xref: /openbmc/linux/fs/kernfs/file.c (revision 4eaad21a6ac9865df7f31983232ed5928450458d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/file.c - kernfs file implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/seq_file.h>
12 #include <linux/slab.h>
13 #include <linux/poll.h>
14 #include <linux/pagemap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/fsnotify.h>
17 #include <linux/uio.h>
18 
19 #include "kernfs-internal.h"
20 
21 /*
22  * There's one kernfs_open_file for each open file and one kernfs_open_node
23  * for each kernfs_node with one or more open files.
24  *
25  * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
26  * protected by kernfs_open_node_lock.
27  *
28  * filp->private_data points to seq_file whose ->private points to
29  * kernfs_open_file.  kernfs_open_files are chained at
30  * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
31  */
32 static DEFINE_SPINLOCK(kernfs_open_node_lock);
33 static DEFINE_MUTEX(kernfs_open_file_mutex);
34 
35 struct kernfs_open_node {
36 	atomic_t		refcnt;
37 	atomic_t		event;
38 	wait_queue_head_t	poll;
39 	struct list_head	files; /* goes through kernfs_open_file.list */
40 };
41 
42 /*
43  * kernfs_notify() may be called from any context and bounces notifications
44  * through a work item.  To minimize space overhead in kernfs_node, the
45  * pending queue is implemented as a singly linked list of kernfs_nodes.
46  * The list is terminated with the self pointer so that whether a
47  * kernfs_node is on the list or not can be determined by testing the next
48  * pointer for NULL.
49  */
50 #define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
51 
52 static DEFINE_SPINLOCK(kernfs_notify_lock);
53 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
54 
55 static struct kernfs_open_file *kernfs_of(struct file *file)
56 {
57 	return ((struct seq_file *)file->private_data)->private;
58 }
59 
60 /*
61  * Determine the kernfs_ops for the given kernfs_node.  This function must
62  * be called while holding an active reference.
63  */
64 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
65 {
66 	if (kn->flags & KERNFS_LOCKDEP)
67 		lockdep_assert_held(kn);
68 	return kn->attr.ops;
69 }
70 
71 /*
72  * As kernfs_seq_stop() is also called after kernfs_seq_start() or
73  * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
74  * a seq_file iteration which is fully initialized with an active reference
75  * or an aborted kernfs_seq_start() due to get_active failure.  The
76  * position pointer is the only context for each seq_file iteration and
77  * thus the stop condition should be encoded in it.  As the return value is
78  * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
79  * choice to indicate get_active failure.
80  *
81  * Unfortunately, this is complicated due to the optional custom seq_file
82  * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
83  * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
84  * custom seq_file operations and thus can't decide whether put_active
85  * should be performed or not only on ERR_PTR(-ENODEV).
86  *
87  * This is worked around by factoring out the custom seq_stop() and
88  * put_active part into kernfs_seq_stop_active(), skipping it from
89  * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
90  * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
91  * that kernfs_seq_stop_active() is skipped only after get_active failure.
92  */
93 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
94 {
95 	struct kernfs_open_file *of = sf->private;
96 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
97 
98 	if (ops->seq_stop)
99 		ops->seq_stop(sf, v);
100 	kernfs_put_active(of->kn);
101 }
102 
103 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
104 {
105 	struct kernfs_open_file *of = sf->private;
106 	const struct kernfs_ops *ops;
107 
108 	/*
109 	 * @of->mutex nests outside active ref and is primarily to ensure that
110 	 * the ops aren't called concurrently for the same open file.
111 	 */
112 	mutex_lock(&of->mutex);
113 	if (!kernfs_get_active(of->kn))
114 		return ERR_PTR(-ENODEV);
115 
116 	ops = kernfs_ops(of->kn);
117 	if (ops->seq_start) {
118 		void *next = ops->seq_start(sf, ppos);
119 		/* see the comment above kernfs_seq_stop_active() */
120 		if (next == ERR_PTR(-ENODEV))
121 			kernfs_seq_stop_active(sf, next);
122 		return next;
123 	} else {
124 		/*
125 		 * The same behavior and code as single_open().  Returns
126 		 * !NULL if pos is at the beginning; otherwise, NULL.
127 		 */
128 		return NULL + !*ppos;
129 	}
130 }
131 
132 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
133 {
134 	struct kernfs_open_file *of = sf->private;
135 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
136 
137 	if (ops->seq_next) {
138 		void *next = ops->seq_next(sf, v, ppos);
139 		/* see the comment above kernfs_seq_stop_active() */
140 		if (next == ERR_PTR(-ENODEV))
141 			kernfs_seq_stop_active(sf, next);
142 		return next;
143 	} else {
144 		/*
145 		 * The same behavior and code as single_open(), always
146 		 * terminate after the initial read.
147 		 */
148 		++*ppos;
149 		return NULL;
150 	}
151 }
152 
153 static void kernfs_seq_stop(struct seq_file *sf, void *v)
154 {
155 	struct kernfs_open_file *of = sf->private;
156 
157 	if (v != ERR_PTR(-ENODEV))
158 		kernfs_seq_stop_active(sf, v);
159 	mutex_unlock(&of->mutex);
160 }
161 
162 static int kernfs_seq_show(struct seq_file *sf, void *v)
163 {
164 	struct kernfs_open_file *of = sf->private;
165 
166 	of->event = atomic_read(&of->kn->attr.open->event);
167 
168 	return of->kn->attr.ops->seq_show(sf, v);
169 }
170 
171 static const struct seq_operations kernfs_seq_ops = {
172 	.start = kernfs_seq_start,
173 	.next = kernfs_seq_next,
174 	.stop = kernfs_seq_stop,
175 	.show = kernfs_seq_show,
176 };
177 
178 /*
179  * As reading a bin file can have side-effects, the exact offset and bytes
180  * specified in read(2) call should be passed to the read callback making
181  * it difficult to use seq_file.  Implement simplistic custom buffering for
182  * bin files.
183  */
184 static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
185 {
186 	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
187 	ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE);
188 	const struct kernfs_ops *ops;
189 	char *buf;
190 
191 	buf = of->prealloc_buf;
192 	if (buf)
193 		mutex_lock(&of->prealloc_mutex);
194 	else
195 		buf = kmalloc(len, GFP_KERNEL);
196 	if (!buf)
197 		return -ENOMEM;
198 
199 	/*
200 	 * @of->mutex nests outside active ref and is used both to ensure that
201 	 * the ops aren't called concurrently for the same open file.
202 	 */
203 	mutex_lock(&of->mutex);
204 	if (!kernfs_get_active(of->kn)) {
205 		len = -ENODEV;
206 		mutex_unlock(&of->mutex);
207 		goto out_free;
208 	}
209 
210 	of->event = atomic_read(&of->kn->attr.open->event);
211 	ops = kernfs_ops(of->kn);
212 	if (ops->read)
213 		len = ops->read(of, buf, len, iocb->ki_pos);
214 	else
215 		len = -EINVAL;
216 
217 	kernfs_put_active(of->kn);
218 	mutex_unlock(&of->mutex);
219 
220 	if (len < 0)
221 		goto out_free;
222 
223 	if (copy_to_iter(buf, len, iter) != len) {
224 		len = -EFAULT;
225 		goto out_free;
226 	}
227 
228 	iocb->ki_pos += len;
229 
230  out_free:
231 	if (buf == of->prealloc_buf)
232 		mutex_unlock(&of->prealloc_mutex);
233 	else
234 		kfree(buf);
235 	return len;
236 }
237 
238 static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter)
239 {
240 	if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW)
241 		return seq_read_iter(iocb, iter);
242 	return kernfs_file_read_iter(iocb, iter);
243 }
244 
245 /**
246  * kernfs_fop_write - kernfs vfs write callback
247  * @file: file pointer
248  * @user_buf: data to write
249  * @count: number of bytes
250  * @ppos: starting offset
251  *
252  * Copy data in from userland and pass it to the matching kernfs write
253  * operation.
254  *
255  * There is no easy way for us to know if userspace is only doing a partial
256  * write, so we don't support them. We expect the entire buffer to come on
257  * the first write.  Hint: if you're writing a value, first read the file,
258  * modify only the the value you're changing, then write entire buffer
259  * back.
260  */
261 static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
262 				size_t count, loff_t *ppos)
263 {
264 	struct kernfs_open_file *of = kernfs_of(file);
265 	const struct kernfs_ops *ops;
266 	ssize_t len;
267 	char *buf;
268 
269 	if (of->atomic_write_len) {
270 		len = count;
271 		if (len > of->atomic_write_len)
272 			return -E2BIG;
273 	} else {
274 		len = min_t(size_t, count, PAGE_SIZE);
275 	}
276 
277 	buf = of->prealloc_buf;
278 	if (buf)
279 		mutex_lock(&of->prealloc_mutex);
280 	else
281 		buf = kmalloc(len + 1, GFP_KERNEL);
282 	if (!buf)
283 		return -ENOMEM;
284 
285 	if (copy_from_user(buf, user_buf, len)) {
286 		len = -EFAULT;
287 		goto out_free;
288 	}
289 	buf[len] = '\0';	/* guarantee string termination */
290 
291 	/*
292 	 * @of->mutex nests outside active ref and is used both to ensure that
293 	 * the ops aren't called concurrently for the same open file.
294 	 */
295 	mutex_lock(&of->mutex);
296 	if (!kernfs_get_active(of->kn)) {
297 		mutex_unlock(&of->mutex);
298 		len = -ENODEV;
299 		goto out_free;
300 	}
301 
302 	ops = kernfs_ops(of->kn);
303 	if (ops->write)
304 		len = ops->write(of, buf, len, *ppos);
305 	else
306 		len = -EINVAL;
307 
308 	kernfs_put_active(of->kn);
309 	mutex_unlock(&of->mutex);
310 
311 	if (len > 0)
312 		*ppos += len;
313 
314 out_free:
315 	if (buf == of->prealloc_buf)
316 		mutex_unlock(&of->prealloc_mutex);
317 	else
318 		kfree(buf);
319 	return len;
320 }
321 
322 static void kernfs_vma_open(struct vm_area_struct *vma)
323 {
324 	struct file *file = vma->vm_file;
325 	struct kernfs_open_file *of = kernfs_of(file);
326 
327 	if (!of->vm_ops)
328 		return;
329 
330 	if (!kernfs_get_active(of->kn))
331 		return;
332 
333 	if (of->vm_ops->open)
334 		of->vm_ops->open(vma);
335 
336 	kernfs_put_active(of->kn);
337 }
338 
339 static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
340 {
341 	struct file *file = vmf->vma->vm_file;
342 	struct kernfs_open_file *of = kernfs_of(file);
343 	vm_fault_t ret;
344 
345 	if (!of->vm_ops)
346 		return VM_FAULT_SIGBUS;
347 
348 	if (!kernfs_get_active(of->kn))
349 		return VM_FAULT_SIGBUS;
350 
351 	ret = VM_FAULT_SIGBUS;
352 	if (of->vm_ops->fault)
353 		ret = of->vm_ops->fault(vmf);
354 
355 	kernfs_put_active(of->kn);
356 	return ret;
357 }
358 
359 static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
360 {
361 	struct file *file = vmf->vma->vm_file;
362 	struct kernfs_open_file *of = kernfs_of(file);
363 	vm_fault_t ret;
364 
365 	if (!of->vm_ops)
366 		return VM_FAULT_SIGBUS;
367 
368 	if (!kernfs_get_active(of->kn))
369 		return VM_FAULT_SIGBUS;
370 
371 	ret = 0;
372 	if (of->vm_ops->page_mkwrite)
373 		ret = of->vm_ops->page_mkwrite(vmf);
374 	else
375 		file_update_time(file);
376 
377 	kernfs_put_active(of->kn);
378 	return ret;
379 }
380 
381 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
382 			     void *buf, int len, int write)
383 {
384 	struct file *file = vma->vm_file;
385 	struct kernfs_open_file *of = kernfs_of(file);
386 	int ret;
387 
388 	if (!of->vm_ops)
389 		return -EINVAL;
390 
391 	if (!kernfs_get_active(of->kn))
392 		return -EINVAL;
393 
394 	ret = -EINVAL;
395 	if (of->vm_ops->access)
396 		ret = of->vm_ops->access(vma, addr, buf, len, write);
397 
398 	kernfs_put_active(of->kn);
399 	return ret;
400 }
401 
402 #ifdef CONFIG_NUMA
403 static int kernfs_vma_set_policy(struct vm_area_struct *vma,
404 				 struct mempolicy *new)
405 {
406 	struct file *file = vma->vm_file;
407 	struct kernfs_open_file *of = kernfs_of(file);
408 	int ret;
409 
410 	if (!of->vm_ops)
411 		return 0;
412 
413 	if (!kernfs_get_active(of->kn))
414 		return -EINVAL;
415 
416 	ret = 0;
417 	if (of->vm_ops->set_policy)
418 		ret = of->vm_ops->set_policy(vma, new);
419 
420 	kernfs_put_active(of->kn);
421 	return ret;
422 }
423 
424 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
425 					       unsigned long addr)
426 {
427 	struct file *file = vma->vm_file;
428 	struct kernfs_open_file *of = kernfs_of(file);
429 	struct mempolicy *pol;
430 
431 	if (!of->vm_ops)
432 		return vma->vm_policy;
433 
434 	if (!kernfs_get_active(of->kn))
435 		return vma->vm_policy;
436 
437 	pol = vma->vm_policy;
438 	if (of->vm_ops->get_policy)
439 		pol = of->vm_ops->get_policy(vma, addr);
440 
441 	kernfs_put_active(of->kn);
442 	return pol;
443 }
444 
445 #endif
446 
447 static const struct vm_operations_struct kernfs_vm_ops = {
448 	.open		= kernfs_vma_open,
449 	.fault		= kernfs_vma_fault,
450 	.page_mkwrite	= kernfs_vma_page_mkwrite,
451 	.access		= kernfs_vma_access,
452 #ifdef CONFIG_NUMA
453 	.set_policy	= kernfs_vma_set_policy,
454 	.get_policy	= kernfs_vma_get_policy,
455 #endif
456 };
457 
458 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
459 {
460 	struct kernfs_open_file *of = kernfs_of(file);
461 	const struct kernfs_ops *ops;
462 	int rc;
463 
464 	/*
465 	 * mmap path and of->mutex are prone to triggering spurious lockdep
466 	 * warnings and we don't want to add spurious locking dependency
467 	 * between the two.  Check whether mmap is actually implemented
468 	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
469 	 * comment in kernfs_file_open() for more details.
470 	 */
471 	if (!(of->kn->flags & KERNFS_HAS_MMAP))
472 		return -ENODEV;
473 
474 	mutex_lock(&of->mutex);
475 
476 	rc = -ENODEV;
477 	if (!kernfs_get_active(of->kn))
478 		goto out_unlock;
479 
480 	ops = kernfs_ops(of->kn);
481 	rc = ops->mmap(of, vma);
482 	if (rc)
483 		goto out_put;
484 
485 	/*
486 	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
487 	 * to satisfy versions of X which crash if the mmap fails: that
488 	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
489 	 */
490 	if (vma->vm_file != file)
491 		goto out_put;
492 
493 	rc = -EINVAL;
494 	if (of->mmapped && of->vm_ops != vma->vm_ops)
495 		goto out_put;
496 
497 	/*
498 	 * It is not possible to successfully wrap close.
499 	 * So error if someone is trying to use close.
500 	 */
501 	rc = -EINVAL;
502 	if (vma->vm_ops && vma->vm_ops->close)
503 		goto out_put;
504 
505 	rc = 0;
506 	of->mmapped = true;
507 	of->vm_ops = vma->vm_ops;
508 	vma->vm_ops = &kernfs_vm_ops;
509 out_put:
510 	kernfs_put_active(of->kn);
511 out_unlock:
512 	mutex_unlock(&of->mutex);
513 
514 	return rc;
515 }
516 
517 /**
518  *	kernfs_get_open_node - get or create kernfs_open_node
519  *	@kn: target kernfs_node
520  *	@of: kernfs_open_file for this instance of open
521  *
522  *	If @kn->attr.open exists, increment its reference count; otherwise,
523  *	create one.  @of is chained to the files list.
524  *
525  *	LOCKING:
526  *	Kernel thread context (may sleep).
527  *
528  *	RETURNS:
529  *	0 on success, -errno on failure.
530  */
531 static int kernfs_get_open_node(struct kernfs_node *kn,
532 				struct kernfs_open_file *of)
533 {
534 	struct kernfs_open_node *on, *new_on = NULL;
535 
536  retry:
537 	mutex_lock(&kernfs_open_file_mutex);
538 	spin_lock_irq(&kernfs_open_node_lock);
539 
540 	if (!kn->attr.open && new_on) {
541 		kn->attr.open = new_on;
542 		new_on = NULL;
543 	}
544 
545 	on = kn->attr.open;
546 	if (on) {
547 		atomic_inc(&on->refcnt);
548 		list_add_tail(&of->list, &on->files);
549 	}
550 
551 	spin_unlock_irq(&kernfs_open_node_lock);
552 	mutex_unlock(&kernfs_open_file_mutex);
553 
554 	if (on) {
555 		kfree(new_on);
556 		return 0;
557 	}
558 
559 	/* not there, initialize a new one and retry */
560 	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
561 	if (!new_on)
562 		return -ENOMEM;
563 
564 	atomic_set(&new_on->refcnt, 0);
565 	atomic_set(&new_on->event, 1);
566 	init_waitqueue_head(&new_on->poll);
567 	INIT_LIST_HEAD(&new_on->files);
568 	goto retry;
569 }
570 
571 /**
572  *	kernfs_put_open_node - put kernfs_open_node
573  *	@kn: target kernfs_nodet
574  *	@of: associated kernfs_open_file
575  *
576  *	Put @kn->attr.open and unlink @of from the files list.  If
577  *	reference count reaches zero, disassociate and free it.
578  *
579  *	LOCKING:
580  *	None.
581  */
582 static void kernfs_put_open_node(struct kernfs_node *kn,
583 				 struct kernfs_open_file *of)
584 {
585 	struct kernfs_open_node *on = kn->attr.open;
586 	unsigned long flags;
587 
588 	mutex_lock(&kernfs_open_file_mutex);
589 	spin_lock_irqsave(&kernfs_open_node_lock, flags);
590 
591 	if (of)
592 		list_del(&of->list);
593 
594 	if (atomic_dec_and_test(&on->refcnt))
595 		kn->attr.open = NULL;
596 	else
597 		on = NULL;
598 
599 	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
600 	mutex_unlock(&kernfs_open_file_mutex);
601 
602 	kfree(on);
603 }
604 
605 static int kernfs_fop_open(struct inode *inode, struct file *file)
606 {
607 	struct kernfs_node *kn = inode->i_private;
608 	struct kernfs_root *root = kernfs_root(kn);
609 	const struct kernfs_ops *ops;
610 	struct kernfs_open_file *of;
611 	bool has_read, has_write, has_mmap;
612 	int error = -EACCES;
613 
614 	if (!kernfs_get_active(kn))
615 		return -ENODEV;
616 
617 	ops = kernfs_ops(kn);
618 
619 	has_read = ops->seq_show || ops->read || ops->mmap;
620 	has_write = ops->write || ops->mmap;
621 	has_mmap = ops->mmap;
622 
623 	/* see the flag definition for details */
624 	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
625 		if ((file->f_mode & FMODE_WRITE) &&
626 		    (!(inode->i_mode & S_IWUGO) || !has_write))
627 			goto err_out;
628 
629 		if ((file->f_mode & FMODE_READ) &&
630 		    (!(inode->i_mode & S_IRUGO) || !has_read))
631 			goto err_out;
632 	}
633 
634 	/* allocate a kernfs_open_file for the file */
635 	error = -ENOMEM;
636 	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
637 	if (!of)
638 		goto err_out;
639 
640 	/*
641 	 * The following is done to give a different lockdep key to
642 	 * @of->mutex for files which implement mmap.  This is a rather
643 	 * crude way to avoid false positive lockdep warning around
644 	 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
645 	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
646 	 * which mm->mmap_lock nests, while holding @of->mutex.  As each
647 	 * open file has a separate mutex, it's okay as long as those don't
648 	 * happen on the same file.  At this point, we can't easily give
649 	 * each file a separate locking class.  Let's differentiate on
650 	 * whether the file has mmap or not for now.
651 	 *
652 	 * Both paths of the branch look the same.  They're supposed to
653 	 * look that way and give @of->mutex different static lockdep keys.
654 	 */
655 	if (has_mmap)
656 		mutex_init(&of->mutex);
657 	else
658 		mutex_init(&of->mutex);
659 
660 	of->kn = kn;
661 	of->file = file;
662 
663 	/*
664 	 * Write path needs to atomic_write_len outside active reference.
665 	 * Cache it in open_file.  See kernfs_fop_write() for details.
666 	 */
667 	of->atomic_write_len = ops->atomic_write_len;
668 
669 	error = -EINVAL;
670 	/*
671 	 * ->seq_show is incompatible with ->prealloc,
672 	 * as seq_read does its own allocation.
673 	 * ->read must be used instead.
674 	 */
675 	if (ops->prealloc && ops->seq_show)
676 		goto err_free;
677 	if (ops->prealloc) {
678 		int len = of->atomic_write_len ?: PAGE_SIZE;
679 		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
680 		error = -ENOMEM;
681 		if (!of->prealloc_buf)
682 			goto err_free;
683 		mutex_init(&of->prealloc_mutex);
684 	}
685 
686 	/*
687 	 * Always instantiate seq_file even if read access doesn't use
688 	 * seq_file or is not requested.  This unifies private data access
689 	 * and readable regular files are the vast majority anyway.
690 	 */
691 	if (ops->seq_show)
692 		error = seq_open(file, &kernfs_seq_ops);
693 	else
694 		error = seq_open(file, NULL);
695 	if (error)
696 		goto err_free;
697 
698 	of->seq_file = file->private_data;
699 	of->seq_file->private = of;
700 
701 	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
702 	if (file->f_mode & FMODE_WRITE)
703 		file->f_mode |= FMODE_PWRITE;
704 
705 	/* make sure we have open node struct */
706 	error = kernfs_get_open_node(kn, of);
707 	if (error)
708 		goto err_seq_release;
709 
710 	if (ops->open) {
711 		/* nobody has access to @of yet, skip @of->mutex */
712 		error = ops->open(of);
713 		if (error)
714 			goto err_put_node;
715 	}
716 
717 	/* open succeeded, put active references */
718 	kernfs_put_active(kn);
719 	return 0;
720 
721 err_put_node:
722 	kernfs_put_open_node(kn, of);
723 err_seq_release:
724 	seq_release(inode, file);
725 err_free:
726 	kfree(of->prealloc_buf);
727 	kfree(of);
728 err_out:
729 	kernfs_put_active(kn);
730 	return error;
731 }
732 
733 /* used from release/drain to ensure that ->release() is called exactly once */
734 static void kernfs_release_file(struct kernfs_node *kn,
735 				struct kernfs_open_file *of)
736 {
737 	/*
738 	 * @of is guaranteed to have no other file operations in flight and
739 	 * we just want to synchronize release and drain paths.
740 	 * @kernfs_open_file_mutex is enough.  @of->mutex can't be used
741 	 * here because drain path may be called from places which can
742 	 * cause circular dependency.
743 	 */
744 	lockdep_assert_held(&kernfs_open_file_mutex);
745 
746 	if (!of->released) {
747 		/*
748 		 * A file is never detached without being released and we
749 		 * need to be able to release files which are deactivated
750 		 * and being drained.  Don't use kernfs_ops().
751 		 */
752 		kn->attr.ops->release(of);
753 		of->released = true;
754 	}
755 }
756 
757 static int kernfs_fop_release(struct inode *inode, struct file *filp)
758 {
759 	struct kernfs_node *kn = inode->i_private;
760 	struct kernfs_open_file *of = kernfs_of(filp);
761 
762 	if (kn->flags & KERNFS_HAS_RELEASE) {
763 		mutex_lock(&kernfs_open_file_mutex);
764 		kernfs_release_file(kn, of);
765 		mutex_unlock(&kernfs_open_file_mutex);
766 	}
767 
768 	kernfs_put_open_node(kn, of);
769 	seq_release(inode, filp);
770 	kfree(of->prealloc_buf);
771 	kfree(of);
772 
773 	return 0;
774 }
775 
776 void kernfs_drain_open_files(struct kernfs_node *kn)
777 {
778 	struct kernfs_open_node *on;
779 	struct kernfs_open_file *of;
780 
781 	if (!(kn->flags & (KERNFS_HAS_MMAP | KERNFS_HAS_RELEASE)))
782 		return;
783 
784 	spin_lock_irq(&kernfs_open_node_lock);
785 	on = kn->attr.open;
786 	if (on)
787 		atomic_inc(&on->refcnt);
788 	spin_unlock_irq(&kernfs_open_node_lock);
789 	if (!on)
790 		return;
791 
792 	mutex_lock(&kernfs_open_file_mutex);
793 
794 	list_for_each_entry(of, &on->files, list) {
795 		struct inode *inode = file_inode(of->file);
796 
797 		if (kn->flags & KERNFS_HAS_MMAP)
798 			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
799 
800 		if (kn->flags & KERNFS_HAS_RELEASE)
801 			kernfs_release_file(kn, of);
802 	}
803 
804 	mutex_unlock(&kernfs_open_file_mutex);
805 
806 	kernfs_put_open_node(kn, NULL);
807 }
808 
809 /*
810  * Kernfs attribute files are pollable.  The idea is that you read
811  * the content and then you use 'poll' or 'select' to wait for
812  * the content to change.  When the content changes (assuming the
813  * manager for the kobject supports notification), poll will
814  * return EPOLLERR|EPOLLPRI, and select will return the fd whether
815  * it is waiting for read, write, or exceptions.
816  * Once poll/select indicates that the value has changed, you
817  * need to close and re-open the file, or seek to 0 and read again.
818  * Reminder: this only works for attributes which actively support
819  * it, and it is not possible to test an attribute from userspace
820  * to see if it supports poll (Neither 'poll' nor 'select' return
821  * an appropriate error code).  When in doubt, set a suitable timeout value.
822  */
823 __poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
824 {
825 	struct kernfs_node *kn = kernfs_dentry_node(of->file->f_path.dentry);
826 	struct kernfs_open_node *on = kn->attr.open;
827 
828 	poll_wait(of->file, &on->poll, wait);
829 
830 	if (of->event != atomic_read(&on->event))
831 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
832 
833 	return DEFAULT_POLLMASK;
834 }
835 
836 static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
837 {
838 	struct kernfs_open_file *of = kernfs_of(filp);
839 	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
840 	__poll_t ret;
841 
842 	if (!kernfs_get_active(kn))
843 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
844 
845 	if (kn->attr.ops->poll)
846 		ret = kn->attr.ops->poll(of, wait);
847 	else
848 		ret = kernfs_generic_poll(of, wait);
849 
850 	kernfs_put_active(kn);
851 	return ret;
852 }
853 
854 static void kernfs_notify_workfn(struct work_struct *work)
855 {
856 	struct kernfs_node *kn;
857 	struct kernfs_super_info *info;
858 repeat:
859 	/* pop one off the notify_list */
860 	spin_lock_irq(&kernfs_notify_lock);
861 	kn = kernfs_notify_list;
862 	if (kn == KERNFS_NOTIFY_EOL) {
863 		spin_unlock_irq(&kernfs_notify_lock);
864 		return;
865 	}
866 	kernfs_notify_list = kn->attr.notify_next;
867 	kn->attr.notify_next = NULL;
868 	spin_unlock_irq(&kernfs_notify_lock);
869 
870 	/* kick fsnotify */
871 	mutex_lock(&kernfs_mutex);
872 
873 	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
874 		struct kernfs_node *parent;
875 		struct inode *p_inode = NULL;
876 		struct inode *inode;
877 		struct qstr name;
878 
879 		/*
880 		 * We want fsnotify_modify() on @kn but as the
881 		 * modifications aren't originating from userland don't
882 		 * have the matching @file available.  Look up the inodes
883 		 * and generate the events manually.
884 		 */
885 		inode = ilookup(info->sb, kernfs_ino(kn));
886 		if (!inode)
887 			continue;
888 
889 		name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
890 		parent = kernfs_get_parent(kn);
891 		if (parent) {
892 			p_inode = ilookup(info->sb, kernfs_ino(parent));
893 			if (p_inode) {
894 				fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
895 					 inode, FSNOTIFY_EVENT_INODE,
896 					 p_inode, &name, inode, 0);
897 				iput(p_inode);
898 			}
899 
900 			kernfs_put(parent);
901 		}
902 
903 		if (!p_inode)
904 			fsnotify_inode(inode, FS_MODIFY);
905 
906 		iput(inode);
907 	}
908 
909 	mutex_unlock(&kernfs_mutex);
910 	kernfs_put(kn);
911 	goto repeat;
912 }
913 
914 /**
915  * kernfs_notify - notify a kernfs file
916  * @kn: file to notify
917  *
918  * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
919  * context.
920  */
921 void kernfs_notify(struct kernfs_node *kn)
922 {
923 	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
924 	unsigned long flags;
925 	struct kernfs_open_node *on;
926 
927 	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
928 		return;
929 
930 	/* kick poll immediately */
931 	spin_lock_irqsave(&kernfs_open_node_lock, flags);
932 	on = kn->attr.open;
933 	if (on) {
934 		atomic_inc(&on->event);
935 		wake_up_interruptible(&on->poll);
936 	}
937 	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
938 
939 	/* schedule work to kick fsnotify */
940 	spin_lock_irqsave(&kernfs_notify_lock, flags);
941 	if (!kn->attr.notify_next) {
942 		kernfs_get(kn);
943 		kn->attr.notify_next = kernfs_notify_list;
944 		kernfs_notify_list = kn;
945 		schedule_work(&kernfs_notify_work);
946 	}
947 	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
948 }
949 EXPORT_SYMBOL_GPL(kernfs_notify);
950 
951 const struct file_operations kernfs_file_fops = {
952 	.read_iter	= kernfs_fop_read_iter,
953 	.write		= kernfs_fop_write,
954 	.llseek		= generic_file_llseek,
955 	.mmap		= kernfs_fop_mmap,
956 	.open		= kernfs_fop_open,
957 	.release	= kernfs_fop_release,
958 	.poll		= kernfs_fop_poll,
959 	.fsync		= noop_fsync,
960 };
961 
962 /**
963  * __kernfs_create_file - kernfs internal function to create a file
964  * @parent: directory to create the file in
965  * @name: name of the file
966  * @mode: mode of the file
967  * @uid: uid of the file
968  * @gid: gid of the file
969  * @size: size of the file
970  * @ops: kernfs operations for the file
971  * @priv: private data for the file
972  * @ns: optional namespace tag of the file
973  * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
974  *
975  * Returns the created node on success, ERR_PTR() value on error.
976  */
977 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
978 					 const char *name,
979 					 umode_t mode, kuid_t uid, kgid_t gid,
980 					 loff_t size,
981 					 const struct kernfs_ops *ops,
982 					 void *priv, const void *ns,
983 					 struct lock_class_key *key)
984 {
985 	struct kernfs_node *kn;
986 	unsigned flags;
987 	int rc;
988 
989 	flags = KERNFS_FILE;
990 
991 	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
992 			     uid, gid, flags);
993 	if (!kn)
994 		return ERR_PTR(-ENOMEM);
995 
996 	kn->attr.ops = ops;
997 	kn->attr.size = size;
998 	kn->ns = ns;
999 	kn->priv = priv;
1000 
1001 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1002 	if (key) {
1003 		lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
1004 		kn->flags |= KERNFS_LOCKDEP;
1005 	}
1006 #endif
1007 
1008 	/*
1009 	 * kn->attr.ops is accesible only while holding active ref.  We
1010 	 * need to know whether some ops are implemented outside active
1011 	 * ref.  Cache their existence in flags.
1012 	 */
1013 	if (ops->seq_show)
1014 		kn->flags |= KERNFS_HAS_SEQ_SHOW;
1015 	if (ops->mmap)
1016 		kn->flags |= KERNFS_HAS_MMAP;
1017 	if (ops->release)
1018 		kn->flags |= KERNFS_HAS_RELEASE;
1019 
1020 	rc = kernfs_add_one(kn);
1021 	if (rc) {
1022 		kernfs_put(kn);
1023 		return ERR_PTR(rc);
1024 	}
1025 	return kn;
1026 }
1027