1 /* 2 * fs/libfs.c 3 * Library for filesystems writers. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/pagemap.h> 8 #include <linux/slab.h> 9 #include <linux/mount.h> 10 #include <linux/vfs.h> 11 #include <linux/quotaops.h> 12 #include <linux/mutex.h> 13 #include <linux/exportfs.h> 14 #include <linux/writeback.h> 15 #include <linux/buffer_head.h> 16 17 #include <asm/uaccess.h> 18 19 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry, 20 struct kstat *stat) 21 { 22 struct inode *inode = dentry->d_inode; 23 generic_fillattr(inode, stat); 24 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9); 25 return 0; 26 } 27 28 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 29 { 30 buf->f_type = dentry->d_sb->s_magic; 31 buf->f_bsize = PAGE_CACHE_SIZE; 32 buf->f_namelen = NAME_MAX; 33 return 0; 34 } 35 36 /* 37 * Retaining negative dentries for an in-memory filesystem just wastes 38 * memory and lookup time: arrange for them to be deleted immediately. 39 */ 40 static int simple_delete_dentry(struct dentry *dentry) 41 { 42 return 1; 43 } 44 45 /* 46 * Lookup the data. This is trivial - if the dentry didn't already 47 * exist, we know it is negative. Set d_op to delete negative dentries. 48 */ 49 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 50 { 51 static const struct dentry_operations simple_dentry_operations = { 52 .d_delete = simple_delete_dentry, 53 }; 54 55 if (dentry->d_name.len > NAME_MAX) 56 return ERR_PTR(-ENAMETOOLONG); 57 dentry->d_op = &simple_dentry_operations; 58 d_add(dentry, NULL); 59 return NULL; 60 } 61 62 int dcache_dir_open(struct inode *inode, struct file *file) 63 { 64 static struct qstr cursor_name = {.len = 1, .name = "."}; 65 66 file->private_data = d_alloc(file->f_path.dentry, &cursor_name); 67 68 return file->private_data ? 0 : -ENOMEM; 69 } 70 71 int dcache_dir_close(struct inode *inode, struct file *file) 72 { 73 dput(file->private_data); 74 return 0; 75 } 76 77 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin) 78 { 79 mutex_lock(&file->f_path.dentry->d_inode->i_mutex); 80 switch (origin) { 81 case 1: 82 offset += file->f_pos; 83 case 0: 84 if (offset >= 0) 85 break; 86 default: 87 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex); 88 return -EINVAL; 89 } 90 if (offset != file->f_pos) { 91 file->f_pos = offset; 92 if (file->f_pos >= 2) { 93 struct list_head *p; 94 struct dentry *cursor = file->private_data; 95 loff_t n = file->f_pos - 2; 96 97 spin_lock(&dcache_lock); 98 list_del(&cursor->d_u.d_child); 99 p = file->f_path.dentry->d_subdirs.next; 100 while (n && p != &file->f_path.dentry->d_subdirs) { 101 struct dentry *next; 102 next = list_entry(p, struct dentry, d_u.d_child); 103 if (!d_unhashed(next) && next->d_inode) 104 n--; 105 p = p->next; 106 } 107 list_add_tail(&cursor->d_u.d_child, p); 108 spin_unlock(&dcache_lock); 109 } 110 } 111 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex); 112 return offset; 113 } 114 115 /* Relationship between i_mode and the DT_xxx types */ 116 static inline unsigned char dt_type(struct inode *inode) 117 { 118 return (inode->i_mode >> 12) & 15; 119 } 120 121 /* 122 * Directory is locked and all positive dentries in it are safe, since 123 * for ramfs-type trees they can't go away without unlink() or rmdir(), 124 * both impossible due to the lock on directory. 125 */ 126 127 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir) 128 { 129 struct dentry *dentry = filp->f_path.dentry; 130 struct dentry *cursor = filp->private_data; 131 struct list_head *p, *q = &cursor->d_u.d_child; 132 ino_t ino; 133 int i = filp->f_pos; 134 135 switch (i) { 136 case 0: 137 ino = dentry->d_inode->i_ino; 138 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 139 break; 140 filp->f_pos++; 141 i++; 142 /* fallthrough */ 143 case 1: 144 ino = parent_ino(dentry); 145 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 146 break; 147 filp->f_pos++; 148 i++; 149 /* fallthrough */ 150 default: 151 spin_lock(&dcache_lock); 152 if (filp->f_pos == 2) 153 list_move(q, &dentry->d_subdirs); 154 155 for (p=q->next; p != &dentry->d_subdirs; p=p->next) { 156 struct dentry *next; 157 next = list_entry(p, struct dentry, d_u.d_child); 158 if (d_unhashed(next) || !next->d_inode) 159 continue; 160 161 spin_unlock(&dcache_lock); 162 if (filldir(dirent, next->d_name.name, 163 next->d_name.len, filp->f_pos, 164 next->d_inode->i_ino, 165 dt_type(next->d_inode)) < 0) 166 return 0; 167 spin_lock(&dcache_lock); 168 /* next is still alive */ 169 list_move(q, p); 170 p = q; 171 filp->f_pos++; 172 } 173 spin_unlock(&dcache_lock); 174 } 175 return 0; 176 } 177 178 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 179 { 180 return -EISDIR; 181 } 182 183 const struct file_operations simple_dir_operations = { 184 .open = dcache_dir_open, 185 .release = dcache_dir_close, 186 .llseek = dcache_dir_lseek, 187 .read = generic_read_dir, 188 .readdir = dcache_readdir, 189 .fsync = noop_fsync, 190 }; 191 192 const struct inode_operations simple_dir_inode_operations = { 193 .lookup = simple_lookup, 194 }; 195 196 static const struct super_operations simple_super_operations = { 197 .statfs = simple_statfs, 198 }; 199 200 /* 201 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 202 * will never be mountable) 203 */ 204 int get_sb_pseudo(struct file_system_type *fs_type, char *name, 205 const struct super_operations *ops, unsigned long magic, 206 struct vfsmount *mnt) 207 { 208 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 209 struct dentry *dentry; 210 struct inode *root; 211 struct qstr d_name = {.name = name, .len = strlen(name)}; 212 213 if (IS_ERR(s)) 214 return PTR_ERR(s); 215 216 s->s_flags = MS_NOUSER; 217 s->s_maxbytes = MAX_LFS_FILESIZE; 218 s->s_blocksize = PAGE_SIZE; 219 s->s_blocksize_bits = PAGE_SHIFT; 220 s->s_magic = magic; 221 s->s_op = ops ? ops : &simple_super_operations; 222 s->s_time_gran = 1; 223 root = new_inode(s); 224 if (!root) 225 goto Enomem; 226 /* 227 * since this is the first inode, make it number 1. New inodes created 228 * after this must take care not to collide with it (by passing 229 * max_reserved of 1 to iunique). 230 */ 231 root->i_ino = 1; 232 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 233 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME; 234 dentry = d_alloc(NULL, &d_name); 235 if (!dentry) { 236 iput(root); 237 goto Enomem; 238 } 239 dentry->d_sb = s; 240 dentry->d_parent = dentry; 241 d_instantiate(dentry, root); 242 s->s_root = dentry; 243 s->s_flags |= MS_ACTIVE; 244 simple_set_mnt(mnt, s); 245 return 0; 246 247 Enomem: 248 deactivate_locked_super(s); 249 return -ENOMEM; 250 } 251 252 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 253 { 254 struct inode *inode = old_dentry->d_inode; 255 256 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 257 inc_nlink(inode); 258 atomic_inc(&inode->i_count); 259 dget(dentry); 260 d_instantiate(dentry, inode); 261 return 0; 262 } 263 264 static inline int simple_positive(struct dentry *dentry) 265 { 266 return dentry->d_inode && !d_unhashed(dentry); 267 } 268 269 int simple_empty(struct dentry *dentry) 270 { 271 struct dentry *child; 272 int ret = 0; 273 274 spin_lock(&dcache_lock); 275 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) 276 if (simple_positive(child)) 277 goto out; 278 ret = 1; 279 out: 280 spin_unlock(&dcache_lock); 281 return ret; 282 } 283 284 int simple_unlink(struct inode *dir, struct dentry *dentry) 285 { 286 struct inode *inode = dentry->d_inode; 287 288 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 289 drop_nlink(inode); 290 dput(dentry); 291 return 0; 292 } 293 294 int simple_rmdir(struct inode *dir, struct dentry *dentry) 295 { 296 if (!simple_empty(dentry)) 297 return -ENOTEMPTY; 298 299 drop_nlink(dentry->d_inode); 300 simple_unlink(dir, dentry); 301 drop_nlink(dir); 302 return 0; 303 } 304 305 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 306 struct inode *new_dir, struct dentry *new_dentry) 307 { 308 struct inode *inode = old_dentry->d_inode; 309 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode); 310 311 if (!simple_empty(new_dentry)) 312 return -ENOTEMPTY; 313 314 if (new_dentry->d_inode) { 315 simple_unlink(new_dir, new_dentry); 316 if (they_are_dirs) 317 drop_nlink(old_dir); 318 } else if (they_are_dirs) { 319 drop_nlink(old_dir); 320 inc_nlink(new_dir); 321 } 322 323 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 324 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME; 325 326 return 0; 327 } 328 329 /** 330 * simple_setsize - handle core mm and vfs requirements for file size change 331 * @inode: inode 332 * @newsize: new file size 333 * 334 * Returns 0 on success, -error on failure. 335 * 336 * simple_setsize must be called with inode_mutex held. 337 * 338 * simple_setsize will check that the requested new size is OK (see 339 * inode_newsize_ok), and then will perform the necessary i_size update 340 * and pagecache truncation (if necessary). It will be typically be called 341 * from the filesystem's setattr function when ATTR_SIZE is passed in. 342 * 343 * The inode itself must have correct permissions and attributes to allow 344 * i_size to be changed, this function then just checks that the new size 345 * requested is valid. 346 * 347 * In the case of simple in-memory filesystems with inodes stored solely 348 * in the inode cache, and file data in the pagecache, nothing more needs 349 * to be done to satisfy a truncate request. Filesystems with on-disk 350 * blocks for example will need to free them in the case of truncate, in 351 * that case it may be easier not to use simple_setsize (but each of its 352 * components will likely be required at some point to update pagecache 353 * and inode etc). 354 */ 355 int simple_setsize(struct inode *inode, loff_t newsize) 356 { 357 loff_t oldsize; 358 int error; 359 360 error = inode_newsize_ok(inode, newsize); 361 if (error) 362 return error; 363 364 oldsize = inode->i_size; 365 i_size_write(inode, newsize); 366 truncate_pagecache(inode, oldsize, newsize); 367 368 return error; 369 } 370 EXPORT_SYMBOL(simple_setsize); 371 372 /** 373 * simple_setattr - setattr for simple in-memory filesystem 374 * @dentry: dentry 375 * @iattr: iattr structure 376 * 377 * Returns 0 on success, -error on failure. 378 * 379 * simple_setattr implements setattr for an in-memory filesystem which 380 * does not store its own file data or metadata (eg. uses the page cache 381 * and inode cache as its data store). 382 */ 383 int simple_setattr(struct dentry *dentry, struct iattr *iattr) 384 { 385 struct inode *inode = dentry->d_inode; 386 int error; 387 388 error = inode_change_ok(inode, iattr); 389 if (error) 390 return error; 391 392 if (iattr->ia_valid & ATTR_SIZE) { 393 error = simple_setsize(inode, iattr->ia_size); 394 if (error) 395 return error; 396 } 397 398 setattr_copy(inode, iattr); 399 return error; 400 } 401 EXPORT_SYMBOL(simple_setattr); 402 403 int simple_readpage(struct file *file, struct page *page) 404 { 405 clear_highpage(page); 406 flush_dcache_page(page); 407 SetPageUptodate(page); 408 unlock_page(page); 409 return 0; 410 } 411 412 int simple_write_begin(struct file *file, struct address_space *mapping, 413 loff_t pos, unsigned len, unsigned flags, 414 struct page **pagep, void **fsdata) 415 { 416 struct page *page; 417 pgoff_t index; 418 419 index = pos >> PAGE_CACHE_SHIFT; 420 421 page = grab_cache_page_write_begin(mapping, index, flags); 422 if (!page) 423 return -ENOMEM; 424 425 *pagep = page; 426 427 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) { 428 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 429 430 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE); 431 } 432 return 0; 433 } 434 435 /** 436 * simple_write_end - .write_end helper for non-block-device FSes 437 * @available: See .write_end of address_space_operations 438 * @file: " 439 * @mapping: " 440 * @pos: " 441 * @len: " 442 * @copied: " 443 * @page: " 444 * @fsdata: " 445 * 446 * simple_write_end does the minimum needed for updating a page after writing is 447 * done. It has the same API signature as the .write_end of 448 * address_space_operations vector. So it can just be set onto .write_end for 449 * FSes that don't need any other processing. i_mutex is assumed to be held. 450 * Block based filesystems should use generic_write_end(). 451 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 452 * is not called, so a filesystem that actually does store data in .write_inode 453 * should extend on what's done here with a call to mark_inode_dirty() in the 454 * case that i_size has changed. 455 */ 456 int simple_write_end(struct file *file, struct address_space *mapping, 457 loff_t pos, unsigned len, unsigned copied, 458 struct page *page, void *fsdata) 459 { 460 struct inode *inode = page->mapping->host; 461 loff_t last_pos = pos + copied; 462 463 /* zero the stale part of the page if we did a short copy */ 464 if (copied < len) { 465 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 466 467 zero_user(page, from + copied, len - copied); 468 } 469 470 if (!PageUptodate(page)) 471 SetPageUptodate(page); 472 /* 473 * No need to use i_size_read() here, the i_size 474 * cannot change under us because we hold the i_mutex. 475 */ 476 if (last_pos > inode->i_size) 477 i_size_write(inode, last_pos); 478 479 set_page_dirty(page); 480 unlock_page(page); 481 page_cache_release(page); 482 483 return copied; 484 } 485 486 /* 487 * the inodes created here are not hashed. If you use iunique to generate 488 * unique inode values later for this filesystem, then you must take care 489 * to pass it an appropriate max_reserved value to avoid collisions. 490 */ 491 int simple_fill_super(struct super_block *s, unsigned long magic, 492 struct tree_descr *files) 493 { 494 struct inode *inode; 495 struct dentry *root; 496 struct dentry *dentry; 497 int i; 498 499 s->s_blocksize = PAGE_CACHE_SIZE; 500 s->s_blocksize_bits = PAGE_CACHE_SHIFT; 501 s->s_magic = magic; 502 s->s_op = &simple_super_operations; 503 s->s_time_gran = 1; 504 505 inode = new_inode(s); 506 if (!inode) 507 return -ENOMEM; 508 /* 509 * because the root inode is 1, the files array must not contain an 510 * entry at index 1 511 */ 512 inode->i_ino = 1; 513 inode->i_mode = S_IFDIR | 0755; 514 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 515 inode->i_op = &simple_dir_inode_operations; 516 inode->i_fop = &simple_dir_operations; 517 inode->i_nlink = 2; 518 root = d_alloc_root(inode); 519 if (!root) { 520 iput(inode); 521 return -ENOMEM; 522 } 523 for (i = 0; !files->name || files->name[0]; i++, files++) { 524 if (!files->name) 525 continue; 526 527 /* warn if it tries to conflict with the root inode */ 528 if (unlikely(i == 1)) 529 printk(KERN_WARNING "%s: %s passed in a files array" 530 "with an index of 1!\n", __func__, 531 s->s_type->name); 532 533 dentry = d_alloc_name(root, files->name); 534 if (!dentry) 535 goto out; 536 inode = new_inode(s); 537 if (!inode) 538 goto out; 539 inode->i_mode = S_IFREG | files->mode; 540 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 541 inode->i_fop = files->ops; 542 inode->i_ino = i; 543 d_add(dentry, inode); 544 } 545 s->s_root = root; 546 return 0; 547 out: 548 d_genocide(root); 549 dput(root); 550 return -ENOMEM; 551 } 552 553 static DEFINE_SPINLOCK(pin_fs_lock); 554 555 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 556 { 557 struct vfsmount *mnt = NULL; 558 spin_lock(&pin_fs_lock); 559 if (unlikely(!*mount)) { 560 spin_unlock(&pin_fs_lock); 561 mnt = vfs_kern_mount(type, 0, type->name, NULL); 562 if (IS_ERR(mnt)) 563 return PTR_ERR(mnt); 564 spin_lock(&pin_fs_lock); 565 if (!*mount) 566 *mount = mnt; 567 } 568 mntget(*mount); 569 ++*count; 570 spin_unlock(&pin_fs_lock); 571 mntput(mnt); 572 return 0; 573 } 574 575 void simple_release_fs(struct vfsmount **mount, int *count) 576 { 577 struct vfsmount *mnt; 578 spin_lock(&pin_fs_lock); 579 mnt = *mount; 580 if (!--*count) 581 *mount = NULL; 582 spin_unlock(&pin_fs_lock); 583 mntput(mnt); 584 } 585 586 /** 587 * simple_read_from_buffer - copy data from the buffer to user space 588 * @to: the user space buffer to read to 589 * @count: the maximum number of bytes to read 590 * @ppos: the current position in the buffer 591 * @from: the buffer to read from 592 * @available: the size of the buffer 593 * 594 * The simple_read_from_buffer() function reads up to @count bytes from the 595 * buffer @from at offset @ppos into the user space address starting at @to. 596 * 597 * On success, the number of bytes read is returned and the offset @ppos is 598 * advanced by this number, or negative value is returned on error. 599 **/ 600 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 601 const void *from, size_t available) 602 { 603 loff_t pos = *ppos; 604 size_t ret; 605 606 if (pos < 0) 607 return -EINVAL; 608 if (pos >= available || !count) 609 return 0; 610 if (count > available - pos) 611 count = available - pos; 612 ret = copy_to_user(to, from + pos, count); 613 if (ret == count) 614 return -EFAULT; 615 count -= ret; 616 *ppos = pos + count; 617 return count; 618 } 619 620 /** 621 * simple_write_to_buffer - copy data from user space to the buffer 622 * @to: the buffer to write to 623 * @available: the size of the buffer 624 * @ppos: the current position in the buffer 625 * @from: the user space buffer to read from 626 * @count: the maximum number of bytes to read 627 * 628 * The simple_write_to_buffer() function reads up to @count bytes from the user 629 * space address starting at @from into the buffer @to at offset @ppos. 630 * 631 * On success, the number of bytes written is returned and the offset @ppos is 632 * advanced by this number, or negative value is returned on error. 633 **/ 634 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 635 const void __user *from, size_t count) 636 { 637 loff_t pos = *ppos; 638 size_t res; 639 640 if (pos < 0) 641 return -EINVAL; 642 if (pos >= available || !count) 643 return 0; 644 if (count > available - pos) 645 count = available - pos; 646 res = copy_from_user(to + pos, from, count); 647 if (res == count) 648 return -EFAULT; 649 count -= res; 650 *ppos = pos + count; 651 return count; 652 } 653 654 /** 655 * memory_read_from_buffer - copy data from the buffer 656 * @to: the kernel space buffer to read to 657 * @count: the maximum number of bytes to read 658 * @ppos: the current position in the buffer 659 * @from: the buffer to read from 660 * @available: the size of the buffer 661 * 662 * The memory_read_from_buffer() function reads up to @count bytes from the 663 * buffer @from at offset @ppos into the kernel space address starting at @to. 664 * 665 * On success, the number of bytes read is returned and the offset @ppos is 666 * advanced by this number, or negative value is returned on error. 667 **/ 668 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 669 const void *from, size_t available) 670 { 671 loff_t pos = *ppos; 672 673 if (pos < 0) 674 return -EINVAL; 675 if (pos >= available) 676 return 0; 677 if (count > available - pos) 678 count = available - pos; 679 memcpy(to, from + pos, count); 680 *ppos = pos + count; 681 682 return count; 683 } 684 685 /* 686 * Transaction based IO. 687 * The file expects a single write which triggers the transaction, and then 688 * possibly a read which collects the result - which is stored in a 689 * file-local buffer. 690 */ 691 692 void simple_transaction_set(struct file *file, size_t n) 693 { 694 struct simple_transaction_argresp *ar = file->private_data; 695 696 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 697 698 /* 699 * The barrier ensures that ar->size will really remain zero until 700 * ar->data is ready for reading. 701 */ 702 smp_mb(); 703 ar->size = n; 704 } 705 706 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 707 { 708 struct simple_transaction_argresp *ar; 709 static DEFINE_SPINLOCK(simple_transaction_lock); 710 711 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 712 return ERR_PTR(-EFBIG); 713 714 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 715 if (!ar) 716 return ERR_PTR(-ENOMEM); 717 718 spin_lock(&simple_transaction_lock); 719 720 /* only one write allowed per open */ 721 if (file->private_data) { 722 spin_unlock(&simple_transaction_lock); 723 free_page((unsigned long)ar); 724 return ERR_PTR(-EBUSY); 725 } 726 727 file->private_data = ar; 728 729 spin_unlock(&simple_transaction_lock); 730 731 if (copy_from_user(ar->data, buf, size)) 732 return ERR_PTR(-EFAULT); 733 734 return ar->data; 735 } 736 737 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 738 { 739 struct simple_transaction_argresp *ar = file->private_data; 740 741 if (!ar) 742 return 0; 743 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 744 } 745 746 int simple_transaction_release(struct inode *inode, struct file *file) 747 { 748 free_page((unsigned long)file->private_data); 749 return 0; 750 } 751 752 /* Simple attribute files */ 753 754 struct simple_attr { 755 int (*get)(void *, u64 *); 756 int (*set)(void *, u64); 757 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 758 char set_buf[24]; 759 void *data; 760 const char *fmt; /* format for read operation */ 761 struct mutex mutex; /* protects access to these buffers */ 762 }; 763 764 /* simple_attr_open is called by an actual attribute open file operation 765 * to set the attribute specific access operations. */ 766 int simple_attr_open(struct inode *inode, struct file *file, 767 int (*get)(void *, u64 *), int (*set)(void *, u64), 768 const char *fmt) 769 { 770 struct simple_attr *attr; 771 772 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 773 if (!attr) 774 return -ENOMEM; 775 776 attr->get = get; 777 attr->set = set; 778 attr->data = inode->i_private; 779 attr->fmt = fmt; 780 mutex_init(&attr->mutex); 781 782 file->private_data = attr; 783 784 return nonseekable_open(inode, file); 785 } 786 787 int simple_attr_release(struct inode *inode, struct file *file) 788 { 789 kfree(file->private_data); 790 return 0; 791 } 792 793 /* read from the buffer that is filled with the get function */ 794 ssize_t simple_attr_read(struct file *file, char __user *buf, 795 size_t len, loff_t *ppos) 796 { 797 struct simple_attr *attr; 798 size_t size; 799 ssize_t ret; 800 801 attr = file->private_data; 802 803 if (!attr->get) 804 return -EACCES; 805 806 ret = mutex_lock_interruptible(&attr->mutex); 807 if (ret) 808 return ret; 809 810 if (*ppos) { /* continued read */ 811 size = strlen(attr->get_buf); 812 } else { /* first read */ 813 u64 val; 814 ret = attr->get(attr->data, &val); 815 if (ret) 816 goto out; 817 818 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 819 attr->fmt, (unsigned long long)val); 820 } 821 822 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 823 out: 824 mutex_unlock(&attr->mutex); 825 return ret; 826 } 827 828 /* interpret the buffer as a number to call the set function with */ 829 ssize_t simple_attr_write(struct file *file, const char __user *buf, 830 size_t len, loff_t *ppos) 831 { 832 struct simple_attr *attr; 833 u64 val; 834 size_t size; 835 ssize_t ret; 836 837 attr = file->private_data; 838 if (!attr->set) 839 return -EACCES; 840 841 ret = mutex_lock_interruptible(&attr->mutex); 842 if (ret) 843 return ret; 844 845 ret = -EFAULT; 846 size = min(sizeof(attr->set_buf) - 1, len); 847 if (copy_from_user(attr->set_buf, buf, size)) 848 goto out; 849 850 attr->set_buf[size] = '\0'; 851 val = simple_strtol(attr->set_buf, NULL, 0); 852 ret = attr->set(attr->data, val); 853 if (ret == 0) 854 ret = len; /* on success, claim we got the whole input */ 855 out: 856 mutex_unlock(&attr->mutex); 857 return ret; 858 } 859 860 /** 861 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 862 * @sb: filesystem to do the file handle conversion on 863 * @fid: file handle to convert 864 * @fh_len: length of the file handle in bytes 865 * @fh_type: type of file handle 866 * @get_inode: filesystem callback to retrieve inode 867 * 868 * This function decodes @fid as long as it has one of the well-known 869 * Linux filehandle types and calls @get_inode on it to retrieve the 870 * inode for the object specified in the file handle. 871 */ 872 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 873 int fh_len, int fh_type, struct inode *(*get_inode) 874 (struct super_block *sb, u64 ino, u32 gen)) 875 { 876 struct inode *inode = NULL; 877 878 if (fh_len < 2) 879 return NULL; 880 881 switch (fh_type) { 882 case FILEID_INO32_GEN: 883 case FILEID_INO32_GEN_PARENT: 884 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 885 break; 886 } 887 888 return d_obtain_alias(inode); 889 } 890 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 891 892 /** 893 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation 894 * @sb: filesystem to do the file handle conversion on 895 * @fid: file handle to convert 896 * @fh_len: length of the file handle in bytes 897 * @fh_type: type of file handle 898 * @get_inode: filesystem callback to retrieve inode 899 * 900 * This function decodes @fid as long as it has one of the well-known 901 * Linux filehandle types and calls @get_inode on it to retrieve the 902 * inode for the _parent_ object specified in the file handle if it 903 * is specified in the file handle, or NULL otherwise. 904 */ 905 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 906 int fh_len, int fh_type, struct inode *(*get_inode) 907 (struct super_block *sb, u64 ino, u32 gen)) 908 { 909 struct inode *inode = NULL; 910 911 if (fh_len <= 2) 912 return NULL; 913 914 switch (fh_type) { 915 case FILEID_INO32_GEN_PARENT: 916 inode = get_inode(sb, fid->i32.parent_ino, 917 (fh_len > 3 ? fid->i32.parent_gen : 0)); 918 break; 919 } 920 921 return d_obtain_alias(inode); 922 } 923 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 924 925 /** 926 * generic_file_fsync - generic fsync implementation for simple filesystems 927 * @file: file to synchronize 928 * @datasync: only synchronize essential metadata if true 929 * 930 * This is a generic implementation of the fsync method for simple 931 * filesystems which track all non-inode metadata in the buffers list 932 * hanging off the address_space structure. 933 */ 934 int generic_file_fsync(struct file *file, int datasync) 935 { 936 struct writeback_control wbc = { 937 .sync_mode = WB_SYNC_ALL, 938 .nr_to_write = 0, /* metadata-only; caller takes care of data */ 939 }; 940 struct inode *inode = file->f_mapping->host; 941 int err; 942 int ret; 943 944 ret = sync_mapping_buffers(inode->i_mapping); 945 if (!(inode->i_state & I_DIRTY)) 946 return ret; 947 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 948 return ret; 949 950 err = sync_inode(inode, &wbc); 951 if (ret == 0) 952 ret = err; 953 return ret; 954 } 955 EXPORT_SYMBOL(generic_file_fsync); 956 957 /* 958 * No-op implementation of ->fsync for in-memory filesystems. 959 */ 960 int noop_fsync(struct file *file, int datasync) 961 { 962 return 0; 963 } 964 965 EXPORT_SYMBOL(dcache_dir_close); 966 EXPORT_SYMBOL(dcache_dir_lseek); 967 EXPORT_SYMBOL(dcache_dir_open); 968 EXPORT_SYMBOL(dcache_readdir); 969 EXPORT_SYMBOL(generic_read_dir); 970 EXPORT_SYMBOL(get_sb_pseudo); 971 EXPORT_SYMBOL(simple_write_begin); 972 EXPORT_SYMBOL(simple_write_end); 973 EXPORT_SYMBOL(simple_dir_inode_operations); 974 EXPORT_SYMBOL(simple_dir_operations); 975 EXPORT_SYMBOL(simple_empty); 976 EXPORT_SYMBOL(simple_fill_super); 977 EXPORT_SYMBOL(simple_getattr); 978 EXPORT_SYMBOL(simple_link); 979 EXPORT_SYMBOL(simple_lookup); 980 EXPORT_SYMBOL(simple_pin_fs); 981 EXPORT_SYMBOL(simple_readpage); 982 EXPORT_SYMBOL(simple_release_fs); 983 EXPORT_SYMBOL(simple_rename); 984 EXPORT_SYMBOL(simple_rmdir); 985 EXPORT_SYMBOL(simple_statfs); 986 EXPORT_SYMBOL(noop_fsync); 987 EXPORT_SYMBOL(simple_unlink); 988 EXPORT_SYMBOL(simple_read_from_buffer); 989 EXPORT_SYMBOL(simple_write_to_buffer); 990 EXPORT_SYMBOL(memory_read_from_buffer); 991 EXPORT_SYMBOL(simple_transaction_set); 992 EXPORT_SYMBOL(simple_transaction_get); 993 EXPORT_SYMBOL(simple_transaction_read); 994 EXPORT_SYMBOL(simple_transaction_release); 995 EXPORT_SYMBOL_GPL(simple_attr_open); 996 EXPORT_SYMBOL_GPL(simple_attr_release); 997 EXPORT_SYMBOL_GPL(simple_attr_read); 998 EXPORT_SYMBOL_GPL(simple_attr_write); 999