1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/quotaops.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <asm/uaccess.h> 35 36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE]) 37 38 /* [Feb-1997 T. Schoebel-Theuer] 39 * Fundamental changes in the pathname lookup mechanisms (namei) 40 * were necessary because of omirr. The reason is that omirr needs 41 * to know the _real_ pathname, not the user-supplied one, in case 42 * of symlinks (and also when transname replacements occur). 43 * 44 * The new code replaces the old recursive symlink resolution with 45 * an iterative one (in case of non-nested symlink chains). It does 46 * this with calls to <fs>_follow_link(). 47 * As a side effect, dir_namei(), _namei() and follow_link() are now 48 * replaced with a single function lookup_dentry() that can handle all 49 * the special cases of the former code. 50 * 51 * With the new dcache, the pathname is stored at each inode, at least as 52 * long as the refcount of the inode is positive. As a side effect, the 53 * size of the dcache depends on the inode cache and thus is dynamic. 54 * 55 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 56 * resolution to correspond with current state of the code. 57 * 58 * Note that the symlink resolution is not *completely* iterative. 59 * There is still a significant amount of tail- and mid- recursion in 60 * the algorithm. Also, note that <fs>_readlink() is not used in 61 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 62 * may return different results than <fs>_follow_link(). Many virtual 63 * filesystems (including /proc) exhibit this behavior. 64 */ 65 66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 67 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 68 * and the name already exists in form of a symlink, try to create the new 69 * name indicated by the symlink. The old code always complained that the 70 * name already exists, due to not following the symlink even if its target 71 * is nonexistent. The new semantics affects also mknod() and link() when 72 * the name is a symlink pointing to a non-existant name. 73 * 74 * I don't know which semantics is the right one, since I have no access 75 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 76 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 77 * "old" one. Personally, I think the new semantics is much more logical. 78 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 79 * file does succeed in both HP-UX and SunOs, but not in Solaris 80 * and in the old Linux semantics. 81 */ 82 83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 84 * semantics. See the comments in "open_namei" and "do_link" below. 85 * 86 * [10-Sep-98 Alan Modra] Another symlink change. 87 */ 88 89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 90 * inside the path - always follow. 91 * in the last component in creation/removal/renaming - never follow. 92 * if LOOKUP_FOLLOW passed - follow. 93 * if the pathname has trailing slashes - follow. 94 * otherwise - don't follow. 95 * (applied in that order). 96 * 97 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 98 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 99 * During the 2.4 we need to fix the userland stuff depending on it - 100 * hopefully we will be able to get rid of that wart in 2.5. So far only 101 * XEmacs seems to be relying on it... 102 */ 103 /* 104 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 105 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 106 * any extra contention... 107 */ 108 109 static int __link_path_walk(const char *name, struct nameidata *nd); 110 111 /* In order to reduce some races, while at the same time doing additional 112 * checking and hopefully speeding things up, we copy filenames to the 113 * kernel data space before using them.. 114 * 115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 116 * PATH_MAX includes the nul terminator --RR. 117 */ 118 static int do_getname(const char __user *filename, char *page) 119 { 120 int retval; 121 unsigned long len = PATH_MAX; 122 123 if (!segment_eq(get_fs(), KERNEL_DS)) { 124 if ((unsigned long) filename >= TASK_SIZE) 125 return -EFAULT; 126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 127 len = TASK_SIZE - (unsigned long) filename; 128 } 129 130 retval = strncpy_from_user(page, filename, len); 131 if (retval > 0) { 132 if (retval < len) 133 return 0; 134 return -ENAMETOOLONG; 135 } else if (!retval) 136 retval = -ENOENT; 137 return retval; 138 } 139 140 char * getname(const char __user * filename) 141 { 142 char *tmp, *result; 143 144 result = ERR_PTR(-ENOMEM); 145 tmp = __getname(); 146 if (tmp) { 147 int retval = do_getname(filename, tmp); 148 149 result = tmp; 150 if (retval < 0) { 151 __putname(tmp); 152 result = ERR_PTR(retval); 153 } 154 } 155 audit_getname(result); 156 return result; 157 } 158 159 #ifdef CONFIG_AUDITSYSCALL 160 void putname(const char *name) 161 { 162 if (unlikely(!audit_dummy_context())) 163 audit_putname(name); 164 else 165 __putname(name); 166 } 167 EXPORT_SYMBOL(putname); 168 #endif 169 170 171 /** 172 * generic_permission - check for access rights on a Posix-like filesystem 173 * @inode: inode to check access rights for 174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 175 * @check_acl: optional callback to check for Posix ACLs 176 * 177 * Used to check for read/write/execute permissions on a file. 178 * We use "fsuid" for this, letting us set arbitrary permissions 179 * for filesystem access without changing the "normal" uids which 180 * are used for other things.. 181 */ 182 int generic_permission(struct inode *inode, int mask, 183 int (*check_acl)(struct inode *inode, int mask)) 184 { 185 umode_t mode = inode->i_mode; 186 187 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 188 189 if (current->fsuid == inode->i_uid) 190 mode >>= 6; 191 else { 192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 193 int error = check_acl(inode, mask); 194 if (error == -EACCES) 195 goto check_capabilities; 196 else if (error != -EAGAIN) 197 return error; 198 } 199 200 if (in_group_p(inode->i_gid)) 201 mode >>= 3; 202 } 203 204 /* 205 * If the DACs are ok we don't need any capability check. 206 */ 207 if ((mask & ~mode) == 0) 208 return 0; 209 210 check_capabilities: 211 /* 212 * Read/write DACs are always overridable. 213 * Executable DACs are overridable if at least one exec bit is set. 214 */ 215 if (!(mask & MAY_EXEC) || 216 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) 217 if (capable(CAP_DAC_OVERRIDE)) 218 return 0; 219 220 /* 221 * Searching includes executable on directories, else just read. 222 */ 223 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 224 if (capable(CAP_DAC_READ_SEARCH)) 225 return 0; 226 227 return -EACCES; 228 } 229 230 int inode_permission(struct inode *inode, int mask) 231 { 232 int retval; 233 234 if (mask & MAY_WRITE) { 235 umode_t mode = inode->i_mode; 236 237 /* 238 * Nobody gets write access to a read-only fs. 239 */ 240 if (IS_RDONLY(inode) && 241 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 242 return -EROFS; 243 244 /* 245 * Nobody gets write access to an immutable file. 246 */ 247 if (IS_IMMUTABLE(inode)) 248 return -EACCES; 249 } 250 251 /* Ordinary permission routines do not understand MAY_APPEND. */ 252 if (inode->i_op && inode->i_op->permission) { 253 retval = inode->i_op->permission(inode, mask); 254 if (!retval) { 255 /* 256 * Exec permission on a regular file is denied if none 257 * of the execute bits are set. 258 * 259 * This check should be done by the ->permission() 260 * method. 261 */ 262 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) && 263 !(inode->i_mode & S_IXUGO)) 264 return -EACCES; 265 } 266 } else { 267 retval = generic_permission(inode, mask, NULL); 268 } 269 if (retval) 270 return retval; 271 272 retval = devcgroup_inode_permission(inode, mask); 273 if (retval) 274 return retval; 275 276 return security_inode_permission(inode, 277 mask & (MAY_READ|MAY_WRITE|MAY_EXEC)); 278 } 279 280 /** 281 * vfs_permission - check for access rights to a given path 282 * @nd: lookup result that describes the path 283 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 284 * 285 * Used to check for read/write/execute permissions on a path. 286 * We use "fsuid" for this, letting us set arbitrary permissions 287 * for filesystem access without changing the "normal" uids which 288 * are used for other things. 289 */ 290 int vfs_permission(struct nameidata *nd, int mask) 291 { 292 return inode_permission(nd->path.dentry->d_inode, mask); 293 } 294 295 /** 296 * file_permission - check for additional access rights to a given file 297 * @file: file to check access rights for 298 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 299 * 300 * Used to check for read/write/execute permissions on an already opened 301 * file. 302 * 303 * Note: 304 * Do not use this function in new code. All access checks should 305 * be done using vfs_permission(). 306 */ 307 int file_permission(struct file *file, int mask) 308 { 309 return inode_permission(file->f_path.dentry->d_inode, mask); 310 } 311 312 /* 313 * get_write_access() gets write permission for a file. 314 * put_write_access() releases this write permission. 315 * This is used for regular files. 316 * We cannot support write (and maybe mmap read-write shared) accesses and 317 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 318 * can have the following values: 319 * 0: no writers, no VM_DENYWRITE mappings 320 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 321 * > 0: (i_writecount) users are writing to the file. 322 * 323 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 324 * except for the cases where we don't hold i_writecount yet. Then we need to 325 * use {get,deny}_write_access() - these functions check the sign and refuse 326 * to do the change if sign is wrong. Exclusion between them is provided by 327 * the inode->i_lock spinlock. 328 */ 329 330 int get_write_access(struct inode * inode) 331 { 332 spin_lock(&inode->i_lock); 333 if (atomic_read(&inode->i_writecount) < 0) { 334 spin_unlock(&inode->i_lock); 335 return -ETXTBSY; 336 } 337 atomic_inc(&inode->i_writecount); 338 spin_unlock(&inode->i_lock); 339 340 return 0; 341 } 342 343 int deny_write_access(struct file * file) 344 { 345 struct inode *inode = file->f_path.dentry->d_inode; 346 347 spin_lock(&inode->i_lock); 348 if (atomic_read(&inode->i_writecount) > 0) { 349 spin_unlock(&inode->i_lock); 350 return -ETXTBSY; 351 } 352 atomic_dec(&inode->i_writecount); 353 spin_unlock(&inode->i_lock); 354 355 return 0; 356 } 357 358 /** 359 * path_get - get a reference to a path 360 * @path: path to get the reference to 361 * 362 * Given a path increment the reference count to the dentry and the vfsmount. 363 */ 364 void path_get(struct path *path) 365 { 366 mntget(path->mnt); 367 dget(path->dentry); 368 } 369 EXPORT_SYMBOL(path_get); 370 371 /** 372 * path_put - put a reference to a path 373 * @path: path to put the reference to 374 * 375 * Given a path decrement the reference count to the dentry and the vfsmount. 376 */ 377 void path_put(struct path *path) 378 { 379 dput(path->dentry); 380 mntput(path->mnt); 381 } 382 EXPORT_SYMBOL(path_put); 383 384 /** 385 * release_open_intent - free up open intent resources 386 * @nd: pointer to nameidata 387 */ 388 void release_open_intent(struct nameidata *nd) 389 { 390 if (nd->intent.open.file->f_path.dentry == NULL) 391 put_filp(nd->intent.open.file); 392 else 393 fput(nd->intent.open.file); 394 } 395 396 static inline struct dentry * 397 do_revalidate(struct dentry *dentry, struct nameidata *nd) 398 { 399 int status = dentry->d_op->d_revalidate(dentry, nd); 400 if (unlikely(status <= 0)) { 401 /* 402 * The dentry failed validation. 403 * If d_revalidate returned 0 attempt to invalidate 404 * the dentry otherwise d_revalidate is asking us 405 * to return a fail status. 406 */ 407 if (!status) { 408 if (!d_invalidate(dentry)) { 409 dput(dentry); 410 dentry = NULL; 411 } 412 } else { 413 dput(dentry); 414 dentry = ERR_PTR(status); 415 } 416 } 417 return dentry; 418 } 419 420 /* 421 * Internal lookup() using the new generic dcache. 422 * SMP-safe 423 */ 424 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 425 { 426 struct dentry * dentry = __d_lookup(parent, name); 427 428 /* lockess __d_lookup may fail due to concurrent d_move() 429 * in some unrelated directory, so try with d_lookup 430 */ 431 if (!dentry) 432 dentry = d_lookup(parent, name); 433 434 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) 435 dentry = do_revalidate(dentry, nd); 436 437 return dentry; 438 } 439 440 /* 441 * Short-cut version of permission(), for calling by 442 * path_walk(), when dcache lock is held. Combines parts 443 * of permission() and generic_permission(), and tests ONLY for 444 * MAY_EXEC permission. 445 * 446 * If appropriate, check DAC only. If not appropriate, or 447 * short-cut DAC fails, then call permission() to do more 448 * complete permission check. 449 */ 450 static int exec_permission_lite(struct inode *inode) 451 { 452 umode_t mode = inode->i_mode; 453 454 if (inode->i_op && inode->i_op->permission) 455 return -EAGAIN; 456 457 if (current->fsuid == inode->i_uid) 458 mode >>= 6; 459 else if (in_group_p(inode->i_gid)) 460 mode >>= 3; 461 462 if (mode & MAY_EXEC) 463 goto ok; 464 465 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE)) 466 goto ok; 467 468 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE)) 469 goto ok; 470 471 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH)) 472 goto ok; 473 474 return -EACCES; 475 ok: 476 return security_inode_permission(inode, MAY_EXEC); 477 } 478 479 /* 480 * This is called when everything else fails, and we actually have 481 * to go to the low-level filesystem to find out what we should do.. 482 * 483 * We get the directory semaphore, and after getting that we also 484 * make sure that nobody added the entry to the dcache in the meantime.. 485 * SMP-safe 486 */ 487 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 488 { 489 struct dentry * result; 490 struct inode *dir = parent->d_inode; 491 492 mutex_lock(&dir->i_mutex); 493 /* 494 * First re-do the cached lookup just in case it was created 495 * while we waited for the directory semaphore.. 496 * 497 * FIXME! This could use version numbering or similar to 498 * avoid unnecessary cache lookups. 499 * 500 * The "dcache_lock" is purely to protect the RCU list walker 501 * from concurrent renames at this point (we mustn't get false 502 * negatives from the RCU list walk here, unlike the optimistic 503 * fast walk). 504 * 505 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup 506 */ 507 result = d_lookup(parent, name); 508 if (!result) { 509 struct dentry *dentry; 510 511 /* Don't create child dentry for a dead directory. */ 512 result = ERR_PTR(-ENOENT); 513 if (IS_DEADDIR(dir)) 514 goto out_unlock; 515 516 dentry = d_alloc(parent, name); 517 result = ERR_PTR(-ENOMEM); 518 if (dentry) { 519 result = dir->i_op->lookup(dir, dentry, nd); 520 if (result) 521 dput(dentry); 522 else 523 result = dentry; 524 } 525 out_unlock: 526 mutex_unlock(&dir->i_mutex); 527 return result; 528 } 529 530 /* 531 * Uhhuh! Nasty case: the cache was re-populated while 532 * we waited on the semaphore. Need to revalidate. 533 */ 534 mutex_unlock(&dir->i_mutex); 535 if (result->d_op && result->d_op->d_revalidate) { 536 result = do_revalidate(result, nd); 537 if (!result) 538 result = ERR_PTR(-ENOENT); 539 } 540 return result; 541 } 542 543 /* SMP-safe */ 544 static __always_inline void 545 walk_init_root(const char *name, struct nameidata *nd) 546 { 547 struct fs_struct *fs = current->fs; 548 549 read_lock(&fs->lock); 550 nd->path = fs->root; 551 path_get(&fs->root); 552 read_unlock(&fs->lock); 553 } 554 555 /* 556 * Wrapper to retry pathname resolution whenever the underlying 557 * file system returns an ESTALE. 558 * 559 * Retry the whole path once, forcing real lookup requests 560 * instead of relying on the dcache. 561 */ 562 static __always_inline int link_path_walk(const char *name, struct nameidata *nd) 563 { 564 struct path save = nd->path; 565 int result; 566 567 /* make sure the stuff we saved doesn't go away */ 568 path_get(&save); 569 570 result = __link_path_walk(name, nd); 571 if (result == -ESTALE) { 572 /* nd->path had been dropped */ 573 nd->path = save; 574 path_get(&nd->path); 575 nd->flags |= LOOKUP_REVAL; 576 result = __link_path_walk(name, nd); 577 } 578 579 path_put(&save); 580 581 return result; 582 } 583 584 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 585 { 586 int res = 0; 587 char *name; 588 if (IS_ERR(link)) 589 goto fail; 590 591 if (*link == '/') { 592 path_put(&nd->path); 593 walk_init_root(link, nd); 594 } 595 res = link_path_walk(link, nd); 596 if (nd->depth || res || nd->last_type!=LAST_NORM) 597 return res; 598 /* 599 * If it is an iterative symlinks resolution in open_namei() we 600 * have to copy the last component. And all that crap because of 601 * bloody create() on broken symlinks. Furrfu... 602 */ 603 name = __getname(); 604 if (unlikely(!name)) { 605 path_put(&nd->path); 606 return -ENOMEM; 607 } 608 strcpy(name, nd->last.name); 609 nd->last.name = name; 610 return 0; 611 fail: 612 path_put(&nd->path); 613 return PTR_ERR(link); 614 } 615 616 static void path_put_conditional(struct path *path, struct nameidata *nd) 617 { 618 dput(path->dentry); 619 if (path->mnt != nd->path.mnt) 620 mntput(path->mnt); 621 } 622 623 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 624 { 625 dput(nd->path.dentry); 626 if (nd->path.mnt != path->mnt) 627 mntput(nd->path.mnt); 628 nd->path.mnt = path->mnt; 629 nd->path.dentry = path->dentry; 630 } 631 632 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd) 633 { 634 int error; 635 void *cookie; 636 struct dentry *dentry = path->dentry; 637 638 touch_atime(path->mnt, dentry); 639 nd_set_link(nd, NULL); 640 641 if (path->mnt != nd->path.mnt) { 642 path_to_nameidata(path, nd); 643 dget(dentry); 644 } 645 mntget(path->mnt); 646 cookie = dentry->d_inode->i_op->follow_link(dentry, nd); 647 error = PTR_ERR(cookie); 648 if (!IS_ERR(cookie)) { 649 char *s = nd_get_link(nd); 650 error = 0; 651 if (s) 652 error = __vfs_follow_link(nd, s); 653 if (dentry->d_inode->i_op->put_link) 654 dentry->d_inode->i_op->put_link(dentry, nd, cookie); 655 } 656 path_put(path); 657 658 return error; 659 } 660 661 /* 662 * This limits recursive symlink follows to 8, while 663 * limiting consecutive symlinks to 40. 664 * 665 * Without that kind of total limit, nasty chains of consecutive 666 * symlinks can cause almost arbitrarily long lookups. 667 */ 668 static inline int do_follow_link(struct path *path, struct nameidata *nd) 669 { 670 int err = -ELOOP; 671 if (current->link_count >= MAX_NESTED_LINKS) 672 goto loop; 673 if (current->total_link_count >= 40) 674 goto loop; 675 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 676 cond_resched(); 677 err = security_inode_follow_link(path->dentry, nd); 678 if (err) 679 goto loop; 680 current->link_count++; 681 current->total_link_count++; 682 nd->depth++; 683 err = __do_follow_link(path, nd); 684 current->link_count--; 685 nd->depth--; 686 return err; 687 loop: 688 path_put_conditional(path, nd); 689 path_put(&nd->path); 690 return err; 691 } 692 693 int follow_up(struct vfsmount **mnt, struct dentry **dentry) 694 { 695 struct vfsmount *parent; 696 struct dentry *mountpoint; 697 spin_lock(&vfsmount_lock); 698 parent=(*mnt)->mnt_parent; 699 if (parent == *mnt) { 700 spin_unlock(&vfsmount_lock); 701 return 0; 702 } 703 mntget(parent); 704 mountpoint=dget((*mnt)->mnt_mountpoint); 705 spin_unlock(&vfsmount_lock); 706 dput(*dentry); 707 *dentry = mountpoint; 708 mntput(*mnt); 709 *mnt = parent; 710 return 1; 711 } 712 713 /* no need for dcache_lock, as serialization is taken care in 714 * namespace.c 715 */ 716 static int __follow_mount(struct path *path) 717 { 718 int res = 0; 719 while (d_mountpoint(path->dentry)) { 720 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry); 721 if (!mounted) 722 break; 723 dput(path->dentry); 724 if (res) 725 mntput(path->mnt); 726 path->mnt = mounted; 727 path->dentry = dget(mounted->mnt_root); 728 res = 1; 729 } 730 return res; 731 } 732 733 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry) 734 { 735 while (d_mountpoint(*dentry)) { 736 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry); 737 if (!mounted) 738 break; 739 dput(*dentry); 740 mntput(*mnt); 741 *mnt = mounted; 742 *dentry = dget(mounted->mnt_root); 743 } 744 } 745 746 /* no need for dcache_lock, as serialization is taken care in 747 * namespace.c 748 */ 749 int follow_down(struct vfsmount **mnt, struct dentry **dentry) 750 { 751 struct vfsmount *mounted; 752 753 mounted = lookup_mnt(*mnt, *dentry); 754 if (mounted) { 755 dput(*dentry); 756 mntput(*mnt); 757 *mnt = mounted; 758 *dentry = dget(mounted->mnt_root); 759 return 1; 760 } 761 return 0; 762 } 763 764 static __always_inline void follow_dotdot(struct nameidata *nd) 765 { 766 struct fs_struct *fs = current->fs; 767 768 while(1) { 769 struct vfsmount *parent; 770 struct dentry *old = nd->path.dentry; 771 772 read_lock(&fs->lock); 773 if (nd->path.dentry == fs->root.dentry && 774 nd->path.mnt == fs->root.mnt) { 775 read_unlock(&fs->lock); 776 break; 777 } 778 read_unlock(&fs->lock); 779 spin_lock(&dcache_lock); 780 if (nd->path.dentry != nd->path.mnt->mnt_root) { 781 nd->path.dentry = dget(nd->path.dentry->d_parent); 782 spin_unlock(&dcache_lock); 783 dput(old); 784 break; 785 } 786 spin_unlock(&dcache_lock); 787 spin_lock(&vfsmount_lock); 788 parent = nd->path.mnt->mnt_parent; 789 if (parent == nd->path.mnt) { 790 spin_unlock(&vfsmount_lock); 791 break; 792 } 793 mntget(parent); 794 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint); 795 spin_unlock(&vfsmount_lock); 796 dput(old); 797 mntput(nd->path.mnt); 798 nd->path.mnt = parent; 799 } 800 follow_mount(&nd->path.mnt, &nd->path.dentry); 801 } 802 803 /* 804 * It's more convoluted than I'd like it to be, but... it's still fairly 805 * small and for now I'd prefer to have fast path as straight as possible. 806 * It _is_ time-critical. 807 */ 808 static int do_lookup(struct nameidata *nd, struct qstr *name, 809 struct path *path) 810 { 811 struct vfsmount *mnt = nd->path.mnt; 812 struct dentry *dentry = __d_lookup(nd->path.dentry, name); 813 814 if (!dentry) 815 goto need_lookup; 816 if (dentry->d_op && dentry->d_op->d_revalidate) 817 goto need_revalidate; 818 done: 819 path->mnt = mnt; 820 path->dentry = dentry; 821 __follow_mount(path); 822 return 0; 823 824 need_lookup: 825 dentry = real_lookup(nd->path.dentry, name, nd); 826 if (IS_ERR(dentry)) 827 goto fail; 828 goto done; 829 830 need_revalidate: 831 dentry = do_revalidate(dentry, nd); 832 if (!dentry) 833 goto need_lookup; 834 if (IS_ERR(dentry)) 835 goto fail; 836 goto done; 837 838 fail: 839 return PTR_ERR(dentry); 840 } 841 842 /* 843 * Name resolution. 844 * This is the basic name resolution function, turning a pathname into 845 * the final dentry. We expect 'base' to be positive and a directory. 846 * 847 * Returns 0 and nd will have valid dentry and mnt on success. 848 * Returns error and drops reference to input namei data on failure. 849 */ 850 static int __link_path_walk(const char *name, struct nameidata *nd) 851 { 852 struct path next; 853 struct inode *inode; 854 int err; 855 unsigned int lookup_flags = nd->flags; 856 857 while (*name=='/') 858 name++; 859 if (!*name) 860 goto return_reval; 861 862 inode = nd->path.dentry->d_inode; 863 if (nd->depth) 864 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 865 866 /* At this point we know we have a real path component. */ 867 for(;;) { 868 unsigned long hash; 869 struct qstr this; 870 unsigned int c; 871 872 nd->flags |= LOOKUP_CONTINUE; 873 err = exec_permission_lite(inode); 874 if (err == -EAGAIN) 875 err = vfs_permission(nd, MAY_EXEC); 876 if (err) 877 break; 878 879 this.name = name; 880 c = *(const unsigned char *)name; 881 882 hash = init_name_hash(); 883 do { 884 name++; 885 hash = partial_name_hash(c, hash); 886 c = *(const unsigned char *)name; 887 } while (c && (c != '/')); 888 this.len = name - (const char *) this.name; 889 this.hash = end_name_hash(hash); 890 891 /* remove trailing slashes? */ 892 if (!c) 893 goto last_component; 894 while (*++name == '/'); 895 if (!*name) 896 goto last_with_slashes; 897 898 /* 899 * "." and ".." are special - ".." especially so because it has 900 * to be able to know about the current root directory and 901 * parent relationships. 902 */ 903 if (this.name[0] == '.') switch (this.len) { 904 default: 905 break; 906 case 2: 907 if (this.name[1] != '.') 908 break; 909 follow_dotdot(nd); 910 inode = nd->path.dentry->d_inode; 911 /* fallthrough */ 912 case 1: 913 continue; 914 } 915 /* 916 * See if the low-level filesystem might want 917 * to use its own hash.. 918 */ 919 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 920 err = nd->path.dentry->d_op->d_hash(nd->path.dentry, 921 &this); 922 if (err < 0) 923 break; 924 } 925 /* This does the actual lookups.. */ 926 err = do_lookup(nd, &this, &next); 927 if (err) 928 break; 929 930 err = -ENOENT; 931 inode = next.dentry->d_inode; 932 if (!inode) 933 goto out_dput; 934 err = -ENOTDIR; 935 if (!inode->i_op) 936 goto out_dput; 937 938 if (inode->i_op->follow_link) { 939 err = do_follow_link(&next, nd); 940 if (err) 941 goto return_err; 942 err = -ENOENT; 943 inode = nd->path.dentry->d_inode; 944 if (!inode) 945 break; 946 err = -ENOTDIR; 947 if (!inode->i_op) 948 break; 949 } else 950 path_to_nameidata(&next, nd); 951 err = -ENOTDIR; 952 if (!inode->i_op->lookup) 953 break; 954 continue; 955 /* here ends the main loop */ 956 957 last_with_slashes: 958 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 959 last_component: 960 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 961 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 962 if (lookup_flags & LOOKUP_PARENT) 963 goto lookup_parent; 964 if (this.name[0] == '.') switch (this.len) { 965 default: 966 break; 967 case 2: 968 if (this.name[1] != '.') 969 break; 970 follow_dotdot(nd); 971 inode = nd->path.dentry->d_inode; 972 /* fallthrough */ 973 case 1: 974 goto return_reval; 975 } 976 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 977 err = nd->path.dentry->d_op->d_hash(nd->path.dentry, 978 &this); 979 if (err < 0) 980 break; 981 } 982 err = do_lookup(nd, &this, &next); 983 if (err) 984 break; 985 inode = next.dentry->d_inode; 986 if ((lookup_flags & LOOKUP_FOLLOW) 987 && inode && inode->i_op && inode->i_op->follow_link) { 988 err = do_follow_link(&next, nd); 989 if (err) 990 goto return_err; 991 inode = nd->path.dentry->d_inode; 992 } else 993 path_to_nameidata(&next, nd); 994 err = -ENOENT; 995 if (!inode) 996 break; 997 if (lookup_flags & LOOKUP_DIRECTORY) { 998 err = -ENOTDIR; 999 if (!inode->i_op || !inode->i_op->lookup) 1000 break; 1001 } 1002 goto return_base; 1003 lookup_parent: 1004 nd->last = this; 1005 nd->last_type = LAST_NORM; 1006 if (this.name[0] != '.') 1007 goto return_base; 1008 if (this.len == 1) 1009 nd->last_type = LAST_DOT; 1010 else if (this.len == 2 && this.name[1] == '.') 1011 nd->last_type = LAST_DOTDOT; 1012 else 1013 goto return_base; 1014 return_reval: 1015 /* 1016 * We bypassed the ordinary revalidation routines. 1017 * We may need to check the cached dentry for staleness. 1018 */ 1019 if (nd->path.dentry && nd->path.dentry->d_sb && 1020 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 1021 err = -ESTALE; 1022 /* Note: we do not d_invalidate() */ 1023 if (!nd->path.dentry->d_op->d_revalidate( 1024 nd->path.dentry, nd)) 1025 break; 1026 } 1027 return_base: 1028 return 0; 1029 out_dput: 1030 path_put_conditional(&next, nd); 1031 break; 1032 } 1033 path_put(&nd->path); 1034 return_err: 1035 return err; 1036 } 1037 1038 static int path_walk(const char *name, struct nameidata *nd) 1039 { 1040 current->total_link_count = 0; 1041 return link_path_walk(name, nd); 1042 } 1043 1044 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1045 static int do_path_lookup(int dfd, const char *name, 1046 unsigned int flags, struct nameidata *nd) 1047 { 1048 int retval = 0; 1049 int fput_needed; 1050 struct file *file; 1051 struct fs_struct *fs = current->fs; 1052 1053 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1054 nd->flags = flags; 1055 nd->depth = 0; 1056 1057 if (*name=='/') { 1058 read_lock(&fs->lock); 1059 nd->path = fs->root; 1060 path_get(&fs->root); 1061 read_unlock(&fs->lock); 1062 } else if (dfd == AT_FDCWD) { 1063 read_lock(&fs->lock); 1064 nd->path = fs->pwd; 1065 path_get(&fs->pwd); 1066 read_unlock(&fs->lock); 1067 } else { 1068 struct dentry *dentry; 1069 1070 file = fget_light(dfd, &fput_needed); 1071 retval = -EBADF; 1072 if (!file) 1073 goto out_fail; 1074 1075 dentry = file->f_path.dentry; 1076 1077 retval = -ENOTDIR; 1078 if (!S_ISDIR(dentry->d_inode->i_mode)) 1079 goto fput_fail; 1080 1081 retval = file_permission(file, MAY_EXEC); 1082 if (retval) 1083 goto fput_fail; 1084 1085 nd->path = file->f_path; 1086 path_get(&file->f_path); 1087 1088 fput_light(file, fput_needed); 1089 } 1090 1091 retval = path_walk(name, nd); 1092 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1093 nd->path.dentry->d_inode)) 1094 audit_inode(name, nd->path.dentry); 1095 out_fail: 1096 return retval; 1097 1098 fput_fail: 1099 fput_light(file, fput_needed); 1100 goto out_fail; 1101 } 1102 1103 int path_lookup(const char *name, unsigned int flags, 1104 struct nameidata *nd) 1105 { 1106 return do_path_lookup(AT_FDCWD, name, flags, nd); 1107 } 1108 1109 /** 1110 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1111 * @dentry: pointer to dentry of the base directory 1112 * @mnt: pointer to vfs mount of the base directory 1113 * @name: pointer to file name 1114 * @flags: lookup flags 1115 * @nd: pointer to nameidata 1116 */ 1117 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1118 const char *name, unsigned int flags, 1119 struct nameidata *nd) 1120 { 1121 int retval; 1122 1123 /* same as do_path_lookup */ 1124 nd->last_type = LAST_ROOT; 1125 nd->flags = flags; 1126 nd->depth = 0; 1127 1128 nd->path.dentry = dentry; 1129 nd->path.mnt = mnt; 1130 path_get(&nd->path); 1131 1132 retval = path_walk(name, nd); 1133 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1134 nd->path.dentry->d_inode)) 1135 audit_inode(name, nd->path.dentry); 1136 1137 return retval; 1138 1139 } 1140 1141 static int __path_lookup_intent_open(int dfd, const char *name, 1142 unsigned int lookup_flags, struct nameidata *nd, 1143 int open_flags, int create_mode) 1144 { 1145 struct file *filp = get_empty_filp(); 1146 int err; 1147 1148 if (filp == NULL) 1149 return -ENFILE; 1150 nd->intent.open.file = filp; 1151 nd->intent.open.flags = open_flags; 1152 nd->intent.open.create_mode = create_mode; 1153 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd); 1154 if (IS_ERR(nd->intent.open.file)) { 1155 if (err == 0) { 1156 err = PTR_ERR(nd->intent.open.file); 1157 path_put(&nd->path); 1158 } 1159 } else if (err != 0) 1160 release_open_intent(nd); 1161 return err; 1162 } 1163 1164 /** 1165 * path_lookup_open - lookup a file path with open intent 1166 * @dfd: the directory to use as base, or AT_FDCWD 1167 * @name: pointer to file name 1168 * @lookup_flags: lookup intent flags 1169 * @nd: pointer to nameidata 1170 * @open_flags: open intent flags 1171 */ 1172 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags, 1173 struct nameidata *nd, int open_flags) 1174 { 1175 return __path_lookup_intent_open(dfd, name, lookup_flags, nd, 1176 open_flags, 0); 1177 } 1178 1179 /** 1180 * path_lookup_create - lookup a file path with open + create intent 1181 * @dfd: the directory to use as base, or AT_FDCWD 1182 * @name: pointer to file name 1183 * @lookup_flags: lookup intent flags 1184 * @nd: pointer to nameidata 1185 * @open_flags: open intent flags 1186 * @create_mode: create intent flags 1187 */ 1188 static int path_lookup_create(int dfd, const char *name, 1189 unsigned int lookup_flags, struct nameidata *nd, 1190 int open_flags, int create_mode) 1191 { 1192 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE, 1193 nd, open_flags, create_mode); 1194 } 1195 1196 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags, 1197 struct nameidata *nd, int open_flags) 1198 { 1199 char *tmp = getname(name); 1200 int err = PTR_ERR(tmp); 1201 1202 if (!IS_ERR(tmp)) { 1203 err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0); 1204 putname(tmp); 1205 } 1206 return err; 1207 } 1208 1209 static struct dentry *__lookup_hash(struct qstr *name, 1210 struct dentry *base, struct nameidata *nd) 1211 { 1212 struct dentry *dentry; 1213 struct inode *inode; 1214 int err; 1215 1216 inode = base->d_inode; 1217 1218 /* 1219 * See if the low-level filesystem might want 1220 * to use its own hash.. 1221 */ 1222 if (base->d_op && base->d_op->d_hash) { 1223 err = base->d_op->d_hash(base, name); 1224 dentry = ERR_PTR(err); 1225 if (err < 0) 1226 goto out; 1227 } 1228 1229 dentry = cached_lookup(base, name, nd); 1230 if (!dentry) { 1231 struct dentry *new; 1232 1233 /* Don't create child dentry for a dead directory. */ 1234 dentry = ERR_PTR(-ENOENT); 1235 if (IS_DEADDIR(inode)) 1236 goto out; 1237 1238 new = d_alloc(base, name); 1239 dentry = ERR_PTR(-ENOMEM); 1240 if (!new) 1241 goto out; 1242 dentry = inode->i_op->lookup(inode, new, nd); 1243 if (!dentry) 1244 dentry = new; 1245 else 1246 dput(new); 1247 } 1248 out: 1249 return dentry; 1250 } 1251 1252 /* 1253 * Restricted form of lookup. Doesn't follow links, single-component only, 1254 * needs parent already locked. Doesn't follow mounts. 1255 * SMP-safe. 1256 */ 1257 static struct dentry *lookup_hash(struct nameidata *nd) 1258 { 1259 int err; 1260 1261 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC); 1262 if (err) 1263 return ERR_PTR(err); 1264 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1265 } 1266 1267 static int __lookup_one_len(const char *name, struct qstr *this, 1268 struct dentry *base, int len) 1269 { 1270 unsigned long hash; 1271 unsigned int c; 1272 1273 this->name = name; 1274 this->len = len; 1275 if (!len) 1276 return -EACCES; 1277 1278 hash = init_name_hash(); 1279 while (len--) { 1280 c = *(const unsigned char *)name++; 1281 if (c == '/' || c == '\0') 1282 return -EACCES; 1283 hash = partial_name_hash(c, hash); 1284 } 1285 this->hash = end_name_hash(hash); 1286 return 0; 1287 } 1288 1289 /** 1290 * lookup_one_len - filesystem helper to lookup single pathname component 1291 * @name: pathname component to lookup 1292 * @base: base directory to lookup from 1293 * @len: maximum length @len should be interpreted to 1294 * 1295 * Note that this routine is purely a helper for filesystem usage and should 1296 * not be called by generic code. Also note that by using this function the 1297 * nameidata argument is passed to the filesystem methods and a filesystem 1298 * using this helper needs to be prepared for that. 1299 */ 1300 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1301 { 1302 int err; 1303 struct qstr this; 1304 1305 err = __lookup_one_len(name, &this, base, len); 1306 if (err) 1307 return ERR_PTR(err); 1308 1309 err = inode_permission(base->d_inode, MAY_EXEC); 1310 if (err) 1311 return ERR_PTR(err); 1312 return __lookup_hash(&this, base, NULL); 1313 } 1314 1315 /** 1316 * lookup_one_noperm - bad hack for sysfs 1317 * @name: pathname component to lookup 1318 * @base: base directory to lookup from 1319 * 1320 * This is a variant of lookup_one_len that doesn't perform any permission 1321 * checks. It's a horrible hack to work around the braindead sysfs 1322 * architecture and should not be used anywhere else. 1323 * 1324 * DON'T USE THIS FUNCTION EVER, thanks. 1325 */ 1326 struct dentry *lookup_one_noperm(const char *name, struct dentry *base) 1327 { 1328 int err; 1329 struct qstr this; 1330 1331 err = __lookup_one_len(name, &this, base, strlen(name)); 1332 if (err) 1333 return ERR_PTR(err); 1334 return __lookup_hash(&this, base, NULL); 1335 } 1336 1337 int __user_walk_fd(int dfd, const char __user *name, unsigned flags, 1338 struct nameidata *nd) 1339 { 1340 char *tmp = getname(name); 1341 int err = PTR_ERR(tmp); 1342 1343 if (!IS_ERR(tmp)) { 1344 err = do_path_lookup(dfd, tmp, flags, nd); 1345 putname(tmp); 1346 } 1347 return err; 1348 } 1349 1350 int __user_walk(const char __user *name, unsigned flags, struct nameidata *nd) 1351 { 1352 return __user_walk_fd(AT_FDCWD, name, flags, nd); 1353 } 1354 1355 /* 1356 * It's inline, so penalty for filesystems that don't use sticky bit is 1357 * minimal. 1358 */ 1359 static inline int check_sticky(struct inode *dir, struct inode *inode) 1360 { 1361 if (!(dir->i_mode & S_ISVTX)) 1362 return 0; 1363 if (inode->i_uid == current->fsuid) 1364 return 0; 1365 if (dir->i_uid == current->fsuid) 1366 return 0; 1367 return !capable(CAP_FOWNER); 1368 } 1369 1370 /* 1371 * Check whether we can remove a link victim from directory dir, check 1372 * whether the type of victim is right. 1373 * 1. We can't do it if dir is read-only (done in permission()) 1374 * 2. We should have write and exec permissions on dir 1375 * 3. We can't remove anything from append-only dir 1376 * 4. We can't do anything with immutable dir (done in permission()) 1377 * 5. If the sticky bit on dir is set we should either 1378 * a. be owner of dir, or 1379 * b. be owner of victim, or 1380 * c. have CAP_FOWNER capability 1381 * 6. If the victim is append-only or immutable we can't do antyhing with 1382 * links pointing to it. 1383 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1384 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1385 * 9. We can't remove a root or mountpoint. 1386 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1387 * nfs_async_unlink(). 1388 */ 1389 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1390 { 1391 int error; 1392 1393 if (!victim->d_inode) 1394 return -ENOENT; 1395 1396 BUG_ON(victim->d_parent->d_inode != dir); 1397 audit_inode_child(victim->d_name.name, victim, dir); 1398 1399 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1400 if (error) 1401 return error; 1402 if (IS_APPEND(dir)) 1403 return -EPERM; 1404 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1405 IS_IMMUTABLE(victim->d_inode)) 1406 return -EPERM; 1407 if (isdir) { 1408 if (!S_ISDIR(victim->d_inode->i_mode)) 1409 return -ENOTDIR; 1410 if (IS_ROOT(victim)) 1411 return -EBUSY; 1412 } else if (S_ISDIR(victim->d_inode->i_mode)) 1413 return -EISDIR; 1414 if (IS_DEADDIR(dir)) 1415 return -ENOENT; 1416 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1417 return -EBUSY; 1418 return 0; 1419 } 1420 1421 /* Check whether we can create an object with dentry child in directory 1422 * dir. 1423 * 1. We can't do it if child already exists (open has special treatment for 1424 * this case, but since we are inlined it's OK) 1425 * 2. We can't do it if dir is read-only (done in permission()) 1426 * 3. We should have write and exec permissions on dir 1427 * 4. We can't do it if dir is immutable (done in permission()) 1428 */ 1429 static inline int may_create(struct inode *dir, struct dentry *child, 1430 struct nameidata *nd) 1431 { 1432 if (child->d_inode) 1433 return -EEXIST; 1434 if (IS_DEADDIR(dir)) 1435 return -ENOENT; 1436 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1437 } 1438 1439 /* 1440 * O_DIRECTORY translates into forcing a directory lookup. 1441 */ 1442 static inline int lookup_flags(unsigned int f) 1443 { 1444 unsigned long retval = LOOKUP_FOLLOW; 1445 1446 if (f & O_NOFOLLOW) 1447 retval &= ~LOOKUP_FOLLOW; 1448 1449 if (f & O_DIRECTORY) 1450 retval |= LOOKUP_DIRECTORY; 1451 1452 return retval; 1453 } 1454 1455 /* 1456 * p1 and p2 should be directories on the same fs. 1457 */ 1458 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1459 { 1460 struct dentry *p; 1461 1462 if (p1 == p2) { 1463 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1464 return NULL; 1465 } 1466 1467 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1468 1469 for (p = p1; p->d_parent != p; p = p->d_parent) { 1470 if (p->d_parent == p2) { 1471 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1472 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1473 return p; 1474 } 1475 } 1476 1477 for (p = p2; p->d_parent != p; p = p->d_parent) { 1478 if (p->d_parent == p1) { 1479 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1480 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1481 return p; 1482 } 1483 } 1484 1485 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1486 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1487 return NULL; 1488 } 1489 1490 void unlock_rename(struct dentry *p1, struct dentry *p2) 1491 { 1492 mutex_unlock(&p1->d_inode->i_mutex); 1493 if (p1 != p2) { 1494 mutex_unlock(&p2->d_inode->i_mutex); 1495 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1496 } 1497 } 1498 1499 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1500 struct nameidata *nd) 1501 { 1502 int error = may_create(dir, dentry, nd); 1503 1504 if (error) 1505 return error; 1506 1507 if (!dir->i_op || !dir->i_op->create) 1508 return -EACCES; /* shouldn't it be ENOSYS? */ 1509 mode &= S_IALLUGO; 1510 mode |= S_IFREG; 1511 error = security_inode_create(dir, dentry, mode); 1512 if (error) 1513 return error; 1514 DQUOT_INIT(dir); 1515 error = dir->i_op->create(dir, dentry, mode, nd); 1516 if (!error) 1517 fsnotify_create(dir, dentry); 1518 return error; 1519 } 1520 1521 int may_open(struct nameidata *nd, int acc_mode, int flag) 1522 { 1523 struct dentry *dentry = nd->path.dentry; 1524 struct inode *inode = dentry->d_inode; 1525 int error; 1526 1527 if (!inode) 1528 return -ENOENT; 1529 1530 if (S_ISLNK(inode->i_mode)) 1531 return -ELOOP; 1532 1533 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE)) 1534 return -EISDIR; 1535 1536 /* 1537 * FIFO's, sockets and device files are special: they don't 1538 * actually live on the filesystem itself, and as such you 1539 * can write to them even if the filesystem is read-only. 1540 */ 1541 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 1542 flag &= ~O_TRUNC; 1543 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) { 1544 if (nd->path.mnt->mnt_flags & MNT_NODEV) 1545 return -EACCES; 1546 1547 flag &= ~O_TRUNC; 1548 } 1549 1550 error = vfs_permission(nd, acc_mode); 1551 if (error) 1552 return error; 1553 /* 1554 * An append-only file must be opened in append mode for writing. 1555 */ 1556 if (IS_APPEND(inode)) { 1557 if ((flag & FMODE_WRITE) && !(flag & O_APPEND)) 1558 return -EPERM; 1559 if (flag & O_TRUNC) 1560 return -EPERM; 1561 } 1562 1563 /* O_NOATIME can only be set by the owner or superuser */ 1564 if (flag & O_NOATIME) 1565 if (!is_owner_or_cap(inode)) 1566 return -EPERM; 1567 1568 /* 1569 * Ensure there are no outstanding leases on the file. 1570 */ 1571 error = break_lease(inode, flag); 1572 if (error) 1573 return error; 1574 1575 if (flag & O_TRUNC) { 1576 error = get_write_access(inode); 1577 if (error) 1578 return error; 1579 1580 /* 1581 * Refuse to truncate files with mandatory locks held on them. 1582 */ 1583 error = locks_verify_locked(inode); 1584 if (!error) { 1585 DQUOT_INIT(inode); 1586 1587 error = do_truncate(dentry, 0, 1588 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 1589 NULL); 1590 } 1591 put_write_access(inode); 1592 if (error) 1593 return error; 1594 } else 1595 if (flag & FMODE_WRITE) 1596 DQUOT_INIT(inode); 1597 1598 return 0; 1599 } 1600 1601 /* 1602 * Be careful about ever adding any more callers of this 1603 * function. Its flags must be in the namei format, not 1604 * what get passed to sys_open(). 1605 */ 1606 static int __open_namei_create(struct nameidata *nd, struct path *path, 1607 int flag, int mode) 1608 { 1609 int error; 1610 struct dentry *dir = nd->path.dentry; 1611 1612 if (!IS_POSIXACL(dir->d_inode)) 1613 mode &= ~current->fs->umask; 1614 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 1615 mutex_unlock(&dir->d_inode->i_mutex); 1616 dput(nd->path.dentry); 1617 nd->path.dentry = path->dentry; 1618 if (error) 1619 return error; 1620 /* Don't check for write permission, don't truncate */ 1621 return may_open(nd, 0, flag & ~O_TRUNC); 1622 } 1623 1624 /* 1625 * Note that while the flag value (low two bits) for sys_open means: 1626 * 00 - read-only 1627 * 01 - write-only 1628 * 10 - read-write 1629 * 11 - special 1630 * it is changed into 1631 * 00 - no permissions needed 1632 * 01 - read-permission 1633 * 10 - write-permission 1634 * 11 - read-write 1635 * for the internal routines (ie open_namei()/follow_link() etc) 1636 * This is more logical, and also allows the 00 "no perm needed" 1637 * to be used for symlinks (where the permissions are checked 1638 * later). 1639 * 1640 */ 1641 static inline int open_to_namei_flags(int flag) 1642 { 1643 if ((flag+1) & O_ACCMODE) 1644 flag++; 1645 return flag; 1646 } 1647 1648 static int open_will_write_to_fs(int flag, struct inode *inode) 1649 { 1650 /* 1651 * We'll never write to the fs underlying 1652 * a device file. 1653 */ 1654 if (special_file(inode->i_mode)) 1655 return 0; 1656 return (flag & O_TRUNC); 1657 } 1658 1659 /* 1660 * Note that the low bits of the passed in "open_flag" 1661 * are not the same as in the local variable "flag". See 1662 * open_to_namei_flags() for more details. 1663 */ 1664 struct file *do_filp_open(int dfd, const char *pathname, 1665 int open_flag, int mode) 1666 { 1667 struct file *filp; 1668 struct nameidata nd; 1669 int acc_mode, error; 1670 struct path path; 1671 struct dentry *dir; 1672 int count = 0; 1673 int will_write; 1674 int flag = open_to_namei_flags(open_flag); 1675 1676 acc_mode = MAY_OPEN | ACC_MODE(flag); 1677 1678 /* O_TRUNC implies we need access checks for write permissions */ 1679 if (flag & O_TRUNC) 1680 acc_mode |= MAY_WRITE; 1681 1682 /* Allow the LSM permission hook to distinguish append 1683 access from general write access. */ 1684 if (flag & O_APPEND) 1685 acc_mode |= MAY_APPEND; 1686 1687 /* 1688 * The simplest case - just a plain lookup. 1689 */ 1690 if (!(flag & O_CREAT)) { 1691 error = path_lookup_open(dfd, pathname, lookup_flags(flag), 1692 &nd, flag); 1693 if (error) 1694 return ERR_PTR(error); 1695 goto ok; 1696 } 1697 1698 /* 1699 * Create - we need to know the parent. 1700 */ 1701 error = path_lookup_create(dfd, pathname, LOOKUP_PARENT, 1702 &nd, flag, mode); 1703 if (error) 1704 return ERR_PTR(error); 1705 1706 /* 1707 * We have the parent and last component. First of all, check 1708 * that we are not asked to creat(2) an obvious directory - that 1709 * will not do. 1710 */ 1711 error = -EISDIR; 1712 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len]) 1713 goto exit; 1714 1715 dir = nd.path.dentry; 1716 nd.flags &= ~LOOKUP_PARENT; 1717 mutex_lock(&dir->d_inode->i_mutex); 1718 path.dentry = lookup_hash(&nd); 1719 path.mnt = nd.path.mnt; 1720 1721 do_last: 1722 error = PTR_ERR(path.dentry); 1723 if (IS_ERR(path.dentry)) { 1724 mutex_unlock(&dir->d_inode->i_mutex); 1725 goto exit; 1726 } 1727 1728 if (IS_ERR(nd.intent.open.file)) { 1729 error = PTR_ERR(nd.intent.open.file); 1730 goto exit_mutex_unlock; 1731 } 1732 1733 /* Negative dentry, just create the file */ 1734 if (!path.dentry->d_inode) { 1735 /* 1736 * This write is needed to ensure that a 1737 * ro->rw transition does not occur between 1738 * the time when the file is created and when 1739 * a permanent write count is taken through 1740 * the 'struct file' in nameidata_to_filp(). 1741 */ 1742 error = mnt_want_write(nd.path.mnt); 1743 if (error) 1744 goto exit_mutex_unlock; 1745 error = __open_namei_create(&nd, &path, flag, mode); 1746 if (error) { 1747 mnt_drop_write(nd.path.mnt); 1748 goto exit; 1749 } 1750 filp = nameidata_to_filp(&nd, open_flag); 1751 mnt_drop_write(nd.path.mnt); 1752 return filp; 1753 } 1754 1755 /* 1756 * It already exists. 1757 */ 1758 mutex_unlock(&dir->d_inode->i_mutex); 1759 audit_inode(pathname, path.dentry); 1760 1761 error = -EEXIST; 1762 if (flag & O_EXCL) 1763 goto exit_dput; 1764 1765 if (__follow_mount(&path)) { 1766 error = -ELOOP; 1767 if (flag & O_NOFOLLOW) 1768 goto exit_dput; 1769 } 1770 1771 error = -ENOENT; 1772 if (!path.dentry->d_inode) 1773 goto exit_dput; 1774 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link) 1775 goto do_link; 1776 1777 path_to_nameidata(&path, &nd); 1778 error = -EISDIR; 1779 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode)) 1780 goto exit; 1781 ok: 1782 /* 1783 * Consider: 1784 * 1. may_open() truncates a file 1785 * 2. a rw->ro mount transition occurs 1786 * 3. nameidata_to_filp() fails due to 1787 * the ro mount. 1788 * That would be inconsistent, and should 1789 * be avoided. Taking this mnt write here 1790 * ensures that (2) can not occur. 1791 */ 1792 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode); 1793 if (will_write) { 1794 error = mnt_want_write(nd.path.mnt); 1795 if (error) 1796 goto exit; 1797 } 1798 error = may_open(&nd, acc_mode, flag); 1799 if (error) { 1800 if (will_write) 1801 mnt_drop_write(nd.path.mnt); 1802 goto exit; 1803 } 1804 filp = nameidata_to_filp(&nd, open_flag); 1805 /* 1806 * It is now safe to drop the mnt write 1807 * because the filp has had a write taken 1808 * on its behalf. 1809 */ 1810 if (will_write) 1811 mnt_drop_write(nd.path.mnt); 1812 return filp; 1813 1814 exit_mutex_unlock: 1815 mutex_unlock(&dir->d_inode->i_mutex); 1816 exit_dput: 1817 path_put_conditional(&path, &nd); 1818 exit: 1819 if (!IS_ERR(nd.intent.open.file)) 1820 release_open_intent(&nd); 1821 path_put(&nd.path); 1822 return ERR_PTR(error); 1823 1824 do_link: 1825 error = -ELOOP; 1826 if (flag & O_NOFOLLOW) 1827 goto exit_dput; 1828 /* 1829 * This is subtle. Instead of calling do_follow_link() we do the 1830 * thing by hands. The reason is that this way we have zero link_count 1831 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT. 1832 * After that we have the parent and last component, i.e. 1833 * we are in the same situation as after the first path_walk(). 1834 * Well, almost - if the last component is normal we get its copy 1835 * stored in nd->last.name and we will have to putname() it when we 1836 * are done. Procfs-like symlinks just set LAST_BIND. 1837 */ 1838 nd.flags |= LOOKUP_PARENT; 1839 error = security_inode_follow_link(path.dentry, &nd); 1840 if (error) 1841 goto exit_dput; 1842 error = __do_follow_link(&path, &nd); 1843 if (error) { 1844 /* Does someone understand code flow here? Or it is only 1845 * me so stupid? Anathema to whoever designed this non-sense 1846 * with "intent.open". 1847 */ 1848 release_open_intent(&nd); 1849 return ERR_PTR(error); 1850 } 1851 nd.flags &= ~LOOKUP_PARENT; 1852 if (nd.last_type == LAST_BIND) 1853 goto ok; 1854 error = -EISDIR; 1855 if (nd.last_type != LAST_NORM) 1856 goto exit; 1857 if (nd.last.name[nd.last.len]) { 1858 __putname(nd.last.name); 1859 goto exit; 1860 } 1861 error = -ELOOP; 1862 if (count++==32) { 1863 __putname(nd.last.name); 1864 goto exit; 1865 } 1866 dir = nd.path.dentry; 1867 mutex_lock(&dir->d_inode->i_mutex); 1868 path.dentry = lookup_hash(&nd); 1869 path.mnt = nd.path.mnt; 1870 __putname(nd.last.name); 1871 goto do_last; 1872 } 1873 1874 /** 1875 * filp_open - open file and return file pointer 1876 * 1877 * @filename: path to open 1878 * @flags: open flags as per the open(2) second argument 1879 * @mode: mode for the new file if O_CREAT is set, else ignored 1880 * 1881 * This is the helper to open a file from kernelspace if you really 1882 * have to. But in generally you should not do this, so please move 1883 * along, nothing to see here.. 1884 */ 1885 struct file *filp_open(const char *filename, int flags, int mode) 1886 { 1887 return do_filp_open(AT_FDCWD, filename, flags, mode); 1888 } 1889 EXPORT_SYMBOL(filp_open); 1890 1891 /** 1892 * lookup_create - lookup a dentry, creating it if it doesn't exist 1893 * @nd: nameidata info 1894 * @is_dir: directory flag 1895 * 1896 * Simple function to lookup and return a dentry and create it 1897 * if it doesn't exist. Is SMP-safe. 1898 * 1899 * Returns with nd->path.dentry->d_inode->i_mutex locked. 1900 */ 1901 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1902 { 1903 struct dentry *dentry = ERR_PTR(-EEXIST); 1904 1905 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1906 /* 1907 * Yucky last component or no last component at all? 1908 * (foo/., foo/.., /////) 1909 */ 1910 if (nd->last_type != LAST_NORM) 1911 goto fail; 1912 nd->flags &= ~LOOKUP_PARENT; 1913 nd->flags |= LOOKUP_CREATE; 1914 nd->intent.open.flags = O_EXCL; 1915 1916 /* 1917 * Do the final lookup. 1918 */ 1919 dentry = lookup_hash(nd); 1920 if (IS_ERR(dentry)) 1921 goto fail; 1922 1923 if (dentry->d_inode) 1924 goto eexist; 1925 /* 1926 * Special case - lookup gave negative, but... we had foo/bar/ 1927 * From the vfs_mknod() POV we just have a negative dentry - 1928 * all is fine. Let's be bastards - you had / on the end, you've 1929 * been asking for (non-existent) directory. -ENOENT for you. 1930 */ 1931 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 1932 dput(dentry); 1933 dentry = ERR_PTR(-ENOENT); 1934 } 1935 return dentry; 1936 eexist: 1937 dput(dentry); 1938 dentry = ERR_PTR(-EEXIST); 1939 fail: 1940 return dentry; 1941 } 1942 EXPORT_SYMBOL_GPL(lookup_create); 1943 1944 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1945 { 1946 int error = may_create(dir, dentry, NULL); 1947 1948 if (error) 1949 return error; 1950 1951 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1952 return -EPERM; 1953 1954 if (!dir->i_op || !dir->i_op->mknod) 1955 return -EPERM; 1956 1957 error = devcgroup_inode_mknod(mode, dev); 1958 if (error) 1959 return error; 1960 1961 error = security_inode_mknod(dir, dentry, mode, dev); 1962 if (error) 1963 return error; 1964 1965 DQUOT_INIT(dir); 1966 error = dir->i_op->mknod(dir, dentry, mode, dev); 1967 if (!error) 1968 fsnotify_create(dir, dentry); 1969 return error; 1970 } 1971 1972 static int may_mknod(mode_t mode) 1973 { 1974 switch (mode & S_IFMT) { 1975 case S_IFREG: 1976 case S_IFCHR: 1977 case S_IFBLK: 1978 case S_IFIFO: 1979 case S_IFSOCK: 1980 case 0: /* zero mode translates to S_IFREG */ 1981 return 0; 1982 case S_IFDIR: 1983 return -EPERM; 1984 default: 1985 return -EINVAL; 1986 } 1987 } 1988 1989 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode, 1990 unsigned dev) 1991 { 1992 int error = 0; 1993 char * tmp; 1994 struct dentry * dentry; 1995 struct nameidata nd; 1996 1997 if (S_ISDIR(mode)) 1998 return -EPERM; 1999 tmp = getname(filename); 2000 if (IS_ERR(tmp)) 2001 return PTR_ERR(tmp); 2002 2003 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd); 2004 if (error) 2005 goto out; 2006 dentry = lookup_create(&nd, 0); 2007 if (IS_ERR(dentry)) { 2008 error = PTR_ERR(dentry); 2009 goto out_unlock; 2010 } 2011 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2012 mode &= ~current->fs->umask; 2013 error = may_mknod(mode); 2014 if (error) 2015 goto out_dput; 2016 error = mnt_want_write(nd.path.mnt); 2017 if (error) 2018 goto out_dput; 2019 switch (mode & S_IFMT) { 2020 case 0: case S_IFREG: 2021 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2022 break; 2023 case S_IFCHR: case S_IFBLK: 2024 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2025 new_decode_dev(dev)); 2026 break; 2027 case S_IFIFO: case S_IFSOCK: 2028 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2029 break; 2030 } 2031 mnt_drop_write(nd.path.mnt); 2032 out_dput: 2033 dput(dentry); 2034 out_unlock: 2035 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2036 path_put(&nd.path); 2037 out: 2038 putname(tmp); 2039 2040 return error; 2041 } 2042 2043 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev) 2044 { 2045 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2046 } 2047 2048 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2049 { 2050 int error = may_create(dir, dentry, NULL); 2051 2052 if (error) 2053 return error; 2054 2055 if (!dir->i_op || !dir->i_op->mkdir) 2056 return -EPERM; 2057 2058 mode &= (S_IRWXUGO|S_ISVTX); 2059 error = security_inode_mkdir(dir, dentry, mode); 2060 if (error) 2061 return error; 2062 2063 DQUOT_INIT(dir); 2064 error = dir->i_op->mkdir(dir, dentry, mode); 2065 if (!error) 2066 fsnotify_mkdir(dir, dentry); 2067 return error; 2068 } 2069 2070 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode) 2071 { 2072 int error = 0; 2073 char * tmp; 2074 struct dentry *dentry; 2075 struct nameidata nd; 2076 2077 tmp = getname(pathname); 2078 error = PTR_ERR(tmp); 2079 if (IS_ERR(tmp)) 2080 goto out_err; 2081 2082 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd); 2083 if (error) 2084 goto out; 2085 dentry = lookup_create(&nd, 1); 2086 error = PTR_ERR(dentry); 2087 if (IS_ERR(dentry)) 2088 goto out_unlock; 2089 2090 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2091 mode &= ~current->fs->umask; 2092 error = mnt_want_write(nd.path.mnt); 2093 if (error) 2094 goto out_dput; 2095 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2096 mnt_drop_write(nd.path.mnt); 2097 out_dput: 2098 dput(dentry); 2099 out_unlock: 2100 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2101 path_put(&nd.path); 2102 out: 2103 putname(tmp); 2104 out_err: 2105 return error; 2106 } 2107 2108 asmlinkage long sys_mkdir(const char __user *pathname, int mode) 2109 { 2110 return sys_mkdirat(AT_FDCWD, pathname, mode); 2111 } 2112 2113 /* 2114 * We try to drop the dentry early: we should have 2115 * a usage count of 2 if we're the only user of this 2116 * dentry, and if that is true (possibly after pruning 2117 * the dcache), then we drop the dentry now. 2118 * 2119 * A low-level filesystem can, if it choses, legally 2120 * do a 2121 * 2122 * if (!d_unhashed(dentry)) 2123 * return -EBUSY; 2124 * 2125 * if it cannot handle the case of removing a directory 2126 * that is still in use by something else.. 2127 */ 2128 void dentry_unhash(struct dentry *dentry) 2129 { 2130 dget(dentry); 2131 shrink_dcache_parent(dentry); 2132 spin_lock(&dcache_lock); 2133 spin_lock(&dentry->d_lock); 2134 if (atomic_read(&dentry->d_count) == 2) 2135 __d_drop(dentry); 2136 spin_unlock(&dentry->d_lock); 2137 spin_unlock(&dcache_lock); 2138 } 2139 2140 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2141 { 2142 int error = may_delete(dir, dentry, 1); 2143 2144 if (error) 2145 return error; 2146 2147 if (!dir->i_op || !dir->i_op->rmdir) 2148 return -EPERM; 2149 2150 DQUOT_INIT(dir); 2151 2152 mutex_lock(&dentry->d_inode->i_mutex); 2153 dentry_unhash(dentry); 2154 if (d_mountpoint(dentry)) 2155 error = -EBUSY; 2156 else { 2157 error = security_inode_rmdir(dir, dentry); 2158 if (!error) { 2159 error = dir->i_op->rmdir(dir, dentry); 2160 if (!error) 2161 dentry->d_inode->i_flags |= S_DEAD; 2162 } 2163 } 2164 mutex_unlock(&dentry->d_inode->i_mutex); 2165 if (!error) { 2166 d_delete(dentry); 2167 } 2168 dput(dentry); 2169 2170 return error; 2171 } 2172 2173 static long do_rmdir(int dfd, const char __user *pathname) 2174 { 2175 int error = 0; 2176 char * name; 2177 struct dentry *dentry; 2178 struct nameidata nd; 2179 2180 name = getname(pathname); 2181 if(IS_ERR(name)) 2182 return PTR_ERR(name); 2183 2184 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd); 2185 if (error) 2186 goto exit; 2187 2188 switch(nd.last_type) { 2189 case LAST_DOTDOT: 2190 error = -ENOTEMPTY; 2191 goto exit1; 2192 case LAST_DOT: 2193 error = -EINVAL; 2194 goto exit1; 2195 case LAST_ROOT: 2196 error = -EBUSY; 2197 goto exit1; 2198 } 2199 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2200 dentry = lookup_hash(&nd); 2201 error = PTR_ERR(dentry); 2202 if (IS_ERR(dentry)) 2203 goto exit2; 2204 error = mnt_want_write(nd.path.mnt); 2205 if (error) 2206 goto exit3; 2207 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2208 mnt_drop_write(nd.path.mnt); 2209 exit3: 2210 dput(dentry); 2211 exit2: 2212 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2213 exit1: 2214 path_put(&nd.path); 2215 exit: 2216 putname(name); 2217 return error; 2218 } 2219 2220 asmlinkage long sys_rmdir(const char __user *pathname) 2221 { 2222 return do_rmdir(AT_FDCWD, pathname); 2223 } 2224 2225 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2226 { 2227 int error = may_delete(dir, dentry, 0); 2228 2229 if (error) 2230 return error; 2231 2232 if (!dir->i_op || !dir->i_op->unlink) 2233 return -EPERM; 2234 2235 DQUOT_INIT(dir); 2236 2237 mutex_lock(&dentry->d_inode->i_mutex); 2238 if (d_mountpoint(dentry)) 2239 error = -EBUSY; 2240 else { 2241 error = security_inode_unlink(dir, dentry); 2242 if (!error) 2243 error = dir->i_op->unlink(dir, dentry); 2244 } 2245 mutex_unlock(&dentry->d_inode->i_mutex); 2246 2247 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2248 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2249 fsnotify_link_count(dentry->d_inode); 2250 d_delete(dentry); 2251 } 2252 2253 return error; 2254 } 2255 2256 /* 2257 * Make sure that the actual truncation of the file will occur outside its 2258 * directory's i_mutex. Truncate can take a long time if there is a lot of 2259 * writeout happening, and we don't want to prevent access to the directory 2260 * while waiting on the I/O. 2261 */ 2262 static long do_unlinkat(int dfd, const char __user *pathname) 2263 { 2264 int error = 0; 2265 char * name; 2266 struct dentry *dentry; 2267 struct nameidata nd; 2268 struct inode *inode = NULL; 2269 2270 name = getname(pathname); 2271 if(IS_ERR(name)) 2272 return PTR_ERR(name); 2273 2274 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd); 2275 if (error) 2276 goto exit; 2277 error = -EISDIR; 2278 if (nd.last_type != LAST_NORM) 2279 goto exit1; 2280 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2281 dentry = lookup_hash(&nd); 2282 error = PTR_ERR(dentry); 2283 if (!IS_ERR(dentry)) { 2284 /* Why not before? Because we want correct error value */ 2285 if (nd.last.name[nd.last.len]) 2286 goto slashes; 2287 inode = dentry->d_inode; 2288 if (inode) 2289 atomic_inc(&inode->i_count); 2290 error = mnt_want_write(nd.path.mnt); 2291 if (error) 2292 goto exit2; 2293 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2294 mnt_drop_write(nd.path.mnt); 2295 exit2: 2296 dput(dentry); 2297 } 2298 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2299 if (inode) 2300 iput(inode); /* truncate the inode here */ 2301 exit1: 2302 path_put(&nd.path); 2303 exit: 2304 putname(name); 2305 return error; 2306 2307 slashes: 2308 error = !dentry->d_inode ? -ENOENT : 2309 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2310 goto exit2; 2311 } 2312 2313 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag) 2314 { 2315 if ((flag & ~AT_REMOVEDIR) != 0) 2316 return -EINVAL; 2317 2318 if (flag & AT_REMOVEDIR) 2319 return do_rmdir(dfd, pathname); 2320 2321 return do_unlinkat(dfd, pathname); 2322 } 2323 2324 asmlinkage long sys_unlink(const char __user *pathname) 2325 { 2326 return do_unlinkat(AT_FDCWD, pathname); 2327 } 2328 2329 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2330 { 2331 int error = may_create(dir, dentry, NULL); 2332 2333 if (error) 2334 return error; 2335 2336 if (!dir->i_op || !dir->i_op->symlink) 2337 return -EPERM; 2338 2339 error = security_inode_symlink(dir, dentry, oldname); 2340 if (error) 2341 return error; 2342 2343 DQUOT_INIT(dir); 2344 error = dir->i_op->symlink(dir, dentry, oldname); 2345 if (!error) 2346 fsnotify_create(dir, dentry); 2347 return error; 2348 } 2349 2350 asmlinkage long sys_symlinkat(const char __user *oldname, 2351 int newdfd, const char __user *newname) 2352 { 2353 int error = 0; 2354 char * from; 2355 char * to; 2356 struct dentry *dentry; 2357 struct nameidata nd; 2358 2359 from = getname(oldname); 2360 if(IS_ERR(from)) 2361 return PTR_ERR(from); 2362 to = getname(newname); 2363 error = PTR_ERR(to); 2364 if (IS_ERR(to)) 2365 goto out_putname; 2366 2367 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd); 2368 if (error) 2369 goto out; 2370 dentry = lookup_create(&nd, 0); 2371 error = PTR_ERR(dentry); 2372 if (IS_ERR(dentry)) 2373 goto out_unlock; 2374 2375 error = mnt_want_write(nd.path.mnt); 2376 if (error) 2377 goto out_dput; 2378 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 2379 mnt_drop_write(nd.path.mnt); 2380 out_dput: 2381 dput(dentry); 2382 out_unlock: 2383 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2384 path_put(&nd.path); 2385 out: 2386 putname(to); 2387 out_putname: 2388 putname(from); 2389 return error; 2390 } 2391 2392 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname) 2393 { 2394 return sys_symlinkat(oldname, AT_FDCWD, newname); 2395 } 2396 2397 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2398 { 2399 struct inode *inode = old_dentry->d_inode; 2400 int error; 2401 2402 if (!inode) 2403 return -ENOENT; 2404 2405 error = may_create(dir, new_dentry, NULL); 2406 if (error) 2407 return error; 2408 2409 if (dir->i_sb != inode->i_sb) 2410 return -EXDEV; 2411 2412 /* 2413 * A link to an append-only or immutable file cannot be created. 2414 */ 2415 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2416 return -EPERM; 2417 if (!dir->i_op || !dir->i_op->link) 2418 return -EPERM; 2419 if (S_ISDIR(inode->i_mode)) 2420 return -EPERM; 2421 2422 error = security_inode_link(old_dentry, dir, new_dentry); 2423 if (error) 2424 return error; 2425 2426 mutex_lock(&inode->i_mutex); 2427 DQUOT_INIT(dir); 2428 error = dir->i_op->link(old_dentry, dir, new_dentry); 2429 mutex_unlock(&inode->i_mutex); 2430 if (!error) 2431 fsnotify_link(dir, inode, new_dentry); 2432 return error; 2433 } 2434 2435 /* 2436 * Hardlinks are often used in delicate situations. We avoid 2437 * security-related surprises by not following symlinks on the 2438 * newname. --KAB 2439 * 2440 * We don't follow them on the oldname either to be compatible 2441 * with linux 2.0, and to avoid hard-linking to directories 2442 * and other special files. --ADM 2443 */ 2444 asmlinkage long sys_linkat(int olddfd, const char __user *oldname, 2445 int newdfd, const char __user *newname, 2446 int flags) 2447 { 2448 struct dentry *new_dentry; 2449 struct nameidata nd, old_nd; 2450 int error; 2451 char * to; 2452 2453 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 2454 return -EINVAL; 2455 2456 to = getname(newname); 2457 if (IS_ERR(to)) 2458 return PTR_ERR(to); 2459 2460 error = __user_walk_fd(olddfd, oldname, 2461 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 2462 &old_nd); 2463 if (error) 2464 goto exit; 2465 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd); 2466 if (error) 2467 goto out; 2468 error = -EXDEV; 2469 if (old_nd.path.mnt != nd.path.mnt) 2470 goto out_release; 2471 new_dentry = lookup_create(&nd, 0); 2472 error = PTR_ERR(new_dentry); 2473 if (IS_ERR(new_dentry)) 2474 goto out_unlock; 2475 error = mnt_want_write(nd.path.mnt); 2476 if (error) 2477 goto out_dput; 2478 error = vfs_link(old_nd.path.dentry, nd.path.dentry->d_inode, new_dentry); 2479 mnt_drop_write(nd.path.mnt); 2480 out_dput: 2481 dput(new_dentry); 2482 out_unlock: 2483 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2484 out_release: 2485 path_put(&nd.path); 2486 out: 2487 path_put(&old_nd.path); 2488 exit: 2489 putname(to); 2490 2491 return error; 2492 } 2493 2494 asmlinkage long sys_link(const char __user *oldname, const char __user *newname) 2495 { 2496 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2497 } 2498 2499 /* 2500 * The worst of all namespace operations - renaming directory. "Perverted" 2501 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2502 * Problems: 2503 * a) we can get into loop creation. Check is done in is_subdir(). 2504 * b) race potential - two innocent renames can create a loop together. 2505 * That's where 4.4 screws up. Current fix: serialization on 2506 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2507 * story. 2508 * c) we have to lock _three_ objects - parents and victim (if it exists). 2509 * And that - after we got ->i_mutex on parents (until then we don't know 2510 * whether the target exists). Solution: try to be smart with locking 2511 * order for inodes. We rely on the fact that tree topology may change 2512 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2513 * move will be locked. Thus we can rank directories by the tree 2514 * (ancestors first) and rank all non-directories after them. 2515 * That works since everybody except rename does "lock parent, lookup, 2516 * lock child" and rename is under ->s_vfs_rename_mutex. 2517 * HOWEVER, it relies on the assumption that any object with ->lookup() 2518 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2519 * we'd better make sure that there's no link(2) for them. 2520 * d) some filesystems don't support opened-but-unlinked directories, 2521 * either because of layout or because they are not ready to deal with 2522 * all cases correctly. The latter will be fixed (taking this sort of 2523 * stuff into VFS), but the former is not going away. Solution: the same 2524 * trick as in rmdir(). 2525 * e) conversion from fhandle to dentry may come in the wrong moment - when 2526 * we are removing the target. Solution: we will have to grab ->i_mutex 2527 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2528 * ->i_mutex on parents, which works but leads to some truely excessive 2529 * locking]. 2530 */ 2531 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2532 struct inode *new_dir, struct dentry *new_dentry) 2533 { 2534 int error = 0; 2535 struct inode *target; 2536 2537 /* 2538 * If we are going to change the parent - check write permissions, 2539 * we'll need to flip '..'. 2540 */ 2541 if (new_dir != old_dir) { 2542 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 2543 if (error) 2544 return error; 2545 } 2546 2547 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2548 if (error) 2549 return error; 2550 2551 target = new_dentry->d_inode; 2552 if (target) { 2553 mutex_lock(&target->i_mutex); 2554 dentry_unhash(new_dentry); 2555 } 2556 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2557 error = -EBUSY; 2558 else 2559 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2560 if (target) { 2561 if (!error) 2562 target->i_flags |= S_DEAD; 2563 mutex_unlock(&target->i_mutex); 2564 if (d_unhashed(new_dentry)) 2565 d_rehash(new_dentry); 2566 dput(new_dentry); 2567 } 2568 if (!error) 2569 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2570 d_move(old_dentry,new_dentry); 2571 return error; 2572 } 2573 2574 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2575 struct inode *new_dir, struct dentry *new_dentry) 2576 { 2577 struct inode *target; 2578 int error; 2579 2580 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2581 if (error) 2582 return error; 2583 2584 dget(new_dentry); 2585 target = new_dentry->d_inode; 2586 if (target) 2587 mutex_lock(&target->i_mutex); 2588 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2589 error = -EBUSY; 2590 else 2591 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2592 if (!error) { 2593 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2594 d_move(old_dentry, new_dentry); 2595 } 2596 if (target) 2597 mutex_unlock(&target->i_mutex); 2598 dput(new_dentry); 2599 return error; 2600 } 2601 2602 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2603 struct inode *new_dir, struct dentry *new_dentry) 2604 { 2605 int error; 2606 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2607 const char *old_name; 2608 2609 if (old_dentry->d_inode == new_dentry->d_inode) 2610 return 0; 2611 2612 error = may_delete(old_dir, old_dentry, is_dir); 2613 if (error) 2614 return error; 2615 2616 if (!new_dentry->d_inode) 2617 error = may_create(new_dir, new_dentry, NULL); 2618 else 2619 error = may_delete(new_dir, new_dentry, is_dir); 2620 if (error) 2621 return error; 2622 2623 if (!old_dir->i_op || !old_dir->i_op->rename) 2624 return -EPERM; 2625 2626 DQUOT_INIT(old_dir); 2627 DQUOT_INIT(new_dir); 2628 2629 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2630 2631 if (is_dir) 2632 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2633 else 2634 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2635 if (!error) { 2636 const char *new_name = old_dentry->d_name.name; 2637 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir, 2638 new_dentry->d_inode, old_dentry); 2639 } 2640 fsnotify_oldname_free(old_name); 2641 2642 return error; 2643 } 2644 2645 static int do_rename(int olddfd, const char *oldname, 2646 int newdfd, const char *newname) 2647 { 2648 int error = 0; 2649 struct dentry * old_dir, * new_dir; 2650 struct dentry * old_dentry, *new_dentry; 2651 struct dentry * trap; 2652 struct nameidata oldnd, newnd; 2653 2654 error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd); 2655 if (error) 2656 goto exit; 2657 2658 error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd); 2659 if (error) 2660 goto exit1; 2661 2662 error = -EXDEV; 2663 if (oldnd.path.mnt != newnd.path.mnt) 2664 goto exit2; 2665 2666 old_dir = oldnd.path.dentry; 2667 error = -EBUSY; 2668 if (oldnd.last_type != LAST_NORM) 2669 goto exit2; 2670 2671 new_dir = newnd.path.dentry; 2672 if (newnd.last_type != LAST_NORM) 2673 goto exit2; 2674 2675 trap = lock_rename(new_dir, old_dir); 2676 2677 old_dentry = lookup_hash(&oldnd); 2678 error = PTR_ERR(old_dentry); 2679 if (IS_ERR(old_dentry)) 2680 goto exit3; 2681 /* source must exist */ 2682 error = -ENOENT; 2683 if (!old_dentry->d_inode) 2684 goto exit4; 2685 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2686 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2687 error = -ENOTDIR; 2688 if (oldnd.last.name[oldnd.last.len]) 2689 goto exit4; 2690 if (newnd.last.name[newnd.last.len]) 2691 goto exit4; 2692 } 2693 /* source should not be ancestor of target */ 2694 error = -EINVAL; 2695 if (old_dentry == trap) 2696 goto exit4; 2697 new_dentry = lookup_hash(&newnd); 2698 error = PTR_ERR(new_dentry); 2699 if (IS_ERR(new_dentry)) 2700 goto exit4; 2701 /* target should not be an ancestor of source */ 2702 error = -ENOTEMPTY; 2703 if (new_dentry == trap) 2704 goto exit5; 2705 2706 error = mnt_want_write(oldnd.path.mnt); 2707 if (error) 2708 goto exit5; 2709 error = vfs_rename(old_dir->d_inode, old_dentry, 2710 new_dir->d_inode, new_dentry); 2711 mnt_drop_write(oldnd.path.mnt); 2712 exit5: 2713 dput(new_dentry); 2714 exit4: 2715 dput(old_dentry); 2716 exit3: 2717 unlock_rename(new_dir, old_dir); 2718 exit2: 2719 path_put(&newnd.path); 2720 exit1: 2721 path_put(&oldnd.path); 2722 exit: 2723 return error; 2724 } 2725 2726 asmlinkage long sys_renameat(int olddfd, const char __user *oldname, 2727 int newdfd, const char __user *newname) 2728 { 2729 int error; 2730 char * from; 2731 char * to; 2732 2733 from = getname(oldname); 2734 if(IS_ERR(from)) 2735 return PTR_ERR(from); 2736 to = getname(newname); 2737 error = PTR_ERR(to); 2738 if (!IS_ERR(to)) { 2739 error = do_rename(olddfd, from, newdfd, to); 2740 putname(to); 2741 } 2742 putname(from); 2743 return error; 2744 } 2745 2746 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname) 2747 { 2748 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2749 } 2750 2751 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2752 { 2753 int len; 2754 2755 len = PTR_ERR(link); 2756 if (IS_ERR(link)) 2757 goto out; 2758 2759 len = strlen(link); 2760 if (len > (unsigned) buflen) 2761 len = buflen; 2762 if (copy_to_user(buffer, link, len)) 2763 len = -EFAULT; 2764 out: 2765 return len; 2766 } 2767 2768 /* 2769 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2770 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2771 * using) it for any given inode is up to filesystem. 2772 */ 2773 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2774 { 2775 struct nameidata nd; 2776 void *cookie; 2777 int res; 2778 2779 nd.depth = 0; 2780 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2781 if (IS_ERR(cookie)) 2782 return PTR_ERR(cookie); 2783 2784 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2785 if (dentry->d_inode->i_op->put_link) 2786 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2787 return res; 2788 } 2789 2790 int vfs_follow_link(struct nameidata *nd, const char *link) 2791 { 2792 return __vfs_follow_link(nd, link); 2793 } 2794 2795 /* get the link contents into pagecache */ 2796 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2797 { 2798 struct page * page; 2799 struct address_space *mapping = dentry->d_inode->i_mapping; 2800 page = read_mapping_page(mapping, 0, NULL); 2801 if (IS_ERR(page)) 2802 return (char*)page; 2803 *ppage = page; 2804 return kmap(page); 2805 } 2806 2807 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2808 { 2809 struct page *page = NULL; 2810 char *s = page_getlink(dentry, &page); 2811 int res = vfs_readlink(dentry,buffer,buflen,s); 2812 if (page) { 2813 kunmap(page); 2814 page_cache_release(page); 2815 } 2816 return res; 2817 } 2818 2819 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2820 { 2821 struct page *page = NULL; 2822 nd_set_link(nd, page_getlink(dentry, &page)); 2823 return page; 2824 } 2825 2826 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2827 { 2828 struct page *page = cookie; 2829 2830 if (page) { 2831 kunmap(page); 2832 page_cache_release(page); 2833 } 2834 } 2835 2836 int __page_symlink(struct inode *inode, const char *symname, int len, 2837 gfp_t gfp_mask) 2838 { 2839 struct address_space *mapping = inode->i_mapping; 2840 struct page *page; 2841 void *fsdata; 2842 int err; 2843 char *kaddr; 2844 2845 retry: 2846 err = pagecache_write_begin(NULL, mapping, 0, len-1, 2847 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 2848 if (err) 2849 goto fail; 2850 2851 kaddr = kmap_atomic(page, KM_USER0); 2852 memcpy(kaddr, symname, len-1); 2853 kunmap_atomic(kaddr, KM_USER0); 2854 2855 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 2856 page, fsdata); 2857 if (err < 0) 2858 goto fail; 2859 if (err < len-1) 2860 goto retry; 2861 2862 mark_inode_dirty(inode); 2863 return 0; 2864 fail: 2865 return err; 2866 } 2867 2868 int page_symlink(struct inode *inode, const char *symname, int len) 2869 { 2870 return __page_symlink(inode, symname, len, 2871 mapping_gfp_mask(inode->i_mapping)); 2872 } 2873 2874 const struct inode_operations page_symlink_inode_operations = { 2875 .readlink = generic_readlink, 2876 .follow_link = page_follow_link_light, 2877 .put_link = page_put_link, 2878 }; 2879 2880 EXPORT_SYMBOL(__user_walk); 2881 EXPORT_SYMBOL(__user_walk_fd); 2882 EXPORT_SYMBOL(follow_down); 2883 EXPORT_SYMBOL(follow_up); 2884 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2885 EXPORT_SYMBOL(getname); 2886 EXPORT_SYMBOL(lock_rename); 2887 EXPORT_SYMBOL(lookup_one_len); 2888 EXPORT_SYMBOL(page_follow_link_light); 2889 EXPORT_SYMBOL(page_put_link); 2890 EXPORT_SYMBOL(page_readlink); 2891 EXPORT_SYMBOL(__page_symlink); 2892 EXPORT_SYMBOL(page_symlink); 2893 EXPORT_SYMBOL(page_symlink_inode_operations); 2894 EXPORT_SYMBOL(path_lookup); 2895 EXPORT_SYMBOL(vfs_path_lookup); 2896 EXPORT_SYMBOL(inode_permission); 2897 EXPORT_SYMBOL(vfs_permission); 2898 EXPORT_SYMBOL(file_permission); 2899 EXPORT_SYMBOL(unlock_rename); 2900 EXPORT_SYMBOL(vfs_create); 2901 EXPORT_SYMBOL(vfs_follow_link); 2902 EXPORT_SYMBOL(vfs_link); 2903 EXPORT_SYMBOL(vfs_mkdir); 2904 EXPORT_SYMBOL(vfs_mknod); 2905 EXPORT_SYMBOL(generic_permission); 2906 EXPORT_SYMBOL(vfs_readlink); 2907 EXPORT_SYMBOL(vfs_rename); 2908 EXPORT_SYMBOL(vfs_rmdir); 2909 EXPORT_SYMBOL(vfs_symlink); 2910 EXPORT_SYMBOL(vfs_unlink); 2911 EXPORT_SYMBOL(dentry_unhash); 2912 EXPORT_SYMBOL(generic_readlink); 2913