xref: /openbmc/linux/fs/minix/bitmap.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  *  linux/fs/minix/bitmap.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Modified for 680x0 by Hamish Macdonald
9  * Fixed for 680x0 by Andreas Schwab
10  */
11 
12 /* bitmap.c contains the code that handles the inode and block bitmaps */
13 
14 #include "minix.h"
15 #include <linux/smp_lock.h>
16 #include <linux/buffer_head.h>
17 #include <linux/bitops.h>
18 #include <linux/sched.h>
19 
20 static const int nibblemap[] = { 4,3,3,2,3,2,2,1,3,2,2,1,2,1,1,0 };
21 
22 static unsigned long count_free(struct buffer_head *map[], unsigned numblocks, __u32 numbits)
23 {
24 	unsigned i, j, sum = 0;
25 	struct buffer_head *bh;
26 
27 	for (i=0; i<numblocks-1; i++) {
28 		if (!(bh=map[i]))
29 			return(0);
30 		for (j=0; j<bh->b_size; j++)
31 			sum += nibblemap[bh->b_data[j] & 0xf]
32 				+ nibblemap[(bh->b_data[j]>>4) & 0xf];
33 	}
34 
35 	if (numblocks==0 || !(bh=map[numblocks-1]))
36 		return(0);
37 	i = ((numbits - (numblocks-1) * bh->b_size * 8) / 16) * 2;
38 	for (j=0; j<i; j++) {
39 		sum += nibblemap[bh->b_data[j] & 0xf]
40 			+ nibblemap[(bh->b_data[j]>>4) & 0xf];
41 	}
42 
43 	i = numbits%16;
44 	if (i!=0) {
45 		i = *(__u16 *)(&bh->b_data[j]) | ~((1<<i) - 1);
46 		sum += nibblemap[i & 0xf] + nibblemap[(i>>4) & 0xf];
47 		sum += nibblemap[(i>>8) & 0xf] + nibblemap[(i>>12) & 0xf];
48 	}
49 	return(sum);
50 }
51 
52 void minix_free_block(struct inode *inode, unsigned long block)
53 {
54 	struct super_block *sb = inode->i_sb;
55 	struct minix_sb_info *sbi = minix_sb(sb);
56 	struct buffer_head *bh;
57 	int k = sb->s_blocksize_bits + 3;
58 	unsigned long bit, zone;
59 
60 	if (block < sbi->s_firstdatazone || block >= sbi->s_nzones) {
61 		printk("Trying to free block not in datazone\n");
62 		return;
63 	}
64 	zone = block - sbi->s_firstdatazone + 1;
65 	bit = zone & ((1<<k) - 1);
66 	zone >>= k;
67 	if (zone >= sbi->s_zmap_blocks) {
68 		printk("minix_free_block: nonexistent bitmap buffer\n");
69 		return;
70 	}
71 	bh = sbi->s_zmap[zone];
72 	lock_kernel();
73 	if (!minix_test_and_clear_bit(bit, bh->b_data))
74 		printk("minix_free_block (%s:%lu): bit already cleared\n",
75 		       sb->s_id, block);
76 	unlock_kernel();
77 	mark_buffer_dirty(bh);
78 	return;
79 }
80 
81 int minix_new_block(struct inode * inode)
82 {
83 	struct minix_sb_info *sbi = minix_sb(inode->i_sb);
84 	int bits_per_zone = 8 * inode->i_sb->s_blocksize;
85 	int i;
86 
87 	for (i = 0; i < sbi->s_zmap_blocks; i++) {
88 		struct buffer_head *bh = sbi->s_zmap[i];
89 		int j;
90 
91 		lock_kernel();
92 		j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
93 		if (j < bits_per_zone) {
94 			minix_set_bit(j, bh->b_data);
95 			unlock_kernel();
96 			mark_buffer_dirty(bh);
97 			j += i * bits_per_zone + sbi->s_firstdatazone-1;
98 			if (j < sbi->s_firstdatazone || j >= sbi->s_nzones)
99 				break;
100 			return j;
101 		}
102 		unlock_kernel();
103 	}
104 	return 0;
105 }
106 
107 unsigned long minix_count_free_blocks(struct minix_sb_info *sbi)
108 {
109 	return (count_free(sbi->s_zmap, sbi->s_zmap_blocks,
110 		sbi->s_nzones - sbi->s_firstdatazone + 1)
111 		<< sbi->s_log_zone_size);
112 }
113 
114 struct minix_inode *
115 minix_V1_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
116 {
117 	int block;
118 	struct minix_sb_info *sbi = minix_sb(sb);
119 	struct minix_inode *p;
120 
121 	if (!ino || ino > sbi->s_ninodes) {
122 		printk("Bad inode number on dev %s: %ld is out of range\n",
123 		       sb->s_id, (long)ino);
124 		return NULL;
125 	}
126 	ino--;
127 	block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
128 		 ino / MINIX_INODES_PER_BLOCK;
129 	*bh = sb_bread(sb, block);
130 	if (!*bh) {
131 		printk("Unable to read inode block\n");
132 		return NULL;
133 	}
134 	p = (void *)(*bh)->b_data;
135 	return p + ino % MINIX_INODES_PER_BLOCK;
136 }
137 
138 struct minix2_inode *
139 minix_V2_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
140 {
141 	int block;
142 	struct minix_sb_info *sbi = minix_sb(sb);
143 	struct minix2_inode *p;
144 	int minix2_inodes_per_block = sb->s_blocksize / sizeof(struct minix2_inode);
145 
146 	*bh = NULL;
147 	if (!ino || ino > sbi->s_ninodes) {
148 		printk("Bad inode number on dev %s: %ld is out of range\n",
149 		       sb->s_id, (long)ino);
150 		return NULL;
151 	}
152 	ino--;
153 	block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
154 		 ino / minix2_inodes_per_block;
155 	*bh = sb_bread(sb, block);
156 	if (!*bh) {
157 		printk("Unable to read inode block\n");
158 		return NULL;
159 	}
160 	p = (void *)(*bh)->b_data;
161 	return p + ino % minix2_inodes_per_block;
162 }
163 
164 /* Clear the link count and mode of a deleted inode on disk. */
165 
166 static void minix_clear_inode(struct inode *inode)
167 {
168 	struct buffer_head *bh = NULL;
169 
170 	if (INODE_VERSION(inode) == MINIX_V1) {
171 		struct minix_inode *raw_inode;
172 		raw_inode = minix_V1_raw_inode(inode->i_sb, inode->i_ino, &bh);
173 		if (raw_inode) {
174 			raw_inode->i_nlinks = 0;
175 			raw_inode->i_mode = 0;
176 		}
177 	} else {
178 		struct minix2_inode *raw_inode;
179 		raw_inode = minix_V2_raw_inode(inode->i_sb, inode->i_ino, &bh);
180 		if (raw_inode) {
181 			raw_inode->i_nlinks = 0;
182 			raw_inode->i_mode = 0;
183 		}
184 	}
185 	if (bh) {
186 		mark_buffer_dirty(bh);
187 		brelse (bh);
188 	}
189 }
190 
191 void minix_free_inode(struct inode * inode)
192 {
193 	struct super_block *sb = inode->i_sb;
194 	struct minix_sb_info *sbi = minix_sb(inode->i_sb);
195 	struct buffer_head *bh;
196 	int k = sb->s_blocksize_bits + 3;
197 	unsigned long ino, bit;
198 
199 	ino = inode->i_ino;
200 	if (ino < 1 || ino > sbi->s_ninodes) {
201 		printk("minix_free_inode: inode 0 or nonexistent inode\n");
202 		goto out;
203 	}
204 	bit = ino & ((1<<k) - 1);
205 	ino >>= k;
206 	if (ino >= sbi->s_imap_blocks) {
207 		printk("minix_free_inode: nonexistent imap in superblock\n");
208 		goto out;
209 	}
210 
211 	minix_clear_inode(inode);	/* clear on-disk copy */
212 
213 	bh = sbi->s_imap[ino];
214 	lock_kernel();
215 	if (!minix_test_and_clear_bit(bit, bh->b_data))
216 		printk("minix_free_inode: bit %lu already cleared\n", bit);
217 	unlock_kernel();
218 	mark_buffer_dirty(bh);
219  out:
220 	clear_inode(inode);		/* clear in-memory copy */
221 }
222 
223 struct inode * minix_new_inode(const struct inode * dir, int * error)
224 {
225 	struct super_block *sb = dir->i_sb;
226 	struct minix_sb_info *sbi = minix_sb(sb);
227 	struct inode *inode = new_inode(sb);
228 	struct buffer_head * bh;
229 	int bits_per_zone = 8 * sb->s_blocksize;
230 	unsigned long j;
231 	int i;
232 
233 	if (!inode) {
234 		*error = -ENOMEM;
235 		return NULL;
236 	}
237 	j = bits_per_zone;
238 	bh = NULL;
239 	*error = -ENOSPC;
240 	lock_kernel();
241 	for (i = 0; i < sbi->s_imap_blocks; i++) {
242 		bh = sbi->s_imap[i];
243 		j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
244 		if (j < bits_per_zone)
245 			break;
246 	}
247 	if (!bh || j >= bits_per_zone) {
248 		unlock_kernel();
249 		iput(inode);
250 		return NULL;
251 	}
252 	if (minix_test_and_set_bit(j, bh->b_data)) {	/* shouldn't happen */
253 		unlock_kernel();
254 		printk("minix_new_inode: bit already set\n");
255 		iput(inode);
256 		return NULL;
257 	}
258 	unlock_kernel();
259 	mark_buffer_dirty(bh);
260 	j += i * bits_per_zone;
261 	if (!j || j > sbi->s_ninodes) {
262 		iput(inode);
263 		return NULL;
264 	}
265 	inode->i_uid = current->fsuid;
266 	inode->i_gid = (dir->i_mode & S_ISGID) ? dir->i_gid : current->fsgid;
267 	inode->i_ino = j;
268 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
269 	inode->i_blocks = 0;
270 	memset(&minix_i(inode)->u, 0, sizeof(minix_i(inode)->u));
271 	insert_inode_hash(inode);
272 	mark_inode_dirty(inode);
273 
274 	*error = 0;
275 	return inode;
276 }
277 
278 unsigned long minix_count_free_inodes(struct minix_sb_info *sbi)
279 {
280 	return count_free(sbi->s_imap, sbi->s_imap_blocks, sbi->s_ninodes + 1);
281 }
282