xref: /openbmc/linux/fs/namei.c (revision 26a9630c72ebac7c564db305a6aee54a8edde70e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now
56  * replaced with a single function lookup_dentry() that can handle all
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73 
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90 
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96 
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *	inside the path - always follow.
99  *	in the last component in creation/removal/renaming - never follow.
100  *	if LOOKUP_FOLLOW passed - follow.
101  *	if the pathname has trailing slashes - follow.
102  *	otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116 
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124 
125 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
126 
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 	struct filename *result;
131 	char *kname;
132 	int len;
133 
134 	result = audit_reusename(filename);
135 	if (result)
136 		return result;
137 
138 	result = __getname();
139 	if (unlikely(!result))
140 		return ERR_PTR(-ENOMEM);
141 
142 	/*
143 	 * First, try to embed the struct filename inside the names_cache
144 	 * allocation
145 	 */
146 	kname = (char *)result->iname;
147 	result->name = kname;
148 
149 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 	if (unlikely(len < 0)) {
151 		__putname(result);
152 		return ERR_PTR(len);
153 	}
154 
155 	/*
156 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 	 * separate struct filename so we can dedicate the entire
158 	 * names_cache allocation for the pathname, and re-do the copy from
159 	 * userland.
160 	 */
161 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 		const size_t size = offsetof(struct filename, iname[1]);
163 		kname = (char *)result;
164 
165 		/*
166 		 * size is chosen that way we to guarantee that
167 		 * result->iname[0] is within the same object and that
168 		 * kname can't be equal to result->iname, no matter what.
169 		 */
170 		result = kzalloc(size, GFP_KERNEL);
171 		if (unlikely(!result)) {
172 			__putname(kname);
173 			return ERR_PTR(-ENOMEM);
174 		}
175 		result->name = kname;
176 		len = strncpy_from_user(kname, filename, PATH_MAX);
177 		if (unlikely(len < 0)) {
178 			__putname(kname);
179 			kfree(result);
180 			return ERR_PTR(len);
181 		}
182 		if (unlikely(len == PATH_MAX)) {
183 			__putname(kname);
184 			kfree(result);
185 			return ERR_PTR(-ENAMETOOLONG);
186 		}
187 	}
188 
189 	result->refcnt = 1;
190 	/* The empty path is special. */
191 	if (unlikely(!len)) {
192 		if (empty)
193 			*empty = 1;
194 		if (!(flags & LOOKUP_EMPTY)) {
195 			putname(result);
196 			return ERR_PTR(-ENOENT);
197 		}
198 	}
199 
200 	result->uptr = filename;
201 	result->aname = NULL;
202 	audit_getname(result);
203 	return result;
204 }
205 
206 struct filename *
207 getname(const char __user * filename)
208 {
209 	return getname_flags(filename, 0, NULL);
210 }
211 
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 	struct filename *result;
216 	int len = strlen(filename) + 1;
217 
218 	result = __getname();
219 	if (unlikely(!result))
220 		return ERR_PTR(-ENOMEM);
221 
222 	if (len <= EMBEDDED_NAME_MAX) {
223 		result->name = (char *)result->iname;
224 	} else if (len <= PATH_MAX) {
225 		const size_t size = offsetof(struct filename, iname[1]);
226 		struct filename *tmp;
227 
228 		tmp = kmalloc(size, GFP_KERNEL);
229 		if (unlikely(!tmp)) {
230 			__putname(result);
231 			return ERR_PTR(-ENOMEM);
232 		}
233 		tmp->name = (char *)result;
234 		result = tmp;
235 	} else {
236 		__putname(result);
237 		return ERR_PTR(-ENAMETOOLONG);
238 	}
239 	memcpy((char *)result->name, filename, len);
240 	result->uptr = NULL;
241 	result->aname = NULL;
242 	result->refcnt = 1;
243 	audit_getname(result);
244 
245 	return result;
246 }
247 
248 void putname(struct filename *name)
249 {
250 	BUG_ON(name->refcnt <= 0);
251 
252 	if (--name->refcnt > 0)
253 		return;
254 
255 	if (name->name != name->iname) {
256 		__putname(name->name);
257 		kfree(name);
258 	} else
259 		__putname(name);
260 }
261 
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 	struct posix_acl *acl;
266 
267 	if (mask & MAY_NOT_BLOCK) {
268 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 	        if (!acl)
270 	                return -EAGAIN;
271 		/* no ->get_acl() calls in RCU mode... */
272 		if (is_uncached_acl(acl))
273 			return -ECHILD;
274 	        return posix_acl_permission(inode, acl, mask);
275 	}
276 
277 	acl = get_acl(inode, ACL_TYPE_ACCESS);
278 	if (IS_ERR(acl))
279 		return PTR_ERR(acl);
280 	if (acl) {
281 	        int error = posix_acl_permission(inode, acl, mask);
282 	        posix_acl_release(acl);
283 	        return error;
284 	}
285 #endif
286 
287 	return -EAGAIN;
288 }
289 
290 /*
291  * This does the basic UNIX permission checking.
292  *
293  * Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit,
294  * for RCU walking.
295  */
296 static int acl_permission_check(struct inode *inode, int mask)
297 {
298 	unsigned int mode = inode->i_mode;
299 
300 	/* Are we the owner? If so, ACL's don't matter */
301 	if (likely(uid_eq(current_fsuid(), inode->i_uid))) {
302 		mask &= 7;
303 		mode >>= 6;
304 		return (mask & ~mode) ? -EACCES : 0;
305 	}
306 
307 	/* Do we have ACL's? */
308 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
309 		int error = check_acl(inode, mask);
310 		if (error != -EAGAIN)
311 			return error;
312 	}
313 
314 	/* Only RWX matters for group/other mode bits */
315 	mask &= 7;
316 
317 	/*
318 	 * Are the group permissions different from
319 	 * the other permissions in the bits we care
320 	 * about? Need to check group ownership if so.
321 	 */
322 	if (mask & (mode ^ (mode >> 3))) {
323 		if (in_group_p(inode->i_gid))
324 			mode >>= 3;
325 	}
326 
327 	/* Bits in 'mode' clear that we require? */
328 	return (mask & ~mode) ? -EACCES : 0;
329 }
330 
331 /**
332  * generic_permission -  check for access rights on a Posix-like filesystem
333  * @inode:	inode to check access rights for
334  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
335  *		%MAY_NOT_BLOCK ...)
336  *
337  * Used to check for read/write/execute permissions on a file.
338  * We use "fsuid" for this, letting us set arbitrary permissions
339  * for filesystem access without changing the "normal" uids which
340  * are used for other things.
341  *
342  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
343  * request cannot be satisfied (eg. requires blocking or too much complexity).
344  * It would then be called again in ref-walk mode.
345  */
346 int generic_permission(struct inode *inode, int mask)
347 {
348 	int ret;
349 
350 	/*
351 	 * Do the basic permission checks.
352 	 */
353 	ret = acl_permission_check(inode, mask);
354 	if (ret != -EACCES)
355 		return ret;
356 
357 	if (S_ISDIR(inode->i_mode)) {
358 		/* DACs are overridable for directories */
359 		if (!(mask & MAY_WRITE))
360 			if (capable_wrt_inode_uidgid(inode,
361 						     CAP_DAC_READ_SEARCH))
362 				return 0;
363 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
364 			return 0;
365 		return -EACCES;
366 	}
367 
368 	/*
369 	 * Searching includes executable on directories, else just read.
370 	 */
371 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
372 	if (mask == MAY_READ)
373 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
374 			return 0;
375 	/*
376 	 * Read/write DACs are always overridable.
377 	 * Executable DACs are overridable when there is
378 	 * at least one exec bit set.
379 	 */
380 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
381 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
382 			return 0;
383 
384 	return -EACCES;
385 }
386 EXPORT_SYMBOL(generic_permission);
387 
388 /*
389  * We _really_ want to just do "generic_permission()" without
390  * even looking at the inode->i_op values. So we keep a cache
391  * flag in inode->i_opflags, that says "this has not special
392  * permission function, use the fast case".
393  */
394 static inline int do_inode_permission(struct inode *inode, int mask)
395 {
396 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
397 		if (likely(inode->i_op->permission))
398 			return inode->i_op->permission(inode, mask);
399 
400 		/* This gets set once for the inode lifetime */
401 		spin_lock(&inode->i_lock);
402 		inode->i_opflags |= IOP_FASTPERM;
403 		spin_unlock(&inode->i_lock);
404 	}
405 	return generic_permission(inode, mask);
406 }
407 
408 /**
409  * sb_permission - Check superblock-level permissions
410  * @sb: Superblock of inode to check permission on
411  * @inode: Inode to check permission on
412  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
413  *
414  * Separate out file-system wide checks from inode-specific permission checks.
415  */
416 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
417 {
418 	if (unlikely(mask & MAY_WRITE)) {
419 		umode_t mode = inode->i_mode;
420 
421 		/* Nobody gets write access to a read-only fs. */
422 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
423 			return -EROFS;
424 	}
425 	return 0;
426 }
427 
428 /**
429  * inode_permission - Check for access rights to a given inode
430  * @inode: Inode to check permission on
431  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432  *
433  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
434  * this, letting us set arbitrary permissions for filesystem access without
435  * changing the "normal" UIDs which are used for other things.
436  *
437  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
438  */
439 int inode_permission(struct inode *inode, int mask)
440 {
441 	int retval;
442 
443 	retval = sb_permission(inode->i_sb, inode, mask);
444 	if (retval)
445 		return retval;
446 
447 	if (unlikely(mask & MAY_WRITE)) {
448 		/*
449 		 * Nobody gets write access to an immutable file.
450 		 */
451 		if (IS_IMMUTABLE(inode))
452 			return -EPERM;
453 
454 		/*
455 		 * Updating mtime will likely cause i_uid and i_gid to be
456 		 * written back improperly if their true value is unknown
457 		 * to the vfs.
458 		 */
459 		if (HAS_UNMAPPED_ID(inode))
460 			return -EACCES;
461 	}
462 
463 	retval = do_inode_permission(inode, mask);
464 	if (retval)
465 		return retval;
466 
467 	retval = devcgroup_inode_permission(inode, mask);
468 	if (retval)
469 		return retval;
470 
471 	return security_inode_permission(inode, mask);
472 }
473 EXPORT_SYMBOL(inode_permission);
474 
475 /**
476  * path_get - get a reference to a path
477  * @path: path to get the reference to
478  *
479  * Given a path increment the reference count to the dentry and the vfsmount.
480  */
481 void path_get(const struct path *path)
482 {
483 	mntget(path->mnt);
484 	dget(path->dentry);
485 }
486 EXPORT_SYMBOL(path_get);
487 
488 /**
489  * path_put - put a reference to a path
490  * @path: path to put the reference to
491  *
492  * Given a path decrement the reference count to the dentry and the vfsmount.
493  */
494 void path_put(const struct path *path)
495 {
496 	dput(path->dentry);
497 	mntput(path->mnt);
498 }
499 EXPORT_SYMBOL(path_put);
500 
501 #define EMBEDDED_LEVELS 2
502 struct nameidata {
503 	struct path	path;
504 	struct qstr	last;
505 	struct path	root;
506 	struct inode	*inode; /* path.dentry.d_inode */
507 	unsigned int	flags;
508 	unsigned	seq, m_seq, r_seq;
509 	int		last_type;
510 	unsigned	depth;
511 	int		total_link_count;
512 	struct saved {
513 		struct path link;
514 		struct delayed_call done;
515 		const char *name;
516 		unsigned seq;
517 	} *stack, internal[EMBEDDED_LEVELS];
518 	struct filename	*name;
519 	struct nameidata *saved;
520 	unsigned	root_seq;
521 	int		dfd;
522 	kuid_t		dir_uid;
523 	umode_t		dir_mode;
524 } __randomize_layout;
525 
526 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
527 {
528 	struct nameidata *old = current->nameidata;
529 	p->stack = p->internal;
530 	p->dfd = dfd;
531 	p->name = name;
532 	p->total_link_count = old ? old->total_link_count : 0;
533 	p->saved = old;
534 	current->nameidata = p;
535 }
536 
537 static void restore_nameidata(void)
538 {
539 	struct nameidata *now = current->nameidata, *old = now->saved;
540 
541 	current->nameidata = old;
542 	if (old)
543 		old->total_link_count = now->total_link_count;
544 	if (now->stack != now->internal)
545 		kfree(now->stack);
546 }
547 
548 static bool nd_alloc_stack(struct nameidata *nd)
549 {
550 	struct saved *p;
551 
552 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
553 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
554 	if (unlikely(!p))
555 		return false;
556 	memcpy(p, nd->internal, sizeof(nd->internal));
557 	nd->stack = p;
558 	return true;
559 }
560 
561 /**
562  * path_connected - Verify that a dentry is below mnt.mnt_root
563  *
564  * Rename can sometimes move a file or directory outside of a bind
565  * mount, path_connected allows those cases to be detected.
566  */
567 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
568 {
569 	struct super_block *sb = mnt->mnt_sb;
570 
571 	/* Bind mounts can have disconnected paths */
572 	if (mnt->mnt_root == sb->s_root)
573 		return true;
574 
575 	return is_subdir(dentry, mnt->mnt_root);
576 }
577 
578 static void drop_links(struct nameidata *nd)
579 {
580 	int i = nd->depth;
581 	while (i--) {
582 		struct saved *last = nd->stack + i;
583 		do_delayed_call(&last->done);
584 		clear_delayed_call(&last->done);
585 	}
586 }
587 
588 static void terminate_walk(struct nameidata *nd)
589 {
590 	drop_links(nd);
591 	if (!(nd->flags & LOOKUP_RCU)) {
592 		int i;
593 		path_put(&nd->path);
594 		for (i = 0; i < nd->depth; i++)
595 			path_put(&nd->stack[i].link);
596 		if (nd->flags & LOOKUP_ROOT_GRABBED) {
597 			path_put(&nd->root);
598 			nd->flags &= ~LOOKUP_ROOT_GRABBED;
599 		}
600 	} else {
601 		nd->flags &= ~LOOKUP_RCU;
602 		rcu_read_unlock();
603 	}
604 	nd->depth = 0;
605 }
606 
607 /* path_put is needed afterwards regardless of success or failure */
608 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
609 {
610 	int res = __legitimize_mnt(path->mnt, mseq);
611 	if (unlikely(res)) {
612 		if (res > 0)
613 			path->mnt = NULL;
614 		path->dentry = NULL;
615 		return false;
616 	}
617 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
618 		path->dentry = NULL;
619 		return false;
620 	}
621 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
622 }
623 
624 static inline bool legitimize_path(struct nameidata *nd,
625 			    struct path *path, unsigned seq)
626 {
627 	return __legitimize_path(path, seq, nd->m_seq);
628 }
629 
630 static bool legitimize_links(struct nameidata *nd)
631 {
632 	int i;
633 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
634 		drop_links(nd);
635 		nd->depth = 0;
636 		return false;
637 	}
638 	for (i = 0; i < nd->depth; i++) {
639 		struct saved *last = nd->stack + i;
640 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
641 			drop_links(nd);
642 			nd->depth = i + 1;
643 			return false;
644 		}
645 	}
646 	return true;
647 }
648 
649 static bool legitimize_root(struct nameidata *nd)
650 {
651 	/*
652 	 * For scoped-lookups (where nd->root has been zeroed), we need to
653 	 * restart the whole lookup from scratch -- because set_root() is wrong
654 	 * for these lookups (nd->dfd is the root, not the filesystem root).
655 	 */
656 	if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
657 		return false;
658 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
659 	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
660 		return true;
661 	nd->flags |= LOOKUP_ROOT_GRABBED;
662 	return legitimize_path(nd, &nd->root, nd->root_seq);
663 }
664 
665 /*
666  * Path walking has 2 modes, rcu-walk and ref-walk (see
667  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
668  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
669  * normal reference counts on dentries and vfsmounts to transition to ref-walk
670  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
671  * got stuck, so ref-walk may continue from there. If this is not successful
672  * (eg. a seqcount has changed), then failure is returned and it's up to caller
673  * to restart the path walk from the beginning in ref-walk mode.
674  */
675 
676 /**
677  * try_to_unlazy - try to switch to ref-walk mode.
678  * @nd: nameidata pathwalk data
679  * Returns: true on success, false on failure
680  *
681  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
682  * for ref-walk mode.
683  * Must be called from rcu-walk context.
684  * Nothing should touch nameidata between try_to_unlazy() failure and
685  * terminate_walk().
686  */
687 static bool try_to_unlazy(struct nameidata *nd)
688 {
689 	struct dentry *parent = nd->path.dentry;
690 
691 	BUG_ON(!(nd->flags & LOOKUP_RCU));
692 
693 	nd->flags &= ~LOOKUP_RCU;
694 	if (unlikely(!legitimize_links(nd)))
695 		goto out1;
696 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
697 		goto out;
698 	if (unlikely(!legitimize_root(nd)))
699 		goto out;
700 	rcu_read_unlock();
701 	BUG_ON(nd->inode != parent->d_inode);
702 	return true;
703 
704 out1:
705 	nd->path.mnt = NULL;
706 	nd->path.dentry = NULL;
707 out:
708 	rcu_read_unlock();
709 	return false;
710 }
711 
712 /**
713  * try_to_unlazy_next - try to switch to ref-walk mode.
714  * @nd: nameidata pathwalk data
715  * @dentry: next dentry to step into
716  * @seq: seq number to check @dentry against
717  * Returns: true on success, false on failure
718  *
719  * Similar to to try_to_unlazy(), but here we have the next dentry already
720  * picked by rcu-walk and want to legitimize that in addition to the current
721  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
722  * Nothing should touch nameidata between try_to_unlazy_next() failure and
723  * terminate_walk().
724  */
725 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry, unsigned seq)
726 {
727 	BUG_ON(!(nd->flags & LOOKUP_RCU));
728 
729 	nd->flags &= ~LOOKUP_RCU;
730 	if (unlikely(!legitimize_links(nd)))
731 		goto out2;
732 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
733 		goto out2;
734 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
735 		goto out1;
736 
737 	/*
738 	 * We need to move both the parent and the dentry from the RCU domain
739 	 * to be properly refcounted. And the sequence number in the dentry
740 	 * validates *both* dentry counters, since we checked the sequence
741 	 * number of the parent after we got the child sequence number. So we
742 	 * know the parent must still be valid if the child sequence number is
743 	 */
744 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
745 		goto out;
746 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
747 		goto out_dput;
748 	/*
749 	 * Sequence counts matched. Now make sure that the root is
750 	 * still valid and get it if required.
751 	 */
752 	if (unlikely(!legitimize_root(nd)))
753 		goto out_dput;
754 	rcu_read_unlock();
755 	return true;
756 
757 out2:
758 	nd->path.mnt = NULL;
759 out1:
760 	nd->path.dentry = NULL;
761 out:
762 	rcu_read_unlock();
763 	return false;
764 out_dput:
765 	rcu_read_unlock();
766 	dput(dentry);
767 	return false;
768 }
769 
770 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
771 {
772 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
773 		return dentry->d_op->d_revalidate(dentry, flags);
774 	else
775 		return 1;
776 }
777 
778 /**
779  * complete_walk - successful completion of path walk
780  * @nd:  pointer nameidata
781  *
782  * If we had been in RCU mode, drop out of it and legitimize nd->path.
783  * Revalidate the final result, unless we'd already done that during
784  * the path walk or the filesystem doesn't ask for it.  Return 0 on
785  * success, -error on failure.  In case of failure caller does not
786  * need to drop nd->path.
787  */
788 static int complete_walk(struct nameidata *nd)
789 {
790 	struct dentry *dentry = nd->path.dentry;
791 	int status;
792 
793 	if (nd->flags & LOOKUP_RCU) {
794 		/*
795 		 * We don't want to zero nd->root for scoped-lookups or
796 		 * externally-managed nd->root.
797 		 */
798 		if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
799 			nd->root.mnt = NULL;
800 		nd->flags &= ~LOOKUP_CACHED;
801 		if (!try_to_unlazy(nd))
802 			return -ECHILD;
803 	}
804 
805 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
806 		/*
807 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
808 		 * ever step outside the root during lookup" and should already
809 		 * be guaranteed by the rest of namei, we want to avoid a namei
810 		 * BUG resulting in userspace being given a path that was not
811 		 * scoped within the root at some point during the lookup.
812 		 *
813 		 * So, do a final sanity-check to make sure that in the
814 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
815 		 * we won't silently return an fd completely outside of the
816 		 * requested root to userspace.
817 		 *
818 		 * Userspace could move the path outside the root after this
819 		 * check, but as discussed elsewhere this is not a concern (the
820 		 * resolved file was inside the root at some point).
821 		 */
822 		if (!path_is_under(&nd->path, &nd->root))
823 			return -EXDEV;
824 	}
825 
826 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
827 		return 0;
828 
829 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
830 		return 0;
831 
832 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
833 	if (status > 0)
834 		return 0;
835 
836 	if (!status)
837 		status = -ESTALE;
838 
839 	return status;
840 }
841 
842 static int set_root(struct nameidata *nd)
843 {
844 	struct fs_struct *fs = current->fs;
845 
846 	/*
847 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
848 	 * still have to ensure it doesn't happen because it will cause a breakout
849 	 * from the dirfd.
850 	 */
851 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
852 		return -ENOTRECOVERABLE;
853 
854 	if (nd->flags & LOOKUP_RCU) {
855 		unsigned seq;
856 
857 		do {
858 			seq = read_seqcount_begin(&fs->seq);
859 			nd->root = fs->root;
860 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
861 		} while (read_seqcount_retry(&fs->seq, seq));
862 	} else {
863 		get_fs_root(fs, &nd->root);
864 		nd->flags |= LOOKUP_ROOT_GRABBED;
865 	}
866 	return 0;
867 }
868 
869 static int nd_jump_root(struct nameidata *nd)
870 {
871 	if (unlikely(nd->flags & LOOKUP_BENEATH))
872 		return -EXDEV;
873 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
874 		/* Absolute path arguments to path_init() are allowed. */
875 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
876 			return -EXDEV;
877 	}
878 	if (!nd->root.mnt) {
879 		int error = set_root(nd);
880 		if (error)
881 			return error;
882 	}
883 	if (nd->flags & LOOKUP_RCU) {
884 		struct dentry *d;
885 		nd->path = nd->root;
886 		d = nd->path.dentry;
887 		nd->inode = d->d_inode;
888 		nd->seq = nd->root_seq;
889 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
890 			return -ECHILD;
891 	} else {
892 		path_put(&nd->path);
893 		nd->path = nd->root;
894 		path_get(&nd->path);
895 		nd->inode = nd->path.dentry->d_inode;
896 	}
897 	nd->flags |= LOOKUP_JUMPED;
898 	return 0;
899 }
900 
901 /*
902  * Helper to directly jump to a known parsed path from ->get_link,
903  * caller must have taken a reference to path beforehand.
904  */
905 int nd_jump_link(struct path *path)
906 {
907 	int error = -ELOOP;
908 	struct nameidata *nd = current->nameidata;
909 
910 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
911 		goto err;
912 
913 	error = -EXDEV;
914 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
915 		if (nd->path.mnt != path->mnt)
916 			goto err;
917 	}
918 	/* Not currently safe for scoped-lookups. */
919 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
920 		goto err;
921 
922 	path_put(&nd->path);
923 	nd->path = *path;
924 	nd->inode = nd->path.dentry->d_inode;
925 	nd->flags |= LOOKUP_JUMPED;
926 	return 0;
927 
928 err:
929 	path_put(path);
930 	return error;
931 }
932 
933 static inline void put_link(struct nameidata *nd)
934 {
935 	struct saved *last = nd->stack + --nd->depth;
936 	do_delayed_call(&last->done);
937 	if (!(nd->flags & LOOKUP_RCU))
938 		path_put(&last->link);
939 }
940 
941 int sysctl_protected_symlinks __read_mostly = 0;
942 int sysctl_protected_hardlinks __read_mostly = 0;
943 int sysctl_protected_fifos __read_mostly;
944 int sysctl_protected_regular __read_mostly;
945 
946 /**
947  * may_follow_link - Check symlink following for unsafe situations
948  * @nd: nameidata pathwalk data
949  *
950  * In the case of the sysctl_protected_symlinks sysctl being enabled,
951  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
952  * in a sticky world-writable directory. This is to protect privileged
953  * processes from failing races against path names that may change out
954  * from under them by way of other users creating malicious symlinks.
955  * It will permit symlinks to be followed only when outside a sticky
956  * world-writable directory, or when the uid of the symlink and follower
957  * match, or when the directory owner matches the symlink's owner.
958  *
959  * Returns 0 if following the symlink is allowed, -ve on error.
960  */
961 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
962 {
963 	if (!sysctl_protected_symlinks)
964 		return 0;
965 
966 	/* Allowed if owner and follower match. */
967 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
968 		return 0;
969 
970 	/* Allowed if parent directory not sticky and world-writable. */
971 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
972 		return 0;
973 
974 	/* Allowed if parent directory and link owner match. */
975 	if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid))
976 		return 0;
977 
978 	if (nd->flags & LOOKUP_RCU)
979 		return -ECHILD;
980 
981 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
982 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
983 	return -EACCES;
984 }
985 
986 /**
987  * safe_hardlink_source - Check for safe hardlink conditions
988  * @inode: the source inode to hardlink from
989  *
990  * Return false if at least one of the following conditions:
991  *    - inode is not a regular file
992  *    - inode is setuid
993  *    - inode is setgid and group-exec
994  *    - access failure for read and write
995  *
996  * Otherwise returns true.
997  */
998 static bool safe_hardlink_source(struct inode *inode)
999 {
1000 	umode_t mode = inode->i_mode;
1001 
1002 	/* Special files should not get pinned to the filesystem. */
1003 	if (!S_ISREG(mode))
1004 		return false;
1005 
1006 	/* Setuid files should not get pinned to the filesystem. */
1007 	if (mode & S_ISUID)
1008 		return false;
1009 
1010 	/* Executable setgid files should not get pinned to the filesystem. */
1011 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1012 		return false;
1013 
1014 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1015 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
1016 		return false;
1017 
1018 	return true;
1019 }
1020 
1021 /**
1022  * may_linkat - Check permissions for creating a hardlink
1023  * @link: the source to hardlink from
1024  *
1025  * Block hardlink when all of:
1026  *  - sysctl_protected_hardlinks enabled
1027  *  - fsuid does not match inode
1028  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1029  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1030  *
1031  * Returns 0 if successful, -ve on error.
1032  */
1033 int may_linkat(struct path *link)
1034 {
1035 	struct inode *inode = link->dentry->d_inode;
1036 
1037 	/* Inode writeback is not safe when the uid or gid are invalid. */
1038 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1039 		return -EOVERFLOW;
1040 
1041 	if (!sysctl_protected_hardlinks)
1042 		return 0;
1043 
1044 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1045 	 * otherwise, it must be a safe source.
1046 	 */
1047 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1048 		return 0;
1049 
1050 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1051 	return -EPERM;
1052 }
1053 
1054 /**
1055  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1056  *			  should be allowed, or not, on files that already
1057  *			  exist.
1058  * @dir_mode: mode bits of directory
1059  * @dir_uid: owner of directory
1060  * @inode: the inode of the file to open
1061  *
1062  * Block an O_CREAT open of a FIFO (or a regular file) when:
1063  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1064  *   - the file already exists
1065  *   - we are in a sticky directory
1066  *   - we don't own the file
1067  *   - the owner of the directory doesn't own the file
1068  *   - the directory is world writable
1069  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1070  * the directory doesn't have to be world writable: being group writable will
1071  * be enough.
1072  *
1073  * Returns 0 if the open is allowed, -ve on error.
1074  */
1075 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1076 				struct inode * const inode)
1077 {
1078 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1079 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1080 	    likely(!(dir_mode & S_ISVTX)) ||
1081 	    uid_eq(inode->i_uid, dir_uid) ||
1082 	    uid_eq(current_fsuid(), inode->i_uid))
1083 		return 0;
1084 
1085 	if (likely(dir_mode & 0002) ||
1086 	    (dir_mode & 0020 &&
1087 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1088 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1089 		const char *operation = S_ISFIFO(inode->i_mode) ?
1090 					"sticky_create_fifo" :
1091 					"sticky_create_regular";
1092 		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1093 		return -EACCES;
1094 	}
1095 	return 0;
1096 }
1097 
1098 /*
1099  * follow_up - Find the mountpoint of path's vfsmount
1100  *
1101  * Given a path, find the mountpoint of its source file system.
1102  * Replace @path with the path of the mountpoint in the parent mount.
1103  * Up is towards /.
1104  *
1105  * Return 1 if we went up a level and 0 if we were already at the
1106  * root.
1107  */
1108 int follow_up(struct path *path)
1109 {
1110 	struct mount *mnt = real_mount(path->mnt);
1111 	struct mount *parent;
1112 	struct dentry *mountpoint;
1113 
1114 	read_seqlock_excl(&mount_lock);
1115 	parent = mnt->mnt_parent;
1116 	if (parent == mnt) {
1117 		read_sequnlock_excl(&mount_lock);
1118 		return 0;
1119 	}
1120 	mntget(&parent->mnt);
1121 	mountpoint = dget(mnt->mnt_mountpoint);
1122 	read_sequnlock_excl(&mount_lock);
1123 	dput(path->dentry);
1124 	path->dentry = mountpoint;
1125 	mntput(path->mnt);
1126 	path->mnt = &parent->mnt;
1127 	return 1;
1128 }
1129 EXPORT_SYMBOL(follow_up);
1130 
1131 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1132 				  struct path *path, unsigned *seqp)
1133 {
1134 	while (mnt_has_parent(m)) {
1135 		struct dentry *mountpoint = m->mnt_mountpoint;
1136 
1137 		m = m->mnt_parent;
1138 		if (unlikely(root->dentry == mountpoint &&
1139 			     root->mnt == &m->mnt))
1140 			break;
1141 		if (mountpoint != m->mnt.mnt_root) {
1142 			path->mnt = &m->mnt;
1143 			path->dentry = mountpoint;
1144 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1145 			return true;
1146 		}
1147 	}
1148 	return false;
1149 }
1150 
1151 static bool choose_mountpoint(struct mount *m, const struct path *root,
1152 			      struct path *path)
1153 {
1154 	bool found;
1155 
1156 	rcu_read_lock();
1157 	while (1) {
1158 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1159 
1160 		found = choose_mountpoint_rcu(m, root, path, &seq);
1161 		if (unlikely(!found)) {
1162 			if (!read_seqretry(&mount_lock, mseq))
1163 				break;
1164 		} else {
1165 			if (likely(__legitimize_path(path, seq, mseq)))
1166 				break;
1167 			rcu_read_unlock();
1168 			path_put(path);
1169 			rcu_read_lock();
1170 		}
1171 	}
1172 	rcu_read_unlock();
1173 	return found;
1174 }
1175 
1176 /*
1177  * Perform an automount
1178  * - return -EISDIR to tell follow_managed() to stop and return the path we
1179  *   were called with.
1180  */
1181 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1182 {
1183 	struct dentry *dentry = path->dentry;
1184 
1185 	/* We don't want to mount if someone's just doing a stat -
1186 	 * unless they're stat'ing a directory and appended a '/' to
1187 	 * the name.
1188 	 *
1189 	 * We do, however, want to mount if someone wants to open or
1190 	 * create a file of any type under the mountpoint, wants to
1191 	 * traverse through the mountpoint or wants to open the
1192 	 * mounted directory.  Also, autofs may mark negative dentries
1193 	 * as being automount points.  These will need the attentions
1194 	 * of the daemon to instantiate them before they can be used.
1195 	 */
1196 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1197 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1198 	    dentry->d_inode)
1199 		return -EISDIR;
1200 
1201 	if (count && (*count)++ >= MAXSYMLINKS)
1202 		return -ELOOP;
1203 
1204 	return finish_automount(dentry->d_op->d_automount(path), path);
1205 }
1206 
1207 /*
1208  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1209  * dentries are pinned but not locked here, so negative dentry can go
1210  * positive right under us.  Use of smp_load_acquire() provides a barrier
1211  * sufficient for ->d_inode and ->d_flags consistency.
1212  */
1213 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1214 			     int *count, unsigned lookup_flags)
1215 {
1216 	struct vfsmount *mnt = path->mnt;
1217 	bool need_mntput = false;
1218 	int ret = 0;
1219 
1220 	while (flags & DCACHE_MANAGED_DENTRY) {
1221 		/* Allow the filesystem to manage the transit without i_mutex
1222 		 * being held. */
1223 		if (flags & DCACHE_MANAGE_TRANSIT) {
1224 			ret = path->dentry->d_op->d_manage(path, false);
1225 			flags = smp_load_acquire(&path->dentry->d_flags);
1226 			if (ret < 0)
1227 				break;
1228 		}
1229 
1230 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1231 			struct vfsmount *mounted = lookup_mnt(path);
1232 			if (mounted) {		// ... in our namespace
1233 				dput(path->dentry);
1234 				if (need_mntput)
1235 					mntput(path->mnt);
1236 				path->mnt = mounted;
1237 				path->dentry = dget(mounted->mnt_root);
1238 				// here we know it's positive
1239 				flags = path->dentry->d_flags;
1240 				need_mntput = true;
1241 				continue;
1242 			}
1243 		}
1244 
1245 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1246 			break;
1247 
1248 		// uncovered automount point
1249 		ret = follow_automount(path, count, lookup_flags);
1250 		flags = smp_load_acquire(&path->dentry->d_flags);
1251 		if (ret < 0)
1252 			break;
1253 	}
1254 
1255 	if (ret == -EISDIR)
1256 		ret = 0;
1257 	// possible if you race with several mount --move
1258 	if (need_mntput && path->mnt == mnt)
1259 		mntput(path->mnt);
1260 	if (!ret && unlikely(d_flags_negative(flags)))
1261 		ret = -ENOENT;
1262 	*jumped = need_mntput;
1263 	return ret;
1264 }
1265 
1266 static inline int traverse_mounts(struct path *path, bool *jumped,
1267 				  int *count, unsigned lookup_flags)
1268 {
1269 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1270 
1271 	/* fastpath */
1272 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1273 		*jumped = false;
1274 		if (unlikely(d_flags_negative(flags)))
1275 			return -ENOENT;
1276 		return 0;
1277 	}
1278 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1279 }
1280 
1281 int follow_down_one(struct path *path)
1282 {
1283 	struct vfsmount *mounted;
1284 
1285 	mounted = lookup_mnt(path);
1286 	if (mounted) {
1287 		dput(path->dentry);
1288 		mntput(path->mnt);
1289 		path->mnt = mounted;
1290 		path->dentry = dget(mounted->mnt_root);
1291 		return 1;
1292 	}
1293 	return 0;
1294 }
1295 EXPORT_SYMBOL(follow_down_one);
1296 
1297 /*
1298  * Follow down to the covering mount currently visible to userspace.  At each
1299  * point, the filesystem owning that dentry may be queried as to whether the
1300  * caller is permitted to proceed or not.
1301  */
1302 int follow_down(struct path *path)
1303 {
1304 	struct vfsmount *mnt = path->mnt;
1305 	bool jumped;
1306 	int ret = traverse_mounts(path, &jumped, NULL, 0);
1307 
1308 	if (path->mnt != mnt)
1309 		mntput(mnt);
1310 	return ret;
1311 }
1312 EXPORT_SYMBOL(follow_down);
1313 
1314 /*
1315  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1316  * we meet a managed dentry that would need blocking.
1317  */
1318 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1319 			       struct inode **inode, unsigned *seqp)
1320 {
1321 	struct dentry *dentry = path->dentry;
1322 	unsigned int flags = dentry->d_flags;
1323 
1324 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1325 		return true;
1326 
1327 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1328 		return false;
1329 
1330 	for (;;) {
1331 		/*
1332 		 * Don't forget we might have a non-mountpoint managed dentry
1333 		 * that wants to block transit.
1334 		 */
1335 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1336 			int res = dentry->d_op->d_manage(path, true);
1337 			if (res)
1338 				return res == -EISDIR;
1339 			flags = dentry->d_flags;
1340 		}
1341 
1342 		if (flags & DCACHE_MOUNTED) {
1343 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1344 			if (mounted) {
1345 				path->mnt = &mounted->mnt;
1346 				dentry = path->dentry = mounted->mnt.mnt_root;
1347 				nd->flags |= LOOKUP_JUMPED;
1348 				*seqp = read_seqcount_begin(&dentry->d_seq);
1349 				*inode = dentry->d_inode;
1350 				/*
1351 				 * We don't need to re-check ->d_seq after this
1352 				 * ->d_inode read - there will be an RCU delay
1353 				 * between mount hash removal and ->mnt_root
1354 				 * becoming unpinned.
1355 				 */
1356 				flags = dentry->d_flags;
1357 				continue;
1358 			}
1359 			if (read_seqretry(&mount_lock, nd->m_seq))
1360 				return false;
1361 		}
1362 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1363 	}
1364 }
1365 
1366 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1367 			  struct path *path, struct inode **inode,
1368 			  unsigned int *seqp)
1369 {
1370 	bool jumped;
1371 	int ret;
1372 
1373 	path->mnt = nd->path.mnt;
1374 	path->dentry = dentry;
1375 	if (nd->flags & LOOKUP_RCU) {
1376 		unsigned int seq = *seqp;
1377 		if (unlikely(!*inode))
1378 			return -ENOENT;
1379 		if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1380 			return 0;
1381 		if (!try_to_unlazy_next(nd, dentry, seq))
1382 			return -ECHILD;
1383 		// *path might've been clobbered by __follow_mount_rcu()
1384 		path->mnt = nd->path.mnt;
1385 		path->dentry = dentry;
1386 	}
1387 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1388 	if (jumped) {
1389 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1390 			ret = -EXDEV;
1391 		else
1392 			nd->flags |= LOOKUP_JUMPED;
1393 	}
1394 	if (unlikely(ret)) {
1395 		dput(path->dentry);
1396 		if (path->mnt != nd->path.mnt)
1397 			mntput(path->mnt);
1398 	} else {
1399 		*inode = d_backing_inode(path->dentry);
1400 		*seqp = 0; /* out of RCU mode, so the value doesn't matter */
1401 	}
1402 	return ret;
1403 }
1404 
1405 /*
1406  * This looks up the name in dcache and possibly revalidates the found dentry.
1407  * NULL is returned if the dentry does not exist in the cache.
1408  */
1409 static struct dentry *lookup_dcache(const struct qstr *name,
1410 				    struct dentry *dir,
1411 				    unsigned int flags)
1412 {
1413 	struct dentry *dentry = d_lookup(dir, name);
1414 	if (dentry) {
1415 		int error = d_revalidate(dentry, flags);
1416 		if (unlikely(error <= 0)) {
1417 			if (!error)
1418 				d_invalidate(dentry);
1419 			dput(dentry);
1420 			return ERR_PTR(error);
1421 		}
1422 	}
1423 	return dentry;
1424 }
1425 
1426 /*
1427  * Parent directory has inode locked exclusive.  This is one
1428  * and only case when ->lookup() gets called on non in-lookup
1429  * dentries - as the matter of fact, this only gets called
1430  * when directory is guaranteed to have no in-lookup children
1431  * at all.
1432  */
1433 static struct dentry *__lookup_hash(const struct qstr *name,
1434 		struct dentry *base, unsigned int flags)
1435 {
1436 	struct dentry *dentry = lookup_dcache(name, base, flags);
1437 	struct dentry *old;
1438 	struct inode *dir = base->d_inode;
1439 
1440 	if (dentry)
1441 		return dentry;
1442 
1443 	/* Don't create child dentry for a dead directory. */
1444 	if (unlikely(IS_DEADDIR(dir)))
1445 		return ERR_PTR(-ENOENT);
1446 
1447 	dentry = d_alloc(base, name);
1448 	if (unlikely(!dentry))
1449 		return ERR_PTR(-ENOMEM);
1450 
1451 	old = dir->i_op->lookup(dir, dentry, flags);
1452 	if (unlikely(old)) {
1453 		dput(dentry);
1454 		dentry = old;
1455 	}
1456 	return dentry;
1457 }
1458 
1459 static struct dentry *lookup_fast(struct nameidata *nd,
1460 				  struct inode **inode,
1461 			          unsigned *seqp)
1462 {
1463 	struct dentry *dentry, *parent = nd->path.dentry;
1464 	int status = 1;
1465 
1466 	/*
1467 	 * Rename seqlock is not required here because in the off chance
1468 	 * of a false negative due to a concurrent rename, the caller is
1469 	 * going to fall back to non-racy lookup.
1470 	 */
1471 	if (nd->flags & LOOKUP_RCU) {
1472 		unsigned seq;
1473 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1474 		if (unlikely(!dentry)) {
1475 			if (!try_to_unlazy(nd))
1476 				return ERR_PTR(-ECHILD);
1477 			return NULL;
1478 		}
1479 
1480 		/*
1481 		 * This sequence count validates that the inode matches
1482 		 * the dentry name information from lookup.
1483 		 */
1484 		*inode = d_backing_inode(dentry);
1485 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1486 			return ERR_PTR(-ECHILD);
1487 
1488 		/*
1489 		 * This sequence count validates that the parent had no
1490 		 * changes while we did the lookup of the dentry above.
1491 		 *
1492 		 * The memory barrier in read_seqcount_begin of child is
1493 		 *  enough, we can use __read_seqcount_retry here.
1494 		 */
1495 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1496 			return ERR_PTR(-ECHILD);
1497 
1498 		*seqp = seq;
1499 		status = d_revalidate(dentry, nd->flags);
1500 		if (likely(status > 0))
1501 			return dentry;
1502 		if (!try_to_unlazy_next(nd, dentry, seq))
1503 			return ERR_PTR(-ECHILD);
1504 		if (status == -ECHILD)
1505 			/* we'd been told to redo it in non-rcu mode */
1506 			status = d_revalidate(dentry, nd->flags);
1507 	} else {
1508 		dentry = __d_lookup(parent, &nd->last);
1509 		if (unlikely(!dentry))
1510 			return NULL;
1511 		status = d_revalidate(dentry, nd->flags);
1512 	}
1513 	if (unlikely(status <= 0)) {
1514 		if (!status)
1515 			d_invalidate(dentry);
1516 		dput(dentry);
1517 		return ERR_PTR(status);
1518 	}
1519 	return dentry;
1520 }
1521 
1522 /* Fast lookup failed, do it the slow way */
1523 static struct dentry *__lookup_slow(const struct qstr *name,
1524 				    struct dentry *dir,
1525 				    unsigned int flags)
1526 {
1527 	struct dentry *dentry, *old;
1528 	struct inode *inode = dir->d_inode;
1529 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1530 
1531 	/* Don't go there if it's already dead */
1532 	if (unlikely(IS_DEADDIR(inode)))
1533 		return ERR_PTR(-ENOENT);
1534 again:
1535 	dentry = d_alloc_parallel(dir, name, &wq);
1536 	if (IS_ERR(dentry))
1537 		return dentry;
1538 	if (unlikely(!d_in_lookup(dentry))) {
1539 		int error = d_revalidate(dentry, flags);
1540 		if (unlikely(error <= 0)) {
1541 			if (!error) {
1542 				d_invalidate(dentry);
1543 				dput(dentry);
1544 				goto again;
1545 			}
1546 			dput(dentry);
1547 			dentry = ERR_PTR(error);
1548 		}
1549 	} else {
1550 		old = inode->i_op->lookup(inode, dentry, flags);
1551 		d_lookup_done(dentry);
1552 		if (unlikely(old)) {
1553 			dput(dentry);
1554 			dentry = old;
1555 		}
1556 	}
1557 	return dentry;
1558 }
1559 
1560 static struct dentry *lookup_slow(const struct qstr *name,
1561 				  struct dentry *dir,
1562 				  unsigned int flags)
1563 {
1564 	struct inode *inode = dir->d_inode;
1565 	struct dentry *res;
1566 	inode_lock_shared(inode);
1567 	res = __lookup_slow(name, dir, flags);
1568 	inode_unlock_shared(inode);
1569 	return res;
1570 }
1571 
1572 static inline int may_lookup(struct nameidata *nd)
1573 {
1574 	if (nd->flags & LOOKUP_RCU) {
1575 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1576 		if (err != -ECHILD || !try_to_unlazy(nd))
1577 			return err;
1578 	}
1579 	return inode_permission(nd->inode, MAY_EXEC);
1580 }
1581 
1582 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1583 {
1584 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1585 		return -ELOOP;
1586 
1587 	if (likely(nd->depth != EMBEDDED_LEVELS))
1588 		return 0;
1589 	if (likely(nd->stack != nd->internal))
1590 		return 0;
1591 	if (likely(nd_alloc_stack(nd)))
1592 		return 0;
1593 
1594 	if (nd->flags & LOOKUP_RCU) {
1595 		// we need to grab link before we do unlazy.  And we can't skip
1596 		// unlazy even if we fail to grab the link - cleanup needs it
1597 		bool grabbed_link = legitimize_path(nd, link, seq);
1598 
1599 		if (!try_to_unlazy(nd) != 0 || !grabbed_link)
1600 			return -ECHILD;
1601 
1602 		if (nd_alloc_stack(nd))
1603 			return 0;
1604 	}
1605 	return -ENOMEM;
1606 }
1607 
1608 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1609 
1610 static const char *pick_link(struct nameidata *nd, struct path *link,
1611 		     struct inode *inode, unsigned seq, int flags)
1612 {
1613 	struct saved *last;
1614 	const char *res;
1615 	int error = reserve_stack(nd, link, seq);
1616 
1617 	if (unlikely(error)) {
1618 		if (!(nd->flags & LOOKUP_RCU))
1619 			path_put(link);
1620 		return ERR_PTR(error);
1621 	}
1622 	last = nd->stack + nd->depth++;
1623 	last->link = *link;
1624 	clear_delayed_call(&last->done);
1625 	last->seq = seq;
1626 
1627 	if (flags & WALK_TRAILING) {
1628 		error = may_follow_link(nd, inode);
1629 		if (unlikely(error))
1630 			return ERR_PTR(error);
1631 	}
1632 
1633 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1634 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1635 		return ERR_PTR(-ELOOP);
1636 
1637 	if (!(nd->flags & LOOKUP_RCU)) {
1638 		touch_atime(&last->link);
1639 		cond_resched();
1640 	} else if (atime_needs_update(&last->link, inode)) {
1641 		if (!try_to_unlazy(nd))
1642 			return ERR_PTR(-ECHILD);
1643 		touch_atime(&last->link);
1644 	}
1645 
1646 	error = security_inode_follow_link(link->dentry, inode,
1647 					   nd->flags & LOOKUP_RCU);
1648 	if (unlikely(error))
1649 		return ERR_PTR(error);
1650 
1651 	res = READ_ONCE(inode->i_link);
1652 	if (!res) {
1653 		const char * (*get)(struct dentry *, struct inode *,
1654 				struct delayed_call *);
1655 		get = inode->i_op->get_link;
1656 		if (nd->flags & LOOKUP_RCU) {
1657 			res = get(NULL, inode, &last->done);
1658 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1659 				res = get(link->dentry, inode, &last->done);
1660 		} else {
1661 			res = get(link->dentry, inode, &last->done);
1662 		}
1663 		if (!res)
1664 			goto all_done;
1665 		if (IS_ERR(res))
1666 			return res;
1667 	}
1668 	if (*res == '/') {
1669 		error = nd_jump_root(nd);
1670 		if (unlikely(error))
1671 			return ERR_PTR(error);
1672 		while (unlikely(*++res == '/'))
1673 			;
1674 	}
1675 	if (*res)
1676 		return res;
1677 all_done: // pure jump
1678 	put_link(nd);
1679 	return NULL;
1680 }
1681 
1682 /*
1683  * Do we need to follow links? We _really_ want to be able
1684  * to do this check without having to look at inode->i_op,
1685  * so we keep a cache of "no, this doesn't need follow_link"
1686  * for the common case.
1687  */
1688 static const char *step_into(struct nameidata *nd, int flags,
1689 		     struct dentry *dentry, struct inode *inode, unsigned seq)
1690 {
1691 	struct path path;
1692 	int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1693 
1694 	if (err < 0)
1695 		return ERR_PTR(err);
1696 	if (likely(!d_is_symlink(path.dentry)) ||
1697 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1698 	   (flags & WALK_NOFOLLOW)) {
1699 		/* not a symlink or should not follow */
1700 		if (!(nd->flags & LOOKUP_RCU)) {
1701 			dput(nd->path.dentry);
1702 			if (nd->path.mnt != path.mnt)
1703 				mntput(nd->path.mnt);
1704 		}
1705 		nd->path = path;
1706 		nd->inode = inode;
1707 		nd->seq = seq;
1708 		return NULL;
1709 	}
1710 	if (nd->flags & LOOKUP_RCU) {
1711 		/* make sure that d_is_symlink above matches inode */
1712 		if (read_seqcount_retry(&path.dentry->d_seq, seq))
1713 			return ERR_PTR(-ECHILD);
1714 	} else {
1715 		if (path.mnt == nd->path.mnt)
1716 			mntget(path.mnt);
1717 	}
1718 	return pick_link(nd, &path, inode, seq, flags);
1719 }
1720 
1721 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1722 					struct inode **inodep,
1723 					unsigned *seqp)
1724 {
1725 	struct dentry *parent, *old;
1726 
1727 	if (path_equal(&nd->path, &nd->root))
1728 		goto in_root;
1729 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1730 		struct path path;
1731 		unsigned seq;
1732 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1733 					   &nd->root, &path, &seq))
1734 			goto in_root;
1735 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1736 			return ERR_PTR(-ECHILD);
1737 		nd->path = path;
1738 		nd->inode = path.dentry->d_inode;
1739 		nd->seq = seq;
1740 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1741 			return ERR_PTR(-ECHILD);
1742 		/* we know that mountpoint was pinned */
1743 	}
1744 	old = nd->path.dentry;
1745 	parent = old->d_parent;
1746 	*inodep = parent->d_inode;
1747 	*seqp = read_seqcount_begin(&parent->d_seq);
1748 	if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1749 		return ERR_PTR(-ECHILD);
1750 	if (unlikely(!path_connected(nd->path.mnt, parent)))
1751 		return ERR_PTR(-ECHILD);
1752 	return parent;
1753 in_root:
1754 	if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1755 		return ERR_PTR(-ECHILD);
1756 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1757 		return ERR_PTR(-ECHILD);
1758 	return NULL;
1759 }
1760 
1761 static struct dentry *follow_dotdot(struct nameidata *nd,
1762 				 struct inode **inodep,
1763 				 unsigned *seqp)
1764 {
1765 	struct dentry *parent;
1766 
1767 	if (path_equal(&nd->path, &nd->root))
1768 		goto in_root;
1769 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1770 		struct path path;
1771 
1772 		if (!choose_mountpoint(real_mount(nd->path.mnt),
1773 				       &nd->root, &path))
1774 			goto in_root;
1775 		path_put(&nd->path);
1776 		nd->path = path;
1777 		nd->inode = path.dentry->d_inode;
1778 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1779 			return ERR_PTR(-EXDEV);
1780 	}
1781 	/* rare case of legitimate dget_parent()... */
1782 	parent = dget_parent(nd->path.dentry);
1783 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1784 		dput(parent);
1785 		return ERR_PTR(-ENOENT);
1786 	}
1787 	*seqp = 0;
1788 	*inodep = parent->d_inode;
1789 	return parent;
1790 
1791 in_root:
1792 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1793 		return ERR_PTR(-EXDEV);
1794 	dget(nd->path.dentry);
1795 	return NULL;
1796 }
1797 
1798 static const char *handle_dots(struct nameidata *nd, int type)
1799 {
1800 	if (type == LAST_DOTDOT) {
1801 		const char *error = NULL;
1802 		struct dentry *parent;
1803 		struct inode *inode;
1804 		unsigned seq;
1805 
1806 		if (!nd->root.mnt) {
1807 			error = ERR_PTR(set_root(nd));
1808 			if (error)
1809 				return error;
1810 		}
1811 		if (nd->flags & LOOKUP_RCU)
1812 			parent = follow_dotdot_rcu(nd, &inode, &seq);
1813 		else
1814 			parent = follow_dotdot(nd, &inode, &seq);
1815 		if (IS_ERR(parent))
1816 			return ERR_CAST(parent);
1817 		if (unlikely(!parent))
1818 			error = step_into(nd, WALK_NOFOLLOW,
1819 					 nd->path.dentry, nd->inode, nd->seq);
1820 		else
1821 			error = step_into(nd, WALK_NOFOLLOW,
1822 					 parent, inode, seq);
1823 		if (unlikely(error))
1824 			return error;
1825 
1826 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1827 			/*
1828 			 * If there was a racing rename or mount along our
1829 			 * path, then we can't be sure that ".." hasn't jumped
1830 			 * above nd->root (and so userspace should retry or use
1831 			 * some fallback).
1832 			 */
1833 			smp_rmb();
1834 			if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1835 				return ERR_PTR(-EAGAIN);
1836 			if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1837 				return ERR_PTR(-EAGAIN);
1838 		}
1839 	}
1840 	return NULL;
1841 }
1842 
1843 static const char *walk_component(struct nameidata *nd, int flags)
1844 {
1845 	struct dentry *dentry;
1846 	struct inode *inode;
1847 	unsigned seq;
1848 	/*
1849 	 * "." and ".." are special - ".." especially so because it has
1850 	 * to be able to know about the current root directory and
1851 	 * parent relationships.
1852 	 */
1853 	if (unlikely(nd->last_type != LAST_NORM)) {
1854 		if (!(flags & WALK_MORE) && nd->depth)
1855 			put_link(nd);
1856 		return handle_dots(nd, nd->last_type);
1857 	}
1858 	dentry = lookup_fast(nd, &inode, &seq);
1859 	if (IS_ERR(dentry))
1860 		return ERR_CAST(dentry);
1861 	if (unlikely(!dentry)) {
1862 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1863 		if (IS_ERR(dentry))
1864 			return ERR_CAST(dentry);
1865 	}
1866 	if (!(flags & WALK_MORE) && nd->depth)
1867 		put_link(nd);
1868 	return step_into(nd, flags, dentry, inode, seq);
1869 }
1870 
1871 /*
1872  * We can do the critical dentry name comparison and hashing
1873  * operations one word at a time, but we are limited to:
1874  *
1875  * - Architectures with fast unaligned word accesses. We could
1876  *   do a "get_unaligned()" if this helps and is sufficiently
1877  *   fast.
1878  *
1879  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1880  *   do not trap on the (extremely unlikely) case of a page
1881  *   crossing operation.
1882  *
1883  * - Furthermore, we need an efficient 64-bit compile for the
1884  *   64-bit case in order to generate the "number of bytes in
1885  *   the final mask". Again, that could be replaced with a
1886  *   efficient population count instruction or similar.
1887  */
1888 #ifdef CONFIG_DCACHE_WORD_ACCESS
1889 
1890 #include <asm/word-at-a-time.h>
1891 
1892 #ifdef HASH_MIX
1893 
1894 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1895 
1896 #elif defined(CONFIG_64BIT)
1897 /*
1898  * Register pressure in the mixing function is an issue, particularly
1899  * on 32-bit x86, but almost any function requires one state value and
1900  * one temporary.  Instead, use a function designed for two state values
1901  * and no temporaries.
1902  *
1903  * This function cannot create a collision in only two iterations, so
1904  * we have two iterations to achieve avalanche.  In those two iterations,
1905  * we have six layers of mixing, which is enough to spread one bit's
1906  * influence out to 2^6 = 64 state bits.
1907  *
1908  * Rotate constants are scored by considering either 64 one-bit input
1909  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1910  * probability of that delta causing a change to each of the 128 output
1911  * bits, using a sample of random initial states.
1912  *
1913  * The Shannon entropy of the computed probabilities is then summed
1914  * to produce a score.  Ideally, any input change has a 50% chance of
1915  * toggling any given output bit.
1916  *
1917  * Mixing scores (in bits) for (12,45):
1918  * Input delta: 1-bit      2-bit
1919  * 1 round:     713.3    42542.6
1920  * 2 rounds:   2753.7   140389.8
1921  * 3 rounds:   5954.1   233458.2
1922  * 4 rounds:   7862.6   256672.2
1923  * Perfect:    8192     258048
1924  *            (64*128) (64*63/2 * 128)
1925  */
1926 #define HASH_MIX(x, y, a)	\
1927 	(	x ^= (a),	\
1928 	y ^= x,	x = rol64(x,12),\
1929 	x += y,	y = rol64(y,45),\
1930 	y *= 9			)
1931 
1932 /*
1933  * Fold two longs into one 32-bit hash value.  This must be fast, but
1934  * latency isn't quite as critical, as there is a fair bit of additional
1935  * work done before the hash value is used.
1936  */
1937 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1938 {
1939 	y ^= x * GOLDEN_RATIO_64;
1940 	y *= GOLDEN_RATIO_64;
1941 	return y >> 32;
1942 }
1943 
1944 #else	/* 32-bit case */
1945 
1946 /*
1947  * Mixing scores (in bits) for (7,20):
1948  * Input delta: 1-bit      2-bit
1949  * 1 round:     330.3     9201.6
1950  * 2 rounds:   1246.4    25475.4
1951  * 3 rounds:   1907.1    31295.1
1952  * 4 rounds:   2042.3    31718.6
1953  * Perfect:    2048      31744
1954  *            (32*64)   (32*31/2 * 64)
1955  */
1956 #define HASH_MIX(x, y, a)	\
1957 	(	x ^= (a),	\
1958 	y ^= x,	x = rol32(x, 7),\
1959 	x += y,	y = rol32(y,20),\
1960 	y *= 9			)
1961 
1962 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1963 {
1964 	/* Use arch-optimized multiply if one exists */
1965 	return __hash_32(y ^ __hash_32(x));
1966 }
1967 
1968 #endif
1969 
1970 /*
1971  * Return the hash of a string of known length.  This is carfully
1972  * designed to match hash_name(), which is the more critical function.
1973  * In particular, we must end by hashing a final word containing 0..7
1974  * payload bytes, to match the way that hash_name() iterates until it
1975  * finds the delimiter after the name.
1976  */
1977 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1978 {
1979 	unsigned long a, x = 0, y = (unsigned long)salt;
1980 
1981 	for (;;) {
1982 		if (!len)
1983 			goto done;
1984 		a = load_unaligned_zeropad(name);
1985 		if (len < sizeof(unsigned long))
1986 			break;
1987 		HASH_MIX(x, y, a);
1988 		name += sizeof(unsigned long);
1989 		len -= sizeof(unsigned long);
1990 	}
1991 	x ^= a & bytemask_from_count(len);
1992 done:
1993 	return fold_hash(x, y);
1994 }
1995 EXPORT_SYMBOL(full_name_hash);
1996 
1997 /* Return the "hash_len" (hash and length) of a null-terminated string */
1998 u64 hashlen_string(const void *salt, const char *name)
1999 {
2000 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2001 	unsigned long adata, mask, len;
2002 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2003 
2004 	len = 0;
2005 	goto inside;
2006 
2007 	do {
2008 		HASH_MIX(x, y, a);
2009 		len += sizeof(unsigned long);
2010 inside:
2011 		a = load_unaligned_zeropad(name+len);
2012 	} while (!has_zero(a, &adata, &constants));
2013 
2014 	adata = prep_zero_mask(a, adata, &constants);
2015 	mask = create_zero_mask(adata);
2016 	x ^= a & zero_bytemask(mask);
2017 
2018 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2019 }
2020 EXPORT_SYMBOL(hashlen_string);
2021 
2022 /*
2023  * Calculate the length and hash of the path component, and
2024  * return the "hash_len" as the result.
2025  */
2026 static inline u64 hash_name(const void *salt, const char *name)
2027 {
2028 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2029 	unsigned long adata, bdata, mask, len;
2030 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2031 
2032 	len = 0;
2033 	goto inside;
2034 
2035 	do {
2036 		HASH_MIX(x, y, a);
2037 		len += sizeof(unsigned long);
2038 inside:
2039 		a = load_unaligned_zeropad(name+len);
2040 		b = a ^ REPEAT_BYTE('/');
2041 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2042 
2043 	adata = prep_zero_mask(a, adata, &constants);
2044 	bdata = prep_zero_mask(b, bdata, &constants);
2045 	mask = create_zero_mask(adata | bdata);
2046 	x ^= a & zero_bytemask(mask);
2047 
2048 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2049 }
2050 
2051 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2052 
2053 /* Return the hash of a string of known length */
2054 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2055 {
2056 	unsigned long hash = init_name_hash(salt);
2057 	while (len--)
2058 		hash = partial_name_hash((unsigned char)*name++, hash);
2059 	return end_name_hash(hash);
2060 }
2061 EXPORT_SYMBOL(full_name_hash);
2062 
2063 /* Return the "hash_len" (hash and length) of a null-terminated string */
2064 u64 hashlen_string(const void *salt, const char *name)
2065 {
2066 	unsigned long hash = init_name_hash(salt);
2067 	unsigned long len = 0, c;
2068 
2069 	c = (unsigned char)*name;
2070 	while (c) {
2071 		len++;
2072 		hash = partial_name_hash(c, hash);
2073 		c = (unsigned char)name[len];
2074 	}
2075 	return hashlen_create(end_name_hash(hash), len);
2076 }
2077 EXPORT_SYMBOL(hashlen_string);
2078 
2079 /*
2080  * We know there's a real path component here of at least
2081  * one character.
2082  */
2083 static inline u64 hash_name(const void *salt, const char *name)
2084 {
2085 	unsigned long hash = init_name_hash(salt);
2086 	unsigned long len = 0, c;
2087 
2088 	c = (unsigned char)*name;
2089 	do {
2090 		len++;
2091 		hash = partial_name_hash(c, hash);
2092 		c = (unsigned char)name[len];
2093 	} while (c && c != '/');
2094 	return hashlen_create(end_name_hash(hash), len);
2095 }
2096 
2097 #endif
2098 
2099 /*
2100  * Name resolution.
2101  * This is the basic name resolution function, turning a pathname into
2102  * the final dentry. We expect 'base' to be positive and a directory.
2103  *
2104  * Returns 0 and nd will have valid dentry and mnt on success.
2105  * Returns error and drops reference to input namei data on failure.
2106  */
2107 static int link_path_walk(const char *name, struct nameidata *nd)
2108 {
2109 	int depth = 0; // depth <= nd->depth
2110 	int err;
2111 
2112 	nd->last_type = LAST_ROOT;
2113 	nd->flags |= LOOKUP_PARENT;
2114 	if (IS_ERR(name))
2115 		return PTR_ERR(name);
2116 	while (*name=='/')
2117 		name++;
2118 	if (!*name) {
2119 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2120 		return 0;
2121 	}
2122 
2123 	/* At this point we know we have a real path component. */
2124 	for(;;) {
2125 		const char *link;
2126 		u64 hash_len;
2127 		int type;
2128 
2129 		err = may_lookup(nd);
2130 		if (err)
2131 			return err;
2132 
2133 		hash_len = hash_name(nd->path.dentry, name);
2134 
2135 		type = LAST_NORM;
2136 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2137 			case 2:
2138 				if (name[1] == '.') {
2139 					type = LAST_DOTDOT;
2140 					nd->flags |= LOOKUP_JUMPED;
2141 				}
2142 				break;
2143 			case 1:
2144 				type = LAST_DOT;
2145 		}
2146 		if (likely(type == LAST_NORM)) {
2147 			struct dentry *parent = nd->path.dentry;
2148 			nd->flags &= ~LOOKUP_JUMPED;
2149 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2150 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2151 				err = parent->d_op->d_hash(parent, &this);
2152 				if (err < 0)
2153 					return err;
2154 				hash_len = this.hash_len;
2155 				name = this.name;
2156 			}
2157 		}
2158 
2159 		nd->last.hash_len = hash_len;
2160 		nd->last.name = name;
2161 		nd->last_type = type;
2162 
2163 		name += hashlen_len(hash_len);
2164 		if (!*name)
2165 			goto OK;
2166 		/*
2167 		 * If it wasn't NUL, we know it was '/'. Skip that
2168 		 * slash, and continue until no more slashes.
2169 		 */
2170 		do {
2171 			name++;
2172 		} while (unlikely(*name == '/'));
2173 		if (unlikely(!*name)) {
2174 OK:
2175 			/* pathname or trailing symlink, done */
2176 			if (!depth) {
2177 				nd->dir_uid = nd->inode->i_uid;
2178 				nd->dir_mode = nd->inode->i_mode;
2179 				nd->flags &= ~LOOKUP_PARENT;
2180 				return 0;
2181 			}
2182 			/* last component of nested symlink */
2183 			name = nd->stack[--depth].name;
2184 			link = walk_component(nd, 0);
2185 		} else {
2186 			/* not the last component */
2187 			link = walk_component(nd, WALK_MORE);
2188 		}
2189 		if (unlikely(link)) {
2190 			if (IS_ERR(link))
2191 				return PTR_ERR(link);
2192 			/* a symlink to follow */
2193 			nd->stack[depth++].name = name;
2194 			name = link;
2195 			continue;
2196 		}
2197 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2198 			if (nd->flags & LOOKUP_RCU) {
2199 				if (!try_to_unlazy(nd))
2200 					return -ECHILD;
2201 			}
2202 			return -ENOTDIR;
2203 		}
2204 	}
2205 }
2206 
2207 /* must be paired with terminate_walk() */
2208 static const char *path_init(struct nameidata *nd, unsigned flags)
2209 {
2210 	int error;
2211 	const char *s = nd->name->name;
2212 
2213 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2214 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2215 		return ERR_PTR(-EAGAIN);
2216 
2217 	if (!*s)
2218 		flags &= ~LOOKUP_RCU;
2219 	if (flags & LOOKUP_RCU)
2220 		rcu_read_lock();
2221 
2222 	nd->flags = flags | LOOKUP_JUMPED;
2223 	nd->depth = 0;
2224 
2225 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2226 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2227 	smp_rmb();
2228 
2229 	if (flags & LOOKUP_ROOT) {
2230 		struct dentry *root = nd->root.dentry;
2231 		struct inode *inode = root->d_inode;
2232 		if (*s && unlikely(!d_can_lookup(root)))
2233 			return ERR_PTR(-ENOTDIR);
2234 		nd->path = nd->root;
2235 		nd->inode = inode;
2236 		if (flags & LOOKUP_RCU) {
2237 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2238 			nd->root_seq = nd->seq;
2239 		} else {
2240 			path_get(&nd->path);
2241 		}
2242 		return s;
2243 	}
2244 
2245 	nd->root.mnt = NULL;
2246 	nd->path.mnt = NULL;
2247 	nd->path.dentry = NULL;
2248 
2249 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2250 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2251 		error = nd_jump_root(nd);
2252 		if (unlikely(error))
2253 			return ERR_PTR(error);
2254 		return s;
2255 	}
2256 
2257 	/* Relative pathname -- get the starting-point it is relative to. */
2258 	if (nd->dfd == AT_FDCWD) {
2259 		if (flags & LOOKUP_RCU) {
2260 			struct fs_struct *fs = current->fs;
2261 			unsigned seq;
2262 
2263 			do {
2264 				seq = read_seqcount_begin(&fs->seq);
2265 				nd->path = fs->pwd;
2266 				nd->inode = nd->path.dentry->d_inode;
2267 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2268 			} while (read_seqcount_retry(&fs->seq, seq));
2269 		} else {
2270 			get_fs_pwd(current->fs, &nd->path);
2271 			nd->inode = nd->path.dentry->d_inode;
2272 		}
2273 	} else {
2274 		/* Caller must check execute permissions on the starting path component */
2275 		struct fd f = fdget_raw(nd->dfd);
2276 		struct dentry *dentry;
2277 
2278 		if (!f.file)
2279 			return ERR_PTR(-EBADF);
2280 
2281 		dentry = f.file->f_path.dentry;
2282 
2283 		if (*s && unlikely(!d_can_lookup(dentry))) {
2284 			fdput(f);
2285 			return ERR_PTR(-ENOTDIR);
2286 		}
2287 
2288 		nd->path = f.file->f_path;
2289 		if (flags & LOOKUP_RCU) {
2290 			nd->inode = nd->path.dentry->d_inode;
2291 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2292 		} else {
2293 			path_get(&nd->path);
2294 			nd->inode = nd->path.dentry->d_inode;
2295 		}
2296 		fdput(f);
2297 	}
2298 
2299 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2300 	if (flags & LOOKUP_IS_SCOPED) {
2301 		nd->root = nd->path;
2302 		if (flags & LOOKUP_RCU) {
2303 			nd->root_seq = nd->seq;
2304 		} else {
2305 			path_get(&nd->root);
2306 			nd->flags |= LOOKUP_ROOT_GRABBED;
2307 		}
2308 	}
2309 	return s;
2310 }
2311 
2312 static inline const char *lookup_last(struct nameidata *nd)
2313 {
2314 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2315 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2316 
2317 	return walk_component(nd, WALK_TRAILING);
2318 }
2319 
2320 static int handle_lookup_down(struct nameidata *nd)
2321 {
2322 	if (!(nd->flags & LOOKUP_RCU))
2323 		dget(nd->path.dentry);
2324 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2325 			nd->path.dentry, nd->inode, nd->seq));
2326 }
2327 
2328 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2329 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2330 {
2331 	const char *s = path_init(nd, flags);
2332 	int err;
2333 
2334 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2335 		err = handle_lookup_down(nd);
2336 		if (unlikely(err < 0))
2337 			s = ERR_PTR(err);
2338 	}
2339 
2340 	while (!(err = link_path_walk(s, nd)) &&
2341 	       (s = lookup_last(nd)) != NULL)
2342 		;
2343 	if (!err)
2344 		err = complete_walk(nd);
2345 
2346 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2347 		if (!d_can_lookup(nd->path.dentry))
2348 			err = -ENOTDIR;
2349 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2350 		err = handle_lookup_down(nd);
2351 		nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
2352 	}
2353 	if (!err) {
2354 		*path = nd->path;
2355 		nd->path.mnt = NULL;
2356 		nd->path.dentry = NULL;
2357 	}
2358 	terminate_walk(nd);
2359 	return err;
2360 }
2361 
2362 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2363 		    struct path *path, struct path *root)
2364 {
2365 	int retval;
2366 	struct nameidata nd;
2367 	if (IS_ERR(name))
2368 		return PTR_ERR(name);
2369 	if (unlikely(root)) {
2370 		nd.root = *root;
2371 		flags |= LOOKUP_ROOT;
2372 	}
2373 	set_nameidata(&nd, dfd, name);
2374 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2375 	if (unlikely(retval == -ECHILD))
2376 		retval = path_lookupat(&nd, flags, path);
2377 	if (unlikely(retval == -ESTALE))
2378 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2379 
2380 	if (likely(!retval))
2381 		audit_inode(name, path->dentry,
2382 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2383 	restore_nameidata();
2384 	putname(name);
2385 	return retval;
2386 }
2387 
2388 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2389 static int path_parentat(struct nameidata *nd, unsigned flags,
2390 				struct path *parent)
2391 {
2392 	const char *s = path_init(nd, flags);
2393 	int err = link_path_walk(s, nd);
2394 	if (!err)
2395 		err = complete_walk(nd);
2396 	if (!err) {
2397 		*parent = nd->path;
2398 		nd->path.mnt = NULL;
2399 		nd->path.dentry = NULL;
2400 	}
2401 	terminate_walk(nd);
2402 	return err;
2403 }
2404 
2405 static struct filename *filename_parentat(int dfd, struct filename *name,
2406 				unsigned int flags, struct path *parent,
2407 				struct qstr *last, int *type)
2408 {
2409 	int retval;
2410 	struct nameidata nd;
2411 
2412 	if (IS_ERR(name))
2413 		return name;
2414 	set_nameidata(&nd, dfd, name);
2415 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2416 	if (unlikely(retval == -ECHILD))
2417 		retval = path_parentat(&nd, flags, parent);
2418 	if (unlikely(retval == -ESTALE))
2419 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2420 	if (likely(!retval)) {
2421 		*last = nd.last;
2422 		*type = nd.last_type;
2423 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2424 	} else {
2425 		putname(name);
2426 		name = ERR_PTR(retval);
2427 	}
2428 	restore_nameidata();
2429 	return name;
2430 }
2431 
2432 /* does lookup, returns the object with parent locked */
2433 struct dentry *kern_path_locked(const char *name, struct path *path)
2434 {
2435 	struct filename *filename;
2436 	struct dentry *d;
2437 	struct qstr last;
2438 	int type;
2439 
2440 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2441 				    &last, &type);
2442 	if (IS_ERR(filename))
2443 		return ERR_CAST(filename);
2444 	if (unlikely(type != LAST_NORM)) {
2445 		path_put(path);
2446 		putname(filename);
2447 		return ERR_PTR(-EINVAL);
2448 	}
2449 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2450 	d = __lookup_hash(&last, path->dentry, 0);
2451 	if (IS_ERR(d)) {
2452 		inode_unlock(path->dentry->d_inode);
2453 		path_put(path);
2454 	}
2455 	putname(filename);
2456 	return d;
2457 }
2458 
2459 int kern_path(const char *name, unsigned int flags, struct path *path)
2460 {
2461 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2462 			       flags, path, NULL);
2463 }
2464 EXPORT_SYMBOL(kern_path);
2465 
2466 /**
2467  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2468  * @dentry:  pointer to dentry of the base directory
2469  * @mnt: pointer to vfs mount of the base directory
2470  * @name: pointer to file name
2471  * @flags: lookup flags
2472  * @path: pointer to struct path to fill
2473  */
2474 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2475 		    const char *name, unsigned int flags,
2476 		    struct path *path)
2477 {
2478 	struct path root = {.mnt = mnt, .dentry = dentry};
2479 	/* the first argument of filename_lookup() is ignored with root */
2480 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2481 			       flags , path, &root);
2482 }
2483 EXPORT_SYMBOL(vfs_path_lookup);
2484 
2485 static int lookup_one_len_common(const char *name, struct dentry *base,
2486 				 int len, struct qstr *this)
2487 {
2488 	this->name = name;
2489 	this->len = len;
2490 	this->hash = full_name_hash(base, name, len);
2491 	if (!len)
2492 		return -EACCES;
2493 
2494 	if (unlikely(name[0] == '.')) {
2495 		if (len < 2 || (len == 2 && name[1] == '.'))
2496 			return -EACCES;
2497 	}
2498 
2499 	while (len--) {
2500 		unsigned int c = *(const unsigned char *)name++;
2501 		if (c == '/' || c == '\0')
2502 			return -EACCES;
2503 	}
2504 	/*
2505 	 * See if the low-level filesystem might want
2506 	 * to use its own hash..
2507 	 */
2508 	if (base->d_flags & DCACHE_OP_HASH) {
2509 		int err = base->d_op->d_hash(base, this);
2510 		if (err < 0)
2511 			return err;
2512 	}
2513 
2514 	return inode_permission(base->d_inode, MAY_EXEC);
2515 }
2516 
2517 /**
2518  * try_lookup_one_len - filesystem helper to lookup single pathname component
2519  * @name:	pathname component to lookup
2520  * @base:	base directory to lookup from
2521  * @len:	maximum length @len should be interpreted to
2522  *
2523  * Look up a dentry by name in the dcache, returning NULL if it does not
2524  * currently exist.  The function does not try to create a dentry.
2525  *
2526  * Note that this routine is purely a helper for filesystem usage and should
2527  * not be called by generic code.
2528  *
2529  * The caller must hold base->i_mutex.
2530  */
2531 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2532 {
2533 	struct qstr this;
2534 	int err;
2535 
2536 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2537 
2538 	err = lookup_one_len_common(name, base, len, &this);
2539 	if (err)
2540 		return ERR_PTR(err);
2541 
2542 	return lookup_dcache(&this, base, 0);
2543 }
2544 EXPORT_SYMBOL(try_lookup_one_len);
2545 
2546 /**
2547  * lookup_one_len - filesystem helper to lookup single pathname component
2548  * @name:	pathname component to lookup
2549  * @base:	base directory to lookup from
2550  * @len:	maximum length @len should be interpreted to
2551  *
2552  * Note that this routine is purely a helper for filesystem usage and should
2553  * not be called by generic code.
2554  *
2555  * The caller must hold base->i_mutex.
2556  */
2557 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2558 {
2559 	struct dentry *dentry;
2560 	struct qstr this;
2561 	int err;
2562 
2563 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2564 
2565 	err = lookup_one_len_common(name, base, len, &this);
2566 	if (err)
2567 		return ERR_PTR(err);
2568 
2569 	dentry = lookup_dcache(&this, base, 0);
2570 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2571 }
2572 EXPORT_SYMBOL(lookup_one_len);
2573 
2574 /**
2575  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2576  * @name:	pathname component to lookup
2577  * @base:	base directory to lookup from
2578  * @len:	maximum length @len should be interpreted to
2579  *
2580  * Note that this routine is purely a helper for filesystem usage and should
2581  * not be called by generic code.
2582  *
2583  * Unlike lookup_one_len, it should be called without the parent
2584  * i_mutex held, and will take the i_mutex itself if necessary.
2585  */
2586 struct dentry *lookup_one_len_unlocked(const char *name,
2587 				       struct dentry *base, int len)
2588 {
2589 	struct qstr this;
2590 	int err;
2591 	struct dentry *ret;
2592 
2593 	err = lookup_one_len_common(name, base, len, &this);
2594 	if (err)
2595 		return ERR_PTR(err);
2596 
2597 	ret = lookup_dcache(&this, base, 0);
2598 	if (!ret)
2599 		ret = lookup_slow(&this, base, 0);
2600 	return ret;
2601 }
2602 EXPORT_SYMBOL(lookup_one_len_unlocked);
2603 
2604 /*
2605  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2606  * on negatives.  Returns known positive or ERR_PTR(); that's what
2607  * most of the users want.  Note that pinned negative with unlocked parent
2608  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2609  * need to be very careful; pinned positives have ->d_inode stable, so
2610  * this one avoids such problems.
2611  */
2612 struct dentry *lookup_positive_unlocked(const char *name,
2613 				       struct dentry *base, int len)
2614 {
2615 	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2616 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2617 		dput(ret);
2618 		ret = ERR_PTR(-ENOENT);
2619 	}
2620 	return ret;
2621 }
2622 EXPORT_SYMBOL(lookup_positive_unlocked);
2623 
2624 #ifdef CONFIG_UNIX98_PTYS
2625 int path_pts(struct path *path)
2626 {
2627 	/* Find something mounted on "pts" in the same directory as
2628 	 * the input path.
2629 	 */
2630 	struct dentry *parent = dget_parent(path->dentry);
2631 	struct dentry *child;
2632 	struct qstr this = QSTR_INIT("pts", 3);
2633 
2634 	if (unlikely(!path_connected(path->mnt, parent))) {
2635 		dput(parent);
2636 		return -ENOENT;
2637 	}
2638 	dput(path->dentry);
2639 	path->dentry = parent;
2640 	child = d_hash_and_lookup(parent, &this);
2641 	if (!child)
2642 		return -ENOENT;
2643 
2644 	path->dentry = child;
2645 	dput(parent);
2646 	follow_down(path);
2647 	return 0;
2648 }
2649 #endif
2650 
2651 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2652 		 struct path *path, int *empty)
2653 {
2654 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2655 			       flags, path, NULL);
2656 }
2657 EXPORT_SYMBOL(user_path_at_empty);
2658 
2659 int __check_sticky(struct inode *dir, struct inode *inode)
2660 {
2661 	kuid_t fsuid = current_fsuid();
2662 
2663 	if (uid_eq(inode->i_uid, fsuid))
2664 		return 0;
2665 	if (uid_eq(dir->i_uid, fsuid))
2666 		return 0;
2667 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2668 }
2669 EXPORT_SYMBOL(__check_sticky);
2670 
2671 /*
2672  *	Check whether we can remove a link victim from directory dir, check
2673  *  whether the type of victim is right.
2674  *  1. We can't do it if dir is read-only (done in permission())
2675  *  2. We should have write and exec permissions on dir
2676  *  3. We can't remove anything from append-only dir
2677  *  4. We can't do anything with immutable dir (done in permission())
2678  *  5. If the sticky bit on dir is set we should either
2679  *	a. be owner of dir, or
2680  *	b. be owner of victim, or
2681  *	c. have CAP_FOWNER capability
2682  *  6. If the victim is append-only or immutable we can't do antyhing with
2683  *     links pointing to it.
2684  *  7. If the victim has an unknown uid or gid we can't change the inode.
2685  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2686  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2687  * 10. We can't remove a root or mountpoint.
2688  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2689  *     nfs_async_unlink().
2690  */
2691 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2692 {
2693 	struct inode *inode = d_backing_inode(victim);
2694 	int error;
2695 
2696 	if (d_is_negative(victim))
2697 		return -ENOENT;
2698 	BUG_ON(!inode);
2699 
2700 	BUG_ON(victim->d_parent->d_inode != dir);
2701 
2702 	/* Inode writeback is not safe when the uid or gid are invalid. */
2703 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2704 		return -EOVERFLOW;
2705 
2706 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2707 
2708 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2709 	if (error)
2710 		return error;
2711 	if (IS_APPEND(dir))
2712 		return -EPERM;
2713 
2714 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2715 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2716 		return -EPERM;
2717 	if (isdir) {
2718 		if (!d_is_dir(victim))
2719 			return -ENOTDIR;
2720 		if (IS_ROOT(victim))
2721 			return -EBUSY;
2722 	} else if (d_is_dir(victim))
2723 		return -EISDIR;
2724 	if (IS_DEADDIR(dir))
2725 		return -ENOENT;
2726 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2727 		return -EBUSY;
2728 	return 0;
2729 }
2730 
2731 /*	Check whether we can create an object with dentry child in directory
2732  *  dir.
2733  *  1. We can't do it if child already exists (open has special treatment for
2734  *     this case, but since we are inlined it's OK)
2735  *  2. We can't do it if dir is read-only (done in permission())
2736  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2737  *  4. We should have write and exec permissions on dir
2738  *  5. We can't do it if dir is immutable (done in permission())
2739  */
2740 static inline int may_create(struct inode *dir, struct dentry *child)
2741 {
2742 	struct user_namespace *s_user_ns;
2743 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2744 	if (child->d_inode)
2745 		return -EEXIST;
2746 	if (IS_DEADDIR(dir))
2747 		return -ENOENT;
2748 	s_user_ns = dir->i_sb->s_user_ns;
2749 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2750 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2751 		return -EOVERFLOW;
2752 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2753 }
2754 
2755 /*
2756  * p1 and p2 should be directories on the same fs.
2757  */
2758 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2759 {
2760 	struct dentry *p;
2761 
2762 	if (p1 == p2) {
2763 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2764 		return NULL;
2765 	}
2766 
2767 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2768 
2769 	p = d_ancestor(p2, p1);
2770 	if (p) {
2771 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2772 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2773 		return p;
2774 	}
2775 
2776 	p = d_ancestor(p1, p2);
2777 	if (p) {
2778 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2779 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2780 		return p;
2781 	}
2782 
2783 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2784 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2785 	return NULL;
2786 }
2787 EXPORT_SYMBOL(lock_rename);
2788 
2789 void unlock_rename(struct dentry *p1, struct dentry *p2)
2790 {
2791 	inode_unlock(p1->d_inode);
2792 	if (p1 != p2) {
2793 		inode_unlock(p2->d_inode);
2794 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2795 	}
2796 }
2797 EXPORT_SYMBOL(unlock_rename);
2798 
2799 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2800 		bool want_excl)
2801 {
2802 	int error = may_create(dir, dentry);
2803 	if (error)
2804 		return error;
2805 
2806 	if (!dir->i_op->create)
2807 		return -EACCES;	/* shouldn't it be ENOSYS? */
2808 	mode &= S_IALLUGO;
2809 	mode |= S_IFREG;
2810 	error = security_inode_create(dir, dentry, mode);
2811 	if (error)
2812 		return error;
2813 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2814 	if (!error)
2815 		fsnotify_create(dir, dentry);
2816 	return error;
2817 }
2818 EXPORT_SYMBOL(vfs_create);
2819 
2820 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2821 		int (*f)(struct dentry *, umode_t, void *),
2822 		void *arg)
2823 {
2824 	struct inode *dir = dentry->d_parent->d_inode;
2825 	int error = may_create(dir, dentry);
2826 	if (error)
2827 		return error;
2828 
2829 	mode &= S_IALLUGO;
2830 	mode |= S_IFREG;
2831 	error = security_inode_create(dir, dentry, mode);
2832 	if (error)
2833 		return error;
2834 	error = f(dentry, mode, arg);
2835 	if (!error)
2836 		fsnotify_create(dir, dentry);
2837 	return error;
2838 }
2839 EXPORT_SYMBOL(vfs_mkobj);
2840 
2841 bool may_open_dev(const struct path *path)
2842 {
2843 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2844 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2845 }
2846 
2847 static int may_open(const struct path *path, int acc_mode, int flag)
2848 {
2849 	struct dentry *dentry = path->dentry;
2850 	struct inode *inode = dentry->d_inode;
2851 	int error;
2852 
2853 	if (!inode)
2854 		return -ENOENT;
2855 
2856 	switch (inode->i_mode & S_IFMT) {
2857 	case S_IFLNK:
2858 		return -ELOOP;
2859 	case S_IFDIR:
2860 		if (acc_mode & MAY_WRITE)
2861 			return -EISDIR;
2862 		if (acc_mode & MAY_EXEC)
2863 			return -EACCES;
2864 		break;
2865 	case S_IFBLK:
2866 	case S_IFCHR:
2867 		if (!may_open_dev(path))
2868 			return -EACCES;
2869 		fallthrough;
2870 	case S_IFIFO:
2871 	case S_IFSOCK:
2872 		if (acc_mode & MAY_EXEC)
2873 			return -EACCES;
2874 		flag &= ~O_TRUNC;
2875 		break;
2876 	case S_IFREG:
2877 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
2878 			return -EACCES;
2879 		break;
2880 	}
2881 
2882 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2883 	if (error)
2884 		return error;
2885 
2886 	/*
2887 	 * An append-only file must be opened in append mode for writing.
2888 	 */
2889 	if (IS_APPEND(inode)) {
2890 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2891 			return -EPERM;
2892 		if (flag & O_TRUNC)
2893 			return -EPERM;
2894 	}
2895 
2896 	/* O_NOATIME can only be set by the owner or superuser */
2897 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2898 		return -EPERM;
2899 
2900 	return 0;
2901 }
2902 
2903 static int handle_truncate(struct file *filp)
2904 {
2905 	const struct path *path = &filp->f_path;
2906 	struct inode *inode = path->dentry->d_inode;
2907 	int error = get_write_access(inode);
2908 	if (error)
2909 		return error;
2910 	/*
2911 	 * Refuse to truncate files with mandatory locks held on them.
2912 	 */
2913 	error = locks_verify_locked(filp);
2914 	if (!error)
2915 		error = security_path_truncate(path);
2916 	if (!error) {
2917 		error = do_truncate(path->dentry, 0,
2918 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2919 				    filp);
2920 	}
2921 	put_write_access(inode);
2922 	return error;
2923 }
2924 
2925 static inline int open_to_namei_flags(int flag)
2926 {
2927 	if ((flag & O_ACCMODE) == 3)
2928 		flag--;
2929 	return flag;
2930 }
2931 
2932 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2933 {
2934 	struct user_namespace *s_user_ns;
2935 	int error = security_path_mknod(dir, dentry, mode, 0);
2936 	if (error)
2937 		return error;
2938 
2939 	s_user_ns = dir->dentry->d_sb->s_user_ns;
2940 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2941 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2942 		return -EOVERFLOW;
2943 
2944 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2945 	if (error)
2946 		return error;
2947 
2948 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2949 }
2950 
2951 /*
2952  * Attempt to atomically look up, create and open a file from a negative
2953  * dentry.
2954  *
2955  * Returns 0 if successful.  The file will have been created and attached to
2956  * @file by the filesystem calling finish_open().
2957  *
2958  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
2959  * be set.  The caller will need to perform the open themselves.  @path will
2960  * have been updated to point to the new dentry.  This may be negative.
2961  *
2962  * Returns an error code otherwise.
2963  */
2964 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
2965 				  struct file *file,
2966 				  int open_flag, umode_t mode)
2967 {
2968 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2969 	struct inode *dir =  nd->path.dentry->d_inode;
2970 	int error;
2971 
2972 	if (nd->flags & LOOKUP_DIRECTORY)
2973 		open_flag |= O_DIRECTORY;
2974 
2975 	file->f_path.dentry = DENTRY_NOT_SET;
2976 	file->f_path.mnt = nd->path.mnt;
2977 	error = dir->i_op->atomic_open(dir, dentry, file,
2978 				       open_to_namei_flags(open_flag), mode);
2979 	d_lookup_done(dentry);
2980 	if (!error) {
2981 		if (file->f_mode & FMODE_OPENED) {
2982 			if (unlikely(dentry != file->f_path.dentry)) {
2983 				dput(dentry);
2984 				dentry = dget(file->f_path.dentry);
2985 			}
2986 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2987 			error = -EIO;
2988 		} else {
2989 			if (file->f_path.dentry) {
2990 				dput(dentry);
2991 				dentry = file->f_path.dentry;
2992 			}
2993 			if (unlikely(d_is_negative(dentry)))
2994 				error = -ENOENT;
2995 		}
2996 	}
2997 	if (error) {
2998 		dput(dentry);
2999 		dentry = ERR_PTR(error);
3000 	}
3001 	return dentry;
3002 }
3003 
3004 /*
3005  * Look up and maybe create and open the last component.
3006  *
3007  * Must be called with parent locked (exclusive in O_CREAT case).
3008  *
3009  * Returns 0 on success, that is, if
3010  *  the file was successfully atomically created (if necessary) and opened, or
3011  *  the file was not completely opened at this time, though lookups and
3012  *  creations were performed.
3013  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3014  * In the latter case dentry returned in @path might be negative if O_CREAT
3015  * hadn't been specified.
3016  *
3017  * An error code is returned on failure.
3018  */
3019 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3020 				  const struct open_flags *op,
3021 				  bool got_write)
3022 {
3023 	struct dentry *dir = nd->path.dentry;
3024 	struct inode *dir_inode = dir->d_inode;
3025 	int open_flag = op->open_flag;
3026 	struct dentry *dentry;
3027 	int error, create_error = 0;
3028 	umode_t mode = op->mode;
3029 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3030 
3031 	if (unlikely(IS_DEADDIR(dir_inode)))
3032 		return ERR_PTR(-ENOENT);
3033 
3034 	file->f_mode &= ~FMODE_CREATED;
3035 	dentry = d_lookup(dir, &nd->last);
3036 	for (;;) {
3037 		if (!dentry) {
3038 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3039 			if (IS_ERR(dentry))
3040 				return dentry;
3041 		}
3042 		if (d_in_lookup(dentry))
3043 			break;
3044 
3045 		error = d_revalidate(dentry, nd->flags);
3046 		if (likely(error > 0))
3047 			break;
3048 		if (error)
3049 			goto out_dput;
3050 		d_invalidate(dentry);
3051 		dput(dentry);
3052 		dentry = NULL;
3053 	}
3054 	if (dentry->d_inode) {
3055 		/* Cached positive dentry: will open in f_op->open */
3056 		return dentry;
3057 	}
3058 
3059 	/*
3060 	 * Checking write permission is tricky, bacuse we don't know if we are
3061 	 * going to actually need it: O_CREAT opens should work as long as the
3062 	 * file exists.  But checking existence breaks atomicity.  The trick is
3063 	 * to check access and if not granted clear O_CREAT from the flags.
3064 	 *
3065 	 * Another problem is returing the "right" error value (e.g. for an
3066 	 * O_EXCL open we want to return EEXIST not EROFS).
3067 	 */
3068 	if (unlikely(!got_write))
3069 		open_flag &= ~O_TRUNC;
3070 	if (open_flag & O_CREAT) {
3071 		if (open_flag & O_EXCL)
3072 			open_flag &= ~O_TRUNC;
3073 		if (!IS_POSIXACL(dir->d_inode))
3074 			mode &= ~current_umask();
3075 		if (likely(got_write))
3076 			create_error = may_o_create(&nd->path, dentry, mode);
3077 		else
3078 			create_error = -EROFS;
3079 	}
3080 	if (create_error)
3081 		open_flag &= ~O_CREAT;
3082 	if (dir_inode->i_op->atomic_open) {
3083 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3084 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3085 			dentry = ERR_PTR(create_error);
3086 		return dentry;
3087 	}
3088 
3089 	if (d_in_lookup(dentry)) {
3090 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3091 							     nd->flags);
3092 		d_lookup_done(dentry);
3093 		if (unlikely(res)) {
3094 			if (IS_ERR(res)) {
3095 				error = PTR_ERR(res);
3096 				goto out_dput;
3097 			}
3098 			dput(dentry);
3099 			dentry = res;
3100 		}
3101 	}
3102 
3103 	/* Negative dentry, just create the file */
3104 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3105 		file->f_mode |= FMODE_CREATED;
3106 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3107 		if (!dir_inode->i_op->create) {
3108 			error = -EACCES;
3109 			goto out_dput;
3110 		}
3111 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3112 						open_flag & O_EXCL);
3113 		if (error)
3114 			goto out_dput;
3115 	}
3116 	if (unlikely(create_error) && !dentry->d_inode) {
3117 		error = create_error;
3118 		goto out_dput;
3119 	}
3120 	return dentry;
3121 
3122 out_dput:
3123 	dput(dentry);
3124 	return ERR_PTR(error);
3125 }
3126 
3127 static const char *open_last_lookups(struct nameidata *nd,
3128 		   struct file *file, const struct open_flags *op)
3129 {
3130 	struct dentry *dir = nd->path.dentry;
3131 	int open_flag = op->open_flag;
3132 	bool got_write = false;
3133 	unsigned seq;
3134 	struct inode *inode;
3135 	struct dentry *dentry;
3136 	const char *res;
3137 
3138 	nd->flags |= op->intent;
3139 
3140 	if (nd->last_type != LAST_NORM) {
3141 		if (nd->depth)
3142 			put_link(nd);
3143 		return handle_dots(nd, nd->last_type);
3144 	}
3145 
3146 	if (!(open_flag & O_CREAT)) {
3147 		if (nd->last.name[nd->last.len])
3148 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3149 		/* we _can_ be in RCU mode here */
3150 		dentry = lookup_fast(nd, &inode, &seq);
3151 		if (IS_ERR(dentry))
3152 			return ERR_CAST(dentry);
3153 		if (likely(dentry))
3154 			goto finish_lookup;
3155 
3156 		BUG_ON(nd->flags & LOOKUP_RCU);
3157 	} else {
3158 		/* create side of things */
3159 		if (nd->flags & LOOKUP_RCU) {
3160 			if (!try_to_unlazy(nd))
3161 				return ERR_PTR(-ECHILD);
3162 		}
3163 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3164 		/* trailing slashes? */
3165 		if (unlikely(nd->last.name[nd->last.len]))
3166 			return ERR_PTR(-EISDIR);
3167 	}
3168 
3169 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3170 		got_write = !mnt_want_write(nd->path.mnt);
3171 		/*
3172 		 * do _not_ fail yet - we might not need that or fail with
3173 		 * a different error; let lookup_open() decide; we'll be
3174 		 * dropping this one anyway.
3175 		 */
3176 	}
3177 	if (open_flag & O_CREAT)
3178 		inode_lock(dir->d_inode);
3179 	else
3180 		inode_lock_shared(dir->d_inode);
3181 	dentry = lookup_open(nd, file, op, got_write);
3182 	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3183 		fsnotify_create(dir->d_inode, dentry);
3184 	if (open_flag & O_CREAT)
3185 		inode_unlock(dir->d_inode);
3186 	else
3187 		inode_unlock_shared(dir->d_inode);
3188 
3189 	if (got_write)
3190 		mnt_drop_write(nd->path.mnt);
3191 
3192 	if (IS_ERR(dentry))
3193 		return ERR_CAST(dentry);
3194 
3195 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3196 		dput(nd->path.dentry);
3197 		nd->path.dentry = dentry;
3198 		return NULL;
3199 	}
3200 
3201 finish_lookup:
3202 	if (nd->depth)
3203 		put_link(nd);
3204 	res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3205 	if (unlikely(res))
3206 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3207 	return res;
3208 }
3209 
3210 /*
3211  * Handle the last step of open()
3212  */
3213 static int do_open(struct nameidata *nd,
3214 		   struct file *file, const struct open_flags *op)
3215 {
3216 	int open_flag = op->open_flag;
3217 	bool do_truncate;
3218 	int acc_mode;
3219 	int error;
3220 
3221 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3222 		error = complete_walk(nd);
3223 		if (error)
3224 			return error;
3225 	}
3226 	if (!(file->f_mode & FMODE_CREATED))
3227 		audit_inode(nd->name, nd->path.dentry, 0);
3228 	if (open_flag & O_CREAT) {
3229 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3230 			return -EEXIST;
3231 		if (d_is_dir(nd->path.dentry))
3232 			return -EISDIR;
3233 		error = may_create_in_sticky(nd->dir_mode, nd->dir_uid,
3234 					     d_backing_inode(nd->path.dentry));
3235 		if (unlikely(error))
3236 			return error;
3237 	}
3238 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3239 		return -ENOTDIR;
3240 
3241 	do_truncate = false;
3242 	acc_mode = op->acc_mode;
3243 	if (file->f_mode & FMODE_CREATED) {
3244 		/* Don't check for write permission, don't truncate */
3245 		open_flag &= ~O_TRUNC;
3246 		acc_mode = 0;
3247 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3248 		error = mnt_want_write(nd->path.mnt);
3249 		if (error)
3250 			return error;
3251 		do_truncate = true;
3252 	}
3253 	error = may_open(&nd->path, acc_mode, open_flag);
3254 	if (!error && !(file->f_mode & FMODE_OPENED))
3255 		error = vfs_open(&nd->path, file);
3256 	if (!error)
3257 		error = ima_file_check(file, op->acc_mode);
3258 	if (!error && do_truncate)
3259 		error = handle_truncate(file);
3260 	if (unlikely(error > 0)) {
3261 		WARN_ON(1);
3262 		error = -EINVAL;
3263 	}
3264 	if (do_truncate)
3265 		mnt_drop_write(nd->path.mnt);
3266 	return error;
3267 }
3268 
3269 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3270 {
3271 	struct dentry *child = NULL;
3272 	struct inode *dir = dentry->d_inode;
3273 	struct inode *inode;
3274 	int error;
3275 
3276 	/* we want directory to be writable */
3277 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3278 	if (error)
3279 		goto out_err;
3280 	error = -EOPNOTSUPP;
3281 	if (!dir->i_op->tmpfile)
3282 		goto out_err;
3283 	error = -ENOMEM;
3284 	child = d_alloc(dentry, &slash_name);
3285 	if (unlikely(!child))
3286 		goto out_err;
3287 	error = dir->i_op->tmpfile(dir, child, mode);
3288 	if (error)
3289 		goto out_err;
3290 	error = -ENOENT;
3291 	inode = child->d_inode;
3292 	if (unlikely(!inode))
3293 		goto out_err;
3294 	if (!(open_flag & O_EXCL)) {
3295 		spin_lock(&inode->i_lock);
3296 		inode->i_state |= I_LINKABLE;
3297 		spin_unlock(&inode->i_lock);
3298 	}
3299 	ima_post_create_tmpfile(inode);
3300 	return child;
3301 
3302 out_err:
3303 	dput(child);
3304 	return ERR_PTR(error);
3305 }
3306 EXPORT_SYMBOL(vfs_tmpfile);
3307 
3308 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3309 		const struct open_flags *op,
3310 		struct file *file)
3311 {
3312 	struct dentry *child;
3313 	struct path path;
3314 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3315 	if (unlikely(error))
3316 		return error;
3317 	error = mnt_want_write(path.mnt);
3318 	if (unlikely(error))
3319 		goto out;
3320 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3321 	error = PTR_ERR(child);
3322 	if (IS_ERR(child))
3323 		goto out2;
3324 	dput(path.dentry);
3325 	path.dentry = child;
3326 	audit_inode(nd->name, child, 0);
3327 	/* Don't check for other permissions, the inode was just created */
3328 	error = may_open(&path, 0, op->open_flag);
3329 	if (!error)
3330 		error = vfs_open(&path, file);
3331 out2:
3332 	mnt_drop_write(path.mnt);
3333 out:
3334 	path_put(&path);
3335 	return error;
3336 }
3337 
3338 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3339 {
3340 	struct path path;
3341 	int error = path_lookupat(nd, flags, &path);
3342 	if (!error) {
3343 		audit_inode(nd->name, path.dentry, 0);
3344 		error = vfs_open(&path, file);
3345 		path_put(&path);
3346 	}
3347 	return error;
3348 }
3349 
3350 static struct file *path_openat(struct nameidata *nd,
3351 			const struct open_flags *op, unsigned flags)
3352 {
3353 	struct file *file;
3354 	int error;
3355 
3356 	file = alloc_empty_file(op->open_flag, current_cred());
3357 	if (IS_ERR(file))
3358 		return file;
3359 
3360 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3361 		error = do_tmpfile(nd, flags, op, file);
3362 	} else if (unlikely(file->f_flags & O_PATH)) {
3363 		error = do_o_path(nd, flags, file);
3364 	} else {
3365 		const char *s = path_init(nd, flags);
3366 		while (!(error = link_path_walk(s, nd)) &&
3367 		       (s = open_last_lookups(nd, file, op)) != NULL)
3368 			;
3369 		if (!error)
3370 			error = do_open(nd, file, op);
3371 		terminate_walk(nd);
3372 	}
3373 	if (likely(!error)) {
3374 		if (likely(file->f_mode & FMODE_OPENED))
3375 			return file;
3376 		WARN_ON(1);
3377 		error = -EINVAL;
3378 	}
3379 	fput(file);
3380 	if (error == -EOPENSTALE) {
3381 		if (flags & LOOKUP_RCU)
3382 			error = -ECHILD;
3383 		else
3384 			error = -ESTALE;
3385 	}
3386 	return ERR_PTR(error);
3387 }
3388 
3389 struct file *do_filp_open(int dfd, struct filename *pathname,
3390 		const struct open_flags *op)
3391 {
3392 	struct nameidata nd;
3393 	int flags = op->lookup_flags;
3394 	struct file *filp;
3395 
3396 	set_nameidata(&nd, dfd, pathname);
3397 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3398 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3399 		filp = path_openat(&nd, op, flags);
3400 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3401 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3402 	restore_nameidata();
3403 	return filp;
3404 }
3405 
3406 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3407 		const char *name, const struct open_flags *op)
3408 {
3409 	struct nameidata nd;
3410 	struct file *file;
3411 	struct filename *filename;
3412 	int flags = op->lookup_flags | LOOKUP_ROOT;
3413 
3414 	nd.root.mnt = mnt;
3415 	nd.root.dentry = dentry;
3416 
3417 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3418 		return ERR_PTR(-ELOOP);
3419 
3420 	filename = getname_kernel(name);
3421 	if (IS_ERR(filename))
3422 		return ERR_CAST(filename);
3423 
3424 	set_nameidata(&nd, -1, filename);
3425 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3426 	if (unlikely(file == ERR_PTR(-ECHILD)))
3427 		file = path_openat(&nd, op, flags);
3428 	if (unlikely(file == ERR_PTR(-ESTALE)))
3429 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3430 	restore_nameidata();
3431 	putname(filename);
3432 	return file;
3433 }
3434 
3435 static struct dentry *filename_create(int dfd, struct filename *name,
3436 				struct path *path, unsigned int lookup_flags)
3437 {
3438 	struct dentry *dentry = ERR_PTR(-EEXIST);
3439 	struct qstr last;
3440 	int type;
3441 	int err2;
3442 	int error;
3443 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3444 
3445 	/*
3446 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3447 	 * other flags passed in are ignored!
3448 	 */
3449 	lookup_flags &= LOOKUP_REVAL;
3450 
3451 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3452 	if (IS_ERR(name))
3453 		return ERR_CAST(name);
3454 
3455 	/*
3456 	 * Yucky last component or no last component at all?
3457 	 * (foo/., foo/.., /////)
3458 	 */
3459 	if (unlikely(type != LAST_NORM))
3460 		goto out;
3461 
3462 	/* don't fail immediately if it's r/o, at least try to report other errors */
3463 	err2 = mnt_want_write(path->mnt);
3464 	/*
3465 	 * Do the final lookup.
3466 	 */
3467 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3468 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3469 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3470 	if (IS_ERR(dentry))
3471 		goto unlock;
3472 
3473 	error = -EEXIST;
3474 	if (d_is_positive(dentry))
3475 		goto fail;
3476 
3477 	/*
3478 	 * Special case - lookup gave negative, but... we had foo/bar/
3479 	 * From the vfs_mknod() POV we just have a negative dentry -
3480 	 * all is fine. Let's be bastards - you had / on the end, you've
3481 	 * been asking for (non-existent) directory. -ENOENT for you.
3482 	 */
3483 	if (unlikely(!is_dir && last.name[last.len])) {
3484 		error = -ENOENT;
3485 		goto fail;
3486 	}
3487 	if (unlikely(err2)) {
3488 		error = err2;
3489 		goto fail;
3490 	}
3491 	putname(name);
3492 	return dentry;
3493 fail:
3494 	dput(dentry);
3495 	dentry = ERR_PTR(error);
3496 unlock:
3497 	inode_unlock(path->dentry->d_inode);
3498 	if (!err2)
3499 		mnt_drop_write(path->mnt);
3500 out:
3501 	path_put(path);
3502 	putname(name);
3503 	return dentry;
3504 }
3505 
3506 struct dentry *kern_path_create(int dfd, const char *pathname,
3507 				struct path *path, unsigned int lookup_flags)
3508 {
3509 	return filename_create(dfd, getname_kernel(pathname),
3510 				path, lookup_flags);
3511 }
3512 EXPORT_SYMBOL(kern_path_create);
3513 
3514 void done_path_create(struct path *path, struct dentry *dentry)
3515 {
3516 	dput(dentry);
3517 	inode_unlock(path->dentry->d_inode);
3518 	mnt_drop_write(path->mnt);
3519 	path_put(path);
3520 }
3521 EXPORT_SYMBOL(done_path_create);
3522 
3523 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3524 				struct path *path, unsigned int lookup_flags)
3525 {
3526 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3527 }
3528 EXPORT_SYMBOL(user_path_create);
3529 
3530 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3531 {
3532 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3533 	int error = may_create(dir, dentry);
3534 
3535 	if (error)
3536 		return error;
3537 
3538 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3539 	    !capable(CAP_MKNOD))
3540 		return -EPERM;
3541 
3542 	if (!dir->i_op->mknod)
3543 		return -EPERM;
3544 
3545 	error = devcgroup_inode_mknod(mode, dev);
3546 	if (error)
3547 		return error;
3548 
3549 	error = security_inode_mknod(dir, dentry, mode, dev);
3550 	if (error)
3551 		return error;
3552 
3553 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3554 	if (!error)
3555 		fsnotify_create(dir, dentry);
3556 	return error;
3557 }
3558 EXPORT_SYMBOL(vfs_mknod);
3559 
3560 static int may_mknod(umode_t mode)
3561 {
3562 	switch (mode & S_IFMT) {
3563 	case S_IFREG:
3564 	case S_IFCHR:
3565 	case S_IFBLK:
3566 	case S_IFIFO:
3567 	case S_IFSOCK:
3568 	case 0: /* zero mode translates to S_IFREG */
3569 		return 0;
3570 	case S_IFDIR:
3571 		return -EPERM;
3572 	default:
3573 		return -EINVAL;
3574 	}
3575 }
3576 
3577 static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3578 		unsigned int dev)
3579 {
3580 	struct dentry *dentry;
3581 	struct path path;
3582 	int error;
3583 	unsigned int lookup_flags = 0;
3584 
3585 	error = may_mknod(mode);
3586 	if (error)
3587 		return error;
3588 retry:
3589 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3590 	if (IS_ERR(dentry))
3591 		return PTR_ERR(dentry);
3592 
3593 	if (!IS_POSIXACL(path.dentry->d_inode))
3594 		mode &= ~current_umask();
3595 	error = security_path_mknod(&path, dentry, mode, dev);
3596 	if (error)
3597 		goto out;
3598 	switch (mode & S_IFMT) {
3599 		case 0: case S_IFREG:
3600 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3601 			if (!error)
3602 				ima_post_path_mknod(dentry);
3603 			break;
3604 		case S_IFCHR: case S_IFBLK:
3605 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3606 					new_decode_dev(dev));
3607 			break;
3608 		case S_IFIFO: case S_IFSOCK:
3609 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3610 			break;
3611 	}
3612 out:
3613 	done_path_create(&path, dentry);
3614 	if (retry_estale(error, lookup_flags)) {
3615 		lookup_flags |= LOOKUP_REVAL;
3616 		goto retry;
3617 	}
3618 	return error;
3619 }
3620 
3621 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3622 		unsigned int, dev)
3623 {
3624 	return do_mknodat(dfd, filename, mode, dev);
3625 }
3626 
3627 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3628 {
3629 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3630 }
3631 
3632 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3633 {
3634 	int error = may_create(dir, dentry);
3635 	unsigned max_links = dir->i_sb->s_max_links;
3636 
3637 	if (error)
3638 		return error;
3639 
3640 	if (!dir->i_op->mkdir)
3641 		return -EPERM;
3642 
3643 	mode &= (S_IRWXUGO|S_ISVTX);
3644 	error = security_inode_mkdir(dir, dentry, mode);
3645 	if (error)
3646 		return error;
3647 
3648 	if (max_links && dir->i_nlink >= max_links)
3649 		return -EMLINK;
3650 
3651 	error = dir->i_op->mkdir(dir, dentry, mode);
3652 	if (!error)
3653 		fsnotify_mkdir(dir, dentry);
3654 	return error;
3655 }
3656 EXPORT_SYMBOL(vfs_mkdir);
3657 
3658 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3659 {
3660 	struct dentry *dentry;
3661 	struct path path;
3662 	int error;
3663 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3664 
3665 retry:
3666 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3667 	if (IS_ERR(dentry))
3668 		return PTR_ERR(dentry);
3669 
3670 	if (!IS_POSIXACL(path.dentry->d_inode))
3671 		mode &= ~current_umask();
3672 	error = security_path_mkdir(&path, dentry, mode);
3673 	if (!error)
3674 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3675 	done_path_create(&path, dentry);
3676 	if (retry_estale(error, lookup_flags)) {
3677 		lookup_flags |= LOOKUP_REVAL;
3678 		goto retry;
3679 	}
3680 	return error;
3681 }
3682 
3683 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3684 {
3685 	return do_mkdirat(dfd, pathname, mode);
3686 }
3687 
3688 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3689 {
3690 	return do_mkdirat(AT_FDCWD, pathname, mode);
3691 }
3692 
3693 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3694 {
3695 	int error = may_delete(dir, dentry, 1);
3696 
3697 	if (error)
3698 		return error;
3699 
3700 	if (!dir->i_op->rmdir)
3701 		return -EPERM;
3702 
3703 	dget(dentry);
3704 	inode_lock(dentry->d_inode);
3705 
3706 	error = -EBUSY;
3707 	if (is_local_mountpoint(dentry))
3708 		goto out;
3709 
3710 	error = security_inode_rmdir(dir, dentry);
3711 	if (error)
3712 		goto out;
3713 
3714 	error = dir->i_op->rmdir(dir, dentry);
3715 	if (error)
3716 		goto out;
3717 
3718 	shrink_dcache_parent(dentry);
3719 	dentry->d_inode->i_flags |= S_DEAD;
3720 	dont_mount(dentry);
3721 	detach_mounts(dentry);
3722 	fsnotify_rmdir(dir, dentry);
3723 
3724 out:
3725 	inode_unlock(dentry->d_inode);
3726 	dput(dentry);
3727 	if (!error)
3728 		d_delete(dentry);
3729 	return error;
3730 }
3731 EXPORT_SYMBOL(vfs_rmdir);
3732 
3733 long do_rmdir(int dfd, struct filename *name)
3734 {
3735 	int error = 0;
3736 	struct dentry *dentry;
3737 	struct path path;
3738 	struct qstr last;
3739 	int type;
3740 	unsigned int lookup_flags = 0;
3741 retry:
3742 	name = filename_parentat(dfd, name, lookup_flags,
3743 				&path, &last, &type);
3744 	if (IS_ERR(name))
3745 		return PTR_ERR(name);
3746 
3747 	switch (type) {
3748 	case LAST_DOTDOT:
3749 		error = -ENOTEMPTY;
3750 		goto exit1;
3751 	case LAST_DOT:
3752 		error = -EINVAL;
3753 		goto exit1;
3754 	case LAST_ROOT:
3755 		error = -EBUSY;
3756 		goto exit1;
3757 	}
3758 
3759 	error = mnt_want_write(path.mnt);
3760 	if (error)
3761 		goto exit1;
3762 
3763 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3764 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3765 	error = PTR_ERR(dentry);
3766 	if (IS_ERR(dentry))
3767 		goto exit2;
3768 	if (!dentry->d_inode) {
3769 		error = -ENOENT;
3770 		goto exit3;
3771 	}
3772 	error = security_path_rmdir(&path, dentry);
3773 	if (error)
3774 		goto exit3;
3775 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3776 exit3:
3777 	dput(dentry);
3778 exit2:
3779 	inode_unlock(path.dentry->d_inode);
3780 	mnt_drop_write(path.mnt);
3781 exit1:
3782 	path_put(&path);
3783 	if (retry_estale(error, lookup_flags)) {
3784 		lookup_flags |= LOOKUP_REVAL;
3785 		goto retry;
3786 	}
3787 	putname(name);
3788 	return error;
3789 }
3790 
3791 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3792 {
3793 	return do_rmdir(AT_FDCWD, getname(pathname));
3794 }
3795 
3796 /**
3797  * vfs_unlink - unlink a filesystem object
3798  * @dir:	parent directory
3799  * @dentry:	victim
3800  * @delegated_inode: returns victim inode, if the inode is delegated.
3801  *
3802  * The caller must hold dir->i_mutex.
3803  *
3804  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3805  * return a reference to the inode in delegated_inode.  The caller
3806  * should then break the delegation on that inode and retry.  Because
3807  * breaking a delegation may take a long time, the caller should drop
3808  * dir->i_mutex before doing so.
3809  *
3810  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3811  * be appropriate for callers that expect the underlying filesystem not
3812  * to be NFS exported.
3813  */
3814 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3815 {
3816 	struct inode *target = dentry->d_inode;
3817 	int error = may_delete(dir, dentry, 0);
3818 
3819 	if (error)
3820 		return error;
3821 
3822 	if (!dir->i_op->unlink)
3823 		return -EPERM;
3824 
3825 	inode_lock(target);
3826 	if (is_local_mountpoint(dentry))
3827 		error = -EBUSY;
3828 	else {
3829 		error = security_inode_unlink(dir, dentry);
3830 		if (!error) {
3831 			error = try_break_deleg(target, delegated_inode);
3832 			if (error)
3833 				goto out;
3834 			error = dir->i_op->unlink(dir, dentry);
3835 			if (!error) {
3836 				dont_mount(dentry);
3837 				detach_mounts(dentry);
3838 				fsnotify_unlink(dir, dentry);
3839 			}
3840 		}
3841 	}
3842 out:
3843 	inode_unlock(target);
3844 
3845 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3846 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3847 		fsnotify_link_count(target);
3848 		d_delete(dentry);
3849 	}
3850 
3851 	return error;
3852 }
3853 EXPORT_SYMBOL(vfs_unlink);
3854 
3855 /*
3856  * Make sure that the actual truncation of the file will occur outside its
3857  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3858  * writeout happening, and we don't want to prevent access to the directory
3859  * while waiting on the I/O.
3860  */
3861 long do_unlinkat(int dfd, struct filename *name)
3862 {
3863 	int error;
3864 	struct dentry *dentry;
3865 	struct path path;
3866 	struct qstr last;
3867 	int type;
3868 	struct inode *inode = NULL;
3869 	struct inode *delegated_inode = NULL;
3870 	unsigned int lookup_flags = 0;
3871 retry:
3872 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3873 	if (IS_ERR(name))
3874 		return PTR_ERR(name);
3875 
3876 	error = -EISDIR;
3877 	if (type != LAST_NORM)
3878 		goto exit1;
3879 
3880 	error = mnt_want_write(path.mnt);
3881 	if (error)
3882 		goto exit1;
3883 retry_deleg:
3884 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3885 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3886 	error = PTR_ERR(dentry);
3887 	if (!IS_ERR(dentry)) {
3888 		/* Why not before? Because we want correct error value */
3889 		if (last.name[last.len])
3890 			goto slashes;
3891 		inode = dentry->d_inode;
3892 		if (d_is_negative(dentry))
3893 			goto slashes;
3894 		ihold(inode);
3895 		error = security_path_unlink(&path, dentry);
3896 		if (error)
3897 			goto exit2;
3898 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3899 exit2:
3900 		dput(dentry);
3901 	}
3902 	inode_unlock(path.dentry->d_inode);
3903 	if (inode)
3904 		iput(inode);	/* truncate the inode here */
3905 	inode = NULL;
3906 	if (delegated_inode) {
3907 		error = break_deleg_wait(&delegated_inode);
3908 		if (!error)
3909 			goto retry_deleg;
3910 	}
3911 	mnt_drop_write(path.mnt);
3912 exit1:
3913 	path_put(&path);
3914 	if (retry_estale(error, lookup_flags)) {
3915 		lookup_flags |= LOOKUP_REVAL;
3916 		inode = NULL;
3917 		goto retry;
3918 	}
3919 	putname(name);
3920 	return error;
3921 
3922 slashes:
3923 	if (d_is_negative(dentry))
3924 		error = -ENOENT;
3925 	else if (d_is_dir(dentry))
3926 		error = -EISDIR;
3927 	else
3928 		error = -ENOTDIR;
3929 	goto exit2;
3930 }
3931 
3932 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3933 {
3934 	if ((flag & ~AT_REMOVEDIR) != 0)
3935 		return -EINVAL;
3936 
3937 	if (flag & AT_REMOVEDIR)
3938 		return do_rmdir(dfd, getname(pathname));
3939 	return do_unlinkat(dfd, getname(pathname));
3940 }
3941 
3942 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3943 {
3944 	return do_unlinkat(AT_FDCWD, getname(pathname));
3945 }
3946 
3947 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3948 {
3949 	int error = may_create(dir, dentry);
3950 
3951 	if (error)
3952 		return error;
3953 
3954 	if (!dir->i_op->symlink)
3955 		return -EPERM;
3956 
3957 	error = security_inode_symlink(dir, dentry, oldname);
3958 	if (error)
3959 		return error;
3960 
3961 	error = dir->i_op->symlink(dir, dentry, oldname);
3962 	if (!error)
3963 		fsnotify_create(dir, dentry);
3964 	return error;
3965 }
3966 EXPORT_SYMBOL(vfs_symlink);
3967 
3968 static long do_symlinkat(const char __user *oldname, int newdfd,
3969 		  const char __user *newname)
3970 {
3971 	int error;
3972 	struct filename *from;
3973 	struct dentry *dentry;
3974 	struct path path;
3975 	unsigned int lookup_flags = 0;
3976 
3977 	from = getname(oldname);
3978 	if (IS_ERR(from))
3979 		return PTR_ERR(from);
3980 retry:
3981 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3982 	error = PTR_ERR(dentry);
3983 	if (IS_ERR(dentry))
3984 		goto out_putname;
3985 
3986 	error = security_path_symlink(&path, dentry, from->name);
3987 	if (!error)
3988 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3989 	done_path_create(&path, dentry);
3990 	if (retry_estale(error, lookup_flags)) {
3991 		lookup_flags |= LOOKUP_REVAL;
3992 		goto retry;
3993 	}
3994 out_putname:
3995 	putname(from);
3996 	return error;
3997 }
3998 
3999 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4000 		int, newdfd, const char __user *, newname)
4001 {
4002 	return do_symlinkat(oldname, newdfd, newname);
4003 }
4004 
4005 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4006 {
4007 	return do_symlinkat(oldname, AT_FDCWD, newname);
4008 }
4009 
4010 /**
4011  * vfs_link - create a new link
4012  * @old_dentry:	object to be linked
4013  * @dir:	new parent
4014  * @new_dentry:	where to create the new link
4015  * @delegated_inode: returns inode needing a delegation break
4016  *
4017  * The caller must hold dir->i_mutex
4018  *
4019  * If vfs_link discovers a delegation on the to-be-linked file in need
4020  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4021  * inode in delegated_inode.  The caller should then break the delegation
4022  * and retry.  Because breaking a delegation may take a long time, the
4023  * caller should drop the i_mutex before doing so.
4024  *
4025  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4026  * be appropriate for callers that expect the underlying filesystem not
4027  * to be NFS exported.
4028  */
4029 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4030 {
4031 	struct inode *inode = old_dentry->d_inode;
4032 	unsigned max_links = dir->i_sb->s_max_links;
4033 	int error;
4034 
4035 	if (!inode)
4036 		return -ENOENT;
4037 
4038 	error = may_create(dir, new_dentry);
4039 	if (error)
4040 		return error;
4041 
4042 	if (dir->i_sb != inode->i_sb)
4043 		return -EXDEV;
4044 
4045 	/*
4046 	 * A link to an append-only or immutable file cannot be created.
4047 	 */
4048 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4049 		return -EPERM;
4050 	/*
4051 	 * Updating the link count will likely cause i_uid and i_gid to
4052 	 * be writen back improperly if their true value is unknown to
4053 	 * the vfs.
4054 	 */
4055 	if (HAS_UNMAPPED_ID(inode))
4056 		return -EPERM;
4057 	if (!dir->i_op->link)
4058 		return -EPERM;
4059 	if (S_ISDIR(inode->i_mode))
4060 		return -EPERM;
4061 
4062 	error = security_inode_link(old_dentry, dir, new_dentry);
4063 	if (error)
4064 		return error;
4065 
4066 	inode_lock(inode);
4067 	/* Make sure we don't allow creating hardlink to an unlinked file */
4068 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4069 		error =  -ENOENT;
4070 	else if (max_links && inode->i_nlink >= max_links)
4071 		error = -EMLINK;
4072 	else {
4073 		error = try_break_deleg(inode, delegated_inode);
4074 		if (!error)
4075 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4076 	}
4077 
4078 	if (!error && (inode->i_state & I_LINKABLE)) {
4079 		spin_lock(&inode->i_lock);
4080 		inode->i_state &= ~I_LINKABLE;
4081 		spin_unlock(&inode->i_lock);
4082 	}
4083 	inode_unlock(inode);
4084 	if (!error)
4085 		fsnotify_link(dir, inode, new_dentry);
4086 	return error;
4087 }
4088 EXPORT_SYMBOL(vfs_link);
4089 
4090 /*
4091  * Hardlinks are often used in delicate situations.  We avoid
4092  * security-related surprises by not following symlinks on the
4093  * newname.  --KAB
4094  *
4095  * We don't follow them on the oldname either to be compatible
4096  * with linux 2.0, and to avoid hard-linking to directories
4097  * and other special files.  --ADM
4098  */
4099 static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4100 	      const char __user *newname, int flags)
4101 {
4102 	struct dentry *new_dentry;
4103 	struct path old_path, new_path;
4104 	struct inode *delegated_inode = NULL;
4105 	int how = 0;
4106 	int error;
4107 
4108 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4109 		return -EINVAL;
4110 	/*
4111 	 * To use null names we require CAP_DAC_READ_SEARCH
4112 	 * This ensures that not everyone will be able to create
4113 	 * handlink using the passed filedescriptor.
4114 	 */
4115 	if (flags & AT_EMPTY_PATH) {
4116 		if (!capable(CAP_DAC_READ_SEARCH))
4117 			return -ENOENT;
4118 		how = LOOKUP_EMPTY;
4119 	}
4120 
4121 	if (flags & AT_SYMLINK_FOLLOW)
4122 		how |= LOOKUP_FOLLOW;
4123 retry:
4124 	error = user_path_at(olddfd, oldname, how, &old_path);
4125 	if (error)
4126 		return error;
4127 
4128 	new_dentry = user_path_create(newdfd, newname, &new_path,
4129 					(how & LOOKUP_REVAL));
4130 	error = PTR_ERR(new_dentry);
4131 	if (IS_ERR(new_dentry))
4132 		goto out;
4133 
4134 	error = -EXDEV;
4135 	if (old_path.mnt != new_path.mnt)
4136 		goto out_dput;
4137 	error = may_linkat(&old_path);
4138 	if (unlikely(error))
4139 		goto out_dput;
4140 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4141 	if (error)
4142 		goto out_dput;
4143 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4144 out_dput:
4145 	done_path_create(&new_path, new_dentry);
4146 	if (delegated_inode) {
4147 		error = break_deleg_wait(&delegated_inode);
4148 		if (!error) {
4149 			path_put(&old_path);
4150 			goto retry;
4151 		}
4152 	}
4153 	if (retry_estale(error, how)) {
4154 		path_put(&old_path);
4155 		how |= LOOKUP_REVAL;
4156 		goto retry;
4157 	}
4158 out:
4159 	path_put(&old_path);
4160 
4161 	return error;
4162 }
4163 
4164 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4165 		int, newdfd, const char __user *, newname, int, flags)
4166 {
4167 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4168 }
4169 
4170 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4171 {
4172 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4173 }
4174 
4175 /**
4176  * vfs_rename - rename a filesystem object
4177  * @old_dir:	parent of source
4178  * @old_dentry:	source
4179  * @new_dir:	parent of destination
4180  * @new_dentry:	destination
4181  * @delegated_inode: returns an inode needing a delegation break
4182  * @flags:	rename flags
4183  *
4184  * The caller must hold multiple mutexes--see lock_rename()).
4185  *
4186  * If vfs_rename discovers a delegation in need of breaking at either
4187  * the source or destination, it will return -EWOULDBLOCK and return a
4188  * reference to the inode in delegated_inode.  The caller should then
4189  * break the delegation and retry.  Because breaking a delegation may
4190  * take a long time, the caller should drop all locks before doing
4191  * so.
4192  *
4193  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4194  * be appropriate for callers that expect the underlying filesystem not
4195  * to be NFS exported.
4196  *
4197  * The worst of all namespace operations - renaming directory. "Perverted"
4198  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4199  * Problems:
4200  *
4201  *	a) we can get into loop creation.
4202  *	b) race potential - two innocent renames can create a loop together.
4203  *	   That's where 4.4 screws up. Current fix: serialization on
4204  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4205  *	   story.
4206  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4207  *	   and source (if it is not a directory).
4208  *	   And that - after we got ->i_mutex on parents (until then we don't know
4209  *	   whether the target exists).  Solution: try to be smart with locking
4210  *	   order for inodes.  We rely on the fact that tree topology may change
4211  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4212  *	   move will be locked.  Thus we can rank directories by the tree
4213  *	   (ancestors first) and rank all non-directories after them.
4214  *	   That works since everybody except rename does "lock parent, lookup,
4215  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4216  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4217  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4218  *	   we'd better make sure that there's no link(2) for them.
4219  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4220  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4221  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4222  *	   ->i_mutex on parents, which works but leads to some truly excessive
4223  *	   locking].
4224  */
4225 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4226 	       struct inode *new_dir, struct dentry *new_dentry,
4227 	       struct inode **delegated_inode, unsigned int flags)
4228 {
4229 	int error;
4230 	bool is_dir = d_is_dir(old_dentry);
4231 	struct inode *source = old_dentry->d_inode;
4232 	struct inode *target = new_dentry->d_inode;
4233 	bool new_is_dir = false;
4234 	unsigned max_links = new_dir->i_sb->s_max_links;
4235 	struct name_snapshot old_name;
4236 
4237 	if (source == target)
4238 		return 0;
4239 
4240 	error = may_delete(old_dir, old_dentry, is_dir);
4241 	if (error)
4242 		return error;
4243 
4244 	if (!target) {
4245 		error = may_create(new_dir, new_dentry);
4246 	} else {
4247 		new_is_dir = d_is_dir(new_dentry);
4248 
4249 		if (!(flags & RENAME_EXCHANGE))
4250 			error = may_delete(new_dir, new_dentry, is_dir);
4251 		else
4252 			error = may_delete(new_dir, new_dentry, new_is_dir);
4253 	}
4254 	if (error)
4255 		return error;
4256 
4257 	if (!old_dir->i_op->rename)
4258 		return -EPERM;
4259 
4260 	/*
4261 	 * If we are going to change the parent - check write permissions,
4262 	 * we'll need to flip '..'.
4263 	 */
4264 	if (new_dir != old_dir) {
4265 		if (is_dir) {
4266 			error = inode_permission(source, MAY_WRITE);
4267 			if (error)
4268 				return error;
4269 		}
4270 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4271 			error = inode_permission(target, MAY_WRITE);
4272 			if (error)
4273 				return error;
4274 		}
4275 	}
4276 
4277 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4278 				      flags);
4279 	if (error)
4280 		return error;
4281 
4282 	take_dentry_name_snapshot(&old_name, old_dentry);
4283 	dget(new_dentry);
4284 	if (!is_dir || (flags & RENAME_EXCHANGE))
4285 		lock_two_nondirectories(source, target);
4286 	else if (target)
4287 		inode_lock(target);
4288 
4289 	error = -EBUSY;
4290 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4291 		goto out;
4292 
4293 	if (max_links && new_dir != old_dir) {
4294 		error = -EMLINK;
4295 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4296 			goto out;
4297 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4298 		    old_dir->i_nlink >= max_links)
4299 			goto out;
4300 	}
4301 	if (!is_dir) {
4302 		error = try_break_deleg(source, delegated_inode);
4303 		if (error)
4304 			goto out;
4305 	}
4306 	if (target && !new_is_dir) {
4307 		error = try_break_deleg(target, delegated_inode);
4308 		if (error)
4309 			goto out;
4310 	}
4311 	error = old_dir->i_op->rename(old_dir, old_dentry,
4312 				       new_dir, new_dentry, flags);
4313 	if (error)
4314 		goto out;
4315 
4316 	if (!(flags & RENAME_EXCHANGE) && target) {
4317 		if (is_dir) {
4318 			shrink_dcache_parent(new_dentry);
4319 			target->i_flags |= S_DEAD;
4320 		}
4321 		dont_mount(new_dentry);
4322 		detach_mounts(new_dentry);
4323 	}
4324 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4325 		if (!(flags & RENAME_EXCHANGE))
4326 			d_move(old_dentry, new_dentry);
4327 		else
4328 			d_exchange(old_dentry, new_dentry);
4329 	}
4330 out:
4331 	if (!is_dir || (flags & RENAME_EXCHANGE))
4332 		unlock_two_nondirectories(source, target);
4333 	else if (target)
4334 		inode_unlock(target);
4335 	dput(new_dentry);
4336 	if (!error) {
4337 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4338 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4339 		if (flags & RENAME_EXCHANGE) {
4340 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4341 				      new_is_dir, NULL, new_dentry);
4342 		}
4343 	}
4344 	release_dentry_name_snapshot(&old_name);
4345 
4346 	return error;
4347 }
4348 EXPORT_SYMBOL(vfs_rename);
4349 
4350 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4351 		 struct filename *to, unsigned int flags)
4352 {
4353 	struct dentry *old_dentry, *new_dentry;
4354 	struct dentry *trap;
4355 	struct path old_path, new_path;
4356 	struct qstr old_last, new_last;
4357 	int old_type, new_type;
4358 	struct inode *delegated_inode = NULL;
4359 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4360 	bool should_retry = false;
4361 	int error = -EINVAL;
4362 
4363 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4364 		goto put_both;
4365 
4366 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4367 	    (flags & RENAME_EXCHANGE))
4368 		goto put_both;
4369 
4370 	if (flags & RENAME_EXCHANGE)
4371 		target_flags = 0;
4372 
4373 retry:
4374 	from = filename_parentat(olddfd, from, lookup_flags, &old_path,
4375 					&old_last, &old_type);
4376 	if (IS_ERR(from)) {
4377 		error = PTR_ERR(from);
4378 		goto put_new;
4379 	}
4380 
4381 	to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4382 				&new_type);
4383 	if (IS_ERR(to)) {
4384 		error = PTR_ERR(to);
4385 		goto exit1;
4386 	}
4387 
4388 	error = -EXDEV;
4389 	if (old_path.mnt != new_path.mnt)
4390 		goto exit2;
4391 
4392 	error = -EBUSY;
4393 	if (old_type != LAST_NORM)
4394 		goto exit2;
4395 
4396 	if (flags & RENAME_NOREPLACE)
4397 		error = -EEXIST;
4398 	if (new_type != LAST_NORM)
4399 		goto exit2;
4400 
4401 	error = mnt_want_write(old_path.mnt);
4402 	if (error)
4403 		goto exit2;
4404 
4405 retry_deleg:
4406 	trap = lock_rename(new_path.dentry, old_path.dentry);
4407 
4408 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4409 	error = PTR_ERR(old_dentry);
4410 	if (IS_ERR(old_dentry))
4411 		goto exit3;
4412 	/* source must exist */
4413 	error = -ENOENT;
4414 	if (d_is_negative(old_dentry))
4415 		goto exit4;
4416 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4417 	error = PTR_ERR(new_dentry);
4418 	if (IS_ERR(new_dentry))
4419 		goto exit4;
4420 	error = -EEXIST;
4421 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4422 		goto exit5;
4423 	if (flags & RENAME_EXCHANGE) {
4424 		error = -ENOENT;
4425 		if (d_is_negative(new_dentry))
4426 			goto exit5;
4427 
4428 		if (!d_is_dir(new_dentry)) {
4429 			error = -ENOTDIR;
4430 			if (new_last.name[new_last.len])
4431 				goto exit5;
4432 		}
4433 	}
4434 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4435 	if (!d_is_dir(old_dentry)) {
4436 		error = -ENOTDIR;
4437 		if (old_last.name[old_last.len])
4438 			goto exit5;
4439 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4440 			goto exit5;
4441 	}
4442 	/* source should not be ancestor of target */
4443 	error = -EINVAL;
4444 	if (old_dentry == trap)
4445 		goto exit5;
4446 	/* target should not be an ancestor of source */
4447 	if (!(flags & RENAME_EXCHANGE))
4448 		error = -ENOTEMPTY;
4449 	if (new_dentry == trap)
4450 		goto exit5;
4451 
4452 	error = security_path_rename(&old_path, old_dentry,
4453 				     &new_path, new_dentry, flags);
4454 	if (error)
4455 		goto exit5;
4456 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4457 			   new_path.dentry->d_inode, new_dentry,
4458 			   &delegated_inode, flags);
4459 exit5:
4460 	dput(new_dentry);
4461 exit4:
4462 	dput(old_dentry);
4463 exit3:
4464 	unlock_rename(new_path.dentry, old_path.dentry);
4465 	if (delegated_inode) {
4466 		error = break_deleg_wait(&delegated_inode);
4467 		if (!error)
4468 			goto retry_deleg;
4469 	}
4470 	mnt_drop_write(old_path.mnt);
4471 exit2:
4472 	if (retry_estale(error, lookup_flags))
4473 		should_retry = true;
4474 	path_put(&new_path);
4475 exit1:
4476 	path_put(&old_path);
4477 	if (should_retry) {
4478 		should_retry = false;
4479 		lookup_flags |= LOOKUP_REVAL;
4480 		goto retry;
4481 	}
4482 put_both:
4483 	if (!IS_ERR(from))
4484 		putname(from);
4485 put_new:
4486 	if (!IS_ERR(to))
4487 		putname(to);
4488 	return error;
4489 }
4490 
4491 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4492 		int, newdfd, const char __user *, newname, unsigned int, flags)
4493 {
4494 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4495 				flags);
4496 }
4497 
4498 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4499 		int, newdfd, const char __user *, newname)
4500 {
4501 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4502 				0);
4503 }
4504 
4505 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4506 {
4507 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4508 				getname(newname), 0);
4509 }
4510 
4511 int readlink_copy(char __user *buffer, int buflen, const char *link)
4512 {
4513 	int len = PTR_ERR(link);
4514 	if (IS_ERR(link))
4515 		goto out;
4516 
4517 	len = strlen(link);
4518 	if (len > (unsigned) buflen)
4519 		len = buflen;
4520 	if (copy_to_user(buffer, link, len))
4521 		len = -EFAULT;
4522 out:
4523 	return len;
4524 }
4525 
4526 /**
4527  * vfs_readlink - copy symlink body into userspace buffer
4528  * @dentry: dentry on which to get symbolic link
4529  * @buffer: user memory pointer
4530  * @buflen: size of buffer
4531  *
4532  * Does not touch atime.  That's up to the caller if necessary
4533  *
4534  * Does not call security hook.
4535  */
4536 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4537 {
4538 	struct inode *inode = d_inode(dentry);
4539 	DEFINE_DELAYED_CALL(done);
4540 	const char *link;
4541 	int res;
4542 
4543 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4544 		if (unlikely(inode->i_op->readlink))
4545 			return inode->i_op->readlink(dentry, buffer, buflen);
4546 
4547 		if (!d_is_symlink(dentry))
4548 			return -EINVAL;
4549 
4550 		spin_lock(&inode->i_lock);
4551 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4552 		spin_unlock(&inode->i_lock);
4553 	}
4554 
4555 	link = READ_ONCE(inode->i_link);
4556 	if (!link) {
4557 		link = inode->i_op->get_link(dentry, inode, &done);
4558 		if (IS_ERR(link))
4559 			return PTR_ERR(link);
4560 	}
4561 	res = readlink_copy(buffer, buflen, link);
4562 	do_delayed_call(&done);
4563 	return res;
4564 }
4565 EXPORT_SYMBOL(vfs_readlink);
4566 
4567 /**
4568  * vfs_get_link - get symlink body
4569  * @dentry: dentry on which to get symbolic link
4570  * @done: caller needs to free returned data with this
4571  *
4572  * Calls security hook and i_op->get_link() on the supplied inode.
4573  *
4574  * It does not touch atime.  That's up to the caller if necessary.
4575  *
4576  * Does not work on "special" symlinks like /proc/$$/fd/N
4577  */
4578 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4579 {
4580 	const char *res = ERR_PTR(-EINVAL);
4581 	struct inode *inode = d_inode(dentry);
4582 
4583 	if (d_is_symlink(dentry)) {
4584 		res = ERR_PTR(security_inode_readlink(dentry));
4585 		if (!res)
4586 			res = inode->i_op->get_link(dentry, inode, done);
4587 	}
4588 	return res;
4589 }
4590 EXPORT_SYMBOL(vfs_get_link);
4591 
4592 /* get the link contents into pagecache */
4593 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4594 			  struct delayed_call *callback)
4595 {
4596 	char *kaddr;
4597 	struct page *page;
4598 	struct address_space *mapping = inode->i_mapping;
4599 
4600 	if (!dentry) {
4601 		page = find_get_page(mapping, 0);
4602 		if (!page)
4603 			return ERR_PTR(-ECHILD);
4604 		if (!PageUptodate(page)) {
4605 			put_page(page);
4606 			return ERR_PTR(-ECHILD);
4607 		}
4608 	} else {
4609 		page = read_mapping_page(mapping, 0, NULL);
4610 		if (IS_ERR(page))
4611 			return (char*)page;
4612 	}
4613 	set_delayed_call(callback, page_put_link, page);
4614 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4615 	kaddr = page_address(page);
4616 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4617 	return kaddr;
4618 }
4619 
4620 EXPORT_SYMBOL(page_get_link);
4621 
4622 void page_put_link(void *arg)
4623 {
4624 	put_page(arg);
4625 }
4626 EXPORT_SYMBOL(page_put_link);
4627 
4628 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4629 {
4630 	DEFINE_DELAYED_CALL(done);
4631 	int res = readlink_copy(buffer, buflen,
4632 				page_get_link(dentry, d_inode(dentry),
4633 					      &done));
4634 	do_delayed_call(&done);
4635 	return res;
4636 }
4637 EXPORT_SYMBOL(page_readlink);
4638 
4639 /*
4640  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4641  */
4642 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4643 {
4644 	struct address_space *mapping = inode->i_mapping;
4645 	struct page *page;
4646 	void *fsdata;
4647 	int err;
4648 	unsigned int flags = 0;
4649 	if (nofs)
4650 		flags |= AOP_FLAG_NOFS;
4651 
4652 retry:
4653 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4654 				flags, &page, &fsdata);
4655 	if (err)
4656 		goto fail;
4657 
4658 	memcpy(page_address(page), symname, len-1);
4659 
4660 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4661 							page, fsdata);
4662 	if (err < 0)
4663 		goto fail;
4664 	if (err < len-1)
4665 		goto retry;
4666 
4667 	mark_inode_dirty(inode);
4668 	return 0;
4669 fail:
4670 	return err;
4671 }
4672 EXPORT_SYMBOL(__page_symlink);
4673 
4674 int page_symlink(struct inode *inode, const char *symname, int len)
4675 {
4676 	return __page_symlink(inode, symname, len,
4677 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4678 }
4679 EXPORT_SYMBOL(page_symlink);
4680 
4681 const struct inode_operations page_symlink_inode_operations = {
4682 	.get_link	= page_get_link,
4683 };
4684 EXPORT_SYMBOL(page_symlink_inode_operations);
4685