 goto out2; 2912 2913 get_fs_root(current->fs, &root); 2914 old_mp = lock_mount(&old); 2915 error = PTR_ERR(old_mp); 2916 if (IS_ERR(old_mp)) 2917 goto out3; 2918 2919 error = -EINVAL; 2920 new_mnt = real_mount(new.mnt); 2921 root_mnt = real_mount(root.mnt); 2922 old_mnt = real_mount(old.mnt); 2923 if (IS_MNT_SHARED(old_mnt) || 2924 IS_MNT_SHARED(new_mnt->mnt_parent) || 2925 IS_MNT_SHARED(root_mnt->mnt_parent)) 2926 goto out4; 2927 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 2928 goto out4; 2929 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 2930 goto out4; 2931 error = -ENOENT; 2932 if (d_unlinked(new.dentry)) 2933 goto out4; 2934 error = -EBUSY; 2935 if (new_mnt == root_mnt || old_mnt == root_mnt) 2936 goto out4; /* loop, on the same file system */ 2937 error = -EINVAL; 2938 if (root.mnt->mnt_root != root.dentry) 2939 goto out4; /* not a mountpoint */ 2940 if (!mnt_has_parent(root_mnt)) 2941 goto out4; /* not attached */ 2942 root_mp = root_mnt->mnt_mp; 2943 if (new.mnt->mnt_root != new.dentry) 2944 goto out4; /* not a mountpoint */ 2945 if (!mnt_has_parent(new_mnt)) 2946 goto out4; /* not attached */ 2947 /* make sure we can reach put_old from new_root */ 2948 if (!is_path_reachable(old_mnt, old.dentry, &new)) 2949 goto out4; 2950 /* make certain new is below the root */ 2951 if (!is_path_reachable(new_mnt, new.dentry, &root)) 2952 goto out4; 2953 root_mp->m_count++; /* pin it so it won't go away */ 2954 lock_mount_hash(); 2955 detach_mnt(new_mnt, &parent_path); 2956 detach_mnt(root_mnt, &root_parent); 2957 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 2958 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 2959 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2960 } 2961 /* mount old root on put_old */ 2962 attach_mnt(root_mnt, old_mnt, old_mp); 2963 /* mount new_root on / */ 2964 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 2965 touch_mnt_namespace(current->nsproxy->mnt_ns); 2966 unlock_mount_hash(); 2967 chroot_fs_refs(&root, &new); 2968 put_mountpoint(root_mp); 2969 error = 0; 2970 out4: 2971 unlock_mount(old_mp); 2972 if (!error) { 2973 path_put(&root_parent); 2974 path_put(&parent_path); 2975 } 2976 out3: 2977 path_put(&root); 2978 out2: 2979 path_put(&old); 2980 out1: 2981 path_put(&new); 2982 out0: 2983 return error; 2984 } 2985 2986 static void __init init_mount_tree(void) 2987 { 2988 struct vfsmount *mnt; 2989 struct mnt_namespace *ns; 2990 struct path root; 2991 struct file_system_type *type; 2992 2993 type = get_fs_type("rootfs"); 2994 if (!type) 2995 panic("Can't find rootfs type"); 2996 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 2997 put_filesystem(type); 2998 if (IS_ERR(mnt)) 2999 panic("Can't create rootfs"); 3000 3001 ns = create_mnt_ns(mnt); 3002 if (IS_ERR(ns)) 3003 panic("Can't allocate initial namespace"); 3004 3005 init_task.nsproxy->mnt_ns = ns; 3006 get_mnt_ns(ns); 3007 3008 root.mnt = mnt; 3009 root.dentry = mnt->mnt_root; 3010 3011 set_fs_pwd(current->fs, &root); 3012 set_fs_root(current->fs, &root); 3013 } 3014 3015 void __init mnt_init(void) 3016 { 3017 unsigned u; 3018 int err; 3019 3020 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3021 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3022 3023 mount_hashtable = alloc_large_system_hash("Mount-cache", 3024 sizeof(struct hlist_head), 3025 mhash_entries, 19, 3026 0, 3027 &m_hash_shift, &m_hash_mask, 0, 0); 3028 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3029 sizeof(struct hlist_head), 3030 mphash_entries, 19, 3031 0, 3032 &mp_hash_shift, &mp_hash_mask, 0, 0); 3033 3034 if (!mount_hashtable || !mountpoint_hashtable) 3035 panic("Failed to allocate mount hash table\n"); 3036 3037 for (u = 0; u <= m_hash_mask; u++) 3038 INIT_HLIST_HEAD(&mount_hashtable[u]); 3039 for (u = 0; u <= mp_hash_mask; u++) 3040 INIT_HLIST_HEAD(&mountpoint_hashtable[u]); 3041 3042 kernfs_init(); 3043 3044 err = sysfs_init(); 3045 if (err) 3046 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3047 __func__, err); 3048 fs_kobj = kobject_create_and_add("fs", NULL); 3049 if (!fs_kobj) 3050 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3051 init_rootfs(); 3052 init_mount_tree(); 3053 } 3054 3055 void put_mnt_ns(struct mnt_namespace *ns) 3056 { 3057 if (!atomic_dec_and_test(&ns->count)) 3058 return; 3059 drop_collected_mounts(&ns->root->mnt); 3060 free_mnt_ns(ns); 3061 } 3062 3063 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3064 { 3065 struct vfsmount *mnt; 3066 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 3067 if (!IS_ERR(mnt)) { 3068 /* 3069 * it is a longterm mount, don't release mnt until 3070 * we unmount before file sys is unregistered 3071 */ 3072 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3073 } 3074 return mnt; 3075 } 3076 EXPORT_SYMBOL_GPL(kern_mount_data); 3077 3078 void kern_unmount(struct vfsmount *mnt) 3079 { 3080 /* release long term mount so mount point can be released */ 3081 if (!IS_ERR_OR_NULL(mnt)) { 3082 real_mount(mnt)->mnt_ns = NULL; 3083 synchronize_rcu(); /* yecchhh... */ 3084 mntput(mnt); 3085 } 3086 } 3087 EXPORT_SYMBOL(kern_unmount); 3088 3089 bool our_mnt(struct vfsmount *mnt) 3090 { 3091 return check_mnt(real_mount(mnt)); 3092 } 3093 3094 bool current_chrooted(void) 3095 { 3096 /* Does the current process have a non-standard root */ 3097 struct path ns_root; 3098 struct path fs_root; 3099 bool chrooted; 3100 3101 /* Find the namespace root */ 3102 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3103 ns_root.dentry = ns_root.mnt->mnt_root; 3104 path_get(&ns_root); 3105 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3106 ; 3107 3108 get_fs_root(current->fs, &fs_root); 3109 3110 chrooted = !path_equal(&fs_root, &ns_root); 3111 3112 path_put(&fs_root); 3113 path_put(&ns_root); 3114 3115 return chrooted; 3116 } 3117 3118 bool fs_fully_visible(struct file_system_type *type) 3119 { 3120 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3121 struct mount *mnt; 3122 bool visible = false; 3123 3124 if (unlikely(!ns)) 3125 return false; 3126 3127 down_read(&namespace_sem); 3128 list_for_each_entry(mnt, &ns->list, mnt_list) { 3129 struct mount *child; 3130 if (mnt->mnt.mnt_sb->s_type != type) 3131 continue; 3132 3133 /* This mount is not fully visible if there are any child mounts 3134 * that cover anything except for empty directories. 3135 */ 3136 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3137 struct inode *inode = child->mnt_mountpoint->d_inode; 3138 if (!S_ISDIR(inode->i_mode)) 3139 goto next; 3140 if (inode->i_nlink > 2) 3141 goto next; 3142 } 3143 visible = true; 3144 goto found; 3145 next: ; 3146 } 3147 found: 3148 up_read(&namespace_sem); 3149 return visible; 3150 } 3151 3152 static struct ns_common *mntns_get(struct task_struct *task) 3153 { 3154 struct ns_common *ns = NULL; 3155 struct nsproxy *nsproxy; 3156 3157 task_lock(task); 3158 nsproxy = task->nsproxy; 3159 if (nsproxy) { 3160 ns = &nsproxy->mnt_ns->ns; 3161 get_mnt_ns(to_mnt_ns(ns)); 3162 } 3163 task_unlock(task); 3164 3165 return ns; 3166 } 3167 3168 static void mntns_put(struct ns_common *ns) 3169 { 3170 put_mnt_ns(to_mnt_ns(ns)); 3171 } 3172 3173 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3174 { 3175 struct fs_struct *fs = current->fs; 3176 struct mnt_namespace *mnt_ns = to_mnt_ns(ns); 3177 struct path root; 3178 3179 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3180 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3181 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3182 return -EPERM; 3183 3184 if (fs->users != 1) 3185 return -EINVAL; 3186 3187 get_mnt_ns(mnt_ns); 3188 put_mnt_ns(nsproxy->mnt_ns); 3189 nsproxy->mnt_ns = mnt_ns; 3190 3191 /* Find the root */ 3192 root.mnt = &mnt_ns->root->mnt; 3193 root.dentry = mnt_ns->root->mnt.mnt_root; 3194 path_get(&root); 3195 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 3196 ; 3197 3198 /* Update the pwd and root */ 3199 set_fs_pwd(fs, &root); 3200 set_fs_root(fs, &root); 3201 3202 path_put(&root); 3203 return 0; 3204 } 3205 3206 const struct proc_ns_operations mntns_operations = { 3207 .name = "mnt", 3208 .type = CLONE_NEWNS, 3209 .get = mntns_get, 3210 .put = mntns_put, 3211 .install = mntns_install, 3212 }; 3213