xref: /openbmc/linux/fs/mpage.c (revision 7051924f771722c6dd235e693742cda6488ac700)
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002	Andrew Morton
10  *		Initial version
11  * 27Jun2002	axboe@suse.de
12  *		use bio_add_page() to build bio's just the right size
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/cleancache.h>
31 
32 /*
33  * I/O completion handler for multipage BIOs.
34  *
35  * The mpage code never puts partial pages into a BIO (except for end-of-file).
36  * If a page does not map to a contiguous run of blocks then it simply falls
37  * back to block_read_full_page().
38  *
39  * Why is this?  If a page's completion depends on a number of different BIOs
40  * which can complete in any order (or at the same time) then determining the
41  * status of that page is hard.  See end_buffer_async_read() for the details.
42  * There is no point in duplicating all that complexity.
43  */
44 static void mpage_end_io(struct bio *bio, int err)
45 {
46 	struct bio_vec *bv;
47 	int i;
48 
49 	bio_for_each_segment_all(bv, bio, i) {
50 		struct page *page = bv->bv_page;
51 		page_endio(page, bio_data_dir(bio), err);
52 	}
53 
54 	bio_put(bio);
55 }
56 
57 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
58 {
59 	bio->bi_end_io = mpage_end_io;
60 	submit_bio(rw, bio);
61 	return NULL;
62 }
63 
64 static struct bio *
65 mpage_alloc(struct block_device *bdev,
66 		sector_t first_sector, int nr_vecs,
67 		gfp_t gfp_flags)
68 {
69 	struct bio *bio;
70 
71 	bio = bio_alloc(gfp_flags, nr_vecs);
72 
73 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
74 		while (!bio && (nr_vecs /= 2))
75 			bio = bio_alloc(gfp_flags, nr_vecs);
76 	}
77 
78 	if (bio) {
79 		bio->bi_bdev = bdev;
80 		bio->bi_iter.bi_sector = first_sector;
81 	}
82 	return bio;
83 }
84 
85 /*
86  * support function for mpage_readpages.  The fs supplied get_block might
87  * return an up to date buffer.  This is used to map that buffer into
88  * the page, which allows readpage to avoid triggering a duplicate call
89  * to get_block.
90  *
91  * The idea is to avoid adding buffers to pages that don't already have
92  * them.  So when the buffer is up to date and the page size == block size,
93  * this marks the page up to date instead of adding new buffers.
94  */
95 static void
96 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
97 {
98 	struct inode *inode = page->mapping->host;
99 	struct buffer_head *page_bh, *head;
100 	int block = 0;
101 
102 	if (!page_has_buffers(page)) {
103 		/*
104 		 * don't make any buffers if there is only one buffer on
105 		 * the page and the page just needs to be set up to date
106 		 */
107 		if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
108 		    buffer_uptodate(bh)) {
109 			SetPageUptodate(page);
110 			return;
111 		}
112 		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
113 	}
114 	head = page_buffers(page);
115 	page_bh = head;
116 	do {
117 		if (block == page_block) {
118 			page_bh->b_state = bh->b_state;
119 			page_bh->b_bdev = bh->b_bdev;
120 			page_bh->b_blocknr = bh->b_blocknr;
121 			break;
122 		}
123 		page_bh = page_bh->b_this_page;
124 		block++;
125 	} while (page_bh != head);
126 }
127 
128 /*
129  * This is the worker routine which does all the work of mapping the disk
130  * blocks and constructs largest possible bios, submits them for IO if the
131  * blocks are not contiguous on the disk.
132  *
133  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
134  * represent the validity of its disk mapping and to decide when to do the next
135  * get_block() call.
136  */
137 static struct bio *
138 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
139 		sector_t *last_block_in_bio, struct buffer_head *map_bh,
140 		unsigned long *first_logical_block, get_block_t get_block)
141 {
142 	struct inode *inode = page->mapping->host;
143 	const unsigned blkbits = inode->i_blkbits;
144 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
145 	const unsigned blocksize = 1 << blkbits;
146 	sector_t block_in_file;
147 	sector_t last_block;
148 	sector_t last_block_in_file;
149 	sector_t blocks[MAX_BUF_PER_PAGE];
150 	unsigned page_block;
151 	unsigned first_hole = blocks_per_page;
152 	struct block_device *bdev = NULL;
153 	int length;
154 	int fully_mapped = 1;
155 	unsigned nblocks;
156 	unsigned relative_block;
157 
158 	if (page_has_buffers(page))
159 		goto confused;
160 
161 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
162 	last_block = block_in_file + nr_pages * blocks_per_page;
163 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
164 	if (last_block > last_block_in_file)
165 		last_block = last_block_in_file;
166 	page_block = 0;
167 
168 	/*
169 	 * Map blocks using the result from the previous get_blocks call first.
170 	 */
171 	nblocks = map_bh->b_size >> blkbits;
172 	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
173 			block_in_file < (*first_logical_block + nblocks)) {
174 		unsigned map_offset = block_in_file - *first_logical_block;
175 		unsigned last = nblocks - map_offset;
176 
177 		for (relative_block = 0; ; relative_block++) {
178 			if (relative_block == last) {
179 				clear_buffer_mapped(map_bh);
180 				break;
181 			}
182 			if (page_block == blocks_per_page)
183 				break;
184 			blocks[page_block] = map_bh->b_blocknr + map_offset +
185 						relative_block;
186 			page_block++;
187 			block_in_file++;
188 		}
189 		bdev = map_bh->b_bdev;
190 	}
191 
192 	/*
193 	 * Then do more get_blocks calls until we are done with this page.
194 	 */
195 	map_bh->b_page = page;
196 	while (page_block < blocks_per_page) {
197 		map_bh->b_state = 0;
198 		map_bh->b_size = 0;
199 
200 		if (block_in_file < last_block) {
201 			map_bh->b_size = (last_block-block_in_file) << blkbits;
202 			if (get_block(inode, block_in_file, map_bh, 0))
203 				goto confused;
204 			*first_logical_block = block_in_file;
205 		}
206 
207 		if (!buffer_mapped(map_bh)) {
208 			fully_mapped = 0;
209 			if (first_hole == blocks_per_page)
210 				first_hole = page_block;
211 			page_block++;
212 			block_in_file++;
213 			continue;
214 		}
215 
216 		/* some filesystems will copy data into the page during
217 		 * the get_block call, in which case we don't want to
218 		 * read it again.  map_buffer_to_page copies the data
219 		 * we just collected from get_block into the page's buffers
220 		 * so readpage doesn't have to repeat the get_block call
221 		 */
222 		if (buffer_uptodate(map_bh)) {
223 			map_buffer_to_page(page, map_bh, page_block);
224 			goto confused;
225 		}
226 
227 		if (first_hole != blocks_per_page)
228 			goto confused;		/* hole -> non-hole */
229 
230 		/* Contiguous blocks? */
231 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
232 			goto confused;
233 		nblocks = map_bh->b_size >> blkbits;
234 		for (relative_block = 0; ; relative_block++) {
235 			if (relative_block == nblocks) {
236 				clear_buffer_mapped(map_bh);
237 				break;
238 			} else if (page_block == blocks_per_page)
239 				break;
240 			blocks[page_block] = map_bh->b_blocknr+relative_block;
241 			page_block++;
242 			block_in_file++;
243 		}
244 		bdev = map_bh->b_bdev;
245 	}
246 
247 	if (first_hole != blocks_per_page) {
248 		zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
249 		if (first_hole == 0) {
250 			SetPageUptodate(page);
251 			unlock_page(page);
252 			goto out;
253 		}
254 	} else if (fully_mapped) {
255 		SetPageMappedToDisk(page);
256 	}
257 
258 	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
259 	    cleancache_get_page(page) == 0) {
260 		SetPageUptodate(page);
261 		goto confused;
262 	}
263 
264 	/*
265 	 * This page will go to BIO.  Do we need to send this BIO off first?
266 	 */
267 	if (bio && (*last_block_in_bio != blocks[0] - 1))
268 		bio = mpage_bio_submit(READ, bio);
269 
270 alloc_new:
271 	if (bio == NULL) {
272 		if (first_hole == blocks_per_page) {
273 			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
274 								page))
275 				goto out;
276 		}
277 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
278 			  	min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
279 				GFP_KERNEL);
280 		if (bio == NULL)
281 			goto confused;
282 	}
283 
284 	length = first_hole << blkbits;
285 	if (bio_add_page(bio, page, length, 0) < length) {
286 		bio = mpage_bio_submit(READ, bio);
287 		goto alloc_new;
288 	}
289 
290 	relative_block = block_in_file - *first_logical_block;
291 	nblocks = map_bh->b_size >> blkbits;
292 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
293 	    (first_hole != blocks_per_page))
294 		bio = mpage_bio_submit(READ, bio);
295 	else
296 		*last_block_in_bio = blocks[blocks_per_page - 1];
297 out:
298 	return bio;
299 
300 confused:
301 	if (bio)
302 		bio = mpage_bio_submit(READ, bio);
303 	if (!PageUptodate(page))
304 	        block_read_full_page(page, get_block);
305 	else
306 		unlock_page(page);
307 	goto out;
308 }
309 
310 /**
311  * mpage_readpages - populate an address space with some pages & start reads against them
312  * @mapping: the address_space
313  * @pages: The address of a list_head which contains the target pages.  These
314  *   pages have their ->index populated and are otherwise uninitialised.
315  *   The page at @pages->prev has the lowest file offset, and reads should be
316  *   issued in @pages->prev to @pages->next order.
317  * @nr_pages: The number of pages at *@pages
318  * @get_block: The filesystem's block mapper function.
319  *
320  * This function walks the pages and the blocks within each page, building and
321  * emitting large BIOs.
322  *
323  * If anything unusual happens, such as:
324  *
325  * - encountering a page which has buffers
326  * - encountering a page which has a non-hole after a hole
327  * - encountering a page with non-contiguous blocks
328  *
329  * then this code just gives up and calls the buffer_head-based read function.
330  * It does handle a page which has holes at the end - that is a common case:
331  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
332  *
333  * BH_Boundary explanation:
334  *
335  * There is a problem.  The mpage read code assembles several pages, gets all
336  * their disk mappings, and then submits them all.  That's fine, but obtaining
337  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
338  *
339  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
340  * submitted in the following order:
341  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
342  *
343  * because the indirect block has to be read to get the mappings of blocks
344  * 13,14,15,16.  Obviously, this impacts performance.
345  *
346  * So what we do it to allow the filesystem's get_block() function to set
347  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
348  * after this one will require I/O against a block which is probably close to
349  * this one.  So you should push what I/O you have currently accumulated.
350  *
351  * This all causes the disk requests to be issued in the correct order.
352  */
353 int
354 mpage_readpages(struct address_space *mapping, struct list_head *pages,
355 				unsigned nr_pages, get_block_t get_block)
356 {
357 	struct bio *bio = NULL;
358 	unsigned page_idx;
359 	sector_t last_block_in_bio = 0;
360 	struct buffer_head map_bh;
361 	unsigned long first_logical_block = 0;
362 
363 	map_bh.b_state = 0;
364 	map_bh.b_size = 0;
365 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
366 		struct page *page = list_entry(pages->prev, struct page, lru);
367 
368 		prefetchw(&page->flags);
369 		list_del(&page->lru);
370 		if (!add_to_page_cache_lru(page, mapping,
371 					page->index, GFP_KERNEL)) {
372 			bio = do_mpage_readpage(bio, page,
373 					nr_pages - page_idx,
374 					&last_block_in_bio, &map_bh,
375 					&first_logical_block,
376 					get_block);
377 		}
378 		page_cache_release(page);
379 	}
380 	BUG_ON(!list_empty(pages));
381 	if (bio)
382 		mpage_bio_submit(READ, bio);
383 	return 0;
384 }
385 EXPORT_SYMBOL(mpage_readpages);
386 
387 /*
388  * This isn't called much at all
389  */
390 int mpage_readpage(struct page *page, get_block_t get_block)
391 {
392 	struct bio *bio = NULL;
393 	sector_t last_block_in_bio = 0;
394 	struct buffer_head map_bh;
395 	unsigned long first_logical_block = 0;
396 
397 	map_bh.b_state = 0;
398 	map_bh.b_size = 0;
399 	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
400 			&map_bh, &first_logical_block, get_block);
401 	if (bio)
402 		mpage_bio_submit(READ, bio);
403 	return 0;
404 }
405 EXPORT_SYMBOL(mpage_readpage);
406 
407 /*
408  * Writing is not so simple.
409  *
410  * If the page has buffers then they will be used for obtaining the disk
411  * mapping.  We only support pages which are fully mapped-and-dirty, with a
412  * special case for pages which are unmapped at the end: end-of-file.
413  *
414  * If the page has no buffers (preferred) then the page is mapped here.
415  *
416  * If all blocks are found to be contiguous then the page can go into the
417  * BIO.  Otherwise fall back to the mapping's writepage().
418  *
419  * FIXME: This code wants an estimate of how many pages are still to be
420  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
421  * just allocate full-size (16-page) BIOs.
422  */
423 
424 struct mpage_data {
425 	struct bio *bio;
426 	sector_t last_block_in_bio;
427 	get_block_t *get_block;
428 	unsigned use_writepage;
429 };
430 
431 /*
432  * We have our BIO, so we can now mark the buffers clean.  Make
433  * sure to only clean buffers which we know we'll be writing.
434  */
435 static void clean_buffers(struct page *page, unsigned first_unmapped)
436 {
437 	unsigned buffer_counter = 0;
438 	struct buffer_head *bh, *head;
439 	if (!page_has_buffers(page))
440 		return;
441 	head = page_buffers(page);
442 	bh = head;
443 
444 	do {
445 		if (buffer_counter++ == first_unmapped)
446 			break;
447 		clear_buffer_dirty(bh);
448 		bh = bh->b_this_page;
449 	} while (bh != head);
450 
451 	/*
452 	 * we cannot drop the bh if the page is not uptodate or a concurrent
453 	 * readpage would fail to serialize with the bh and it would read from
454 	 * disk before we reach the platter.
455 	 */
456 	if (buffer_heads_over_limit && PageUptodate(page))
457 		try_to_free_buffers(page);
458 }
459 
460 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
461 		      void *data)
462 {
463 	struct mpage_data *mpd = data;
464 	struct bio *bio = mpd->bio;
465 	struct address_space *mapping = page->mapping;
466 	struct inode *inode = page->mapping->host;
467 	const unsigned blkbits = inode->i_blkbits;
468 	unsigned long end_index;
469 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
470 	sector_t last_block;
471 	sector_t block_in_file;
472 	sector_t blocks[MAX_BUF_PER_PAGE];
473 	unsigned page_block;
474 	unsigned first_unmapped = blocks_per_page;
475 	struct block_device *bdev = NULL;
476 	int boundary = 0;
477 	sector_t boundary_block = 0;
478 	struct block_device *boundary_bdev = NULL;
479 	int length;
480 	struct buffer_head map_bh;
481 	loff_t i_size = i_size_read(inode);
482 	int ret = 0;
483 
484 	if (page_has_buffers(page)) {
485 		struct buffer_head *head = page_buffers(page);
486 		struct buffer_head *bh = head;
487 
488 		/* If they're all mapped and dirty, do it */
489 		page_block = 0;
490 		do {
491 			BUG_ON(buffer_locked(bh));
492 			if (!buffer_mapped(bh)) {
493 				/*
494 				 * unmapped dirty buffers are created by
495 				 * __set_page_dirty_buffers -> mmapped data
496 				 */
497 				if (buffer_dirty(bh))
498 					goto confused;
499 				if (first_unmapped == blocks_per_page)
500 					first_unmapped = page_block;
501 				continue;
502 			}
503 
504 			if (first_unmapped != blocks_per_page)
505 				goto confused;	/* hole -> non-hole */
506 
507 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
508 				goto confused;
509 			if (page_block) {
510 				if (bh->b_blocknr != blocks[page_block-1] + 1)
511 					goto confused;
512 			}
513 			blocks[page_block++] = bh->b_blocknr;
514 			boundary = buffer_boundary(bh);
515 			if (boundary) {
516 				boundary_block = bh->b_blocknr;
517 				boundary_bdev = bh->b_bdev;
518 			}
519 			bdev = bh->b_bdev;
520 		} while ((bh = bh->b_this_page) != head);
521 
522 		if (first_unmapped)
523 			goto page_is_mapped;
524 
525 		/*
526 		 * Page has buffers, but they are all unmapped. The page was
527 		 * created by pagein or read over a hole which was handled by
528 		 * block_read_full_page().  If this address_space is also
529 		 * using mpage_readpages then this can rarely happen.
530 		 */
531 		goto confused;
532 	}
533 
534 	/*
535 	 * The page has no buffers: map it to disk
536 	 */
537 	BUG_ON(!PageUptodate(page));
538 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
539 	last_block = (i_size - 1) >> blkbits;
540 	map_bh.b_page = page;
541 	for (page_block = 0; page_block < blocks_per_page; ) {
542 
543 		map_bh.b_state = 0;
544 		map_bh.b_size = 1 << blkbits;
545 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
546 			goto confused;
547 		if (buffer_new(&map_bh))
548 			unmap_underlying_metadata(map_bh.b_bdev,
549 						map_bh.b_blocknr);
550 		if (buffer_boundary(&map_bh)) {
551 			boundary_block = map_bh.b_blocknr;
552 			boundary_bdev = map_bh.b_bdev;
553 		}
554 		if (page_block) {
555 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
556 				goto confused;
557 		}
558 		blocks[page_block++] = map_bh.b_blocknr;
559 		boundary = buffer_boundary(&map_bh);
560 		bdev = map_bh.b_bdev;
561 		if (block_in_file == last_block)
562 			break;
563 		block_in_file++;
564 	}
565 	BUG_ON(page_block == 0);
566 
567 	first_unmapped = page_block;
568 
569 page_is_mapped:
570 	end_index = i_size >> PAGE_CACHE_SHIFT;
571 	if (page->index >= end_index) {
572 		/*
573 		 * The page straddles i_size.  It must be zeroed out on each
574 		 * and every writepage invocation because it may be mmapped.
575 		 * "A file is mapped in multiples of the page size.  For a file
576 		 * that is not a multiple of the page size, the remaining memory
577 		 * is zeroed when mapped, and writes to that region are not
578 		 * written out to the file."
579 		 */
580 		unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
581 
582 		if (page->index > end_index || !offset)
583 			goto confused;
584 		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
585 	}
586 
587 	/*
588 	 * This page will go to BIO.  Do we need to send this BIO off first?
589 	 */
590 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
591 		bio = mpage_bio_submit(WRITE, bio);
592 
593 alloc_new:
594 	if (bio == NULL) {
595 		if (first_unmapped == blocks_per_page) {
596 			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
597 								page, wbc)) {
598 				clean_buffers(page, first_unmapped);
599 				goto out;
600 			}
601 		}
602 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
603 				bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
604 		if (bio == NULL)
605 			goto confused;
606 	}
607 
608 	/*
609 	 * Must try to add the page before marking the buffer clean or
610 	 * the confused fail path above (OOM) will be very confused when
611 	 * it finds all bh marked clean (i.e. it will not write anything)
612 	 */
613 	length = first_unmapped << blkbits;
614 	if (bio_add_page(bio, page, length, 0) < length) {
615 		bio = mpage_bio_submit(WRITE, bio);
616 		goto alloc_new;
617 	}
618 
619 	clean_buffers(page, first_unmapped);
620 
621 	BUG_ON(PageWriteback(page));
622 	set_page_writeback(page);
623 	unlock_page(page);
624 	if (boundary || (first_unmapped != blocks_per_page)) {
625 		bio = mpage_bio_submit(WRITE, bio);
626 		if (boundary_block) {
627 			write_boundary_block(boundary_bdev,
628 					boundary_block, 1 << blkbits);
629 		}
630 	} else {
631 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
632 	}
633 	goto out;
634 
635 confused:
636 	if (bio)
637 		bio = mpage_bio_submit(WRITE, bio);
638 
639 	if (mpd->use_writepage) {
640 		ret = mapping->a_ops->writepage(page, wbc);
641 	} else {
642 		ret = -EAGAIN;
643 		goto out;
644 	}
645 	/*
646 	 * The caller has a ref on the inode, so *mapping is stable
647 	 */
648 	mapping_set_error(mapping, ret);
649 out:
650 	mpd->bio = bio;
651 	return ret;
652 }
653 
654 /**
655  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
656  * @mapping: address space structure to write
657  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
658  * @get_block: the filesystem's block mapper function.
659  *             If this is NULL then use a_ops->writepage.  Otherwise, go
660  *             direct-to-BIO.
661  *
662  * This is a library function, which implements the writepages()
663  * address_space_operation.
664  *
665  * If a page is already under I/O, generic_writepages() skips it, even
666  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
667  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
668  * and msync() need to guarantee that all the data which was dirty at the time
669  * the call was made get new I/O started against them.  If wbc->sync_mode is
670  * WB_SYNC_ALL then we were called for data integrity and we must wait for
671  * existing IO to complete.
672  */
673 int
674 mpage_writepages(struct address_space *mapping,
675 		struct writeback_control *wbc, get_block_t get_block)
676 {
677 	struct blk_plug plug;
678 	int ret;
679 
680 	blk_start_plug(&plug);
681 
682 	if (!get_block)
683 		ret = generic_writepages(mapping, wbc);
684 	else {
685 		struct mpage_data mpd = {
686 			.bio = NULL,
687 			.last_block_in_bio = 0,
688 			.get_block = get_block,
689 			.use_writepage = 1,
690 		};
691 
692 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
693 		if (mpd.bio)
694 			mpage_bio_submit(WRITE, mpd.bio);
695 	}
696 	blk_finish_plug(&plug);
697 	return ret;
698 }
699 EXPORT_SYMBOL(mpage_writepages);
700 
701 int mpage_writepage(struct page *page, get_block_t get_block,
702 	struct writeback_control *wbc)
703 {
704 	struct mpage_data mpd = {
705 		.bio = NULL,
706 		.last_block_in_bio = 0,
707 		.get_block = get_block,
708 		.use_writepage = 0,
709 	};
710 	int ret = __mpage_writepage(page, wbc, &mpd);
711 	if (mpd.bio)
712 		mpage_bio_submit(WRITE, mpd.bio);
713 	return ret;
714 }
715 EXPORT_SYMBOL(mpage_writepage);
716