xref: /openbmc/linux/fs/libfs.c (revision 76178cc7d5eb6dc881c3fccab882802e5d16f790)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
22 
23 #include <linux/uaccess.h>
24 
25 #include "internal.h"
26 
27 int simple_getattr(const struct path *path, struct kstat *stat,
28 		   u32 request_mask, unsigned int query_flags)
29 {
30 	struct inode *inode = d_inode(path->dentry);
31 	generic_fillattr(inode, stat);
32 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
33 	return 0;
34 }
35 EXPORT_SYMBOL(simple_getattr);
36 
37 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
38 {
39 	buf->f_type = dentry->d_sb->s_magic;
40 	buf->f_bsize = PAGE_SIZE;
41 	buf->f_namelen = NAME_MAX;
42 	return 0;
43 }
44 EXPORT_SYMBOL(simple_statfs);
45 
46 /*
47  * Retaining negative dentries for an in-memory filesystem just wastes
48  * memory and lookup time: arrange for them to be deleted immediately.
49  */
50 int always_delete_dentry(const struct dentry *dentry)
51 {
52 	return 1;
53 }
54 EXPORT_SYMBOL(always_delete_dentry);
55 
56 const struct dentry_operations simple_dentry_operations = {
57 	.d_delete = always_delete_dentry,
58 };
59 EXPORT_SYMBOL(simple_dentry_operations);
60 
61 /*
62  * Lookup the data. This is trivial - if the dentry didn't already
63  * exist, we know it is negative.  Set d_op to delete negative dentries.
64  */
65 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
66 {
67 	if (dentry->d_name.len > NAME_MAX)
68 		return ERR_PTR(-ENAMETOOLONG);
69 	if (!dentry->d_sb->s_d_op)
70 		d_set_d_op(dentry, &simple_dentry_operations);
71 	d_add(dentry, NULL);
72 	return NULL;
73 }
74 EXPORT_SYMBOL(simple_lookup);
75 
76 int dcache_dir_open(struct inode *inode, struct file *file)
77 {
78 	file->private_data = d_alloc_cursor(file->f_path.dentry);
79 
80 	return file->private_data ? 0 : -ENOMEM;
81 }
82 EXPORT_SYMBOL(dcache_dir_open);
83 
84 int dcache_dir_close(struct inode *inode, struct file *file)
85 {
86 	dput(file->private_data);
87 	return 0;
88 }
89 EXPORT_SYMBOL(dcache_dir_close);
90 
91 /* parent is locked at least shared */
92 /*
93  * Returns an element of siblings' list.
94  * We are looking for <count>th positive after <p>; if
95  * found, dentry is grabbed and returned to caller.
96  * If no such element exists, NULL is returned.
97  */
98 static struct dentry *scan_positives(struct dentry *cursor,
99 					struct list_head *p,
100 					loff_t count,
101 					struct dentry *last)
102 {
103 	struct dentry *dentry = cursor->d_parent, *found = NULL;
104 
105 	spin_lock(&dentry->d_lock);
106 	while ((p = p->next) != &dentry->d_subdirs) {
107 		struct dentry *d = list_entry(p, struct dentry, d_child);
108 		// we must at least skip cursors, to avoid livelocks
109 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
110 			continue;
111 		if (simple_positive(d) && !--count) {
112 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
113 			if (simple_positive(d))
114 				found = dget_dlock(d);
115 			spin_unlock(&d->d_lock);
116 			if (likely(found))
117 				break;
118 			count = 1;
119 		}
120 		if (need_resched()) {
121 			list_move(&cursor->d_child, p);
122 			p = &cursor->d_child;
123 			spin_unlock(&dentry->d_lock);
124 			cond_resched();
125 			spin_lock(&dentry->d_lock);
126 		}
127 	}
128 	spin_unlock(&dentry->d_lock);
129 	dput(last);
130 	return found;
131 }
132 
133 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
134 {
135 	struct dentry *dentry = file->f_path.dentry;
136 	switch (whence) {
137 		case 1:
138 			offset += file->f_pos;
139 			/* fall through */
140 		case 0:
141 			if (offset >= 0)
142 				break;
143 			/* fall through */
144 		default:
145 			return -EINVAL;
146 	}
147 	if (offset != file->f_pos) {
148 		struct dentry *cursor = file->private_data;
149 		struct dentry *to = NULL;
150 
151 		inode_lock_shared(dentry->d_inode);
152 
153 		if (offset > 2)
154 			to = scan_positives(cursor, &dentry->d_subdirs,
155 					    offset - 2, NULL);
156 		spin_lock(&dentry->d_lock);
157 		if (to)
158 			list_move(&cursor->d_child, &to->d_child);
159 		else
160 			list_del_init(&cursor->d_child);
161 		spin_unlock(&dentry->d_lock);
162 		dput(to);
163 
164 		file->f_pos = offset;
165 
166 		inode_unlock_shared(dentry->d_inode);
167 	}
168 	return offset;
169 }
170 EXPORT_SYMBOL(dcache_dir_lseek);
171 
172 /* Relationship between i_mode and the DT_xxx types */
173 static inline unsigned char dt_type(struct inode *inode)
174 {
175 	return (inode->i_mode >> 12) & 15;
176 }
177 
178 /*
179  * Directory is locked and all positive dentries in it are safe, since
180  * for ramfs-type trees they can't go away without unlink() or rmdir(),
181  * both impossible due to the lock on directory.
182  */
183 
184 int dcache_readdir(struct file *file, struct dir_context *ctx)
185 {
186 	struct dentry *dentry = file->f_path.dentry;
187 	struct dentry *cursor = file->private_data;
188 	struct list_head *anchor = &dentry->d_subdirs;
189 	struct dentry *next = NULL;
190 	struct list_head *p;
191 
192 	if (!dir_emit_dots(file, ctx))
193 		return 0;
194 
195 	if (ctx->pos == 2)
196 		p = anchor;
197 	else if (!list_empty(&cursor->d_child))
198 		p = &cursor->d_child;
199 	else
200 		return 0;
201 
202 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
203 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
204 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
205 			break;
206 		ctx->pos++;
207 		p = &next->d_child;
208 	}
209 	spin_lock(&dentry->d_lock);
210 	if (next)
211 		list_move_tail(&cursor->d_child, &next->d_child);
212 	else
213 		list_del_init(&cursor->d_child);
214 	spin_unlock(&dentry->d_lock);
215 	dput(next);
216 
217 	return 0;
218 }
219 EXPORT_SYMBOL(dcache_readdir);
220 
221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
222 {
223 	return -EISDIR;
224 }
225 EXPORT_SYMBOL(generic_read_dir);
226 
227 const struct file_operations simple_dir_operations = {
228 	.open		= dcache_dir_open,
229 	.release	= dcache_dir_close,
230 	.llseek		= dcache_dir_lseek,
231 	.read		= generic_read_dir,
232 	.iterate_shared	= dcache_readdir,
233 	.fsync		= noop_fsync,
234 };
235 EXPORT_SYMBOL(simple_dir_operations);
236 
237 const struct inode_operations simple_dir_inode_operations = {
238 	.lookup		= simple_lookup,
239 };
240 EXPORT_SYMBOL(simple_dir_inode_operations);
241 
242 static const struct super_operations simple_super_operations = {
243 	.statfs		= simple_statfs,
244 };
245 
246 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
247 {
248 	struct pseudo_fs_context *ctx = fc->fs_private;
249 	struct inode *root;
250 
251 	s->s_maxbytes = MAX_LFS_FILESIZE;
252 	s->s_blocksize = PAGE_SIZE;
253 	s->s_blocksize_bits = PAGE_SHIFT;
254 	s->s_magic = ctx->magic;
255 	s->s_op = ctx->ops ?: &simple_super_operations;
256 	s->s_xattr = ctx->xattr;
257 	s->s_time_gran = 1;
258 	root = new_inode(s);
259 	if (!root)
260 		return -ENOMEM;
261 
262 	/*
263 	 * since this is the first inode, make it number 1. New inodes created
264 	 * after this must take care not to collide with it (by passing
265 	 * max_reserved of 1 to iunique).
266 	 */
267 	root->i_ino = 1;
268 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
269 	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
270 	s->s_root = d_make_root(root);
271 	if (!s->s_root)
272 		return -ENOMEM;
273 	s->s_d_op = ctx->dops;
274 	return 0;
275 }
276 
277 static int pseudo_fs_get_tree(struct fs_context *fc)
278 {
279 	return get_tree_nodev(fc, pseudo_fs_fill_super);
280 }
281 
282 static void pseudo_fs_free(struct fs_context *fc)
283 {
284 	kfree(fc->fs_private);
285 }
286 
287 static const struct fs_context_operations pseudo_fs_context_ops = {
288 	.free		= pseudo_fs_free,
289 	.get_tree	= pseudo_fs_get_tree,
290 };
291 
292 /*
293  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
294  * will never be mountable)
295  */
296 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
297 					unsigned long magic)
298 {
299 	struct pseudo_fs_context *ctx;
300 
301 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
302 	if (likely(ctx)) {
303 		ctx->magic = magic;
304 		fc->fs_private = ctx;
305 		fc->ops = &pseudo_fs_context_ops;
306 		fc->sb_flags |= SB_NOUSER;
307 		fc->global = true;
308 	}
309 	return ctx;
310 }
311 EXPORT_SYMBOL(init_pseudo);
312 
313 int simple_open(struct inode *inode, struct file *file)
314 {
315 	if (inode->i_private)
316 		file->private_data = inode->i_private;
317 	return 0;
318 }
319 EXPORT_SYMBOL(simple_open);
320 
321 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
322 {
323 	struct inode *inode = d_inode(old_dentry);
324 
325 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
326 	inc_nlink(inode);
327 	ihold(inode);
328 	dget(dentry);
329 	d_instantiate(dentry, inode);
330 	return 0;
331 }
332 EXPORT_SYMBOL(simple_link);
333 
334 int simple_empty(struct dentry *dentry)
335 {
336 	struct dentry *child;
337 	int ret = 0;
338 
339 	spin_lock(&dentry->d_lock);
340 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
341 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
342 		if (simple_positive(child)) {
343 			spin_unlock(&child->d_lock);
344 			goto out;
345 		}
346 		spin_unlock(&child->d_lock);
347 	}
348 	ret = 1;
349 out:
350 	spin_unlock(&dentry->d_lock);
351 	return ret;
352 }
353 EXPORT_SYMBOL(simple_empty);
354 
355 int simple_unlink(struct inode *dir, struct dentry *dentry)
356 {
357 	struct inode *inode = d_inode(dentry);
358 
359 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
360 	drop_nlink(inode);
361 	dput(dentry);
362 	return 0;
363 }
364 EXPORT_SYMBOL(simple_unlink);
365 
366 int simple_rmdir(struct inode *dir, struct dentry *dentry)
367 {
368 	if (!simple_empty(dentry))
369 		return -ENOTEMPTY;
370 
371 	drop_nlink(d_inode(dentry));
372 	simple_unlink(dir, dentry);
373 	drop_nlink(dir);
374 	return 0;
375 }
376 EXPORT_SYMBOL(simple_rmdir);
377 
378 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
379 		  struct inode *new_dir, struct dentry *new_dentry,
380 		  unsigned int flags)
381 {
382 	struct inode *inode = d_inode(old_dentry);
383 	int they_are_dirs = d_is_dir(old_dentry);
384 
385 	if (flags & ~RENAME_NOREPLACE)
386 		return -EINVAL;
387 
388 	if (!simple_empty(new_dentry))
389 		return -ENOTEMPTY;
390 
391 	if (d_really_is_positive(new_dentry)) {
392 		simple_unlink(new_dir, new_dentry);
393 		if (they_are_dirs) {
394 			drop_nlink(d_inode(new_dentry));
395 			drop_nlink(old_dir);
396 		}
397 	} else if (they_are_dirs) {
398 		drop_nlink(old_dir);
399 		inc_nlink(new_dir);
400 	}
401 
402 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
403 		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
404 
405 	return 0;
406 }
407 EXPORT_SYMBOL(simple_rename);
408 
409 /**
410  * simple_setattr - setattr for simple filesystem
411  * @dentry: dentry
412  * @iattr: iattr structure
413  *
414  * Returns 0 on success, -error on failure.
415  *
416  * simple_setattr is a simple ->setattr implementation without a proper
417  * implementation of size changes.
418  *
419  * It can either be used for in-memory filesystems or special files
420  * on simple regular filesystems.  Anything that needs to change on-disk
421  * or wire state on size changes needs its own setattr method.
422  */
423 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
424 {
425 	struct inode *inode = d_inode(dentry);
426 	int error;
427 
428 	error = setattr_prepare(dentry, iattr);
429 	if (error)
430 		return error;
431 
432 	if (iattr->ia_valid & ATTR_SIZE)
433 		truncate_setsize(inode, iattr->ia_size);
434 	setattr_copy(inode, iattr);
435 	mark_inode_dirty(inode);
436 	return 0;
437 }
438 EXPORT_SYMBOL(simple_setattr);
439 
440 int simple_readpage(struct file *file, struct page *page)
441 {
442 	clear_highpage(page);
443 	flush_dcache_page(page);
444 	SetPageUptodate(page);
445 	unlock_page(page);
446 	return 0;
447 }
448 EXPORT_SYMBOL(simple_readpage);
449 
450 int simple_write_begin(struct file *file, struct address_space *mapping,
451 			loff_t pos, unsigned len, unsigned flags,
452 			struct page **pagep, void **fsdata)
453 {
454 	struct page *page;
455 	pgoff_t index;
456 
457 	index = pos >> PAGE_SHIFT;
458 
459 	page = grab_cache_page_write_begin(mapping, index, flags);
460 	if (!page)
461 		return -ENOMEM;
462 
463 	*pagep = page;
464 
465 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
466 		unsigned from = pos & (PAGE_SIZE - 1);
467 
468 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
469 	}
470 	return 0;
471 }
472 EXPORT_SYMBOL(simple_write_begin);
473 
474 /**
475  * simple_write_end - .write_end helper for non-block-device FSes
476  * @file: See .write_end of address_space_operations
477  * @mapping: 		"
478  * @pos: 		"
479  * @len: 		"
480  * @copied: 		"
481  * @page: 		"
482  * @fsdata: 		"
483  *
484  * simple_write_end does the minimum needed for updating a page after writing is
485  * done. It has the same API signature as the .write_end of
486  * address_space_operations vector. So it can just be set onto .write_end for
487  * FSes that don't need any other processing. i_mutex is assumed to be held.
488  * Block based filesystems should use generic_write_end().
489  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
490  * is not called, so a filesystem that actually does store data in .write_inode
491  * should extend on what's done here with a call to mark_inode_dirty() in the
492  * case that i_size has changed.
493  *
494  * Use *ONLY* with simple_readpage()
495  */
496 int simple_write_end(struct file *file, struct address_space *mapping,
497 			loff_t pos, unsigned len, unsigned copied,
498 			struct page *page, void *fsdata)
499 {
500 	struct inode *inode = page->mapping->host;
501 	loff_t last_pos = pos + copied;
502 
503 	/* zero the stale part of the page if we did a short copy */
504 	if (!PageUptodate(page)) {
505 		if (copied < len) {
506 			unsigned from = pos & (PAGE_SIZE - 1);
507 
508 			zero_user(page, from + copied, len - copied);
509 		}
510 		SetPageUptodate(page);
511 	}
512 	/*
513 	 * No need to use i_size_read() here, the i_size
514 	 * cannot change under us because we hold the i_mutex.
515 	 */
516 	if (last_pos > inode->i_size)
517 		i_size_write(inode, last_pos);
518 
519 	set_page_dirty(page);
520 	unlock_page(page);
521 	put_page(page);
522 
523 	return copied;
524 }
525 EXPORT_SYMBOL(simple_write_end);
526 
527 /*
528  * the inodes created here are not hashed. If you use iunique to generate
529  * unique inode values later for this filesystem, then you must take care
530  * to pass it an appropriate max_reserved value to avoid collisions.
531  */
532 int simple_fill_super(struct super_block *s, unsigned long magic,
533 		      const struct tree_descr *files)
534 {
535 	struct inode *inode;
536 	struct dentry *root;
537 	struct dentry *dentry;
538 	int i;
539 
540 	s->s_blocksize = PAGE_SIZE;
541 	s->s_blocksize_bits = PAGE_SHIFT;
542 	s->s_magic = magic;
543 	s->s_op = &simple_super_operations;
544 	s->s_time_gran = 1;
545 
546 	inode = new_inode(s);
547 	if (!inode)
548 		return -ENOMEM;
549 	/*
550 	 * because the root inode is 1, the files array must not contain an
551 	 * entry at index 1
552 	 */
553 	inode->i_ino = 1;
554 	inode->i_mode = S_IFDIR | 0755;
555 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
556 	inode->i_op = &simple_dir_inode_operations;
557 	inode->i_fop = &simple_dir_operations;
558 	set_nlink(inode, 2);
559 	root = d_make_root(inode);
560 	if (!root)
561 		return -ENOMEM;
562 	for (i = 0; !files->name || files->name[0]; i++, files++) {
563 		if (!files->name)
564 			continue;
565 
566 		/* warn if it tries to conflict with the root inode */
567 		if (unlikely(i == 1))
568 			printk(KERN_WARNING "%s: %s passed in a files array"
569 				"with an index of 1!\n", __func__,
570 				s->s_type->name);
571 
572 		dentry = d_alloc_name(root, files->name);
573 		if (!dentry)
574 			goto out;
575 		inode = new_inode(s);
576 		if (!inode) {
577 			dput(dentry);
578 			goto out;
579 		}
580 		inode->i_mode = S_IFREG | files->mode;
581 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
582 		inode->i_fop = files->ops;
583 		inode->i_ino = i;
584 		d_add(dentry, inode);
585 	}
586 	s->s_root = root;
587 	return 0;
588 out:
589 	d_genocide(root);
590 	shrink_dcache_parent(root);
591 	dput(root);
592 	return -ENOMEM;
593 }
594 EXPORT_SYMBOL(simple_fill_super);
595 
596 static DEFINE_SPINLOCK(pin_fs_lock);
597 
598 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
599 {
600 	struct vfsmount *mnt = NULL;
601 	spin_lock(&pin_fs_lock);
602 	if (unlikely(!*mount)) {
603 		spin_unlock(&pin_fs_lock);
604 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
605 		if (IS_ERR(mnt))
606 			return PTR_ERR(mnt);
607 		spin_lock(&pin_fs_lock);
608 		if (!*mount)
609 			*mount = mnt;
610 	}
611 	mntget(*mount);
612 	++*count;
613 	spin_unlock(&pin_fs_lock);
614 	mntput(mnt);
615 	return 0;
616 }
617 EXPORT_SYMBOL(simple_pin_fs);
618 
619 void simple_release_fs(struct vfsmount **mount, int *count)
620 {
621 	struct vfsmount *mnt;
622 	spin_lock(&pin_fs_lock);
623 	mnt = *mount;
624 	if (!--*count)
625 		*mount = NULL;
626 	spin_unlock(&pin_fs_lock);
627 	mntput(mnt);
628 }
629 EXPORT_SYMBOL(simple_release_fs);
630 
631 /**
632  * simple_read_from_buffer - copy data from the buffer to user space
633  * @to: the user space buffer to read to
634  * @count: the maximum number of bytes to read
635  * @ppos: the current position in the buffer
636  * @from: the buffer to read from
637  * @available: the size of the buffer
638  *
639  * The simple_read_from_buffer() function reads up to @count bytes from the
640  * buffer @from at offset @ppos into the user space address starting at @to.
641  *
642  * On success, the number of bytes read is returned and the offset @ppos is
643  * advanced by this number, or negative value is returned on error.
644  **/
645 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
646 				const void *from, size_t available)
647 {
648 	loff_t pos = *ppos;
649 	size_t ret;
650 
651 	if (pos < 0)
652 		return -EINVAL;
653 	if (pos >= available || !count)
654 		return 0;
655 	if (count > available - pos)
656 		count = available - pos;
657 	ret = copy_to_user(to, from + pos, count);
658 	if (ret == count)
659 		return -EFAULT;
660 	count -= ret;
661 	*ppos = pos + count;
662 	return count;
663 }
664 EXPORT_SYMBOL(simple_read_from_buffer);
665 
666 /**
667  * simple_write_to_buffer - copy data from user space to the buffer
668  * @to: the buffer to write to
669  * @available: the size of the buffer
670  * @ppos: the current position in the buffer
671  * @from: the user space buffer to read from
672  * @count: the maximum number of bytes to read
673  *
674  * The simple_write_to_buffer() function reads up to @count bytes from the user
675  * space address starting at @from into the buffer @to at offset @ppos.
676  *
677  * On success, the number of bytes written is returned and the offset @ppos is
678  * advanced by this number, or negative value is returned on error.
679  **/
680 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
681 		const void __user *from, size_t count)
682 {
683 	loff_t pos = *ppos;
684 	size_t res;
685 
686 	if (pos < 0)
687 		return -EINVAL;
688 	if (pos >= available || !count)
689 		return 0;
690 	if (count > available - pos)
691 		count = available - pos;
692 	res = copy_from_user(to + pos, from, count);
693 	if (res == count)
694 		return -EFAULT;
695 	count -= res;
696 	*ppos = pos + count;
697 	return count;
698 }
699 EXPORT_SYMBOL(simple_write_to_buffer);
700 
701 /**
702  * memory_read_from_buffer - copy data from the buffer
703  * @to: the kernel space buffer to read to
704  * @count: the maximum number of bytes to read
705  * @ppos: the current position in the buffer
706  * @from: the buffer to read from
707  * @available: the size of the buffer
708  *
709  * The memory_read_from_buffer() function reads up to @count bytes from the
710  * buffer @from at offset @ppos into the kernel space address starting at @to.
711  *
712  * On success, the number of bytes read is returned and the offset @ppos is
713  * advanced by this number, or negative value is returned on error.
714  **/
715 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
716 				const void *from, size_t available)
717 {
718 	loff_t pos = *ppos;
719 
720 	if (pos < 0)
721 		return -EINVAL;
722 	if (pos >= available)
723 		return 0;
724 	if (count > available - pos)
725 		count = available - pos;
726 	memcpy(to, from + pos, count);
727 	*ppos = pos + count;
728 
729 	return count;
730 }
731 EXPORT_SYMBOL(memory_read_from_buffer);
732 
733 /*
734  * Transaction based IO.
735  * The file expects a single write which triggers the transaction, and then
736  * possibly a read which collects the result - which is stored in a
737  * file-local buffer.
738  */
739 
740 void simple_transaction_set(struct file *file, size_t n)
741 {
742 	struct simple_transaction_argresp *ar = file->private_data;
743 
744 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
745 
746 	/*
747 	 * The barrier ensures that ar->size will really remain zero until
748 	 * ar->data is ready for reading.
749 	 */
750 	smp_mb();
751 	ar->size = n;
752 }
753 EXPORT_SYMBOL(simple_transaction_set);
754 
755 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
756 {
757 	struct simple_transaction_argresp *ar;
758 	static DEFINE_SPINLOCK(simple_transaction_lock);
759 
760 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
761 		return ERR_PTR(-EFBIG);
762 
763 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
764 	if (!ar)
765 		return ERR_PTR(-ENOMEM);
766 
767 	spin_lock(&simple_transaction_lock);
768 
769 	/* only one write allowed per open */
770 	if (file->private_data) {
771 		spin_unlock(&simple_transaction_lock);
772 		free_page((unsigned long)ar);
773 		return ERR_PTR(-EBUSY);
774 	}
775 
776 	file->private_data = ar;
777 
778 	spin_unlock(&simple_transaction_lock);
779 
780 	if (copy_from_user(ar->data, buf, size))
781 		return ERR_PTR(-EFAULT);
782 
783 	return ar->data;
784 }
785 EXPORT_SYMBOL(simple_transaction_get);
786 
787 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
788 {
789 	struct simple_transaction_argresp *ar = file->private_data;
790 
791 	if (!ar)
792 		return 0;
793 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
794 }
795 EXPORT_SYMBOL(simple_transaction_read);
796 
797 int simple_transaction_release(struct inode *inode, struct file *file)
798 {
799 	free_page((unsigned long)file->private_data);
800 	return 0;
801 }
802 EXPORT_SYMBOL(simple_transaction_release);
803 
804 /* Simple attribute files */
805 
806 struct simple_attr {
807 	int (*get)(void *, u64 *);
808 	int (*set)(void *, u64);
809 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
810 	char set_buf[24];
811 	void *data;
812 	const char *fmt;	/* format for read operation */
813 	struct mutex mutex;	/* protects access to these buffers */
814 };
815 
816 /* simple_attr_open is called by an actual attribute open file operation
817  * to set the attribute specific access operations. */
818 int simple_attr_open(struct inode *inode, struct file *file,
819 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
820 		     const char *fmt)
821 {
822 	struct simple_attr *attr;
823 
824 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
825 	if (!attr)
826 		return -ENOMEM;
827 
828 	attr->get = get;
829 	attr->set = set;
830 	attr->data = inode->i_private;
831 	attr->fmt = fmt;
832 	mutex_init(&attr->mutex);
833 
834 	file->private_data = attr;
835 
836 	return nonseekable_open(inode, file);
837 }
838 EXPORT_SYMBOL_GPL(simple_attr_open);
839 
840 int simple_attr_release(struct inode *inode, struct file *file)
841 {
842 	kfree(file->private_data);
843 	return 0;
844 }
845 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
846 
847 /* read from the buffer that is filled with the get function */
848 ssize_t simple_attr_read(struct file *file, char __user *buf,
849 			 size_t len, loff_t *ppos)
850 {
851 	struct simple_attr *attr;
852 	size_t size;
853 	ssize_t ret;
854 
855 	attr = file->private_data;
856 
857 	if (!attr->get)
858 		return -EACCES;
859 
860 	ret = mutex_lock_interruptible(&attr->mutex);
861 	if (ret)
862 		return ret;
863 
864 	if (*ppos) {		/* continued read */
865 		size = strlen(attr->get_buf);
866 	} else {		/* first read */
867 		u64 val;
868 		ret = attr->get(attr->data, &val);
869 		if (ret)
870 			goto out;
871 
872 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
873 				 attr->fmt, (unsigned long long)val);
874 	}
875 
876 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
877 out:
878 	mutex_unlock(&attr->mutex);
879 	return ret;
880 }
881 EXPORT_SYMBOL_GPL(simple_attr_read);
882 
883 /* interpret the buffer as a number to call the set function with */
884 ssize_t simple_attr_write(struct file *file, const char __user *buf,
885 			  size_t len, loff_t *ppos)
886 {
887 	struct simple_attr *attr;
888 	u64 val;
889 	size_t size;
890 	ssize_t ret;
891 
892 	attr = file->private_data;
893 	if (!attr->set)
894 		return -EACCES;
895 
896 	ret = mutex_lock_interruptible(&attr->mutex);
897 	if (ret)
898 		return ret;
899 
900 	ret = -EFAULT;
901 	size = min(sizeof(attr->set_buf) - 1, len);
902 	if (copy_from_user(attr->set_buf, buf, size))
903 		goto out;
904 
905 	attr->set_buf[size] = '\0';
906 	val = simple_strtoll(attr->set_buf, NULL, 0);
907 	ret = attr->set(attr->data, val);
908 	if (ret == 0)
909 		ret = len; /* on success, claim we got the whole input */
910 out:
911 	mutex_unlock(&attr->mutex);
912 	return ret;
913 }
914 EXPORT_SYMBOL_GPL(simple_attr_write);
915 
916 /**
917  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
918  * @sb:		filesystem to do the file handle conversion on
919  * @fid:	file handle to convert
920  * @fh_len:	length of the file handle in bytes
921  * @fh_type:	type of file handle
922  * @get_inode:	filesystem callback to retrieve inode
923  *
924  * This function decodes @fid as long as it has one of the well-known
925  * Linux filehandle types and calls @get_inode on it to retrieve the
926  * inode for the object specified in the file handle.
927  */
928 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
929 		int fh_len, int fh_type, struct inode *(*get_inode)
930 			(struct super_block *sb, u64 ino, u32 gen))
931 {
932 	struct inode *inode = NULL;
933 
934 	if (fh_len < 2)
935 		return NULL;
936 
937 	switch (fh_type) {
938 	case FILEID_INO32_GEN:
939 	case FILEID_INO32_GEN_PARENT:
940 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
941 		break;
942 	}
943 
944 	return d_obtain_alias(inode);
945 }
946 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
947 
948 /**
949  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
950  * @sb:		filesystem to do the file handle conversion on
951  * @fid:	file handle to convert
952  * @fh_len:	length of the file handle in bytes
953  * @fh_type:	type of file handle
954  * @get_inode:	filesystem callback to retrieve inode
955  *
956  * This function decodes @fid as long as it has one of the well-known
957  * Linux filehandle types and calls @get_inode on it to retrieve the
958  * inode for the _parent_ object specified in the file handle if it
959  * is specified in the file handle, or NULL otherwise.
960  */
961 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
962 		int fh_len, int fh_type, struct inode *(*get_inode)
963 			(struct super_block *sb, u64 ino, u32 gen))
964 {
965 	struct inode *inode = NULL;
966 
967 	if (fh_len <= 2)
968 		return NULL;
969 
970 	switch (fh_type) {
971 	case FILEID_INO32_GEN_PARENT:
972 		inode = get_inode(sb, fid->i32.parent_ino,
973 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
974 		break;
975 	}
976 
977 	return d_obtain_alias(inode);
978 }
979 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
980 
981 /**
982  * __generic_file_fsync - generic fsync implementation for simple filesystems
983  *
984  * @file:	file to synchronize
985  * @start:	start offset in bytes
986  * @end:	end offset in bytes (inclusive)
987  * @datasync:	only synchronize essential metadata if true
988  *
989  * This is a generic implementation of the fsync method for simple
990  * filesystems which track all non-inode metadata in the buffers list
991  * hanging off the address_space structure.
992  */
993 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
994 				 int datasync)
995 {
996 	struct inode *inode = file->f_mapping->host;
997 	int err;
998 	int ret;
999 
1000 	err = file_write_and_wait_range(file, start, end);
1001 	if (err)
1002 		return err;
1003 
1004 	inode_lock(inode);
1005 	ret = sync_mapping_buffers(inode->i_mapping);
1006 	if (!(inode->i_state & I_DIRTY_ALL))
1007 		goto out;
1008 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1009 		goto out;
1010 
1011 	err = sync_inode_metadata(inode, 1);
1012 	if (ret == 0)
1013 		ret = err;
1014 
1015 out:
1016 	inode_unlock(inode);
1017 	/* check and advance again to catch errors after syncing out buffers */
1018 	err = file_check_and_advance_wb_err(file);
1019 	if (ret == 0)
1020 		ret = err;
1021 	return ret;
1022 }
1023 EXPORT_SYMBOL(__generic_file_fsync);
1024 
1025 /**
1026  * generic_file_fsync - generic fsync implementation for simple filesystems
1027  *			with flush
1028  * @file:	file to synchronize
1029  * @start:	start offset in bytes
1030  * @end:	end offset in bytes (inclusive)
1031  * @datasync:	only synchronize essential metadata if true
1032  *
1033  */
1034 
1035 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1036 		       int datasync)
1037 {
1038 	struct inode *inode = file->f_mapping->host;
1039 	int err;
1040 
1041 	err = __generic_file_fsync(file, start, end, datasync);
1042 	if (err)
1043 		return err;
1044 	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1045 }
1046 EXPORT_SYMBOL(generic_file_fsync);
1047 
1048 /**
1049  * generic_check_addressable - Check addressability of file system
1050  * @blocksize_bits:	log of file system block size
1051  * @num_blocks:		number of blocks in file system
1052  *
1053  * Determine whether a file system with @num_blocks blocks (and a
1054  * block size of 2**@blocksize_bits) is addressable by the sector_t
1055  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1056  */
1057 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1058 {
1059 	u64 last_fs_block = num_blocks - 1;
1060 	u64 last_fs_page =
1061 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1062 
1063 	if (unlikely(num_blocks == 0))
1064 		return 0;
1065 
1066 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1067 		return -EINVAL;
1068 
1069 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1070 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1071 		return -EFBIG;
1072 	}
1073 	return 0;
1074 }
1075 EXPORT_SYMBOL(generic_check_addressable);
1076 
1077 /*
1078  * No-op implementation of ->fsync for in-memory filesystems.
1079  */
1080 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1081 {
1082 	return 0;
1083 }
1084 EXPORT_SYMBOL(noop_fsync);
1085 
1086 int noop_set_page_dirty(struct page *page)
1087 {
1088 	/*
1089 	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1090 	 * tracking in the page object, dax does all dirty tracking in
1091 	 * the inode address_space in response to mkwrite faults. In the
1092 	 * dax case we only need to worry about potentially dirty CPU
1093 	 * caches, not dirty page cache pages to write back.
1094 	 *
1095 	 * This callback is defined to prevent fallback to
1096 	 * __set_page_dirty_buffers() in set_page_dirty().
1097 	 */
1098 	return 0;
1099 }
1100 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1101 
1102 void noop_invalidatepage(struct page *page, unsigned int offset,
1103 		unsigned int length)
1104 {
1105 	/*
1106 	 * There is no page cache to invalidate in the dax case, however
1107 	 * we need this callback defined to prevent falling back to
1108 	 * block_invalidatepage() in do_invalidatepage().
1109 	 */
1110 }
1111 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1112 
1113 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1114 {
1115 	/*
1116 	 * iomap based filesystems support direct I/O without need for
1117 	 * this callback. However, it still needs to be set in
1118 	 * inode->a_ops so that open/fcntl know that direct I/O is
1119 	 * generally supported.
1120 	 */
1121 	return -EINVAL;
1122 }
1123 EXPORT_SYMBOL_GPL(noop_direct_IO);
1124 
1125 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1126 void kfree_link(void *p)
1127 {
1128 	kfree(p);
1129 }
1130 EXPORT_SYMBOL(kfree_link);
1131 
1132 /*
1133  * nop .set_page_dirty method so that people can use .page_mkwrite on
1134  * anon inodes.
1135  */
1136 static int anon_set_page_dirty(struct page *page)
1137 {
1138 	return 0;
1139 };
1140 
1141 /*
1142  * A single inode exists for all anon_inode files. Contrary to pipes,
1143  * anon_inode inodes have no associated per-instance data, so we need
1144  * only allocate one of them.
1145  */
1146 struct inode *alloc_anon_inode(struct super_block *s)
1147 {
1148 	static const struct address_space_operations anon_aops = {
1149 		.set_page_dirty = anon_set_page_dirty,
1150 	};
1151 	struct inode *inode = new_inode_pseudo(s);
1152 
1153 	if (!inode)
1154 		return ERR_PTR(-ENOMEM);
1155 
1156 	inode->i_ino = get_next_ino();
1157 	inode->i_mapping->a_ops = &anon_aops;
1158 
1159 	/*
1160 	 * Mark the inode dirty from the very beginning,
1161 	 * that way it will never be moved to the dirty
1162 	 * list because mark_inode_dirty() will think
1163 	 * that it already _is_ on the dirty list.
1164 	 */
1165 	inode->i_state = I_DIRTY;
1166 	inode->i_mode = S_IRUSR | S_IWUSR;
1167 	inode->i_uid = current_fsuid();
1168 	inode->i_gid = current_fsgid();
1169 	inode->i_flags |= S_PRIVATE;
1170 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1171 	return inode;
1172 }
1173 EXPORT_SYMBOL(alloc_anon_inode);
1174 
1175 /**
1176  * simple_nosetlease - generic helper for prohibiting leases
1177  * @filp: file pointer
1178  * @arg: type of lease to obtain
1179  * @flp: new lease supplied for insertion
1180  * @priv: private data for lm_setup operation
1181  *
1182  * Generic helper for filesystems that do not wish to allow leases to be set.
1183  * All arguments are ignored and it just returns -EINVAL.
1184  */
1185 int
1186 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1187 		  void **priv)
1188 {
1189 	return -EINVAL;
1190 }
1191 EXPORT_SYMBOL(simple_nosetlease);
1192 
1193 /**
1194  * simple_get_link - generic helper to get the target of "fast" symlinks
1195  * @dentry: not used here
1196  * @inode: the symlink inode
1197  * @done: not used here
1198  *
1199  * Generic helper for filesystems to use for symlink inodes where a pointer to
1200  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1201  * since as an optimization the path lookup code uses any non-NULL ->i_link
1202  * directly, without calling ->get_link().  But ->get_link() still must be set,
1203  * to mark the inode_operations as being for a symlink.
1204  *
1205  * Return: the symlink target
1206  */
1207 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1208 			    struct delayed_call *done)
1209 {
1210 	return inode->i_link;
1211 }
1212 EXPORT_SYMBOL(simple_get_link);
1213 
1214 const struct inode_operations simple_symlink_inode_operations = {
1215 	.get_link = simple_get_link,
1216 };
1217 EXPORT_SYMBOL(simple_symlink_inode_operations);
1218 
1219 /*
1220  * Operations for a permanently empty directory.
1221  */
1222 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1223 {
1224 	return ERR_PTR(-ENOENT);
1225 }
1226 
1227 static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1228 			     u32 request_mask, unsigned int query_flags)
1229 {
1230 	struct inode *inode = d_inode(path->dentry);
1231 	generic_fillattr(inode, stat);
1232 	return 0;
1233 }
1234 
1235 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1236 {
1237 	return -EPERM;
1238 }
1239 
1240 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1241 {
1242 	return -EOPNOTSUPP;
1243 }
1244 
1245 static const struct inode_operations empty_dir_inode_operations = {
1246 	.lookup		= empty_dir_lookup,
1247 	.permission	= generic_permission,
1248 	.setattr	= empty_dir_setattr,
1249 	.getattr	= empty_dir_getattr,
1250 	.listxattr	= empty_dir_listxattr,
1251 };
1252 
1253 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1254 {
1255 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1256 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1257 }
1258 
1259 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1260 {
1261 	dir_emit_dots(file, ctx);
1262 	return 0;
1263 }
1264 
1265 static const struct file_operations empty_dir_operations = {
1266 	.llseek		= empty_dir_llseek,
1267 	.read		= generic_read_dir,
1268 	.iterate_shared	= empty_dir_readdir,
1269 	.fsync		= noop_fsync,
1270 };
1271 
1272 
1273 void make_empty_dir_inode(struct inode *inode)
1274 {
1275 	set_nlink(inode, 2);
1276 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1277 	inode->i_uid = GLOBAL_ROOT_UID;
1278 	inode->i_gid = GLOBAL_ROOT_GID;
1279 	inode->i_rdev = 0;
1280 	inode->i_size = 0;
1281 	inode->i_blkbits = PAGE_SHIFT;
1282 	inode->i_blocks = 0;
1283 
1284 	inode->i_op = &empty_dir_inode_operations;
1285 	inode->i_opflags &= ~IOP_XATTR;
1286 	inode->i_fop = &empty_dir_operations;
1287 }
1288 
1289 bool is_empty_dir_inode(struct inode *inode)
1290 {
1291 	return (inode->i_fop == &empty_dir_operations) &&
1292 		(inode->i_op == &empty_dir_inode_operations);
1293 }
1294