xref: /openbmc/linux/fs/namespace.c (revision 64964528b24ea390824f0e5ce9d34b8d39b28cde)
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>		/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29 
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34 
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 	if (!str)
39 		return 0;
40 	mhash_entries = simple_strtoul(str, &str, 0);
41 	return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44 
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 	if (!str)
49 		return 0;
50 	mphash_entries = simple_strtoul(str, &str, 0);
51 	return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54 
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61 
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66 
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70 
71 /*
72  * vfsmount lock may be taken for read to prevent changes to the
73  * vfsmount hash, ie. during mountpoint lookups or walking back
74  * up the tree.
75  *
76  * It should be taken for write in all cases where the vfsmount
77  * tree or hash is modified or when a vfsmount structure is modified.
78  */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80 
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 	tmp = tmp + (tmp >> m_hash_shift);
86 	return &mount_hashtable[tmp & m_hash_mask];
87 }
88 
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 	tmp = tmp + (tmp >> mp_hash_shift);
93 	return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95 
96 /*
97  * allocation is serialized by namespace_sem, but we need the spinlock to
98  * serialize with freeing.
99  */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 	int res;
103 
104 retry:
105 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 	spin_lock(&mnt_id_lock);
107 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 	if (!res)
109 		mnt_id_start = mnt->mnt_id + 1;
110 	spin_unlock(&mnt_id_lock);
111 	if (res == -EAGAIN)
112 		goto retry;
113 
114 	return res;
115 }
116 
117 static void mnt_free_id(struct mount *mnt)
118 {
119 	int id = mnt->mnt_id;
120 	spin_lock(&mnt_id_lock);
121 	ida_remove(&mnt_id_ida, id);
122 	if (mnt_id_start > id)
123 		mnt_id_start = id;
124 	spin_unlock(&mnt_id_lock);
125 }
126 
127 /*
128  * Allocate a new peer group ID
129  *
130  * mnt_group_ida is protected by namespace_sem
131  */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 	int res;
135 
136 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 		return -ENOMEM;
138 
139 	res = ida_get_new_above(&mnt_group_ida,
140 				mnt_group_start,
141 				&mnt->mnt_group_id);
142 	if (!res)
143 		mnt_group_start = mnt->mnt_group_id + 1;
144 
145 	return res;
146 }
147 
148 /*
149  * Release a peer group ID
150  */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 	int id = mnt->mnt_group_id;
154 	ida_remove(&mnt_group_ida, id);
155 	if (mnt_group_start > id)
156 		mnt_group_start = id;
157 	mnt->mnt_group_id = 0;
158 }
159 
160 /*
161  * vfsmount lock must be held for read
162  */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 	preempt_disable();
169 	mnt->mnt_count += n;
170 	preempt_enable();
171 #endif
172 }
173 
174 /*
175  * vfsmount lock must be held for write
176  */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 	unsigned int count = 0;
181 	int cpu;
182 
183 	for_each_possible_cpu(cpu) {
184 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 	}
186 
187 	return count;
188 #else
189 	return mnt->mnt_count;
190 #endif
191 }
192 
193 static struct mount *alloc_vfsmnt(const char *name)
194 {
195 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 	if (mnt) {
197 		int err;
198 
199 		err = mnt_alloc_id(mnt);
200 		if (err)
201 			goto out_free_cache;
202 
203 		if (name) {
204 			mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 			if (!mnt->mnt_devname)
206 				goto out_free_id;
207 		}
208 
209 #ifdef CONFIG_SMP
210 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 		if (!mnt->mnt_pcp)
212 			goto out_free_devname;
213 
214 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
215 #else
216 		mnt->mnt_count = 1;
217 		mnt->mnt_writers = 0;
218 #endif
219 
220 		INIT_HLIST_NODE(&mnt->mnt_hash);
221 		INIT_LIST_HEAD(&mnt->mnt_child);
222 		INIT_LIST_HEAD(&mnt->mnt_mounts);
223 		INIT_LIST_HEAD(&mnt->mnt_list);
224 		INIT_LIST_HEAD(&mnt->mnt_expire);
225 		INIT_LIST_HEAD(&mnt->mnt_share);
226 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 		INIT_LIST_HEAD(&mnt->mnt_slave);
228 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
229 #ifdef CONFIG_FSNOTIFY
230 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
231 #endif
232 	}
233 	return mnt;
234 
235 #ifdef CONFIG_SMP
236 out_free_devname:
237 	kfree(mnt->mnt_devname);
238 #endif
239 out_free_id:
240 	mnt_free_id(mnt);
241 out_free_cache:
242 	kmem_cache_free(mnt_cache, mnt);
243 	return NULL;
244 }
245 
246 /*
247  * Most r/o checks on a fs are for operations that take
248  * discrete amounts of time, like a write() or unlink().
249  * We must keep track of when those operations start
250  * (for permission checks) and when they end, so that
251  * we can determine when writes are able to occur to
252  * a filesystem.
253  */
254 /*
255  * __mnt_is_readonly: check whether a mount is read-only
256  * @mnt: the mount to check for its write status
257  *
258  * This shouldn't be used directly ouside of the VFS.
259  * It does not guarantee that the filesystem will stay
260  * r/w, just that it is right *now*.  This can not and
261  * should not be used in place of IS_RDONLY(inode).
262  * mnt_want/drop_write() will _keep_ the filesystem
263  * r/w.
264  */
265 int __mnt_is_readonly(struct vfsmount *mnt)
266 {
267 	if (mnt->mnt_flags & MNT_READONLY)
268 		return 1;
269 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
270 		return 1;
271 	return 0;
272 }
273 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
274 
275 static inline void mnt_inc_writers(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
279 #else
280 	mnt->mnt_writers++;
281 #endif
282 }
283 
284 static inline void mnt_dec_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
288 #else
289 	mnt->mnt_writers--;
290 #endif
291 }
292 
293 static unsigned int mnt_get_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 	unsigned int count = 0;
297 	int cpu;
298 
299 	for_each_possible_cpu(cpu) {
300 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
301 	}
302 
303 	return count;
304 #else
305 	return mnt->mnt_writers;
306 #endif
307 }
308 
309 static int mnt_is_readonly(struct vfsmount *mnt)
310 {
311 	if (mnt->mnt_sb->s_readonly_remount)
312 		return 1;
313 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 	smp_rmb();
315 	return __mnt_is_readonly(mnt);
316 }
317 
318 /*
319  * Most r/o & frozen checks on a fs are for operations that take discrete
320  * amounts of time, like a write() or unlink().  We must keep track of when
321  * those operations start (for permission checks) and when they end, so that we
322  * can determine when writes are able to occur to a filesystem.
323  */
324 /**
325  * __mnt_want_write - get write access to a mount without freeze protection
326  * @m: the mount on which to take a write
327  *
328  * This tells the low-level filesystem that a write is about to be performed to
329  * it, and makes sure that writes are allowed (mnt it read-write) before
330  * returning success. This operation does not protect against filesystem being
331  * frozen. When the write operation is finished, __mnt_drop_write() must be
332  * called. This is effectively a refcount.
333  */
334 int __mnt_want_write(struct vfsmount *m)
335 {
336 	struct mount *mnt = real_mount(m);
337 	int ret = 0;
338 
339 	preempt_disable();
340 	mnt_inc_writers(mnt);
341 	/*
342 	 * The store to mnt_inc_writers must be visible before we pass
343 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 	 * incremented count after it has set MNT_WRITE_HOLD.
345 	 */
346 	smp_mb();
347 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
348 		cpu_relax();
349 	/*
350 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 	 * be set to match its requirements. So we must not load that until
352 	 * MNT_WRITE_HOLD is cleared.
353 	 */
354 	smp_rmb();
355 	if (mnt_is_readonly(m)) {
356 		mnt_dec_writers(mnt);
357 		ret = -EROFS;
358 	}
359 	preempt_enable();
360 
361 	return ret;
362 }
363 
364 /**
365  * mnt_want_write - get write access to a mount
366  * @m: the mount on which to take a write
367  *
368  * This tells the low-level filesystem that a write is about to be performed to
369  * it, and makes sure that writes are allowed (mount is read-write, filesystem
370  * is not frozen) before returning success.  When the write operation is
371  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
372  */
373 int mnt_want_write(struct vfsmount *m)
374 {
375 	int ret;
376 
377 	sb_start_write(m->mnt_sb);
378 	ret = __mnt_want_write(m);
379 	if (ret)
380 		sb_end_write(m->mnt_sb);
381 	return ret;
382 }
383 EXPORT_SYMBOL_GPL(mnt_want_write);
384 
385 /**
386  * mnt_clone_write - get write access to a mount
387  * @mnt: the mount on which to take a write
388  *
389  * This is effectively like mnt_want_write, except
390  * it must only be used to take an extra write reference
391  * on a mountpoint that we already know has a write reference
392  * on it. This allows some optimisation.
393  *
394  * After finished, mnt_drop_write must be called as usual to
395  * drop the reference.
396  */
397 int mnt_clone_write(struct vfsmount *mnt)
398 {
399 	/* superblock may be r/o */
400 	if (__mnt_is_readonly(mnt))
401 		return -EROFS;
402 	preempt_disable();
403 	mnt_inc_writers(real_mount(mnt));
404 	preempt_enable();
405 	return 0;
406 }
407 EXPORT_SYMBOL_GPL(mnt_clone_write);
408 
409 /**
410  * __mnt_want_write_file - get write access to a file's mount
411  * @file: the file who's mount on which to take a write
412  *
413  * This is like __mnt_want_write, but it takes a file and can
414  * do some optimisations if the file is open for write already
415  */
416 int __mnt_want_write_file(struct file *file)
417 {
418 	if (!(file->f_mode & FMODE_WRITER))
419 		return __mnt_want_write(file->f_path.mnt);
420 	else
421 		return mnt_clone_write(file->f_path.mnt);
422 }
423 
424 /**
425  * mnt_want_write_file - get write access to a file's mount
426  * @file: the file who's mount on which to take a write
427  *
428  * This is like mnt_want_write, but it takes a file and can
429  * do some optimisations if the file is open for write already
430  */
431 int mnt_want_write_file(struct file *file)
432 {
433 	int ret;
434 
435 	sb_start_write(file->f_path.mnt->mnt_sb);
436 	ret = __mnt_want_write_file(file);
437 	if (ret)
438 		sb_end_write(file->f_path.mnt->mnt_sb);
439 	return ret;
440 }
441 EXPORT_SYMBOL_GPL(mnt_want_write_file);
442 
443 /**
444  * __mnt_drop_write - give up write access to a mount
445  * @mnt: the mount on which to give up write access
446  *
447  * Tells the low-level filesystem that we are done
448  * performing writes to it.  Must be matched with
449  * __mnt_want_write() call above.
450  */
451 void __mnt_drop_write(struct vfsmount *mnt)
452 {
453 	preempt_disable();
454 	mnt_dec_writers(real_mount(mnt));
455 	preempt_enable();
456 }
457 
458 /**
459  * mnt_drop_write - give up write access to a mount
460  * @mnt: the mount on which to give up write access
461  *
462  * Tells the low-level filesystem that we are done performing writes to it and
463  * also allows filesystem to be frozen again.  Must be matched with
464  * mnt_want_write() call above.
465  */
466 void mnt_drop_write(struct vfsmount *mnt)
467 {
468 	__mnt_drop_write(mnt);
469 	sb_end_write(mnt->mnt_sb);
470 }
471 EXPORT_SYMBOL_GPL(mnt_drop_write);
472 
473 void __mnt_drop_write_file(struct file *file)
474 {
475 	__mnt_drop_write(file->f_path.mnt);
476 }
477 
478 void mnt_drop_write_file(struct file *file)
479 {
480 	mnt_drop_write(file->f_path.mnt);
481 }
482 EXPORT_SYMBOL(mnt_drop_write_file);
483 
484 static int mnt_make_readonly(struct mount *mnt)
485 {
486 	int ret = 0;
487 
488 	lock_mount_hash();
489 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
490 	/*
491 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
492 	 * should be visible before we do.
493 	 */
494 	smp_mb();
495 
496 	/*
497 	 * With writers on hold, if this value is zero, then there are
498 	 * definitely no active writers (although held writers may subsequently
499 	 * increment the count, they'll have to wait, and decrement it after
500 	 * seeing MNT_READONLY).
501 	 *
502 	 * It is OK to have counter incremented on one CPU and decremented on
503 	 * another: the sum will add up correctly. The danger would be when we
504 	 * sum up each counter, if we read a counter before it is incremented,
505 	 * but then read another CPU's count which it has been subsequently
506 	 * decremented from -- we would see more decrements than we should.
507 	 * MNT_WRITE_HOLD protects against this scenario, because
508 	 * mnt_want_write first increments count, then smp_mb, then spins on
509 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
510 	 * we're counting up here.
511 	 */
512 	if (mnt_get_writers(mnt) > 0)
513 		ret = -EBUSY;
514 	else
515 		mnt->mnt.mnt_flags |= MNT_READONLY;
516 	/*
517 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
518 	 * that become unheld will see MNT_READONLY.
519 	 */
520 	smp_wmb();
521 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
522 	unlock_mount_hash();
523 	return ret;
524 }
525 
526 static void __mnt_unmake_readonly(struct mount *mnt)
527 {
528 	lock_mount_hash();
529 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
530 	unlock_mount_hash();
531 }
532 
533 int sb_prepare_remount_readonly(struct super_block *sb)
534 {
535 	struct mount *mnt;
536 	int err = 0;
537 
538 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
539 	if (atomic_long_read(&sb->s_remove_count))
540 		return -EBUSY;
541 
542 	lock_mount_hash();
543 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
544 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
545 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
546 			smp_mb();
547 			if (mnt_get_writers(mnt) > 0) {
548 				err = -EBUSY;
549 				break;
550 			}
551 		}
552 	}
553 	if (!err && atomic_long_read(&sb->s_remove_count))
554 		err = -EBUSY;
555 
556 	if (!err) {
557 		sb->s_readonly_remount = 1;
558 		smp_wmb();
559 	}
560 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
561 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
562 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
563 	}
564 	unlock_mount_hash();
565 
566 	return err;
567 }
568 
569 static void free_vfsmnt(struct mount *mnt)
570 {
571 	kfree(mnt->mnt_devname);
572 #ifdef CONFIG_SMP
573 	free_percpu(mnt->mnt_pcp);
574 #endif
575 	kmem_cache_free(mnt_cache, mnt);
576 }
577 
578 static void delayed_free_vfsmnt(struct rcu_head *head)
579 {
580 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
581 }
582 
583 /* call under rcu_read_lock */
584 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
585 {
586 	struct mount *mnt;
587 	if (read_seqretry(&mount_lock, seq))
588 		return false;
589 	if (bastard == NULL)
590 		return true;
591 	mnt = real_mount(bastard);
592 	mnt_add_count(mnt, 1);
593 	if (likely(!read_seqretry(&mount_lock, seq)))
594 		return true;
595 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
596 		mnt_add_count(mnt, -1);
597 		return false;
598 	}
599 	rcu_read_unlock();
600 	mntput(bastard);
601 	rcu_read_lock();
602 	return false;
603 }
604 
605 /*
606  * find the first mount at @dentry on vfsmount @mnt.
607  * call under rcu_read_lock()
608  */
609 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
610 {
611 	struct hlist_head *head = m_hash(mnt, dentry);
612 	struct mount *p;
613 
614 	hlist_for_each_entry_rcu(p, head, mnt_hash)
615 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
616 			return p;
617 	return NULL;
618 }
619 
620 /*
621  * find the last mount at @dentry on vfsmount @mnt.
622  * mount_lock must be held.
623  */
624 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
625 {
626 	struct mount *p, *res;
627 	res = p = __lookup_mnt(mnt, dentry);
628 	if (!p)
629 		goto out;
630 	hlist_for_each_entry_continue(p, mnt_hash) {
631 		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
632 			break;
633 		res = p;
634 	}
635 out:
636 	return res;
637 }
638 
639 /*
640  * lookup_mnt - Return the first child mount mounted at path
641  *
642  * "First" means first mounted chronologically.  If you create the
643  * following mounts:
644  *
645  * mount /dev/sda1 /mnt
646  * mount /dev/sda2 /mnt
647  * mount /dev/sda3 /mnt
648  *
649  * Then lookup_mnt() on the base /mnt dentry in the root mount will
650  * return successively the root dentry and vfsmount of /dev/sda1, then
651  * /dev/sda2, then /dev/sda3, then NULL.
652  *
653  * lookup_mnt takes a reference to the found vfsmount.
654  */
655 struct vfsmount *lookup_mnt(struct path *path)
656 {
657 	struct mount *child_mnt;
658 	struct vfsmount *m;
659 	unsigned seq;
660 
661 	rcu_read_lock();
662 	do {
663 		seq = read_seqbegin(&mount_lock);
664 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
665 		m = child_mnt ? &child_mnt->mnt : NULL;
666 	} while (!legitimize_mnt(m, seq));
667 	rcu_read_unlock();
668 	return m;
669 }
670 
671 /*
672  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
673  *                         current mount namespace.
674  *
675  * The common case is dentries are not mountpoints at all and that
676  * test is handled inline.  For the slow case when we are actually
677  * dealing with a mountpoint of some kind, walk through all of the
678  * mounts in the current mount namespace and test to see if the dentry
679  * is a mountpoint.
680  *
681  * The mount_hashtable is not usable in the context because we
682  * need to identify all mounts that may be in the current mount
683  * namespace not just a mount that happens to have some specified
684  * parent mount.
685  */
686 bool __is_local_mountpoint(struct dentry *dentry)
687 {
688 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
689 	struct mount *mnt;
690 	bool is_covered = false;
691 
692 	if (!d_mountpoint(dentry))
693 		goto out;
694 
695 	down_read(&namespace_sem);
696 	list_for_each_entry(mnt, &ns->list, mnt_list) {
697 		is_covered = (mnt->mnt_mountpoint == dentry);
698 		if (is_covered)
699 			break;
700 	}
701 	up_read(&namespace_sem);
702 out:
703 	return is_covered;
704 }
705 
706 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
707 {
708 	struct hlist_head *chain = mp_hash(dentry);
709 	struct mountpoint *mp;
710 
711 	hlist_for_each_entry(mp, chain, m_hash) {
712 		if (mp->m_dentry == dentry) {
713 			/* might be worth a WARN_ON() */
714 			if (d_unlinked(dentry))
715 				return ERR_PTR(-ENOENT);
716 			mp->m_count++;
717 			return mp;
718 		}
719 	}
720 	return NULL;
721 }
722 
723 static struct mountpoint *new_mountpoint(struct dentry *dentry)
724 {
725 	struct hlist_head *chain = mp_hash(dentry);
726 	struct mountpoint *mp;
727 	int ret;
728 
729 	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
730 	if (!mp)
731 		return ERR_PTR(-ENOMEM);
732 
733 	ret = d_set_mounted(dentry);
734 	if (ret) {
735 		kfree(mp);
736 		return ERR_PTR(ret);
737 	}
738 
739 	mp->m_dentry = dentry;
740 	mp->m_count = 1;
741 	hlist_add_head(&mp->m_hash, chain);
742 	INIT_HLIST_HEAD(&mp->m_list);
743 	return mp;
744 }
745 
746 static void put_mountpoint(struct mountpoint *mp)
747 {
748 	if (!--mp->m_count) {
749 		struct dentry *dentry = mp->m_dentry;
750 		BUG_ON(!hlist_empty(&mp->m_list));
751 		spin_lock(&dentry->d_lock);
752 		dentry->d_flags &= ~DCACHE_MOUNTED;
753 		spin_unlock(&dentry->d_lock);
754 		hlist_del(&mp->m_hash);
755 		kfree(mp);
756 	}
757 }
758 
759 static inline int check_mnt(struct mount *mnt)
760 {
761 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
762 }
763 
764 /*
765  * vfsmount lock must be held for write
766  */
767 static void touch_mnt_namespace(struct mnt_namespace *ns)
768 {
769 	if (ns) {
770 		ns->event = ++event;
771 		wake_up_interruptible(&ns->poll);
772 	}
773 }
774 
775 /*
776  * vfsmount lock must be held for write
777  */
778 static void __touch_mnt_namespace(struct mnt_namespace *ns)
779 {
780 	if (ns && ns->event != event) {
781 		ns->event = event;
782 		wake_up_interruptible(&ns->poll);
783 	}
784 }
785 
786 /*
787  * vfsmount lock must be held for write
788  */
789 static void detach_mnt(struct mount *mnt, struct path *old_path)
790 {
791 	old_path->dentry = mnt->mnt_mountpoint;
792 	old_path->mnt = &mnt->mnt_parent->mnt;
793 	mnt->mnt_parent = mnt;
794 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
795 	list_del_init(&mnt->mnt_child);
796 	hlist_del_init_rcu(&mnt->mnt_hash);
797 	hlist_del_init(&mnt->mnt_mp_list);
798 	put_mountpoint(mnt->mnt_mp);
799 	mnt->mnt_mp = NULL;
800 }
801 
802 /*
803  * vfsmount lock must be held for write
804  */
805 void mnt_set_mountpoint(struct mount *mnt,
806 			struct mountpoint *mp,
807 			struct mount *child_mnt)
808 {
809 	mp->m_count++;
810 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
811 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
812 	child_mnt->mnt_parent = mnt;
813 	child_mnt->mnt_mp = mp;
814 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
815 }
816 
817 /*
818  * vfsmount lock must be held for write
819  */
820 static void attach_mnt(struct mount *mnt,
821 			struct mount *parent,
822 			struct mountpoint *mp)
823 {
824 	mnt_set_mountpoint(parent, mp, mnt);
825 	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
826 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
827 }
828 
829 static void attach_shadowed(struct mount *mnt,
830 			struct mount *parent,
831 			struct mount *shadows)
832 {
833 	if (shadows) {
834 		hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
835 		list_add(&mnt->mnt_child, &shadows->mnt_child);
836 	} else {
837 		hlist_add_head_rcu(&mnt->mnt_hash,
838 				m_hash(&parent->mnt, mnt->mnt_mountpoint));
839 		list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
840 	}
841 }
842 
843 /*
844  * vfsmount lock must be held for write
845  */
846 static void commit_tree(struct mount *mnt, struct mount *shadows)
847 {
848 	struct mount *parent = mnt->mnt_parent;
849 	struct mount *m;
850 	LIST_HEAD(head);
851 	struct mnt_namespace *n = parent->mnt_ns;
852 
853 	BUG_ON(parent == mnt);
854 
855 	list_add_tail(&head, &mnt->mnt_list);
856 	list_for_each_entry(m, &head, mnt_list)
857 		m->mnt_ns = n;
858 
859 	list_splice(&head, n->list.prev);
860 
861 	attach_shadowed(mnt, parent, shadows);
862 	touch_mnt_namespace(n);
863 }
864 
865 static struct mount *next_mnt(struct mount *p, struct mount *root)
866 {
867 	struct list_head *next = p->mnt_mounts.next;
868 	if (next == &p->mnt_mounts) {
869 		while (1) {
870 			if (p == root)
871 				return NULL;
872 			next = p->mnt_child.next;
873 			if (next != &p->mnt_parent->mnt_mounts)
874 				break;
875 			p = p->mnt_parent;
876 		}
877 	}
878 	return list_entry(next, struct mount, mnt_child);
879 }
880 
881 static struct mount *skip_mnt_tree(struct mount *p)
882 {
883 	struct list_head *prev = p->mnt_mounts.prev;
884 	while (prev != &p->mnt_mounts) {
885 		p = list_entry(prev, struct mount, mnt_child);
886 		prev = p->mnt_mounts.prev;
887 	}
888 	return p;
889 }
890 
891 struct vfsmount *
892 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
893 {
894 	struct mount *mnt;
895 	struct dentry *root;
896 
897 	if (!type)
898 		return ERR_PTR(-ENODEV);
899 
900 	mnt = alloc_vfsmnt(name);
901 	if (!mnt)
902 		return ERR_PTR(-ENOMEM);
903 
904 	if (flags & MS_KERNMOUNT)
905 		mnt->mnt.mnt_flags = MNT_INTERNAL;
906 
907 	root = mount_fs(type, flags, name, data);
908 	if (IS_ERR(root)) {
909 		mnt_free_id(mnt);
910 		free_vfsmnt(mnt);
911 		return ERR_CAST(root);
912 	}
913 
914 	mnt->mnt.mnt_root = root;
915 	mnt->mnt.mnt_sb = root->d_sb;
916 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
917 	mnt->mnt_parent = mnt;
918 	lock_mount_hash();
919 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
920 	unlock_mount_hash();
921 	return &mnt->mnt;
922 }
923 EXPORT_SYMBOL_GPL(vfs_kern_mount);
924 
925 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
926 					int flag)
927 {
928 	struct super_block *sb = old->mnt.mnt_sb;
929 	struct mount *mnt;
930 	int err;
931 
932 	mnt = alloc_vfsmnt(old->mnt_devname);
933 	if (!mnt)
934 		return ERR_PTR(-ENOMEM);
935 
936 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
937 		mnt->mnt_group_id = 0; /* not a peer of original */
938 	else
939 		mnt->mnt_group_id = old->mnt_group_id;
940 
941 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
942 		err = mnt_alloc_group_id(mnt);
943 		if (err)
944 			goto out_free;
945 	}
946 
947 	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
948 	/* Don't allow unprivileged users to change mount flags */
949 	if (flag & CL_UNPRIVILEGED) {
950 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
951 
952 		if (mnt->mnt.mnt_flags & MNT_READONLY)
953 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
954 
955 		if (mnt->mnt.mnt_flags & MNT_NODEV)
956 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
957 
958 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
959 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
960 
961 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
962 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
963 	}
964 
965 	/* Don't allow unprivileged users to reveal what is under a mount */
966 	if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
967 		mnt->mnt.mnt_flags |= MNT_LOCKED;
968 
969 	atomic_inc(&sb->s_active);
970 	mnt->mnt.mnt_sb = sb;
971 	mnt->mnt.mnt_root = dget(root);
972 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
973 	mnt->mnt_parent = mnt;
974 	lock_mount_hash();
975 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
976 	unlock_mount_hash();
977 
978 	if ((flag & CL_SLAVE) ||
979 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
980 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
981 		mnt->mnt_master = old;
982 		CLEAR_MNT_SHARED(mnt);
983 	} else if (!(flag & CL_PRIVATE)) {
984 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
985 			list_add(&mnt->mnt_share, &old->mnt_share);
986 		if (IS_MNT_SLAVE(old))
987 			list_add(&mnt->mnt_slave, &old->mnt_slave);
988 		mnt->mnt_master = old->mnt_master;
989 	}
990 	if (flag & CL_MAKE_SHARED)
991 		set_mnt_shared(mnt);
992 
993 	/* stick the duplicate mount on the same expiry list
994 	 * as the original if that was on one */
995 	if (flag & CL_EXPIRE) {
996 		if (!list_empty(&old->mnt_expire))
997 			list_add(&mnt->mnt_expire, &old->mnt_expire);
998 	}
999 
1000 	return mnt;
1001 
1002  out_free:
1003 	mnt_free_id(mnt);
1004 	free_vfsmnt(mnt);
1005 	return ERR_PTR(err);
1006 }
1007 
1008 static void cleanup_mnt(struct mount *mnt)
1009 {
1010 	/*
1011 	 * This probably indicates that somebody messed
1012 	 * up a mnt_want/drop_write() pair.  If this
1013 	 * happens, the filesystem was probably unable
1014 	 * to make r/w->r/o transitions.
1015 	 */
1016 	/*
1017 	 * The locking used to deal with mnt_count decrement provides barriers,
1018 	 * so mnt_get_writers() below is safe.
1019 	 */
1020 	WARN_ON(mnt_get_writers(mnt));
1021 	if (unlikely(mnt->mnt_pins.first))
1022 		mnt_pin_kill(mnt);
1023 	fsnotify_vfsmount_delete(&mnt->mnt);
1024 	dput(mnt->mnt.mnt_root);
1025 	deactivate_super(mnt->mnt.mnt_sb);
1026 	mnt_free_id(mnt);
1027 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1028 }
1029 
1030 static void __cleanup_mnt(struct rcu_head *head)
1031 {
1032 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1033 }
1034 
1035 static LLIST_HEAD(delayed_mntput_list);
1036 static void delayed_mntput(struct work_struct *unused)
1037 {
1038 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1039 	struct llist_node *next;
1040 
1041 	for (; node; node = next) {
1042 		next = llist_next(node);
1043 		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1044 	}
1045 }
1046 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1047 
1048 static void mntput_no_expire(struct mount *mnt)
1049 {
1050 	rcu_read_lock();
1051 	mnt_add_count(mnt, -1);
1052 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1053 		rcu_read_unlock();
1054 		return;
1055 	}
1056 	lock_mount_hash();
1057 	if (mnt_get_count(mnt)) {
1058 		rcu_read_unlock();
1059 		unlock_mount_hash();
1060 		return;
1061 	}
1062 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1063 		rcu_read_unlock();
1064 		unlock_mount_hash();
1065 		return;
1066 	}
1067 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1068 	rcu_read_unlock();
1069 
1070 	list_del(&mnt->mnt_instance);
1071 	unlock_mount_hash();
1072 
1073 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1074 		struct task_struct *task = current;
1075 		if (likely(!(task->flags & PF_KTHREAD))) {
1076 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1077 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1078 				return;
1079 		}
1080 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1081 			schedule_delayed_work(&delayed_mntput_work, 1);
1082 		return;
1083 	}
1084 	cleanup_mnt(mnt);
1085 }
1086 
1087 void mntput(struct vfsmount *mnt)
1088 {
1089 	if (mnt) {
1090 		struct mount *m = real_mount(mnt);
1091 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1092 		if (unlikely(m->mnt_expiry_mark))
1093 			m->mnt_expiry_mark = 0;
1094 		mntput_no_expire(m);
1095 	}
1096 }
1097 EXPORT_SYMBOL(mntput);
1098 
1099 struct vfsmount *mntget(struct vfsmount *mnt)
1100 {
1101 	if (mnt)
1102 		mnt_add_count(real_mount(mnt), 1);
1103 	return mnt;
1104 }
1105 EXPORT_SYMBOL(mntget);
1106 
1107 struct vfsmount *mnt_clone_internal(struct path *path)
1108 {
1109 	struct mount *p;
1110 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1111 	if (IS_ERR(p))
1112 		return ERR_CAST(p);
1113 	p->mnt.mnt_flags |= MNT_INTERNAL;
1114 	return &p->mnt;
1115 }
1116 
1117 static inline void mangle(struct seq_file *m, const char *s)
1118 {
1119 	seq_escape(m, s, " \t\n\\");
1120 }
1121 
1122 /*
1123  * Simple .show_options callback for filesystems which don't want to
1124  * implement more complex mount option showing.
1125  *
1126  * See also save_mount_options().
1127  */
1128 int generic_show_options(struct seq_file *m, struct dentry *root)
1129 {
1130 	const char *options;
1131 
1132 	rcu_read_lock();
1133 	options = rcu_dereference(root->d_sb->s_options);
1134 
1135 	if (options != NULL && options[0]) {
1136 		seq_putc(m, ',');
1137 		mangle(m, options);
1138 	}
1139 	rcu_read_unlock();
1140 
1141 	return 0;
1142 }
1143 EXPORT_SYMBOL(generic_show_options);
1144 
1145 /*
1146  * If filesystem uses generic_show_options(), this function should be
1147  * called from the fill_super() callback.
1148  *
1149  * The .remount_fs callback usually needs to be handled in a special
1150  * way, to make sure, that previous options are not overwritten if the
1151  * remount fails.
1152  *
1153  * Also note, that if the filesystem's .remount_fs function doesn't
1154  * reset all options to their default value, but changes only newly
1155  * given options, then the displayed options will not reflect reality
1156  * any more.
1157  */
1158 void save_mount_options(struct super_block *sb, char *options)
1159 {
1160 	BUG_ON(sb->s_options);
1161 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1162 }
1163 EXPORT_SYMBOL(save_mount_options);
1164 
1165 void replace_mount_options(struct super_block *sb, char *options)
1166 {
1167 	char *old = sb->s_options;
1168 	rcu_assign_pointer(sb->s_options, options);
1169 	if (old) {
1170 		synchronize_rcu();
1171 		kfree(old);
1172 	}
1173 }
1174 EXPORT_SYMBOL(replace_mount_options);
1175 
1176 #ifdef CONFIG_PROC_FS
1177 /* iterator; we want it to have access to namespace_sem, thus here... */
1178 static void *m_start(struct seq_file *m, loff_t *pos)
1179 {
1180 	struct proc_mounts *p = proc_mounts(m);
1181 
1182 	down_read(&namespace_sem);
1183 	if (p->cached_event == p->ns->event) {
1184 		void *v = p->cached_mount;
1185 		if (*pos == p->cached_index)
1186 			return v;
1187 		if (*pos == p->cached_index + 1) {
1188 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1189 			return p->cached_mount = v;
1190 		}
1191 	}
1192 
1193 	p->cached_event = p->ns->event;
1194 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1195 	p->cached_index = *pos;
1196 	return p->cached_mount;
1197 }
1198 
1199 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1200 {
1201 	struct proc_mounts *p = proc_mounts(m);
1202 
1203 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1204 	p->cached_index = *pos;
1205 	return p->cached_mount;
1206 }
1207 
1208 static void m_stop(struct seq_file *m, void *v)
1209 {
1210 	up_read(&namespace_sem);
1211 }
1212 
1213 static int m_show(struct seq_file *m, void *v)
1214 {
1215 	struct proc_mounts *p = proc_mounts(m);
1216 	struct mount *r = list_entry(v, struct mount, mnt_list);
1217 	return p->show(m, &r->mnt);
1218 }
1219 
1220 const struct seq_operations mounts_op = {
1221 	.start	= m_start,
1222 	.next	= m_next,
1223 	.stop	= m_stop,
1224 	.show	= m_show,
1225 };
1226 #endif  /* CONFIG_PROC_FS */
1227 
1228 /**
1229  * may_umount_tree - check if a mount tree is busy
1230  * @mnt: root of mount tree
1231  *
1232  * This is called to check if a tree of mounts has any
1233  * open files, pwds, chroots or sub mounts that are
1234  * busy.
1235  */
1236 int may_umount_tree(struct vfsmount *m)
1237 {
1238 	struct mount *mnt = real_mount(m);
1239 	int actual_refs = 0;
1240 	int minimum_refs = 0;
1241 	struct mount *p;
1242 	BUG_ON(!m);
1243 
1244 	/* write lock needed for mnt_get_count */
1245 	lock_mount_hash();
1246 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1247 		actual_refs += mnt_get_count(p);
1248 		minimum_refs += 2;
1249 	}
1250 	unlock_mount_hash();
1251 
1252 	if (actual_refs > minimum_refs)
1253 		return 0;
1254 
1255 	return 1;
1256 }
1257 
1258 EXPORT_SYMBOL(may_umount_tree);
1259 
1260 /**
1261  * may_umount - check if a mount point is busy
1262  * @mnt: root of mount
1263  *
1264  * This is called to check if a mount point has any
1265  * open files, pwds, chroots or sub mounts. If the
1266  * mount has sub mounts this will return busy
1267  * regardless of whether the sub mounts are busy.
1268  *
1269  * Doesn't take quota and stuff into account. IOW, in some cases it will
1270  * give false negatives. The main reason why it's here is that we need
1271  * a non-destructive way to look for easily umountable filesystems.
1272  */
1273 int may_umount(struct vfsmount *mnt)
1274 {
1275 	int ret = 1;
1276 	down_read(&namespace_sem);
1277 	lock_mount_hash();
1278 	if (propagate_mount_busy(real_mount(mnt), 2))
1279 		ret = 0;
1280 	unlock_mount_hash();
1281 	up_read(&namespace_sem);
1282 	return ret;
1283 }
1284 
1285 EXPORT_SYMBOL(may_umount);
1286 
1287 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1288 
1289 static void namespace_unlock(void)
1290 {
1291 	struct mount *mnt;
1292 	struct hlist_head head = unmounted;
1293 
1294 	if (likely(hlist_empty(&head))) {
1295 		up_write(&namespace_sem);
1296 		return;
1297 	}
1298 
1299 	head.first->pprev = &head.first;
1300 	INIT_HLIST_HEAD(&unmounted);
1301 
1302 	/* undo decrements we'd done in umount_tree() */
1303 	hlist_for_each_entry(mnt, &head, mnt_hash)
1304 		if (mnt->mnt_ex_mountpoint.mnt)
1305 			mntget(mnt->mnt_ex_mountpoint.mnt);
1306 
1307 	up_write(&namespace_sem);
1308 
1309 	synchronize_rcu();
1310 
1311 	while (!hlist_empty(&head)) {
1312 		mnt = hlist_entry(head.first, struct mount, mnt_hash);
1313 		hlist_del_init(&mnt->mnt_hash);
1314 		if (mnt->mnt_ex_mountpoint.mnt)
1315 			path_put(&mnt->mnt_ex_mountpoint);
1316 		mntput(&mnt->mnt);
1317 	}
1318 }
1319 
1320 static inline void namespace_lock(void)
1321 {
1322 	down_write(&namespace_sem);
1323 }
1324 
1325 /*
1326  * mount_lock must be held
1327  * namespace_sem must be held for write
1328  * how = 0 => just this tree, don't propagate
1329  * how = 1 => propagate; we know that nobody else has reference to any victims
1330  * how = 2 => lazy umount
1331  */
1332 void umount_tree(struct mount *mnt, int how)
1333 {
1334 	HLIST_HEAD(tmp_list);
1335 	struct mount *p;
1336 	struct mount *last = NULL;
1337 
1338 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1339 		hlist_del_init_rcu(&p->mnt_hash);
1340 		hlist_add_head(&p->mnt_hash, &tmp_list);
1341 	}
1342 
1343 	hlist_for_each_entry(p, &tmp_list, mnt_hash)
1344 		list_del_init(&p->mnt_child);
1345 
1346 	if (how)
1347 		propagate_umount(&tmp_list);
1348 
1349 	hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1350 		list_del_init(&p->mnt_expire);
1351 		list_del_init(&p->mnt_list);
1352 		__touch_mnt_namespace(p->mnt_ns);
1353 		p->mnt_ns = NULL;
1354 		if (how < 2)
1355 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1356 		if (mnt_has_parent(p)) {
1357 			hlist_del_init(&p->mnt_mp_list);
1358 			put_mountpoint(p->mnt_mp);
1359 			mnt_add_count(p->mnt_parent, -1);
1360 			/* move the reference to mountpoint into ->mnt_ex_mountpoint */
1361 			p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1362 			p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1363 			p->mnt_mountpoint = p->mnt.mnt_root;
1364 			p->mnt_parent = p;
1365 			p->mnt_mp = NULL;
1366 		}
1367 		change_mnt_propagation(p, MS_PRIVATE);
1368 		last = p;
1369 	}
1370 	if (last) {
1371 		last->mnt_hash.next = unmounted.first;
1372 		unmounted.first = tmp_list.first;
1373 		unmounted.first->pprev = &unmounted.first;
1374 	}
1375 }
1376 
1377 static void shrink_submounts(struct mount *mnt);
1378 
1379 static int do_umount(struct mount *mnt, int flags)
1380 {
1381 	struct super_block *sb = mnt->mnt.mnt_sb;
1382 	int retval;
1383 
1384 	retval = security_sb_umount(&mnt->mnt, flags);
1385 	if (retval)
1386 		return retval;
1387 
1388 	/*
1389 	 * Allow userspace to request a mountpoint be expired rather than
1390 	 * unmounting unconditionally. Unmount only happens if:
1391 	 *  (1) the mark is already set (the mark is cleared by mntput())
1392 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1393 	 */
1394 	if (flags & MNT_EXPIRE) {
1395 		if (&mnt->mnt == current->fs->root.mnt ||
1396 		    flags & (MNT_FORCE | MNT_DETACH))
1397 			return -EINVAL;
1398 
1399 		/*
1400 		 * probably don't strictly need the lock here if we examined
1401 		 * all race cases, but it's a slowpath.
1402 		 */
1403 		lock_mount_hash();
1404 		if (mnt_get_count(mnt) != 2) {
1405 			unlock_mount_hash();
1406 			return -EBUSY;
1407 		}
1408 		unlock_mount_hash();
1409 
1410 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1411 			return -EAGAIN;
1412 	}
1413 
1414 	/*
1415 	 * If we may have to abort operations to get out of this
1416 	 * mount, and they will themselves hold resources we must
1417 	 * allow the fs to do things. In the Unix tradition of
1418 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1419 	 * might fail to complete on the first run through as other tasks
1420 	 * must return, and the like. Thats for the mount program to worry
1421 	 * about for the moment.
1422 	 */
1423 
1424 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1425 		sb->s_op->umount_begin(sb);
1426 	}
1427 
1428 	/*
1429 	 * No sense to grab the lock for this test, but test itself looks
1430 	 * somewhat bogus. Suggestions for better replacement?
1431 	 * Ho-hum... In principle, we might treat that as umount + switch
1432 	 * to rootfs. GC would eventually take care of the old vfsmount.
1433 	 * Actually it makes sense, especially if rootfs would contain a
1434 	 * /reboot - static binary that would close all descriptors and
1435 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1436 	 */
1437 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1438 		/*
1439 		 * Special case for "unmounting" root ...
1440 		 * we just try to remount it readonly.
1441 		 */
1442 		if (!capable(CAP_SYS_ADMIN))
1443 			return -EPERM;
1444 		down_write(&sb->s_umount);
1445 		if (!(sb->s_flags & MS_RDONLY))
1446 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1447 		up_write(&sb->s_umount);
1448 		return retval;
1449 	}
1450 
1451 	namespace_lock();
1452 	lock_mount_hash();
1453 	event++;
1454 
1455 	if (flags & MNT_DETACH) {
1456 		if (!list_empty(&mnt->mnt_list))
1457 			umount_tree(mnt, 2);
1458 		retval = 0;
1459 	} else {
1460 		shrink_submounts(mnt);
1461 		retval = -EBUSY;
1462 		if (!propagate_mount_busy(mnt, 2)) {
1463 			if (!list_empty(&mnt->mnt_list))
1464 				umount_tree(mnt, 1);
1465 			retval = 0;
1466 		}
1467 	}
1468 	unlock_mount_hash();
1469 	namespace_unlock();
1470 	return retval;
1471 }
1472 
1473 /*
1474  * __detach_mounts - lazily unmount all mounts on the specified dentry
1475  *
1476  * During unlink, rmdir, and d_drop it is possible to loose the path
1477  * to an existing mountpoint, and wind up leaking the mount.
1478  * detach_mounts allows lazily unmounting those mounts instead of
1479  * leaking them.
1480  *
1481  * The caller may hold dentry->d_inode->i_mutex.
1482  */
1483 void __detach_mounts(struct dentry *dentry)
1484 {
1485 	struct mountpoint *mp;
1486 	struct mount *mnt;
1487 
1488 	namespace_lock();
1489 	mp = lookup_mountpoint(dentry);
1490 	if (!mp)
1491 		goto out_unlock;
1492 
1493 	lock_mount_hash();
1494 	while (!hlist_empty(&mp->m_list)) {
1495 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1496 		umount_tree(mnt, 2);
1497 	}
1498 	unlock_mount_hash();
1499 	put_mountpoint(mp);
1500 out_unlock:
1501 	namespace_unlock();
1502 }
1503 
1504 /*
1505  * Is the caller allowed to modify his namespace?
1506  */
1507 static inline bool may_mount(void)
1508 {
1509 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1510 }
1511 
1512 /*
1513  * Now umount can handle mount points as well as block devices.
1514  * This is important for filesystems which use unnamed block devices.
1515  *
1516  * We now support a flag for forced unmount like the other 'big iron'
1517  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1518  */
1519 
1520 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1521 {
1522 	struct path path;
1523 	struct mount *mnt;
1524 	int retval;
1525 	int lookup_flags = 0;
1526 
1527 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1528 		return -EINVAL;
1529 
1530 	if (!may_mount())
1531 		return -EPERM;
1532 
1533 	if (!(flags & UMOUNT_NOFOLLOW))
1534 		lookup_flags |= LOOKUP_FOLLOW;
1535 
1536 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1537 	if (retval)
1538 		goto out;
1539 	mnt = real_mount(path.mnt);
1540 	retval = -EINVAL;
1541 	if (path.dentry != path.mnt->mnt_root)
1542 		goto dput_and_out;
1543 	if (!check_mnt(mnt))
1544 		goto dput_and_out;
1545 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1546 		goto dput_and_out;
1547 
1548 	retval = do_umount(mnt, flags);
1549 dput_and_out:
1550 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1551 	dput(path.dentry);
1552 	mntput_no_expire(mnt);
1553 out:
1554 	return retval;
1555 }
1556 
1557 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1558 
1559 /*
1560  *	The 2.0 compatible umount. No flags.
1561  */
1562 SYSCALL_DEFINE1(oldumount, char __user *, name)
1563 {
1564 	return sys_umount(name, 0);
1565 }
1566 
1567 #endif
1568 
1569 static bool is_mnt_ns_file(struct dentry *dentry)
1570 {
1571 	/* Is this a proxy for a mount namespace? */
1572 	struct inode *inode = dentry->d_inode;
1573 	struct proc_ns *ei;
1574 
1575 	if (!proc_ns_inode(inode))
1576 		return false;
1577 
1578 	ei = get_proc_ns(inode);
1579 	if (ei->ns_ops != &mntns_operations)
1580 		return false;
1581 
1582 	return true;
1583 }
1584 
1585 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1586 {
1587 	return container_of(ns, struct mnt_namespace, ns);
1588 }
1589 
1590 static bool mnt_ns_loop(struct dentry *dentry)
1591 {
1592 	/* Could bind mounting the mount namespace inode cause a
1593 	 * mount namespace loop?
1594 	 */
1595 	struct mnt_namespace *mnt_ns;
1596 	if (!is_mnt_ns_file(dentry))
1597 		return false;
1598 
1599 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)->ns);
1600 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1601 }
1602 
1603 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1604 					int flag)
1605 {
1606 	struct mount *res, *p, *q, *r, *parent;
1607 
1608 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1609 		return ERR_PTR(-EINVAL);
1610 
1611 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1612 		return ERR_PTR(-EINVAL);
1613 
1614 	res = q = clone_mnt(mnt, dentry, flag);
1615 	if (IS_ERR(q))
1616 		return q;
1617 
1618 	q->mnt.mnt_flags &= ~MNT_LOCKED;
1619 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1620 
1621 	p = mnt;
1622 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1623 		struct mount *s;
1624 		if (!is_subdir(r->mnt_mountpoint, dentry))
1625 			continue;
1626 
1627 		for (s = r; s; s = next_mnt(s, r)) {
1628 			struct mount *t = NULL;
1629 			if (!(flag & CL_COPY_UNBINDABLE) &&
1630 			    IS_MNT_UNBINDABLE(s)) {
1631 				s = skip_mnt_tree(s);
1632 				continue;
1633 			}
1634 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1635 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1636 				s = skip_mnt_tree(s);
1637 				continue;
1638 			}
1639 			while (p != s->mnt_parent) {
1640 				p = p->mnt_parent;
1641 				q = q->mnt_parent;
1642 			}
1643 			p = s;
1644 			parent = q;
1645 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1646 			if (IS_ERR(q))
1647 				goto out;
1648 			lock_mount_hash();
1649 			list_add_tail(&q->mnt_list, &res->mnt_list);
1650 			mnt_set_mountpoint(parent, p->mnt_mp, q);
1651 			if (!list_empty(&parent->mnt_mounts)) {
1652 				t = list_last_entry(&parent->mnt_mounts,
1653 					struct mount, mnt_child);
1654 				if (t->mnt_mp != p->mnt_mp)
1655 					t = NULL;
1656 			}
1657 			attach_shadowed(q, parent, t);
1658 			unlock_mount_hash();
1659 		}
1660 	}
1661 	return res;
1662 out:
1663 	if (res) {
1664 		lock_mount_hash();
1665 		umount_tree(res, 0);
1666 		unlock_mount_hash();
1667 	}
1668 	return q;
1669 }
1670 
1671 /* Caller should check returned pointer for errors */
1672 
1673 struct vfsmount *collect_mounts(struct path *path)
1674 {
1675 	struct mount *tree;
1676 	namespace_lock();
1677 	tree = copy_tree(real_mount(path->mnt), path->dentry,
1678 			 CL_COPY_ALL | CL_PRIVATE);
1679 	namespace_unlock();
1680 	if (IS_ERR(tree))
1681 		return ERR_CAST(tree);
1682 	return &tree->mnt;
1683 }
1684 
1685 void drop_collected_mounts(struct vfsmount *mnt)
1686 {
1687 	namespace_lock();
1688 	lock_mount_hash();
1689 	umount_tree(real_mount(mnt), 0);
1690 	unlock_mount_hash();
1691 	namespace_unlock();
1692 }
1693 
1694 /**
1695  * clone_private_mount - create a private clone of a path
1696  *
1697  * This creates a new vfsmount, which will be the clone of @path.  The new will
1698  * not be attached anywhere in the namespace and will be private (i.e. changes
1699  * to the originating mount won't be propagated into this).
1700  *
1701  * Release with mntput().
1702  */
1703 struct vfsmount *clone_private_mount(struct path *path)
1704 {
1705 	struct mount *old_mnt = real_mount(path->mnt);
1706 	struct mount *new_mnt;
1707 
1708 	if (IS_MNT_UNBINDABLE(old_mnt))
1709 		return ERR_PTR(-EINVAL);
1710 
1711 	down_read(&namespace_sem);
1712 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1713 	up_read(&namespace_sem);
1714 	if (IS_ERR(new_mnt))
1715 		return ERR_CAST(new_mnt);
1716 
1717 	return &new_mnt->mnt;
1718 }
1719 EXPORT_SYMBOL_GPL(clone_private_mount);
1720 
1721 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1722 		   struct vfsmount *root)
1723 {
1724 	struct mount *mnt;
1725 	int res = f(root, arg);
1726 	if (res)
1727 		return res;
1728 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1729 		res = f(&mnt->mnt, arg);
1730 		if (res)
1731 			return res;
1732 	}
1733 	return 0;
1734 }
1735 
1736 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1737 {
1738 	struct mount *p;
1739 
1740 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1741 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1742 			mnt_release_group_id(p);
1743 	}
1744 }
1745 
1746 static int invent_group_ids(struct mount *mnt, bool recurse)
1747 {
1748 	struct mount *p;
1749 
1750 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1751 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1752 			int err = mnt_alloc_group_id(p);
1753 			if (err) {
1754 				cleanup_group_ids(mnt, p);
1755 				return err;
1756 			}
1757 		}
1758 	}
1759 
1760 	return 0;
1761 }
1762 
1763 /*
1764  *  @source_mnt : mount tree to be attached
1765  *  @nd         : place the mount tree @source_mnt is attached
1766  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1767  *  		   store the parent mount and mountpoint dentry.
1768  *  		   (done when source_mnt is moved)
1769  *
1770  *  NOTE: in the table below explains the semantics when a source mount
1771  *  of a given type is attached to a destination mount of a given type.
1772  * ---------------------------------------------------------------------------
1773  * |         BIND MOUNT OPERATION                                            |
1774  * |**************************************************************************
1775  * | source-->| shared        |       private  |       slave    | unbindable |
1776  * | dest     |               |                |                |            |
1777  * |   |      |               |                |                |            |
1778  * |   v      |               |                |                |            |
1779  * |**************************************************************************
1780  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1781  * |          |               |                |                |            |
1782  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1783  * ***************************************************************************
1784  * A bind operation clones the source mount and mounts the clone on the
1785  * destination mount.
1786  *
1787  * (++)  the cloned mount is propagated to all the mounts in the propagation
1788  * 	 tree of the destination mount and the cloned mount is added to
1789  * 	 the peer group of the source mount.
1790  * (+)   the cloned mount is created under the destination mount and is marked
1791  *       as shared. The cloned mount is added to the peer group of the source
1792  *       mount.
1793  * (+++) the mount is propagated to all the mounts in the propagation tree
1794  *       of the destination mount and the cloned mount is made slave
1795  *       of the same master as that of the source mount. The cloned mount
1796  *       is marked as 'shared and slave'.
1797  * (*)   the cloned mount is made a slave of the same master as that of the
1798  * 	 source mount.
1799  *
1800  * ---------------------------------------------------------------------------
1801  * |         		MOVE MOUNT OPERATION                                 |
1802  * |**************************************************************************
1803  * | source-->| shared        |       private  |       slave    | unbindable |
1804  * | dest     |               |                |                |            |
1805  * |   |      |               |                |                |            |
1806  * |   v      |               |                |                |            |
1807  * |**************************************************************************
1808  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1809  * |          |               |                |                |            |
1810  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1811  * ***************************************************************************
1812  *
1813  * (+)  the mount is moved to the destination. And is then propagated to
1814  * 	all the mounts in the propagation tree of the destination mount.
1815  * (+*)  the mount is moved to the destination.
1816  * (+++)  the mount is moved to the destination and is then propagated to
1817  * 	all the mounts belonging to the destination mount's propagation tree.
1818  * 	the mount is marked as 'shared and slave'.
1819  * (*)	the mount continues to be a slave at the new location.
1820  *
1821  * if the source mount is a tree, the operations explained above is
1822  * applied to each mount in the tree.
1823  * Must be called without spinlocks held, since this function can sleep
1824  * in allocations.
1825  */
1826 static int attach_recursive_mnt(struct mount *source_mnt,
1827 			struct mount *dest_mnt,
1828 			struct mountpoint *dest_mp,
1829 			struct path *parent_path)
1830 {
1831 	HLIST_HEAD(tree_list);
1832 	struct mount *child, *p;
1833 	struct hlist_node *n;
1834 	int err;
1835 
1836 	if (IS_MNT_SHARED(dest_mnt)) {
1837 		err = invent_group_ids(source_mnt, true);
1838 		if (err)
1839 			goto out;
1840 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1841 		lock_mount_hash();
1842 		if (err)
1843 			goto out_cleanup_ids;
1844 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1845 			set_mnt_shared(p);
1846 	} else {
1847 		lock_mount_hash();
1848 	}
1849 	if (parent_path) {
1850 		detach_mnt(source_mnt, parent_path);
1851 		attach_mnt(source_mnt, dest_mnt, dest_mp);
1852 		touch_mnt_namespace(source_mnt->mnt_ns);
1853 	} else {
1854 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1855 		commit_tree(source_mnt, NULL);
1856 	}
1857 
1858 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1859 		struct mount *q;
1860 		hlist_del_init(&child->mnt_hash);
1861 		q = __lookup_mnt_last(&child->mnt_parent->mnt,
1862 				      child->mnt_mountpoint);
1863 		commit_tree(child, q);
1864 	}
1865 	unlock_mount_hash();
1866 
1867 	return 0;
1868 
1869  out_cleanup_ids:
1870 	while (!hlist_empty(&tree_list)) {
1871 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1872 		umount_tree(child, 0);
1873 	}
1874 	unlock_mount_hash();
1875 	cleanup_group_ids(source_mnt, NULL);
1876  out:
1877 	return err;
1878 }
1879 
1880 static struct mountpoint *lock_mount(struct path *path)
1881 {
1882 	struct vfsmount *mnt;
1883 	struct dentry *dentry = path->dentry;
1884 retry:
1885 	mutex_lock(&dentry->d_inode->i_mutex);
1886 	if (unlikely(cant_mount(dentry))) {
1887 		mutex_unlock(&dentry->d_inode->i_mutex);
1888 		return ERR_PTR(-ENOENT);
1889 	}
1890 	namespace_lock();
1891 	mnt = lookup_mnt(path);
1892 	if (likely(!mnt)) {
1893 		struct mountpoint *mp = lookup_mountpoint(dentry);
1894 		if (!mp)
1895 			mp = new_mountpoint(dentry);
1896 		if (IS_ERR(mp)) {
1897 			namespace_unlock();
1898 			mutex_unlock(&dentry->d_inode->i_mutex);
1899 			return mp;
1900 		}
1901 		return mp;
1902 	}
1903 	namespace_unlock();
1904 	mutex_unlock(&path->dentry->d_inode->i_mutex);
1905 	path_put(path);
1906 	path->mnt = mnt;
1907 	dentry = path->dentry = dget(mnt->mnt_root);
1908 	goto retry;
1909 }
1910 
1911 static void unlock_mount(struct mountpoint *where)
1912 {
1913 	struct dentry *dentry = where->m_dentry;
1914 	put_mountpoint(where);
1915 	namespace_unlock();
1916 	mutex_unlock(&dentry->d_inode->i_mutex);
1917 }
1918 
1919 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1920 {
1921 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1922 		return -EINVAL;
1923 
1924 	if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1925 	      S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1926 		return -ENOTDIR;
1927 
1928 	return attach_recursive_mnt(mnt, p, mp, NULL);
1929 }
1930 
1931 /*
1932  * Sanity check the flags to change_mnt_propagation.
1933  */
1934 
1935 static int flags_to_propagation_type(int flags)
1936 {
1937 	int type = flags & ~(MS_REC | MS_SILENT);
1938 
1939 	/* Fail if any non-propagation flags are set */
1940 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1941 		return 0;
1942 	/* Only one propagation flag should be set */
1943 	if (!is_power_of_2(type))
1944 		return 0;
1945 	return type;
1946 }
1947 
1948 /*
1949  * recursively change the type of the mountpoint.
1950  */
1951 static int do_change_type(struct path *path, int flag)
1952 {
1953 	struct mount *m;
1954 	struct mount *mnt = real_mount(path->mnt);
1955 	int recurse = flag & MS_REC;
1956 	int type;
1957 	int err = 0;
1958 
1959 	if (path->dentry != path->mnt->mnt_root)
1960 		return -EINVAL;
1961 
1962 	type = flags_to_propagation_type(flag);
1963 	if (!type)
1964 		return -EINVAL;
1965 
1966 	namespace_lock();
1967 	if (type == MS_SHARED) {
1968 		err = invent_group_ids(mnt, recurse);
1969 		if (err)
1970 			goto out_unlock;
1971 	}
1972 
1973 	lock_mount_hash();
1974 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1975 		change_mnt_propagation(m, type);
1976 	unlock_mount_hash();
1977 
1978  out_unlock:
1979 	namespace_unlock();
1980 	return err;
1981 }
1982 
1983 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1984 {
1985 	struct mount *child;
1986 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1987 		if (!is_subdir(child->mnt_mountpoint, dentry))
1988 			continue;
1989 
1990 		if (child->mnt.mnt_flags & MNT_LOCKED)
1991 			return true;
1992 	}
1993 	return false;
1994 }
1995 
1996 /*
1997  * do loopback mount.
1998  */
1999 static int do_loopback(struct path *path, const char *old_name,
2000 				int recurse)
2001 {
2002 	struct path old_path;
2003 	struct mount *mnt = NULL, *old, *parent;
2004 	struct mountpoint *mp;
2005 	int err;
2006 	if (!old_name || !*old_name)
2007 		return -EINVAL;
2008 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2009 	if (err)
2010 		return err;
2011 
2012 	err = -EINVAL;
2013 	if (mnt_ns_loop(old_path.dentry))
2014 		goto out;
2015 
2016 	mp = lock_mount(path);
2017 	err = PTR_ERR(mp);
2018 	if (IS_ERR(mp))
2019 		goto out;
2020 
2021 	old = real_mount(old_path.mnt);
2022 	parent = real_mount(path->mnt);
2023 
2024 	err = -EINVAL;
2025 	if (IS_MNT_UNBINDABLE(old))
2026 		goto out2;
2027 
2028 	if (!check_mnt(parent) || !check_mnt(old))
2029 		goto out2;
2030 
2031 	if (!recurse && has_locked_children(old, old_path.dentry))
2032 		goto out2;
2033 
2034 	if (recurse)
2035 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2036 	else
2037 		mnt = clone_mnt(old, old_path.dentry, 0);
2038 
2039 	if (IS_ERR(mnt)) {
2040 		err = PTR_ERR(mnt);
2041 		goto out2;
2042 	}
2043 
2044 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2045 
2046 	err = graft_tree(mnt, parent, mp);
2047 	if (err) {
2048 		lock_mount_hash();
2049 		umount_tree(mnt, 0);
2050 		unlock_mount_hash();
2051 	}
2052 out2:
2053 	unlock_mount(mp);
2054 out:
2055 	path_put(&old_path);
2056 	return err;
2057 }
2058 
2059 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2060 {
2061 	int error = 0;
2062 	int readonly_request = 0;
2063 
2064 	if (ms_flags & MS_RDONLY)
2065 		readonly_request = 1;
2066 	if (readonly_request == __mnt_is_readonly(mnt))
2067 		return 0;
2068 
2069 	if (readonly_request)
2070 		error = mnt_make_readonly(real_mount(mnt));
2071 	else
2072 		__mnt_unmake_readonly(real_mount(mnt));
2073 	return error;
2074 }
2075 
2076 /*
2077  * change filesystem flags. dir should be a physical root of filesystem.
2078  * If you've mounted a non-root directory somewhere and want to do remount
2079  * on it - tough luck.
2080  */
2081 static int do_remount(struct path *path, int flags, int mnt_flags,
2082 		      void *data)
2083 {
2084 	int err;
2085 	struct super_block *sb = path->mnt->mnt_sb;
2086 	struct mount *mnt = real_mount(path->mnt);
2087 
2088 	if (!check_mnt(mnt))
2089 		return -EINVAL;
2090 
2091 	if (path->dentry != path->mnt->mnt_root)
2092 		return -EINVAL;
2093 
2094 	/* Don't allow changing of locked mnt flags.
2095 	 *
2096 	 * No locks need to be held here while testing the various
2097 	 * MNT_LOCK flags because those flags can never be cleared
2098 	 * once they are set.
2099 	 */
2100 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2101 	    !(mnt_flags & MNT_READONLY)) {
2102 		return -EPERM;
2103 	}
2104 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2105 	    !(mnt_flags & MNT_NODEV)) {
2106 		return -EPERM;
2107 	}
2108 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2109 	    !(mnt_flags & MNT_NOSUID)) {
2110 		return -EPERM;
2111 	}
2112 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2113 	    !(mnt_flags & MNT_NOEXEC)) {
2114 		return -EPERM;
2115 	}
2116 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2117 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2118 		return -EPERM;
2119 	}
2120 
2121 	err = security_sb_remount(sb, data);
2122 	if (err)
2123 		return err;
2124 
2125 	down_write(&sb->s_umount);
2126 	if (flags & MS_BIND)
2127 		err = change_mount_flags(path->mnt, flags);
2128 	else if (!capable(CAP_SYS_ADMIN))
2129 		err = -EPERM;
2130 	else
2131 		err = do_remount_sb(sb, flags, data, 0);
2132 	if (!err) {
2133 		lock_mount_hash();
2134 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2135 		mnt->mnt.mnt_flags = mnt_flags;
2136 		touch_mnt_namespace(mnt->mnt_ns);
2137 		unlock_mount_hash();
2138 	}
2139 	up_write(&sb->s_umount);
2140 	return err;
2141 }
2142 
2143 static inline int tree_contains_unbindable(struct mount *mnt)
2144 {
2145 	struct mount *p;
2146 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2147 		if (IS_MNT_UNBINDABLE(p))
2148 			return 1;
2149 	}
2150 	return 0;
2151 }
2152 
2153 static int do_move_mount(struct path *path, const char *old_name)
2154 {
2155 	struct path old_path, parent_path;
2156 	struct mount *p;
2157 	struct mount *old;
2158 	struct mountpoint *mp;
2159 	int err;
2160 	if (!old_name || !*old_name)
2161 		return -EINVAL;
2162 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2163 	if (err)
2164 		return err;
2165 
2166 	mp = lock_mount(path);
2167 	err = PTR_ERR(mp);
2168 	if (IS_ERR(mp))
2169 		goto out;
2170 
2171 	old = real_mount(old_path.mnt);
2172 	p = real_mount(path->mnt);
2173 
2174 	err = -EINVAL;
2175 	if (!check_mnt(p) || !check_mnt(old))
2176 		goto out1;
2177 
2178 	if (old->mnt.mnt_flags & MNT_LOCKED)
2179 		goto out1;
2180 
2181 	err = -EINVAL;
2182 	if (old_path.dentry != old_path.mnt->mnt_root)
2183 		goto out1;
2184 
2185 	if (!mnt_has_parent(old))
2186 		goto out1;
2187 
2188 	if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2189 	      S_ISDIR(old_path.dentry->d_inode->i_mode))
2190 		goto out1;
2191 	/*
2192 	 * Don't move a mount residing in a shared parent.
2193 	 */
2194 	if (IS_MNT_SHARED(old->mnt_parent))
2195 		goto out1;
2196 	/*
2197 	 * Don't move a mount tree containing unbindable mounts to a destination
2198 	 * mount which is shared.
2199 	 */
2200 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2201 		goto out1;
2202 	err = -ELOOP;
2203 	for (; mnt_has_parent(p); p = p->mnt_parent)
2204 		if (p == old)
2205 			goto out1;
2206 
2207 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2208 	if (err)
2209 		goto out1;
2210 
2211 	/* if the mount is moved, it should no longer be expire
2212 	 * automatically */
2213 	list_del_init(&old->mnt_expire);
2214 out1:
2215 	unlock_mount(mp);
2216 out:
2217 	if (!err)
2218 		path_put(&parent_path);
2219 	path_put(&old_path);
2220 	return err;
2221 }
2222 
2223 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2224 {
2225 	int err;
2226 	const char *subtype = strchr(fstype, '.');
2227 	if (subtype) {
2228 		subtype++;
2229 		err = -EINVAL;
2230 		if (!subtype[0])
2231 			goto err;
2232 	} else
2233 		subtype = "";
2234 
2235 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2236 	err = -ENOMEM;
2237 	if (!mnt->mnt_sb->s_subtype)
2238 		goto err;
2239 	return mnt;
2240 
2241  err:
2242 	mntput(mnt);
2243 	return ERR_PTR(err);
2244 }
2245 
2246 /*
2247  * add a mount into a namespace's mount tree
2248  */
2249 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2250 {
2251 	struct mountpoint *mp;
2252 	struct mount *parent;
2253 	int err;
2254 
2255 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2256 
2257 	mp = lock_mount(path);
2258 	if (IS_ERR(mp))
2259 		return PTR_ERR(mp);
2260 
2261 	parent = real_mount(path->mnt);
2262 	err = -EINVAL;
2263 	if (unlikely(!check_mnt(parent))) {
2264 		/* that's acceptable only for automounts done in private ns */
2265 		if (!(mnt_flags & MNT_SHRINKABLE))
2266 			goto unlock;
2267 		/* ... and for those we'd better have mountpoint still alive */
2268 		if (!parent->mnt_ns)
2269 			goto unlock;
2270 	}
2271 
2272 	/* Refuse the same filesystem on the same mount point */
2273 	err = -EBUSY;
2274 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2275 	    path->mnt->mnt_root == path->dentry)
2276 		goto unlock;
2277 
2278 	err = -EINVAL;
2279 	if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2280 		goto unlock;
2281 
2282 	newmnt->mnt.mnt_flags = mnt_flags;
2283 	err = graft_tree(newmnt, parent, mp);
2284 
2285 unlock:
2286 	unlock_mount(mp);
2287 	return err;
2288 }
2289 
2290 /*
2291  * create a new mount for userspace and request it to be added into the
2292  * namespace's tree
2293  */
2294 static int do_new_mount(struct path *path, const char *fstype, int flags,
2295 			int mnt_flags, const char *name, void *data)
2296 {
2297 	struct file_system_type *type;
2298 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2299 	struct vfsmount *mnt;
2300 	int err;
2301 
2302 	if (!fstype)
2303 		return -EINVAL;
2304 
2305 	type = get_fs_type(fstype);
2306 	if (!type)
2307 		return -ENODEV;
2308 
2309 	if (user_ns != &init_user_ns) {
2310 		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2311 			put_filesystem(type);
2312 			return -EPERM;
2313 		}
2314 		/* Only in special cases allow devices from mounts
2315 		 * created outside the initial user namespace.
2316 		 */
2317 		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2318 			flags |= MS_NODEV;
2319 			mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2320 		}
2321 	}
2322 
2323 	mnt = vfs_kern_mount(type, flags, name, data);
2324 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2325 	    !mnt->mnt_sb->s_subtype)
2326 		mnt = fs_set_subtype(mnt, fstype);
2327 
2328 	put_filesystem(type);
2329 	if (IS_ERR(mnt))
2330 		return PTR_ERR(mnt);
2331 
2332 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2333 	if (err)
2334 		mntput(mnt);
2335 	return err;
2336 }
2337 
2338 int finish_automount(struct vfsmount *m, struct path *path)
2339 {
2340 	struct mount *mnt = real_mount(m);
2341 	int err;
2342 	/* The new mount record should have at least 2 refs to prevent it being
2343 	 * expired before we get a chance to add it
2344 	 */
2345 	BUG_ON(mnt_get_count(mnt) < 2);
2346 
2347 	if (m->mnt_sb == path->mnt->mnt_sb &&
2348 	    m->mnt_root == path->dentry) {
2349 		err = -ELOOP;
2350 		goto fail;
2351 	}
2352 
2353 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2354 	if (!err)
2355 		return 0;
2356 fail:
2357 	/* remove m from any expiration list it may be on */
2358 	if (!list_empty(&mnt->mnt_expire)) {
2359 		namespace_lock();
2360 		list_del_init(&mnt->mnt_expire);
2361 		namespace_unlock();
2362 	}
2363 	mntput(m);
2364 	mntput(m);
2365 	return err;
2366 }
2367 
2368 /**
2369  * mnt_set_expiry - Put a mount on an expiration list
2370  * @mnt: The mount to list.
2371  * @expiry_list: The list to add the mount to.
2372  */
2373 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2374 {
2375 	namespace_lock();
2376 
2377 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2378 
2379 	namespace_unlock();
2380 }
2381 EXPORT_SYMBOL(mnt_set_expiry);
2382 
2383 /*
2384  * process a list of expirable mountpoints with the intent of discarding any
2385  * mountpoints that aren't in use and haven't been touched since last we came
2386  * here
2387  */
2388 void mark_mounts_for_expiry(struct list_head *mounts)
2389 {
2390 	struct mount *mnt, *next;
2391 	LIST_HEAD(graveyard);
2392 
2393 	if (list_empty(mounts))
2394 		return;
2395 
2396 	namespace_lock();
2397 	lock_mount_hash();
2398 
2399 	/* extract from the expiration list every vfsmount that matches the
2400 	 * following criteria:
2401 	 * - only referenced by its parent vfsmount
2402 	 * - still marked for expiry (marked on the last call here; marks are
2403 	 *   cleared by mntput())
2404 	 */
2405 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2406 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2407 			propagate_mount_busy(mnt, 1))
2408 			continue;
2409 		list_move(&mnt->mnt_expire, &graveyard);
2410 	}
2411 	while (!list_empty(&graveyard)) {
2412 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2413 		touch_mnt_namespace(mnt->mnt_ns);
2414 		umount_tree(mnt, 1);
2415 	}
2416 	unlock_mount_hash();
2417 	namespace_unlock();
2418 }
2419 
2420 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2421 
2422 /*
2423  * Ripoff of 'select_parent()'
2424  *
2425  * search the list of submounts for a given mountpoint, and move any
2426  * shrinkable submounts to the 'graveyard' list.
2427  */
2428 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2429 {
2430 	struct mount *this_parent = parent;
2431 	struct list_head *next;
2432 	int found = 0;
2433 
2434 repeat:
2435 	next = this_parent->mnt_mounts.next;
2436 resume:
2437 	while (next != &this_parent->mnt_mounts) {
2438 		struct list_head *tmp = next;
2439 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2440 
2441 		next = tmp->next;
2442 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2443 			continue;
2444 		/*
2445 		 * Descend a level if the d_mounts list is non-empty.
2446 		 */
2447 		if (!list_empty(&mnt->mnt_mounts)) {
2448 			this_parent = mnt;
2449 			goto repeat;
2450 		}
2451 
2452 		if (!propagate_mount_busy(mnt, 1)) {
2453 			list_move_tail(&mnt->mnt_expire, graveyard);
2454 			found++;
2455 		}
2456 	}
2457 	/*
2458 	 * All done at this level ... ascend and resume the search
2459 	 */
2460 	if (this_parent != parent) {
2461 		next = this_parent->mnt_child.next;
2462 		this_parent = this_parent->mnt_parent;
2463 		goto resume;
2464 	}
2465 	return found;
2466 }
2467 
2468 /*
2469  * process a list of expirable mountpoints with the intent of discarding any
2470  * submounts of a specific parent mountpoint
2471  *
2472  * mount_lock must be held for write
2473  */
2474 static void shrink_submounts(struct mount *mnt)
2475 {
2476 	LIST_HEAD(graveyard);
2477 	struct mount *m;
2478 
2479 	/* extract submounts of 'mountpoint' from the expiration list */
2480 	while (select_submounts(mnt, &graveyard)) {
2481 		while (!list_empty(&graveyard)) {
2482 			m = list_first_entry(&graveyard, struct mount,
2483 						mnt_expire);
2484 			touch_mnt_namespace(m->mnt_ns);
2485 			umount_tree(m, 1);
2486 		}
2487 	}
2488 }
2489 
2490 /*
2491  * Some copy_from_user() implementations do not return the exact number of
2492  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2493  * Note that this function differs from copy_from_user() in that it will oops
2494  * on bad values of `to', rather than returning a short copy.
2495  */
2496 static long exact_copy_from_user(void *to, const void __user * from,
2497 				 unsigned long n)
2498 {
2499 	char *t = to;
2500 	const char __user *f = from;
2501 	char c;
2502 
2503 	if (!access_ok(VERIFY_READ, from, n))
2504 		return n;
2505 
2506 	while (n) {
2507 		if (__get_user(c, f)) {
2508 			memset(t, 0, n);
2509 			break;
2510 		}
2511 		*t++ = c;
2512 		f++;
2513 		n--;
2514 	}
2515 	return n;
2516 }
2517 
2518 int copy_mount_options(const void __user * data, unsigned long *where)
2519 {
2520 	int i;
2521 	unsigned long page;
2522 	unsigned long size;
2523 
2524 	*where = 0;
2525 	if (!data)
2526 		return 0;
2527 
2528 	if (!(page = __get_free_page(GFP_KERNEL)))
2529 		return -ENOMEM;
2530 
2531 	/* We only care that *some* data at the address the user
2532 	 * gave us is valid.  Just in case, we'll zero
2533 	 * the remainder of the page.
2534 	 */
2535 	/* copy_from_user cannot cross TASK_SIZE ! */
2536 	size = TASK_SIZE - (unsigned long)data;
2537 	if (size > PAGE_SIZE)
2538 		size = PAGE_SIZE;
2539 
2540 	i = size - exact_copy_from_user((void *)page, data, size);
2541 	if (!i) {
2542 		free_page(page);
2543 		return -EFAULT;
2544 	}
2545 	if (i != PAGE_SIZE)
2546 		memset((char *)page + i, 0, PAGE_SIZE - i);
2547 	*where = page;
2548 	return 0;
2549 }
2550 
2551 char *copy_mount_string(const void __user *data)
2552 {
2553 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2554 }
2555 
2556 /*
2557  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2558  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2559  *
2560  * data is a (void *) that can point to any structure up to
2561  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2562  * information (or be NULL).
2563  *
2564  * Pre-0.97 versions of mount() didn't have a flags word.
2565  * When the flags word was introduced its top half was required
2566  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2567  * Therefore, if this magic number is present, it carries no information
2568  * and must be discarded.
2569  */
2570 long do_mount(const char *dev_name, const char __user *dir_name,
2571 		const char *type_page, unsigned long flags, void *data_page)
2572 {
2573 	struct path path;
2574 	int retval = 0;
2575 	int mnt_flags = 0;
2576 
2577 	/* Discard magic */
2578 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2579 		flags &= ~MS_MGC_MSK;
2580 
2581 	/* Basic sanity checks */
2582 	if (data_page)
2583 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2584 
2585 	/* ... and get the mountpoint */
2586 	retval = user_path(dir_name, &path);
2587 	if (retval)
2588 		return retval;
2589 
2590 	retval = security_sb_mount(dev_name, &path,
2591 				   type_page, flags, data_page);
2592 	if (!retval && !may_mount())
2593 		retval = -EPERM;
2594 	if (retval)
2595 		goto dput_out;
2596 
2597 	/* Default to relatime unless overriden */
2598 	if (!(flags & MS_NOATIME))
2599 		mnt_flags |= MNT_RELATIME;
2600 
2601 	/* Separate the per-mountpoint flags */
2602 	if (flags & MS_NOSUID)
2603 		mnt_flags |= MNT_NOSUID;
2604 	if (flags & MS_NODEV)
2605 		mnt_flags |= MNT_NODEV;
2606 	if (flags & MS_NOEXEC)
2607 		mnt_flags |= MNT_NOEXEC;
2608 	if (flags & MS_NOATIME)
2609 		mnt_flags |= MNT_NOATIME;
2610 	if (flags & MS_NODIRATIME)
2611 		mnt_flags |= MNT_NODIRATIME;
2612 	if (flags & MS_STRICTATIME)
2613 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2614 	if (flags & MS_RDONLY)
2615 		mnt_flags |= MNT_READONLY;
2616 
2617 	/* The default atime for remount is preservation */
2618 	if ((flags & MS_REMOUNT) &&
2619 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2620 		       MS_STRICTATIME)) == 0)) {
2621 		mnt_flags &= ~MNT_ATIME_MASK;
2622 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2623 	}
2624 
2625 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2626 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2627 		   MS_STRICTATIME);
2628 
2629 	if (flags & MS_REMOUNT)
2630 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2631 				    data_page);
2632 	else if (flags & MS_BIND)
2633 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2634 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2635 		retval = do_change_type(&path, flags);
2636 	else if (flags & MS_MOVE)
2637 		retval = do_move_mount(&path, dev_name);
2638 	else
2639 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2640 				      dev_name, data_page);
2641 dput_out:
2642 	path_put(&path);
2643 	return retval;
2644 }
2645 
2646 static void free_mnt_ns(struct mnt_namespace *ns)
2647 {
2648 	proc_free_inum(ns->ns.inum);
2649 	put_user_ns(ns->user_ns);
2650 	kfree(ns);
2651 }
2652 
2653 /*
2654  * Assign a sequence number so we can detect when we attempt to bind
2655  * mount a reference to an older mount namespace into the current
2656  * mount namespace, preventing reference counting loops.  A 64bit
2657  * number incrementing at 10Ghz will take 12,427 years to wrap which
2658  * is effectively never, so we can ignore the possibility.
2659  */
2660 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2661 
2662 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2663 {
2664 	struct mnt_namespace *new_ns;
2665 	int ret;
2666 
2667 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2668 	if (!new_ns)
2669 		return ERR_PTR(-ENOMEM);
2670 	ret = proc_alloc_inum(&new_ns->ns.inum);
2671 	if (ret) {
2672 		kfree(new_ns);
2673 		return ERR_PTR(ret);
2674 	}
2675 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2676 	atomic_set(&new_ns->count, 1);
2677 	new_ns->root = NULL;
2678 	INIT_LIST_HEAD(&new_ns->list);
2679 	init_waitqueue_head(&new_ns->poll);
2680 	new_ns->event = 0;
2681 	new_ns->user_ns = get_user_ns(user_ns);
2682 	return new_ns;
2683 }
2684 
2685 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2686 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2687 {
2688 	struct mnt_namespace *new_ns;
2689 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2690 	struct mount *p, *q;
2691 	struct mount *old;
2692 	struct mount *new;
2693 	int copy_flags;
2694 
2695 	BUG_ON(!ns);
2696 
2697 	if (likely(!(flags & CLONE_NEWNS))) {
2698 		get_mnt_ns(ns);
2699 		return ns;
2700 	}
2701 
2702 	old = ns->root;
2703 
2704 	new_ns = alloc_mnt_ns(user_ns);
2705 	if (IS_ERR(new_ns))
2706 		return new_ns;
2707 
2708 	namespace_lock();
2709 	/* First pass: copy the tree topology */
2710 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2711 	if (user_ns != ns->user_ns)
2712 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2713 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2714 	if (IS_ERR(new)) {
2715 		namespace_unlock();
2716 		free_mnt_ns(new_ns);
2717 		return ERR_CAST(new);
2718 	}
2719 	new_ns->root = new;
2720 	list_add_tail(&new_ns->list, &new->mnt_list);
2721 
2722 	/*
2723 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2724 	 * as belonging to new namespace.  We have already acquired a private
2725 	 * fs_struct, so tsk->fs->lock is not needed.
2726 	 */
2727 	p = old;
2728 	q = new;
2729 	while (p) {
2730 		q->mnt_ns = new_ns;
2731 		if (new_fs) {
2732 			if (&p->mnt == new_fs->root.mnt) {
2733 				new_fs->root.mnt = mntget(&q->mnt);
2734 				rootmnt = &p->mnt;
2735 			}
2736 			if (&p->mnt == new_fs->pwd.mnt) {
2737 				new_fs->pwd.mnt = mntget(&q->mnt);
2738 				pwdmnt = &p->mnt;
2739 			}
2740 		}
2741 		p = next_mnt(p, old);
2742 		q = next_mnt(q, new);
2743 		if (!q)
2744 			break;
2745 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2746 			p = next_mnt(p, old);
2747 	}
2748 	namespace_unlock();
2749 
2750 	if (rootmnt)
2751 		mntput(rootmnt);
2752 	if (pwdmnt)
2753 		mntput(pwdmnt);
2754 
2755 	return new_ns;
2756 }
2757 
2758 /**
2759  * create_mnt_ns - creates a private namespace and adds a root filesystem
2760  * @mnt: pointer to the new root filesystem mountpoint
2761  */
2762 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2763 {
2764 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2765 	if (!IS_ERR(new_ns)) {
2766 		struct mount *mnt = real_mount(m);
2767 		mnt->mnt_ns = new_ns;
2768 		new_ns->root = mnt;
2769 		list_add(&mnt->mnt_list, &new_ns->list);
2770 	} else {
2771 		mntput(m);
2772 	}
2773 	return new_ns;
2774 }
2775 
2776 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2777 {
2778 	struct mnt_namespace *ns;
2779 	struct super_block *s;
2780 	struct path path;
2781 	int err;
2782 
2783 	ns = create_mnt_ns(mnt);
2784 	if (IS_ERR(ns))
2785 		return ERR_CAST(ns);
2786 
2787 	err = vfs_path_lookup(mnt->mnt_root, mnt,
2788 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2789 
2790 	put_mnt_ns(ns);
2791 
2792 	if (err)
2793 		return ERR_PTR(err);
2794 
2795 	/* trade a vfsmount reference for active sb one */
2796 	s = path.mnt->mnt_sb;
2797 	atomic_inc(&s->s_active);
2798 	mntput(path.mnt);
2799 	/* lock the sucker */
2800 	down_write(&s->s_umount);
2801 	/* ... and return the root of (sub)tree on it */
2802 	return path.dentry;
2803 }
2804 EXPORT_SYMBOL(mount_subtree);
2805 
2806 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2807 		char __user *, type, unsigned long, flags, void __user *, data)
2808 {
2809 	int ret;
2810 	char *kernel_type;
2811 	char *kernel_dev;
2812 	unsigned long data_page;
2813 
2814 	kernel_type = copy_mount_string(type);
2815 	ret = PTR_ERR(kernel_type);
2816 	if (IS_ERR(kernel_type))
2817 		goto out_type;
2818 
2819 	kernel_dev = copy_mount_string(dev_name);
2820 	ret = PTR_ERR(kernel_dev);
2821 	if (IS_ERR(kernel_dev))
2822 		goto out_dev;
2823 
2824 	ret = copy_mount_options(data, &data_page);
2825 	if (ret < 0)
2826 		goto out_data;
2827 
2828 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2829 		(void *) data_page);
2830 
2831 	free_page(data_page);
2832 out_data:
2833 	kfree(kernel_dev);
2834 out_dev:
2835 	kfree(kernel_type);
2836 out_type:
2837 	return ret;
2838 }
2839 
2840 /*
2841  * Return true if path is reachable from root
2842  *
2843  * namespace_sem or mount_lock is held
2844  */
2845 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2846 			 const struct path *root)
2847 {
2848 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2849 		dentry = mnt->mnt_mountpoint;
2850 		mnt = mnt->mnt_parent;
2851 	}
2852 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2853 }
2854 
2855 int path_is_under(struct path *path1, struct path *path2)
2856 {
2857 	int res;
2858 	read_seqlock_excl(&mount_lock);
2859 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2860 	read_sequnlock_excl(&mount_lock);
2861 	return res;
2862 }
2863 EXPORT_SYMBOL(path_is_under);
2864 
2865 /*
2866  * pivot_root Semantics:
2867  * Moves the root file system of the current process to the directory put_old,
2868  * makes new_root as the new root file system of the current process, and sets
2869  * root/cwd of all processes which had them on the current root to new_root.
2870  *
2871  * Restrictions:
2872  * The new_root and put_old must be directories, and  must not be on the
2873  * same file  system as the current process root. The put_old  must  be
2874  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2875  * pointed to by put_old must yield the same directory as new_root. No other
2876  * file system may be mounted on put_old. After all, new_root is a mountpoint.
2877  *
2878  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2879  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2880  * in this situation.
2881  *
2882  * Notes:
2883  *  - we don't move root/cwd if they are not at the root (reason: if something
2884  *    cared enough to change them, it's probably wrong to force them elsewhere)
2885  *  - it's okay to pick a root that isn't the root of a file system, e.g.
2886  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2887  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2888  *    first.
2889  */
2890 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2891 		const char __user *, put_old)
2892 {
2893 	struct path new, old, parent_path, root_parent, root;
2894 	struct mount *new_mnt, *root_mnt, *old_mnt;
2895 	struct mountpoint *old_mp, *root_mp;
2896 	int error;
2897 
2898 	if (!may_mount())
2899 		return -EPERM;
2900 
2901 	error = user_path_dir(new_root, &new);
2902 	if (error)
2903 		goto out0;
2904 
2905 	error = user_path_dir(put_old, &old);
2906 	if (error)
2907 		goto out1;
2908 
2909 	error = security_sb_pivotroot(&old, &new);
2910 	if (error)
2911 		goto out2;
2912 
2913 	get_fs_root(current->fs, &root);
2914 	old_mp = lock_mount(&old);
2915 	error = PTR_ERR(old_mp);
2916 	if (IS_ERR(old_mp))
2917 		goto out3;
2918 
2919 	error = -EINVAL;
2920 	new_mnt = real_mount(new.mnt);
2921 	root_mnt = real_mount(root.mnt);
2922 	old_mnt = real_mount(old.mnt);
2923 	if (IS_MNT_SHARED(old_mnt) ||
2924 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
2925 		IS_MNT_SHARED(root_mnt->mnt_parent))
2926 		goto out4;
2927 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2928 		goto out4;
2929 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2930 		goto out4;
2931 	error = -ENOENT;
2932 	if (d_unlinked(new.dentry))
2933 		goto out4;
2934 	error = -EBUSY;
2935 	if (new_mnt == root_mnt || old_mnt == root_mnt)
2936 		goto out4; /* loop, on the same file system  */
2937 	error = -EINVAL;
2938 	if (root.mnt->mnt_root != root.dentry)
2939 		goto out4; /* not a mountpoint */
2940 	if (!mnt_has_parent(root_mnt))
2941 		goto out4; /* not attached */
2942 	root_mp = root_mnt->mnt_mp;
2943 	if (new.mnt->mnt_root != new.dentry)
2944 		goto out4; /* not a mountpoint */
2945 	if (!mnt_has_parent(new_mnt))
2946 		goto out4; /* not attached */
2947 	/* make sure we can reach put_old from new_root */
2948 	if (!is_path_reachable(old_mnt, old.dentry, &new))
2949 		goto out4;
2950 	/* make certain new is below the root */
2951 	if (!is_path_reachable(new_mnt, new.dentry, &root))
2952 		goto out4;
2953 	root_mp->m_count++; /* pin it so it won't go away */
2954 	lock_mount_hash();
2955 	detach_mnt(new_mnt, &parent_path);
2956 	detach_mnt(root_mnt, &root_parent);
2957 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2958 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2959 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2960 	}
2961 	/* mount old root on put_old */
2962 	attach_mnt(root_mnt, old_mnt, old_mp);
2963 	/* mount new_root on / */
2964 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2965 	touch_mnt_namespace(current->nsproxy->mnt_ns);
2966 	unlock_mount_hash();
2967 	chroot_fs_refs(&root, &new);
2968 	put_mountpoint(root_mp);
2969 	error = 0;
2970 out4:
2971 	unlock_mount(old_mp);
2972 	if (!error) {
2973 		path_put(&root_parent);
2974 		path_put(&parent_path);
2975 	}
2976 out3:
2977 	path_put(&root);
2978 out2:
2979 	path_put(&old);
2980 out1:
2981 	path_put(&new);
2982 out0:
2983 	return error;
2984 }
2985 
2986 static void __init init_mount_tree(void)
2987 {
2988 	struct vfsmount *mnt;
2989 	struct mnt_namespace *ns;
2990 	struct path root;
2991 	struct file_system_type *type;
2992 
2993 	type = get_fs_type("rootfs");
2994 	if (!type)
2995 		panic("Can't find rootfs type");
2996 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2997 	put_filesystem(type);
2998 	if (IS_ERR(mnt))
2999 		panic("Can't create rootfs");
3000 
3001 	ns = create_mnt_ns(mnt);
3002 	if (IS_ERR(ns))
3003 		panic("Can't allocate initial namespace");
3004 
3005 	init_task.nsproxy->mnt_ns = ns;
3006 	get_mnt_ns(ns);
3007 
3008 	root.mnt = mnt;
3009 	root.dentry = mnt->mnt_root;
3010 
3011 	set_fs_pwd(current->fs, &root);
3012 	set_fs_root(current->fs, &root);
3013 }
3014 
3015 void __init mnt_init(void)
3016 {
3017 	unsigned u;
3018 	int err;
3019 
3020 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3021 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3022 
3023 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3024 				sizeof(struct hlist_head),
3025 				mhash_entries, 19,
3026 				0,
3027 				&m_hash_shift, &m_hash_mask, 0, 0);
3028 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3029 				sizeof(struct hlist_head),
3030 				mphash_entries, 19,
3031 				0,
3032 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3033 
3034 	if (!mount_hashtable || !mountpoint_hashtable)
3035 		panic("Failed to allocate mount hash table\n");
3036 
3037 	for (u = 0; u <= m_hash_mask; u++)
3038 		INIT_HLIST_HEAD(&mount_hashtable[u]);
3039 	for (u = 0; u <= mp_hash_mask; u++)
3040 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3041 
3042 	kernfs_init();
3043 
3044 	err = sysfs_init();
3045 	if (err)
3046 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3047 			__func__, err);
3048 	fs_kobj = kobject_create_and_add("fs", NULL);
3049 	if (!fs_kobj)
3050 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3051 	init_rootfs();
3052 	init_mount_tree();
3053 }
3054 
3055 void put_mnt_ns(struct mnt_namespace *ns)
3056 {
3057 	if (!atomic_dec_and_test(&ns->count))
3058 		return;
3059 	drop_collected_mounts(&ns->root->mnt);
3060 	free_mnt_ns(ns);
3061 }
3062 
3063 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3064 {
3065 	struct vfsmount *mnt;
3066 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3067 	if (!IS_ERR(mnt)) {
3068 		/*
3069 		 * it is a longterm mount, don't release mnt until
3070 		 * we unmount before file sys is unregistered
3071 		*/
3072 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3073 	}
3074 	return mnt;
3075 }
3076 EXPORT_SYMBOL_GPL(kern_mount_data);
3077 
3078 void kern_unmount(struct vfsmount *mnt)
3079 {
3080 	/* release long term mount so mount point can be released */
3081 	if (!IS_ERR_OR_NULL(mnt)) {
3082 		real_mount(mnt)->mnt_ns = NULL;
3083 		synchronize_rcu();	/* yecchhh... */
3084 		mntput(mnt);
3085 	}
3086 }
3087 EXPORT_SYMBOL(kern_unmount);
3088 
3089 bool our_mnt(struct vfsmount *mnt)
3090 {
3091 	return check_mnt(real_mount(mnt));
3092 }
3093 
3094 bool current_chrooted(void)
3095 {
3096 	/* Does the current process have a non-standard root */
3097 	struct path ns_root;
3098 	struct path fs_root;
3099 	bool chrooted;
3100 
3101 	/* Find the namespace root */
3102 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3103 	ns_root.dentry = ns_root.mnt->mnt_root;
3104 	path_get(&ns_root);
3105 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3106 		;
3107 
3108 	get_fs_root(current->fs, &fs_root);
3109 
3110 	chrooted = !path_equal(&fs_root, &ns_root);
3111 
3112 	path_put(&fs_root);
3113 	path_put(&ns_root);
3114 
3115 	return chrooted;
3116 }
3117 
3118 bool fs_fully_visible(struct file_system_type *type)
3119 {
3120 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3121 	struct mount *mnt;
3122 	bool visible = false;
3123 
3124 	if (unlikely(!ns))
3125 		return false;
3126 
3127 	down_read(&namespace_sem);
3128 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3129 		struct mount *child;
3130 		if (mnt->mnt.mnt_sb->s_type != type)
3131 			continue;
3132 
3133 		/* This mount is not fully visible if there are any child mounts
3134 		 * that cover anything except for empty directories.
3135 		 */
3136 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3137 			struct inode *inode = child->mnt_mountpoint->d_inode;
3138 			if (!S_ISDIR(inode->i_mode))
3139 				goto next;
3140 			if (inode->i_nlink > 2)
3141 				goto next;
3142 		}
3143 		visible = true;
3144 		goto found;
3145 	next:	;
3146 	}
3147 found:
3148 	up_read(&namespace_sem);
3149 	return visible;
3150 }
3151 
3152 static struct ns_common *mntns_get(struct task_struct *task)
3153 {
3154 	struct ns_common *ns = NULL;
3155 	struct nsproxy *nsproxy;
3156 
3157 	task_lock(task);
3158 	nsproxy = task->nsproxy;
3159 	if (nsproxy) {
3160 		ns = &nsproxy->mnt_ns->ns;
3161 		get_mnt_ns(to_mnt_ns(ns));
3162 	}
3163 	task_unlock(task);
3164 
3165 	return ns;
3166 }
3167 
3168 static void mntns_put(struct ns_common *ns)
3169 {
3170 	put_mnt_ns(to_mnt_ns(ns));
3171 }
3172 
3173 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3174 {
3175 	struct fs_struct *fs = current->fs;
3176 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3177 	struct path root;
3178 
3179 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3180 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3181 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3182 		return -EPERM;
3183 
3184 	if (fs->users != 1)
3185 		return -EINVAL;
3186 
3187 	get_mnt_ns(mnt_ns);
3188 	put_mnt_ns(nsproxy->mnt_ns);
3189 	nsproxy->mnt_ns = mnt_ns;
3190 
3191 	/* Find the root */
3192 	root.mnt    = &mnt_ns->root->mnt;
3193 	root.dentry = mnt_ns->root->mnt.mnt_root;
3194 	path_get(&root);
3195 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3196 		;
3197 
3198 	/* Update the pwd and root */
3199 	set_fs_pwd(fs, &root);
3200 	set_fs_root(fs, &root);
3201 
3202 	path_put(&root);
3203 	return 0;
3204 }
3205 
3206 const struct proc_ns_operations mntns_operations = {
3207 	.name		= "mnt",
3208 	.type		= CLONE_NEWNS,
3209 	.get		= mntns_get,
3210 	.put		= mntns_put,
3211 	.install	= mntns_install,
3212 };
3213