xref: /openbmc/linux/fs/kernfs/file.c (revision 08ebb1c0da84bbec6df105a60b339e40fba241c9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/file.c - kernfs file implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/seq_file.h>
12 #include <linux/slab.h>
13 #include <linux/poll.h>
14 #include <linux/pagemap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/fsnotify.h>
17 #include <linux/uio.h>
18 
19 #include "kernfs-internal.h"
20 
21 struct kernfs_open_node {
22 	struct rcu_head		rcu_head;
23 	atomic_t		event;
24 	wait_queue_head_t	poll;
25 	struct list_head	files; /* goes through kernfs_open_file.list */
26 };
27 
28 /*
29  * kernfs_notify() may be called from any context and bounces notifications
30  * through a work item.  To minimize space overhead in kernfs_node, the
31  * pending queue is implemented as a singly linked list of kernfs_nodes.
32  * The list is terminated with the self pointer so that whether a
33  * kernfs_node is on the list or not can be determined by testing the next
34  * pointer for NULL.
35  */
36 #define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
37 
38 static DEFINE_SPINLOCK(kernfs_notify_lock);
39 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
40 
41 static inline struct mutex *kernfs_open_file_mutex_ptr(struct kernfs_node *kn)
42 {
43 	int idx = hash_ptr(kn, NR_KERNFS_LOCK_BITS);
44 
45 	return &kernfs_locks->open_file_mutex[idx];
46 }
47 
48 static inline struct mutex *kernfs_open_file_mutex_lock(struct kernfs_node *kn)
49 {
50 	struct mutex *lock;
51 
52 	lock = kernfs_open_file_mutex_ptr(kn);
53 
54 	mutex_lock(lock);
55 
56 	return lock;
57 }
58 
59 /**
60  * kernfs_deref_open_node - Get kernfs_open_node corresponding to @kn.
61  *
62  * @of: associated kernfs_open_file instance.
63  * @kn: target kernfs_node.
64  *
65  * Fetch and return ->attr.open of @kn if @of->list is non empty.
66  * If @of->list is not empty we can safely assume that @of is on
67  * @kn->attr.open->files list and this guarantees that @kn->attr.open
68  * will not vanish i.e. dereferencing outside RCU read-side critical
69  * section is safe here.
70  *
71  * The caller needs to make sure that @of->list is not empty.
72  */
73 static struct kernfs_open_node *
74 kernfs_deref_open_node(struct kernfs_open_file *of, struct kernfs_node *kn)
75 {
76 	struct kernfs_open_node *on;
77 
78 	on = rcu_dereference_check(kn->attr.open, !list_empty(&of->list));
79 
80 	return on;
81 }
82 
83 /**
84  * kernfs_deref_open_node_protected - Get kernfs_open_node corresponding to @kn
85  *
86  * @kn: target kernfs_node.
87  *
88  * Fetch and return ->attr.open of @kn when caller holds the
89  * kernfs_open_file_mutex_ptr(kn).
90  *
91  * Update of ->attr.open happens under kernfs_open_file_mutex_ptr(kn). So when
92  * the caller guarantees that this mutex is being held, other updaters can't
93  * change ->attr.open and this means that we can safely deref ->attr.open
94  * outside RCU read-side critical section.
95  *
96  * The caller needs to make sure that kernfs_open_file_mutex is held.
97  */
98 static struct kernfs_open_node *
99 kernfs_deref_open_node_protected(struct kernfs_node *kn)
100 {
101 	return rcu_dereference_protected(kn->attr.open,
102 				lockdep_is_held(kernfs_open_file_mutex_ptr(kn)));
103 }
104 
105 static struct kernfs_open_file *kernfs_of(struct file *file)
106 {
107 	return ((struct seq_file *)file->private_data)->private;
108 }
109 
110 /*
111  * Determine the kernfs_ops for the given kernfs_node.  This function must
112  * be called while holding an active reference.
113  */
114 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
115 {
116 	if (kn->flags & KERNFS_LOCKDEP)
117 		lockdep_assert_held(kn);
118 	return kn->attr.ops;
119 }
120 
121 /*
122  * As kernfs_seq_stop() is also called after kernfs_seq_start() or
123  * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
124  * a seq_file iteration which is fully initialized with an active reference
125  * or an aborted kernfs_seq_start() due to get_active failure.  The
126  * position pointer is the only context for each seq_file iteration and
127  * thus the stop condition should be encoded in it.  As the return value is
128  * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
129  * choice to indicate get_active failure.
130  *
131  * Unfortunately, this is complicated due to the optional custom seq_file
132  * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
133  * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
134  * custom seq_file operations and thus can't decide whether put_active
135  * should be performed or not only on ERR_PTR(-ENODEV).
136  *
137  * This is worked around by factoring out the custom seq_stop() and
138  * put_active part into kernfs_seq_stop_active(), skipping it from
139  * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
140  * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
141  * that kernfs_seq_stop_active() is skipped only after get_active failure.
142  */
143 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
144 {
145 	struct kernfs_open_file *of = sf->private;
146 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
147 
148 	if (ops->seq_stop)
149 		ops->seq_stop(sf, v);
150 	kernfs_put_active(of->kn);
151 }
152 
153 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
154 {
155 	struct kernfs_open_file *of = sf->private;
156 	const struct kernfs_ops *ops;
157 
158 	/*
159 	 * @of->mutex nests outside active ref and is primarily to ensure that
160 	 * the ops aren't called concurrently for the same open file.
161 	 */
162 	mutex_lock(&of->mutex);
163 	if (!kernfs_get_active(of->kn))
164 		return ERR_PTR(-ENODEV);
165 
166 	ops = kernfs_ops(of->kn);
167 	if (ops->seq_start) {
168 		void *next = ops->seq_start(sf, ppos);
169 		/* see the comment above kernfs_seq_stop_active() */
170 		if (next == ERR_PTR(-ENODEV))
171 			kernfs_seq_stop_active(sf, next);
172 		return next;
173 	}
174 	return single_start(sf, ppos);
175 }
176 
177 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
178 {
179 	struct kernfs_open_file *of = sf->private;
180 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
181 
182 	if (ops->seq_next) {
183 		void *next = ops->seq_next(sf, v, ppos);
184 		/* see the comment above kernfs_seq_stop_active() */
185 		if (next == ERR_PTR(-ENODEV))
186 			kernfs_seq_stop_active(sf, next);
187 		return next;
188 	} else {
189 		/*
190 		 * The same behavior and code as single_open(), always
191 		 * terminate after the initial read.
192 		 */
193 		++*ppos;
194 		return NULL;
195 	}
196 }
197 
198 static void kernfs_seq_stop(struct seq_file *sf, void *v)
199 {
200 	struct kernfs_open_file *of = sf->private;
201 
202 	if (v != ERR_PTR(-ENODEV))
203 		kernfs_seq_stop_active(sf, v);
204 	mutex_unlock(&of->mutex);
205 }
206 
207 static int kernfs_seq_show(struct seq_file *sf, void *v)
208 {
209 	struct kernfs_open_file *of = sf->private;
210 	struct kernfs_open_node *on = kernfs_deref_open_node(of, of->kn);
211 
212 	if (!on)
213 		return -EINVAL;
214 
215 	of->event = atomic_read(&on->event);
216 
217 	return of->kn->attr.ops->seq_show(sf, v);
218 }
219 
220 static const struct seq_operations kernfs_seq_ops = {
221 	.start = kernfs_seq_start,
222 	.next = kernfs_seq_next,
223 	.stop = kernfs_seq_stop,
224 	.show = kernfs_seq_show,
225 };
226 
227 /*
228  * As reading a bin file can have side-effects, the exact offset and bytes
229  * specified in read(2) call should be passed to the read callback making
230  * it difficult to use seq_file.  Implement simplistic custom buffering for
231  * bin files.
232  */
233 static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
234 {
235 	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
236 	ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE);
237 	const struct kernfs_ops *ops;
238 	struct kernfs_open_node *on;
239 	char *buf;
240 
241 	buf = of->prealloc_buf;
242 	if (buf)
243 		mutex_lock(&of->prealloc_mutex);
244 	else
245 		buf = kmalloc(len, GFP_KERNEL);
246 	if (!buf)
247 		return -ENOMEM;
248 
249 	/*
250 	 * @of->mutex nests outside active ref and is used both to ensure that
251 	 * the ops aren't called concurrently for the same open file.
252 	 */
253 	mutex_lock(&of->mutex);
254 	if (!kernfs_get_active(of->kn)) {
255 		len = -ENODEV;
256 		mutex_unlock(&of->mutex);
257 		goto out_free;
258 	}
259 
260 	on = kernfs_deref_open_node(of, of->kn);
261 	if (!on) {
262 		len = -EINVAL;
263 		mutex_unlock(&of->mutex);
264 		goto out_free;
265 	}
266 
267 	of->event = atomic_read(&on->event);
268 
269 	ops = kernfs_ops(of->kn);
270 	if (ops->read)
271 		len = ops->read(of, buf, len, iocb->ki_pos);
272 	else
273 		len = -EINVAL;
274 
275 	kernfs_put_active(of->kn);
276 	mutex_unlock(&of->mutex);
277 
278 	if (len < 0)
279 		goto out_free;
280 
281 	if (copy_to_iter(buf, len, iter) != len) {
282 		len = -EFAULT;
283 		goto out_free;
284 	}
285 
286 	iocb->ki_pos += len;
287 
288  out_free:
289 	if (buf == of->prealloc_buf)
290 		mutex_unlock(&of->prealloc_mutex);
291 	else
292 		kfree(buf);
293 	return len;
294 }
295 
296 static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter)
297 {
298 	if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW)
299 		return seq_read_iter(iocb, iter);
300 	return kernfs_file_read_iter(iocb, iter);
301 }
302 
303 /*
304  * Copy data in from userland and pass it to the matching kernfs write
305  * operation.
306  *
307  * There is no easy way for us to know if userspace is only doing a partial
308  * write, so we don't support them. We expect the entire buffer to come on
309  * the first write.  Hint: if you're writing a value, first read the file,
310  * modify only the value you're changing, then write entire buffer
311  * back.
312  */
313 static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter)
314 {
315 	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
316 	ssize_t len = iov_iter_count(iter);
317 	const struct kernfs_ops *ops;
318 	char *buf;
319 
320 	if (of->atomic_write_len) {
321 		if (len > of->atomic_write_len)
322 			return -E2BIG;
323 	} else {
324 		len = min_t(size_t, len, PAGE_SIZE);
325 	}
326 
327 	buf = of->prealloc_buf;
328 	if (buf)
329 		mutex_lock(&of->prealloc_mutex);
330 	else
331 		buf = kmalloc(len + 1, GFP_KERNEL);
332 	if (!buf)
333 		return -ENOMEM;
334 
335 	if (copy_from_iter(buf, len, iter) != len) {
336 		len = -EFAULT;
337 		goto out_free;
338 	}
339 	buf[len] = '\0';	/* guarantee string termination */
340 
341 	/*
342 	 * @of->mutex nests outside active ref and is used both to ensure that
343 	 * the ops aren't called concurrently for the same open file.
344 	 */
345 	mutex_lock(&of->mutex);
346 	if (!kernfs_get_active(of->kn)) {
347 		mutex_unlock(&of->mutex);
348 		len = -ENODEV;
349 		goto out_free;
350 	}
351 
352 	ops = kernfs_ops(of->kn);
353 	if (ops->write)
354 		len = ops->write(of, buf, len, iocb->ki_pos);
355 	else
356 		len = -EINVAL;
357 
358 	kernfs_put_active(of->kn);
359 	mutex_unlock(&of->mutex);
360 
361 	if (len > 0)
362 		iocb->ki_pos += len;
363 
364 out_free:
365 	if (buf == of->prealloc_buf)
366 		mutex_unlock(&of->prealloc_mutex);
367 	else
368 		kfree(buf);
369 	return len;
370 }
371 
372 static void kernfs_vma_open(struct vm_area_struct *vma)
373 {
374 	struct file *file = vma->vm_file;
375 	struct kernfs_open_file *of = kernfs_of(file);
376 
377 	if (!of->vm_ops)
378 		return;
379 
380 	if (!kernfs_get_active(of->kn))
381 		return;
382 
383 	if (of->vm_ops->open)
384 		of->vm_ops->open(vma);
385 
386 	kernfs_put_active(of->kn);
387 }
388 
389 static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
390 {
391 	struct file *file = vmf->vma->vm_file;
392 	struct kernfs_open_file *of = kernfs_of(file);
393 	vm_fault_t ret;
394 
395 	if (!of->vm_ops)
396 		return VM_FAULT_SIGBUS;
397 
398 	if (!kernfs_get_active(of->kn))
399 		return VM_FAULT_SIGBUS;
400 
401 	ret = VM_FAULT_SIGBUS;
402 	if (of->vm_ops->fault)
403 		ret = of->vm_ops->fault(vmf);
404 
405 	kernfs_put_active(of->kn);
406 	return ret;
407 }
408 
409 static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
410 {
411 	struct file *file = vmf->vma->vm_file;
412 	struct kernfs_open_file *of = kernfs_of(file);
413 	vm_fault_t ret;
414 
415 	if (!of->vm_ops)
416 		return VM_FAULT_SIGBUS;
417 
418 	if (!kernfs_get_active(of->kn))
419 		return VM_FAULT_SIGBUS;
420 
421 	ret = 0;
422 	if (of->vm_ops->page_mkwrite)
423 		ret = of->vm_ops->page_mkwrite(vmf);
424 	else
425 		file_update_time(file);
426 
427 	kernfs_put_active(of->kn);
428 	return ret;
429 }
430 
431 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
432 			     void *buf, int len, int write)
433 {
434 	struct file *file = vma->vm_file;
435 	struct kernfs_open_file *of = kernfs_of(file);
436 	int ret;
437 
438 	if (!of->vm_ops)
439 		return -EINVAL;
440 
441 	if (!kernfs_get_active(of->kn))
442 		return -EINVAL;
443 
444 	ret = -EINVAL;
445 	if (of->vm_ops->access)
446 		ret = of->vm_ops->access(vma, addr, buf, len, write);
447 
448 	kernfs_put_active(of->kn);
449 	return ret;
450 }
451 
452 #ifdef CONFIG_NUMA
453 static int kernfs_vma_set_policy(struct vm_area_struct *vma,
454 				 struct mempolicy *new)
455 {
456 	struct file *file = vma->vm_file;
457 	struct kernfs_open_file *of = kernfs_of(file);
458 	int ret;
459 
460 	if (!of->vm_ops)
461 		return 0;
462 
463 	if (!kernfs_get_active(of->kn))
464 		return -EINVAL;
465 
466 	ret = 0;
467 	if (of->vm_ops->set_policy)
468 		ret = of->vm_ops->set_policy(vma, new);
469 
470 	kernfs_put_active(of->kn);
471 	return ret;
472 }
473 
474 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
475 					       unsigned long addr)
476 {
477 	struct file *file = vma->vm_file;
478 	struct kernfs_open_file *of = kernfs_of(file);
479 	struct mempolicy *pol;
480 
481 	if (!of->vm_ops)
482 		return vma->vm_policy;
483 
484 	if (!kernfs_get_active(of->kn))
485 		return vma->vm_policy;
486 
487 	pol = vma->vm_policy;
488 	if (of->vm_ops->get_policy)
489 		pol = of->vm_ops->get_policy(vma, addr);
490 
491 	kernfs_put_active(of->kn);
492 	return pol;
493 }
494 
495 #endif
496 
497 static const struct vm_operations_struct kernfs_vm_ops = {
498 	.open		= kernfs_vma_open,
499 	.fault		= kernfs_vma_fault,
500 	.page_mkwrite	= kernfs_vma_page_mkwrite,
501 	.access		= kernfs_vma_access,
502 #ifdef CONFIG_NUMA
503 	.set_policy	= kernfs_vma_set_policy,
504 	.get_policy	= kernfs_vma_get_policy,
505 #endif
506 };
507 
508 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
509 {
510 	struct kernfs_open_file *of = kernfs_of(file);
511 	const struct kernfs_ops *ops;
512 	int rc;
513 
514 	/*
515 	 * mmap path and of->mutex are prone to triggering spurious lockdep
516 	 * warnings and we don't want to add spurious locking dependency
517 	 * between the two.  Check whether mmap is actually implemented
518 	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
519 	 * comment in kernfs_file_open() for more details.
520 	 */
521 	if (!(of->kn->flags & KERNFS_HAS_MMAP))
522 		return -ENODEV;
523 
524 	mutex_lock(&of->mutex);
525 
526 	rc = -ENODEV;
527 	if (!kernfs_get_active(of->kn))
528 		goto out_unlock;
529 
530 	ops = kernfs_ops(of->kn);
531 	rc = ops->mmap(of, vma);
532 	if (rc)
533 		goto out_put;
534 
535 	/*
536 	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
537 	 * to satisfy versions of X which crash if the mmap fails: that
538 	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
539 	 */
540 	if (vma->vm_file != file)
541 		goto out_put;
542 
543 	rc = -EINVAL;
544 	if (of->mmapped && of->vm_ops != vma->vm_ops)
545 		goto out_put;
546 
547 	/*
548 	 * It is not possible to successfully wrap close.
549 	 * So error if someone is trying to use close.
550 	 */
551 	if (vma->vm_ops && vma->vm_ops->close)
552 		goto out_put;
553 
554 	rc = 0;
555 	of->mmapped = true;
556 	of->vm_ops = vma->vm_ops;
557 	vma->vm_ops = &kernfs_vm_ops;
558 out_put:
559 	kernfs_put_active(of->kn);
560 out_unlock:
561 	mutex_unlock(&of->mutex);
562 
563 	return rc;
564 }
565 
566 /**
567  *	kernfs_get_open_node - get or create kernfs_open_node
568  *	@kn: target kernfs_node
569  *	@of: kernfs_open_file for this instance of open
570  *
571  *	If @kn->attr.open exists, increment its reference count; otherwise,
572  *	create one.  @of is chained to the files list.
573  *
574  *	LOCKING:
575  *	Kernel thread context (may sleep).
576  *
577  *	RETURNS:
578  *	0 on success, -errno on failure.
579  */
580 static int kernfs_get_open_node(struct kernfs_node *kn,
581 				struct kernfs_open_file *of)
582 {
583 	struct kernfs_open_node *on, *new_on = NULL;
584 	struct mutex *mutex = NULL;
585 
586 	mutex = kernfs_open_file_mutex_lock(kn);
587 	on = kernfs_deref_open_node_protected(kn);
588 
589 	if (on) {
590 		list_add_tail(&of->list, &on->files);
591 		mutex_unlock(mutex);
592 		return 0;
593 	} else {
594 		/* not there, initialize a new one */
595 		new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
596 		if (!new_on) {
597 			mutex_unlock(mutex);
598 			return -ENOMEM;
599 		}
600 		atomic_set(&new_on->event, 1);
601 		init_waitqueue_head(&new_on->poll);
602 		INIT_LIST_HEAD(&new_on->files);
603 		list_add_tail(&of->list, &new_on->files);
604 		rcu_assign_pointer(kn->attr.open, new_on);
605 	}
606 	mutex_unlock(mutex);
607 
608 	return 0;
609 }
610 
611 /**
612  *	kernfs_unlink_open_file - Unlink @of from @kn.
613  *
614  *	@kn: target kernfs_node
615  *	@of: associated kernfs_open_file
616  *
617  *	Unlink @of from list of @kn's associated open files. If list of
618  *	associated open files becomes empty, disassociate and free
619  *	kernfs_open_node.
620  *
621  *	LOCKING:
622  *	None.
623  */
624 static void kernfs_unlink_open_file(struct kernfs_node *kn,
625 				 struct kernfs_open_file *of)
626 {
627 	struct kernfs_open_node *on;
628 	struct mutex *mutex = NULL;
629 
630 	mutex = kernfs_open_file_mutex_lock(kn);
631 
632 	on = kernfs_deref_open_node_protected(kn);
633 	if (!on) {
634 		mutex_unlock(mutex);
635 		return;
636 	}
637 
638 	if (of)
639 		list_del(&of->list);
640 
641 	if (list_empty(&on->files)) {
642 		rcu_assign_pointer(kn->attr.open, NULL);
643 		kfree_rcu(on, rcu_head);
644 	}
645 
646 	mutex_unlock(mutex);
647 }
648 
649 static int kernfs_fop_open(struct inode *inode, struct file *file)
650 {
651 	struct kernfs_node *kn = inode->i_private;
652 	struct kernfs_root *root = kernfs_root(kn);
653 	const struct kernfs_ops *ops;
654 	struct kernfs_open_file *of;
655 	bool has_read, has_write, has_mmap;
656 	int error = -EACCES;
657 
658 	if (!kernfs_get_active(kn))
659 		return -ENODEV;
660 
661 	ops = kernfs_ops(kn);
662 
663 	has_read = ops->seq_show || ops->read || ops->mmap;
664 	has_write = ops->write || ops->mmap;
665 	has_mmap = ops->mmap;
666 
667 	/* see the flag definition for details */
668 	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
669 		if ((file->f_mode & FMODE_WRITE) &&
670 		    (!(inode->i_mode & S_IWUGO) || !has_write))
671 			goto err_out;
672 
673 		if ((file->f_mode & FMODE_READ) &&
674 		    (!(inode->i_mode & S_IRUGO) || !has_read))
675 			goto err_out;
676 	}
677 
678 	/* allocate a kernfs_open_file for the file */
679 	error = -ENOMEM;
680 	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
681 	if (!of)
682 		goto err_out;
683 
684 	/*
685 	 * The following is done to give a different lockdep key to
686 	 * @of->mutex for files which implement mmap.  This is a rather
687 	 * crude way to avoid false positive lockdep warning around
688 	 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
689 	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
690 	 * which mm->mmap_lock nests, while holding @of->mutex.  As each
691 	 * open file has a separate mutex, it's okay as long as those don't
692 	 * happen on the same file.  At this point, we can't easily give
693 	 * each file a separate locking class.  Let's differentiate on
694 	 * whether the file has mmap or not for now.
695 	 *
696 	 * Both paths of the branch look the same.  They're supposed to
697 	 * look that way and give @of->mutex different static lockdep keys.
698 	 */
699 	if (has_mmap)
700 		mutex_init(&of->mutex);
701 	else
702 		mutex_init(&of->mutex);
703 
704 	of->kn = kn;
705 	of->file = file;
706 
707 	/*
708 	 * Write path needs to atomic_write_len outside active reference.
709 	 * Cache it in open_file.  See kernfs_fop_write_iter() for details.
710 	 */
711 	of->atomic_write_len = ops->atomic_write_len;
712 
713 	error = -EINVAL;
714 	/*
715 	 * ->seq_show is incompatible with ->prealloc,
716 	 * as seq_read does its own allocation.
717 	 * ->read must be used instead.
718 	 */
719 	if (ops->prealloc && ops->seq_show)
720 		goto err_free;
721 	if (ops->prealloc) {
722 		int len = of->atomic_write_len ?: PAGE_SIZE;
723 		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
724 		error = -ENOMEM;
725 		if (!of->prealloc_buf)
726 			goto err_free;
727 		mutex_init(&of->prealloc_mutex);
728 	}
729 
730 	/*
731 	 * Always instantiate seq_file even if read access doesn't use
732 	 * seq_file or is not requested.  This unifies private data access
733 	 * and readable regular files are the vast majority anyway.
734 	 */
735 	if (ops->seq_show)
736 		error = seq_open(file, &kernfs_seq_ops);
737 	else
738 		error = seq_open(file, NULL);
739 	if (error)
740 		goto err_free;
741 
742 	of->seq_file = file->private_data;
743 	of->seq_file->private = of;
744 
745 	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
746 	if (file->f_mode & FMODE_WRITE)
747 		file->f_mode |= FMODE_PWRITE;
748 
749 	/* make sure we have open node struct */
750 	error = kernfs_get_open_node(kn, of);
751 	if (error)
752 		goto err_seq_release;
753 
754 	if (ops->open) {
755 		/* nobody has access to @of yet, skip @of->mutex */
756 		error = ops->open(of);
757 		if (error)
758 			goto err_put_node;
759 	}
760 
761 	/* open succeeded, put active references */
762 	kernfs_put_active(kn);
763 	return 0;
764 
765 err_put_node:
766 	kernfs_unlink_open_file(kn, of);
767 err_seq_release:
768 	seq_release(inode, file);
769 err_free:
770 	kfree(of->prealloc_buf);
771 	kfree(of);
772 err_out:
773 	kernfs_put_active(kn);
774 	return error;
775 }
776 
777 /* used from release/drain to ensure that ->release() is called exactly once */
778 static void kernfs_release_file(struct kernfs_node *kn,
779 				struct kernfs_open_file *of)
780 {
781 	/*
782 	 * @of is guaranteed to have no other file operations in flight and
783 	 * we just want to synchronize release and drain paths.
784 	 * @kernfs_open_file_mutex_ptr(kn) is enough. @of->mutex can't be used
785 	 * here because drain path may be called from places which can
786 	 * cause circular dependency.
787 	 */
788 	lockdep_assert_held(kernfs_open_file_mutex_ptr(kn));
789 
790 	if (!of->released) {
791 		/*
792 		 * A file is never detached without being released and we
793 		 * need to be able to release files which are deactivated
794 		 * and being drained.  Don't use kernfs_ops().
795 		 */
796 		kn->attr.ops->release(of);
797 		of->released = true;
798 	}
799 }
800 
801 static int kernfs_fop_release(struct inode *inode, struct file *filp)
802 {
803 	struct kernfs_node *kn = inode->i_private;
804 	struct kernfs_open_file *of = kernfs_of(filp);
805 	struct mutex *mutex = NULL;
806 
807 	if (kn->flags & KERNFS_HAS_RELEASE) {
808 		mutex = kernfs_open_file_mutex_lock(kn);
809 		kernfs_release_file(kn, of);
810 		mutex_unlock(mutex);
811 	}
812 
813 	kernfs_unlink_open_file(kn, of);
814 	seq_release(inode, filp);
815 	kfree(of->prealloc_buf);
816 	kfree(of);
817 
818 	return 0;
819 }
820 
821 void kernfs_drain_open_files(struct kernfs_node *kn)
822 {
823 	struct kernfs_open_node *on;
824 	struct kernfs_open_file *of;
825 	struct mutex *mutex = NULL;
826 
827 	if (!(kn->flags & (KERNFS_HAS_MMAP | KERNFS_HAS_RELEASE)))
828 		return;
829 
830 	/*
831 	 * lockless opportunistic check is safe below because no one is adding to
832 	 * ->attr.open at this point of time. This check allows early bail out
833 	 * if ->attr.open is already NULL. kernfs_unlink_open_file makes
834 	 * ->attr.open NULL only while holding kernfs_open_file_mutex so below
835 	 * check under kernfs_open_file_mutex_ptr(kn) will ensure bailing out if
836 	 * ->attr.open became NULL while waiting for the mutex.
837 	 */
838 	if (!rcu_access_pointer(kn->attr.open))
839 		return;
840 
841 	mutex = kernfs_open_file_mutex_lock(kn);
842 	on = kernfs_deref_open_node_protected(kn);
843 	if (!on) {
844 		mutex_unlock(mutex);
845 		return;
846 	}
847 
848 	list_for_each_entry(of, &on->files, list) {
849 		struct inode *inode = file_inode(of->file);
850 
851 		if (kn->flags & KERNFS_HAS_MMAP)
852 			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
853 
854 		if (kn->flags & KERNFS_HAS_RELEASE)
855 			kernfs_release_file(kn, of);
856 	}
857 
858 	mutex_unlock(mutex);
859 }
860 
861 /*
862  * Kernfs attribute files are pollable.  The idea is that you read
863  * the content and then you use 'poll' or 'select' to wait for
864  * the content to change.  When the content changes (assuming the
865  * manager for the kobject supports notification), poll will
866  * return EPOLLERR|EPOLLPRI, and select will return the fd whether
867  * it is waiting for read, write, or exceptions.
868  * Once poll/select indicates that the value has changed, you
869  * need to close and re-open the file, or seek to 0 and read again.
870  * Reminder: this only works for attributes which actively support
871  * it, and it is not possible to test an attribute from userspace
872  * to see if it supports poll (Neither 'poll' nor 'select' return
873  * an appropriate error code).  When in doubt, set a suitable timeout value.
874  */
875 __poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
876 {
877 	struct kernfs_node *kn = kernfs_dentry_node(of->file->f_path.dentry);
878 	struct kernfs_open_node *on = kernfs_deref_open_node(of, kn);
879 
880 	if (!on)
881 		return EPOLLERR;
882 
883 	poll_wait(of->file, &on->poll, wait);
884 
885 	if (of->event != atomic_read(&on->event))
886 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
887 
888 	return DEFAULT_POLLMASK;
889 }
890 
891 static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
892 {
893 	struct kernfs_open_file *of = kernfs_of(filp);
894 	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
895 	__poll_t ret;
896 
897 	if (!kernfs_get_active(kn))
898 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
899 
900 	if (kn->attr.ops->poll)
901 		ret = kn->attr.ops->poll(of, wait);
902 	else
903 		ret = kernfs_generic_poll(of, wait);
904 
905 	kernfs_put_active(kn);
906 	return ret;
907 }
908 
909 static void kernfs_notify_workfn(struct work_struct *work)
910 {
911 	struct kernfs_node *kn;
912 	struct kernfs_super_info *info;
913 	struct kernfs_root *root;
914 repeat:
915 	/* pop one off the notify_list */
916 	spin_lock_irq(&kernfs_notify_lock);
917 	kn = kernfs_notify_list;
918 	if (kn == KERNFS_NOTIFY_EOL) {
919 		spin_unlock_irq(&kernfs_notify_lock);
920 		return;
921 	}
922 	kernfs_notify_list = kn->attr.notify_next;
923 	kn->attr.notify_next = NULL;
924 	spin_unlock_irq(&kernfs_notify_lock);
925 
926 	root = kernfs_root(kn);
927 	/* kick fsnotify */
928 	down_write(&root->kernfs_rwsem);
929 
930 	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
931 		struct kernfs_node *parent;
932 		struct inode *p_inode = NULL;
933 		struct inode *inode;
934 		struct qstr name;
935 
936 		/*
937 		 * We want fsnotify_modify() on @kn but as the
938 		 * modifications aren't originating from userland don't
939 		 * have the matching @file available.  Look up the inodes
940 		 * and generate the events manually.
941 		 */
942 		inode = ilookup(info->sb, kernfs_ino(kn));
943 		if (!inode)
944 			continue;
945 
946 		name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
947 		parent = kernfs_get_parent(kn);
948 		if (parent) {
949 			p_inode = ilookup(info->sb, kernfs_ino(parent));
950 			if (p_inode) {
951 				fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
952 					 inode, FSNOTIFY_EVENT_INODE,
953 					 p_inode, &name, inode, 0);
954 				iput(p_inode);
955 			}
956 
957 			kernfs_put(parent);
958 		}
959 
960 		if (!p_inode)
961 			fsnotify_inode(inode, FS_MODIFY);
962 
963 		iput(inode);
964 	}
965 
966 	up_write(&root->kernfs_rwsem);
967 	kernfs_put(kn);
968 	goto repeat;
969 }
970 
971 /**
972  * kernfs_notify - notify a kernfs file
973  * @kn: file to notify
974  *
975  * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
976  * context.
977  */
978 void kernfs_notify(struct kernfs_node *kn)
979 {
980 	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
981 	unsigned long flags;
982 	struct kernfs_open_node *on;
983 
984 	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
985 		return;
986 
987 	/* kick poll immediately */
988 	rcu_read_lock();
989 	on = rcu_dereference(kn->attr.open);
990 	if (on) {
991 		atomic_inc(&on->event);
992 		wake_up_interruptible(&on->poll);
993 	}
994 	rcu_read_unlock();
995 
996 	/* schedule work to kick fsnotify */
997 	spin_lock_irqsave(&kernfs_notify_lock, flags);
998 	if (!kn->attr.notify_next) {
999 		kernfs_get(kn);
1000 		kn->attr.notify_next = kernfs_notify_list;
1001 		kernfs_notify_list = kn;
1002 		schedule_work(&kernfs_notify_work);
1003 	}
1004 	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
1005 }
1006 EXPORT_SYMBOL_GPL(kernfs_notify);
1007 
1008 const struct file_operations kernfs_file_fops = {
1009 	.read_iter	= kernfs_fop_read_iter,
1010 	.write_iter	= kernfs_fop_write_iter,
1011 	.llseek		= generic_file_llseek,
1012 	.mmap		= kernfs_fop_mmap,
1013 	.open		= kernfs_fop_open,
1014 	.release	= kernfs_fop_release,
1015 	.poll		= kernfs_fop_poll,
1016 	.fsync		= noop_fsync,
1017 	.splice_read	= generic_file_splice_read,
1018 	.splice_write	= iter_file_splice_write,
1019 };
1020 
1021 /**
1022  * __kernfs_create_file - kernfs internal function to create a file
1023  * @parent: directory to create the file in
1024  * @name: name of the file
1025  * @mode: mode of the file
1026  * @uid: uid of the file
1027  * @gid: gid of the file
1028  * @size: size of the file
1029  * @ops: kernfs operations for the file
1030  * @priv: private data for the file
1031  * @ns: optional namespace tag of the file
1032  * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
1033  *
1034  * Returns the created node on success, ERR_PTR() value on error.
1035  */
1036 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
1037 					 const char *name,
1038 					 umode_t mode, kuid_t uid, kgid_t gid,
1039 					 loff_t size,
1040 					 const struct kernfs_ops *ops,
1041 					 void *priv, const void *ns,
1042 					 struct lock_class_key *key)
1043 {
1044 	struct kernfs_node *kn;
1045 	unsigned flags;
1046 	int rc;
1047 
1048 	flags = KERNFS_FILE;
1049 
1050 	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
1051 			     uid, gid, flags);
1052 	if (!kn)
1053 		return ERR_PTR(-ENOMEM);
1054 
1055 	kn->attr.ops = ops;
1056 	kn->attr.size = size;
1057 	kn->ns = ns;
1058 	kn->priv = priv;
1059 
1060 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1061 	if (key) {
1062 		lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
1063 		kn->flags |= KERNFS_LOCKDEP;
1064 	}
1065 #endif
1066 
1067 	/*
1068 	 * kn->attr.ops is accessible only while holding active ref.  We
1069 	 * need to know whether some ops are implemented outside active
1070 	 * ref.  Cache their existence in flags.
1071 	 */
1072 	if (ops->seq_show)
1073 		kn->flags |= KERNFS_HAS_SEQ_SHOW;
1074 	if (ops->mmap)
1075 		kn->flags |= KERNFS_HAS_MMAP;
1076 	if (ops->release)
1077 		kn->flags |= KERNFS_HAS_RELEASE;
1078 
1079 	rc = kernfs_add_one(kn);
1080 	if (rc) {
1081 		kernfs_put(kn);
1082 		return ERR_PTR(rc);
1083 	}
1084 	return kn;
1085 }
1086