1 /* 2 * fs/libfs.c 3 * Library for filesystems writers. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/pagemap.h> 8 #include <linux/slab.h> 9 #include <linux/mount.h> 10 #include <linux/vfs.h> 11 #include <linux/quotaops.h> 12 #include <linux/mutex.h> 13 #include <linux/exportfs.h> 14 #include <linux/writeback.h> 15 #include <linux/buffer_head.h> 16 17 #include <asm/uaccess.h> 18 19 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry, 20 struct kstat *stat) 21 { 22 struct inode *inode = dentry->d_inode; 23 generic_fillattr(inode, stat); 24 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9); 25 return 0; 26 } 27 28 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 29 { 30 buf->f_type = dentry->d_sb->s_magic; 31 buf->f_bsize = PAGE_CACHE_SIZE; 32 buf->f_namelen = NAME_MAX; 33 return 0; 34 } 35 36 /* 37 * Retaining negative dentries for an in-memory filesystem just wastes 38 * memory and lookup time: arrange for them to be deleted immediately. 39 */ 40 static int simple_delete_dentry(struct dentry *dentry) 41 { 42 return 1; 43 } 44 45 /* 46 * Lookup the data. This is trivial - if the dentry didn't already 47 * exist, we know it is negative. Set d_op to delete negative dentries. 48 */ 49 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 50 { 51 static const struct dentry_operations simple_dentry_operations = { 52 .d_delete = simple_delete_dentry, 53 }; 54 55 if (dentry->d_name.len > NAME_MAX) 56 return ERR_PTR(-ENAMETOOLONG); 57 dentry->d_op = &simple_dentry_operations; 58 d_add(dentry, NULL); 59 return NULL; 60 } 61 62 int dcache_dir_open(struct inode *inode, struct file *file) 63 { 64 static struct qstr cursor_name = {.len = 1, .name = "."}; 65 66 file->private_data = d_alloc(file->f_path.dentry, &cursor_name); 67 68 return file->private_data ? 0 : -ENOMEM; 69 } 70 71 int dcache_dir_close(struct inode *inode, struct file *file) 72 { 73 dput(file->private_data); 74 return 0; 75 } 76 77 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin) 78 { 79 mutex_lock(&file->f_path.dentry->d_inode->i_mutex); 80 switch (origin) { 81 case 1: 82 offset += file->f_pos; 83 case 0: 84 if (offset >= 0) 85 break; 86 default: 87 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex); 88 return -EINVAL; 89 } 90 if (offset != file->f_pos) { 91 file->f_pos = offset; 92 if (file->f_pos >= 2) { 93 struct list_head *p; 94 struct dentry *cursor = file->private_data; 95 loff_t n = file->f_pos - 2; 96 97 spin_lock(&dcache_lock); 98 list_del(&cursor->d_u.d_child); 99 p = file->f_path.dentry->d_subdirs.next; 100 while (n && p != &file->f_path.dentry->d_subdirs) { 101 struct dentry *next; 102 next = list_entry(p, struct dentry, d_u.d_child); 103 if (!d_unhashed(next) && next->d_inode) 104 n--; 105 p = p->next; 106 } 107 list_add_tail(&cursor->d_u.d_child, p); 108 spin_unlock(&dcache_lock); 109 } 110 } 111 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex); 112 return offset; 113 } 114 115 /* Relationship between i_mode and the DT_xxx types */ 116 static inline unsigned char dt_type(struct inode *inode) 117 { 118 return (inode->i_mode >> 12) & 15; 119 } 120 121 /* 122 * Directory is locked and all positive dentries in it are safe, since 123 * for ramfs-type trees they can't go away without unlink() or rmdir(), 124 * both impossible due to the lock on directory. 125 */ 126 127 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir) 128 { 129 struct dentry *dentry = filp->f_path.dentry; 130 struct dentry *cursor = filp->private_data; 131 struct list_head *p, *q = &cursor->d_u.d_child; 132 ino_t ino; 133 int i = filp->f_pos; 134 135 switch (i) { 136 case 0: 137 ino = dentry->d_inode->i_ino; 138 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 139 break; 140 filp->f_pos++; 141 i++; 142 /* fallthrough */ 143 case 1: 144 ino = parent_ino(dentry); 145 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 146 break; 147 filp->f_pos++; 148 i++; 149 /* fallthrough */ 150 default: 151 spin_lock(&dcache_lock); 152 if (filp->f_pos == 2) 153 list_move(q, &dentry->d_subdirs); 154 155 for (p=q->next; p != &dentry->d_subdirs; p=p->next) { 156 struct dentry *next; 157 next = list_entry(p, struct dentry, d_u.d_child); 158 if (d_unhashed(next) || !next->d_inode) 159 continue; 160 161 spin_unlock(&dcache_lock); 162 if (filldir(dirent, next->d_name.name, 163 next->d_name.len, filp->f_pos, 164 next->d_inode->i_ino, 165 dt_type(next->d_inode)) < 0) 166 return 0; 167 spin_lock(&dcache_lock); 168 /* next is still alive */ 169 list_move(q, p); 170 p = q; 171 filp->f_pos++; 172 } 173 spin_unlock(&dcache_lock); 174 } 175 return 0; 176 } 177 178 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 179 { 180 return -EISDIR; 181 } 182 183 const struct file_operations simple_dir_operations = { 184 .open = dcache_dir_open, 185 .release = dcache_dir_close, 186 .llseek = dcache_dir_lseek, 187 .read = generic_read_dir, 188 .readdir = dcache_readdir, 189 .fsync = noop_fsync, 190 }; 191 192 const struct inode_operations simple_dir_inode_operations = { 193 .lookup = simple_lookup, 194 }; 195 196 static const struct super_operations simple_super_operations = { 197 .statfs = simple_statfs, 198 }; 199 200 /* 201 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 202 * will never be mountable) 203 */ 204 int get_sb_pseudo(struct file_system_type *fs_type, char *name, 205 const struct super_operations *ops, unsigned long magic, 206 struct vfsmount *mnt) 207 { 208 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 209 struct dentry *dentry; 210 struct inode *root; 211 struct qstr d_name = {.name = name, .len = strlen(name)}; 212 213 if (IS_ERR(s)) 214 return PTR_ERR(s); 215 216 s->s_flags = MS_NOUSER; 217 s->s_maxbytes = MAX_LFS_FILESIZE; 218 s->s_blocksize = PAGE_SIZE; 219 s->s_blocksize_bits = PAGE_SHIFT; 220 s->s_magic = magic; 221 s->s_op = ops ? ops : &simple_super_operations; 222 s->s_time_gran = 1; 223 root = new_inode(s); 224 if (!root) 225 goto Enomem; 226 /* 227 * since this is the first inode, make it number 1. New inodes created 228 * after this must take care not to collide with it (by passing 229 * max_reserved of 1 to iunique). 230 */ 231 root->i_ino = 1; 232 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 233 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME; 234 dentry = d_alloc(NULL, &d_name); 235 if (!dentry) { 236 iput(root); 237 goto Enomem; 238 } 239 dentry->d_sb = s; 240 dentry->d_parent = dentry; 241 d_instantiate(dentry, root); 242 s->s_root = dentry; 243 s->s_flags |= MS_ACTIVE; 244 simple_set_mnt(mnt, s); 245 return 0; 246 247 Enomem: 248 deactivate_locked_super(s); 249 return -ENOMEM; 250 } 251 252 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 253 { 254 struct inode *inode = old_dentry->d_inode; 255 256 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 257 inc_nlink(inode); 258 atomic_inc(&inode->i_count); 259 dget(dentry); 260 d_instantiate(dentry, inode); 261 return 0; 262 } 263 264 static inline int simple_positive(struct dentry *dentry) 265 { 266 return dentry->d_inode && !d_unhashed(dentry); 267 } 268 269 int simple_empty(struct dentry *dentry) 270 { 271 struct dentry *child; 272 int ret = 0; 273 274 spin_lock(&dcache_lock); 275 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) 276 if (simple_positive(child)) 277 goto out; 278 ret = 1; 279 out: 280 spin_unlock(&dcache_lock); 281 return ret; 282 } 283 284 int simple_unlink(struct inode *dir, struct dentry *dentry) 285 { 286 struct inode *inode = dentry->d_inode; 287 288 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 289 drop_nlink(inode); 290 dput(dentry); 291 return 0; 292 } 293 294 int simple_rmdir(struct inode *dir, struct dentry *dentry) 295 { 296 if (!simple_empty(dentry)) 297 return -ENOTEMPTY; 298 299 drop_nlink(dentry->d_inode); 300 simple_unlink(dir, dentry); 301 drop_nlink(dir); 302 return 0; 303 } 304 305 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 306 struct inode *new_dir, struct dentry *new_dentry) 307 { 308 struct inode *inode = old_dentry->d_inode; 309 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode); 310 311 if (!simple_empty(new_dentry)) 312 return -ENOTEMPTY; 313 314 if (new_dentry->d_inode) { 315 simple_unlink(new_dir, new_dentry); 316 if (they_are_dirs) 317 drop_nlink(old_dir); 318 } else if (they_are_dirs) { 319 drop_nlink(old_dir); 320 inc_nlink(new_dir); 321 } 322 323 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 324 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME; 325 326 return 0; 327 } 328 329 /** 330 * simple_setsize - handle core mm and vfs requirements for file size change 331 * @inode: inode 332 * @newsize: new file size 333 * 334 * Returns 0 on success, -error on failure. 335 * 336 * simple_setsize must be called with inode_mutex held. 337 * 338 * simple_setsize will check that the requested new size is OK (see 339 * inode_newsize_ok), and then will perform the necessary i_size update 340 * and pagecache truncation (if necessary). It will be typically be called 341 * from the filesystem's setattr function when ATTR_SIZE is passed in. 342 * 343 * The inode itself must have correct permissions and attributes to allow 344 * i_size to be changed, this function then just checks that the new size 345 * requested is valid. 346 * 347 * In the case of simple in-memory filesystems with inodes stored solely 348 * in the inode cache, and file data in the pagecache, nothing more needs 349 * to be done to satisfy a truncate request. Filesystems with on-disk 350 * blocks for example will need to free them in the case of truncate, in 351 * that case it may be easier not to use simple_setsize (but each of its 352 * components will likely be required at some point to update pagecache 353 * and inode etc). 354 */ 355 int simple_setsize(struct inode *inode, loff_t newsize) 356 { 357 loff_t oldsize; 358 int error; 359 360 error = inode_newsize_ok(inode, newsize); 361 if (error) 362 return error; 363 364 oldsize = inode->i_size; 365 i_size_write(inode, newsize); 366 truncate_pagecache(inode, oldsize, newsize); 367 368 return error; 369 } 370 EXPORT_SYMBOL(simple_setsize); 371 372 /** 373 * simple_setattr - setattr for simple in-memory filesystem 374 * @dentry: dentry 375 * @iattr: iattr structure 376 * 377 * Returns 0 on success, -error on failure. 378 * 379 * simple_setattr implements setattr for an in-memory filesystem which 380 * does not store its own file data or metadata (eg. uses the page cache 381 * and inode cache as its data store). 382 */ 383 int simple_setattr(struct dentry *dentry, struct iattr *iattr) 384 { 385 struct inode *inode = dentry->d_inode; 386 int error; 387 388 error = inode_change_ok(inode, iattr); 389 if (error) 390 return error; 391 392 if (iattr->ia_valid & ATTR_SIZE) { 393 error = simple_setsize(inode, iattr->ia_size); 394 if (error) 395 return error; 396 } 397 398 generic_setattr(inode, iattr); 399 400 return error; 401 } 402 EXPORT_SYMBOL(simple_setattr); 403 404 int simple_readpage(struct file *file, struct page *page) 405 { 406 clear_highpage(page); 407 flush_dcache_page(page); 408 SetPageUptodate(page); 409 unlock_page(page); 410 return 0; 411 } 412 413 int simple_write_begin(struct file *file, struct address_space *mapping, 414 loff_t pos, unsigned len, unsigned flags, 415 struct page **pagep, void **fsdata) 416 { 417 struct page *page; 418 pgoff_t index; 419 420 index = pos >> PAGE_CACHE_SHIFT; 421 422 page = grab_cache_page_write_begin(mapping, index, flags); 423 if (!page) 424 return -ENOMEM; 425 426 *pagep = page; 427 428 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) { 429 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 430 431 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE); 432 } 433 return 0; 434 } 435 436 /** 437 * simple_write_end - .write_end helper for non-block-device FSes 438 * @available: See .write_end of address_space_operations 439 * @file: " 440 * @mapping: " 441 * @pos: " 442 * @len: " 443 * @copied: " 444 * @page: " 445 * @fsdata: " 446 * 447 * simple_write_end does the minimum needed for updating a page after writing is 448 * done. It has the same API signature as the .write_end of 449 * address_space_operations vector. So it can just be set onto .write_end for 450 * FSes that don't need any other processing. i_mutex is assumed to be held. 451 * Block based filesystems should use generic_write_end(). 452 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 453 * is not called, so a filesystem that actually does store data in .write_inode 454 * should extend on what's done here with a call to mark_inode_dirty() in the 455 * case that i_size has changed. 456 */ 457 int simple_write_end(struct file *file, struct address_space *mapping, 458 loff_t pos, unsigned len, unsigned copied, 459 struct page *page, void *fsdata) 460 { 461 struct inode *inode = page->mapping->host; 462 loff_t last_pos = pos + copied; 463 464 /* zero the stale part of the page if we did a short copy */ 465 if (copied < len) { 466 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 467 468 zero_user(page, from + copied, len - copied); 469 } 470 471 if (!PageUptodate(page)) 472 SetPageUptodate(page); 473 /* 474 * No need to use i_size_read() here, the i_size 475 * cannot change under us because we hold the i_mutex. 476 */ 477 if (last_pos > inode->i_size) 478 i_size_write(inode, last_pos); 479 480 set_page_dirty(page); 481 unlock_page(page); 482 page_cache_release(page); 483 484 return copied; 485 } 486 487 /* 488 * the inodes created here are not hashed. If you use iunique to generate 489 * unique inode values later for this filesystem, then you must take care 490 * to pass it an appropriate max_reserved value to avoid collisions. 491 */ 492 int simple_fill_super(struct super_block *s, unsigned long magic, 493 struct tree_descr *files) 494 { 495 struct inode *inode; 496 struct dentry *root; 497 struct dentry *dentry; 498 int i; 499 500 s->s_blocksize = PAGE_CACHE_SIZE; 501 s->s_blocksize_bits = PAGE_CACHE_SHIFT; 502 s->s_magic = magic; 503 s->s_op = &simple_super_operations; 504 s->s_time_gran = 1; 505 506 inode = new_inode(s); 507 if (!inode) 508 return -ENOMEM; 509 /* 510 * because the root inode is 1, the files array must not contain an 511 * entry at index 1 512 */ 513 inode->i_ino = 1; 514 inode->i_mode = S_IFDIR | 0755; 515 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 516 inode->i_op = &simple_dir_inode_operations; 517 inode->i_fop = &simple_dir_operations; 518 inode->i_nlink = 2; 519 root = d_alloc_root(inode); 520 if (!root) { 521 iput(inode); 522 return -ENOMEM; 523 } 524 for (i = 0; !files->name || files->name[0]; i++, files++) { 525 if (!files->name) 526 continue; 527 528 /* warn if it tries to conflict with the root inode */ 529 if (unlikely(i == 1)) 530 printk(KERN_WARNING "%s: %s passed in a files array" 531 "with an index of 1!\n", __func__, 532 s->s_type->name); 533 534 dentry = d_alloc_name(root, files->name); 535 if (!dentry) 536 goto out; 537 inode = new_inode(s); 538 if (!inode) 539 goto out; 540 inode->i_mode = S_IFREG | files->mode; 541 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 542 inode->i_fop = files->ops; 543 inode->i_ino = i; 544 d_add(dentry, inode); 545 } 546 s->s_root = root; 547 return 0; 548 out: 549 d_genocide(root); 550 dput(root); 551 return -ENOMEM; 552 } 553 554 static DEFINE_SPINLOCK(pin_fs_lock); 555 556 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 557 { 558 struct vfsmount *mnt = NULL; 559 spin_lock(&pin_fs_lock); 560 if (unlikely(!*mount)) { 561 spin_unlock(&pin_fs_lock); 562 mnt = vfs_kern_mount(type, 0, type->name, NULL); 563 if (IS_ERR(mnt)) 564 return PTR_ERR(mnt); 565 spin_lock(&pin_fs_lock); 566 if (!*mount) 567 *mount = mnt; 568 } 569 mntget(*mount); 570 ++*count; 571 spin_unlock(&pin_fs_lock); 572 mntput(mnt); 573 return 0; 574 } 575 576 void simple_release_fs(struct vfsmount **mount, int *count) 577 { 578 struct vfsmount *mnt; 579 spin_lock(&pin_fs_lock); 580 mnt = *mount; 581 if (!--*count) 582 *mount = NULL; 583 spin_unlock(&pin_fs_lock); 584 mntput(mnt); 585 } 586 587 /** 588 * simple_read_from_buffer - copy data from the buffer to user space 589 * @to: the user space buffer to read to 590 * @count: the maximum number of bytes to read 591 * @ppos: the current position in the buffer 592 * @from: the buffer to read from 593 * @available: the size of the buffer 594 * 595 * The simple_read_from_buffer() function reads up to @count bytes from the 596 * buffer @from at offset @ppos into the user space address starting at @to. 597 * 598 * On success, the number of bytes read is returned and the offset @ppos is 599 * advanced by this number, or negative value is returned on error. 600 **/ 601 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 602 const void *from, size_t available) 603 { 604 loff_t pos = *ppos; 605 size_t ret; 606 607 if (pos < 0) 608 return -EINVAL; 609 if (pos >= available || !count) 610 return 0; 611 if (count > available - pos) 612 count = available - pos; 613 ret = copy_to_user(to, from + pos, count); 614 if (ret == count) 615 return -EFAULT; 616 count -= ret; 617 *ppos = pos + count; 618 return count; 619 } 620 621 /** 622 * simple_write_to_buffer - copy data from user space to the buffer 623 * @to: the buffer to write to 624 * @available: the size of the buffer 625 * @ppos: the current position in the buffer 626 * @from: the user space buffer to read from 627 * @count: the maximum number of bytes to read 628 * 629 * The simple_write_to_buffer() function reads up to @count bytes from the user 630 * space address starting at @from into the buffer @to at offset @ppos. 631 * 632 * On success, the number of bytes written is returned and the offset @ppos is 633 * advanced by this number, or negative value is returned on error. 634 **/ 635 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 636 const void __user *from, size_t count) 637 { 638 loff_t pos = *ppos; 639 size_t res; 640 641 if (pos < 0) 642 return -EINVAL; 643 if (pos >= available || !count) 644 return 0; 645 if (count > available - pos) 646 count = available - pos; 647 res = copy_from_user(to + pos, from, count); 648 if (res == count) 649 return -EFAULT; 650 count -= res; 651 *ppos = pos + count; 652 return count; 653 } 654 655 /** 656 * memory_read_from_buffer - copy data from the buffer 657 * @to: the kernel space buffer to read to 658 * @count: the maximum number of bytes to read 659 * @ppos: the current position in the buffer 660 * @from: the buffer to read from 661 * @available: the size of the buffer 662 * 663 * The memory_read_from_buffer() function reads up to @count bytes from the 664 * buffer @from at offset @ppos into the kernel space address starting at @to. 665 * 666 * On success, the number of bytes read is returned and the offset @ppos is 667 * advanced by this number, or negative value is returned on error. 668 **/ 669 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 670 const void *from, size_t available) 671 { 672 loff_t pos = *ppos; 673 674 if (pos < 0) 675 return -EINVAL; 676 if (pos >= available) 677 return 0; 678 if (count > available - pos) 679 count = available - pos; 680 memcpy(to, from + pos, count); 681 *ppos = pos + count; 682 683 return count; 684 } 685 686 /* 687 * Transaction based IO. 688 * The file expects a single write which triggers the transaction, and then 689 * possibly a read which collects the result - which is stored in a 690 * file-local buffer. 691 */ 692 693 void simple_transaction_set(struct file *file, size_t n) 694 { 695 struct simple_transaction_argresp *ar = file->private_data; 696 697 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 698 699 /* 700 * The barrier ensures that ar->size will really remain zero until 701 * ar->data is ready for reading. 702 */ 703 smp_mb(); 704 ar->size = n; 705 } 706 707 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 708 { 709 struct simple_transaction_argresp *ar; 710 static DEFINE_SPINLOCK(simple_transaction_lock); 711 712 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 713 return ERR_PTR(-EFBIG); 714 715 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 716 if (!ar) 717 return ERR_PTR(-ENOMEM); 718 719 spin_lock(&simple_transaction_lock); 720 721 /* only one write allowed per open */ 722 if (file->private_data) { 723 spin_unlock(&simple_transaction_lock); 724 free_page((unsigned long)ar); 725 return ERR_PTR(-EBUSY); 726 } 727 728 file->private_data = ar; 729 730 spin_unlock(&simple_transaction_lock); 731 732 if (copy_from_user(ar->data, buf, size)) 733 return ERR_PTR(-EFAULT); 734 735 return ar->data; 736 } 737 738 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 739 { 740 struct simple_transaction_argresp *ar = file->private_data; 741 742 if (!ar) 743 return 0; 744 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 745 } 746 747 int simple_transaction_release(struct inode *inode, struct file *file) 748 { 749 free_page((unsigned long)file->private_data); 750 return 0; 751 } 752 753 /* Simple attribute files */ 754 755 struct simple_attr { 756 int (*get)(void *, u64 *); 757 int (*set)(void *, u64); 758 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 759 char set_buf[24]; 760 void *data; 761 const char *fmt; /* format for read operation */ 762 struct mutex mutex; /* protects access to these buffers */ 763 }; 764 765 /* simple_attr_open is called by an actual attribute open file operation 766 * to set the attribute specific access operations. */ 767 int simple_attr_open(struct inode *inode, struct file *file, 768 int (*get)(void *, u64 *), int (*set)(void *, u64), 769 const char *fmt) 770 { 771 struct simple_attr *attr; 772 773 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 774 if (!attr) 775 return -ENOMEM; 776 777 attr->get = get; 778 attr->set = set; 779 attr->data = inode->i_private; 780 attr->fmt = fmt; 781 mutex_init(&attr->mutex); 782 783 file->private_data = attr; 784 785 return nonseekable_open(inode, file); 786 } 787 788 int simple_attr_release(struct inode *inode, struct file *file) 789 { 790 kfree(file->private_data); 791 return 0; 792 } 793 794 /* read from the buffer that is filled with the get function */ 795 ssize_t simple_attr_read(struct file *file, char __user *buf, 796 size_t len, loff_t *ppos) 797 { 798 struct simple_attr *attr; 799 size_t size; 800 ssize_t ret; 801 802 attr = file->private_data; 803 804 if (!attr->get) 805 return -EACCES; 806 807 ret = mutex_lock_interruptible(&attr->mutex); 808 if (ret) 809 return ret; 810 811 if (*ppos) { /* continued read */ 812 size = strlen(attr->get_buf); 813 } else { /* first read */ 814 u64 val; 815 ret = attr->get(attr->data, &val); 816 if (ret) 817 goto out; 818 819 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 820 attr->fmt, (unsigned long long)val); 821 } 822 823 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 824 out: 825 mutex_unlock(&attr->mutex); 826 return ret; 827 } 828 829 /* interpret the buffer as a number to call the set function with */ 830 ssize_t simple_attr_write(struct file *file, const char __user *buf, 831 size_t len, loff_t *ppos) 832 { 833 struct simple_attr *attr; 834 u64 val; 835 size_t size; 836 ssize_t ret; 837 838 attr = file->private_data; 839 if (!attr->set) 840 return -EACCES; 841 842 ret = mutex_lock_interruptible(&attr->mutex); 843 if (ret) 844 return ret; 845 846 ret = -EFAULT; 847 size = min(sizeof(attr->set_buf) - 1, len); 848 if (copy_from_user(attr->set_buf, buf, size)) 849 goto out; 850 851 attr->set_buf[size] = '\0'; 852 val = simple_strtol(attr->set_buf, NULL, 0); 853 ret = attr->set(attr->data, val); 854 if (ret == 0) 855 ret = len; /* on success, claim we got the whole input */ 856 out: 857 mutex_unlock(&attr->mutex); 858 return ret; 859 } 860 861 /** 862 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 863 * @sb: filesystem to do the file handle conversion on 864 * @fid: file handle to convert 865 * @fh_len: length of the file handle in bytes 866 * @fh_type: type of file handle 867 * @get_inode: filesystem callback to retrieve inode 868 * 869 * This function decodes @fid as long as it has one of the well-known 870 * Linux filehandle types and calls @get_inode on it to retrieve the 871 * inode for the object specified in the file handle. 872 */ 873 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 874 int fh_len, int fh_type, struct inode *(*get_inode) 875 (struct super_block *sb, u64 ino, u32 gen)) 876 { 877 struct inode *inode = NULL; 878 879 if (fh_len < 2) 880 return NULL; 881 882 switch (fh_type) { 883 case FILEID_INO32_GEN: 884 case FILEID_INO32_GEN_PARENT: 885 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 886 break; 887 } 888 889 return d_obtain_alias(inode); 890 } 891 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 892 893 /** 894 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation 895 * @sb: filesystem to do the file handle conversion on 896 * @fid: file handle to convert 897 * @fh_len: length of the file handle in bytes 898 * @fh_type: type of file handle 899 * @get_inode: filesystem callback to retrieve inode 900 * 901 * This function decodes @fid as long as it has one of the well-known 902 * Linux filehandle types and calls @get_inode on it to retrieve the 903 * inode for the _parent_ object specified in the file handle if it 904 * is specified in the file handle, or NULL otherwise. 905 */ 906 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 907 int fh_len, int fh_type, struct inode *(*get_inode) 908 (struct super_block *sb, u64 ino, u32 gen)) 909 { 910 struct inode *inode = NULL; 911 912 if (fh_len <= 2) 913 return NULL; 914 915 switch (fh_type) { 916 case FILEID_INO32_GEN_PARENT: 917 inode = get_inode(sb, fid->i32.parent_ino, 918 (fh_len > 3 ? fid->i32.parent_gen : 0)); 919 break; 920 } 921 922 return d_obtain_alias(inode); 923 } 924 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 925 926 /** 927 * generic_file_fsync - generic fsync implementation for simple filesystems 928 * @file: file to synchronize 929 * @datasync: only synchronize essential metadata if true 930 * 931 * This is a generic implementation of the fsync method for simple 932 * filesystems which track all non-inode metadata in the buffers list 933 * hanging off the address_space structure. 934 */ 935 int generic_file_fsync(struct file *file, int datasync) 936 { 937 struct writeback_control wbc = { 938 .sync_mode = WB_SYNC_ALL, 939 .nr_to_write = 0, /* metadata-only; caller takes care of data */ 940 }; 941 struct inode *inode = file->f_mapping->host; 942 int err; 943 int ret; 944 945 ret = sync_mapping_buffers(inode->i_mapping); 946 if (!(inode->i_state & I_DIRTY)) 947 return ret; 948 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 949 return ret; 950 951 err = sync_inode(inode, &wbc); 952 if (ret == 0) 953 ret = err; 954 return ret; 955 } 956 EXPORT_SYMBOL(generic_file_fsync); 957 958 /* 959 * No-op implementation of ->fsync for in-memory filesystems. 960 */ 961 int noop_fsync(struct file *file, int datasync) 962 { 963 return 0; 964 } 965 966 EXPORT_SYMBOL(dcache_dir_close); 967 EXPORT_SYMBOL(dcache_dir_lseek); 968 EXPORT_SYMBOL(dcache_dir_open); 969 EXPORT_SYMBOL(dcache_readdir); 970 EXPORT_SYMBOL(generic_read_dir); 971 EXPORT_SYMBOL(get_sb_pseudo); 972 EXPORT_SYMBOL(simple_write_begin); 973 EXPORT_SYMBOL(simple_write_end); 974 EXPORT_SYMBOL(simple_dir_inode_operations); 975 EXPORT_SYMBOL(simple_dir_operations); 976 EXPORT_SYMBOL(simple_empty); 977 EXPORT_SYMBOL(simple_fill_super); 978 EXPORT_SYMBOL(simple_getattr); 979 EXPORT_SYMBOL(simple_link); 980 EXPORT_SYMBOL(simple_lookup); 981 EXPORT_SYMBOL(simple_pin_fs); 982 EXPORT_SYMBOL(simple_readpage); 983 EXPORT_SYMBOL(simple_release_fs); 984 EXPORT_SYMBOL(simple_rename); 985 EXPORT_SYMBOL(simple_rmdir); 986 EXPORT_SYMBOL(simple_statfs); 987 EXPORT_SYMBOL(noop_fsync); 988 EXPORT_SYMBOL(simple_unlink); 989 EXPORT_SYMBOL(simple_read_from_buffer); 990 EXPORT_SYMBOL(simple_write_to_buffer); 991 EXPORT_SYMBOL(memory_read_from_buffer); 992 EXPORT_SYMBOL(simple_transaction_set); 993 EXPORT_SYMBOL(simple_transaction_get); 994 EXPORT_SYMBOL(simple_transaction_read); 995 EXPORT_SYMBOL(simple_transaction_release); 996 EXPORT_SYMBOL_GPL(simple_attr_open); 997 EXPORT_SYMBOL_GPL(simple_attr_release); 998 EXPORT_SYMBOL_GPL(simple_attr_read); 999 EXPORT_SYMBOL_GPL(simple_attr_write); 1000