xref: /openbmc/linux/fs/namei.c (revision a110343f0d6d41f68b7cf8c00b57a3172c67f816)
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <asm/uaccess.h>
35 
36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
37 
38 /* [Feb-1997 T. Schoebel-Theuer]
39  * Fundamental changes in the pathname lookup mechanisms (namei)
40  * were necessary because of omirr.  The reason is that omirr needs
41  * to know the _real_ pathname, not the user-supplied one, in case
42  * of symlinks (and also when transname replacements occur).
43  *
44  * The new code replaces the old recursive symlink resolution with
45  * an iterative one (in case of non-nested symlink chains).  It does
46  * this with calls to <fs>_follow_link().
47  * As a side effect, dir_namei(), _namei() and follow_link() are now
48  * replaced with a single function lookup_dentry() that can handle all
49  * the special cases of the former code.
50  *
51  * With the new dcache, the pathname is stored at each inode, at least as
52  * long as the refcount of the inode is positive.  As a side effect, the
53  * size of the dcache depends on the inode cache and thus is dynamic.
54  *
55  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
56  * resolution to correspond with current state of the code.
57  *
58  * Note that the symlink resolution is not *completely* iterative.
59  * There is still a significant amount of tail- and mid- recursion in
60  * the algorithm.  Also, note that <fs>_readlink() is not used in
61  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
62  * may return different results than <fs>_follow_link().  Many virtual
63  * filesystems (including /proc) exhibit this behavior.
64  */
65 
66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
67  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
68  * and the name already exists in form of a symlink, try to create the new
69  * name indicated by the symlink. The old code always complained that the
70  * name already exists, due to not following the symlink even if its target
71  * is nonexistent.  The new semantics affects also mknod() and link() when
72  * the name is a symlink pointing to a non-existant name.
73  *
74  * I don't know which semantics is the right one, since I have no access
75  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
76  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
77  * "old" one. Personally, I think the new semantics is much more logical.
78  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
79  * file does succeed in both HP-UX and SunOs, but not in Solaris
80  * and in the old Linux semantics.
81  */
82 
83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
84  * semantics.  See the comments in "open_namei" and "do_link" below.
85  *
86  * [10-Sep-98 Alan Modra] Another symlink change.
87  */
88 
89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
90  *	inside the path - always follow.
91  *	in the last component in creation/removal/renaming - never follow.
92  *	if LOOKUP_FOLLOW passed - follow.
93  *	if the pathname has trailing slashes - follow.
94  *	otherwise - don't follow.
95  * (applied in that order).
96  *
97  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
98  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
99  * During the 2.4 we need to fix the userland stuff depending on it -
100  * hopefully we will be able to get rid of that wart in 2.5. So far only
101  * XEmacs seems to be relying on it...
102  */
103 /*
104  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
105  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
106  * any extra contention...
107  */
108 
109 static int __link_path_walk(const char *name, struct nameidata *nd);
110 
111 /* In order to reduce some races, while at the same time doing additional
112  * checking and hopefully speeding things up, we copy filenames to the
113  * kernel data space before using them..
114  *
115  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116  * PATH_MAX includes the nul terminator --RR.
117  */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 	int retval;
121 	unsigned long len = PATH_MAX;
122 
123 	if (!segment_eq(get_fs(), KERNEL_DS)) {
124 		if ((unsigned long) filename >= TASK_SIZE)
125 			return -EFAULT;
126 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 			len = TASK_SIZE - (unsigned long) filename;
128 	}
129 
130 	retval = strncpy_from_user(page, filename, len);
131 	if (retval > 0) {
132 		if (retval < len)
133 			return 0;
134 		return -ENAMETOOLONG;
135 	} else if (!retval)
136 		retval = -ENOENT;
137 	return retval;
138 }
139 
140 char * getname(const char __user * filename)
141 {
142 	char *tmp, *result;
143 
144 	result = ERR_PTR(-ENOMEM);
145 	tmp = __getname();
146 	if (tmp)  {
147 		int retval = do_getname(filename, tmp);
148 
149 		result = tmp;
150 		if (retval < 0) {
151 			__putname(tmp);
152 			result = ERR_PTR(retval);
153 		}
154 	}
155 	audit_getname(result);
156 	return result;
157 }
158 
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 	if (unlikely(!audit_dummy_context()))
163 		audit_putname(name);
164 	else
165 		__putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169 
170 
171 /**
172  * generic_permission  -  check for access rights on a Posix-like filesystem
173  * @inode:	inode to check access rights for
174  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175  * @check_acl:	optional callback to check for Posix ACLs
176  *
177  * Used to check for read/write/execute permissions on a file.
178  * We use "fsuid" for this, letting us set arbitrary permissions
179  * for filesystem access without changing the "normal" uids which
180  * are used for other things..
181  */
182 int generic_permission(struct inode *inode, int mask,
183 		int (*check_acl)(struct inode *inode, int mask))
184 {
185 	umode_t			mode = inode->i_mode;
186 
187 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
188 
189 	if (current->fsuid == inode->i_uid)
190 		mode >>= 6;
191 	else {
192 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 			int error = check_acl(inode, mask);
194 			if (error == -EACCES)
195 				goto check_capabilities;
196 			else if (error != -EAGAIN)
197 				return error;
198 		}
199 
200 		if (in_group_p(inode->i_gid))
201 			mode >>= 3;
202 	}
203 
204 	/*
205 	 * If the DACs are ok we don't need any capability check.
206 	 */
207 	if ((mask & ~mode) == 0)
208 		return 0;
209 
210  check_capabilities:
211 	/*
212 	 * Read/write DACs are always overridable.
213 	 * Executable DACs are overridable if at least one exec bit is set.
214 	 */
215 	if (!(mask & MAY_EXEC) ||
216 	    (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
217 		if (capable(CAP_DAC_OVERRIDE))
218 			return 0;
219 
220 	/*
221 	 * Searching includes executable on directories, else just read.
222 	 */
223 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
224 		if (capable(CAP_DAC_READ_SEARCH))
225 			return 0;
226 
227 	return -EACCES;
228 }
229 
230 int permission(struct inode *inode, int mask, struct nameidata *nd)
231 {
232 	int retval;
233 	struct vfsmount *mnt = NULL;
234 
235 	if (nd)
236 		mnt = nd->path.mnt;
237 
238 	if (mask & MAY_WRITE) {
239 		umode_t mode = inode->i_mode;
240 
241 		/*
242 		 * Nobody gets write access to a read-only fs.
243 		 */
244 		if (IS_RDONLY(inode) &&
245 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
246 			return -EROFS;
247 
248 		/*
249 		 * Nobody gets write access to an immutable file.
250 		 */
251 		if (IS_IMMUTABLE(inode))
252 			return -EACCES;
253 	}
254 
255 	if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode)) {
256 		/*
257 		 * MAY_EXEC on regular files is denied if the fs is mounted
258 		 * with the "noexec" flag.
259 		 */
260 		if (mnt && (mnt->mnt_flags & MNT_NOEXEC))
261 			return -EACCES;
262 	}
263 
264 	/* Ordinary permission routines do not understand MAY_APPEND. */
265 	if (inode->i_op && inode->i_op->permission) {
266 		int extra = 0;
267 		if (nd) {
268 			if (nd->flags & LOOKUP_OPEN)
269 				extra |= MAY_OPEN;
270 		}
271 		retval = inode->i_op->permission(inode, mask | extra);
272 		if (!retval) {
273 			/*
274 			 * Exec permission on a regular file is denied if none
275 			 * of the execute bits are set.
276 			 *
277 			 * This check should be done by the ->permission()
278 			 * method.
279 			 */
280 			if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) &&
281 			    !(inode->i_mode & S_IXUGO))
282 				return -EACCES;
283 		}
284 	} else {
285 		retval = generic_permission(inode, mask, NULL);
286 	}
287 	if (retval)
288 		return retval;
289 
290 	retval = devcgroup_inode_permission(inode, mask);
291 	if (retval)
292 		return retval;
293 
294 	return security_inode_permission(inode,
295 			mask & (MAY_READ|MAY_WRITE|MAY_EXEC), nd);
296 }
297 
298 /**
299  * vfs_permission  -  check for access rights to a given path
300  * @nd:		lookup result that describes the path
301  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
302  *
303  * Used to check for read/write/execute permissions on a path.
304  * We use "fsuid" for this, letting us set arbitrary permissions
305  * for filesystem access without changing the "normal" uids which
306  * are used for other things.
307  */
308 int vfs_permission(struct nameidata *nd, int mask)
309 {
310 	return permission(nd->path.dentry->d_inode, mask, nd);
311 }
312 
313 /**
314  * file_permission  -  check for additional access rights to a given file
315  * @file:	file to check access rights for
316  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
317  *
318  * Used to check for read/write/execute permissions on an already opened
319  * file.
320  *
321  * Note:
322  *	Do not use this function in new code.  All access checks should
323  *	be done using vfs_permission().
324  */
325 int file_permission(struct file *file, int mask)
326 {
327 	return permission(file->f_path.dentry->d_inode, mask, NULL);
328 }
329 
330 /*
331  * get_write_access() gets write permission for a file.
332  * put_write_access() releases this write permission.
333  * This is used for regular files.
334  * We cannot support write (and maybe mmap read-write shared) accesses and
335  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
336  * can have the following values:
337  * 0: no writers, no VM_DENYWRITE mappings
338  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
339  * > 0: (i_writecount) users are writing to the file.
340  *
341  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
342  * except for the cases where we don't hold i_writecount yet. Then we need to
343  * use {get,deny}_write_access() - these functions check the sign and refuse
344  * to do the change if sign is wrong. Exclusion between them is provided by
345  * the inode->i_lock spinlock.
346  */
347 
348 int get_write_access(struct inode * inode)
349 {
350 	spin_lock(&inode->i_lock);
351 	if (atomic_read(&inode->i_writecount) < 0) {
352 		spin_unlock(&inode->i_lock);
353 		return -ETXTBSY;
354 	}
355 	atomic_inc(&inode->i_writecount);
356 	spin_unlock(&inode->i_lock);
357 
358 	return 0;
359 }
360 
361 int deny_write_access(struct file * file)
362 {
363 	struct inode *inode = file->f_path.dentry->d_inode;
364 
365 	spin_lock(&inode->i_lock);
366 	if (atomic_read(&inode->i_writecount) > 0) {
367 		spin_unlock(&inode->i_lock);
368 		return -ETXTBSY;
369 	}
370 	atomic_dec(&inode->i_writecount);
371 	spin_unlock(&inode->i_lock);
372 
373 	return 0;
374 }
375 
376 /**
377  * path_get - get a reference to a path
378  * @path: path to get the reference to
379  *
380  * Given a path increment the reference count to the dentry and the vfsmount.
381  */
382 void path_get(struct path *path)
383 {
384 	mntget(path->mnt);
385 	dget(path->dentry);
386 }
387 EXPORT_SYMBOL(path_get);
388 
389 /**
390  * path_put - put a reference to a path
391  * @path: path to put the reference to
392  *
393  * Given a path decrement the reference count to the dentry and the vfsmount.
394  */
395 void path_put(struct path *path)
396 {
397 	dput(path->dentry);
398 	mntput(path->mnt);
399 }
400 EXPORT_SYMBOL(path_put);
401 
402 /**
403  * release_open_intent - free up open intent resources
404  * @nd: pointer to nameidata
405  */
406 void release_open_intent(struct nameidata *nd)
407 {
408 	if (nd->intent.open.file->f_path.dentry == NULL)
409 		put_filp(nd->intent.open.file);
410 	else
411 		fput(nd->intent.open.file);
412 }
413 
414 static inline struct dentry *
415 do_revalidate(struct dentry *dentry, struct nameidata *nd)
416 {
417 	int status = dentry->d_op->d_revalidate(dentry, nd);
418 	if (unlikely(status <= 0)) {
419 		/*
420 		 * The dentry failed validation.
421 		 * If d_revalidate returned 0 attempt to invalidate
422 		 * the dentry otherwise d_revalidate is asking us
423 		 * to return a fail status.
424 		 */
425 		if (!status) {
426 			if (!d_invalidate(dentry)) {
427 				dput(dentry);
428 				dentry = NULL;
429 			}
430 		} else {
431 			dput(dentry);
432 			dentry = ERR_PTR(status);
433 		}
434 	}
435 	return dentry;
436 }
437 
438 /*
439  * Internal lookup() using the new generic dcache.
440  * SMP-safe
441  */
442 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
443 {
444 	struct dentry * dentry = __d_lookup(parent, name);
445 
446 	/* lockess __d_lookup may fail due to concurrent d_move()
447 	 * in some unrelated directory, so try with d_lookup
448 	 */
449 	if (!dentry)
450 		dentry = d_lookup(parent, name);
451 
452 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
453 		dentry = do_revalidate(dentry, nd);
454 
455 	return dentry;
456 }
457 
458 /*
459  * Short-cut version of permission(), for calling by
460  * path_walk(), when dcache lock is held.  Combines parts
461  * of permission() and generic_permission(), and tests ONLY for
462  * MAY_EXEC permission.
463  *
464  * If appropriate, check DAC only.  If not appropriate, or
465  * short-cut DAC fails, then call permission() to do more
466  * complete permission check.
467  */
468 static int exec_permission_lite(struct inode *inode,
469 				       struct nameidata *nd)
470 {
471 	umode_t	mode = inode->i_mode;
472 
473 	if (inode->i_op && inode->i_op->permission)
474 		return -EAGAIN;
475 
476 	if (current->fsuid == inode->i_uid)
477 		mode >>= 6;
478 	else if (in_group_p(inode->i_gid))
479 		mode >>= 3;
480 
481 	if (mode & MAY_EXEC)
482 		goto ok;
483 
484 	if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
485 		goto ok;
486 
487 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
488 		goto ok;
489 
490 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
491 		goto ok;
492 
493 	return -EACCES;
494 ok:
495 	return security_inode_permission(inode, MAY_EXEC, nd);
496 }
497 
498 /*
499  * This is called when everything else fails, and we actually have
500  * to go to the low-level filesystem to find out what we should do..
501  *
502  * We get the directory semaphore, and after getting that we also
503  * make sure that nobody added the entry to the dcache in the meantime..
504  * SMP-safe
505  */
506 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
507 {
508 	struct dentry * result;
509 	struct inode *dir = parent->d_inode;
510 
511 	mutex_lock(&dir->i_mutex);
512 	/*
513 	 * First re-do the cached lookup just in case it was created
514 	 * while we waited for the directory semaphore..
515 	 *
516 	 * FIXME! This could use version numbering or similar to
517 	 * avoid unnecessary cache lookups.
518 	 *
519 	 * The "dcache_lock" is purely to protect the RCU list walker
520 	 * from concurrent renames at this point (we mustn't get false
521 	 * negatives from the RCU list walk here, unlike the optimistic
522 	 * fast walk).
523 	 *
524 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
525 	 */
526 	result = d_lookup(parent, name);
527 	if (!result) {
528 		struct dentry *dentry;
529 
530 		/* Don't create child dentry for a dead directory. */
531 		result = ERR_PTR(-ENOENT);
532 		if (IS_DEADDIR(dir))
533 			goto out_unlock;
534 
535 		dentry = d_alloc(parent, name);
536 		result = ERR_PTR(-ENOMEM);
537 		if (dentry) {
538 			result = dir->i_op->lookup(dir, dentry, nd);
539 			if (result)
540 				dput(dentry);
541 			else
542 				result = dentry;
543 		}
544 out_unlock:
545 		mutex_unlock(&dir->i_mutex);
546 		return result;
547 	}
548 
549 	/*
550 	 * Uhhuh! Nasty case: the cache was re-populated while
551 	 * we waited on the semaphore. Need to revalidate.
552 	 */
553 	mutex_unlock(&dir->i_mutex);
554 	if (result->d_op && result->d_op->d_revalidate) {
555 		result = do_revalidate(result, nd);
556 		if (!result)
557 			result = ERR_PTR(-ENOENT);
558 	}
559 	return result;
560 }
561 
562 /* SMP-safe */
563 static __always_inline void
564 walk_init_root(const char *name, struct nameidata *nd)
565 {
566 	struct fs_struct *fs = current->fs;
567 
568 	read_lock(&fs->lock);
569 	nd->path = fs->root;
570 	path_get(&fs->root);
571 	read_unlock(&fs->lock);
572 }
573 
574 /*
575  * Wrapper to retry pathname resolution whenever the underlying
576  * file system returns an ESTALE.
577  *
578  * Retry the whole path once, forcing real lookup requests
579  * instead of relying on the dcache.
580  */
581 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
582 {
583 	struct path save = nd->path;
584 	int result;
585 
586 	/* make sure the stuff we saved doesn't go away */
587 	path_get(&save);
588 
589 	result = __link_path_walk(name, nd);
590 	if (result == -ESTALE) {
591 		/* nd->path had been dropped */
592 		nd->path = save;
593 		path_get(&nd->path);
594 		nd->flags |= LOOKUP_REVAL;
595 		result = __link_path_walk(name, nd);
596 	}
597 
598 	path_put(&save);
599 
600 	return result;
601 }
602 
603 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
604 {
605 	int res = 0;
606 	char *name;
607 	if (IS_ERR(link))
608 		goto fail;
609 
610 	if (*link == '/') {
611 		path_put(&nd->path);
612 		walk_init_root(link, nd);
613 	}
614 	res = link_path_walk(link, nd);
615 	if (nd->depth || res || nd->last_type!=LAST_NORM)
616 		return res;
617 	/*
618 	 * If it is an iterative symlinks resolution in open_namei() we
619 	 * have to copy the last component. And all that crap because of
620 	 * bloody create() on broken symlinks. Furrfu...
621 	 */
622 	name = __getname();
623 	if (unlikely(!name)) {
624 		path_put(&nd->path);
625 		return -ENOMEM;
626 	}
627 	strcpy(name, nd->last.name);
628 	nd->last.name = name;
629 	return 0;
630 fail:
631 	path_put(&nd->path);
632 	return PTR_ERR(link);
633 }
634 
635 static void path_put_conditional(struct path *path, struct nameidata *nd)
636 {
637 	dput(path->dentry);
638 	if (path->mnt != nd->path.mnt)
639 		mntput(path->mnt);
640 }
641 
642 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
643 {
644 	dput(nd->path.dentry);
645 	if (nd->path.mnt != path->mnt)
646 		mntput(nd->path.mnt);
647 	nd->path.mnt = path->mnt;
648 	nd->path.dentry = path->dentry;
649 }
650 
651 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
652 {
653 	int error;
654 	void *cookie;
655 	struct dentry *dentry = path->dentry;
656 
657 	touch_atime(path->mnt, dentry);
658 	nd_set_link(nd, NULL);
659 
660 	if (path->mnt != nd->path.mnt) {
661 		path_to_nameidata(path, nd);
662 		dget(dentry);
663 	}
664 	mntget(path->mnt);
665 	cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
666 	error = PTR_ERR(cookie);
667 	if (!IS_ERR(cookie)) {
668 		char *s = nd_get_link(nd);
669 		error = 0;
670 		if (s)
671 			error = __vfs_follow_link(nd, s);
672 		if (dentry->d_inode->i_op->put_link)
673 			dentry->d_inode->i_op->put_link(dentry, nd, cookie);
674 	}
675 	path_put(path);
676 
677 	return error;
678 }
679 
680 /*
681  * This limits recursive symlink follows to 8, while
682  * limiting consecutive symlinks to 40.
683  *
684  * Without that kind of total limit, nasty chains of consecutive
685  * symlinks can cause almost arbitrarily long lookups.
686  */
687 static inline int do_follow_link(struct path *path, struct nameidata *nd)
688 {
689 	int err = -ELOOP;
690 	if (current->link_count >= MAX_NESTED_LINKS)
691 		goto loop;
692 	if (current->total_link_count >= 40)
693 		goto loop;
694 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
695 	cond_resched();
696 	err = security_inode_follow_link(path->dentry, nd);
697 	if (err)
698 		goto loop;
699 	current->link_count++;
700 	current->total_link_count++;
701 	nd->depth++;
702 	err = __do_follow_link(path, nd);
703 	current->link_count--;
704 	nd->depth--;
705 	return err;
706 loop:
707 	path_put_conditional(path, nd);
708 	path_put(&nd->path);
709 	return err;
710 }
711 
712 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
713 {
714 	struct vfsmount *parent;
715 	struct dentry *mountpoint;
716 	spin_lock(&vfsmount_lock);
717 	parent=(*mnt)->mnt_parent;
718 	if (parent == *mnt) {
719 		spin_unlock(&vfsmount_lock);
720 		return 0;
721 	}
722 	mntget(parent);
723 	mountpoint=dget((*mnt)->mnt_mountpoint);
724 	spin_unlock(&vfsmount_lock);
725 	dput(*dentry);
726 	*dentry = mountpoint;
727 	mntput(*mnt);
728 	*mnt = parent;
729 	return 1;
730 }
731 
732 /* no need for dcache_lock, as serialization is taken care in
733  * namespace.c
734  */
735 static int __follow_mount(struct path *path)
736 {
737 	int res = 0;
738 	while (d_mountpoint(path->dentry)) {
739 		struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
740 		if (!mounted)
741 			break;
742 		dput(path->dentry);
743 		if (res)
744 			mntput(path->mnt);
745 		path->mnt = mounted;
746 		path->dentry = dget(mounted->mnt_root);
747 		res = 1;
748 	}
749 	return res;
750 }
751 
752 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
753 {
754 	while (d_mountpoint(*dentry)) {
755 		struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
756 		if (!mounted)
757 			break;
758 		dput(*dentry);
759 		mntput(*mnt);
760 		*mnt = mounted;
761 		*dentry = dget(mounted->mnt_root);
762 	}
763 }
764 
765 /* no need for dcache_lock, as serialization is taken care in
766  * namespace.c
767  */
768 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
769 {
770 	struct vfsmount *mounted;
771 
772 	mounted = lookup_mnt(*mnt, *dentry);
773 	if (mounted) {
774 		dput(*dentry);
775 		mntput(*mnt);
776 		*mnt = mounted;
777 		*dentry = dget(mounted->mnt_root);
778 		return 1;
779 	}
780 	return 0;
781 }
782 
783 static __always_inline void follow_dotdot(struct nameidata *nd)
784 {
785 	struct fs_struct *fs = current->fs;
786 
787 	while(1) {
788 		struct vfsmount *parent;
789 		struct dentry *old = nd->path.dentry;
790 
791                 read_lock(&fs->lock);
792 		if (nd->path.dentry == fs->root.dentry &&
793 		    nd->path.mnt == fs->root.mnt) {
794                         read_unlock(&fs->lock);
795 			break;
796 		}
797                 read_unlock(&fs->lock);
798 		spin_lock(&dcache_lock);
799 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
800 			nd->path.dentry = dget(nd->path.dentry->d_parent);
801 			spin_unlock(&dcache_lock);
802 			dput(old);
803 			break;
804 		}
805 		spin_unlock(&dcache_lock);
806 		spin_lock(&vfsmount_lock);
807 		parent = nd->path.mnt->mnt_parent;
808 		if (parent == nd->path.mnt) {
809 			spin_unlock(&vfsmount_lock);
810 			break;
811 		}
812 		mntget(parent);
813 		nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
814 		spin_unlock(&vfsmount_lock);
815 		dput(old);
816 		mntput(nd->path.mnt);
817 		nd->path.mnt = parent;
818 	}
819 	follow_mount(&nd->path.mnt, &nd->path.dentry);
820 }
821 
822 /*
823  *  It's more convoluted than I'd like it to be, but... it's still fairly
824  *  small and for now I'd prefer to have fast path as straight as possible.
825  *  It _is_ time-critical.
826  */
827 static int do_lookup(struct nameidata *nd, struct qstr *name,
828 		     struct path *path)
829 {
830 	struct vfsmount *mnt = nd->path.mnt;
831 	struct dentry *dentry = __d_lookup(nd->path.dentry, name);
832 
833 	if (!dentry)
834 		goto need_lookup;
835 	if (dentry->d_op && dentry->d_op->d_revalidate)
836 		goto need_revalidate;
837 done:
838 	path->mnt = mnt;
839 	path->dentry = dentry;
840 	__follow_mount(path);
841 	return 0;
842 
843 need_lookup:
844 	dentry = real_lookup(nd->path.dentry, name, nd);
845 	if (IS_ERR(dentry))
846 		goto fail;
847 	goto done;
848 
849 need_revalidate:
850 	dentry = do_revalidate(dentry, nd);
851 	if (!dentry)
852 		goto need_lookup;
853 	if (IS_ERR(dentry))
854 		goto fail;
855 	goto done;
856 
857 fail:
858 	return PTR_ERR(dentry);
859 }
860 
861 /*
862  * Name resolution.
863  * This is the basic name resolution function, turning a pathname into
864  * the final dentry. We expect 'base' to be positive and a directory.
865  *
866  * Returns 0 and nd will have valid dentry and mnt on success.
867  * Returns error and drops reference to input namei data on failure.
868  */
869 static int __link_path_walk(const char *name, struct nameidata *nd)
870 {
871 	struct path next;
872 	struct inode *inode;
873 	int err;
874 	unsigned int lookup_flags = nd->flags;
875 
876 	while (*name=='/')
877 		name++;
878 	if (!*name)
879 		goto return_reval;
880 
881 	inode = nd->path.dentry->d_inode;
882 	if (nd->depth)
883 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
884 
885 	/* At this point we know we have a real path component. */
886 	for(;;) {
887 		unsigned long hash;
888 		struct qstr this;
889 		unsigned int c;
890 
891 		nd->flags |= LOOKUP_CONTINUE;
892 		err = exec_permission_lite(inode, nd);
893 		if (err == -EAGAIN)
894 			err = vfs_permission(nd, MAY_EXEC);
895  		if (err)
896 			break;
897 
898 		this.name = name;
899 		c = *(const unsigned char *)name;
900 
901 		hash = init_name_hash();
902 		do {
903 			name++;
904 			hash = partial_name_hash(c, hash);
905 			c = *(const unsigned char *)name;
906 		} while (c && (c != '/'));
907 		this.len = name - (const char *) this.name;
908 		this.hash = end_name_hash(hash);
909 
910 		/* remove trailing slashes? */
911 		if (!c)
912 			goto last_component;
913 		while (*++name == '/');
914 		if (!*name)
915 			goto last_with_slashes;
916 
917 		/*
918 		 * "." and ".." are special - ".." especially so because it has
919 		 * to be able to know about the current root directory and
920 		 * parent relationships.
921 		 */
922 		if (this.name[0] == '.') switch (this.len) {
923 			default:
924 				break;
925 			case 2:
926 				if (this.name[1] != '.')
927 					break;
928 				follow_dotdot(nd);
929 				inode = nd->path.dentry->d_inode;
930 				/* fallthrough */
931 			case 1:
932 				continue;
933 		}
934 		/*
935 		 * See if the low-level filesystem might want
936 		 * to use its own hash..
937 		 */
938 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
939 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
940 							    &this);
941 			if (err < 0)
942 				break;
943 		}
944 		/* This does the actual lookups.. */
945 		err = do_lookup(nd, &this, &next);
946 		if (err)
947 			break;
948 
949 		err = -ENOENT;
950 		inode = next.dentry->d_inode;
951 		if (!inode)
952 			goto out_dput;
953 		err = -ENOTDIR;
954 		if (!inode->i_op)
955 			goto out_dput;
956 
957 		if (inode->i_op->follow_link) {
958 			err = do_follow_link(&next, nd);
959 			if (err)
960 				goto return_err;
961 			err = -ENOENT;
962 			inode = nd->path.dentry->d_inode;
963 			if (!inode)
964 				break;
965 			err = -ENOTDIR;
966 			if (!inode->i_op)
967 				break;
968 		} else
969 			path_to_nameidata(&next, nd);
970 		err = -ENOTDIR;
971 		if (!inode->i_op->lookup)
972 			break;
973 		continue;
974 		/* here ends the main loop */
975 
976 last_with_slashes:
977 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
978 last_component:
979 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
980 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
981 		if (lookup_flags & LOOKUP_PARENT)
982 			goto lookup_parent;
983 		if (this.name[0] == '.') switch (this.len) {
984 			default:
985 				break;
986 			case 2:
987 				if (this.name[1] != '.')
988 					break;
989 				follow_dotdot(nd);
990 				inode = nd->path.dentry->d_inode;
991 				/* fallthrough */
992 			case 1:
993 				goto return_reval;
994 		}
995 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
996 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
997 							    &this);
998 			if (err < 0)
999 				break;
1000 		}
1001 		err = do_lookup(nd, &this, &next);
1002 		if (err)
1003 			break;
1004 		inode = next.dentry->d_inode;
1005 		if ((lookup_flags & LOOKUP_FOLLOW)
1006 		    && inode && inode->i_op && inode->i_op->follow_link) {
1007 			err = do_follow_link(&next, nd);
1008 			if (err)
1009 				goto return_err;
1010 			inode = nd->path.dentry->d_inode;
1011 		} else
1012 			path_to_nameidata(&next, nd);
1013 		err = -ENOENT;
1014 		if (!inode)
1015 			break;
1016 		if (lookup_flags & LOOKUP_DIRECTORY) {
1017 			err = -ENOTDIR;
1018 			if (!inode->i_op || !inode->i_op->lookup)
1019 				break;
1020 		}
1021 		goto return_base;
1022 lookup_parent:
1023 		nd->last = this;
1024 		nd->last_type = LAST_NORM;
1025 		if (this.name[0] != '.')
1026 			goto return_base;
1027 		if (this.len == 1)
1028 			nd->last_type = LAST_DOT;
1029 		else if (this.len == 2 && this.name[1] == '.')
1030 			nd->last_type = LAST_DOTDOT;
1031 		else
1032 			goto return_base;
1033 return_reval:
1034 		/*
1035 		 * We bypassed the ordinary revalidation routines.
1036 		 * We may need to check the cached dentry for staleness.
1037 		 */
1038 		if (nd->path.dentry && nd->path.dentry->d_sb &&
1039 		    (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1040 			err = -ESTALE;
1041 			/* Note: we do not d_invalidate() */
1042 			if (!nd->path.dentry->d_op->d_revalidate(
1043 					nd->path.dentry, nd))
1044 				break;
1045 		}
1046 return_base:
1047 		return 0;
1048 out_dput:
1049 		path_put_conditional(&next, nd);
1050 		break;
1051 	}
1052 	path_put(&nd->path);
1053 return_err:
1054 	return err;
1055 }
1056 
1057 static int path_walk(const char *name, struct nameidata *nd)
1058 {
1059 	current->total_link_count = 0;
1060 	return link_path_walk(name, nd);
1061 }
1062 
1063 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1064 static int do_path_lookup(int dfd, const char *name,
1065 				unsigned int flags, struct nameidata *nd)
1066 {
1067 	int retval = 0;
1068 	int fput_needed;
1069 	struct file *file;
1070 	struct fs_struct *fs = current->fs;
1071 
1072 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1073 	nd->flags = flags;
1074 	nd->depth = 0;
1075 
1076 	if (*name=='/') {
1077 		read_lock(&fs->lock);
1078 		nd->path = fs->root;
1079 		path_get(&fs->root);
1080 		read_unlock(&fs->lock);
1081 	} else if (dfd == AT_FDCWD) {
1082 		read_lock(&fs->lock);
1083 		nd->path = fs->pwd;
1084 		path_get(&fs->pwd);
1085 		read_unlock(&fs->lock);
1086 	} else {
1087 		struct dentry *dentry;
1088 
1089 		file = fget_light(dfd, &fput_needed);
1090 		retval = -EBADF;
1091 		if (!file)
1092 			goto out_fail;
1093 
1094 		dentry = file->f_path.dentry;
1095 
1096 		retval = -ENOTDIR;
1097 		if (!S_ISDIR(dentry->d_inode->i_mode))
1098 			goto fput_fail;
1099 
1100 		retval = file_permission(file, MAY_EXEC);
1101 		if (retval)
1102 			goto fput_fail;
1103 
1104 		nd->path = file->f_path;
1105 		path_get(&file->f_path);
1106 
1107 		fput_light(file, fput_needed);
1108 	}
1109 
1110 	retval = path_walk(name, nd);
1111 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1112 				nd->path.dentry->d_inode))
1113 		audit_inode(name, nd->path.dentry);
1114 out_fail:
1115 	return retval;
1116 
1117 fput_fail:
1118 	fput_light(file, fput_needed);
1119 	goto out_fail;
1120 }
1121 
1122 int path_lookup(const char *name, unsigned int flags,
1123 			struct nameidata *nd)
1124 {
1125 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1126 }
1127 
1128 /**
1129  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1130  * @dentry:  pointer to dentry of the base directory
1131  * @mnt: pointer to vfs mount of the base directory
1132  * @name: pointer to file name
1133  * @flags: lookup flags
1134  * @nd: pointer to nameidata
1135  */
1136 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1137 		    const char *name, unsigned int flags,
1138 		    struct nameidata *nd)
1139 {
1140 	int retval;
1141 
1142 	/* same as do_path_lookup */
1143 	nd->last_type = LAST_ROOT;
1144 	nd->flags = flags;
1145 	nd->depth = 0;
1146 
1147 	nd->path.dentry = dentry;
1148 	nd->path.mnt = mnt;
1149 	path_get(&nd->path);
1150 
1151 	retval = path_walk(name, nd);
1152 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1153 				nd->path.dentry->d_inode))
1154 		audit_inode(name, nd->path.dentry);
1155 
1156 	return retval;
1157 
1158 }
1159 
1160 static int __path_lookup_intent_open(int dfd, const char *name,
1161 		unsigned int lookup_flags, struct nameidata *nd,
1162 		int open_flags, int create_mode)
1163 {
1164 	struct file *filp = get_empty_filp();
1165 	int err;
1166 
1167 	if (filp == NULL)
1168 		return -ENFILE;
1169 	nd->intent.open.file = filp;
1170 	nd->intent.open.flags = open_flags;
1171 	nd->intent.open.create_mode = create_mode;
1172 	err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1173 	if (IS_ERR(nd->intent.open.file)) {
1174 		if (err == 0) {
1175 			err = PTR_ERR(nd->intent.open.file);
1176 			path_put(&nd->path);
1177 		}
1178 	} else if (err != 0)
1179 		release_open_intent(nd);
1180 	return err;
1181 }
1182 
1183 /**
1184  * path_lookup_open - lookup a file path with open intent
1185  * @dfd: the directory to use as base, or AT_FDCWD
1186  * @name: pointer to file name
1187  * @lookup_flags: lookup intent flags
1188  * @nd: pointer to nameidata
1189  * @open_flags: open intent flags
1190  */
1191 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1192 		struct nameidata *nd, int open_flags)
1193 {
1194 	return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1195 			open_flags, 0);
1196 }
1197 
1198 /**
1199  * path_lookup_create - lookup a file path with open + create intent
1200  * @dfd: the directory to use as base, or AT_FDCWD
1201  * @name: pointer to file name
1202  * @lookup_flags: lookup intent flags
1203  * @nd: pointer to nameidata
1204  * @open_flags: open intent flags
1205  * @create_mode: create intent flags
1206  */
1207 static int path_lookup_create(int dfd, const char *name,
1208 			      unsigned int lookup_flags, struct nameidata *nd,
1209 			      int open_flags, int create_mode)
1210 {
1211 	return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1212 			nd, open_flags, create_mode);
1213 }
1214 
1215 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1216 		struct nameidata *nd, int open_flags)
1217 {
1218 	char *tmp = getname(name);
1219 	int err = PTR_ERR(tmp);
1220 
1221 	if (!IS_ERR(tmp)) {
1222 		err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1223 		putname(tmp);
1224 	}
1225 	return err;
1226 }
1227 
1228 static struct dentry *__lookup_hash(struct qstr *name,
1229 		struct dentry *base, struct nameidata *nd)
1230 {
1231 	struct dentry *dentry;
1232 	struct inode *inode;
1233 	int err;
1234 
1235 	inode = base->d_inode;
1236 
1237 	/*
1238 	 * See if the low-level filesystem might want
1239 	 * to use its own hash..
1240 	 */
1241 	if (base->d_op && base->d_op->d_hash) {
1242 		err = base->d_op->d_hash(base, name);
1243 		dentry = ERR_PTR(err);
1244 		if (err < 0)
1245 			goto out;
1246 	}
1247 
1248 	dentry = cached_lookup(base, name, nd);
1249 	if (!dentry) {
1250 		struct dentry *new;
1251 
1252 		/* Don't create child dentry for a dead directory. */
1253 		dentry = ERR_PTR(-ENOENT);
1254 		if (IS_DEADDIR(inode))
1255 			goto out;
1256 
1257 		new = d_alloc(base, name);
1258 		dentry = ERR_PTR(-ENOMEM);
1259 		if (!new)
1260 			goto out;
1261 		dentry = inode->i_op->lookup(inode, new, nd);
1262 		if (!dentry)
1263 			dentry = new;
1264 		else
1265 			dput(new);
1266 	}
1267 out:
1268 	return dentry;
1269 }
1270 
1271 /*
1272  * Restricted form of lookup. Doesn't follow links, single-component only,
1273  * needs parent already locked. Doesn't follow mounts.
1274  * SMP-safe.
1275  */
1276 static struct dentry *lookup_hash(struct nameidata *nd)
1277 {
1278 	int err;
1279 
1280 	err = permission(nd->path.dentry->d_inode, MAY_EXEC, nd);
1281 	if (err)
1282 		return ERR_PTR(err);
1283 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1284 }
1285 
1286 static int __lookup_one_len(const char *name, struct qstr *this,
1287 		struct dentry *base, int len)
1288 {
1289 	unsigned long hash;
1290 	unsigned int c;
1291 
1292 	this->name = name;
1293 	this->len = len;
1294 	if (!len)
1295 		return -EACCES;
1296 
1297 	hash = init_name_hash();
1298 	while (len--) {
1299 		c = *(const unsigned char *)name++;
1300 		if (c == '/' || c == '\0')
1301 			return -EACCES;
1302 		hash = partial_name_hash(c, hash);
1303 	}
1304 	this->hash = end_name_hash(hash);
1305 	return 0;
1306 }
1307 
1308 /**
1309  * lookup_one_len - filesystem helper to lookup single pathname component
1310  * @name:	pathname component to lookup
1311  * @base:	base directory to lookup from
1312  * @len:	maximum length @len should be interpreted to
1313  *
1314  * Note that this routine is purely a helper for filesystem usage and should
1315  * not be called by generic code.  Also note that by using this function the
1316  * nameidata argument is passed to the filesystem methods and a filesystem
1317  * using this helper needs to be prepared for that.
1318  */
1319 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1320 {
1321 	int err;
1322 	struct qstr this;
1323 
1324 	err = __lookup_one_len(name, &this, base, len);
1325 	if (err)
1326 		return ERR_PTR(err);
1327 
1328 	err = permission(base->d_inode, MAY_EXEC, NULL);
1329 	if (err)
1330 		return ERR_PTR(err);
1331 	return __lookup_hash(&this, base, NULL);
1332 }
1333 
1334 /**
1335  * lookup_one_noperm - bad hack for sysfs
1336  * @name:	pathname component to lookup
1337  * @base:	base directory to lookup from
1338  *
1339  * This is a variant of lookup_one_len that doesn't perform any permission
1340  * checks.   It's a horrible hack to work around the braindead sysfs
1341  * architecture and should not be used anywhere else.
1342  *
1343  * DON'T USE THIS FUNCTION EVER, thanks.
1344  */
1345 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1346 {
1347 	int err;
1348 	struct qstr this;
1349 
1350 	err = __lookup_one_len(name, &this, base, strlen(name));
1351 	if (err)
1352 		return ERR_PTR(err);
1353 	return __lookup_hash(&this, base, NULL);
1354 }
1355 
1356 int __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1357 			    struct nameidata *nd)
1358 {
1359 	char *tmp = getname(name);
1360 	int err = PTR_ERR(tmp);
1361 
1362 	if (!IS_ERR(tmp)) {
1363 		err = do_path_lookup(dfd, tmp, flags, nd);
1364 		putname(tmp);
1365 	}
1366 	return err;
1367 }
1368 
1369 int __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1370 {
1371 	return __user_walk_fd(AT_FDCWD, name, flags, nd);
1372 }
1373 
1374 /*
1375  * It's inline, so penalty for filesystems that don't use sticky bit is
1376  * minimal.
1377  */
1378 static inline int check_sticky(struct inode *dir, struct inode *inode)
1379 {
1380 	if (!(dir->i_mode & S_ISVTX))
1381 		return 0;
1382 	if (inode->i_uid == current->fsuid)
1383 		return 0;
1384 	if (dir->i_uid == current->fsuid)
1385 		return 0;
1386 	return !capable(CAP_FOWNER);
1387 }
1388 
1389 /*
1390  *	Check whether we can remove a link victim from directory dir, check
1391  *  whether the type of victim is right.
1392  *  1. We can't do it if dir is read-only (done in permission())
1393  *  2. We should have write and exec permissions on dir
1394  *  3. We can't remove anything from append-only dir
1395  *  4. We can't do anything with immutable dir (done in permission())
1396  *  5. If the sticky bit on dir is set we should either
1397  *	a. be owner of dir, or
1398  *	b. be owner of victim, or
1399  *	c. have CAP_FOWNER capability
1400  *  6. If the victim is append-only or immutable we can't do antyhing with
1401  *     links pointing to it.
1402  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1403  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1404  *  9. We can't remove a root or mountpoint.
1405  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1406  *     nfs_async_unlink().
1407  */
1408 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1409 {
1410 	int error;
1411 
1412 	if (!victim->d_inode)
1413 		return -ENOENT;
1414 
1415 	BUG_ON(victim->d_parent->d_inode != dir);
1416 	audit_inode_child(victim->d_name.name, victim, dir);
1417 
1418 	error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1419 	if (error)
1420 		return error;
1421 	if (IS_APPEND(dir))
1422 		return -EPERM;
1423 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1424 	    IS_IMMUTABLE(victim->d_inode))
1425 		return -EPERM;
1426 	if (isdir) {
1427 		if (!S_ISDIR(victim->d_inode->i_mode))
1428 			return -ENOTDIR;
1429 		if (IS_ROOT(victim))
1430 			return -EBUSY;
1431 	} else if (S_ISDIR(victim->d_inode->i_mode))
1432 		return -EISDIR;
1433 	if (IS_DEADDIR(dir))
1434 		return -ENOENT;
1435 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1436 		return -EBUSY;
1437 	return 0;
1438 }
1439 
1440 /*	Check whether we can create an object with dentry child in directory
1441  *  dir.
1442  *  1. We can't do it if child already exists (open has special treatment for
1443  *     this case, but since we are inlined it's OK)
1444  *  2. We can't do it if dir is read-only (done in permission())
1445  *  3. We should have write and exec permissions on dir
1446  *  4. We can't do it if dir is immutable (done in permission())
1447  */
1448 static inline int may_create(struct inode *dir, struct dentry *child,
1449 			     struct nameidata *nd)
1450 {
1451 	if (child->d_inode)
1452 		return -EEXIST;
1453 	if (IS_DEADDIR(dir))
1454 		return -ENOENT;
1455 	return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1456 }
1457 
1458 /*
1459  * O_DIRECTORY translates into forcing a directory lookup.
1460  */
1461 static inline int lookup_flags(unsigned int f)
1462 {
1463 	unsigned long retval = LOOKUP_FOLLOW;
1464 
1465 	if (f & O_NOFOLLOW)
1466 		retval &= ~LOOKUP_FOLLOW;
1467 
1468 	if (f & O_DIRECTORY)
1469 		retval |= LOOKUP_DIRECTORY;
1470 
1471 	return retval;
1472 }
1473 
1474 /*
1475  * p1 and p2 should be directories on the same fs.
1476  */
1477 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1478 {
1479 	struct dentry *p;
1480 
1481 	if (p1 == p2) {
1482 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1483 		return NULL;
1484 	}
1485 
1486 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1487 
1488 	for (p = p1; p->d_parent != p; p = p->d_parent) {
1489 		if (p->d_parent == p2) {
1490 			mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1491 			mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1492 			return p;
1493 		}
1494 	}
1495 
1496 	for (p = p2; p->d_parent != p; p = p->d_parent) {
1497 		if (p->d_parent == p1) {
1498 			mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1499 			mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1500 			return p;
1501 		}
1502 	}
1503 
1504 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1505 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1506 	return NULL;
1507 }
1508 
1509 void unlock_rename(struct dentry *p1, struct dentry *p2)
1510 {
1511 	mutex_unlock(&p1->d_inode->i_mutex);
1512 	if (p1 != p2) {
1513 		mutex_unlock(&p2->d_inode->i_mutex);
1514 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1515 	}
1516 }
1517 
1518 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1519 		struct nameidata *nd)
1520 {
1521 	int error = may_create(dir, dentry, nd);
1522 
1523 	if (error)
1524 		return error;
1525 
1526 	if (!dir->i_op || !dir->i_op->create)
1527 		return -EACCES;	/* shouldn't it be ENOSYS? */
1528 	mode &= S_IALLUGO;
1529 	mode |= S_IFREG;
1530 	error = security_inode_create(dir, dentry, mode);
1531 	if (error)
1532 		return error;
1533 	DQUOT_INIT(dir);
1534 	error = dir->i_op->create(dir, dentry, mode, nd);
1535 	if (!error)
1536 		fsnotify_create(dir, dentry);
1537 	return error;
1538 }
1539 
1540 int may_open(struct nameidata *nd, int acc_mode, int flag)
1541 {
1542 	struct dentry *dentry = nd->path.dentry;
1543 	struct inode *inode = dentry->d_inode;
1544 	int error;
1545 
1546 	if (!inode)
1547 		return -ENOENT;
1548 
1549 	if (S_ISLNK(inode->i_mode))
1550 		return -ELOOP;
1551 
1552 	if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1553 		return -EISDIR;
1554 
1555 	/*
1556 	 * FIFO's, sockets and device files are special: they don't
1557 	 * actually live on the filesystem itself, and as such you
1558 	 * can write to them even if the filesystem is read-only.
1559 	 */
1560 	if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1561 	    	flag &= ~O_TRUNC;
1562 	} else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1563 		if (nd->path.mnt->mnt_flags & MNT_NODEV)
1564 			return -EACCES;
1565 
1566 		flag &= ~O_TRUNC;
1567 	}
1568 
1569 	error = vfs_permission(nd, acc_mode);
1570 	if (error)
1571 		return error;
1572 	/*
1573 	 * An append-only file must be opened in append mode for writing.
1574 	 */
1575 	if (IS_APPEND(inode)) {
1576 		if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1577 			return -EPERM;
1578 		if (flag & O_TRUNC)
1579 			return -EPERM;
1580 	}
1581 
1582 	/* O_NOATIME can only be set by the owner or superuser */
1583 	if (flag & O_NOATIME)
1584 		if (!is_owner_or_cap(inode))
1585 			return -EPERM;
1586 
1587 	/*
1588 	 * Ensure there are no outstanding leases on the file.
1589 	 */
1590 	error = break_lease(inode, flag);
1591 	if (error)
1592 		return error;
1593 
1594 	if (flag & O_TRUNC) {
1595 		error = get_write_access(inode);
1596 		if (error)
1597 			return error;
1598 
1599 		/*
1600 		 * Refuse to truncate files with mandatory locks held on them.
1601 		 */
1602 		error = locks_verify_locked(inode);
1603 		if (!error) {
1604 			DQUOT_INIT(inode);
1605 
1606 			error = do_truncate(dentry, 0,
1607 					    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1608 					    NULL);
1609 		}
1610 		put_write_access(inode);
1611 		if (error)
1612 			return error;
1613 	} else
1614 		if (flag & FMODE_WRITE)
1615 			DQUOT_INIT(inode);
1616 
1617 	return 0;
1618 }
1619 
1620 /*
1621  * Be careful about ever adding any more callers of this
1622  * function.  Its flags must be in the namei format, not
1623  * what get passed to sys_open().
1624  */
1625 static int __open_namei_create(struct nameidata *nd, struct path *path,
1626 				int flag, int mode)
1627 {
1628 	int error;
1629 	struct dentry *dir = nd->path.dentry;
1630 
1631 	if (!IS_POSIXACL(dir->d_inode))
1632 		mode &= ~current->fs->umask;
1633 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1634 	mutex_unlock(&dir->d_inode->i_mutex);
1635 	dput(nd->path.dentry);
1636 	nd->path.dentry = path->dentry;
1637 	if (error)
1638 		return error;
1639 	/* Don't check for write permission, don't truncate */
1640 	return may_open(nd, 0, flag & ~O_TRUNC);
1641 }
1642 
1643 /*
1644  * Note that while the flag value (low two bits) for sys_open means:
1645  *	00 - read-only
1646  *	01 - write-only
1647  *	10 - read-write
1648  *	11 - special
1649  * it is changed into
1650  *	00 - no permissions needed
1651  *	01 - read-permission
1652  *	10 - write-permission
1653  *	11 - read-write
1654  * for the internal routines (ie open_namei()/follow_link() etc)
1655  * This is more logical, and also allows the 00 "no perm needed"
1656  * to be used for symlinks (where the permissions are checked
1657  * later).
1658  *
1659 */
1660 static inline int open_to_namei_flags(int flag)
1661 {
1662 	if ((flag+1) & O_ACCMODE)
1663 		flag++;
1664 	return flag;
1665 }
1666 
1667 static int open_will_write_to_fs(int flag, struct inode *inode)
1668 {
1669 	/*
1670 	 * We'll never write to the fs underlying
1671 	 * a device file.
1672 	 */
1673 	if (special_file(inode->i_mode))
1674 		return 0;
1675 	return (flag & O_TRUNC);
1676 }
1677 
1678 /*
1679  * Note that the low bits of the passed in "open_flag"
1680  * are not the same as in the local variable "flag". See
1681  * open_to_namei_flags() for more details.
1682  */
1683 struct file *do_filp_open(int dfd, const char *pathname,
1684 		int open_flag, int mode)
1685 {
1686 	struct file *filp;
1687 	struct nameidata nd;
1688 	int acc_mode, error;
1689 	struct path path;
1690 	struct dentry *dir;
1691 	int count = 0;
1692 	int will_write;
1693 	int flag = open_to_namei_flags(open_flag);
1694 
1695 	acc_mode = ACC_MODE(flag);
1696 
1697 	/* O_TRUNC implies we need access checks for write permissions */
1698 	if (flag & O_TRUNC)
1699 		acc_mode |= MAY_WRITE;
1700 
1701 	/* Allow the LSM permission hook to distinguish append
1702 	   access from general write access. */
1703 	if (flag & O_APPEND)
1704 		acc_mode |= MAY_APPEND;
1705 
1706 	/*
1707 	 * The simplest case - just a plain lookup.
1708 	 */
1709 	if (!(flag & O_CREAT)) {
1710 		error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1711 					 &nd, flag);
1712 		if (error)
1713 			return ERR_PTR(error);
1714 		goto ok;
1715 	}
1716 
1717 	/*
1718 	 * Create - we need to know the parent.
1719 	 */
1720 	error = path_lookup_create(dfd, pathname, LOOKUP_PARENT,
1721 				   &nd, flag, mode);
1722 	if (error)
1723 		return ERR_PTR(error);
1724 
1725 	/*
1726 	 * We have the parent and last component. First of all, check
1727 	 * that we are not asked to creat(2) an obvious directory - that
1728 	 * will not do.
1729 	 */
1730 	error = -EISDIR;
1731 	if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1732 		goto exit;
1733 
1734 	dir = nd.path.dentry;
1735 	nd.flags &= ~LOOKUP_PARENT;
1736 	mutex_lock(&dir->d_inode->i_mutex);
1737 	path.dentry = lookup_hash(&nd);
1738 	path.mnt = nd.path.mnt;
1739 
1740 do_last:
1741 	error = PTR_ERR(path.dentry);
1742 	if (IS_ERR(path.dentry)) {
1743 		mutex_unlock(&dir->d_inode->i_mutex);
1744 		goto exit;
1745 	}
1746 
1747 	if (IS_ERR(nd.intent.open.file)) {
1748 		error = PTR_ERR(nd.intent.open.file);
1749 		goto exit_mutex_unlock;
1750 	}
1751 
1752 	/* Negative dentry, just create the file */
1753 	if (!path.dentry->d_inode) {
1754 		/*
1755 		 * This write is needed to ensure that a
1756 		 * ro->rw transition does not occur between
1757 		 * the time when the file is created and when
1758 		 * a permanent write count is taken through
1759 		 * the 'struct file' in nameidata_to_filp().
1760 		 */
1761 		error = mnt_want_write(nd.path.mnt);
1762 		if (error)
1763 			goto exit_mutex_unlock;
1764 		error = __open_namei_create(&nd, &path, flag, mode);
1765 		if (error) {
1766 			mnt_drop_write(nd.path.mnt);
1767 			goto exit;
1768 		}
1769 		filp = nameidata_to_filp(&nd, open_flag);
1770 		mnt_drop_write(nd.path.mnt);
1771 		return filp;
1772 	}
1773 
1774 	/*
1775 	 * It already exists.
1776 	 */
1777 	mutex_unlock(&dir->d_inode->i_mutex);
1778 	audit_inode(pathname, path.dentry);
1779 
1780 	error = -EEXIST;
1781 	if (flag & O_EXCL)
1782 		goto exit_dput;
1783 
1784 	if (__follow_mount(&path)) {
1785 		error = -ELOOP;
1786 		if (flag & O_NOFOLLOW)
1787 			goto exit_dput;
1788 	}
1789 
1790 	error = -ENOENT;
1791 	if (!path.dentry->d_inode)
1792 		goto exit_dput;
1793 	if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1794 		goto do_link;
1795 
1796 	path_to_nameidata(&path, &nd);
1797 	error = -EISDIR;
1798 	if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1799 		goto exit;
1800 ok:
1801 	/*
1802 	 * Consider:
1803 	 * 1. may_open() truncates a file
1804 	 * 2. a rw->ro mount transition occurs
1805 	 * 3. nameidata_to_filp() fails due to
1806 	 *    the ro mount.
1807 	 * That would be inconsistent, and should
1808 	 * be avoided. Taking this mnt write here
1809 	 * ensures that (2) can not occur.
1810 	 */
1811 	will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1812 	if (will_write) {
1813 		error = mnt_want_write(nd.path.mnt);
1814 		if (error)
1815 			goto exit;
1816 	}
1817 	error = may_open(&nd, acc_mode, flag);
1818 	if (error) {
1819 		if (will_write)
1820 			mnt_drop_write(nd.path.mnt);
1821 		goto exit;
1822 	}
1823 	filp = nameidata_to_filp(&nd, open_flag);
1824 	/*
1825 	 * It is now safe to drop the mnt write
1826 	 * because the filp has had a write taken
1827 	 * on its behalf.
1828 	 */
1829 	if (will_write)
1830 		mnt_drop_write(nd.path.mnt);
1831 	return filp;
1832 
1833 exit_mutex_unlock:
1834 	mutex_unlock(&dir->d_inode->i_mutex);
1835 exit_dput:
1836 	path_put_conditional(&path, &nd);
1837 exit:
1838 	if (!IS_ERR(nd.intent.open.file))
1839 		release_open_intent(&nd);
1840 	path_put(&nd.path);
1841 	return ERR_PTR(error);
1842 
1843 do_link:
1844 	error = -ELOOP;
1845 	if (flag & O_NOFOLLOW)
1846 		goto exit_dput;
1847 	/*
1848 	 * This is subtle. Instead of calling do_follow_link() we do the
1849 	 * thing by hands. The reason is that this way we have zero link_count
1850 	 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1851 	 * After that we have the parent and last component, i.e.
1852 	 * we are in the same situation as after the first path_walk().
1853 	 * Well, almost - if the last component is normal we get its copy
1854 	 * stored in nd->last.name and we will have to putname() it when we
1855 	 * are done. Procfs-like symlinks just set LAST_BIND.
1856 	 */
1857 	nd.flags |= LOOKUP_PARENT;
1858 	error = security_inode_follow_link(path.dentry, &nd);
1859 	if (error)
1860 		goto exit_dput;
1861 	error = __do_follow_link(&path, &nd);
1862 	if (error) {
1863 		/* Does someone understand code flow here? Or it is only
1864 		 * me so stupid? Anathema to whoever designed this non-sense
1865 		 * with "intent.open".
1866 		 */
1867 		release_open_intent(&nd);
1868 		return ERR_PTR(error);
1869 	}
1870 	nd.flags &= ~LOOKUP_PARENT;
1871 	if (nd.last_type == LAST_BIND)
1872 		goto ok;
1873 	error = -EISDIR;
1874 	if (nd.last_type != LAST_NORM)
1875 		goto exit;
1876 	if (nd.last.name[nd.last.len]) {
1877 		__putname(nd.last.name);
1878 		goto exit;
1879 	}
1880 	error = -ELOOP;
1881 	if (count++==32) {
1882 		__putname(nd.last.name);
1883 		goto exit;
1884 	}
1885 	dir = nd.path.dentry;
1886 	mutex_lock(&dir->d_inode->i_mutex);
1887 	path.dentry = lookup_hash(&nd);
1888 	path.mnt = nd.path.mnt;
1889 	__putname(nd.last.name);
1890 	goto do_last;
1891 }
1892 
1893 /**
1894  * filp_open - open file and return file pointer
1895  *
1896  * @filename:	path to open
1897  * @flags:	open flags as per the open(2) second argument
1898  * @mode:	mode for the new file if O_CREAT is set, else ignored
1899  *
1900  * This is the helper to open a file from kernelspace if you really
1901  * have to.  But in generally you should not do this, so please move
1902  * along, nothing to see here..
1903  */
1904 struct file *filp_open(const char *filename, int flags, int mode)
1905 {
1906 	return do_filp_open(AT_FDCWD, filename, flags, mode);
1907 }
1908 EXPORT_SYMBOL(filp_open);
1909 
1910 /**
1911  * lookup_create - lookup a dentry, creating it if it doesn't exist
1912  * @nd: nameidata info
1913  * @is_dir: directory flag
1914  *
1915  * Simple function to lookup and return a dentry and create it
1916  * if it doesn't exist.  Is SMP-safe.
1917  *
1918  * Returns with nd->path.dentry->d_inode->i_mutex locked.
1919  */
1920 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1921 {
1922 	struct dentry *dentry = ERR_PTR(-EEXIST);
1923 
1924 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1925 	/*
1926 	 * Yucky last component or no last component at all?
1927 	 * (foo/., foo/.., /////)
1928 	 */
1929 	if (nd->last_type != LAST_NORM)
1930 		goto fail;
1931 	nd->flags &= ~LOOKUP_PARENT;
1932 	nd->flags |= LOOKUP_CREATE;
1933 	nd->intent.open.flags = O_EXCL;
1934 
1935 	/*
1936 	 * Do the final lookup.
1937 	 */
1938 	dentry = lookup_hash(nd);
1939 	if (IS_ERR(dentry))
1940 		goto fail;
1941 
1942 	if (dentry->d_inode)
1943 		goto eexist;
1944 	/*
1945 	 * Special case - lookup gave negative, but... we had foo/bar/
1946 	 * From the vfs_mknod() POV we just have a negative dentry -
1947 	 * all is fine. Let's be bastards - you had / on the end, you've
1948 	 * been asking for (non-existent) directory. -ENOENT for you.
1949 	 */
1950 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1951 		dput(dentry);
1952 		dentry = ERR_PTR(-ENOENT);
1953 	}
1954 	return dentry;
1955 eexist:
1956 	dput(dentry);
1957 	dentry = ERR_PTR(-EEXIST);
1958 fail:
1959 	return dentry;
1960 }
1961 EXPORT_SYMBOL_GPL(lookup_create);
1962 
1963 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1964 {
1965 	int error = may_create(dir, dentry, NULL);
1966 
1967 	if (error)
1968 		return error;
1969 
1970 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1971 		return -EPERM;
1972 
1973 	if (!dir->i_op || !dir->i_op->mknod)
1974 		return -EPERM;
1975 
1976 	error = devcgroup_inode_mknod(mode, dev);
1977 	if (error)
1978 		return error;
1979 
1980 	error = security_inode_mknod(dir, dentry, mode, dev);
1981 	if (error)
1982 		return error;
1983 
1984 	DQUOT_INIT(dir);
1985 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1986 	if (!error)
1987 		fsnotify_create(dir, dentry);
1988 	return error;
1989 }
1990 
1991 static int may_mknod(mode_t mode)
1992 {
1993 	switch (mode & S_IFMT) {
1994 	case S_IFREG:
1995 	case S_IFCHR:
1996 	case S_IFBLK:
1997 	case S_IFIFO:
1998 	case S_IFSOCK:
1999 	case 0: /* zero mode translates to S_IFREG */
2000 		return 0;
2001 	case S_IFDIR:
2002 		return -EPERM;
2003 	default:
2004 		return -EINVAL;
2005 	}
2006 }
2007 
2008 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
2009 				unsigned dev)
2010 {
2011 	int error = 0;
2012 	char * tmp;
2013 	struct dentry * dentry;
2014 	struct nameidata nd;
2015 
2016 	if (S_ISDIR(mode))
2017 		return -EPERM;
2018 	tmp = getname(filename);
2019 	if (IS_ERR(tmp))
2020 		return PTR_ERR(tmp);
2021 
2022 	error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2023 	if (error)
2024 		goto out;
2025 	dentry = lookup_create(&nd, 0);
2026 	if (IS_ERR(dentry)) {
2027 		error = PTR_ERR(dentry);
2028 		goto out_unlock;
2029 	}
2030 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2031 		mode &= ~current->fs->umask;
2032 	error = may_mknod(mode);
2033 	if (error)
2034 		goto out_dput;
2035 	error = mnt_want_write(nd.path.mnt);
2036 	if (error)
2037 		goto out_dput;
2038 	switch (mode & S_IFMT) {
2039 		case 0: case S_IFREG:
2040 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2041 			break;
2042 		case S_IFCHR: case S_IFBLK:
2043 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2044 					new_decode_dev(dev));
2045 			break;
2046 		case S_IFIFO: case S_IFSOCK:
2047 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2048 			break;
2049 	}
2050 	mnt_drop_write(nd.path.mnt);
2051 out_dput:
2052 	dput(dentry);
2053 out_unlock:
2054 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2055 	path_put(&nd.path);
2056 out:
2057 	putname(tmp);
2058 
2059 	return error;
2060 }
2061 
2062 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
2063 {
2064 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2065 }
2066 
2067 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2068 {
2069 	int error = may_create(dir, dentry, NULL);
2070 
2071 	if (error)
2072 		return error;
2073 
2074 	if (!dir->i_op || !dir->i_op->mkdir)
2075 		return -EPERM;
2076 
2077 	mode &= (S_IRWXUGO|S_ISVTX);
2078 	error = security_inode_mkdir(dir, dentry, mode);
2079 	if (error)
2080 		return error;
2081 
2082 	DQUOT_INIT(dir);
2083 	error = dir->i_op->mkdir(dir, dentry, mode);
2084 	if (!error)
2085 		fsnotify_mkdir(dir, dentry);
2086 	return error;
2087 }
2088 
2089 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2090 {
2091 	int error = 0;
2092 	char * tmp;
2093 	struct dentry *dentry;
2094 	struct nameidata nd;
2095 
2096 	tmp = getname(pathname);
2097 	error = PTR_ERR(tmp);
2098 	if (IS_ERR(tmp))
2099 		goto out_err;
2100 
2101 	error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2102 	if (error)
2103 		goto out;
2104 	dentry = lookup_create(&nd, 1);
2105 	error = PTR_ERR(dentry);
2106 	if (IS_ERR(dentry))
2107 		goto out_unlock;
2108 
2109 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2110 		mode &= ~current->fs->umask;
2111 	error = mnt_want_write(nd.path.mnt);
2112 	if (error)
2113 		goto out_dput;
2114 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2115 	mnt_drop_write(nd.path.mnt);
2116 out_dput:
2117 	dput(dentry);
2118 out_unlock:
2119 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2120 	path_put(&nd.path);
2121 out:
2122 	putname(tmp);
2123 out_err:
2124 	return error;
2125 }
2126 
2127 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2128 {
2129 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2130 }
2131 
2132 /*
2133  * We try to drop the dentry early: we should have
2134  * a usage count of 2 if we're the only user of this
2135  * dentry, and if that is true (possibly after pruning
2136  * the dcache), then we drop the dentry now.
2137  *
2138  * A low-level filesystem can, if it choses, legally
2139  * do a
2140  *
2141  *	if (!d_unhashed(dentry))
2142  *		return -EBUSY;
2143  *
2144  * if it cannot handle the case of removing a directory
2145  * that is still in use by something else..
2146  */
2147 void dentry_unhash(struct dentry *dentry)
2148 {
2149 	dget(dentry);
2150 	shrink_dcache_parent(dentry);
2151 	spin_lock(&dcache_lock);
2152 	spin_lock(&dentry->d_lock);
2153 	if (atomic_read(&dentry->d_count) == 2)
2154 		__d_drop(dentry);
2155 	spin_unlock(&dentry->d_lock);
2156 	spin_unlock(&dcache_lock);
2157 }
2158 
2159 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2160 {
2161 	int error = may_delete(dir, dentry, 1);
2162 
2163 	if (error)
2164 		return error;
2165 
2166 	if (!dir->i_op || !dir->i_op->rmdir)
2167 		return -EPERM;
2168 
2169 	DQUOT_INIT(dir);
2170 
2171 	mutex_lock(&dentry->d_inode->i_mutex);
2172 	dentry_unhash(dentry);
2173 	if (d_mountpoint(dentry))
2174 		error = -EBUSY;
2175 	else {
2176 		error = security_inode_rmdir(dir, dentry);
2177 		if (!error) {
2178 			error = dir->i_op->rmdir(dir, dentry);
2179 			if (!error)
2180 				dentry->d_inode->i_flags |= S_DEAD;
2181 		}
2182 	}
2183 	mutex_unlock(&dentry->d_inode->i_mutex);
2184 	if (!error) {
2185 		d_delete(dentry);
2186 	}
2187 	dput(dentry);
2188 
2189 	return error;
2190 }
2191 
2192 static long do_rmdir(int dfd, const char __user *pathname)
2193 {
2194 	int error = 0;
2195 	char * name;
2196 	struct dentry *dentry;
2197 	struct nameidata nd;
2198 
2199 	name = getname(pathname);
2200 	if(IS_ERR(name))
2201 		return PTR_ERR(name);
2202 
2203 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2204 	if (error)
2205 		goto exit;
2206 
2207 	switch(nd.last_type) {
2208 		case LAST_DOTDOT:
2209 			error = -ENOTEMPTY;
2210 			goto exit1;
2211 		case LAST_DOT:
2212 			error = -EINVAL;
2213 			goto exit1;
2214 		case LAST_ROOT:
2215 			error = -EBUSY;
2216 			goto exit1;
2217 	}
2218 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2219 	dentry = lookup_hash(&nd);
2220 	error = PTR_ERR(dentry);
2221 	if (IS_ERR(dentry))
2222 		goto exit2;
2223 	error = mnt_want_write(nd.path.mnt);
2224 	if (error)
2225 		goto exit3;
2226 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2227 	mnt_drop_write(nd.path.mnt);
2228 exit3:
2229 	dput(dentry);
2230 exit2:
2231 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2232 exit1:
2233 	path_put(&nd.path);
2234 exit:
2235 	putname(name);
2236 	return error;
2237 }
2238 
2239 asmlinkage long sys_rmdir(const char __user *pathname)
2240 {
2241 	return do_rmdir(AT_FDCWD, pathname);
2242 }
2243 
2244 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2245 {
2246 	int error = may_delete(dir, dentry, 0);
2247 
2248 	if (error)
2249 		return error;
2250 
2251 	if (!dir->i_op || !dir->i_op->unlink)
2252 		return -EPERM;
2253 
2254 	DQUOT_INIT(dir);
2255 
2256 	mutex_lock(&dentry->d_inode->i_mutex);
2257 	if (d_mountpoint(dentry))
2258 		error = -EBUSY;
2259 	else {
2260 		error = security_inode_unlink(dir, dentry);
2261 		if (!error)
2262 			error = dir->i_op->unlink(dir, dentry);
2263 	}
2264 	mutex_unlock(&dentry->d_inode->i_mutex);
2265 
2266 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2267 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2268 		fsnotify_link_count(dentry->d_inode);
2269 		d_delete(dentry);
2270 	}
2271 
2272 	return error;
2273 }
2274 
2275 /*
2276  * Make sure that the actual truncation of the file will occur outside its
2277  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2278  * writeout happening, and we don't want to prevent access to the directory
2279  * while waiting on the I/O.
2280  */
2281 static long do_unlinkat(int dfd, const char __user *pathname)
2282 {
2283 	int error = 0;
2284 	char * name;
2285 	struct dentry *dentry;
2286 	struct nameidata nd;
2287 	struct inode *inode = NULL;
2288 
2289 	name = getname(pathname);
2290 	if(IS_ERR(name))
2291 		return PTR_ERR(name);
2292 
2293 	error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2294 	if (error)
2295 		goto exit;
2296 	error = -EISDIR;
2297 	if (nd.last_type != LAST_NORM)
2298 		goto exit1;
2299 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2300 	dentry = lookup_hash(&nd);
2301 	error = PTR_ERR(dentry);
2302 	if (!IS_ERR(dentry)) {
2303 		/* Why not before? Because we want correct error value */
2304 		if (nd.last.name[nd.last.len])
2305 			goto slashes;
2306 		inode = dentry->d_inode;
2307 		if (inode)
2308 			atomic_inc(&inode->i_count);
2309 		error = mnt_want_write(nd.path.mnt);
2310 		if (error)
2311 			goto exit2;
2312 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2313 		mnt_drop_write(nd.path.mnt);
2314 	exit2:
2315 		dput(dentry);
2316 	}
2317 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2318 	if (inode)
2319 		iput(inode);	/* truncate the inode here */
2320 exit1:
2321 	path_put(&nd.path);
2322 exit:
2323 	putname(name);
2324 	return error;
2325 
2326 slashes:
2327 	error = !dentry->d_inode ? -ENOENT :
2328 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2329 	goto exit2;
2330 }
2331 
2332 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2333 {
2334 	if ((flag & ~AT_REMOVEDIR) != 0)
2335 		return -EINVAL;
2336 
2337 	if (flag & AT_REMOVEDIR)
2338 		return do_rmdir(dfd, pathname);
2339 
2340 	return do_unlinkat(dfd, pathname);
2341 }
2342 
2343 asmlinkage long sys_unlink(const char __user *pathname)
2344 {
2345 	return do_unlinkat(AT_FDCWD, pathname);
2346 }
2347 
2348 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2349 {
2350 	int error = may_create(dir, dentry, NULL);
2351 
2352 	if (error)
2353 		return error;
2354 
2355 	if (!dir->i_op || !dir->i_op->symlink)
2356 		return -EPERM;
2357 
2358 	error = security_inode_symlink(dir, dentry, oldname);
2359 	if (error)
2360 		return error;
2361 
2362 	DQUOT_INIT(dir);
2363 	error = dir->i_op->symlink(dir, dentry, oldname);
2364 	if (!error)
2365 		fsnotify_create(dir, dentry);
2366 	return error;
2367 }
2368 
2369 asmlinkage long sys_symlinkat(const char __user *oldname,
2370 			      int newdfd, const char __user *newname)
2371 {
2372 	int error = 0;
2373 	char * from;
2374 	char * to;
2375 	struct dentry *dentry;
2376 	struct nameidata nd;
2377 
2378 	from = getname(oldname);
2379 	if(IS_ERR(from))
2380 		return PTR_ERR(from);
2381 	to = getname(newname);
2382 	error = PTR_ERR(to);
2383 	if (IS_ERR(to))
2384 		goto out_putname;
2385 
2386 	error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2387 	if (error)
2388 		goto out;
2389 	dentry = lookup_create(&nd, 0);
2390 	error = PTR_ERR(dentry);
2391 	if (IS_ERR(dentry))
2392 		goto out_unlock;
2393 
2394 	error = mnt_want_write(nd.path.mnt);
2395 	if (error)
2396 		goto out_dput;
2397 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2398 	mnt_drop_write(nd.path.mnt);
2399 out_dput:
2400 	dput(dentry);
2401 out_unlock:
2402 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2403 	path_put(&nd.path);
2404 out:
2405 	putname(to);
2406 out_putname:
2407 	putname(from);
2408 	return error;
2409 }
2410 
2411 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2412 {
2413 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2414 }
2415 
2416 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2417 {
2418 	struct inode *inode = old_dentry->d_inode;
2419 	int error;
2420 
2421 	if (!inode)
2422 		return -ENOENT;
2423 
2424 	error = may_create(dir, new_dentry, NULL);
2425 	if (error)
2426 		return error;
2427 
2428 	if (dir->i_sb != inode->i_sb)
2429 		return -EXDEV;
2430 
2431 	/*
2432 	 * A link to an append-only or immutable file cannot be created.
2433 	 */
2434 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2435 		return -EPERM;
2436 	if (!dir->i_op || !dir->i_op->link)
2437 		return -EPERM;
2438 	if (S_ISDIR(inode->i_mode))
2439 		return -EPERM;
2440 
2441 	error = security_inode_link(old_dentry, dir, new_dentry);
2442 	if (error)
2443 		return error;
2444 
2445 	mutex_lock(&inode->i_mutex);
2446 	DQUOT_INIT(dir);
2447 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2448 	mutex_unlock(&inode->i_mutex);
2449 	if (!error)
2450 		fsnotify_link(dir, inode, new_dentry);
2451 	return error;
2452 }
2453 
2454 /*
2455  * Hardlinks are often used in delicate situations.  We avoid
2456  * security-related surprises by not following symlinks on the
2457  * newname.  --KAB
2458  *
2459  * We don't follow them on the oldname either to be compatible
2460  * with linux 2.0, and to avoid hard-linking to directories
2461  * and other special files.  --ADM
2462  */
2463 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2464 			   int newdfd, const char __user *newname,
2465 			   int flags)
2466 {
2467 	struct dentry *new_dentry;
2468 	struct nameidata nd, old_nd;
2469 	int error;
2470 	char * to;
2471 
2472 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2473 		return -EINVAL;
2474 
2475 	to = getname(newname);
2476 	if (IS_ERR(to))
2477 		return PTR_ERR(to);
2478 
2479 	error = __user_walk_fd(olddfd, oldname,
2480 			       flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2481 			       &old_nd);
2482 	if (error)
2483 		goto exit;
2484 	error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2485 	if (error)
2486 		goto out;
2487 	error = -EXDEV;
2488 	if (old_nd.path.mnt != nd.path.mnt)
2489 		goto out_release;
2490 	new_dentry = lookup_create(&nd, 0);
2491 	error = PTR_ERR(new_dentry);
2492 	if (IS_ERR(new_dentry))
2493 		goto out_unlock;
2494 	error = mnt_want_write(nd.path.mnt);
2495 	if (error)
2496 		goto out_dput;
2497 	error = vfs_link(old_nd.path.dentry, nd.path.dentry->d_inode, new_dentry);
2498 	mnt_drop_write(nd.path.mnt);
2499 out_dput:
2500 	dput(new_dentry);
2501 out_unlock:
2502 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2503 out_release:
2504 	path_put(&nd.path);
2505 out:
2506 	path_put(&old_nd.path);
2507 exit:
2508 	putname(to);
2509 
2510 	return error;
2511 }
2512 
2513 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2514 {
2515 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2516 }
2517 
2518 /*
2519  * The worst of all namespace operations - renaming directory. "Perverted"
2520  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2521  * Problems:
2522  *	a) we can get into loop creation. Check is done in is_subdir().
2523  *	b) race potential - two innocent renames can create a loop together.
2524  *	   That's where 4.4 screws up. Current fix: serialization on
2525  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2526  *	   story.
2527  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2528  *	   And that - after we got ->i_mutex on parents (until then we don't know
2529  *	   whether the target exists).  Solution: try to be smart with locking
2530  *	   order for inodes.  We rely on the fact that tree topology may change
2531  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2532  *	   move will be locked.  Thus we can rank directories by the tree
2533  *	   (ancestors first) and rank all non-directories after them.
2534  *	   That works since everybody except rename does "lock parent, lookup,
2535  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2536  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2537  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2538  *	   we'd better make sure that there's no link(2) for them.
2539  *	d) some filesystems don't support opened-but-unlinked directories,
2540  *	   either because of layout or because they are not ready to deal with
2541  *	   all cases correctly. The latter will be fixed (taking this sort of
2542  *	   stuff into VFS), but the former is not going away. Solution: the same
2543  *	   trick as in rmdir().
2544  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2545  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2546  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2547  *	   ->i_mutex on parents, which works but leads to some truely excessive
2548  *	   locking].
2549  */
2550 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2551 			  struct inode *new_dir, struct dentry *new_dentry)
2552 {
2553 	int error = 0;
2554 	struct inode *target;
2555 
2556 	/*
2557 	 * If we are going to change the parent - check write permissions,
2558 	 * we'll need to flip '..'.
2559 	 */
2560 	if (new_dir != old_dir) {
2561 		error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2562 		if (error)
2563 			return error;
2564 	}
2565 
2566 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2567 	if (error)
2568 		return error;
2569 
2570 	target = new_dentry->d_inode;
2571 	if (target) {
2572 		mutex_lock(&target->i_mutex);
2573 		dentry_unhash(new_dentry);
2574 	}
2575 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2576 		error = -EBUSY;
2577 	else
2578 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2579 	if (target) {
2580 		if (!error)
2581 			target->i_flags |= S_DEAD;
2582 		mutex_unlock(&target->i_mutex);
2583 		if (d_unhashed(new_dentry))
2584 			d_rehash(new_dentry);
2585 		dput(new_dentry);
2586 	}
2587 	if (!error)
2588 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2589 			d_move(old_dentry,new_dentry);
2590 	return error;
2591 }
2592 
2593 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2594 			    struct inode *new_dir, struct dentry *new_dentry)
2595 {
2596 	struct inode *target;
2597 	int error;
2598 
2599 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2600 	if (error)
2601 		return error;
2602 
2603 	dget(new_dentry);
2604 	target = new_dentry->d_inode;
2605 	if (target)
2606 		mutex_lock(&target->i_mutex);
2607 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2608 		error = -EBUSY;
2609 	else
2610 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2611 	if (!error) {
2612 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2613 			d_move(old_dentry, new_dentry);
2614 	}
2615 	if (target)
2616 		mutex_unlock(&target->i_mutex);
2617 	dput(new_dentry);
2618 	return error;
2619 }
2620 
2621 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2622 	       struct inode *new_dir, struct dentry *new_dentry)
2623 {
2624 	int error;
2625 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2626 	const char *old_name;
2627 
2628 	if (old_dentry->d_inode == new_dentry->d_inode)
2629  		return 0;
2630 
2631 	error = may_delete(old_dir, old_dentry, is_dir);
2632 	if (error)
2633 		return error;
2634 
2635 	if (!new_dentry->d_inode)
2636 		error = may_create(new_dir, new_dentry, NULL);
2637 	else
2638 		error = may_delete(new_dir, new_dentry, is_dir);
2639 	if (error)
2640 		return error;
2641 
2642 	if (!old_dir->i_op || !old_dir->i_op->rename)
2643 		return -EPERM;
2644 
2645 	DQUOT_INIT(old_dir);
2646 	DQUOT_INIT(new_dir);
2647 
2648 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2649 
2650 	if (is_dir)
2651 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2652 	else
2653 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2654 	if (!error) {
2655 		const char *new_name = old_dentry->d_name.name;
2656 		fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2657 			      new_dentry->d_inode, old_dentry);
2658 	}
2659 	fsnotify_oldname_free(old_name);
2660 
2661 	return error;
2662 }
2663 
2664 static int do_rename(int olddfd, const char *oldname,
2665 			int newdfd, const char *newname)
2666 {
2667 	int error = 0;
2668 	struct dentry * old_dir, * new_dir;
2669 	struct dentry * old_dentry, *new_dentry;
2670 	struct dentry * trap;
2671 	struct nameidata oldnd, newnd;
2672 
2673 	error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2674 	if (error)
2675 		goto exit;
2676 
2677 	error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2678 	if (error)
2679 		goto exit1;
2680 
2681 	error = -EXDEV;
2682 	if (oldnd.path.mnt != newnd.path.mnt)
2683 		goto exit2;
2684 
2685 	old_dir = oldnd.path.dentry;
2686 	error = -EBUSY;
2687 	if (oldnd.last_type != LAST_NORM)
2688 		goto exit2;
2689 
2690 	new_dir = newnd.path.dentry;
2691 	if (newnd.last_type != LAST_NORM)
2692 		goto exit2;
2693 
2694 	trap = lock_rename(new_dir, old_dir);
2695 
2696 	old_dentry = lookup_hash(&oldnd);
2697 	error = PTR_ERR(old_dentry);
2698 	if (IS_ERR(old_dentry))
2699 		goto exit3;
2700 	/* source must exist */
2701 	error = -ENOENT;
2702 	if (!old_dentry->d_inode)
2703 		goto exit4;
2704 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2705 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2706 		error = -ENOTDIR;
2707 		if (oldnd.last.name[oldnd.last.len])
2708 			goto exit4;
2709 		if (newnd.last.name[newnd.last.len])
2710 			goto exit4;
2711 	}
2712 	/* source should not be ancestor of target */
2713 	error = -EINVAL;
2714 	if (old_dentry == trap)
2715 		goto exit4;
2716 	new_dentry = lookup_hash(&newnd);
2717 	error = PTR_ERR(new_dentry);
2718 	if (IS_ERR(new_dentry))
2719 		goto exit4;
2720 	/* target should not be an ancestor of source */
2721 	error = -ENOTEMPTY;
2722 	if (new_dentry == trap)
2723 		goto exit5;
2724 
2725 	error = mnt_want_write(oldnd.path.mnt);
2726 	if (error)
2727 		goto exit5;
2728 	error = vfs_rename(old_dir->d_inode, old_dentry,
2729 				   new_dir->d_inode, new_dentry);
2730 	mnt_drop_write(oldnd.path.mnt);
2731 exit5:
2732 	dput(new_dentry);
2733 exit4:
2734 	dput(old_dentry);
2735 exit3:
2736 	unlock_rename(new_dir, old_dir);
2737 exit2:
2738 	path_put(&newnd.path);
2739 exit1:
2740 	path_put(&oldnd.path);
2741 exit:
2742 	return error;
2743 }
2744 
2745 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2746 			     int newdfd, const char __user *newname)
2747 {
2748 	int error;
2749 	char * from;
2750 	char * to;
2751 
2752 	from = getname(oldname);
2753 	if(IS_ERR(from))
2754 		return PTR_ERR(from);
2755 	to = getname(newname);
2756 	error = PTR_ERR(to);
2757 	if (!IS_ERR(to)) {
2758 		error = do_rename(olddfd, from, newdfd, to);
2759 		putname(to);
2760 	}
2761 	putname(from);
2762 	return error;
2763 }
2764 
2765 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2766 {
2767 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2768 }
2769 
2770 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2771 {
2772 	int len;
2773 
2774 	len = PTR_ERR(link);
2775 	if (IS_ERR(link))
2776 		goto out;
2777 
2778 	len = strlen(link);
2779 	if (len > (unsigned) buflen)
2780 		len = buflen;
2781 	if (copy_to_user(buffer, link, len))
2782 		len = -EFAULT;
2783 out:
2784 	return len;
2785 }
2786 
2787 /*
2788  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2789  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2790  * using) it for any given inode is up to filesystem.
2791  */
2792 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2793 {
2794 	struct nameidata nd;
2795 	void *cookie;
2796 	int res;
2797 
2798 	nd.depth = 0;
2799 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2800 	if (IS_ERR(cookie))
2801 		return PTR_ERR(cookie);
2802 
2803 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2804 	if (dentry->d_inode->i_op->put_link)
2805 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2806 	return res;
2807 }
2808 
2809 int vfs_follow_link(struct nameidata *nd, const char *link)
2810 {
2811 	return __vfs_follow_link(nd, link);
2812 }
2813 
2814 /* get the link contents into pagecache */
2815 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2816 {
2817 	struct page * page;
2818 	struct address_space *mapping = dentry->d_inode->i_mapping;
2819 	page = read_mapping_page(mapping, 0, NULL);
2820 	if (IS_ERR(page))
2821 		return (char*)page;
2822 	*ppage = page;
2823 	return kmap(page);
2824 }
2825 
2826 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2827 {
2828 	struct page *page = NULL;
2829 	char *s = page_getlink(dentry, &page);
2830 	int res = vfs_readlink(dentry,buffer,buflen,s);
2831 	if (page) {
2832 		kunmap(page);
2833 		page_cache_release(page);
2834 	}
2835 	return res;
2836 }
2837 
2838 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2839 {
2840 	struct page *page = NULL;
2841 	nd_set_link(nd, page_getlink(dentry, &page));
2842 	return page;
2843 }
2844 
2845 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2846 {
2847 	struct page *page = cookie;
2848 
2849 	if (page) {
2850 		kunmap(page);
2851 		page_cache_release(page);
2852 	}
2853 }
2854 
2855 int __page_symlink(struct inode *inode, const char *symname, int len,
2856 		gfp_t gfp_mask)
2857 {
2858 	struct address_space *mapping = inode->i_mapping;
2859 	struct page *page;
2860 	void *fsdata;
2861 	int err;
2862 	char *kaddr;
2863 
2864 retry:
2865 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
2866 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2867 	if (err)
2868 		goto fail;
2869 
2870 	kaddr = kmap_atomic(page, KM_USER0);
2871 	memcpy(kaddr, symname, len-1);
2872 	kunmap_atomic(kaddr, KM_USER0);
2873 
2874 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2875 							page, fsdata);
2876 	if (err < 0)
2877 		goto fail;
2878 	if (err < len-1)
2879 		goto retry;
2880 
2881 	mark_inode_dirty(inode);
2882 	return 0;
2883 fail:
2884 	return err;
2885 }
2886 
2887 int page_symlink(struct inode *inode, const char *symname, int len)
2888 {
2889 	return __page_symlink(inode, symname, len,
2890 			mapping_gfp_mask(inode->i_mapping));
2891 }
2892 
2893 const struct inode_operations page_symlink_inode_operations = {
2894 	.readlink	= generic_readlink,
2895 	.follow_link	= page_follow_link_light,
2896 	.put_link	= page_put_link,
2897 };
2898 
2899 EXPORT_SYMBOL(__user_walk);
2900 EXPORT_SYMBOL(__user_walk_fd);
2901 EXPORT_SYMBOL(follow_down);
2902 EXPORT_SYMBOL(follow_up);
2903 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2904 EXPORT_SYMBOL(getname);
2905 EXPORT_SYMBOL(lock_rename);
2906 EXPORT_SYMBOL(lookup_one_len);
2907 EXPORT_SYMBOL(page_follow_link_light);
2908 EXPORT_SYMBOL(page_put_link);
2909 EXPORT_SYMBOL(page_readlink);
2910 EXPORT_SYMBOL(__page_symlink);
2911 EXPORT_SYMBOL(page_symlink);
2912 EXPORT_SYMBOL(page_symlink_inode_operations);
2913 EXPORT_SYMBOL(path_lookup);
2914 EXPORT_SYMBOL(vfs_path_lookup);
2915 EXPORT_SYMBOL(permission);
2916 EXPORT_SYMBOL(vfs_permission);
2917 EXPORT_SYMBOL(file_permission);
2918 EXPORT_SYMBOL(unlock_rename);
2919 EXPORT_SYMBOL(vfs_create);
2920 EXPORT_SYMBOL(vfs_follow_link);
2921 EXPORT_SYMBOL(vfs_link);
2922 EXPORT_SYMBOL(vfs_mkdir);
2923 EXPORT_SYMBOL(vfs_mknod);
2924 EXPORT_SYMBOL(generic_permission);
2925 EXPORT_SYMBOL(vfs_readlink);
2926 EXPORT_SYMBOL(vfs_rename);
2927 EXPORT_SYMBOL(vfs_rmdir);
2928 EXPORT_SYMBOL(vfs_symlink);
2929 EXPORT_SYMBOL(vfs_unlink);
2930 EXPORT_SYMBOL(dentry_unhash);
2931 EXPORT_SYMBOL(generic_readlink);
2932