xref: /openbmc/linux/fs/namei.c (revision f419a2e3b64def707e1384ee38abb77f99af5f6d)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <asm/uaccess.h>
35 
36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
37 
38 /* [Feb-1997 T. Schoebel-Theuer]
39  * Fundamental changes in the pathname lookup mechanisms (namei)
40  * were necessary because of omirr.  The reason is that omirr needs
41  * to know the _real_ pathname, not the user-supplied one, in case
42  * of symlinks (and also when transname replacements occur).
43  *
44  * The new code replaces the old recursive symlink resolution with
45  * an iterative one (in case of non-nested symlink chains).  It does
46  * this with calls to <fs>_follow_link().
47  * As a side effect, dir_namei(), _namei() and follow_link() are now
48  * replaced with a single function lookup_dentry() that can handle all
49  * the special cases of the former code.
50  *
51  * With the new dcache, the pathname is stored at each inode, at least as
52  * long as the refcount of the inode is positive.  As a side effect, the
53  * size of the dcache depends on the inode cache and thus is dynamic.
54  *
55  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
56  * resolution to correspond with current state of the code.
57  *
58  * Note that the symlink resolution is not *completely* iterative.
59  * There is still a significant amount of tail- and mid- recursion in
60  * the algorithm.  Also, note that <fs>_readlink() is not used in
61  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
62  * may return different results than <fs>_follow_link().  Many virtual
63  * filesystems (including /proc) exhibit this behavior.
64  */
65 
66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
67  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
68  * and the name already exists in form of a symlink, try to create the new
69  * name indicated by the symlink. The old code always complained that the
70  * name already exists, due to not following the symlink even if its target
71  * is nonexistent.  The new semantics affects also mknod() and link() when
72  * the name is a symlink pointing to a non-existant name.
73  *
74  * I don't know which semantics is the right one, since I have no access
75  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
76  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
77  * "old" one. Personally, I think the new semantics is much more logical.
78  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
79  * file does succeed in both HP-UX and SunOs, but not in Solaris
80  * and in the old Linux semantics.
81  */
82 
83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
84  * semantics.  See the comments in "open_namei" and "do_link" below.
85  *
86  * [10-Sep-98 Alan Modra] Another symlink change.
87  */
88 
89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
90  *	inside the path - always follow.
91  *	in the last component in creation/removal/renaming - never follow.
92  *	if LOOKUP_FOLLOW passed - follow.
93  *	if the pathname has trailing slashes - follow.
94  *	otherwise - don't follow.
95  * (applied in that order).
96  *
97  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
98  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
99  * During the 2.4 we need to fix the userland stuff depending on it -
100  * hopefully we will be able to get rid of that wart in 2.5. So far only
101  * XEmacs seems to be relying on it...
102  */
103 /*
104  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
105  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
106  * any extra contention...
107  */
108 
109 static int __link_path_walk(const char *name, struct nameidata *nd);
110 
111 /* In order to reduce some races, while at the same time doing additional
112  * checking and hopefully speeding things up, we copy filenames to the
113  * kernel data space before using them..
114  *
115  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116  * PATH_MAX includes the nul terminator --RR.
117  */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 	int retval;
121 	unsigned long len = PATH_MAX;
122 
123 	if (!segment_eq(get_fs(), KERNEL_DS)) {
124 		if ((unsigned long) filename >= TASK_SIZE)
125 			return -EFAULT;
126 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 			len = TASK_SIZE - (unsigned long) filename;
128 	}
129 
130 	retval = strncpy_from_user(page, filename, len);
131 	if (retval > 0) {
132 		if (retval < len)
133 			return 0;
134 		return -ENAMETOOLONG;
135 	} else if (!retval)
136 		retval = -ENOENT;
137 	return retval;
138 }
139 
140 char * getname(const char __user * filename)
141 {
142 	char *tmp, *result;
143 
144 	result = ERR_PTR(-ENOMEM);
145 	tmp = __getname();
146 	if (tmp)  {
147 		int retval = do_getname(filename, tmp);
148 
149 		result = tmp;
150 		if (retval < 0) {
151 			__putname(tmp);
152 			result = ERR_PTR(retval);
153 		}
154 	}
155 	audit_getname(result);
156 	return result;
157 }
158 
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 	if (unlikely(!audit_dummy_context()))
163 		audit_putname(name);
164 	else
165 		__putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169 
170 
171 /**
172  * generic_permission  -  check for access rights on a Posix-like filesystem
173  * @inode:	inode to check access rights for
174  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175  * @check_acl:	optional callback to check for Posix ACLs
176  *
177  * Used to check for read/write/execute permissions on a file.
178  * We use "fsuid" for this, letting us set arbitrary permissions
179  * for filesystem access without changing the "normal" uids which
180  * are used for other things..
181  */
182 int generic_permission(struct inode *inode, int mask,
183 		int (*check_acl)(struct inode *inode, int mask))
184 {
185 	umode_t			mode = inode->i_mode;
186 
187 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
188 
189 	if (current->fsuid == inode->i_uid)
190 		mode >>= 6;
191 	else {
192 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 			int error = check_acl(inode, mask);
194 			if (error == -EACCES)
195 				goto check_capabilities;
196 			else if (error != -EAGAIN)
197 				return error;
198 		}
199 
200 		if (in_group_p(inode->i_gid))
201 			mode >>= 3;
202 	}
203 
204 	/*
205 	 * If the DACs are ok we don't need any capability check.
206 	 */
207 	if ((mask & ~mode) == 0)
208 		return 0;
209 
210  check_capabilities:
211 	/*
212 	 * Read/write DACs are always overridable.
213 	 * Executable DACs are overridable if at least one exec bit is set.
214 	 */
215 	if (!(mask & MAY_EXEC) ||
216 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
217 		if (capable(CAP_DAC_OVERRIDE))
218 			return 0;
219 
220 	/*
221 	 * Searching includes executable on directories, else just read.
222 	 */
223 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
224 		if (capable(CAP_DAC_READ_SEARCH))
225 			return 0;
226 
227 	return -EACCES;
228 }
229 
230 int inode_permission(struct inode *inode, int mask)
231 {
232 	int retval;
233 
234 	if (mask & MAY_WRITE) {
235 		umode_t mode = inode->i_mode;
236 
237 		/*
238 		 * Nobody gets write access to a read-only fs.
239 		 */
240 		if (IS_RDONLY(inode) &&
241 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
242 			return -EROFS;
243 
244 		/*
245 		 * Nobody gets write access to an immutable file.
246 		 */
247 		if (IS_IMMUTABLE(inode))
248 			return -EACCES;
249 	}
250 
251 	/* Ordinary permission routines do not understand MAY_APPEND. */
252 	if (inode->i_op && inode->i_op->permission) {
253 		retval = inode->i_op->permission(inode, mask);
254 		if (!retval) {
255 			/*
256 			 * Exec permission on a regular file is denied if none
257 			 * of the execute bits are set.
258 			 *
259 			 * This check should be done by the ->permission()
260 			 * method.
261 			 */
262 			if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) &&
263 			    !(inode->i_mode & S_IXUGO))
264 				return -EACCES;
265 		}
266 	} else {
267 		retval = generic_permission(inode, mask, NULL);
268 	}
269 	if (retval)
270 		return retval;
271 
272 	retval = devcgroup_inode_permission(inode, mask);
273 	if (retval)
274 		return retval;
275 
276 	return security_inode_permission(inode,
277 			mask & (MAY_READ|MAY_WRITE|MAY_EXEC));
278 }
279 
280 /**
281  * vfs_permission  -  check for access rights to a given path
282  * @nd:		lookup result that describes the path
283  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
284  *
285  * Used to check for read/write/execute permissions on a path.
286  * We use "fsuid" for this, letting us set arbitrary permissions
287  * for filesystem access without changing the "normal" uids which
288  * are used for other things.
289  */
290 int vfs_permission(struct nameidata *nd, int mask)
291 {
292 	return inode_permission(nd->path.dentry->d_inode, mask);
293 }
294 
295 /**
296  * file_permission  -  check for additional access rights to a given file
297  * @file:	file to check access rights for
298  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
299  *
300  * Used to check for read/write/execute permissions on an already opened
301  * file.
302  *
303  * Note:
304  *	Do not use this function in new code.  All access checks should
305  *	be done using vfs_permission().
306  */
307 int file_permission(struct file *file, int mask)
308 {
309 	return inode_permission(file->f_path.dentry->d_inode, mask);
310 }
311 
312 /*
313  * get_write_access() gets write permission for a file.
314  * put_write_access() releases this write permission.
315  * This is used for regular files.
316  * We cannot support write (and maybe mmap read-write shared) accesses and
317  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
318  * can have the following values:
319  * 0: no writers, no VM_DENYWRITE mappings
320  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
321  * > 0: (i_writecount) users are writing to the file.
322  *
323  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
324  * except for the cases where we don't hold i_writecount yet. Then we need to
325  * use {get,deny}_write_access() - these functions check the sign and refuse
326  * to do the change if sign is wrong. Exclusion between them is provided by
327  * the inode->i_lock spinlock.
328  */
329 
330 int get_write_access(struct inode * inode)
331 {
332 	spin_lock(&inode->i_lock);
333 	if (atomic_read(&inode->i_writecount) < 0) {
334 		spin_unlock(&inode->i_lock);
335 		return -ETXTBSY;
336 	}
337 	atomic_inc(&inode->i_writecount);
338 	spin_unlock(&inode->i_lock);
339 
340 	return 0;
341 }
342 
343 int deny_write_access(struct file * file)
344 {
345 	struct inode *inode = file->f_path.dentry->d_inode;
346 
347 	spin_lock(&inode->i_lock);
348 	if (atomic_read(&inode->i_writecount) > 0) {
349 		spin_unlock(&inode->i_lock);
350 		return -ETXTBSY;
351 	}
352 	atomic_dec(&inode->i_writecount);
353 	spin_unlock(&inode->i_lock);
354 
355 	return 0;
356 }
357 
358 /**
359  * path_get - get a reference to a path
360  * @path: path to get the reference to
361  *
362  * Given a path increment the reference count to the dentry and the vfsmount.
363  */
364 void path_get(struct path *path)
365 {
366 	mntget(path->mnt);
367 	dget(path->dentry);
368 }
369 EXPORT_SYMBOL(path_get);
370 
371 /**
372  * path_put - put a reference to a path
373  * @path: path to put the reference to
374  *
375  * Given a path decrement the reference count to the dentry and the vfsmount.
376  */
377 void path_put(struct path *path)
378 {
379 	dput(path->dentry);
380 	mntput(path->mnt);
381 }
382 EXPORT_SYMBOL(path_put);
383 
384 /**
385  * release_open_intent - free up open intent resources
386  * @nd: pointer to nameidata
387  */
388 void release_open_intent(struct nameidata *nd)
389 {
390 	if (nd->intent.open.file->f_path.dentry == NULL)
391 		put_filp(nd->intent.open.file);
392 	else
393 		fput(nd->intent.open.file);
394 }
395 
396 static inline struct dentry *
397 do_revalidate(struct dentry *dentry, struct nameidata *nd)
398 {
399 	int status = dentry->d_op->d_revalidate(dentry, nd);
400 	if (unlikely(status <= 0)) {
401 		/*
402 		 * The dentry failed validation.
403 		 * If d_revalidate returned 0 attempt to invalidate
404 		 * the dentry otherwise d_revalidate is asking us
405 		 * to return a fail status.
406 		 */
407 		if (!status) {
408 			if (!d_invalidate(dentry)) {
409 				dput(dentry);
410 				dentry = NULL;
411 			}
412 		} else {
413 			dput(dentry);
414 			dentry = ERR_PTR(status);
415 		}
416 	}
417 	return dentry;
418 }
419 
420 /*
421  * Internal lookup() using the new generic dcache.
422  * SMP-safe
423  */
424 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
425 {
426 	struct dentry * dentry = __d_lookup(parent, name);
427 
428 	/* lockess __d_lookup may fail due to concurrent d_move()
429 	 * in some unrelated directory, so try with d_lookup
430 	 */
431 	if (!dentry)
432 		dentry = d_lookup(parent, name);
433 
434 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
435 		dentry = do_revalidate(dentry, nd);
436 
437 	return dentry;
438 }
439 
440 /*
441  * Short-cut version of permission(), for calling by
442  * path_walk(), when dcache lock is held.  Combines parts
443  * of permission() and generic_permission(), and tests ONLY for
444  * MAY_EXEC permission.
445  *
446  * If appropriate, check DAC only.  If not appropriate, or
447  * short-cut DAC fails, then call permission() to do more
448  * complete permission check.
449  */
450 static int exec_permission_lite(struct inode *inode)
451 {
452 	umode_t	mode = inode->i_mode;
453 
454 	if (inode->i_op && inode->i_op->permission)
455 		return -EAGAIN;
456 
457 	if (current->fsuid == inode->i_uid)
458 		mode >>= 6;
459 	else if (in_group_p(inode->i_gid))
460 		mode >>= 3;
461 
462 	if (mode & MAY_EXEC)
463 		goto ok;
464 
465 	if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
466 		goto ok;
467 
468 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
469 		goto ok;
470 
471 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
472 		goto ok;
473 
474 	return -EACCES;
475 ok:
476 	return security_inode_permission(inode, MAY_EXEC);
477 }
478 
479 /*
480  * This is called when everything else fails, and we actually have
481  * to go to the low-level filesystem to find out what we should do..
482  *
483  * We get the directory semaphore, and after getting that we also
484  * make sure that nobody added the entry to the dcache in the meantime..
485  * SMP-safe
486  */
487 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
488 {
489 	struct dentry * result;
490 	struct inode *dir = parent->d_inode;
491 
492 	mutex_lock(&dir->i_mutex);
493 	/*
494 	 * First re-do the cached lookup just in case it was created
495 	 * while we waited for the directory semaphore..
496 	 *
497 	 * FIXME! This could use version numbering or similar to
498 	 * avoid unnecessary cache lookups.
499 	 *
500 	 * The "dcache_lock" is purely to protect the RCU list walker
501 	 * from concurrent renames at this point (we mustn't get false
502 	 * negatives from the RCU list walk here, unlike the optimistic
503 	 * fast walk).
504 	 *
505 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
506 	 */
507 	result = d_lookup(parent, name);
508 	if (!result) {
509 		struct dentry *dentry;
510 
511 		/* Don't create child dentry for a dead directory. */
512 		result = ERR_PTR(-ENOENT);
513 		if (IS_DEADDIR(dir))
514 			goto out_unlock;
515 
516 		dentry = d_alloc(parent, name);
517 		result = ERR_PTR(-ENOMEM);
518 		if (dentry) {
519 			result = dir->i_op->lookup(dir, dentry, nd);
520 			if (result)
521 				dput(dentry);
522 			else
523 				result = dentry;
524 		}
525 out_unlock:
526 		mutex_unlock(&dir->i_mutex);
527 		return result;
528 	}
529 
530 	/*
531 	 * Uhhuh! Nasty case: the cache was re-populated while
532 	 * we waited on the semaphore. Need to revalidate.
533 	 */
534 	mutex_unlock(&dir->i_mutex);
535 	if (result->d_op && result->d_op->d_revalidate) {
536 		result = do_revalidate(result, nd);
537 		if (!result)
538 			result = ERR_PTR(-ENOENT);
539 	}
540 	return result;
541 }
542 
543 /* SMP-safe */
544 static __always_inline void
545 walk_init_root(const char *name, struct nameidata *nd)
546 {
547 	struct fs_struct *fs = current->fs;
548 
549 	read_lock(&fs->lock);
550 	nd->path = fs->root;
551 	path_get(&fs->root);
552 	read_unlock(&fs->lock);
553 }
554 
555 /*
556  * Wrapper to retry pathname resolution whenever the underlying
557  * file system returns an ESTALE.
558  *
559  * Retry the whole path once, forcing real lookup requests
560  * instead of relying on the dcache.
561  */
562 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
563 {
564 	struct path save = nd->path;
565 	int result;
566 
567 	/* make sure the stuff we saved doesn't go away */
568 	path_get(&save);
569 
570 	result = __link_path_walk(name, nd);
571 	if (result == -ESTALE) {
572 		/* nd->path had been dropped */
573 		nd->path = save;
574 		path_get(&nd->path);
575 		nd->flags |= LOOKUP_REVAL;
576 		result = __link_path_walk(name, nd);
577 	}
578 
579 	path_put(&save);
580 
581 	return result;
582 }
583 
584 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
585 {
586 	int res = 0;
587 	char *name;
588 	if (IS_ERR(link))
589 		goto fail;
590 
591 	if (*link == '/') {
592 		path_put(&nd->path);
593 		walk_init_root(link, nd);
594 	}
595 	res = link_path_walk(link, nd);
596 	if (nd->depth || res || nd->last_type!=LAST_NORM)
597 		return res;
598 	/*
599 	 * If it is an iterative symlinks resolution in open_namei() we
600 	 * have to copy the last component. And all that crap because of
601 	 * bloody create() on broken symlinks. Furrfu...
602 	 */
603 	name = __getname();
604 	if (unlikely(!name)) {
605 		path_put(&nd->path);
606 		return -ENOMEM;
607 	}
608 	strcpy(name, nd->last.name);
609 	nd->last.name = name;
610 	return 0;
611 fail:
612 	path_put(&nd->path);
613 	return PTR_ERR(link);
614 }
615 
616 static void path_put_conditional(struct path *path, struct nameidata *nd)
617 {
618 	dput(path->dentry);
619 	if (path->mnt != nd->path.mnt)
620 		mntput(path->mnt);
621 }
622 
623 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
624 {
625 	dput(nd->path.dentry);
626 	if (nd->path.mnt != path->mnt)
627 		mntput(nd->path.mnt);
628 	nd->path.mnt = path->mnt;
629 	nd->path.dentry = path->dentry;
630 }
631 
632 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
633 {
634 	int error;
635 	void *cookie;
636 	struct dentry *dentry = path->dentry;
637 
638 	touch_atime(path->mnt, dentry);
639 	nd_set_link(nd, NULL);
640 
641 	if (path->mnt != nd->path.mnt) {
642 		path_to_nameidata(path, nd);
643 		dget(dentry);
644 	}
645 	mntget(path->mnt);
646 	cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
647 	error = PTR_ERR(cookie);
648 	if (!IS_ERR(cookie)) {
649 		char *s = nd_get_link(nd);
650 		error = 0;
651 		if (s)
652 			error = __vfs_follow_link(nd, s);
653 		if (dentry->d_inode->i_op->put_link)
654 			dentry->d_inode->i_op->put_link(dentry, nd, cookie);
655 	}
656 	path_put(path);
657 
658 	return error;
659 }
660 
661 /*
662  * This limits recursive symlink follows to 8, while
663  * limiting consecutive symlinks to 40.
664  *
665  * Without that kind of total limit, nasty chains of consecutive
666  * symlinks can cause almost arbitrarily long lookups.
667  */
668 static inline int do_follow_link(struct path *path, struct nameidata *nd)
669 {
670 	int err = -ELOOP;
671 	if (current->link_count >= MAX_NESTED_LINKS)
672 		goto loop;
673 	if (current->total_link_count >= 40)
674 		goto loop;
675 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
676 	cond_resched();
677 	err = security_inode_follow_link(path->dentry, nd);
678 	if (err)
679 		goto loop;
680 	current->link_count++;
681 	current->total_link_count++;
682 	nd->depth++;
683 	err = __do_follow_link(path, nd);
684 	current->link_count--;
685 	nd->depth--;
686 	return err;
687 loop:
688 	path_put_conditional(path, nd);
689 	path_put(&nd->path);
690 	return err;
691 }
692 
693 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
694 {
695 	struct vfsmount *parent;
696 	struct dentry *mountpoint;
697 	spin_lock(&vfsmount_lock);
698 	parent=(*mnt)->mnt_parent;
699 	if (parent == *mnt) {
700 		spin_unlock(&vfsmount_lock);
701 		return 0;
702 	}
703 	mntget(parent);
704 	mountpoint=dget((*mnt)->mnt_mountpoint);
705 	spin_unlock(&vfsmount_lock);
706 	dput(*dentry);
707 	*dentry = mountpoint;
708 	mntput(*mnt);
709 	*mnt = parent;
710 	return 1;
711 }
712 
713 /* no need for dcache_lock, as serialization is taken care in
714  * namespace.c
715  */
716 static int __follow_mount(struct path *path)
717 {
718 	int res = 0;
719 	while (d_mountpoint(path->dentry)) {
720 		struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
721 		if (!mounted)
722 			break;
723 		dput(path->dentry);
724 		if (res)
725 			mntput(path->mnt);
726 		path->mnt = mounted;
727 		path->dentry = dget(mounted->mnt_root);
728 		res = 1;
729 	}
730 	return res;
731 }
732 
733 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
734 {
735 	while (d_mountpoint(*dentry)) {
736 		struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
737 		if (!mounted)
738 			break;
739 		dput(*dentry);
740 		mntput(*mnt);
741 		*mnt = mounted;
742 		*dentry = dget(mounted->mnt_root);
743 	}
744 }
745 
746 /* no need for dcache_lock, as serialization is taken care in
747  * namespace.c
748  */
749 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
750 {
751 	struct vfsmount *mounted;
752 
753 	mounted = lookup_mnt(*mnt, *dentry);
754 	if (mounted) {
755 		dput(*dentry);
756 		mntput(*mnt);
757 		*mnt = mounted;
758 		*dentry = dget(mounted->mnt_root);
759 		return 1;
760 	}
761 	return 0;
762 }
763 
764 static __always_inline void follow_dotdot(struct nameidata *nd)
765 {
766 	struct fs_struct *fs = current->fs;
767 
768 	while(1) {
769 		struct vfsmount *parent;
770 		struct dentry *old = nd->path.dentry;
771 
772                 read_lock(&fs->lock);
773 		if (nd->path.dentry == fs->root.dentry &&
774 		    nd->path.mnt == fs->root.mnt) {
775                         read_unlock(&fs->lock);
776 			break;
777 		}
778                 read_unlock(&fs->lock);
779 		spin_lock(&dcache_lock);
780 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
781 			nd->path.dentry = dget(nd->path.dentry->d_parent);
782 			spin_unlock(&dcache_lock);
783 			dput(old);
784 			break;
785 		}
786 		spin_unlock(&dcache_lock);
787 		spin_lock(&vfsmount_lock);
788 		parent = nd->path.mnt->mnt_parent;
789 		if (parent == nd->path.mnt) {
790 			spin_unlock(&vfsmount_lock);
791 			break;
792 		}
793 		mntget(parent);
794 		nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
795 		spin_unlock(&vfsmount_lock);
796 		dput(old);
797 		mntput(nd->path.mnt);
798 		nd->path.mnt = parent;
799 	}
800 	follow_mount(&nd->path.mnt, &nd->path.dentry);
801 }
802 
803 /*
804  *  It's more convoluted than I'd like it to be, but... it's still fairly
805  *  small and for now I'd prefer to have fast path as straight as possible.
806  *  It _is_ time-critical.
807  */
808 static int do_lookup(struct nameidata *nd, struct qstr *name,
809 		     struct path *path)
810 {
811 	struct vfsmount *mnt = nd->path.mnt;
812 	struct dentry *dentry = __d_lookup(nd->path.dentry, name);
813 
814 	if (!dentry)
815 		goto need_lookup;
816 	if (dentry->d_op && dentry->d_op->d_revalidate)
817 		goto need_revalidate;
818 done:
819 	path->mnt = mnt;
820 	path->dentry = dentry;
821 	__follow_mount(path);
822 	return 0;
823 
824 need_lookup:
825 	dentry = real_lookup(nd->path.dentry, name, nd);
826 	if (IS_ERR(dentry))
827 		goto fail;
828 	goto done;
829 
830 need_revalidate:
831 	dentry = do_revalidate(dentry, nd);
832 	if (!dentry)
833 		goto need_lookup;
834 	if (IS_ERR(dentry))
835 		goto fail;
836 	goto done;
837 
838 fail:
839 	return PTR_ERR(dentry);
840 }
841 
842 /*
843  * Name resolution.
844  * This is the basic name resolution function, turning a pathname into
845  * the final dentry. We expect 'base' to be positive and a directory.
846  *
847  * Returns 0 and nd will have valid dentry and mnt on success.
848  * Returns error and drops reference to input namei data on failure.
849  */
850 static int __link_path_walk(const char *name, struct nameidata *nd)
851 {
852 	struct path next;
853 	struct inode *inode;
854 	int err;
855 	unsigned int lookup_flags = nd->flags;
856 
857 	while (*name=='/')
858 		name++;
859 	if (!*name)
860 		goto return_reval;
861 
862 	inode = nd->path.dentry->d_inode;
863 	if (nd->depth)
864 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
865 
866 	/* At this point we know we have a real path component. */
867 	for(;;) {
868 		unsigned long hash;
869 		struct qstr this;
870 		unsigned int c;
871 
872 		nd->flags |= LOOKUP_CONTINUE;
873 		err = exec_permission_lite(inode);
874 		if (err == -EAGAIN)
875 			err = vfs_permission(nd, MAY_EXEC);
876  		if (err)
877 			break;
878 
879 		this.name = name;
880 		c = *(const unsigned char *)name;
881 
882 		hash = init_name_hash();
883 		do {
884 			name++;
885 			hash = partial_name_hash(c, hash);
886 			c = *(const unsigned char *)name;
887 		} while (c && (c != '/'));
888 		this.len = name - (const char *) this.name;
889 		this.hash = end_name_hash(hash);
890 
891 		/* remove trailing slashes? */
892 		if (!c)
893 			goto last_component;
894 		while (*++name == '/');
895 		if (!*name)
896 			goto last_with_slashes;
897 
898 		/*
899 		 * "." and ".." are special - ".." especially so because it has
900 		 * to be able to know about the current root directory and
901 		 * parent relationships.
902 		 */
903 		if (this.name[0] == '.') switch (this.len) {
904 			default:
905 				break;
906 			case 2:
907 				if (this.name[1] != '.')
908 					break;
909 				follow_dotdot(nd);
910 				inode = nd->path.dentry->d_inode;
911 				/* fallthrough */
912 			case 1:
913 				continue;
914 		}
915 		/*
916 		 * See if the low-level filesystem might want
917 		 * to use its own hash..
918 		 */
919 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
920 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
921 							    &this);
922 			if (err < 0)
923 				break;
924 		}
925 		/* This does the actual lookups.. */
926 		err = do_lookup(nd, &this, &next);
927 		if (err)
928 			break;
929 
930 		err = -ENOENT;
931 		inode = next.dentry->d_inode;
932 		if (!inode)
933 			goto out_dput;
934 		err = -ENOTDIR;
935 		if (!inode->i_op)
936 			goto out_dput;
937 
938 		if (inode->i_op->follow_link) {
939 			err = do_follow_link(&next, nd);
940 			if (err)
941 				goto return_err;
942 			err = -ENOENT;
943 			inode = nd->path.dentry->d_inode;
944 			if (!inode)
945 				break;
946 			err = -ENOTDIR;
947 			if (!inode->i_op)
948 				break;
949 		} else
950 			path_to_nameidata(&next, nd);
951 		err = -ENOTDIR;
952 		if (!inode->i_op->lookup)
953 			break;
954 		continue;
955 		/* here ends the main loop */
956 
957 last_with_slashes:
958 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
959 last_component:
960 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
961 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
962 		if (lookup_flags & LOOKUP_PARENT)
963 			goto lookup_parent;
964 		if (this.name[0] == '.') switch (this.len) {
965 			default:
966 				break;
967 			case 2:
968 				if (this.name[1] != '.')
969 					break;
970 				follow_dotdot(nd);
971 				inode = nd->path.dentry->d_inode;
972 				/* fallthrough */
973 			case 1:
974 				goto return_reval;
975 		}
976 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
977 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
978 							    &this);
979 			if (err < 0)
980 				break;
981 		}
982 		err = do_lookup(nd, &this, &next);
983 		if (err)
984 			break;
985 		inode = next.dentry->d_inode;
986 		if ((lookup_flags & LOOKUP_FOLLOW)
987 		    && inode && inode->i_op && inode->i_op->follow_link) {
988 			err = do_follow_link(&next, nd);
989 			if (err)
990 				goto return_err;
991 			inode = nd->path.dentry->d_inode;
992 		} else
993 			path_to_nameidata(&next, nd);
994 		err = -ENOENT;
995 		if (!inode)
996 			break;
997 		if (lookup_flags & LOOKUP_DIRECTORY) {
998 			err = -ENOTDIR;
999 			if (!inode->i_op || !inode->i_op->lookup)
1000 				break;
1001 		}
1002 		goto return_base;
1003 lookup_parent:
1004 		nd->last = this;
1005 		nd->last_type = LAST_NORM;
1006 		if (this.name[0] != '.')
1007 			goto return_base;
1008 		if (this.len == 1)
1009 			nd->last_type = LAST_DOT;
1010 		else if (this.len == 2 && this.name[1] == '.')
1011 			nd->last_type = LAST_DOTDOT;
1012 		else
1013 			goto return_base;
1014 return_reval:
1015 		/*
1016 		 * We bypassed the ordinary revalidation routines.
1017 		 * We may need to check the cached dentry for staleness.
1018 		 */
1019 		if (nd->path.dentry && nd->path.dentry->d_sb &&
1020 		    (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1021 			err = -ESTALE;
1022 			/* Note: we do not d_invalidate() */
1023 			if (!nd->path.dentry->d_op->d_revalidate(
1024 					nd->path.dentry, nd))
1025 				break;
1026 		}
1027 return_base:
1028 		return 0;
1029 out_dput:
1030 		path_put_conditional(&next, nd);
1031 		break;
1032 	}
1033 	path_put(&nd->path);
1034 return_err:
1035 	return err;
1036 }
1037 
1038 static int path_walk(const char *name, struct nameidata *nd)
1039 {
1040 	current->total_link_count = 0;
1041 	return link_path_walk(name, nd);
1042 }
1043 
1044 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1045 static int do_path_lookup(int dfd, const char *name,
1046 				unsigned int flags, struct nameidata *nd)
1047 {
1048 	int retval = 0;
1049 	int fput_needed;
1050 	struct file *file;
1051 	struct fs_struct *fs = current->fs;
1052 
1053 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1054 	nd->flags = flags;
1055 	nd->depth = 0;
1056 
1057 	if (*name=='/') {
1058 		read_lock(&fs->lock);
1059 		nd->path = fs->root;
1060 		path_get(&fs->root);
1061 		read_unlock(&fs->lock);
1062 	} else if (dfd == AT_FDCWD) {
1063 		read_lock(&fs->lock);
1064 		nd->path = fs->pwd;
1065 		path_get(&fs->pwd);
1066 		read_unlock(&fs->lock);
1067 	} else {
1068 		struct dentry *dentry;
1069 
1070 		file = fget_light(dfd, &fput_needed);
1071 		retval = -EBADF;
1072 		if (!file)
1073 			goto out_fail;
1074 
1075 		dentry = file->f_path.dentry;
1076 
1077 		retval = -ENOTDIR;
1078 		if (!S_ISDIR(dentry->d_inode->i_mode))
1079 			goto fput_fail;
1080 
1081 		retval = file_permission(file, MAY_EXEC);
1082 		if (retval)
1083 			goto fput_fail;
1084 
1085 		nd->path = file->f_path;
1086 		path_get(&file->f_path);
1087 
1088 		fput_light(file, fput_needed);
1089 	}
1090 
1091 	retval = path_walk(name, nd);
1092 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1093 				nd->path.dentry->d_inode))
1094 		audit_inode(name, nd->path.dentry);
1095 out_fail:
1096 	return retval;
1097 
1098 fput_fail:
1099 	fput_light(file, fput_needed);
1100 	goto out_fail;
1101 }
1102 
1103 int path_lookup(const char *name, unsigned int flags,
1104 			struct nameidata *nd)
1105 {
1106 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1107 }
1108 
1109 /**
1110  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1111  * @dentry:  pointer to dentry of the base directory
1112  * @mnt: pointer to vfs mount of the base directory
1113  * @name: pointer to file name
1114  * @flags: lookup flags
1115  * @nd: pointer to nameidata
1116  */
1117 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1118 		    const char *name, unsigned int flags,
1119 		    struct nameidata *nd)
1120 {
1121 	int retval;
1122 
1123 	/* same as do_path_lookup */
1124 	nd->last_type = LAST_ROOT;
1125 	nd->flags = flags;
1126 	nd->depth = 0;
1127 
1128 	nd->path.dentry = dentry;
1129 	nd->path.mnt = mnt;
1130 	path_get(&nd->path);
1131 
1132 	retval = path_walk(name, nd);
1133 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1134 				nd->path.dentry->d_inode))
1135 		audit_inode(name, nd->path.dentry);
1136 
1137 	return retval;
1138 
1139 }
1140 
1141 static int __path_lookup_intent_open(int dfd, const char *name,
1142 		unsigned int lookup_flags, struct nameidata *nd,
1143 		int open_flags, int create_mode)
1144 {
1145 	struct file *filp = get_empty_filp();
1146 	int err;
1147 
1148 	if (filp == NULL)
1149 		return -ENFILE;
1150 	nd->intent.open.file = filp;
1151 	nd->intent.open.flags = open_flags;
1152 	nd->intent.open.create_mode = create_mode;
1153 	err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1154 	if (IS_ERR(nd->intent.open.file)) {
1155 		if (err == 0) {
1156 			err = PTR_ERR(nd->intent.open.file);
1157 			path_put(&nd->path);
1158 		}
1159 	} else if (err != 0)
1160 		release_open_intent(nd);
1161 	return err;
1162 }
1163 
1164 /**
1165  * path_lookup_open - lookup a file path with open intent
1166  * @dfd: the directory to use as base, or AT_FDCWD
1167  * @name: pointer to file name
1168  * @lookup_flags: lookup intent flags
1169  * @nd: pointer to nameidata
1170  * @open_flags: open intent flags
1171  */
1172 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1173 		struct nameidata *nd, int open_flags)
1174 {
1175 	return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1176 			open_flags, 0);
1177 }
1178 
1179 /**
1180  * path_lookup_create - lookup a file path with open + create intent
1181  * @dfd: the directory to use as base, or AT_FDCWD
1182  * @name: pointer to file name
1183  * @lookup_flags: lookup intent flags
1184  * @nd: pointer to nameidata
1185  * @open_flags: open intent flags
1186  * @create_mode: create intent flags
1187  */
1188 static int path_lookup_create(int dfd, const char *name,
1189 			      unsigned int lookup_flags, struct nameidata *nd,
1190 			      int open_flags, int create_mode)
1191 {
1192 	return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1193 			nd, open_flags, create_mode);
1194 }
1195 
1196 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1197 		struct nameidata *nd, int open_flags)
1198 {
1199 	char *tmp = getname(name);
1200 	int err = PTR_ERR(tmp);
1201 
1202 	if (!IS_ERR(tmp)) {
1203 		err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1204 		putname(tmp);
1205 	}
1206 	return err;
1207 }
1208 
1209 static struct dentry *__lookup_hash(struct qstr *name,
1210 		struct dentry *base, struct nameidata *nd)
1211 {
1212 	struct dentry *dentry;
1213 	struct inode *inode;
1214 	int err;
1215 
1216 	inode = base->d_inode;
1217 
1218 	/*
1219 	 * See if the low-level filesystem might want
1220 	 * to use its own hash..
1221 	 */
1222 	if (base->d_op && base->d_op->d_hash) {
1223 		err = base->d_op->d_hash(base, name);
1224 		dentry = ERR_PTR(err);
1225 		if (err < 0)
1226 			goto out;
1227 	}
1228 
1229 	dentry = cached_lookup(base, name, nd);
1230 	if (!dentry) {
1231 		struct dentry *new;
1232 
1233 		/* Don't create child dentry for a dead directory. */
1234 		dentry = ERR_PTR(-ENOENT);
1235 		if (IS_DEADDIR(inode))
1236 			goto out;
1237 
1238 		new = d_alloc(base, name);
1239 		dentry = ERR_PTR(-ENOMEM);
1240 		if (!new)
1241 			goto out;
1242 		dentry = inode->i_op->lookup(inode, new, nd);
1243 		if (!dentry)
1244 			dentry = new;
1245 		else
1246 			dput(new);
1247 	}
1248 out:
1249 	return dentry;
1250 }
1251 
1252 /*
1253  * Restricted form of lookup. Doesn't follow links, single-component only,
1254  * needs parent already locked. Doesn't follow mounts.
1255  * SMP-safe.
1256  */
1257 static struct dentry *lookup_hash(struct nameidata *nd)
1258 {
1259 	int err;
1260 
1261 	err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1262 	if (err)
1263 		return ERR_PTR(err);
1264 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1265 }
1266 
1267 static int __lookup_one_len(const char *name, struct qstr *this,
1268 		struct dentry *base, int len)
1269 {
1270 	unsigned long hash;
1271 	unsigned int c;
1272 
1273 	this->name = name;
1274 	this->len = len;
1275 	if (!len)
1276 		return -EACCES;
1277 
1278 	hash = init_name_hash();
1279 	while (len--) {
1280 		c = *(const unsigned char *)name++;
1281 		if (c == '/' || c == '\0')
1282 			return -EACCES;
1283 		hash = partial_name_hash(c, hash);
1284 	}
1285 	this->hash = end_name_hash(hash);
1286 	return 0;
1287 }
1288 
1289 /**
1290  * lookup_one_len - filesystem helper to lookup single pathname component
1291  * @name:	pathname component to lookup
1292  * @base:	base directory to lookup from
1293  * @len:	maximum length @len should be interpreted to
1294  *
1295  * Note that this routine is purely a helper for filesystem usage and should
1296  * not be called by generic code.  Also note that by using this function the
1297  * nameidata argument is passed to the filesystem methods and a filesystem
1298  * using this helper needs to be prepared for that.
1299  */
1300 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1301 {
1302 	int err;
1303 	struct qstr this;
1304 
1305 	err = __lookup_one_len(name, &this, base, len);
1306 	if (err)
1307 		return ERR_PTR(err);
1308 
1309 	err = inode_permission(base->d_inode, MAY_EXEC);
1310 	if (err)
1311 		return ERR_PTR(err);
1312 	return __lookup_hash(&this, base, NULL);
1313 }
1314 
1315 /**
1316  * lookup_one_noperm - bad hack for sysfs
1317  * @name:	pathname component to lookup
1318  * @base:	base directory to lookup from
1319  *
1320  * This is a variant of lookup_one_len that doesn't perform any permission
1321  * checks.   It's a horrible hack to work around the braindead sysfs
1322  * architecture and should not be used anywhere else.
1323  *
1324  * DON'T USE THIS FUNCTION EVER, thanks.
1325  */
1326 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1327 {
1328 	int err;
1329 	struct qstr this;
1330 
1331 	err = __lookup_one_len(name, &this, base, strlen(name));
1332 	if (err)
1333 		return ERR_PTR(err);
1334 	return __lookup_hash(&this, base, NULL);
1335 }
1336 
1337 int __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1338 			    struct nameidata *nd)
1339 {
1340 	char *tmp = getname(name);
1341 	int err = PTR_ERR(tmp);
1342 
1343 	if (!IS_ERR(tmp)) {
1344 		err = do_path_lookup(dfd, tmp, flags, nd);
1345 		putname(tmp);
1346 	}
1347 	return err;
1348 }
1349 
1350 int __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1351 {
1352 	return __user_walk_fd(AT_FDCWD, name, flags, nd);
1353 }
1354 
1355 /*
1356  * It's inline, so penalty for filesystems that don't use sticky bit is
1357  * minimal.
1358  */
1359 static inline int check_sticky(struct inode *dir, struct inode *inode)
1360 {
1361 	if (!(dir->i_mode & S_ISVTX))
1362 		return 0;
1363 	if (inode->i_uid == current->fsuid)
1364 		return 0;
1365 	if (dir->i_uid == current->fsuid)
1366 		return 0;
1367 	return !capable(CAP_FOWNER);
1368 }
1369 
1370 /*
1371  *	Check whether we can remove a link victim from directory dir, check
1372  *  whether the type of victim is right.
1373  *  1. We can't do it if dir is read-only (done in permission())
1374  *  2. We should have write and exec permissions on dir
1375  *  3. We can't remove anything from append-only dir
1376  *  4. We can't do anything with immutable dir (done in permission())
1377  *  5. If the sticky bit on dir is set we should either
1378  *	a. be owner of dir, or
1379  *	b. be owner of victim, or
1380  *	c. have CAP_FOWNER capability
1381  *  6. If the victim is append-only or immutable we can't do antyhing with
1382  *     links pointing to it.
1383  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1384  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1385  *  9. We can't remove a root or mountpoint.
1386  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1387  *     nfs_async_unlink().
1388  */
1389 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1390 {
1391 	int error;
1392 
1393 	if (!victim->d_inode)
1394 		return -ENOENT;
1395 
1396 	BUG_ON(victim->d_parent->d_inode != dir);
1397 	audit_inode_child(victim->d_name.name, victim, dir);
1398 
1399 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1400 	if (error)
1401 		return error;
1402 	if (IS_APPEND(dir))
1403 		return -EPERM;
1404 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1405 	    IS_IMMUTABLE(victim->d_inode))
1406 		return -EPERM;
1407 	if (isdir) {
1408 		if (!S_ISDIR(victim->d_inode->i_mode))
1409 			return -ENOTDIR;
1410 		if (IS_ROOT(victim))
1411 			return -EBUSY;
1412 	} else if (S_ISDIR(victim->d_inode->i_mode))
1413 		return -EISDIR;
1414 	if (IS_DEADDIR(dir))
1415 		return -ENOENT;
1416 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1417 		return -EBUSY;
1418 	return 0;
1419 }
1420 
1421 /*	Check whether we can create an object with dentry child in directory
1422  *  dir.
1423  *  1. We can't do it if child already exists (open has special treatment for
1424  *     this case, but since we are inlined it's OK)
1425  *  2. We can't do it if dir is read-only (done in permission())
1426  *  3. We should have write and exec permissions on dir
1427  *  4. We can't do it if dir is immutable (done in permission())
1428  */
1429 static inline int may_create(struct inode *dir, struct dentry *child,
1430 			     struct nameidata *nd)
1431 {
1432 	if (child->d_inode)
1433 		return -EEXIST;
1434 	if (IS_DEADDIR(dir))
1435 		return -ENOENT;
1436 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1437 }
1438 
1439 /*
1440  * O_DIRECTORY translates into forcing a directory lookup.
1441  */
1442 static inline int lookup_flags(unsigned int f)
1443 {
1444 	unsigned long retval = LOOKUP_FOLLOW;
1445 
1446 	if (f & O_NOFOLLOW)
1447 		retval &= ~LOOKUP_FOLLOW;
1448 
1449 	if (f & O_DIRECTORY)
1450 		retval |= LOOKUP_DIRECTORY;
1451 
1452 	return retval;
1453 }
1454 
1455 /*
1456  * p1 and p2 should be directories on the same fs.
1457  */
1458 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1459 {
1460 	struct dentry *p;
1461 
1462 	if (p1 == p2) {
1463 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1464 		return NULL;
1465 	}
1466 
1467 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1468 
1469 	for (p = p1; p->d_parent != p; p = p->d_parent) {
1470 		if (p->d_parent == p2) {
1471 			mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1472 			mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1473 			return p;
1474 		}
1475 	}
1476 
1477 	for (p = p2; p->d_parent != p; p = p->d_parent) {
1478 		if (p->d_parent == p1) {
1479 			mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1480 			mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1481 			return p;
1482 		}
1483 	}
1484 
1485 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1486 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1487 	return NULL;
1488 }
1489 
1490 void unlock_rename(struct dentry *p1, struct dentry *p2)
1491 {
1492 	mutex_unlock(&p1->d_inode->i_mutex);
1493 	if (p1 != p2) {
1494 		mutex_unlock(&p2->d_inode->i_mutex);
1495 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1496 	}
1497 }
1498 
1499 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1500 		struct nameidata *nd)
1501 {
1502 	int error = may_create(dir, dentry, nd);
1503 
1504 	if (error)
1505 		return error;
1506 
1507 	if (!dir->i_op || !dir->i_op->create)
1508 		return -EACCES;	/* shouldn't it be ENOSYS? */
1509 	mode &= S_IALLUGO;
1510 	mode |= S_IFREG;
1511 	error = security_inode_create(dir, dentry, mode);
1512 	if (error)
1513 		return error;
1514 	DQUOT_INIT(dir);
1515 	error = dir->i_op->create(dir, dentry, mode, nd);
1516 	if (!error)
1517 		fsnotify_create(dir, dentry);
1518 	return error;
1519 }
1520 
1521 int may_open(struct nameidata *nd, int acc_mode, int flag)
1522 {
1523 	struct dentry *dentry = nd->path.dentry;
1524 	struct inode *inode = dentry->d_inode;
1525 	int error;
1526 
1527 	if (!inode)
1528 		return -ENOENT;
1529 
1530 	if (S_ISLNK(inode->i_mode))
1531 		return -ELOOP;
1532 
1533 	if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1534 		return -EISDIR;
1535 
1536 	/*
1537 	 * FIFO's, sockets and device files are special: they don't
1538 	 * actually live on the filesystem itself, and as such you
1539 	 * can write to them even if the filesystem is read-only.
1540 	 */
1541 	if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1542 	    	flag &= ~O_TRUNC;
1543 	} else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1544 		if (nd->path.mnt->mnt_flags & MNT_NODEV)
1545 			return -EACCES;
1546 
1547 		flag &= ~O_TRUNC;
1548 	}
1549 
1550 	error = vfs_permission(nd, acc_mode);
1551 	if (error)
1552 		return error;
1553 	/*
1554 	 * An append-only file must be opened in append mode for writing.
1555 	 */
1556 	if (IS_APPEND(inode)) {
1557 		if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1558 			return -EPERM;
1559 		if (flag & O_TRUNC)
1560 			return -EPERM;
1561 	}
1562 
1563 	/* O_NOATIME can only be set by the owner or superuser */
1564 	if (flag & O_NOATIME)
1565 		if (!is_owner_or_cap(inode))
1566 			return -EPERM;
1567 
1568 	/*
1569 	 * Ensure there are no outstanding leases on the file.
1570 	 */
1571 	error = break_lease(inode, flag);
1572 	if (error)
1573 		return error;
1574 
1575 	if (flag & O_TRUNC) {
1576 		error = get_write_access(inode);
1577 		if (error)
1578 			return error;
1579 
1580 		/*
1581 		 * Refuse to truncate files with mandatory locks held on them.
1582 		 */
1583 		error = locks_verify_locked(inode);
1584 		if (!error) {
1585 			DQUOT_INIT(inode);
1586 
1587 			error = do_truncate(dentry, 0,
1588 					    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1589 					    NULL);
1590 		}
1591 		put_write_access(inode);
1592 		if (error)
1593 			return error;
1594 	} else
1595 		if (flag & FMODE_WRITE)
1596 			DQUOT_INIT(inode);
1597 
1598 	return 0;
1599 }
1600 
1601 /*
1602  * Be careful about ever adding any more callers of this
1603  * function.  Its flags must be in the namei format, not
1604  * what get passed to sys_open().
1605  */
1606 static int __open_namei_create(struct nameidata *nd, struct path *path,
1607 				int flag, int mode)
1608 {
1609 	int error;
1610 	struct dentry *dir = nd->path.dentry;
1611 
1612 	if (!IS_POSIXACL(dir->d_inode))
1613 		mode &= ~current->fs->umask;
1614 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1615 	mutex_unlock(&dir->d_inode->i_mutex);
1616 	dput(nd->path.dentry);
1617 	nd->path.dentry = path->dentry;
1618 	if (error)
1619 		return error;
1620 	/* Don't check for write permission, don't truncate */
1621 	return may_open(nd, 0, flag & ~O_TRUNC);
1622 }
1623 
1624 /*
1625  * Note that while the flag value (low two bits) for sys_open means:
1626  *	00 - read-only
1627  *	01 - write-only
1628  *	10 - read-write
1629  *	11 - special
1630  * it is changed into
1631  *	00 - no permissions needed
1632  *	01 - read-permission
1633  *	10 - write-permission
1634  *	11 - read-write
1635  * for the internal routines (ie open_namei()/follow_link() etc)
1636  * This is more logical, and also allows the 00 "no perm needed"
1637  * to be used for symlinks (where the permissions are checked
1638  * later).
1639  *
1640 */
1641 static inline int open_to_namei_flags(int flag)
1642 {
1643 	if ((flag+1) & O_ACCMODE)
1644 		flag++;
1645 	return flag;
1646 }
1647 
1648 static int open_will_write_to_fs(int flag, struct inode *inode)
1649 {
1650 	/*
1651 	 * We'll never write to the fs underlying
1652 	 * a device file.
1653 	 */
1654 	if (special_file(inode->i_mode))
1655 		return 0;
1656 	return (flag & O_TRUNC);
1657 }
1658 
1659 /*
1660  * Note that the low bits of the passed in "open_flag"
1661  * are not the same as in the local variable "flag". See
1662  * open_to_namei_flags() for more details.
1663  */
1664 struct file *do_filp_open(int dfd, const char *pathname,
1665 		int open_flag, int mode)
1666 {
1667 	struct file *filp;
1668 	struct nameidata nd;
1669 	int acc_mode, error;
1670 	struct path path;
1671 	struct dentry *dir;
1672 	int count = 0;
1673 	int will_write;
1674 	int flag = open_to_namei_flags(open_flag);
1675 
1676 	acc_mode = MAY_OPEN | ACC_MODE(flag);
1677 
1678 	/* O_TRUNC implies we need access checks for write permissions */
1679 	if (flag & O_TRUNC)
1680 		acc_mode |= MAY_WRITE;
1681 
1682 	/* Allow the LSM permission hook to distinguish append
1683 	   access from general write access. */
1684 	if (flag & O_APPEND)
1685 		acc_mode |= MAY_APPEND;
1686 
1687 	/*
1688 	 * The simplest case - just a plain lookup.
1689 	 */
1690 	if (!(flag & O_CREAT)) {
1691 		error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1692 					 &nd, flag);
1693 		if (error)
1694 			return ERR_PTR(error);
1695 		goto ok;
1696 	}
1697 
1698 	/*
1699 	 * Create - we need to know the parent.
1700 	 */
1701 	error = path_lookup_create(dfd, pathname, LOOKUP_PARENT,
1702 				   &nd, flag, mode);
1703 	if (error)
1704 		return ERR_PTR(error);
1705 
1706 	/*
1707 	 * We have the parent and last component. First of all, check
1708 	 * that we are not asked to creat(2) an obvious directory - that
1709 	 * will not do.
1710 	 */
1711 	error = -EISDIR;
1712 	if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1713 		goto exit;
1714 
1715 	dir = nd.path.dentry;
1716 	nd.flags &= ~LOOKUP_PARENT;
1717 	mutex_lock(&dir->d_inode->i_mutex);
1718 	path.dentry = lookup_hash(&nd);
1719 	path.mnt = nd.path.mnt;
1720 
1721 do_last:
1722 	error = PTR_ERR(path.dentry);
1723 	if (IS_ERR(path.dentry)) {
1724 		mutex_unlock(&dir->d_inode->i_mutex);
1725 		goto exit;
1726 	}
1727 
1728 	if (IS_ERR(nd.intent.open.file)) {
1729 		error = PTR_ERR(nd.intent.open.file);
1730 		goto exit_mutex_unlock;
1731 	}
1732 
1733 	/* Negative dentry, just create the file */
1734 	if (!path.dentry->d_inode) {
1735 		/*
1736 		 * This write is needed to ensure that a
1737 		 * ro->rw transition does not occur between
1738 		 * the time when the file is created and when
1739 		 * a permanent write count is taken through
1740 		 * the 'struct file' in nameidata_to_filp().
1741 		 */
1742 		error = mnt_want_write(nd.path.mnt);
1743 		if (error)
1744 			goto exit_mutex_unlock;
1745 		error = __open_namei_create(&nd, &path, flag, mode);
1746 		if (error) {
1747 			mnt_drop_write(nd.path.mnt);
1748 			goto exit;
1749 		}
1750 		filp = nameidata_to_filp(&nd, open_flag);
1751 		mnt_drop_write(nd.path.mnt);
1752 		return filp;
1753 	}
1754 
1755 	/*
1756 	 * It already exists.
1757 	 */
1758 	mutex_unlock(&dir->d_inode->i_mutex);
1759 	audit_inode(pathname, path.dentry);
1760 
1761 	error = -EEXIST;
1762 	if (flag & O_EXCL)
1763 		goto exit_dput;
1764 
1765 	if (__follow_mount(&path)) {
1766 		error = -ELOOP;
1767 		if (flag & O_NOFOLLOW)
1768 			goto exit_dput;
1769 	}
1770 
1771 	error = -ENOENT;
1772 	if (!path.dentry->d_inode)
1773 		goto exit_dput;
1774 	if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1775 		goto do_link;
1776 
1777 	path_to_nameidata(&path, &nd);
1778 	error = -EISDIR;
1779 	if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1780 		goto exit;
1781 ok:
1782 	/*
1783 	 * Consider:
1784 	 * 1. may_open() truncates a file
1785 	 * 2. a rw->ro mount transition occurs
1786 	 * 3. nameidata_to_filp() fails due to
1787 	 *    the ro mount.
1788 	 * That would be inconsistent, and should
1789 	 * be avoided. Taking this mnt write here
1790 	 * ensures that (2) can not occur.
1791 	 */
1792 	will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1793 	if (will_write) {
1794 		error = mnt_want_write(nd.path.mnt);
1795 		if (error)
1796 			goto exit;
1797 	}
1798 	error = may_open(&nd, acc_mode, flag);
1799 	if (error) {
1800 		if (will_write)
1801 			mnt_drop_write(nd.path.mnt);
1802 		goto exit;
1803 	}
1804 	filp = nameidata_to_filp(&nd, open_flag);
1805 	/*
1806 	 * It is now safe to drop the mnt write
1807 	 * because the filp has had a write taken
1808 	 * on its behalf.
1809 	 */
1810 	if (will_write)
1811 		mnt_drop_write(nd.path.mnt);
1812 	return filp;
1813 
1814 exit_mutex_unlock:
1815 	mutex_unlock(&dir->d_inode->i_mutex);
1816 exit_dput:
1817 	path_put_conditional(&path, &nd);
1818 exit:
1819 	if (!IS_ERR(nd.intent.open.file))
1820 		release_open_intent(&nd);
1821 	path_put(&nd.path);
1822 	return ERR_PTR(error);
1823 
1824 do_link:
1825 	error = -ELOOP;
1826 	if (flag & O_NOFOLLOW)
1827 		goto exit_dput;
1828 	/*
1829 	 * This is subtle. Instead of calling do_follow_link() we do the
1830 	 * thing by hands. The reason is that this way we have zero link_count
1831 	 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1832 	 * After that we have the parent and last component, i.e.
1833 	 * we are in the same situation as after the first path_walk().
1834 	 * Well, almost - if the last component is normal we get its copy
1835 	 * stored in nd->last.name and we will have to putname() it when we
1836 	 * are done. Procfs-like symlinks just set LAST_BIND.
1837 	 */
1838 	nd.flags |= LOOKUP_PARENT;
1839 	error = security_inode_follow_link(path.dentry, &nd);
1840 	if (error)
1841 		goto exit_dput;
1842 	error = __do_follow_link(&path, &nd);
1843 	if (error) {
1844 		/* Does someone understand code flow here? Or it is only
1845 		 * me so stupid? Anathema to whoever designed this non-sense
1846 		 * with "intent.open".
1847 		 */
1848 		release_open_intent(&nd);
1849 		return ERR_PTR(error);
1850 	}
1851 	nd.flags &= ~LOOKUP_PARENT;
1852 	if (nd.last_type == LAST_BIND)
1853 		goto ok;
1854 	error = -EISDIR;
1855 	if (nd.last_type != LAST_NORM)
1856 		goto exit;
1857 	if (nd.last.name[nd.last.len]) {
1858 		__putname(nd.last.name);
1859 		goto exit;
1860 	}
1861 	error = -ELOOP;
1862 	if (count++==32) {
1863 		__putname(nd.last.name);
1864 		goto exit;
1865 	}
1866 	dir = nd.path.dentry;
1867 	mutex_lock(&dir->d_inode->i_mutex);
1868 	path.dentry = lookup_hash(&nd);
1869 	path.mnt = nd.path.mnt;
1870 	__putname(nd.last.name);
1871 	goto do_last;
1872 }
1873 
1874 /**
1875  * filp_open - open file and return file pointer
1876  *
1877  * @filename:	path to open
1878  * @flags:	open flags as per the open(2) second argument
1879  * @mode:	mode for the new file if O_CREAT is set, else ignored
1880  *
1881  * This is the helper to open a file from kernelspace if you really
1882  * have to.  But in generally you should not do this, so please move
1883  * along, nothing to see here..
1884  */
1885 struct file *filp_open(const char *filename, int flags, int mode)
1886 {
1887 	return do_filp_open(AT_FDCWD, filename, flags, mode);
1888 }
1889 EXPORT_SYMBOL(filp_open);
1890 
1891 /**
1892  * lookup_create - lookup a dentry, creating it if it doesn't exist
1893  * @nd: nameidata info
1894  * @is_dir: directory flag
1895  *
1896  * Simple function to lookup and return a dentry and create it
1897  * if it doesn't exist.  Is SMP-safe.
1898  *
1899  * Returns with nd->path.dentry->d_inode->i_mutex locked.
1900  */
1901 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1902 {
1903 	struct dentry *dentry = ERR_PTR(-EEXIST);
1904 
1905 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1906 	/*
1907 	 * Yucky last component or no last component at all?
1908 	 * (foo/., foo/.., /////)
1909 	 */
1910 	if (nd->last_type != LAST_NORM)
1911 		goto fail;
1912 	nd->flags &= ~LOOKUP_PARENT;
1913 	nd->flags |= LOOKUP_CREATE;
1914 	nd->intent.open.flags = O_EXCL;
1915 
1916 	/*
1917 	 * Do the final lookup.
1918 	 */
1919 	dentry = lookup_hash(nd);
1920 	if (IS_ERR(dentry))
1921 		goto fail;
1922 
1923 	if (dentry->d_inode)
1924 		goto eexist;
1925 	/*
1926 	 * Special case - lookup gave negative, but... we had foo/bar/
1927 	 * From the vfs_mknod() POV we just have a negative dentry -
1928 	 * all is fine. Let's be bastards - you had / on the end, you've
1929 	 * been asking for (non-existent) directory. -ENOENT for you.
1930 	 */
1931 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1932 		dput(dentry);
1933 		dentry = ERR_PTR(-ENOENT);
1934 	}
1935 	return dentry;
1936 eexist:
1937 	dput(dentry);
1938 	dentry = ERR_PTR(-EEXIST);
1939 fail:
1940 	return dentry;
1941 }
1942 EXPORT_SYMBOL_GPL(lookup_create);
1943 
1944 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1945 {
1946 	int error = may_create(dir, dentry, NULL);
1947 
1948 	if (error)
1949 		return error;
1950 
1951 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1952 		return -EPERM;
1953 
1954 	if (!dir->i_op || !dir->i_op->mknod)
1955 		return -EPERM;
1956 
1957 	error = devcgroup_inode_mknod(mode, dev);
1958 	if (error)
1959 		return error;
1960 
1961 	error = security_inode_mknod(dir, dentry, mode, dev);
1962 	if (error)
1963 		return error;
1964 
1965 	DQUOT_INIT(dir);
1966 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1967 	if (!error)
1968 		fsnotify_create(dir, dentry);
1969 	return error;
1970 }
1971 
1972 static int may_mknod(mode_t mode)
1973 {
1974 	switch (mode & S_IFMT) {
1975 	case S_IFREG:
1976 	case S_IFCHR:
1977 	case S_IFBLK:
1978 	case S_IFIFO:
1979 	case S_IFSOCK:
1980 	case 0: /* zero mode translates to S_IFREG */
1981 		return 0;
1982 	case S_IFDIR:
1983 		return -EPERM;
1984 	default:
1985 		return -EINVAL;
1986 	}
1987 }
1988 
1989 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1990 				unsigned dev)
1991 {
1992 	int error = 0;
1993 	char * tmp;
1994 	struct dentry * dentry;
1995 	struct nameidata nd;
1996 
1997 	if (S_ISDIR(mode))
1998 		return -EPERM;
1999 	tmp = getname(filename);
2000 	if (IS_ERR(tmp))
2001 		return PTR_ERR(tmp);
2002 
2003 	error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2004 	if (error)
2005 		goto out;
2006 	dentry = lookup_create(&nd, 0);
2007 	if (IS_ERR(dentry)) {
2008 		error = PTR_ERR(dentry);
2009 		goto out_unlock;
2010 	}
2011 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2012 		mode &= ~current->fs->umask;
2013 	error = may_mknod(mode);
2014 	if (error)
2015 		goto out_dput;
2016 	error = mnt_want_write(nd.path.mnt);
2017 	if (error)
2018 		goto out_dput;
2019 	switch (mode & S_IFMT) {
2020 		case 0: case S_IFREG:
2021 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2022 			break;
2023 		case S_IFCHR: case S_IFBLK:
2024 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2025 					new_decode_dev(dev));
2026 			break;
2027 		case S_IFIFO: case S_IFSOCK:
2028 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2029 			break;
2030 	}
2031 	mnt_drop_write(nd.path.mnt);
2032 out_dput:
2033 	dput(dentry);
2034 out_unlock:
2035 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2036 	path_put(&nd.path);
2037 out:
2038 	putname(tmp);
2039 
2040 	return error;
2041 }
2042 
2043 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
2044 {
2045 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2046 }
2047 
2048 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2049 {
2050 	int error = may_create(dir, dentry, NULL);
2051 
2052 	if (error)
2053 		return error;
2054 
2055 	if (!dir->i_op || !dir->i_op->mkdir)
2056 		return -EPERM;
2057 
2058 	mode &= (S_IRWXUGO|S_ISVTX);
2059 	error = security_inode_mkdir(dir, dentry, mode);
2060 	if (error)
2061 		return error;
2062 
2063 	DQUOT_INIT(dir);
2064 	error = dir->i_op->mkdir(dir, dentry, mode);
2065 	if (!error)
2066 		fsnotify_mkdir(dir, dentry);
2067 	return error;
2068 }
2069 
2070 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2071 {
2072 	int error = 0;
2073 	char * tmp;
2074 	struct dentry *dentry;
2075 	struct nameidata nd;
2076 
2077 	tmp = getname(pathname);
2078 	error = PTR_ERR(tmp);
2079 	if (IS_ERR(tmp))
2080 		goto out_err;
2081 
2082 	error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2083 	if (error)
2084 		goto out;
2085 	dentry = lookup_create(&nd, 1);
2086 	error = PTR_ERR(dentry);
2087 	if (IS_ERR(dentry))
2088 		goto out_unlock;
2089 
2090 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2091 		mode &= ~current->fs->umask;
2092 	error = mnt_want_write(nd.path.mnt);
2093 	if (error)
2094 		goto out_dput;
2095 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2096 	mnt_drop_write(nd.path.mnt);
2097 out_dput:
2098 	dput(dentry);
2099 out_unlock:
2100 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2101 	path_put(&nd.path);
2102 out:
2103 	putname(tmp);
2104 out_err:
2105 	return error;
2106 }
2107 
2108 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2109 {
2110 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2111 }
2112 
2113 /*
2114  * We try to drop the dentry early: we should have
2115  * a usage count of 2 if we're the only user of this
2116  * dentry, and if that is true (possibly after pruning
2117  * the dcache), then we drop the dentry now.
2118  *
2119  * A low-level filesystem can, if it choses, legally
2120  * do a
2121  *
2122  *	if (!d_unhashed(dentry))
2123  *		return -EBUSY;
2124  *
2125  * if it cannot handle the case of removing a directory
2126  * that is still in use by something else..
2127  */
2128 void dentry_unhash(struct dentry *dentry)
2129 {
2130 	dget(dentry);
2131 	shrink_dcache_parent(dentry);
2132 	spin_lock(&dcache_lock);
2133 	spin_lock(&dentry->d_lock);
2134 	if (atomic_read(&dentry->d_count) == 2)
2135 		__d_drop(dentry);
2136 	spin_unlock(&dentry->d_lock);
2137 	spin_unlock(&dcache_lock);
2138 }
2139 
2140 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2141 {
2142 	int error = may_delete(dir, dentry, 1);
2143 
2144 	if (error)
2145 		return error;
2146 
2147 	if (!dir->i_op || !dir->i_op->rmdir)
2148 		return -EPERM;
2149 
2150 	DQUOT_INIT(dir);
2151 
2152 	mutex_lock(&dentry->d_inode->i_mutex);
2153 	dentry_unhash(dentry);
2154 	if (d_mountpoint(dentry))
2155 		error = -EBUSY;
2156 	else {
2157 		error = security_inode_rmdir(dir, dentry);
2158 		if (!error) {
2159 			error = dir->i_op->rmdir(dir, dentry);
2160 			if (!error)
2161 				dentry->d_inode->i_flags |= S_DEAD;
2162 		}
2163 	}
2164 	mutex_unlock(&dentry->d_inode->i_mutex);
2165 	if (!error) {
2166 		d_delete(dentry);
2167 	}
2168 	dput(dentry);
2169 
2170 	return error;
2171 }
2172 
2173 static long do_rmdir(int dfd, const char __user *pathname)
2174 {
2175 	int error = 0;
2176 	char * name;
2177 	struct dentry *dentry;
2178 	struct nameidata nd;
2179 
2180 	name = getname(pathname);
2181 	if(IS_ERR(name))
2182 		return PTR_ERR(name);
2183 
2184 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2185 	if (error)
2186 		goto exit;
2187 
2188 	switch(nd.last_type) {
2189 		case LAST_DOTDOT:
2190 			error = -ENOTEMPTY;
2191 			goto exit1;
2192 		case LAST_DOT:
2193 			error = -EINVAL;
2194 			goto exit1;
2195 		case LAST_ROOT:
2196 			error = -EBUSY;
2197 			goto exit1;
2198 	}
2199 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2200 	dentry = lookup_hash(&nd);
2201 	error = PTR_ERR(dentry);
2202 	if (IS_ERR(dentry))
2203 		goto exit2;
2204 	error = mnt_want_write(nd.path.mnt);
2205 	if (error)
2206 		goto exit3;
2207 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2208 	mnt_drop_write(nd.path.mnt);
2209 exit3:
2210 	dput(dentry);
2211 exit2:
2212 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2213 exit1:
2214 	path_put(&nd.path);
2215 exit:
2216 	putname(name);
2217 	return error;
2218 }
2219 
2220 asmlinkage long sys_rmdir(const char __user *pathname)
2221 {
2222 	return do_rmdir(AT_FDCWD, pathname);
2223 }
2224 
2225 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2226 {
2227 	int error = may_delete(dir, dentry, 0);
2228 
2229 	if (error)
2230 		return error;
2231 
2232 	if (!dir->i_op || !dir->i_op->unlink)
2233 		return -EPERM;
2234 
2235 	DQUOT_INIT(dir);
2236 
2237 	mutex_lock(&dentry->d_inode->i_mutex);
2238 	if (d_mountpoint(dentry))
2239 		error = -EBUSY;
2240 	else {
2241 		error = security_inode_unlink(dir, dentry);
2242 		if (!error)
2243 			error = dir->i_op->unlink(dir, dentry);
2244 	}
2245 	mutex_unlock(&dentry->d_inode->i_mutex);
2246 
2247 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2248 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2249 		fsnotify_link_count(dentry->d_inode);
2250 		d_delete(dentry);
2251 	}
2252 
2253 	return error;
2254 }
2255 
2256 /*
2257  * Make sure that the actual truncation of the file will occur outside its
2258  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2259  * writeout happening, and we don't want to prevent access to the directory
2260  * while waiting on the I/O.
2261  */
2262 static long do_unlinkat(int dfd, const char __user *pathname)
2263 {
2264 	int error = 0;
2265 	char * name;
2266 	struct dentry *dentry;
2267 	struct nameidata nd;
2268 	struct inode *inode = NULL;
2269 
2270 	name = getname(pathname);
2271 	if(IS_ERR(name))
2272 		return PTR_ERR(name);
2273 
2274 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2275 	if (error)
2276 		goto exit;
2277 	error = -EISDIR;
2278 	if (nd.last_type != LAST_NORM)
2279 		goto exit1;
2280 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2281 	dentry = lookup_hash(&nd);
2282 	error = PTR_ERR(dentry);
2283 	if (!IS_ERR(dentry)) {
2284 		/* Why not before? Because we want correct error value */
2285 		if (nd.last.name[nd.last.len])
2286 			goto slashes;
2287 		inode = dentry->d_inode;
2288 		if (inode)
2289 			atomic_inc(&inode->i_count);
2290 		error = mnt_want_write(nd.path.mnt);
2291 		if (error)
2292 			goto exit2;
2293 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2294 		mnt_drop_write(nd.path.mnt);
2295 	exit2:
2296 		dput(dentry);
2297 	}
2298 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2299 	if (inode)
2300 		iput(inode);	/* truncate the inode here */
2301 exit1:
2302 	path_put(&nd.path);
2303 exit:
2304 	putname(name);
2305 	return error;
2306 
2307 slashes:
2308 	error = !dentry->d_inode ? -ENOENT :
2309 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2310 	goto exit2;
2311 }
2312 
2313 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2314 {
2315 	if ((flag & ~AT_REMOVEDIR) != 0)
2316 		return -EINVAL;
2317 
2318 	if (flag & AT_REMOVEDIR)
2319 		return do_rmdir(dfd, pathname);
2320 
2321 	return do_unlinkat(dfd, pathname);
2322 }
2323 
2324 asmlinkage long sys_unlink(const char __user *pathname)
2325 {
2326 	return do_unlinkat(AT_FDCWD, pathname);
2327 }
2328 
2329 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2330 {
2331 	int error = may_create(dir, dentry, NULL);
2332 
2333 	if (error)
2334 		return error;
2335 
2336 	if (!dir->i_op || !dir->i_op->symlink)
2337 		return -EPERM;
2338 
2339 	error = security_inode_symlink(dir, dentry, oldname);
2340 	if (error)
2341 		return error;
2342 
2343 	DQUOT_INIT(dir);
2344 	error = dir->i_op->symlink(dir, dentry, oldname);
2345 	if (!error)
2346 		fsnotify_create(dir, dentry);
2347 	return error;
2348 }
2349 
2350 asmlinkage long sys_symlinkat(const char __user *oldname,
2351 			      int newdfd, const char __user *newname)
2352 {
2353 	int error = 0;
2354 	char * from;
2355 	char * to;
2356 	struct dentry *dentry;
2357 	struct nameidata nd;
2358 
2359 	from = getname(oldname);
2360 	if(IS_ERR(from))
2361 		return PTR_ERR(from);
2362 	to = getname(newname);
2363 	error = PTR_ERR(to);
2364 	if (IS_ERR(to))
2365 		goto out_putname;
2366 
2367 	error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2368 	if (error)
2369 		goto out;
2370 	dentry = lookup_create(&nd, 0);
2371 	error = PTR_ERR(dentry);
2372 	if (IS_ERR(dentry))
2373 		goto out_unlock;
2374 
2375 	error = mnt_want_write(nd.path.mnt);
2376 	if (error)
2377 		goto out_dput;
2378 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2379 	mnt_drop_write(nd.path.mnt);
2380 out_dput:
2381 	dput(dentry);
2382 out_unlock:
2383 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2384 	path_put(&nd.path);
2385 out:
2386 	putname(to);
2387 out_putname:
2388 	putname(from);
2389 	return error;
2390 }
2391 
2392 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2393 {
2394 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2395 }
2396 
2397 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2398 {
2399 	struct inode *inode = old_dentry->d_inode;
2400 	int error;
2401 
2402 	if (!inode)
2403 		return -ENOENT;
2404 
2405 	error = may_create(dir, new_dentry, NULL);
2406 	if (error)
2407 		return error;
2408 
2409 	if (dir->i_sb != inode->i_sb)
2410 		return -EXDEV;
2411 
2412 	/*
2413 	 * A link to an append-only or immutable file cannot be created.
2414 	 */
2415 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2416 		return -EPERM;
2417 	if (!dir->i_op || !dir->i_op->link)
2418 		return -EPERM;
2419 	if (S_ISDIR(inode->i_mode))
2420 		return -EPERM;
2421 
2422 	error = security_inode_link(old_dentry, dir, new_dentry);
2423 	if (error)
2424 		return error;
2425 
2426 	mutex_lock(&inode->i_mutex);
2427 	DQUOT_INIT(dir);
2428 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2429 	mutex_unlock(&inode->i_mutex);
2430 	if (!error)
2431 		fsnotify_link(dir, inode, new_dentry);
2432 	return error;
2433 }
2434 
2435 /*
2436  * Hardlinks are often used in delicate situations.  We avoid
2437  * security-related surprises by not following symlinks on the
2438  * newname.  --KAB
2439  *
2440  * We don't follow them on the oldname either to be compatible
2441  * with linux 2.0, and to avoid hard-linking to directories
2442  * and other special files.  --ADM
2443  */
2444 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2445 			   int newdfd, const char __user *newname,
2446 			   int flags)
2447 {
2448 	struct dentry *new_dentry;
2449 	struct nameidata nd, old_nd;
2450 	int error;
2451 	char * to;
2452 
2453 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2454 		return -EINVAL;
2455 
2456 	to = getname(newname);
2457 	if (IS_ERR(to))
2458 		return PTR_ERR(to);
2459 
2460 	error = __user_walk_fd(olddfd, oldname,
2461 			       flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2462 			       &old_nd);
2463 	if (error)
2464 		goto exit;
2465 	error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2466 	if (error)
2467 		goto out;
2468 	error = -EXDEV;
2469 	if (old_nd.path.mnt != nd.path.mnt)
2470 		goto out_release;
2471 	new_dentry = lookup_create(&nd, 0);
2472 	error = PTR_ERR(new_dentry);
2473 	if (IS_ERR(new_dentry))
2474 		goto out_unlock;
2475 	error = mnt_want_write(nd.path.mnt);
2476 	if (error)
2477 		goto out_dput;
2478 	error = vfs_link(old_nd.path.dentry, nd.path.dentry->d_inode, new_dentry);
2479 	mnt_drop_write(nd.path.mnt);
2480 out_dput:
2481 	dput(new_dentry);
2482 out_unlock:
2483 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2484 out_release:
2485 	path_put(&nd.path);
2486 out:
2487 	path_put(&old_nd.path);
2488 exit:
2489 	putname(to);
2490 
2491 	return error;
2492 }
2493 
2494 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2495 {
2496 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2497 }
2498 
2499 /*
2500  * The worst of all namespace operations - renaming directory. "Perverted"
2501  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2502  * Problems:
2503  *	a) we can get into loop creation. Check is done in is_subdir().
2504  *	b) race potential - two innocent renames can create a loop together.
2505  *	   That's where 4.4 screws up. Current fix: serialization on
2506  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2507  *	   story.
2508  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2509  *	   And that - after we got ->i_mutex on parents (until then we don't know
2510  *	   whether the target exists).  Solution: try to be smart with locking
2511  *	   order for inodes.  We rely on the fact that tree topology may change
2512  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2513  *	   move will be locked.  Thus we can rank directories by the tree
2514  *	   (ancestors first) and rank all non-directories after them.
2515  *	   That works since everybody except rename does "lock parent, lookup,
2516  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2517  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2518  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2519  *	   we'd better make sure that there's no link(2) for them.
2520  *	d) some filesystems don't support opened-but-unlinked directories,
2521  *	   either because of layout or because they are not ready to deal with
2522  *	   all cases correctly. The latter will be fixed (taking this sort of
2523  *	   stuff into VFS), but the former is not going away. Solution: the same
2524  *	   trick as in rmdir().
2525  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2526  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2527  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2528  *	   ->i_mutex on parents, which works but leads to some truely excessive
2529  *	   locking].
2530  */
2531 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2532 			  struct inode *new_dir, struct dentry *new_dentry)
2533 {
2534 	int error = 0;
2535 	struct inode *target;
2536 
2537 	/*
2538 	 * If we are going to change the parent - check write permissions,
2539 	 * we'll need to flip '..'.
2540 	 */
2541 	if (new_dir != old_dir) {
2542 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2543 		if (error)
2544 			return error;
2545 	}
2546 
2547 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2548 	if (error)
2549 		return error;
2550 
2551 	target = new_dentry->d_inode;
2552 	if (target) {
2553 		mutex_lock(&target->i_mutex);
2554 		dentry_unhash(new_dentry);
2555 	}
2556 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2557 		error = -EBUSY;
2558 	else
2559 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2560 	if (target) {
2561 		if (!error)
2562 			target->i_flags |= S_DEAD;
2563 		mutex_unlock(&target->i_mutex);
2564 		if (d_unhashed(new_dentry))
2565 			d_rehash(new_dentry);
2566 		dput(new_dentry);
2567 	}
2568 	if (!error)
2569 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2570 			d_move(old_dentry,new_dentry);
2571 	return error;
2572 }
2573 
2574 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2575 			    struct inode *new_dir, struct dentry *new_dentry)
2576 {
2577 	struct inode *target;
2578 	int error;
2579 
2580 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2581 	if (error)
2582 		return error;
2583 
2584 	dget(new_dentry);
2585 	target = new_dentry->d_inode;
2586 	if (target)
2587 		mutex_lock(&target->i_mutex);
2588 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2589 		error = -EBUSY;
2590 	else
2591 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2592 	if (!error) {
2593 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2594 			d_move(old_dentry, new_dentry);
2595 	}
2596 	if (target)
2597 		mutex_unlock(&target->i_mutex);
2598 	dput(new_dentry);
2599 	return error;
2600 }
2601 
2602 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2603 	       struct inode *new_dir, struct dentry *new_dentry)
2604 {
2605 	int error;
2606 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2607 	const char *old_name;
2608 
2609 	if (old_dentry->d_inode == new_dentry->d_inode)
2610  		return 0;
2611 
2612 	error = may_delete(old_dir, old_dentry, is_dir);
2613 	if (error)
2614 		return error;
2615 
2616 	if (!new_dentry->d_inode)
2617 		error = may_create(new_dir, new_dentry, NULL);
2618 	else
2619 		error = may_delete(new_dir, new_dentry, is_dir);
2620 	if (error)
2621 		return error;
2622 
2623 	if (!old_dir->i_op || !old_dir->i_op->rename)
2624 		return -EPERM;
2625 
2626 	DQUOT_INIT(old_dir);
2627 	DQUOT_INIT(new_dir);
2628 
2629 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2630 
2631 	if (is_dir)
2632 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2633 	else
2634 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2635 	if (!error) {
2636 		const char *new_name = old_dentry->d_name.name;
2637 		fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2638 			      new_dentry->d_inode, old_dentry);
2639 	}
2640 	fsnotify_oldname_free(old_name);
2641 
2642 	return error;
2643 }
2644 
2645 static int do_rename(int olddfd, const char *oldname,
2646 			int newdfd, const char *newname)
2647 {
2648 	int error = 0;
2649 	struct dentry * old_dir, * new_dir;
2650 	struct dentry * old_dentry, *new_dentry;
2651 	struct dentry * trap;
2652 	struct nameidata oldnd, newnd;
2653 
2654 	error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2655 	if (error)
2656 		goto exit;
2657 
2658 	error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2659 	if (error)
2660 		goto exit1;
2661 
2662 	error = -EXDEV;
2663 	if (oldnd.path.mnt != newnd.path.mnt)
2664 		goto exit2;
2665 
2666 	old_dir = oldnd.path.dentry;
2667 	error = -EBUSY;
2668 	if (oldnd.last_type != LAST_NORM)
2669 		goto exit2;
2670 
2671 	new_dir = newnd.path.dentry;
2672 	if (newnd.last_type != LAST_NORM)
2673 		goto exit2;
2674 
2675 	trap = lock_rename(new_dir, old_dir);
2676 
2677 	old_dentry = lookup_hash(&oldnd);
2678 	error = PTR_ERR(old_dentry);
2679 	if (IS_ERR(old_dentry))
2680 		goto exit3;
2681 	/* source must exist */
2682 	error = -ENOENT;
2683 	if (!old_dentry->d_inode)
2684 		goto exit4;
2685 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2686 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2687 		error = -ENOTDIR;
2688 		if (oldnd.last.name[oldnd.last.len])
2689 			goto exit4;
2690 		if (newnd.last.name[newnd.last.len])
2691 			goto exit4;
2692 	}
2693 	/* source should not be ancestor of target */
2694 	error = -EINVAL;
2695 	if (old_dentry == trap)
2696 		goto exit4;
2697 	new_dentry = lookup_hash(&newnd);
2698 	error = PTR_ERR(new_dentry);
2699 	if (IS_ERR(new_dentry))
2700 		goto exit4;
2701 	/* target should not be an ancestor of source */
2702 	error = -ENOTEMPTY;
2703 	if (new_dentry == trap)
2704 		goto exit5;
2705 
2706 	error = mnt_want_write(oldnd.path.mnt);
2707 	if (error)
2708 		goto exit5;
2709 	error = vfs_rename(old_dir->d_inode, old_dentry,
2710 				   new_dir->d_inode, new_dentry);
2711 	mnt_drop_write(oldnd.path.mnt);
2712 exit5:
2713 	dput(new_dentry);
2714 exit4:
2715 	dput(old_dentry);
2716 exit3:
2717 	unlock_rename(new_dir, old_dir);
2718 exit2:
2719 	path_put(&newnd.path);
2720 exit1:
2721 	path_put(&oldnd.path);
2722 exit:
2723 	return error;
2724 }
2725 
2726 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2727 			     int newdfd, const char __user *newname)
2728 {
2729 	int error;
2730 	char * from;
2731 	char * to;
2732 
2733 	from = getname(oldname);
2734 	if(IS_ERR(from))
2735 		return PTR_ERR(from);
2736 	to = getname(newname);
2737 	error = PTR_ERR(to);
2738 	if (!IS_ERR(to)) {
2739 		error = do_rename(olddfd, from, newdfd, to);
2740 		putname(to);
2741 	}
2742 	putname(from);
2743 	return error;
2744 }
2745 
2746 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2747 {
2748 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2749 }
2750 
2751 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2752 {
2753 	int len;
2754 
2755 	len = PTR_ERR(link);
2756 	if (IS_ERR(link))
2757 		goto out;
2758 
2759 	len = strlen(link);
2760 	if (len > (unsigned) buflen)
2761 		len = buflen;
2762 	if (copy_to_user(buffer, link, len))
2763 		len = -EFAULT;
2764 out:
2765 	return len;
2766 }
2767 
2768 /*
2769  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2770  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2771  * using) it for any given inode is up to filesystem.
2772  */
2773 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2774 {
2775 	struct nameidata nd;
2776 	void *cookie;
2777 	int res;
2778 
2779 	nd.depth = 0;
2780 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2781 	if (IS_ERR(cookie))
2782 		return PTR_ERR(cookie);
2783 
2784 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2785 	if (dentry->d_inode->i_op->put_link)
2786 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2787 	return res;
2788 }
2789 
2790 int vfs_follow_link(struct nameidata *nd, const char *link)
2791 {
2792 	return __vfs_follow_link(nd, link);
2793 }
2794 
2795 /* get the link contents into pagecache */
2796 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2797 {
2798 	struct page * page;
2799 	struct address_space *mapping = dentry->d_inode->i_mapping;
2800 	page = read_mapping_page(mapping, 0, NULL);
2801 	if (IS_ERR(page))
2802 		return (char*)page;
2803 	*ppage = page;
2804 	return kmap(page);
2805 }
2806 
2807 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2808 {
2809 	struct page *page = NULL;
2810 	char *s = page_getlink(dentry, &page);
2811 	int res = vfs_readlink(dentry,buffer,buflen,s);
2812 	if (page) {
2813 		kunmap(page);
2814 		page_cache_release(page);
2815 	}
2816 	return res;
2817 }
2818 
2819 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2820 {
2821 	struct page *page = NULL;
2822 	nd_set_link(nd, page_getlink(dentry, &page));
2823 	return page;
2824 }
2825 
2826 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2827 {
2828 	struct page *page = cookie;
2829 
2830 	if (page) {
2831 		kunmap(page);
2832 		page_cache_release(page);
2833 	}
2834 }
2835 
2836 int __page_symlink(struct inode *inode, const char *symname, int len,
2837 		gfp_t gfp_mask)
2838 {
2839 	struct address_space *mapping = inode->i_mapping;
2840 	struct page *page;
2841 	void *fsdata;
2842 	int err;
2843 	char *kaddr;
2844 
2845 retry:
2846 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
2847 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2848 	if (err)
2849 		goto fail;
2850 
2851 	kaddr = kmap_atomic(page, KM_USER0);
2852 	memcpy(kaddr, symname, len-1);
2853 	kunmap_atomic(kaddr, KM_USER0);
2854 
2855 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2856 							page, fsdata);
2857 	if (err < 0)
2858 		goto fail;
2859 	if (err < len-1)
2860 		goto retry;
2861 
2862 	mark_inode_dirty(inode);
2863 	return 0;
2864 fail:
2865 	return err;
2866 }
2867 
2868 int page_symlink(struct inode *inode, const char *symname, int len)
2869 {
2870 	return __page_symlink(inode, symname, len,
2871 			mapping_gfp_mask(inode->i_mapping));
2872 }
2873 
2874 const struct inode_operations page_symlink_inode_operations = {
2875 	.readlink	= generic_readlink,
2876 	.follow_link	= page_follow_link_light,
2877 	.put_link	= page_put_link,
2878 };
2879 
2880 EXPORT_SYMBOL(__user_walk);
2881 EXPORT_SYMBOL(__user_walk_fd);
2882 EXPORT_SYMBOL(follow_down);
2883 EXPORT_SYMBOL(follow_up);
2884 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2885 EXPORT_SYMBOL(getname);
2886 EXPORT_SYMBOL(lock_rename);
2887 EXPORT_SYMBOL(lookup_one_len);
2888 EXPORT_SYMBOL(page_follow_link_light);
2889 EXPORT_SYMBOL(page_put_link);
2890 EXPORT_SYMBOL(page_readlink);
2891 EXPORT_SYMBOL(__page_symlink);
2892 EXPORT_SYMBOL(page_symlink);
2893 EXPORT_SYMBOL(page_symlink_inode_operations);
2894 EXPORT_SYMBOL(path_lookup);
2895 EXPORT_SYMBOL(vfs_path_lookup);
2896 EXPORT_SYMBOL(inode_permission);
2897 EXPORT_SYMBOL(vfs_permission);
2898 EXPORT_SYMBOL(file_permission);
2899 EXPORT_SYMBOL(unlock_rename);
2900 EXPORT_SYMBOL(vfs_create);
2901 EXPORT_SYMBOL(vfs_follow_link);
2902 EXPORT_SYMBOL(vfs_link);
2903 EXPORT_SYMBOL(vfs_mkdir);
2904 EXPORT_SYMBOL(vfs_mknod);
2905 EXPORT_SYMBOL(generic_permission);
2906 EXPORT_SYMBOL(vfs_readlink);
2907 EXPORT_SYMBOL(vfs_rename);
2908 EXPORT_SYMBOL(vfs_rmdir);
2909 EXPORT_SYMBOL(vfs_symlink);
2910 EXPORT_SYMBOL(vfs_unlink);
2911 EXPORT_SYMBOL(dentry_unhash);
2912 EXPORT_SYMBOL(generic_readlink);
2913