1 /* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * Some corrections by tytso. 9 */ 10 11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/fs.h> 21 #include <linux/namei.h> 22 #include <linux/quotaops.h> 23 #include <linux/pagemap.h> 24 #include <linux/fsnotify.h> 25 #include <linux/personality.h> 26 #include <linux/security.h> 27 #include <linux/syscalls.h> 28 #include <linux/mount.h> 29 #include <linux/audit.h> 30 #include <linux/capability.h> 31 #include <linux/file.h> 32 #include <linux/fcntl.h> 33 #include <linux/device_cgroup.h> 34 #include <asm/uaccess.h> 35 36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE]) 37 38 /* [Feb-1997 T. Schoebel-Theuer] 39 * Fundamental changes in the pathname lookup mechanisms (namei) 40 * were necessary because of omirr. The reason is that omirr needs 41 * to know the _real_ pathname, not the user-supplied one, in case 42 * of symlinks (and also when transname replacements occur). 43 * 44 * The new code replaces the old recursive symlink resolution with 45 * an iterative one (in case of non-nested symlink chains). It does 46 * this with calls to <fs>_follow_link(). 47 * As a side effect, dir_namei(), _namei() and follow_link() are now 48 * replaced with a single function lookup_dentry() that can handle all 49 * the special cases of the former code. 50 * 51 * With the new dcache, the pathname is stored at each inode, at least as 52 * long as the refcount of the inode is positive. As a side effect, the 53 * size of the dcache depends on the inode cache and thus is dynamic. 54 * 55 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 56 * resolution to correspond with current state of the code. 57 * 58 * Note that the symlink resolution is not *completely* iterative. 59 * There is still a significant amount of tail- and mid- recursion in 60 * the algorithm. Also, note that <fs>_readlink() is not used in 61 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 62 * may return different results than <fs>_follow_link(). Many virtual 63 * filesystems (including /proc) exhibit this behavior. 64 */ 65 66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 67 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 68 * and the name already exists in form of a symlink, try to create the new 69 * name indicated by the symlink. The old code always complained that the 70 * name already exists, due to not following the symlink even if its target 71 * is nonexistent. The new semantics affects also mknod() and link() when 72 * the name is a symlink pointing to a non-existant name. 73 * 74 * I don't know which semantics is the right one, since I have no access 75 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 76 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 77 * "old" one. Personally, I think the new semantics is much more logical. 78 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 79 * file does succeed in both HP-UX and SunOs, but not in Solaris 80 * and in the old Linux semantics. 81 */ 82 83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 84 * semantics. See the comments in "open_namei" and "do_link" below. 85 * 86 * [10-Sep-98 Alan Modra] Another symlink change. 87 */ 88 89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 90 * inside the path - always follow. 91 * in the last component in creation/removal/renaming - never follow. 92 * if LOOKUP_FOLLOW passed - follow. 93 * if the pathname has trailing slashes - follow. 94 * otherwise - don't follow. 95 * (applied in that order). 96 * 97 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 98 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 99 * During the 2.4 we need to fix the userland stuff depending on it - 100 * hopefully we will be able to get rid of that wart in 2.5. So far only 101 * XEmacs seems to be relying on it... 102 */ 103 /* 104 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 105 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 106 * any extra contention... 107 */ 108 109 static int __link_path_walk(const char *name, struct nameidata *nd); 110 111 /* In order to reduce some races, while at the same time doing additional 112 * checking and hopefully speeding things up, we copy filenames to the 113 * kernel data space before using them.. 114 * 115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 116 * PATH_MAX includes the nul terminator --RR. 117 */ 118 static int do_getname(const char __user *filename, char *page) 119 { 120 int retval; 121 unsigned long len = PATH_MAX; 122 123 if (!segment_eq(get_fs(), KERNEL_DS)) { 124 if ((unsigned long) filename >= TASK_SIZE) 125 return -EFAULT; 126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX) 127 len = TASK_SIZE - (unsigned long) filename; 128 } 129 130 retval = strncpy_from_user(page, filename, len); 131 if (retval > 0) { 132 if (retval < len) 133 return 0; 134 return -ENAMETOOLONG; 135 } else if (!retval) 136 retval = -ENOENT; 137 return retval; 138 } 139 140 char * getname(const char __user * filename) 141 { 142 char *tmp, *result; 143 144 result = ERR_PTR(-ENOMEM); 145 tmp = __getname(); 146 if (tmp) { 147 int retval = do_getname(filename, tmp); 148 149 result = tmp; 150 if (retval < 0) { 151 __putname(tmp); 152 result = ERR_PTR(retval); 153 } 154 } 155 audit_getname(result); 156 return result; 157 } 158 159 #ifdef CONFIG_AUDITSYSCALL 160 void putname(const char *name) 161 { 162 if (unlikely(!audit_dummy_context())) 163 audit_putname(name); 164 else 165 __putname(name); 166 } 167 EXPORT_SYMBOL(putname); 168 #endif 169 170 171 /** 172 * generic_permission - check for access rights on a Posix-like filesystem 173 * @inode: inode to check access rights for 174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 175 * @check_acl: optional callback to check for Posix ACLs 176 * 177 * Used to check for read/write/execute permissions on a file. 178 * We use "fsuid" for this, letting us set arbitrary permissions 179 * for filesystem access without changing the "normal" uids which 180 * are used for other things.. 181 */ 182 int generic_permission(struct inode *inode, int mask, 183 int (*check_acl)(struct inode *inode, int mask)) 184 { 185 umode_t mode = inode->i_mode; 186 187 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 188 189 if (current->fsuid == inode->i_uid) 190 mode >>= 6; 191 else { 192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) { 193 int error = check_acl(inode, mask); 194 if (error == -EACCES) 195 goto check_capabilities; 196 else if (error != -EAGAIN) 197 return error; 198 } 199 200 if (in_group_p(inode->i_gid)) 201 mode >>= 3; 202 } 203 204 /* 205 * If the DACs are ok we don't need any capability check. 206 */ 207 if ((mask & ~mode) == 0) 208 return 0; 209 210 check_capabilities: 211 /* 212 * Read/write DACs are always overridable. 213 * Executable DACs are overridable if at least one exec bit is set. 214 */ 215 if (!(mask & MAY_EXEC) || 216 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode)) 217 if (capable(CAP_DAC_OVERRIDE)) 218 return 0; 219 220 /* 221 * Searching includes executable on directories, else just read. 222 */ 223 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE))) 224 if (capable(CAP_DAC_READ_SEARCH)) 225 return 0; 226 227 return -EACCES; 228 } 229 230 int inode_permission(struct inode *inode, int mask) 231 { 232 int retval; 233 234 if (mask & MAY_WRITE) { 235 umode_t mode = inode->i_mode; 236 237 /* 238 * Nobody gets write access to a read-only fs. 239 */ 240 if (IS_RDONLY(inode) && 241 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 242 return -EROFS; 243 244 /* 245 * Nobody gets write access to an immutable file. 246 */ 247 if (IS_IMMUTABLE(inode)) 248 return -EACCES; 249 } 250 251 /* Ordinary permission routines do not understand MAY_APPEND. */ 252 if (inode->i_op && inode->i_op->permission) { 253 retval = inode->i_op->permission(inode, mask); 254 if (!retval) { 255 /* 256 * Exec permission on a regular file is denied if none 257 * of the execute bits are set. 258 * 259 * This check should be done by the ->permission() 260 * method. 261 */ 262 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) && 263 !(inode->i_mode & S_IXUGO)) 264 return -EACCES; 265 } 266 } else { 267 retval = generic_permission(inode, mask, NULL); 268 } 269 if (retval) 270 return retval; 271 272 retval = devcgroup_inode_permission(inode, mask); 273 if (retval) 274 return retval; 275 276 return security_inode_permission(inode, 277 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND)); 278 } 279 280 /** 281 * vfs_permission - check for access rights to a given path 282 * @nd: lookup result that describes the path 283 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 284 * 285 * Used to check for read/write/execute permissions on a path. 286 * We use "fsuid" for this, letting us set arbitrary permissions 287 * for filesystem access without changing the "normal" uids which 288 * are used for other things. 289 */ 290 int vfs_permission(struct nameidata *nd, int mask) 291 { 292 return inode_permission(nd->path.dentry->d_inode, mask); 293 } 294 295 /** 296 * file_permission - check for additional access rights to a given file 297 * @file: file to check access rights for 298 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 299 * 300 * Used to check for read/write/execute permissions on an already opened 301 * file. 302 * 303 * Note: 304 * Do not use this function in new code. All access checks should 305 * be done using vfs_permission(). 306 */ 307 int file_permission(struct file *file, int mask) 308 { 309 return inode_permission(file->f_path.dentry->d_inode, mask); 310 } 311 312 /* 313 * get_write_access() gets write permission for a file. 314 * put_write_access() releases this write permission. 315 * This is used for regular files. 316 * We cannot support write (and maybe mmap read-write shared) accesses and 317 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode 318 * can have the following values: 319 * 0: no writers, no VM_DENYWRITE mappings 320 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist 321 * > 0: (i_writecount) users are writing to the file. 322 * 323 * Normally we operate on that counter with atomic_{inc,dec} and it's safe 324 * except for the cases where we don't hold i_writecount yet. Then we need to 325 * use {get,deny}_write_access() - these functions check the sign and refuse 326 * to do the change if sign is wrong. Exclusion between them is provided by 327 * the inode->i_lock spinlock. 328 */ 329 330 int get_write_access(struct inode * inode) 331 { 332 spin_lock(&inode->i_lock); 333 if (atomic_read(&inode->i_writecount) < 0) { 334 spin_unlock(&inode->i_lock); 335 return -ETXTBSY; 336 } 337 atomic_inc(&inode->i_writecount); 338 spin_unlock(&inode->i_lock); 339 340 return 0; 341 } 342 343 int deny_write_access(struct file * file) 344 { 345 struct inode *inode = file->f_path.dentry->d_inode; 346 347 spin_lock(&inode->i_lock); 348 if (atomic_read(&inode->i_writecount) > 0) { 349 spin_unlock(&inode->i_lock); 350 return -ETXTBSY; 351 } 352 atomic_dec(&inode->i_writecount); 353 spin_unlock(&inode->i_lock); 354 355 return 0; 356 } 357 358 /** 359 * path_get - get a reference to a path 360 * @path: path to get the reference to 361 * 362 * Given a path increment the reference count to the dentry and the vfsmount. 363 */ 364 void path_get(struct path *path) 365 { 366 mntget(path->mnt); 367 dget(path->dentry); 368 } 369 EXPORT_SYMBOL(path_get); 370 371 /** 372 * path_put - put a reference to a path 373 * @path: path to put the reference to 374 * 375 * Given a path decrement the reference count to the dentry and the vfsmount. 376 */ 377 void path_put(struct path *path) 378 { 379 dput(path->dentry); 380 mntput(path->mnt); 381 } 382 EXPORT_SYMBOL(path_put); 383 384 /** 385 * release_open_intent - free up open intent resources 386 * @nd: pointer to nameidata 387 */ 388 void release_open_intent(struct nameidata *nd) 389 { 390 if (nd->intent.open.file->f_path.dentry == NULL) 391 put_filp(nd->intent.open.file); 392 else 393 fput(nd->intent.open.file); 394 } 395 396 static inline struct dentry * 397 do_revalidate(struct dentry *dentry, struct nameidata *nd) 398 { 399 int status = dentry->d_op->d_revalidate(dentry, nd); 400 if (unlikely(status <= 0)) { 401 /* 402 * The dentry failed validation. 403 * If d_revalidate returned 0 attempt to invalidate 404 * the dentry otherwise d_revalidate is asking us 405 * to return a fail status. 406 */ 407 if (!status) { 408 if (!d_invalidate(dentry)) { 409 dput(dentry); 410 dentry = NULL; 411 } 412 } else { 413 dput(dentry); 414 dentry = ERR_PTR(status); 415 } 416 } 417 return dentry; 418 } 419 420 /* 421 * Internal lookup() using the new generic dcache. 422 * SMP-safe 423 */ 424 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 425 { 426 struct dentry * dentry = __d_lookup(parent, name); 427 428 /* lockess __d_lookup may fail due to concurrent d_move() 429 * in some unrelated directory, so try with d_lookup 430 */ 431 if (!dentry) 432 dentry = d_lookup(parent, name); 433 434 if (dentry && dentry->d_op && dentry->d_op->d_revalidate) 435 dentry = do_revalidate(dentry, nd); 436 437 return dentry; 438 } 439 440 /* 441 * Short-cut version of permission(), for calling by 442 * path_walk(), when dcache lock is held. Combines parts 443 * of permission() and generic_permission(), and tests ONLY for 444 * MAY_EXEC permission. 445 * 446 * If appropriate, check DAC only. If not appropriate, or 447 * short-cut DAC fails, then call permission() to do more 448 * complete permission check. 449 */ 450 static int exec_permission_lite(struct inode *inode) 451 { 452 umode_t mode = inode->i_mode; 453 454 if (inode->i_op && inode->i_op->permission) 455 return -EAGAIN; 456 457 if (current->fsuid == inode->i_uid) 458 mode >>= 6; 459 else if (in_group_p(inode->i_gid)) 460 mode >>= 3; 461 462 if (mode & MAY_EXEC) 463 goto ok; 464 465 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE)) 466 goto ok; 467 468 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE)) 469 goto ok; 470 471 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH)) 472 goto ok; 473 474 return -EACCES; 475 ok: 476 return security_inode_permission(inode, MAY_EXEC); 477 } 478 479 /* 480 * This is called when everything else fails, and we actually have 481 * to go to the low-level filesystem to find out what we should do.. 482 * 483 * We get the directory semaphore, and after getting that we also 484 * make sure that nobody added the entry to the dcache in the meantime.. 485 * SMP-safe 486 */ 487 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd) 488 { 489 struct dentry * result; 490 struct inode *dir = parent->d_inode; 491 492 mutex_lock(&dir->i_mutex); 493 /* 494 * First re-do the cached lookup just in case it was created 495 * while we waited for the directory semaphore.. 496 * 497 * FIXME! This could use version numbering or similar to 498 * avoid unnecessary cache lookups. 499 * 500 * The "dcache_lock" is purely to protect the RCU list walker 501 * from concurrent renames at this point (we mustn't get false 502 * negatives from the RCU list walk here, unlike the optimistic 503 * fast walk). 504 * 505 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup 506 */ 507 result = d_lookup(parent, name); 508 if (!result) { 509 struct dentry *dentry; 510 511 /* Don't create child dentry for a dead directory. */ 512 result = ERR_PTR(-ENOENT); 513 if (IS_DEADDIR(dir)) 514 goto out_unlock; 515 516 dentry = d_alloc(parent, name); 517 result = ERR_PTR(-ENOMEM); 518 if (dentry) { 519 result = dir->i_op->lookup(dir, dentry, nd); 520 if (result) 521 dput(dentry); 522 else 523 result = dentry; 524 } 525 out_unlock: 526 mutex_unlock(&dir->i_mutex); 527 return result; 528 } 529 530 /* 531 * Uhhuh! Nasty case: the cache was re-populated while 532 * we waited on the semaphore. Need to revalidate. 533 */ 534 mutex_unlock(&dir->i_mutex); 535 if (result->d_op && result->d_op->d_revalidate) { 536 result = do_revalidate(result, nd); 537 if (!result) 538 result = ERR_PTR(-ENOENT); 539 } 540 return result; 541 } 542 543 /* SMP-safe */ 544 static __always_inline void 545 walk_init_root(const char *name, struct nameidata *nd) 546 { 547 struct fs_struct *fs = current->fs; 548 549 read_lock(&fs->lock); 550 nd->path = fs->root; 551 path_get(&fs->root); 552 read_unlock(&fs->lock); 553 } 554 555 /* 556 * Wrapper to retry pathname resolution whenever the underlying 557 * file system returns an ESTALE. 558 * 559 * Retry the whole path once, forcing real lookup requests 560 * instead of relying on the dcache. 561 */ 562 static __always_inline int link_path_walk(const char *name, struct nameidata *nd) 563 { 564 struct path save = nd->path; 565 int result; 566 567 /* make sure the stuff we saved doesn't go away */ 568 path_get(&save); 569 570 result = __link_path_walk(name, nd); 571 if (result == -ESTALE) { 572 /* nd->path had been dropped */ 573 nd->path = save; 574 path_get(&nd->path); 575 nd->flags |= LOOKUP_REVAL; 576 result = __link_path_walk(name, nd); 577 } 578 579 path_put(&save); 580 581 return result; 582 } 583 584 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) 585 { 586 int res = 0; 587 char *name; 588 if (IS_ERR(link)) 589 goto fail; 590 591 if (*link == '/') { 592 path_put(&nd->path); 593 walk_init_root(link, nd); 594 } 595 res = link_path_walk(link, nd); 596 if (nd->depth || res || nd->last_type!=LAST_NORM) 597 return res; 598 /* 599 * If it is an iterative symlinks resolution in open_namei() we 600 * have to copy the last component. And all that crap because of 601 * bloody create() on broken symlinks. Furrfu... 602 */ 603 name = __getname(); 604 if (unlikely(!name)) { 605 path_put(&nd->path); 606 return -ENOMEM; 607 } 608 strcpy(name, nd->last.name); 609 nd->last.name = name; 610 return 0; 611 fail: 612 path_put(&nd->path); 613 return PTR_ERR(link); 614 } 615 616 static void path_put_conditional(struct path *path, struct nameidata *nd) 617 { 618 dput(path->dentry); 619 if (path->mnt != nd->path.mnt) 620 mntput(path->mnt); 621 } 622 623 static inline void path_to_nameidata(struct path *path, struct nameidata *nd) 624 { 625 dput(nd->path.dentry); 626 if (nd->path.mnt != path->mnt) 627 mntput(nd->path.mnt); 628 nd->path.mnt = path->mnt; 629 nd->path.dentry = path->dentry; 630 } 631 632 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd) 633 { 634 int error; 635 void *cookie; 636 struct dentry *dentry = path->dentry; 637 638 touch_atime(path->mnt, dentry); 639 nd_set_link(nd, NULL); 640 641 if (path->mnt != nd->path.mnt) { 642 path_to_nameidata(path, nd); 643 dget(dentry); 644 } 645 mntget(path->mnt); 646 cookie = dentry->d_inode->i_op->follow_link(dentry, nd); 647 error = PTR_ERR(cookie); 648 if (!IS_ERR(cookie)) { 649 char *s = nd_get_link(nd); 650 error = 0; 651 if (s) 652 error = __vfs_follow_link(nd, s); 653 if (dentry->d_inode->i_op->put_link) 654 dentry->d_inode->i_op->put_link(dentry, nd, cookie); 655 } 656 path_put(path); 657 658 return error; 659 } 660 661 /* 662 * This limits recursive symlink follows to 8, while 663 * limiting consecutive symlinks to 40. 664 * 665 * Without that kind of total limit, nasty chains of consecutive 666 * symlinks can cause almost arbitrarily long lookups. 667 */ 668 static inline int do_follow_link(struct path *path, struct nameidata *nd) 669 { 670 int err = -ELOOP; 671 if (current->link_count >= MAX_NESTED_LINKS) 672 goto loop; 673 if (current->total_link_count >= 40) 674 goto loop; 675 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 676 cond_resched(); 677 err = security_inode_follow_link(path->dentry, nd); 678 if (err) 679 goto loop; 680 current->link_count++; 681 current->total_link_count++; 682 nd->depth++; 683 err = __do_follow_link(path, nd); 684 current->link_count--; 685 nd->depth--; 686 return err; 687 loop: 688 path_put_conditional(path, nd); 689 path_put(&nd->path); 690 return err; 691 } 692 693 int follow_up(struct vfsmount **mnt, struct dentry **dentry) 694 { 695 struct vfsmount *parent; 696 struct dentry *mountpoint; 697 spin_lock(&vfsmount_lock); 698 parent=(*mnt)->mnt_parent; 699 if (parent == *mnt) { 700 spin_unlock(&vfsmount_lock); 701 return 0; 702 } 703 mntget(parent); 704 mountpoint=dget((*mnt)->mnt_mountpoint); 705 spin_unlock(&vfsmount_lock); 706 dput(*dentry); 707 *dentry = mountpoint; 708 mntput(*mnt); 709 *mnt = parent; 710 return 1; 711 } 712 713 /* no need for dcache_lock, as serialization is taken care in 714 * namespace.c 715 */ 716 static int __follow_mount(struct path *path) 717 { 718 int res = 0; 719 while (d_mountpoint(path->dentry)) { 720 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry); 721 if (!mounted) 722 break; 723 dput(path->dentry); 724 if (res) 725 mntput(path->mnt); 726 path->mnt = mounted; 727 path->dentry = dget(mounted->mnt_root); 728 res = 1; 729 } 730 return res; 731 } 732 733 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry) 734 { 735 while (d_mountpoint(*dentry)) { 736 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry); 737 if (!mounted) 738 break; 739 dput(*dentry); 740 mntput(*mnt); 741 *mnt = mounted; 742 *dentry = dget(mounted->mnt_root); 743 } 744 } 745 746 /* no need for dcache_lock, as serialization is taken care in 747 * namespace.c 748 */ 749 int follow_down(struct vfsmount **mnt, struct dentry **dentry) 750 { 751 struct vfsmount *mounted; 752 753 mounted = lookup_mnt(*mnt, *dentry); 754 if (mounted) { 755 dput(*dentry); 756 mntput(*mnt); 757 *mnt = mounted; 758 *dentry = dget(mounted->mnt_root); 759 return 1; 760 } 761 return 0; 762 } 763 764 static __always_inline void follow_dotdot(struct nameidata *nd) 765 { 766 struct fs_struct *fs = current->fs; 767 768 while(1) { 769 struct vfsmount *parent; 770 struct dentry *old = nd->path.dentry; 771 772 read_lock(&fs->lock); 773 if (nd->path.dentry == fs->root.dentry && 774 nd->path.mnt == fs->root.mnt) { 775 read_unlock(&fs->lock); 776 break; 777 } 778 read_unlock(&fs->lock); 779 spin_lock(&dcache_lock); 780 if (nd->path.dentry != nd->path.mnt->mnt_root) { 781 nd->path.dentry = dget(nd->path.dentry->d_parent); 782 spin_unlock(&dcache_lock); 783 dput(old); 784 break; 785 } 786 spin_unlock(&dcache_lock); 787 spin_lock(&vfsmount_lock); 788 parent = nd->path.mnt->mnt_parent; 789 if (parent == nd->path.mnt) { 790 spin_unlock(&vfsmount_lock); 791 break; 792 } 793 mntget(parent); 794 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint); 795 spin_unlock(&vfsmount_lock); 796 dput(old); 797 mntput(nd->path.mnt); 798 nd->path.mnt = parent; 799 } 800 follow_mount(&nd->path.mnt, &nd->path.dentry); 801 } 802 803 /* 804 * It's more convoluted than I'd like it to be, but... it's still fairly 805 * small and for now I'd prefer to have fast path as straight as possible. 806 * It _is_ time-critical. 807 */ 808 static int do_lookup(struct nameidata *nd, struct qstr *name, 809 struct path *path) 810 { 811 struct vfsmount *mnt = nd->path.mnt; 812 struct dentry *dentry = __d_lookup(nd->path.dentry, name); 813 814 if (!dentry) 815 goto need_lookup; 816 if (dentry->d_op && dentry->d_op->d_revalidate) 817 goto need_revalidate; 818 done: 819 path->mnt = mnt; 820 path->dentry = dentry; 821 __follow_mount(path); 822 return 0; 823 824 need_lookup: 825 dentry = real_lookup(nd->path.dentry, name, nd); 826 if (IS_ERR(dentry)) 827 goto fail; 828 goto done; 829 830 need_revalidate: 831 dentry = do_revalidate(dentry, nd); 832 if (!dentry) 833 goto need_lookup; 834 if (IS_ERR(dentry)) 835 goto fail; 836 goto done; 837 838 fail: 839 return PTR_ERR(dentry); 840 } 841 842 /* 843 * Name resolution. 844 * This is the basic name resolution function, turning a pathname into 845 * the final dentry. We expect 'base' to be positive and a directory. 846 * 847 * Returns 0 and nd will have valid dentry and mnt on success. 848 * Returns error and drops reference to input namei data on failure. 849 */ 850 static int __link_path_walk(const char *name, struct nameidata *nd) 851 { 852 struct path next; 853 struct inode *inode; 854 int err; 855 unsigned int lookup_flags = nd->flags; 856 857 while (*name=='/') 858 name++; 859 if (!*name) 860 goto return_reval; 861 862 inode = nd->path.dentry->d_inode; 863 if (nd->depth) 864 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE); 865 866 /* At this point we know we have a real path component. */ 867 for(;;) { 868 unsigned long hash; 869 struct qstr this; 870 unsigned int c; 871 872 nd->flags |= LOOKUP_CONTINUE; 873 err = exec_permission_lite(inode); 874 if (err == -EAGAIN) 875 err = vfs_permission(nd, MAY_EXEC); 876 if (err) 877 break; 878 879 this.name = name; 880 c = *(const unsigned char *)name; 881 882 hash = init_name_hash(); 883 do { 884 name++; 885 hash = partial_name_hash(c, hash); 886 c = *(const unsigned char *)name; 887 } while (c && (c != '/')); 888 this.len = name - (const char *) this.name; 889 this.hash = end_name_hash(hash); 890 891 /* remove trailing slashes? */ 892 if (!c) 893 goto last_component; 894 while (*++name == '/'); 895 if (!*name) 896 goto last_with_slashes; 897 898 /* 899 * "." and ".." are special - ".." especially so because it has 900 * to be able to know about the current root directory and 901 * parent relationships. 902 */ 903 if (this.name[0] == '.') switch (this.len) { 904 default: 905 break; 906 case 2: 907 if (this.name[1] != '.') 908 break; 909 follow_dotdot(nd); 910 inode = nd->path.dentry->d_inode; 911 /* fallthrough */ 912 case 1: 913 continue; 914 } 915 /* 916 * See if the low-level filesystem might want 917 * to use its own hash.. 918 */ 919 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 920 err = nd->path.dentry->d_op->d_hash(nd->path.dentry, 921 &this); 922 if (err < 0) 923 break; 924 } 925 /* This does the actual lookups.. */ 926 err = do_lookup(nd, &this, &next); 927 if (err) 928 break; 929 930 err = -ENOENT; 931 inode = next.dentry->d_inode; 932 if (!inode) 933 goto out_dput; 934 err = -ENOTDIR; 935 if (!inode->i_op) 936 goto out_dput; 937 938 if (inode->i_op->follow_link) { 939 err = do_follow_link(&next, nd); 940 if (err) 941 goto return_err; 942 err = -ENOENT; 943 inode = nd->path.dentry->d_inode; 944 if (!inode) 945 break; 946 err = -ENOTDIR; 947 if (!inode->i_op) 948 break; 949 } else 950 path_to_nameidata(&next, nd); 951 err = -ENOTDIR; 952 if (!inode->i_op->lookup) 953 break; 954 continue; 955 /* here ends the main loop */ 956 957 last_with_slashes: 958 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 959 last_component: 960 /* Clear LOOKUP_CONTINUE iff it was previously unset */ 961 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE; 962 if (lookup_flags & LOOKUP_PARENT) 963 goto lookup_parent; 964 if (this.name[0] == '.') switch (this.len) { 965 default: 966 break; 967 case 2: 968 if (this.name[1] != '.') 969 break; 970 follow_dotdot(nd); 971 inode = nd->path.dentry->d_inode; 972 /* fallthrough */ 973 case 1: 974 goto return_reval; 975 } 976 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) { 977 err = nd->path.dentry->d_op->d_hash(nd->path.dentry, 978 &this); 979 if (err < 0) 980 break; 981 } 982 err = do_lookup(nd, &this, &next); 983 if (err) 984 break; 985 inode = next.dentry->d_inode; 986 if ((lookup_flags & LOOKUP_FOLLOW) 987 && inode && inode->i_op && inode->i_op->follow_link) { 988 err = do_follow_link(&next, nd); 989 if (err) 990 goto return_err; 991 inode = nd->path.dentry->d_inode; 992 } else 993 path_to_nameidata(&next, nd); 994 err = -ENOENT; 995 if (!inode) 996 break; 997 if (lookup_flags & LOOKUP_DIRECTORY) { 998 err = -ENOTDIR; 999 if (!inode->i_op || !inode->i_op->lookup) 1000 break; 1001 } 1002 goto return_base; 1003 lookup_parent: 1004 nd->last = this; 1005 nd->last_type = LAST_NORM; 1006 if (this.name[0] != '.') 1007 goto return_base; 1008 if (this.len == 1) 1009 nd->last_type = LAST_DOT; 1010 else if (this.len == 2 && this.name[1] == '.') 1011 nd->last_type = LAST_DOTDOT; 1012 else 1013 goto return_base; 1014 return_reval: 1015 /* 1016 * We bypassed the ordinary revalidation routines. 1017 * We may need to check the cached dentry for staleness. 1018 */ 1019 if (nd->path.dentry && nd->path.dentry->d_sb && 1020 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) { 1021 err = -ESTALE; 1022 /* Note: we do not d_invalidate() */ 1023 if (!nd->path.dentry->d_op->d_revalidate( 1024 nd->path.dentry, nd)) 1025 break; 1026 } 1027 return_base: 1028 return 0; 1029 out_dput: 1030 path_put_conditional(&next, nd); 1031 break; 1032 } 1033 path_put(&nd->path); 1034 return_err: 1035 return err; 1036 } 1037 1038 static int path_walk(const char *name, struct nameidata *nd) 1039 { 1040 current->total_link_count = 0; 1041 return link_path_walk(name, nd); 1042 } 1043 1044 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 1045 static int do_path_lookup(int dfd, const char *name, 1046 unsigned int flags, struct nameidata *nd) 1047 { 1048 int retval = 0; 1049 int fput_needed; 1050 struct file *file; 1051 struct fs_struct *fs = current->fs; 1052 1053 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1054 nd->flags = flags; 1055 nd->depth = 0; 1056 1057 if (*name=='/') { 1058 read_lock(&fs->lock); 1059 nd->path = fs->root; 1060 path_get(&fs->root); 1061 read_unlock(&fs->lock); 1062 } else if (dfd == AT_FDCWD) { 1063 read_lock(&fs->lock); 1064 nd->path = fs->pwd; 1065 path_get(&fs->pwd); 1066 read_unlock(&fs->lock); 1067 } else { 1068 struct dentry *dentry; 1069 1070 file = fget_light(dfd, &fput_needed); 1071 retval = -EBADF; 1072 if (!file) 1073 goto out_fail; 1074 1075 dentry = file->f_path.dentry; 1076 1077 retval = -ENOTDIR; 1078 if (!S_ISDIR(dentry->d_inode->i_mode)) 1079 goto fput_fail; 1080 1081 retval = file_permission(file, MAY_EXEC); 1082 if (retval) 1083 goto fput_fail; 1084 1085 nd->path = file->f_path; 1086 path_get(&file->f_path); 1087 1088 fput_light(file, fput_needed); 1089 } 1090 1091 retval = path_walk(name, nd); 1092 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1093 nd->path.dentry->d_inode)) 1094 audit_inode(name, nd->path.dentry); 1095 out_fail: 1096 return retval; 1097 1098 fput_fail: 1099 fput_light(file, fput_needed); 1100 goto out_fail; 1101 } 1102 1103 int path_lookup(const char *name, unsigned int flags, 1104 struct nameidata *nd) 1105 { 1106 return do_path_lookup(AT_FDCWD, name, flags, nd); 1107 } 1108 1109 int kern_path(const char *name, unsigned int flags, struct path *path) 1110 { 1111 struct nameidata nd; 1112 int res = do_path_lookup(AT_FDCWD, name, flags, &nd); 1113 if (!res) 1114 *path = nd.path; 1115 return res; 1116 } 1117 1118 /** 1119 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 1120 * @dentry: pointer to dentry of the base directory 1121 * @mnt: pointer to vfs mount of the base directory 1122 * @name: pointer to file name 1123 * @flags: lookup flags 1124 * @nd: pointer to nameidata 1125 */ 1126 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 1127 const char *name, unsigned int flags, 1128 struct nameidata *nd) 1129 { 1130 int retval; 1131 1132 /* same as do_path_lookup */ 1133 nd->last_type = LAST_ROOT; 1134 nd->flags = flags; 1135 nd->depth = 0; 1136 1137 nd->path.dentry = dentry; 1138 nd->path.mnt = mnt; 1139 path_get(&nd->path); 1140 1141 retval = path_walk(name, nd); 1142 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry && 1143 nd->path.dentry->d_inode)) 1144 audit_inode(name, nd->path.dentry); 1145 1146 return retval; 1147 1148 } 1149 1150 /** 1151 * path_lookup_open - lookup a file path with open intent 1152 * @dfd: the directory to use as base, or AT_FDCWD 1153 * @name: pointer to file name 1154 * @lookup_flags: lookup intent flags 1155 * @nd: pointer to nameidata 1156 * @open_flags: open intent flags 1157 */ 1158 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags, 1159 struct nameidata *nd, int open_flags) 1160 { 1161 struct file *filp = get_empty_filp(); 1162 int err; 1163 1164 if (filp == NULL) 1165 return -ENFILE; 1166 nd->intent.open.file = filp; 1167 nd->intent.open.flags = open_flags; 1168 nd->intent.open.create_mode = 0; 1169 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd); 1170 if (IS_ERR(nd->intent.open.file)) { 1171 if (err == 0) { 1172 err = PTR_ERR(nd->intent.open.file); 1173 path_put(&nd->path); 1174 } 1175 } else if (err != 0) 1176 release_open_intent(nd); 1177 return err; 1178 } 1179 1180 static struct dentry *__lookup_hash(struct qstr *name, 1181 struct dentry *base, struct nameidata *nd) 1182 { 1183 struct dentry *dentry; 1184 struct inode *inode; 1185 int err; 1186 1187 inode = base->d_inode; 1188 1189 /* 1190 * See if the low-level filesystem might want 1191 * to use its own hash.. 1192 */ 1193 if (base->d_op && base->d_op->d_hash) { 1194 err = base->d_op->d_hash(base, name); 1195 dentry = ERR_PTR(err); 1196 if (err < 0) 1197 goto out; 1198 } 1199 1200 dentry = cached_lookup(base, name, nd); 1201 if (!dentry) { 1202 struct dentry *new; 1203 1204 /* Don't create child dentry for a dead directory. */ 1205 dentry = ERR_PTR(-ENOENT); 1206 if (IS_DEADDIR(inode)) 1207 goto out; 1208 1209 new = d_alloc(base, name); 1210 dentry = ERR_PTR(-ENOMEM); 1211 if (!new) 1212 goto out; 1213 dentry = inode->i_op->lookup(inode, new, nd); 1214 if (!dentry) 1215 dentry = new; 1216 else 1217 dput(new); 1218 } 1219 out: 1220 return dentry; 1221 } 1222 1223 /* 1224 * Restricted form of lookup. Doesn't follow links, single-component only, 1225 * needs parent already locked. Doesn't follow mounts. 1226 * SMP-safe. 1227 */ 1228 static struct dentry *lookup_hash(struct nameidata *nd) 1229 { 1230 int err; 1231 1232 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC); 1233 if (err) 1234 return ERR_PTR(err); 1235 return __lookup_hash(&nd->last, nd->path.dentry, nd); 1236 } 1237 1238 static int __lookup_one_len(const char *name, struct qstr *this, 1239 struct dentry *base, int len) 1240 { 1241 unsigned long hash; 1242 unsigned int c; 1243 1244 this->name = name; 1245 this->len = len; 1246 if (!len) 1247 return -EACCES; 1248 1249 hash = init_name_hash(); 1250 while (len--) { 1251 c = *(const unsigned char *)name++; 1252 if (c == '/' || c == '\0') 1253 return -EACCES; 1254 hash = partial_name_hash(c, hash); 1255 } 1256 this->hash = end_name_hash(hash); 1257 return 0; 1258 } 1259 1260 /** 1261 * lookup_one_len - filesystem helper to lookup single pathname component 1262 * @name: pathname component to lookup 1263 * @base: base directory to lookup from 1264 * @len: maximum length @len should be interpreted to 1265 * 1266 * Note that this routine is purely a helper for filesystem usage and should 1267 * not be called by generic code. Also note that by using this function the 1268 * nameidata argument is passed to the filesystem methods and a filesystem 1269 * using this helper needs to be prepared for that. 1270 */ 1271 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 1272 { 1273 int err; 1274 struct qstr this; 1275 1276 err = __lookup_one_len(name, &this, base, len); 1277 if (err) 1278 return ERR_PTR(err); 1279 1280 err = inode_permission(base->d_inode, MAY_EXEC); 1281 if (err) 1282 return ERR_PTR(err); 1283 return __lookup_hash(&this, base, NULL); 1284 } 1285 1286 /** 1287 * lookup_one_noperm - bad hack for sysfs 1288 * @name: pathname component to lookup 1289 * @base: base directory to lookup from 1290 * 1291 * This is a variant of lookup_one_len that doesn't perform any permission 1292 * checks. It's a horrible hack to work around the braindead sysfs 1293 * architecture and should not be used anywhere else. 1294 * 1295 * DON'T USE THIS FUNCTION EVER, thanks. 1296 */ 1297 struct dentry *lookup_one_noperm(const char *name, struct dentry *base) 1298 { 1299 int err; 1300 struct qstr this; 1301 1302 err = __lookup_one_len(name, &this, base, strlen(name)); 1303 if (err) 1304 return ERR_PTR(err); 1305 return __lookup_hash(&this, base, NULL); 1306 } 1307 1308 int user_path_at(int dfd, const char __user *name, unsigned flags, 1309 struct path *path) 1310 { 1311 struct nameidata nd; 1312 char *tmp = getname(name); 1313 int err = PTR_ERR(tmp); 1314 if (!IS_ERR(tmp)) { 1315 1316 BUG_ON(flags & LOOKUP_PARENT); 1317 1318 err = do_path_lookup(dfd, tmp, flags, &nd); 1319 putname(tmp); 1320 if (!err) 1321 *path = nd.path; 1322 } 1323 return err; 1324 } 1325 1326 static int user_path_parent(int dfd, const char __user *path, 1327 struct nameidata *nd, char **name) 1328 { 1329 char *s = getname(path); 1330 int error; 1331 1332 if (IS_ERR(s)) 1333 return PTR_ERR(s); 1334 1335 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); 1336 if (error) 1337 putname(s); 1338 else 1339 *name = s; 1340 1341 return error; 1342 } 1343 1344 /* 1345 * It's inline, so penalty for filesystems that don't use sticky bit is 1346 * minimal. 1347 */ 1348 static inline int check_sticky(struct inode *dir, struct inode *inode) 1349 { 1350 if (!(dir->i_mode & S_ISVTX)) 1351 return 0; 1352 if (inode->i_uid == current->fsuid) 1353 return 0; 1354 if (dir->i_uid == current->fsuid) 1355 return 0; 1356 return !capable(CAP_FOWNER); 1357 } 1358 1359 /* 1360 * Check whether we can remove a link victim from directory dir, check 1361 * whether the type of victim is right. 1362 * 1. We can't do it if dir is read-only (done in permission()) 1363 * 2. We should have write and exec permissions on dir 1364 * 3. We can't remove anything from append-only dir 1365 * 4. We can't do anything with immutable dir (done in permission()) 1366 * 5. If the sticky bit on dir is set we should either 1367 * a. be owner of dir, or 1368 * b. be owner of victim, or 1369 * c. have CAP_FOWNER capability 1370 * 6. If the victim is append-only or immutable we can't do antyhing with 1371 * links pointing to it. 1372 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 1373 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 1374 * 9. We can't remove a root or mountpoint. 1375 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 1376 * nfs_async_unlink(). 1377 */ 1378 static int may_delete(struct inode *dir,struct dentry *victim,int isdir) 1379 { 1380 int error; 1381 1382 if (!victim->d_inode) 1383 return -ENOENT; 1384 1385 BUG_ON(victim->d_parent->d_inode != dir); 1386 audit_inode_child(victim->d_name.name, victim, dir); 1387 1388 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 1389 if (error) 1390 return error; 1391 if (IS_APPEND(dir)) 1392 return -EPERM; 1393 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| 1394 IS_IMMUTABLE(victim->d_inode)) 1395 return -EPERM; 1396 if (isdir) { 1397 if (!S_ISDIR(victim->d_inode->i_mode)) 1398 return -ENOTDIR; 1399 if (IS_ROOT(victim)) 1400 return -EBUSY; 1401 } else if (S_ISDIR(victim->d_inode->i_mode)) 1402 return -EISDIR; 1403 if (IS_DEADDIR(dir)) 1404 return -ENOENT; 1405 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 1406 return -EBUSY; 1407 return 0; 1408 } 1409 1410 /* Check whether we can create an object with dentry child in directory 1411 * dir. 1412 * 1. We can't do it if child already exists (open has special treatment for 1413 * this case, but since we are inlined it's OK) 1414 * 2. We can't do it if dir is read-only (done in permission()) 1415 * 3. We should have write and exec permissions on dir 1416 * 4. We can't do it if dir is immutable (done in permission()) 1417 */ 1418 static inline int may_create(struct inode *dir, struct dentry *child) 1419 { 1420 if (child->d_inode) 1421 return -EEXIST; 1422 if (IS_DEADDIR(dir)) 1423 return -ENOENT; 1424 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 1425 } 1426 1427 /* 1428 * O_DIRECTORY translates into forcing a directory lookup. 1429 */ 1430 static inline int lookup_flags(unsigned int f) 1431 { 1432 unsigned long retval = LOOKUP_FOLLOW; 1433 1434 if (f & O_NOFOLLOW) 1435 retval &= ~LOOKUP_FOLLOW; 1436 1437 if (f & O_DIRECTORY) 1438 retval |= LOOKUP_DIRECTORY; 1439 1440 return retval; 1441 } 1442 1443 /* 1444 * p1 and p2 should be directories on the same fs. 1445 */ 1446 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 1447 { 1448 struct dentry *p; 1449 1450 if (p1 == p2) { 1451 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1452 return NULL; 1453 } 1454 1455 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1456 1457 for (p = p1; p->d_parent != p; p = p->d_parent) { 1458 if (p->d_parent == p2) { 1459 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 1460 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 1461 return p; 1462 } 1463 } 1464 1465 for (p = p2; p->d_parent != p; p = p->d_parent) { 1466 if (p->d_parent == p1) { 1467 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1468 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1469 return p; 1470 } 1471 } 1472 1473 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 1474 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 1475 return NULL; 1476 } 1477 1478 void unlock_rename(struct dentry *p1, struct dentry *p2) 1479 { 1480 mutex_unlock(&p1->d_inode->i_mutex); 1481 if (p1 != p2) { 1482 mutex_unlock(&p2->d_inode->i_mutex); 1483 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 1484 } 1485 } 1486 1487 int vfs_create(struct inode *dir, struct dentry *dentry, int mode, 1488 struct nameidata *nd) 1489 { 1490 int error = may_create(dir, dentry); 1491 1492 if (error) 1493 return error; 1494 1495 if (!dir->i_op || !dir->i_op->create) 1496 return -EACCES; /* shouldn't it be ENOSYS? */ 1497 mode &= S_IALLUGO; 1498 mode |= S_IFREG; 1499 error = security_inode_create(dir, dentry, mode); 1500 if (error) 1501 return error; 1502 DQUOT_INIT(dir); 1503 error = dir->i_op->create(dir, dentry, mode, nd); 1504 if (!error) 1505 fsnotify_create(dir, dentry); 1506 return error; 1507 } 1508 1509 int may_open(struct nameidata *nd, int acc_mode, int flag) 1510 { 1511 struct dentry *dentry = nd->path.dentry; 1512 struct inode *inode = dentry->d_inode; 1513 int error; 1514 1515 if (!inode) 1516 return -ENOENT; 1517 1518 if (S_ISLNK(inode->i_mode)) 1519 return -ELOOP; 1520 1521 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE)) 1522 return -EISDIR; 1523 1524 /* 1525 * FIFO's, sockets and device files are special: they don't 1526 * actually live on the filesystem itself, and as such you 1527 * can write to them even if the filesystem is read-only. 1528 */ 1529 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 1530 flag &= ~O_TRUNC; 1531 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) { 1532 if (nd->path.mnt->mnt_flags & MNT_NODEV) 1533 return -EACCES; 1534 1535 flag &= ~O_TRUNC; 1536 } 1537 1538 error = vfs_permission(nd, acc_mode); 1539 if (error) 1540 return error; 1541 /* 1542 * An append-only file must be opened in append mode for writing. 1543 */ 1544 if (IS_APPEND(inode)) { 1545 if ((flag & FMODE_WRITE) && !(flag & O_APPEND)) 1546 return -EPERM; 1547 if (flag & O_TRUNC) 1548 return -EPERM; 1549 } 1550 1551 /* O_NOATIME can only be set by the owner or superuser */ 1552 if (flag & O_NOATIME) 1553 if (!is_owner_or_cap(inode)) 1554 return -EPERM; 1555 1556 /* 1557 * Ensure there are no outstanding leases on the file. 1558 */ 1559 error = break_lease(inode, flag); 1560 if (error) 1561 return error; 1562 1563 if (flag & O_TRUNC) { 1564 error = get_write_access(inode); 1565 if (error) 1566 return error; 1567 1568 /* 1569 * Refuse to truncate files with mandatory locks held on them. 1570 */ 1571 error = locks_verify_locked(inode); 1572 if (!error) { 1573 DQUOT_INIT(inode); 1574 1575 error = do_truncate(dentry, 0, 1576 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 1577 NULL); 1578 } 1579 put_write_access(inode); 1580 if (error) 1581 return error; 1582 } else 1583 if (flag & FMODE_WRITE) 1584 DQUOT_INIT(inode); 1585 1586 return 0; 1587 } 1588 1589 /* 1590 * Be careful about ever adding any more callers of this 1591 * function. Its flags must be in the namei format, not 1592 * what get passed to sys_open(). 1593 */ 1594 static int __open_namei_create(struct nameidata *nd, struct path *path, 1595 int flag, int mode) 1596 { 1597 int error; 1598 struct dentry *dir = nd->path.dentry; 1599 1600 if (!IS_POSIXACL(dir->d_inode)) 1601 mode &= ~current->fs->umask; 1602 error = vfs_create(dir->d_inode, path->dentry, mode, nd); 1603 mutex_unlock(&dir->d_inode->i_mutex); 1604 dput(nd->path.dentry); 1605 nd->path.dentry = path->dentry; 1606 if (error) 1607 return error; 1608 /* Don't check for write permission, don't truncate */ 1609 return may_open(nd, 0, flag & ~O_TRUNC); 1610 } 1611 1612 /* 1613 * Note that while the flag value (low two bits) for sys_open means: 1614 * 00 - read-only 1615 * 01 - write-only 1616 * 10 - read-write 1617 * 11 - special 1618 * it is changed into 1619 * 00 - no permissions needed 1620 * 01 - read-permission 1621 * 10 - write-permission 1622 * 11 - read-write 1623 * for the internal routines (ie open_namei()/follow_link() etc) 1624 * This is more logical, and also allows the 00 "no perm needed" 1625 * to be used for symlinks (where the permissions are checked 1626 * later). 1627 * 1628 */ 1629 static inline int open_to_namei_flags(int flag) 1630 { 1631 if ((flag+1) & O_ACCMODE) 1632 flag++; 1633 return flag; 1634 } 1635 1636 static int open_will_write_to_fs(int flag, struct inode *inode) 1637 { 1638 /* 1639 * We'll never write to the fs underlying 1640 * a device file. 1641 */ 1642 if (special_file(inode->i_mode)) 1643 return 0; 1644 return (flag & O_TRUNC); 1645 } 1646 1647 /* 1648 * Note that the low bits of the passed in "open_flag" 1649 * are not the same as in the local variable "flag". See 1650 * open_to_namei_flags() for more details. 1651 */ 1652 struct file *do_filp_open(int dfd, const char *pathname, 1653 int open_flag, int mode) 1654 { 1655 struct file *filp; 1656 struct nameidata nd; 1657 int acc_mode, error; 1658 struct path path; 1659 struct dentry *dir; 1660 int count = 0; 1661 int will_write; 1662 int flag = open_to_namei_flags(open_flag); 1663 1664 acc_mode = MAY_OPEN | ACC_MODE(flag); 1665 1666 /* O_TRUNC implies we need access checks for write permissions */ 1667 if (flag & O_TRUNC) 1668 acc_mode |= MAY_WRITE; 1669 1670 /* Allow the LSM permission hook to distinguish append 1671 access from general write access. */ 1672 if (flag & O_APPEND) 1673 acc_mode |= MAY_APPEND; 1674 1675 /* 1676 * The simplest case - just a plain lookup. 1677 */ 1678 if (!(flag & O_CREAT)) { 1679 error = path_lookup_open(dfd, pathname, lookup_flags(flag), 1680 &nd, flag); 1681 if (error) 1682 return ERR_PTR(error); 1683 goto ok; 1684 } 1685 1686 /* 1687 * Create - we need to know the parent. 1688 */ 1689 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd); 1690 if (error) 1691 return ERR_PTR(error); 1692 1693 /* 1694 * We have the parent and last component. First of all, check 1695 * that we are not asked to creat(2) an obvious directory - that 1696 * will not do. 1697 */ 1698 error = -EISDIR; 1699 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len]) 1700 goto exit_parent; 1701 1702 error = -ENFILE; 1703 filp = get_empty_filp(); 1704 if (filp == NULL) 1705 goto exit_parent; 1706 nd.intent.open.file = filp; 1707 nd.intent.open.flags = flag; 1708 nd.intent.open.create_mode = mode; 1709 dir = nd.path.dentry; 1710 nd.flags &= ~LOOKUP_PARENT; 1711 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN; 1712 mutex_lock(&dir->d_inode->i_mutex); 1713 path.dentry = lookup_hash(&nd); 1714 path.mnt = nd.path.mnt; 1715 1716 do_last: 1717 error = PTR_ERR(path.dentry); 1718 if (IS_ERR(path.dentry)) { 1719 mutex_unlock(&dir->d_inode->i_mutex); 1720 goto exit; 1721 } 1722 1723 if (IS_ERR(nd.intent.open.file)) { 1724 error = PTR_ERR(nd.intent.open.file); 1725 goto exit_mutex_unlock; 1726 } 1727 1728 /* Negative dentry, just create the file */ 1729 if (!path.dentry->d_inode) { 1730 /* 1731 * This write is needed to ensure that a 1732 * ro->rw transition does not occur between 1733 * the time when the file is created and when 1734 * a permanent write count is taken through 1735 * the 'struct file' in nameidata_to_filp(). 1736 */ 1737 error = mnt_want_write(nd.path.mnt); 1738 if (error) 1739 goto exit_mutex_unlock; 1740 error = __open_namei_create(&nd, &path, flag, mode); 1741 if (error) { 1742 mnt_drop_write(nd.path.mnt); 1743 goto exit; 1744 } 1745 filp = nameidata_to_filp(&nd, open_flag); 1746 mnt_drop_write(nd.path.mnt); 1747 return filp; 1748 } 1749 1750 /* 1751 * It already exists. 1752 */ 1753 mutex_unlock(&dir->d_inode->i_mutex); 1754 audit_inode(pathname, path.dentry); 1755 1756 error = -EEXIST; 1757 if (flag & O_EXCL) 1758 goto exit_dput; 1759 1760 if (__follow_mount(&path)) { 1761 error = -ELOOP; 1762 if (flag & O_NOFOLLOW) 1763 goto exit_dput; 1764 } 1765 1766 error = -ENOENT; 1767 if (!path.dentry->d_inode) 1768 goto exit_dput; 1769 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link) 1770 goto do_link; 1771 1772 path_to_nameidata(&path, &nd); 1773 error = -EISDIR; 1774 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode)) 1775 goto exit; 1776 ok: 1777 /* 1778 * Consider: 1779 * 1. may_open() truncates a file 1780 * 2. a rw->ro mount transition occurs 1781 * 3. nameidata_to_filp() fails due to 1782 * the ro mount. 1783 * That would be inconsistent, and should 1784 * be avoided. Taking this mnt write here 1785 * ensures that (2) can not occur. 1786 */ 1787 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode); 1788 if (will_write) { 1789 error = mnt_want_write(nd.path.mnt); 1790 if (error) 1791 goto exit; 1792 } 1793 error = may_open(&nd, acc_mode, flag); 1794 if (error) { 1795 if (will_write) 1796 mnt_drop_write(nd.path.mnt); 1797 goto exit; 1798 } 1799 filp = nameidata_to_filp(&nd, open_flag); 1800 /* 1801 * It is now safe to drop the mnt write 1802 * because the filp has had a write taken 1803 * on its behalf. 1804 */ 1805 if (will_write) 1806 mnt_drop_write(nd.path.mnt); 1807 return filp; 1808 1809 exit_mutex_unlock: 1810 mutex_unlock(&dir->d_inode->i_mutex); 1811 exit_dput: 1812 path_put_conditional(&path, &nd); 1813 exit: 1814 if (!IS_ERR(nd.intent.open.file)) 1815 release_open_intent(&nd); 1816 exit_parent: 1817 path_put(&nd.path); 1818 return ERR_PTR(error); 1819 1820 do_link: 1821 error = -ELOOP; 1822 if (flag & O_NOFOLLOW) 1823 goto exit_dput; 1824 /* 1825 * This is subtle. Instead of calling do_follow_link() we do the 1826 * thing by hands. The reason is that this way we have zero link_count 1827 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT. 1828 * After that we have the parent and last component, i.e. 1829 * we are in the same situation as after the first path_walk(). 1830 * Well, almost - if the last component is normal we get its copy 1831 * stored in nd->last.name and we will have to putname() it when we 1832 * are done. Procfs-like symlinks just set LAST_BIND. 1833 */ 1834 nd.flags |= LOOKUP_PARENT; 1835 error = security_inode_follow_link(path.dentry, &nd); 1836 if (error) 1837 goto exit_dput; 1838 error = __do_follow_link(&path, &nd); 1839 if (error) { 1840 /* Does someone understand code flow here? Or it is only 1841 * me so stupid? Anathema to whoever designed this non-sense 1842 * with "intent.open". 1843 */ 1844 release_open_intent(&nd); 1845 return ERR_PTR(error); 1846 } 1847 nd.flags &= ~LOOKUP_PARENT; 1848 if (nd.last_type == LAST_BIND) 1849 goto ok; 1850 error = -EISDIR; 1851 if (nd.last_type != LAST_NORM) 1852 goto exit; 1853 if (nd.last.name[nd.last.len]) { 1854 __putname(nd.last.name); 1855 goto exit; 1856 } 1857 error = -ELOOP; 1858 if (count++==32) { 1859 __putname(nd.last.name); 1860 goto exit; 1861 } 1862 dir = nd.path.dentry; 1863 mutex_lock(&dir->d_inode->i_mutex); 1864 path.dentry = lookup_hash(&nd); 1865 path.mnt = nd.path.mnt; 1866 __putname(nd.last.name); 1867 goto do_last; 1868 } 1869 1870 /** 1871 * filp_open - open file and return file pointer 1872 * 1873 * @filename: path to open 1874 * @flags: open flags as per the open(2) second argument 1875 * @mode: mode for the new file if O_CREAT is set, else ignored 1876 * 1877 * This is the helper to open a file from kernelspace if you really 1878 * have to. But in generally you should not do this, so please move 1879 * along, nothing to see here.. 1880 */ 1881 struct file *filp_open(const char *filename, int flags, int mode) 1882 { 1883 return do_filp_open(AT_FDCWD, filename, flags, mode); 1884 } 1885 EXPORT_SYMBOL(filp_open); 1886 1887 /** 1888 * lookup_create - lookup a dentry, creating it if it doesn't exist 1889 * @nd: nameidata info 1890 * @is_dir: directory flag 1891 * 1892 * Simple function to lookup and return a dentry and create it 1893 * if it doesn't exist. Is SMP-safe. 1894 * 1895 * Returns with nd->path.dentry->d_inode->i_mutex locked. 1896 */ 1897 struct dentry *lookup_create(struct nameidata *nd, int is_dir) 1898 { 1899 struct dentry *dentry = ERR_PTR(-EEXIST); 1900 1901 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 1902 /* 1903 * Yucky last component or no last component at all? 1904 * (foo/., foo/.., /////) 1905 */ 1906 if (nd->last_type != LAST_NORM) 1907 goto fail; 1908 nd->flags &= ~LOOKUP_PARENT; 1909 nd->flags |= LOOKUP_CREATE; 1910 nd->intent.open.flags = O_EXCL; 1911 1912 /* 1913 * Do the final lookup. 1914 */ 1915 dentry = lookup_hash(nd); 1916 if (IS_ERR(dentry)) 1917 goto fail; 1918 1919 if (dentry->d_inode) 1920 goto eexist; 1921 /* 1922 * Special case - lookup gave negative, but... we had foo/bar/ 1923 * From the vfs_mknod() POV we just have a negative dentry - 1924 * all is fine. Let's be bastards - you had / on the end, you've 1925 * been asking for (non-existent) directory. -ENOENT for you. 1926 */ 1927 if (unlikely(!is_dir && nd->last.name[nd->last.len])) { 1928 dput(dentry); 1929 dentry = ERR_PTR(-ENOENT); 1930 } 1931 return dentry; 1932 eexist: 1933 dput(dentry); 1934 dentry = ERR_PTR(-EEXIST); 1935 fail: 1936 return dentry; 1937 } 1938 EXPORT_SYMBOL_GPL(lookup_create); 1939 1940 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 1941 { 1942 int error = may_create(dir, dentry); 1943 1944 if (error) 1945 return error; 1946 1947 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 1948 return -EPERM; 1949 1950 if (!dir->i_op || !dir->i_op->mknod) 1951 return -EPERM; 1952 1953 error = devcgroup_inode_mknod(mode, dev); 1954 if (error) 1955 return error; 1956 1957 error = security_inode_mknod(dir, dentry, mode, dev); 1958 if (error) 1959 return error; 1960 1961 DQUOT_INIT(dir); 1962 error = dir->i_op->mknod(dir, dentry, mode, dev); 1963 if (!error) 1964 fsnotify_create(dir, dentry); 1965 return error; 1966 } 1967 1968 static int may_mknod(mode_t mode) 1969 { 1970 switch (mode & S_IFMT) { 1971 case S_IFREG: 1972 case S_IFCHR: 1973 case S_IFBLK: 1974 case S_IFIFO: 1975 case S_IFSOCK: 1976 case 0: /* zero mode translates to S_IFREG */ 1977 return 0; 1978 case S_IFDIR: 1979 return -EPERM; 1980 default: 1981 return -EINVAL; 1982 } 1983 } 1984 1985 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode, 1986 unsigned dev) 1987 { 1988 int error; 1989 char *tmp; 1990 struct dentry *dentry; 1991 struct nameidata nd; 1992 1993 if (S_ISDIR(mode)) 1994 return -EPERM; 1995 1996 error = user_path_parent(dfd, filename, &nd, &tmp); 1997 if (error) 1998 return error; 1999 2000 dentry = lookup_create(&nd, 0); 2001 if (IS_ERR(dentry)) { 2002 error = PTR_ERR(dentry); 2003 goto out_unlock; 2004 } 2005 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2006 mode &= ~current->fs->umask; 2007 error = may_mknod(mode); 2008 if (error) 2009 goto out_dput; 2010 error = mnt_want_write(nd.path.mnt); 2011 if (error) 2012 goto out_dput; 2013 switch (mode & S_IFMT) { 2014 case 0: case S_IFREG: 2015 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd); 2016 break; 2017 case S_IFCHR: case S_IFBLK: 2018 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode, 2019 new_decode_dev(dev)); 2020 break; 2021 case S_IFIFO: case S_IFSOCK: 2022 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0); 2023 break; 2024 } 2025 mnt_drop_write(nd.path.mnt); 2026 out_dput: 2027 dput(dentry); 2028 out_unlock: 2029 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2030 path_put(&nd.path); 2031 putname(tmp); 2032 2033 return error; 2034 } 2035 2036 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev) 2037 { 2038 return sys_mknodat(AT_FDCWD, filename, mode, dev); 2039 } 2040 2041 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 2042 { 2043 int error = may_create(dir, dentry); 2044 2045 if (error) 2046 return error; 2047 2048 if (!dir->i_op || !dir->i_op->mkdir) 2049 return -EPERM; 2050 2051 mode &= (S_IRWXUGO|S_ISVTX); 2052 error = security_inode_mkdir(dir, dentry, mode); 2053 if (error) 2054 return error; 2055 2056 DQUOT_INIT(dir); 2057 error = dir->i_op->mkdir(dir, dentry, mode); 2058 if (!error) 2059 fsnotify_mkdir(dir, dentry); 2060 return error; 2061 } 2062 2063 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode) 2064 { 2065 int error = 0; 2066 char * tmp; 2067 struct dentry *dentry; 2068 struct nameidata nd; 2069 2070 error = user_path_parent(dfd, pathname, &nd, &tmp); 2071 if (error) 2072 goto out_err; 2073 2074 dentry = lookup_create(&nd, 1); 2075 error = PTR_ERR(dentry); 2076 if (IS_ERR(dentry)) 2077 goto out_unlock; 2078 2079 if (!IS_POSIXACL(nd.path.dentry->d_inode)) 2080 mode &= ~current->fs->umask; 2081 error = mnt_want_write(nd.path.mnt); 2082 if (error) 2083 goto out_dput; 2084 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode); 2085 mnt_drop_write(nd.path.mnt); 2086 out_dput: 2087 dput(dentry); 2088 out_unlock: 2089 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2090 path_put(&nd.path); 2091 putname(tmp); 2092 out_err: 2093 return error; 2094 } 2095 2096 asmlinkage long sys_mkdir(const char __user *pathname, int mode) 2097 { 2098 return sys_mkdirat(AT_FDCWD, pathname, mode); 2099 } 2100 2101 /* 2102 * We try to drop the dentry early: we should have 2103 * a usage count of 2 if we're the only user of this 2104 * dentry, and if that is true (possibly after pruning 2105 * the dcache), then we drop the dentry now. 2106 * 2107 * A low-level filesystem can, if it choses, legally 2108 * do a 2109 * 2110 * if (!d_unhashed(dentry)) 2111 * return -EBUSY; 2112 * 2113 * if it cannot handle the case of removing a directory 2114 * that is still in use by something else.. 2115 */ 2116 void dentry_unhash(struct dentry *dentry) 2117 { 2118 dget(dentry); 2119 shrink_dcache_parent(dentry); 2120 spin_lock(&dcache_lock); 2121 spin_lock(&dentry->d_lock); 2122 if (atomic_read(&dentry->d_count) == 2) 2123 __d_drop(dentry); 2124 spin_unlock(&dentry->d_lock); 2125 spin_unlock(&dcache_lock); 2126 } 2127 2128 int vfs_rmdir(struct inode *dir, struct dentry *dentry) 2129 { 2130 int error = may_delete(dir, dentry, 1); 2131 2132 if (error) 2133 return error; 2134 2135 if (!dir->i_op || !dir->i_op->rmdir) 2136 return -EPERM; 2137 2138 DQUOT_INIT(dir); 2139 2140 mutex_lock(&dentry->d_inode->i_mutex); 2141 dentry_unhash(dentry); 2142 if (d_mountpoint(dentry)) 2143 error = -EBUSY; 2144 else { 2145 error = security_inode_rmdir(dir, dentry); 2146 if (!error) { 2147 error = dir->i_op->rmdir(dir, dentry); 2148 if (!error) 2149 dentry->d_inode->i_flags |= S_DEAD; 2150 } 2151 } 2152 mutex_unlock(&dentry->d_inode->i_mutex); 2153 if (!error) { 2154 d_delete(dentry); 2155 } 2156 dput(dentry); 2157 2158 return error; 2159 } 2160 2161 static long do_rmdir(int dfd, const char __user *pathname) 2162 { 2163 int error = 0; 2164 char * name; 2165 struct dentry *dentry; 2166 struct nameidata nd; 2167 2168 error = user_path_parent(dfd, pathname, &nd, &name); 2169 if (error) 2170 return error; 2171 2172 switch(nd.last_type) { 2173 case LAST_DOTDOT: 2174 error = -ENOTEMPTY; 2175 goto exit1; 2176 case LAST_DOT: 2177 error = -EINVAL; 2178 goto exit1; 2179 case LAST_ROOT: 2180 error = -EBUSY; 2181 goto exit1; 2182 } 2183 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2184 dentry = lookup_hash(&nd); 2185 error = PTR_ERR(dentry); 2186 if (IS_ERR(dentry)) 2187 goto exit2; 2188 error = mnt_want_write(nd.path.mnt); 2189 if (error) 2190 goto exit3; 2191 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 2192 mnt_drop_write(nd.path.mnt); 2193 exit3: 2194 dput(dentry); 2195 exit2: 2196 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2197 exit1: 2198 path_put(&nd.path); 2199 putname(name); 2200 return error; 2201 } 2202 2203 asmlinkage long sys_rmdir(const char __user *pathname) 2204 { 2205 return do_rmdir(AT_FDCWD, pathname); 2206 } 2207 2208 int vfs_unlink(struct inode *dir, struct dentry *dentry) 2209 { 2210 int error = may_delete(dir, dentry, 0); 2211 2212 if (error) 2213 return error; 2214 2215 if (!dir->i_op || !dir->i_op->unlink) 2216 return -EPERM; 2217 2218 DQUOT_INIT(dir); 2219 2220 mutex_lock(&dentry->d_inode->i_mutex); 2221 if (d_mountpoint(dentry)) 2222 error = -EBUSY; 2223 else { 2224 error = security_inode_unlink(dir, dentry); 2225 if (!error) 2226 error = dir->i_op->unlink(dir, dentry); 2227 } 2228 mutex_unlock(&dentry->d_inode->i_mutex); 2229 2230 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 2231 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 2232 fsnotify_link_count(dentry->d_inode); 2233 d_delete(dentry); 2234 } 2235 2236 return error; 2237 } 2238 2239 /* 2240 * Make sure that the actual truncation of the file will occur outside its 2241 * directory's i_mutex. Truncate can take a long time if there is a lot of 2242 * writeout happening, and we don't want to prevent access to the directory 2243 * while waiting on the I/O. 2244 */ 2245 static long do_unlinkat(int dfd, const char __user *pathname) 2246 { 2247 int error; 2248 char *name; 2249 struct dentry *dentry; 2250 struct nameidata nd; 2251 struct inode *inode = NULL; 2252 2253 error = user_path_parent(dfd, pathname, &nd, &name); 2254 if (error) 2255 return error; 2256 2257 error = -EISDIR; 2258 if (nd.last_type != LAST_NORM) 2259 goto exit1; 2260 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2261 dentry = lookup_hash(&nd); 2262 error = PTR_ERR(dentry); 2263 if (!IS_ERR(dentry)) { 2264 /* Why not before? Because we want correct error value */ 2265 if (nd.last.name[nd.last.len]) 2266 goto slashes; 2267 inode = dentry->d_inode; 2268 if (inode) 2269 atomic_inc(&inode->i_count); 2270 error = mnt_want_write(nd.path.mnt); 2271 if (error) 2272 goto exit2; 2273 error = vfs_unlink(nd.path.dentry->d_inode, dentry); 2274 mnt_drop_write(nd.path.mnt); 2275 exit2: 2276 dput(dentry); 2277 } 2278 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2279 if (inode) 2280 iput(inode); /* truncate the inode here */ 2281 exit1: 2282 path_put(&nd.path); 2283 putname(name); 2284 return error; 2285 2286 slashes: 2287 error = !dentry->d_inode ? -ENOENT : 2288 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; 2289 goto exit2; 2290 } 2291 2292 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag) 2293 { 2294 if ((flag & ~AT_REMOVEDIR) != 0) 2295 return -EINVAL; 2296 2297 if (flag & AT_REMOVEDIR) 2298 return do_rmdir(dfd, pathname); 2299 2300 return do_unlinkat(dfd, pathname); 2301 } 2302 2303 asmlinkage long sys_unlink(const char __user *pathname) 2304 { 2305 return do_unlinkat(AT_FDCWD, pathname); 2306 } 2307 2308 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 2309 { 2310 int error = may_create(dir, dentry); 2311 2312 if (error) 2313 return error; 2314 2315 if (!dir->i_op || !dir->i_op->symlink) 2316 return -EPERM; 2317 2318 error = security_inode_symlink(dir, dentry, oldname); 2319 if (error) 2320 return error; 2321 2322 DQUOT_INIT(dir); 2323 error = dir->i_op->symlink(dir, dentry, oldname); 2324 if (!error) 2325 fsnotify_create(dir, dentry); 2326 return error; 2327 } 2328 2329 asmlinkage long sys_symlinkat(const char __user *oldname, 2330 int newdfd, const char __user *newname) 2331 { 2332 int error; 2333 char *from; 2334 char *to; 2335 struct dentry *dentry; 2336 struct nameidata nd; 2337 2338 from = getname(oldname); 2339 if (IS_ERR(from)) 2340 return PTR_ERR(from); 2341 2342 error = user_path_parent(newdfd, newname, &nd, &to); 2343 if (error) 2344 goto out_putname; 2345 2346 dentry = lookup_create(&nd, 0); 2347 error = PTR_ERR(dentry); 2348 if (IS_ERR(dentry)) 2349 goto out_unlock; 2350 2351 error = mnt_want_write(nd.path.mnt); 2352 if (error) 2353 goto out_dput; 2354 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from); 2355 mnt_drop_write(nd.path.mnt); 2356 out_dput: 2357 dput(dentry); 2358 out_unlock: 2359 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2360 path_put(&nd.path); 2361 putname(to); 2362 out_putname: 2363 putname(from); 2364 return error; 2365 } 2366 2367 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname) 2368 { 2369 return sys_symlinkat(oldname, AT_FDCWD, newname); 2370 } 2371 2372 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2373 { 2374 struct inode *inode = old_dentry->d_inode; 2375 int error; 2376 2377 if (!inode) 2378 return -ENOENT; 2379 2380 error = may_create(dir, new_dentry); 2381 if (error) 2382 return error; 2383 2384 if (dir->i_sb != inode->i_sb) 2385 return -EXDEV; 2386 2387 /* 2388 * A link to an append-only or immutable file cannot be created. 2389 */ 2390 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 2391 return -EPERM; 2392 if (!dir->i_op || !dir->i_op->link) 2393 return -EPERM; 2394 if (S_ISDIR(inode->i_mode)) 2395 return -EPERM; 2396 2397 error = security_inode_link(old_dentry, dir, new_dentry); 2398 if (error) 2399 return error; 2400 2401 mutex_lock(&inode->i_mutex); 2402 DQUOT_INIT(dir); 2403 error = dir->i_op->link(old_dentry, dir, new_dentry); 2404 mutex_unlock(&inode->i_mutex); 2405 if (!error) 2406 fsnotify_link(dir, inode, new_dentry); 2407 return error; 2408 } 2409 2410 /* 2411 * Hardlinks are often used in delicate situations. We avoid 2412 * security-related surprises by not following symlinks on the 2413 * newname. --KAB 2414 * 2415 * We don't follow them on the oldname either to be compatible 2416 * with linux 2.0, and to avoid hard-linking to directories 2417 * and other special files. --ADM 2418 */ 2419 asmlinkage long sys_linkat(int olddfd, const char __user *oldname, 2420 int newdfd, const char __user *newname, 2421 int flags) 2422 { 2423 struct dentry *new_dentry; 2424 struct nameidata nd; 2425 struct path old_path; 2426 int error; 2427 char *to; 2428 2429 if ((flags & ~AT_SYMLINK_FOLLOW) != 0) 2430 return -EINVAL; 2431 2432 error = user_path_at(olddfd, oldname, 2433 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0, 2434 &old_path); 2435 if (error) 2436 return error; 2437 2438 error = user_path_parent(newdfd, newname, &nd, &to); 2439 if (error) 2440 goto out; 2441 error = -EXDEV; 2442 if (old_path.mnt != nd.path.mnt) 2443 goto out_release; 2444 new_dentry = lookup_create(&nd, 0); 2445 error = PTR_ERR(new_dentry); 2446 if (IS_ERR(new_dentry)) 2447 goto out_unlock; 2448 error = mnt_want_write(nd.path.mnt); 2449 if (error) 2450 goto out_dput; 2451 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry); 2452 mnt_drop_write(nd.path.mnt); 2453 out_dput: 2454 dput(new_dentry); 2455 out_unlock: 2456 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2457 out_release: 2458 path_put(&nd.path); 2459 putname(to); 2460 out: 2461 path_put(&old_path); 2462 2463 return error; 2464 } 2465 2466 asmlinkage long sys_link(const char __user *oldname, const char __user *newname) 2467 { 2468 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 2469 } 2470 2471 /* 2472 * The worst of all namespace operations - renaming directory. "Perverted" 2473 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 2474 * Problems: 2475 * a) we can get into loop creation. Check is done in is_subdir(). 2476 * b) race potential - two innocent renames can create a loop together. 2477 * That's where 4.4 screws up. Current fix: serialization on 2478 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 2479 * story. 2480 * c) we have to lock _three_ objects - parents and victim (if it exists). 2481 * And that - after we got ->i_mutex on parents (until then we don't know 2482 * whether the target exists). Solution: try to be smart with locking 2483 * order for inodes. We rely on the fact that tree topology may change 2484 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 2485 * move will be locked. Thus we can rank directories by the tree 2486 * (ancestors first) and rank all non-directories after them. 2487 * That works since everybody except rename does "lock parent, lookup, 2488 * lock child" and rename is under ->s_vfs_rename_mutex. 2489 * HOWEVER, it relies on the assumption that any object with ->lookup() 2490 * has no more than 1 dentry. If "hybrid" objects will ever appear, 2491 * we'd better make sure that there's no link(2) for them. 2492 * d) some filesystems don't support opened-but-unlinked directories, 2493 * either because of layout or because they are not ready to deal with 2494 * all cases correctly. The latter will be fixed (taking this sort of 2495 * stuff into VFS), but the former is not going away. Solution: the same 2496 * trick as in rmdir(). 2497 * e) conversion from fhandle to dentry may come in the wrong moment - when 2498 * we are removing the target. Solution: we will have to grab ->i_mutex 2499 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 2500 * ->i_mutex on parents, which works but leads to some truely excessive 2501 * locking]. 2502 */ 2503 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, 2504 struct inode *new_dir, struct dentry *new_dentry) 2505 { 2506 int error = 0; 2507 struct inode *target; 2508 2509 /* 2510 * If we are going to change the parent - check write permissions, 2511 * we'll need to flip '..'. 2512 */ 2513 if (new_dir != old_dir) { 2514 error = inode_permission(old_dentry->d_inode, MAY_WRITE); 2515 if (error) 2516 return error; 2517 } 2518 2519 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2520 if (error) 2521 return error; 2522 2523 target = new_dentry->d_inode; 2524 if (target) { 2525 mutex_lock(&target->i_mutex); 2526 dentry_unhash(new_dentry); 2527 } 2528 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2529 error = -EBUSY; 2530 else 2531 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2532 if (target) { 2533 if (!error) 2534 target->i_flags |= S_DEAD; 2535 mutex_unlock(&target->i_mutex); 2536 if (d_unhashed(new_dentry)) 2537 d_rehash(new_dentry); 2538 dput(new_dentry); 2539 } 2540 if (!error) 2541 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2542 d_move(old_dentry,new_dentry); 2543 return error; 2544 } 2545 2546 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, 2547 struct inode *new_dir, struct dentry *new_dentry) 2548 { 2549 struct inode *target; 2550 int error; 2551 2552 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); 2553 if (error) 2554 return error; 2555 2556 dget(new_dentry); 2557 target = new_dentry->d_inode; 2558 if (target) 2559 mutex_lock(&target->i_mutex); 2560 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) 2561 error = -EBUSY; 2562 else 2563 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); 2564 if (!error) { 2565 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) 2566 d_move(old_dentry, new_dentry); 2567 } 2568 if (target) 2569 mutex_unlock(&target->i_mutex); 2570 dput(new_dentry); 2571 return error; 2572 } 2573 2574 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2575 struct inode *new_dir, struct dentry *new_dentry) 2576 { 2577 int error; 2578 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 2579 const char *old_name; 2580 2581 if (old_dentry->d_inode == new_dentry->d_inode) 2582 return 0; 2583 2584 error = may_delete(old_dir, old_dentry, is_dir); 2585 if (error) 2586 return error; 2587 2588 if (!new_dentry->d_inode) 2589 error = may_create(new_dir, new_dentry); 2590 else 2591 error = may_delete(new_dir, new_dentry, is_dir); 2592 if (error) 2593 return error; 2594 2595 if (!old_dir->i_op || !old_dir->i_op->rename) 2596 return -EPERM; 2597 2598 DQUOT_INIT(old_dir); 2599 DQUOT_INIT(new_dir); 2600 2601 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 2602 2603 if (is_dir) 2604 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); 2605 else 2606 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); 2607 if (!error) { 2608 const char *new_name = old_dentry->d_name.name; 2609 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir, 2610 new_dentry->d_inode, old_dentry); 2611 } 2612 fsnotify_oldname_free(old_name); 2613 2614 return error; 2615 } 2616 2617 asmlinkage long sys_renameat(int olddfd, const char __user *oldname, 2618 int newdfd, const char __user *newname) 2619 { 2620 struct dentry *old_dir, *new_dir; 2621 struct dentry *old_dentry, *new_dentry; 2622 struct dentry *trap; 2623 struct nameidata oldnd, newnd; 2624 char *from; 2625 char *to; 2626 int error; 2627 2628 error = user_path_parent(olddfd, oldname, &oldnd, &from); 2629 if (error) 2630 goto exit; 2631 2632 error = user_path_parent(newdfd, newname, &newnd, &to); 2633 if (error) 2634 goto exit1; 2635 2636 error = -EXDEV; 2637 if (oldnd.path.mnt != newnd.path.mnt) 2638 goto exit2; 2639 2640 old_dir = oldnd.path.dentry; 2641 error = -EBUSY; 2642 if (oldnd.last_type != LAST_NORM) 2643 goto exit2; 2644 2645 new_dir = newnd.path.dentry; 2646 if (newnd.last_type != LAST_NORM) 2647 goto exit2; 2648 2649 trap = lock_rename(new_dir, old_dir); 2650 2651 old_dentry = lookup_hash(&oldnd); 2652 error = PTR_ERR(old_dentry); 2653 if (IS_ERR(old_dentry)) 2654 goto exit3; 2655 /* source must exist */ 2656 error = -ENOENT; 2657 if (!old_dentry->d_inode) 2658 goto exit4; 2659 /* unless the source is a directory trailing slashes give -ENOTDIR */ 2660 if (!S_ISDIR(old_dentry->d_inode->i_mode)) { 2661 error = -ENOTDIR; 2662 if (oldnd.last.name[oldnd.last.len]) 2663 goto exit4; 2664 if (newnd.last.name[newnd.last.len]) 2665 goto exit4; 2666 } 2667 /* source should not be ancestor of target */ 2668 error = -EINVAL; 2669 if (old_dentry == trap) 2670 goto exit4; 2671 new_dentry = lookup_hash(&newnd); 2672 error = PTR_ERR(new_dentry); 2673 if (IS_ERR(new_dentry)) 2674 goto exit4; 2675 /* target should not be an ancestor of source */ 2676 error = -ENOTEMPTY; 2677 if (new_dentry == trap) 2678 goto exit5; 2679 2680 error = mnt_want_write(oldnd.path.mnt); 2681 if (error) 2682 goto exit5; 2683 error = vfs_rename(old_dir->d_inode, old_dentry, 2684 new_dir->d_inode, new_dentry); 2685 mnt_drop_write(oldnd.path.mnt); 2686 exit5: 2687 dput(new_dentry); 2688 exit4: 2689 dput(old_dentry); 2690 exit3: 2691 unlock_rename(new_dir, old_dir); 2692 exit2: 2693 path_put(&newnd.path); 2694 putname(to); 2695 exit1: 2696 path_put(&oldnd.path); 2697 putname(from); 2698 exit: 2699 return error; 2700 } 2701 2702 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname) 2703 { 2704 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); 2705 } 2706 2707 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) 2708 { 2709 int len; 2710 2711 len = PTR_ERR(link); 2712 if (IS_ERR(link)) 2713 goto out; 2714 2715 len = strlen(link); 2716 if (len > (unsigned) buflen) 2717 len = buflen; 2718 if (copy_to_user(buffer, link, len)) 2719 len = -EFAULT; 2720 out: 2721 return len; 2722 } 2723 2724 /* 2725 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 2726 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 2727 * using) it for any given inode is up to filesystem. 2728 */ 2729 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2730 { 2731 struct nameidata nd; 2732 void *cookie; 2733 int res; 2734 2735 nd.depth = 0; 2736 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 2737 if (IS_ERR(cookie)) 2738 return PTR_ERR(cookie); 2739 2740 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); 2741 if (dentry->d_inode->i_op->put_link) 2742 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 2743 return res; 2744 } 2745 2746 int vfs_follow_link(struct nameidata *nd, const char *link) 2747 { 2748 return __vfs_follow_link(nd, link); 2749 } 2750 2751 /* get the link contents into pagecache */ 2752 static char *page_getlink(struct dentry * dentry, struct page **ppage) 2753 { 2754 struct page * page; 2755 struct address_space *mapping = dentry->d_inode->i_mapping; 2756 page = read_mapping_page(mapping, 0, NULL); 2757 if (IS_ERR(page)) 2758 return (char*)page; 2759 *ppage = page; 2760 return kmap(page); 2761 } 2762 2763 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 2764 { 2765 struct page *page = NULL; 2766 char *s = page_getlink(dentry, &page); 2767 int res = vfs_readlink(dentry,buffer,buflen,s); 2768 if (page) { 2769 kunmap(page); 2770 page_cache_release(page); 2771 } 2772 return res; 2773 } 2774 2775 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 2776 { 2777 struct page *page = NULL; 2778 nd_set_link(nd, page_getlink(dentry, &page)); 2779 return page; 2780 } 2781 2782 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2783 { 2784 struct page *page = cookie; 2785 2786 if (page) { 2787 kunmap(page); 2788 page_cache_release(page); 2789 } 2790 } 2791 2792 int __page_symlink(struct inode *inode, const char *symname, int len, 2793 gfp_t gfp_mask) 2794 { 2795 struct address_space *mapping = inode->i_mapping; 2796 struct page *page; 2797 void *fsdata; 2798 int err; 2799 char *kaddr; 2800 2801 retry: 2802 err = pagecache_write_begin(NULL, mapping, 0, len-1, 2803 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 2804 if (err) 2805 goto fail; 2806 2807 kaddr = kmap_atomic(page, KM_USER0); 2808 memcpy(kaddr, symname, len-1); 2809 kunmap_atomic(kaddr, KM_USER0); 2810 2811 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 2812 page, fsdata); 2813 if (err < 0) 2814 goto fail; 2815 if (err < len-1) 2816 goto retry; 2817 2818 mark_inode_dirty(inode); 2819 return 0; 2820 fail: 2821 return err; 2822 } 2823 2824 int page_symlink(struct inode *inode, const char *symname, int len) 2825 { 2826 return __page_symlink(inode, symname, len, 2827 mapping_gfp_mask(inode->i_mapping)); 2828 } 2829 2830 const struct inode_operations page_symlink_inode_operations = { 2831 .readlink = generic_readlink, 2832 .follow_link = page_follow_link_light, 2833 .put_link = page_put_link, 2834 }; 2835 2836 EXPORT_SYMBOL(user_path_at); 2837 EXPORT_SYMBOL(follow_down); 2838 EXPORT_SYMBOL(follow_up); 2839 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ 2840 EXPORT_SYMBOL(getname); 2841 EXPORT_SYMBOL(lock_rename); 2842 EXPORT_SYMBOL(lookup_one_len); 2843 EXPORT_SYMBOL(page_follow_link_light); 2844 EXPORT_SYMBOL(page_put_link); 2845 EXPORT_SYMBOL(page_readlink); 2846 EXPORT_SYMBOL(__page_symlink); 2847 EXPORT_SYMBOL(page_symlink); 2848 EXPORT_SYMBOL(page_symlink_inode_operations); 2849 EXPORT_SYMBOL(path_lookup); 2850 EXPORT_SYMBOL(kern_path); 2851 EXPORT_SYMBOL(vfs_path_lookup); 2852 EXPORT_SYMBOL(inode_permission); 2853 EXPORT_SYMBOL(vfs_permission); 2854 EXPORT_SYMBOL(file_permission); 2855 EXPORT_SYMBOL(unlock_rename); 2856 EXPORT_SYMBOL(vfs_create); 2857 EXPORT_SYMBOL(vfs_follow_link); 2858 EXPORT_SYMBOL(vfs_link); 2859 EXPORT_SYMBOL(vfs_mkdir); 2860 EXPORT_SYMBOL(vfs_mknod); 2861 EXPORT_SYMBOL(generic_permission); 2862 EXPORT_SYMBOL(vfs_readlink); 2863 EXPORT_SYMBOL(vfs_rename); 2864 EXPORT_SYMBOL(vfs_rmdir); 2865 EXPORT_SYMBOL(vfs_symlink); 2866 EXPORT_SYMBOL(vfs_unlink); 2867 EXPORT_SYMBOL(dentry_unhash); 2868 EXPORT_SYMBOL(generic_readlink); 2869