xref: /openbmc/linux/fs/jfs/jfs_dtree.c (revision e213e26ab3988c516c06eba4dcd030ac052f6dc9)
1 /*
2  *   Copyright (C) International Business Machines Corp., 2000-2004
3  *
4  *   This program is free software;  you can redistribute it and/or modify
5  *   it under the terms of the GNU General Public License as published by
6  *   the Free Software Foundation; either version 2 of the License, or
7  *   (at your option) any later version.
8  *
9  *   This program is distributed in the hope that it will be useful,
10  *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
12  *   the GNU General Public License for more details.
13  *
14  *   You should have received a copy of the GNU General Public License
15  *   along with this program;  if not, write to the Free Software
16  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18 
19 /*
20  *	jfs_dtree.c: directory B+-tree manager
21  *
22  * B+-tree with variable length key directory:
23  *
24  * each directory page is structured as an array of 32-byte
25  * directory entry slots initialized as a freelist
26  * to avoid search/compaction of free space at insertion.
27  * when an entry is inserted, a number of slots are allocated
28  * from the freelist as required to store variable length data
29  * of the entry; when the entry is deleted, slots of the entry
30  * are returned to freelist.
31  *
32  * leaf entry stores full name as key and file serial number
33  * (aka inode number) as data.
34  * internal/router entry stores sufffix compressed name
35  * as key and simple extent descriptor as data.
36  *
37  * each directory page maintains a sorted entry index table
38  * which stores the start slot index of sorted entries
39  * to allow binary search on the table.
40  *
41  * directory starts as a root/leaf page in on-disk inode
42  * inline data area.
43  * when it becomes full, it starts a leaf of a external extent
44  * of length of 1 block. each time the first leaf becomes full,
45  * it is extended rather than split (its size is doubled),
46  * until its length becoms 4 KBytes, from then the extent is split
47  * with new 4 Kbyte extent when it becomes full
48  * to reduce external fragmentation of small directories.
49  *
50  * blah, blah, blah, for linear scan of directory in pieces by
51  * readdir().
52  *
53  *
54  *	case-insensitive directory file system
55  *
56  * names are stored in case-sensitive way in leaf entry.
57  * but stored, searched and compared in case-insensitive (uppercase) order
58  * (i.e., both search key and entry key are folded for search/compare):
59  * (note that case-sensitive order is BROKEN in storage, e.g.,
60  *  sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
61  *
62  *  entries which folds to the same key makes up a equivalent class
63  *  whose members are stored as contiguous cluster (may cross page boundary)
64  *  but whose order is arbitrary and acts as duplicate, e.g.,
65  *  abc, Abc, aBc, abC)
66  *
67  * once match is found at leaf, requires scan forward/backward
68  * either for, in case-insensitive search, duplicate
69  * or for, in case-sensitive search, for exact match
70  *
71  * router entry must be created/stored in case-insensitive way
72  * in internal entry:
73  * (right most key of left page and left most key of right page
74  * are folded, and its suffix compression is propagated as router
75  * key in parent)
76  * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
77  * should be made the router key for the split)
78  *
79  * case-insensitive search:
80  *
81  *	fold search key;
82  *
83  *	case-insensitive search of B-tree:
84  *	for internal entry, router key is already folded;
85  *	for leaf entry, fold the entry key before comparison.
86  *
87  *	if (leaf entry case-insensitive match found)
88  *		if (next entry satisfies case-insensitive match)
89  *			return EDUPLICATE;
90  *		if (prev entry satisfies case-insensitive match)
91  *			return EDUPLICATE;
92  *		return match;
93  *	else
94  *		return no match;
95  *
96  *	serialization:
97  * target directory inode lock is being held on entry/exit
98  * of all main directory service routines.
99  *
100  *	log based recovery:
101  */
102 
103 #include <linux/fs.h>
104 #include <linux/quotaops.h>
105 #include "jfs_incore.h"
106 #include "jfs_superblock.h"
107 #include "jfs_filsys.h"
108 #include "jfs_metapage.h"
109 #include "jfs_dmap.h"
110 #include "jfs_unicode.h"
111 #include "jfs_debug.h"
112 
113 /* dtree split parameter */
114 struct dtsplit {
115 	struct metapage *mp;
116 	s16 index;
117 	s16 nslot;
118 	struct component_name *key;
119 	ddata_t *data;
120 	struct pxdlist *pxdlist;
121 };
122 
123 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
124 
125 /* get page buffer for specified block address */
126 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)\
127 {\
128 	BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot)\
129 	if (!(RC))\
130 	{\
131 		if (((P)->header.nextindex > (((BN)==0)?DTROOTMAXSLOT:(P)->header.maxslot)) ||\
132 		    ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT)))\
133 		{\
134 			BT_PUTPAGE(MP);\
135 			jfs_error((IP)->i_sb, "DT_GETPAGE: dtree page corrupt");\
136 			MP = NULL;\
137 			RC = -EIO;\
138 		}\
139 	}\
140 }
141 
142 /* for consistency */
143 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
144 
145 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
146 	BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
147 
148 /*
149  * forward references
150  */
151 static int dtSplitUp(tid_t tid, struct inode *ip,
152 		     struct dtsplit * split, struct btstack * btstack);
153 
154 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
155 		       struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
156 
157 static int dtExtendPage(tid_t tid, struct inode *ip,
158 			struct dtsplit * split, struct btstack * btstack);
159 
160 static int dtSplitRoot(tid_t tid, struct inode *ip,
161 		       struct dtsplit * split, struct metapage ** rmpp);
162 
163 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
164 		      dtpage_t * fp, struct btstack * btstack);
165 
166 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
167 
168 static int dtReadFirst(struct inode *ip, struct btstack * btstack);
169 
170 static int dtReadNext(struct inode *ip,
171 		      loff_t * offset, struct btstack * btstack);
172 
173 static int dtCompare(struct component_name * key, dtpage_t * p, int si);
174 
175 static int ciCompare(struct component_name * key, dtpage_t * p, int si,
176 		     int flag);
177 
178 static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
179 		     int flag);
180 
181 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
182 			      int ri, struct component_name * key, int flag);
183 
184 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
185 			  ddata_t * data, struct dt_lock **);
186 
187 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
188 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
189 			int do_index);
190 
191 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
192 
193 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
194 
195 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
196 
197 #define ciToUpper(c)	UniStrupr((c)->name)
198 
199 /*
200  *	read_index_page()
201  *
202  *	Reads a page of a directory's index table.
203  *	Having metadata mapped into the directory inode's address space
204  *	presents a multitude of problems.  We avoid this by mapping to
205  *	the absolute address space outside of the *_metapage routines
206  */
207 static struct metapage *read_index_page(struct inode *inode, s64 blkno)
208 {
209 	int rc;
210 	s64 xaddr;
211 	int xflag;
212 	s32 xlen;
213 
214 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
215 	if (rc || (xaddr == 0))
216 		return NULL;
217 
218 	return read_metapage(inode, xaddr, PSIZE, 1);
219 }
220 
221 /*
222  *	get_index_page()
223  *
224  *	Same as get_index_page(), but get's a new page without reading
225  */
226 static struct metapage *get_index_page(struct inode *inode, s64 blkno)
227 {
228 	int rc;
229 	s64 xaddr;
230 	int xflag;
231 	s32 xlen;
232 
233 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
234 	if (rc || (xaddr == 0))
235 		return NULL;
236 
237 	return get_metapage(inode, xaddr, PSIZE, 1);
238 }
239 
240 /*
241  *	find_index()
242  *
243  *	Returns dtree page containing directory table entry for specified
244  *	index and pointer to its entry.
245  *
246  *	mp must be released by caller.
247  */
248 static struct dir_table_slot *find_index(struct inode *ip, u32 index,
249 					 struct metapage ** mp, s64 *lblock)
250 {
251 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
252 	s64 blkno;
253 	s64 offset;
254 	int page_offset;
255 	struct dir_table_slot *slot;
256 	static int maxWarnings = 10;
257 
258 	if (index < 2) {
259 		if (maxWarnings) {
260 			jfs_warn("find_entry called with index = %d", index);
261 			maxWarnings--;
262 		}
263 		return NULL;
264 	}
265 
266 	if (index >= jfs_ip->next_index) {
267 		jfs_warn("find_entry called with index >= next_index");
268 		return NULL;
269 	}
270 
271 	if (jfs_dirtable_inline(ip)) {
272 		/*
273 		 * Inline directory table
274 		 */
275 		*mp = NULL;
276 		slot = &jfs_ip->i_dirtable[index - 2];
277 	} else {
278 		offset = (index - 2) * sizeof(struct dir_table_slot);
279 		page_offset = offset & (PSIZE - 1);
280 		blkno = ((offset + 1) >> L2PSIZE) <<
281 		    JFS_SBI(ip->i_sb)->l2nbperpage;
282 
283 		if (*mp && (*lblock != blkno)) {
284 			release_metapage(*mp);
285 			*mp = NULL;
286 		}
287 		if (!(*mp)) {
288 			*lblock = blkno;
289 			*mp = read_index_page(ip, blkno);
290 		}
291 		if (!(*mp)) {
292 			jfs_err("free_index: error reading directory table");
293 			return NULL;
294 		}
295 
296 		slot =
297 		    (struct dir_table_slot *) ((char *) (*mp)->data +
298 					       page_offset);
299 	}
300 	return slot;
301 }
302 
303 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
304 			      u32 index)
305 {
306 	struct tlock *tlck;
307 	struct linelock *llck;
308 	struct lv *lv;
309 
310 	tlck = txLock(tid, ip, mp, tlckDATA);
311 	llck = (struct linelock *) tlck->lock;
312 
313 	if (llck->index >= llck->maxcnt)
314 		llck = txLinelock(llck);
315 	lv = &llck->lv[llck->index];
316 
317 	/*
318 	 *	Linelock slot size is twice the size of directory table
319 	 *	slot size.  512 entries per page.
320 	 */
321 	lv->offset = ((index - 2) & 511) >> 1;
322 	lv->length = 1;
323 	llck->index++;
324 }
325 
326 /*
327  *	add_index()
328  *
329  *	Adds an entry to the directory index table.  This is used to provide
330  *	each directory entry with a persistent index in which to resume
331  *	directory traversals
332  */
333 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
334 {
335 	struct super_block *sb = ip->i_sb;
336 	struct jfs_sb_info *sbi = JFS_SBI(sb);
337 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
338 	u64 blkno;
339 	struct dir_table_slot *dirtab_slot;
340 	u32 index;
341 	struct linelock *llck;
342 	struct lv *lv;
343 	struct metapage *mp;
344 	s64 offset;
345 	uint page_offset;
346 	struct tlock *tlck;
347 	s64 xaddr;
348 
349 	ASSERT(DO_INDEX(ip));
350 
351 	if (jfs_ip->next_index < 2) {
352 		jfs_warn("add_index: next_index = %d.  Resetting!",
353 			   jfs_ip->next_index);
354 		jfs_ip->next_index = 2;
355 	}
356 
357 	index = jfs_ip->next_index++;
358 
359 	if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
360 		/*
361 		 * i_size reflects size of index table, or 8 bytes per entry.
362 		 */
363 		ip->i_size = (loff_t) (index - 1) << 3;
364 
365 		/*
366 		 * dir table fits inline within inode
367 		 */
368 		dirtab_slot = &jfs_ip->i_dirtable[index-2];
369 		dirtab_slot->flag = DIR_INDEX_VALID;
370 		dirtab_slot->slot = slot;
371 		DTSaddress(dirtab_slot, bn);
372 
373 		set_cflag(COMMIT_Dirtable, ip);
374 
375 		return index;
376 	}
377 	if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
378 		struct dir_table_slot temp_table[12];
379 
380 		/*
381 		 * It's time to move the inline table to an external
382 		 * page and begin to build the xtree
383 		 */
384 		if (dquot_alloc_block(ip, sbi->nbperpage))
385 			goto clean_up;
386 		if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) {
387 			dquot_free_block(ip, sbi->nbperpage);
388 			goto clean_up;
389 		}
390 
391 		/*
392 		 * Save the table, we're going to overwrite it with the
393 		 * xtree root
394 		 */
395 		memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
396 
397 		/*
398 		 * Initialize empty x-tree
399 		 */
400 		xtInitRoot(tid, ip);
401 
402 		/*
403 		 * Add the first block to the xtree
404 		 */
405 		if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
406 			/* This really shouldn't fail */
407 			jfs_warn("add_index: xtInsert failed!");
408 			memcpy(&jfs_ip->i_dirtable, temp_table,
409 			       sizeof (temp_table));
410 			dbFree(ip, xaddr, sbi->nbperpage);
411 			dquot_free_block(ip, sbi->nbperpage);
412 			goto clean_up;
413 		}
414 		ip->i_size = PSIZE;
415 
416 		mp = get_index_page(ip, 0);
417 		if (!mp) {
418 			jfs_err("add_index: get_metapage failed!");
419 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
420 			memcpy(&jfs_ip->i_dirtable, temp_table,
421 			       sizeof (temp_table));
422 			goto clean_up;
423 		}
424 		tlck = txLock(tid, ip, mp, tlckDATA);
425 		llck = (struct linelock *) & tlck->lock;
426 		ASSERT(llck->index == 0);
427 		lv = &llck->lv[0];
428 
429 		lv->offset = 0;
430 		lv->length = 6;	/* tlckDATA slot size is 16 bytes */
431 		llck->index++;
432 
433 		memcpy(mp->data, temp_table, sizeof(temp_table));
434 
435 		mark_metapage_dirty(mp);
436 		release_metapage(mp);
437 
438 		/*
439 		 * Logging is now directed by xtree tlocks
440 		 */
441 		clear_cflag(COMMIT_Dirtable, ip);
442 	}
443 
444 	offset = (index - 2) * sizeof(struct dir_table_slot);
445 	page_offset = offset & (PSIZE - 1);
446 	blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
447 	if (page_offset == 0) {
448 		/*
449 		 * This will be the beginning of a new page
450 		 */
451 		xaddr = 0;
452 		if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
453 			jfs_warn("add_index: xtInsert failed!");
454 			goto clean_up;
455 		}
456 		ip->i_size += PSIZE;
457 
458 		if ((mp = get_index_page(ip, blkno)))
459 			memset(mp->data, 0, PSIZE);	/* Just looks better */
460 		else
461 			xtTruncate(tid, ip, offset, COMMIT_PWMAP);
462 	} else
463 		mp = read_index_page(ip, blkno);
464 
465 	if (!mp) {
466 		jfs_err("add_index: get/read_metapage failed!");
467 		goto clean_up;
468 	}
469 
470 	lock_index(tid, ip, mp, index);
471 
472 	dirtab_slot =
473 	    (struct dir_table_slot *) ((char *) mp->data + page_offset);
474 	dirtab_slot->flag = DIR_INDEX_VALID;
475 	dirtab_slot->slot = slot;
476 	DTSaddress(dirtab_slot, bn);
477 
478 	mark_metapage_dirty(mp);
479 	release_metapage(mp);
480 
481 	return index;
482 
483       clean_up:
484 
485 	jfs_ip->next_index--;
486 
487 	return 0;
488 }
489 
490 /*
491  *	free_index()
492  *
493  *	Marks an entry to the directory index table as free.
494  */
495 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
496 {
497 	struct dir_table_slot *dirtab_slot;
498 	s64 lblock;
499 	struct metapage *mp = NULL;
500 
501 	dirtab_slot = find_index(ip, index, &mp, &lblock);
502 
503 	if (!dirtab_slot)
504 		return;
505 
506 	dirtab_slot->flag = DIR_INDEX_FREE;
507 	dirtab_slot->slot = dirtab_slot->addr1 = 0;
508 	dirtab_slot->addr2 = cpu_to_le32(next);
509 
510 	if (mp) {
511 		lock_index(tid, ip, mp, index);
512 		mark_metapage_dirty(mp);
513 		release_metapage(mp);
514 	} else
515 		set_cflag(COMMIT_Dirtable, ip);
516 }
517 
518 /*
519  *	modify_index()
520  *
521  *	Changes an entry in the directory index table
522  */
523 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
524 			 int slot, struct metapage ** mp, s64 *lblock)
525 {
526 	struct dir_table_slot *dirtab_slot;
527 
528 	dirtab_slot = find_index(ip, index, mp, lblock);
529 
530 	if (!dirtab_slot)
531 		return;
532 
533 	DTSaddress(dirtab_slot, bn);
534 	dirtab_slot->slot = slot;
535 
536 	if (*mp) {
537 		lock_index(tid, ip, *mp, index);
538 		mark_metapage_dirty(*mp);
539 	} else
540 		set_cflag(COMMIT_Dirtable, ip);
541 }
542 
543 /*
544  *	read_index()
545  *
546  *	reads a directory table slot
547  */
548 static int read_index(struct inode *ip, u32 index,
549 		     struct dir_table_slot * dirtab_slot)
550 {
551 	s64 lblock;
552 	struct metapage *mp = NULL;
553 	struct dir_table_slot *slot;
554 
555 	slot = find_index(ip, index, &mp, &lblock);
556 	if (!slot) {
557 		return -EIO;
558 	}
559 
560 	memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
561 
562 	if (mp)
563 		release_metapage(mp);
564 
565 	return 0;
566 }
567 
568 /*
569  *	dtSearch()
570  *
571  * function:
572  *	Search for the entry with specified key
573  *
574  * parameter:
575  *
576  * return: 0 - search result on stack, leaf page pinned;
577  *	   errno - I/O error
578  */
579 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
580 	     struct btstack * btstack, int flag)
581 {
582 	int rc = 0;
583 	int cmp = 1;		/* init for empty page */
584 	s64 bn;
585 	struct metapage *mp;
586 	dtpage_t *p;
587 	s8 *stbl;
588 	int base, index, lim;
589 	struct btframe *btsp;
590 	pxd_t *pxd;
591 	int psize = 288;	/* initial in-line directory */
592 	ino_t inumber;
593 	struct component_name ciKey;
594 	struct super_block *sb = ip->i_sb;
595 
596 	ciKey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t), GFP_NOFS);
597 	if (!ciKey.name) {
598 		rc = -ENOMEM;
599 		goto dtSearch_Exit2;
600 	}
601 
602 
603 	/* uppercase search key for c-i directory */
604 	UniStrcpy(ciKey.name, key->name);
605 	ciKey.namlen = key->namlen;
606 
607 	/* only uppercase if case-insensitive support is on */
608 	if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
609 		ciToUpper(&ciKey);
610 	}
611 	BT_CLR(btstack);	/* reset stack */
612 
613 	/* init level count for max pages to split */
614 	btstack->nsplit = 1;
615 
616 	/*
617 	 *	search down tree from root:
618 	 *
619 	 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
620 	 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
621 	 *
622 	 * if entry with search key K is not found
623 	 * internal page search find the entry with largest key Ki
624 	 * less than K which point to the child page to search;
625 	 * leaf page search find the entry with smallest key Kj
626 	 * greater than K so that the returned index is the position of
627 	 * the entry to be shifted right for insertion of new entry.
628 	 * for empty tree, search key is greater than any key of the tree.
629 	 *
630 	 * by convention, root bn = 0.
631 	 */
632 	for (bn = 0;;) {
633 		/* get/pin the page to search */
634 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
635 		if (rc)
636 			goto dtSearch_Exit1;
637 
638 		/* get sorted entry table of the page */
639 		stbl = DT_GETSTBL(p);
640 
641 		/*
642 		 * binary search with search key K on the current page.
643 		 */
644 		for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
645 			index = base + (lim >> 1);
646 
647 			if (p->header.flag & BT_LEAF) {
648 				/* uppercase leaf name to compare */
649 				cmp =
650 				    ciCompare(&ciKey, p, stbl[index],
651 					      JFS_SBI(sb)->mntflag);
652 			} else {
653 				/* router key is in uppercase */
654 
655 				cmp = dtCompare(&ciKey, p, stbl[index]);
656 
657 
658 			}
659 			if (cmp == 0) {
660 				/*
661 				 *	search hit
662 				 */
663 				/* search hit - leaf page:
664 				 * return the entry found
665 				 */
666 				if (p->header.flag & BT_LEAF) {
667 					inumber = le32_to_cpu(
668 			((struct ldtentry *) & p->slot[stbl[index]])->inumber);
669 
670 					/*
671 					 * search for JFS_LOOKUP
672 					 */
673 					if (flag == JFS_LOOKUP) {
674 						*data = inumber;
675 						rc = 0;
676 						goto out;
677 					}
678 
679 					/*
680 					 * search for JFS_CREATE
681 					 */
682 					if (flag == JFS_CREATE) {
683 						*data = inumber;
684 						rc = -EEXIST;
685 						goto out;
686 					}
687 
688 					/*
689 					 * search for JFS_REMOVE or JFS_RENAME
690 					 */
691 					if ((flag == JFS_REMOVE ||
692 					     flag == JFS_RENAME) &&
693 					    *data != inumber) {
694 						rc = -ESTALE;
695 						goto out;
696 					}
697 
698 					/*
699 					 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
700 					 */
701 					/* save search result */
702 					*data = inumber;
703 					btsp = btstack->top;
704 					btsp->bn = bn;
705 					btsp->index = index;
706 					btsp->mp = mp;
707 
708 					rc = 0;
709 					goto dtSearch_Exit1;
710 				}
711 
712 				/* search hit - internal page:
713 				 * descend/search its child page
714 				 */
715 				goto getChild;
716 			}
717 
718 			if (cmp > 0) {
719 				base = index + 1;
720 				--lim;
721 			}
722 		}
723 
724 		/*
725 		 *	search miss
726 		 *
727 		 * base is the smallest index with key (Kj) greater than
728 		 * search key (K) and may be zero or (maxindex + 1) index.
729 		 */
730 		/*
731 		 * search miss - leaf page
732 		 *
733 		 * return location of entry (base) where new entry with
734 		 * search key K is to be inserted.
735 		 */
736 		if (p->header.flag & BT_LEAF) {
737 			/*
738 			 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
739 			 */
740 			if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
741 			    flag == JFS_RENAME) {
742 				rc = -ENOENT;
743 				goto out;
744 			}
745 
746 			/*
747 			 * search for JFS_CREATE|JFS_FINDDIR:
748 			 *
749 			 * save search result
750 			 */
751 			*data = 0;
752 			btsp = btstack->top;
753 			btsp->bn = bn;
754 			btsp->index = base;
755 			btsp->mp = mp;
756 
757 			rc = 0;
758 			goto dtSearch_Exit1;
759 		}
760 
761 		/*
762 		 * search miss - internal page
763 		 *
764 		 * if base is non-zero, decrement base by one to get the parent
765 		 * entry of the child page to search.
766 		 */
767 		index = base ? base - 1 : base;
768 
769 		/*
770 		 * go down to child page
771 		 */
772 	      getChild:
773 		/* update max. number of pages to split */
774 		if (BT_STACK_FULL(btstack)) {
775 			/* Something's corrupted, mark filesystem dirty so
776 			 * chkdsk will fix it.
777 			 */
778 			jfs_error(sb, "stack overrun in dtSearch!");
779 			BT_STACK_DUMP(btstack);
780 			rc = -EIO;
781 			goto out;
782 		}
783 		btstack->nsplit++;
784 
785 		/* push (bn, index) of the parent page/entry */
786 		BT_PUSH(btstack, bn, index);
787 
788 		/* get the child page block number */
789 		pxd = (pxd_t *) & p->slot[stbl[index]];
790 		bn = addressPXD(pxd);
791 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
792 
793 		/* unpin the parent page */
794 		DT_PUTPAGE(mp);
795 	}
796 
797       out:
798 	DT_PUTPAGE(mp);
799 
800       dtSearch_Exit1:
801 
802 	kfree(ciKey.name);
803 
804       dtSearch_Exit2:
805 
806 	return rc;
807 }
808 
809 
810 /*
811  *	dtInsert()
812  *
813  * function: insert an entry to directory tree
814  *
815  * parameter:
816  *
817  * return: 0 - success;
818  *	   errno - failure;
819  */
820 int dtInsert(tid_t tid, struct inode *ip,
821 	 struct component_name * name, ino_t * fsn, struct btstack * btstack)
822 {
823 	int rc = 0;
824 	struct metapage *mp;	/* meta-page buffer */
825 	dtpage_t *p;		/* base B+-tree index page */
826 	s64 bn;
827 	int index;
828 	struct dtsplit split;	/* split information */
829 	ddata_t data;
830 	struct dt_lock *dtlck;
831 	int n;
832 	struct tlock *tlck;
833 	struct lv *lv;
834 
835 	/*
836 	 *	retrieve search result
837 	 *
838 	 * dtSearch() returns (leaf page pinned, index at which to insert).
839 	 * n.b. dtSearch() may return index of (maxindex + 1) of
840 	 * the full page.
841 	 */
842 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
843 
844 	/*
845 	 *	insert entry for new key
846 	 */
847 	if (DO_INDEX(ip)) {
848 		if (JFS_IP(ip)->next_index == DIREND) {
849 			DT_PUTPAGE(mp);
850 			return -EMLINK;
851 		}
852 		n = NDTLEAF(name->namlen);
853 		data.leaf.tid = tid;
854 		data.leaf.ip = ip;
855 	} else {
856 		n = NDTLEAF_LEGACY(name->namlen);
857 		data.leaf.ip = NULL;	/* signifies legacy directory format */
858 	}
859 	data.leaf.ino = *fsn;
860 
861 	/*
862 	 *	leaf page does not have enough room for new entry:
863 	 *
864 	 *	extend/split the leaf page;
865 	 *
866 	 * dtSplitUp() will insert the entry and unpin the leaf page.
867 	 */
868 	if (n > p->header.freecnt) {
869 		split.mp = mp;
870 		split.index = index;
871 		split.nslot = n;
872 		split.key = name;
873 		split.data = &data;
874 		rc = dtSplitUp(tid, ip, &split, btstack);
875 		return rc;
876 	}
877 
878 	/*
879 	 *	leaf page does have enough room for new entry:
880 	 *
881 	 *	insert the new data entry into the leaf page;
882 	 */
883 	BT_MARK_DIRTY(mp, ip);
884 	/*
885 	 * acquire a transaction lock on the leaf page
886 	 */
887 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
888 	dtlck = (struct dt_lock *) & tlck->lock;
889 	ASSERT(dtlck->index == 0);
890 	lv = & dtlck->lv[0];
891 
892 	/* linelock header */
893 	lv->offset = 0;
894 	lv->length = 1;
895 	dtlck->index++;
896 
897 	dtInsertEntry(p, index, name, &data, &dtlck);
898 
899 	/* linelock stbl of non-root leaf page */
900 	if (!(p->header.flag & BT_ROOT)) {
901 		if (dtlck->index >= dtlck->maxcnt)
902 			dtlck = (struct dt_lock *) txLinelock(dtlck);
903 		lv = & dtlck->lv[dtlck->index];
904 		n = index >> L2DTSLOTSIZE;
905 		lv->offset = p->header.stblindex + n;
906 		lv->length =
907 		    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
908 		dtlck->index++;
909 	}
910 
911 	/* unpin the leaf page */
912 	DT_PUTPAGE(mp);
913 
914 	return 0;
915 }
916 
917 
918 /*
919  *	dtSplitUp()
920  *
921  * function: propagate insertion bottom up;
922  *
923  * parameter:
924  *
925  * return: 0 - success;
926  *	   errno - failure;
927  *	leaf page unpinned;
928  */
929 static int dtSplitUp(tid_t tid,
930 	  struct inode *ip, struct dtsplit * split, struct btstack * btstack)
931 {
932 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
933 	int rc = 0;
934 	struct metapage *smp;
935 	dtpage_t *sp;		/* split page */
936 	struct metapage *rmp;
937 	dtpage_t *rp;		/* new right page split from sp */
938 	pxd_t rpxd;		/* new right page extent descriptor */
939 	struct metapage *lmp;
940 	dtpage_t *lp;		/* left child page */
941 	int skip;		/* index of entry of insertion */
942 	struct btframe *parent;	/* parent page entry on traverse stack */
943 	s64 xaddr, nxaddr;
944 	int xlen, xsize;
945 	struct pxdlist pxdlist;
946 	pxd_t *pxd;
947 	struct component_name key = { 0, NULL };
948 	ddata_t *data = split->data;
949 	int n;
950 	struct dt_lock *dtlck;
951 	struct tlock *tlck;
952 	struct lv *lv;
953 	int quota_allocation = 0;
954 
955 	/* get split page */
956 	smp = split->mp;
957 	sp = DT_PAGE(ip, smp);
958 
959 	key.name = kmalloc((JFS_NAME_MAX + 2) * sizeof(wchar_t), GFP_NOFS);
960 	if (!key.name) {
961 		DT_PUTPAGE(smp);
962 		rc = -ENOMEM;
963 		goto dtSplitUp_Exit;
964 	}
965 
966 	/*
967 	 *	split leaf page
968 	 *
969 	 * The split routines insert the new entry, and
970 	 * acquire txLock as appropriate.
971 	 */
972 	/*
973 	 *	split root leaf page:
974 	 */
975 	if (sp->header.flag & BT_ROOT) {
976 		/*
977 		 * allocate a single extent child page
978 		 */
979 		xlen = 1;
980 		n = sbi->bsize >> L2DTSLOTSIZE;
981 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
982 		n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
983 		if (n <= split->nslot)
984 			xlen++;
985 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
986 			DT_PUTPAGE(smp);
987 			goto freeKeyName;
988 		}
989 
990 		pxdlist.maxnpxd = 1;
991 		pxdlist.npxd = 0;
992 		pxd = &pxdlist.pxd[0];
993 		PXDaddress(pxd, xaddr);
994 		PXDlength(pxd, xlen);
995 		split->pxdlist = &pxdlist;
996 		rc = dtSplitRoot(tid, ip, split, &rmp);
997 
998 		if (rc)
999 			dbFree(ip, xaddr, xlen);
1000 		else
1001 			DT_PUTPAGE(rmp);
1002 
1003 		DT_PUTPAGE(smp);
1004 
1005 		if (!DO_INDEX(ip))
1006 			ip->i_size = xlen << sbi->l2bsize;
1007 
1008 		goto freeKeyName;
1009 	}
1010 
1011 	/*
1012 	 *	extend first leaf page
1013 	 *
1014 	 * extend the 1st extent if less than buffer page size
1015 	 * (dtExtendPage() reurns leaf page unpinned)
1016 	 */
1017 	pxd = &sp->header.self;
1018 	xlen = lengthPXD(pxd);
1019 	xsize = xlen << sbi->l2bsize;
1020 	if (xsize < PSIZE) {
1021 		xaddr = addressPXD(pxd);
1022 		n = xsize >> L2DTSLOTSIZE;
1023 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
1024 		if ((n + sp->header.freecnt) <= split->nslot)
1025 			n = xlen + (xlen << 1);
1026 		else
1027 			n = xlen;
1028 
1029 		/* Allocate blocks to quota. */
1030 		rc = dquot_alloc_block(ip, n);
1031 		if (rc)
1032 			goto extendOut;
1033 		quota_allocation += n;
1034 
1035 		if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1036 				    (s64) n, &nxaddr)))
1037 			goto extendOut;
1038 
1039 		pxdlist.maxnpxd = 1;
1040 		pxdlist.npxd = 0;
1041 		pxd = &pxdlist.pxd[0];
1042 		PXDaddress(pxd, nxaddr)
1043 		    PXDlength(pxd, xlen + n);
1044 		split->pxdlist = &pxdlist;
1045 		if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1046 			nxaddr = addressPXD(pxd);
1047 			if (xaddr != nxaddr) {
1048 				/* free relocated extent */
1049 				xlen = lengthPXD(pxd);
1050 				dbFree(ip, nxaddr, (s64) xlen);
1051 			} else {
1052 				/* free extended delta */
1053 				xlen = lengthPXD(pxd) - n;
1054 				xaddr = addressPXD(pxd) + xlen;
1055 				dbFree(ip, xaddr, (s64) n);
1056 			}
1057 		} else if (!DO_INDEX(ip))
1058 			ip->i_size = lengthPXD(pxd) << sbi->l2bsize;
1059 
1060 
1061 	      extendOut:
1062 		DT_PUTPAGE(smp);
1063 		goto freeKeyName;
1064 	}
1065 
1066 	/*
1067 	 *	split leaf page <sp> into <sp> and a new right page <rp>.
1068 	 *
1069 	 * return <rp> pinned and its extent descriptor <rpxd>
1070 	 */
1071 	/*
1072 	 * allocate new directory page extent and
1073 	 * new index page(s) to cover page split(s)
1074 	 *
1075 	 * allocation hint: ?
1076 	 */
1077 	n = btstack->nsplit;
1078 	pxdlist.maxnpxd = pxdlist.npxd = 0;
1079 	xlen = sbi->nbperpage;
1080 	for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1081 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1082 			PXDaddress(pxd, xaddr);
1083 			PXDlength(pxd, xlen);
1084 			pxdlist.maxnpxd++;
1085 			continue;
1086 		}
1087 
1088 		DT_PUTPAGE(smp);
1089 
1090 		/* undo allocation */
1091 		goto splitOut;
1092 	}
1093 
1094 	split->pxdlist = &pxdlist;
1095 	if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1096 		DT_PUTPAGE(smp);
1097 
1098 		/* undo allocation */
1099 		goto splitOut;
1100 	}
1101 
1102 	if (!DO_INDEX(ip))
1103 		ip->i_size += PSIZE;
1104 
1105 	/*
1106 	 * propagate up the router entry for the leaf page just split
1107 	 *
1108 	 * insert a router entry for the new page into the parent page,
1109 	 * propagate the insert/split up the tree by walking back the stack
1110 	 * of (bn of parent page, index of child page entry in parent page)
1111 	 * that were traversed during the search for the page that split.
1112 	 *
1113 	 * the propagation of insert/split up the tree stops if the root
1114 	 * splits or the page inserted into doesn't have to split to hold
1115 	 * the new entry.
1116 	 *
1117 	 * the parent entry for the split page remains the same, and
1118 	 * a new entry is inserted at its right with the first key and
1119 	 * block number of the new right page.
1120 	 *
1121 	 * There are a maximum of 4 pages pinned at any time:
1122 	 * two children, left parent and right parent (when the parent splits).
1123 	 * keep the child pages pinned while working on the parent.
1124 	 * make sure that all pins are released at exit.
1125 	 */
1126 	while ((parent = BT_POP(btstack)) != NULL) {
1127 		/* parent page specified by stack frame <parent> */
1128 
1129 		/* keep current child pages (<lp>, <rp>) pinned */
1130 		lmp = smp;
1131 		lp = sp;
1132 
1133 		/*
1134 		 * insert router entry in parent for new right child page <rp>
1135 		 */
1136 		/* get the parent page <sp> */
1137 		DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1138 		if (rc) {
1139 			DT_PUTPAGE(lmp);
1140 			DT_PUTPAGE(rmp);
1141 			goto splitOut;
1142 		}
1143 
1144 		/*
1145 		 * The new key entry goes ONE AFTER the index of parent entry,
1146 		 * because the split was to the right.
1147 		 */
1148 		skip = parent->index + 1;
1149 
1150 		/*
1151 		 * compute the key for the router entry
1152 		 *
1153 		 * key suffix compression:
1154 		 * for internal pages that have leaf pages as children,
1155 		 * retain only what's needed to distinguish between
1156 		 * the new entry and the entry on the page to its left.
1157 		 * If the keys compare equal, retain the entire key.
1158 		 *
1159 		 * note that compression is performed only at computing
1160 		 * router key at the lowest internal level.
1161 		 * further compression of the key between pairs of higher
1162 		 * level internal pages loses too much information and
1163 		 * the search may fail.
1164 		 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1165 		 * results in two adjacent parent entries (a)(xx).
1166 		 * if split occurs between these two entries, and
1167 		 * if compression is applied, the router key of parent entry
1168 		 * of right page (x) will divert search for x into right
1169 		 * subtree and miss x in the left subtree.)
1170 		 *
1171 		 * the entire key must be retained for the next-to-leftmost
1172 		 * internal key at any level of the tree, or search may fail
1173 		 * (e.g., ?)
1174 		 */
1175 		switch (rp->header.flag & BT_TYPE) {
1176 		case BT_LEAF:
1177 			/*
1178 			 * compute the length of prefix for suffix compression
1179 			 * between last entry of left page and first entry
1180 			 * of right page
1181 			 */
1182 			if ((sp->header.flag & BT_ROOT && skip > 1) ||
1183 			    sp->header.prev != 0 || skip > 1) {
1184 				/* compute uppercase router prefix key */
1185 				rc = ciGetLeafPrefixKey(lp,
1186 							lp->header.nextindex-1,
1187 							rp, 0, &key,
1188 							sbi->mntflag);
1189 				if (rc) {
1190 					DT_PUTPAGE(lmp);
1191 					DT_PUTPAGE(rmp);
1192 					DT_PUTPAGE(smp);
1193 					goto splitOut;
1194 				}
1195 			} else {
1196 				/* next to leftmost entry of
1197 				   lowest internal level */
1198 
1199 				/* compute uppercase router key */
1200 				dtGetKey(rp, 0, &key, sbi->mntflag);
1201 				key.name[key.namlen] = 0;
1202 
1203 				if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1204 					ciToUpper(&key);
1205 			}
1206 
1207 			n = NDTINTERNAL(key.namlen);
1208 			break;
1209 
1210 		case BT_INTERNAL:
1211 			dtGetKey(rp, 0, &key, sbi->mntflag);
1212 			n = NDTINTERNAL(key.namlen);
1213 			break;
1214 
1215 		default:
1216 			jfs_err("dtSplitUp(): UFO!");
1217 			break;
1218 		}
1219 
1220 		/* unpin left child page */
1221 		DT_PUTPAGE(lmp);
1222 
1223 		/*
1224 		 * compute the data for the router entry
1225 		 */
1226 		data->xd = rpxd;	/* child page xd */
1227 
1228 		/*
1229 		 * parent page is full - split the parent page
1230 		 */
1231 		if (n > sp->header.freecnt) {
1232 			/* init for parent page split */
1233 			split->mp = smp;
1234 			split->index = skip;	/* index at insert */
1235 			split->nslot = n;
1236 			split->key = &key;
1237 			/* split->data = data; */
1238 
1239 			/* unpin right child page */
1240 			DT_PUTPAGE(rmp);
1241 
1242 			/* The split routines insert the new entry,
1243 			 * acquire txLock as appropriate.
1244 			 * return <rp> pinned and its block number <rbn>.
1245 			 */
1246 			rc = (sp->header.flag & BT_ROOT) ?
1247 			    dtSplitRoot(tid, ip, split, &rmp) :
1248 			    dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1249 			if (rc) {
1250 				DT_PUTPAGE(smp);
1251 				goto splitOut;
1252 			}
1253 
1254 			/* smp and rmp are pinned */
1255 		}
1256 		/*
1257 		 * parent page is not full - insert router entry in parent page
1258 		 */
1259 		else {
1260 			BT_MARK_DIRTY(smp, ip);
1261 			/*
1262 			 * acquire a transaction lock on the parent page
1263 			 */
1264 			tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1265 			dtlck = (struct dt_lock *) & tlck->lock;
1266 			ASSERT(dtlck->index == 0);
1267 			lv = & dtlck->lv[0];
1268 
1269 			/* linelock header */
1270 			lv->offset = 0;
1271 			lv->length = 1;
1272 			dtlck->index++;
1273 
1274 			/* linelock stbl of non-root parent page */
1275 			if (!(sp->header.flag & BT_ROOT)) {
1276 				lv++;
1277 				n = skip >> L2DTSLOTSIZE;
1278 				lv->offset = sp->header.stblindex + n;
1279 				lv->length =
1280 				    ((sp->header.nextindex -
1281 				      1) >> L2DTSLOTSIZE) - n + 1;
1282 				dtlck->index++;
1283 			}
1284 
1285 			dtInsertEntry(sp, skip, &key, data, &dtlck);
1286 
1287 			/* exit propagate up */
1288 			break;
1289 		}
1290 	}
1291 
1292 	/* unpin current split and its right page */
1293 	DT_PUTPAGE(smp);
1294 	DT_PUTPAGE(rmp);
1295 
1296 	/*
1297 	 * free remaining extents allocated for split
1298 	 */
1299       splitOut:
1300 	n = pxdlist.npxd;
1301 	pxd = &pxdlist.pxd[n];
1302 	for (; n < pxdlist.maxnpxd; n++, pxd++)
1303 		dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1304 
1305       freeKeyName:
1306 	kfree(key.name);
1307 
1308 	/* Rollback quota allocation */
1309 	if (rc && quota_allocation)
1310 		dquot_free_block(ip, quota_allocation);
1311 
1312       dtSplitUp_Exit:
1313 
1314 	return rc;
1315 }
1316 
1317 
1318 /*
1319  *	dtSplitPage()
1320  *
1321  * function: Split a non-root page of a btree.
1322  *
1323  * parameter:
1324  *
1325  * return: 0 - success;
1326  *	   errno - failure;
1327  *	return split and new page pinned;
1328  */
1329 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1330 	    struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1331 {
1332 	int rc = 0;
1333 	struct metapage *smp;
1334 	dtpage_t *sp;
1335 	struct metapage *rmp;
1336 	dtpage_t *rp;		/* new right page allocated */
1337 	s64 rbn;		/* new right page block number */
1338 	struct metapage *mp;
1339 	dtpage_t *p;
1340 	s64 nextbn;
1341 	struct pxdlist *pxdlist;
1342 	pxd_t *pxd;
1343 	int skip, nextindex, half, left, nxt, off, si;
1344 	struct ldtentry *ldtentry;
1345 	struct idtentry *idtentry;
1346 	u8 *stbl;
1347 	struct dtslot *f;
1348 	int fsi, stblsize;
1349 	int n;
1350 	struct dt_lock *sdtlck, *rdtlck;
1351 	struct tlock *tlck;
1352 	struct dt_lock *dtlck;
1353 	struct lv *slv, *rlv, *lv;
1354 
1355 	/* get split page */
1356 	smp = split->mp;
1357 	sp = DT_PAGE(ip, smp);
1358 
1359 	/*
1360 	 * allocate the new right page for the split
1361 	 */
1362 	pxdlist = split->pxdlist;
1363 	pxd = &pxdlist->pxd[pxdlist->npxd];
1364 	pxdlist->npxd++;
1365 	rbn = addressPXD(pxd);
1366 	rmp = get_metapage(ip, rbn, PSIZE, 1);
1367 	if (rmp == NULL)
1368 		return -EIO;
1369 
1370 	/* Allocate blocks to quota. */
1371 	rc = dquot_alloc_block(ip, lengthPXD(pxd));
1372 	if (rc) {
1373 		release_metapage(rmp);
1374 		return rc;
1375 	}
1376 
1377 	jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1378 
1379 	BT_MARK_DIRTY(rmp, ip);
1380 	/*
1381 	 * acquire a transaction lock on the new right page
1382 	 */
1383 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1384 	rdtlck = (struct dt_lock *) & tlck->lock;
1385 
1386 	rp = (dtpage_t *) rmp->data;
1387 	*rpp = rp;
1388 	rp->header.self = *pxd;
1389 
1390 	BT_MARK_DIRTY(smp, ip);
1391 	/*
1392 	 * acquire a transaction lock on the split page
1393 	 *
1394 	 * action:
1395 	 */
1396 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1397 	sdtlck = (struct dt_lock *) & tlck->lock;
1398 
1399 	/* linelock header of split page */
1400 	ASSERT(sdtlck->index == 0);
1401 	slv = & sdtlck->lv[0];
1402 	slv->offset = 0;
1403 	slv->length = 1;
1404 	sdtlck->index++;
1405 
1406 	/*
1407 	 * initialize/update sibling pointers between sp and rp
1408 	 */
1409 	nextbn = le64_to_cpu(sp->header.next);
1410 	rp->header.next = cpu_to_le64(nextbn);
1411 	rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1412 	sp->header.next = cpu_to_le64(rbn);
1413 
1414 	/*
1415 	 * initialize new right page
1416 	 */
1417 	rp->header.flag = sp->header.flag;
1418 
1419 	/* compute sorted entry table at start of extent data area */
1420 	rp->header.nextindex = 0;
1421 	rp->header.stblindex = 1;
1422 
1423 	n = PSIZE >> L2DTSLOTSIZE;
1424 	rp->header.maxslot = n;
1425 	stblsize = (n + 31) >> L2DTSLOTSIZE;	/* in unit of slot */
1426 
1427 	/* init freelist */
1428 	fsi = rp->header.stblindex + stblsize;
1429 	rp->header.freelist = fsi;
1430 	rp->header.freecnt = rp->header.maxslot - fsi;
1431 
1432 	/*
1433 	 *	sequential append at tail: append without split
1434 	 *
1435 	 * If splitting the last page on a level because of appending
1436 	 * a entry to it (skip is maxentry), it's likely that the access is
1437 	 * sequential. Adding an empty page on the side of the level is less
1438 	 * work and can push the fill factor much higher than normal.
1439 	 * If we're wrong it's no big deal, we'll just do the split the right
1440 	 * way next time.
1441 	 * (It may look like it's equally easy to do a similar hack for
1442 	 * reverse sorted data, that is, split the tree left,
1443 	 * but it's not. Be my guest.)
1444 	 */
1445 	if (nextbn == 0 && split->index == sp->header.nextindex) {
1446 		/* linelock header + stbl (first slot) of new page */
1447 		rlv = & rdtlck->lv[rdtlck->index];
1448 		rlv->offset = 0;
1449 		rlv->length = 2;
1450 		rdtlck->index++;
1451 
1452 		/*
1453 		 * initialize freelist of new right page
1454 		 */
1455 		f = &rp->slot[fsi];
1456 		for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1457 			f->next = fsi;
1458 		f->next = -1;
1459 
1460 		/* insert entry at the first entry of the new right page */
1461 		dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1462 
1463 		goto out;
1464 	}
1465 
1466 	/*
1467 	 *	non-sequential insert (at possibly middle page)
1468 	 */
1469 
1470 	/*
1471 	 * update prev pointer of previous right sibling page;
1472 	 */
1473 	if (nextbn != 0) {
1474 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1475 		if (rc) {
1476 			discard_metapage(rmp);
1477 			return rc;
1478 		}
1479 
1480 		BT_MARK_DIRTY(mp, ip);
1481 		/*
1482 		 * acquire a transaction lock on the next page
1483 		 */
1484 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1485 		jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1486 			tlck, ip, mp);
1487 		dtlck = (struct dt_lock *) & tlck->lock;
1488 
1489 		/* linelock header of previous right sibling page */
1490 		lv = & dtlck->lv[dtlck->index];
1491 		lv->offset = 0;
1492 		lv->length = 1;
1493 		dtlck->index++;
1494 
1495 		p->header.prev = cpu_to_le64(rbn);
1496 
1497 		DT_PUTPAGE(mp);
1498 	}
1499 
1500 	/*
1501 	 * split the data between the split and right pages.
1502 	 */
1503 	skip = split->index;
1504 	half = (PSIZE >> L2DTSLOTSIZE) >> 1;	/* swag */
1505 	left = 0;
1506 
1507 	/*
1508 	 *	compute fill factor for split pages
1509 	 *
1510 	 * <nxt> traces the next entry to move to rp
1511 	 * <off> traces the next entry to stay in sp
1512 	 */
1513 	stbl = (u8 *) & sp->slot[sp->header.stblindex];
1514 	nextindex = sp->header.nextindex;
1515 	for (nxt = off = 0; nxt < nextindex; ++off) {
1516 		if (off == skip)
1517 			/* check for fill factor with new entry size */
1518 			n = split->nslot;
1519 		else {
1520 			si = stbl[nxt];
1521 			switch (sp->header.flag & BT_TYPE) {
1522 			case BT_LEAF:
1523 				ldtentry = (struct ldtentry *) & sp->slot[si];
1524 				if (DO_INDEX(ip))
1525 					n = NDTLEAF(ldtentry->namlen);
1526 				else
1527 					n = NDTLEAF_LEGACY(ldtentry->
1528 							   namlen);
1529 				break;
1530 
1531 			case BT_INTERNAL:
1532 				idtentry = (struct idtentry *) & sp->slot[si];
1533 				n = NDTINTERNAL(idtentry->namlen);
1534 				break;
1535 
1536 			default:
1537 				break;
1538 			}
1539 
1540 			++nxt;	/* advance to next entry to move in sp */
1541 		}
1542 
1543 		left += n;
1544 		if (left >= half)
1545 			break;
1546 	}
1547 
1548 	/* <nxt> poins to the 1st entry to move */
1549 
1550 	/*
1551 	 *	move entries to right page
1552 	 *
1553 	 * dtMoveEntry() initializes rp and reserves entry for insertion
1554 	 *
1555 	 * split page moved out entries are linelocked;
1556 	 * new/right page moved in entries are linelocked;
1557 	 */
1558 	/* linelock header + stbl of new right page */
1559 	rlv = & rdtlck->lv[rdtlck->index];
1560 	rlv->offset = 0;
1561 	rlv->length = 5;
1562 	rdtlck->index++;
1563 
1564 	dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1565 
1566 	sp->header.nextindex = nxt;
1567 
1568 	/*
1569 	 * finalize freelist of new right page
1570 	 */
1571 	fsi = rp->header.freelist;
1572 	f = &rp->slot[fsi];
1573 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1574 		f->next = fsi;
1575 	f->next = -1;
1576 
1577 	/*
1578 	 * Update directory index table for entries now in right page
1579 	 */
1580 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1581 		s64 lblock;
1582 
1583 		mp = NULL;
1584 		stbl = DT_GETSTBL(rp);
1585 		for (n = 0; n < rp->header.nextindex; n++) {
1586 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1587 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1588 				     rbn, n, &mp, &lblock);
1589 		}
1590 		if (mp)
1591 			release_metapage(mp);
1592 	}
1593 
1594 	/*
1595 	 * the skipped index was on the left page,
1596 	 */
1597 	if (skip <= off) {
1598 		/* insert the new entry in the split page */
1599 		dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1600 
1601 		/* linelock stbl of split page */
1602 		if (sdtlck->index >= sdtlck->maxcnt)
1603 			sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1604 		slv = & sdtlck->lv[sdtlck->index];
1605 		n = skip >> L2DTSLOTSIZE;
1606 		slv->offset = sp->header.stblindex + n;
1607 		slv->length =
1608 		    ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1609 		sdtlck->index++;
1610 	}
1611 	/*
1612 	 * the skipped index was on the right page,
1613 	 */
1614 	else {
1615 		/* adjust the skip index to reflect the new position */
1616 		skip -= nxt;
1617 
1618 		/* insert the new entry in the right page */
1619 		dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1620 	}
1621 
1622       out:
1623 	*rmpp = rmp;
1624 	*rpxdp = *pxd;
1625 
1626 	return rc;
1627 }
1628 
1629 
1630 /*
1631  *	dtExtendPage()
1632  *
1633  * function: extend 1st/only directory leaf page
1634  *
1635  * parameter:
1636  *
1637  * return: 0 - success;
1638  *	   errno - failure;
1639  *	return extended page pinned;
1640  */
1641 static int dtExtendPage(tid_t tid,
1642 	     struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1643 {
1644 	struct super_block *sb = ip->i_sb;
1645 	int rc;
1646 	struct metapage *smp, *pmp, *mp;
1647 	dtpage_t *sp, *pp;
1648 	struct pxdlist *pxdlist;
1649 	pxd_t *pxd, *tpxd;
1650 	int xlen, xsize;
1651 	int newstblindex, newstblsize;
1652 	int oldstblindex, oldstblsize;
1653 	int fsi, last;
1654 	struct dtslot *f;
1655 	struct btframe *parent;
1656 	int n;
1657 	struct dt_lock *dtlck;
1658 	s64 xaddr, txaddr;
1659 	struct tlock *tlck;
1660 	struct pxd_lock *pxdlock;
1661 	struct lv *lv;
1662 	uint type;
1663 	struct ldtentry *ldtentry;
1664 	u8 *stbl;
1665 
1666 	/* get page to extend */
1667 	smp = split->mp;
1668 	sp = DT_PAGE(ip, smp);
1669 
1670 	/* get parent/root page */
1671 	parent = BT_POP(btstack);
1672 	DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1673 	if (rc)
1674 		return (rc);
1675 
1676 	/*
1677 	 *	extend the extent
1678 	 */
1679 	pxdlist = split->pxdlist;
1680 	pxd = &pxdlist->pxd[pxdlist->npxd];
1681 	pxdlist->npxd++;
1682 
1683 	xaddr = addressPXD(pxd);
1684 	tpxd = &sp->header.self;
1685 	txaddr = addressPXD(tpxd);
1686 	/* in-place extension */
1687 	if (xaddr == txaddr) {
1688 		type = tlckEXTEND;
1689 	}
1690 	/* relocation */
1691 	else {
1692 		type = tlckNEW;
1693 
1694 		/* save moved extent descriptor for later free */
1695 		tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1696 		pxdlock = (struct pxd_lock *) & tlck->lock;
1697 		pxdlock->flag = mlckFREEPXD;
1698 		pxdlock->pxd = sp->header.self;
1699 		pxdlock->index = 1;
1700 
1701 		/*
1702 		 * Update directory index table to reflect new page address
1703 		 */
1704 		if (DO_INDEX(ip)) {
1705 			s64 lblock;
1706 
1707 			mp = NULL;
1708 			stbl = DT_GETSTBL(sp);
1709 			for (n = 0; n < sp->header.nextindex; n++) {
1710 				ldtentry =
1711 				    (struct ldtentry *) & sp->slot[stbl[n]];
1712 				modify_index(tid, ip,
1713 					     le32_to_cpu(ldtentry->index),
1714 					     xaddr, n, &mp, &lblock);
1715 			}
1716 			if (mp)
1717 				release_metapage(mp);
1718 		}
1719 	}
1720 
1721 	/*
1722 	 *	extend the page
1723 	 */
1724 	sp->header.self = *pxd;
1725 
1726 	jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1727 
1728 	BT_MARK_DIRTY(smp, ip);
1729 	/*
1730 	 * acquire a transaction lock on the extended/leaf page
1731 	 */
1732 	tlck = txLock(tid, ip, smp, tlckDTREE | type);
1733 	dtlck = (struct dt_lock *) & tlck->lock;
1734 	lv = & dtlck->lv[0];
1735 
1736 	/* update buffer extent descriptor of extended page */
1737 	xlen = lengthPXD(pxd);
1738 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1739 
1740 	/*
1741 	 * copy old stbl to new stbl at start of extended area
1742 	 */
1743 	oldstblindex = sp->header.stblindex;
1744 	oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1745 	newstblindex = sp->header.maxslot;
1746 	n = xsize >> L2DTSLOTSIZE;
1747 	newstblsize = (n + 31) >> L2DTSLOTSIZE;
1748 	memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1749 	       sp->header.nextindex);
1750 
1751 	/*
1752 	 * in-line extension: linelock old area of extended page
1753 	 */
1754 	if (type == tlckEXTEND) {
1755 		/* linelock header */
1756 		lv->offset = 0;
1757 		lv->length = 1;
1758 		dtlck->index++;
1759 		lv++;
1760 
1761 		/* linelock new stbl of extended page */
1762 		lv->offset = newstblindex;
1763 		lv->length = newstblsize;
1764 	}
1765 	/*
1766 	 * relocation: linelock whole relocated area
1767 	 */
1768 	else {
1769 		lv->offset = 0;
1770 		lv->length = sp->header.maxslot + newstblsize;
1771 	}
1772 
1773 	dtlck->index++;
1774 
1775 	sp->header.maxslot = n;
1776 	sp->header.stblindex = newstblindex;
1777 	/* sp->header.nextindex remains the same */
1778 
1779 	/*
1780 	 * add old stbl region at head of freelist
1781 	 */
1782 	fsi = oldstblindex;
1783 	f = &sp->slot[fsi];
1784 	last = sp->header.freelist;
1785 	for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1786 		f->next = last;
1787 		last = fsi;
1788 	}
1789 	sp->header.freelist = last;
1790 	sp->header.freecnt += oldstblsize;
1791 
1792 	/*
1793 	 * append free region of newly extended area at tail of freelist
1794 	 */
1795 	/* init free region of newly extended area */
1796 	fsi = n = newstblindex + newstblsize;
1797 	f = &sp->slot[fsi];
1798 	for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1799 		f->next = fsi;
1800 	f->next = -1;
1801 
1802 	/* append new free region at tail of old freelist */
1803 	fsi = sp->header.freelist;
1804 	if (fsi == -1)
1805 		sp->header.freelist = n;
1806 	else {
1807 		do {
1808 			f = &sp->slot[fsi];
1809 			fsi = f->next;
1810 		} while (fsi != -1);
1811 
1812 		f->next = n;
1813 	}
1814 
1815 	sp->header.freecnt += sp->header.maxslot - n;
1816 
1817 	/*
1818 	 * insert the new entry
1819 	 */
1820 	dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1821 
1822 	BT_MARK_DIRTY(pmp, ip);
1823 	/*
1824 	 * linelock any freeslots residing in old extent
1825 	 */
1826 	if (type == tlckEXTEND) {
1827 		n = sp->header.maxslot >> 2;
1828 		if (sp->header.freelist < n)
1829 			dtLinelockFreelist(sp, n, &dtlck);
1830 	}
1831 
1832 	/*
1833 	 *	update parent entry on the parent/root page
1834 	 */
1835 	/*
1836 	 * acquire a transaction lock on the parent/root page
1837 	 */
1838 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1839 	dtlck = (struct dt_lock *) & tlck->lock;
1840 	lv = & dtlck->lv[dtlck->index];
1841 
1842 	/* linelock parent entry - 1st slot */
1843 	lv->offset = 1;
1844 	lv->length = 1;
1845 	dtlck->index++;
1846 
1847 	/* update the parent pxd for page extension */
1848 	tpxd = (pxd_t *) & pp->slot[1];
1849 	*tpxd = *pxd;
1850 
1851 	DT_PUTPAGE(pmp);
1852 	return 0;
1853 }
1854 
1855 
1856 /*
1857  *	dtSplitRoot()
1858  *
1859  * function:
1860  *	split the full root page into
1861  *	original/root/split page and new right page
1862  *	i.e., root remains fixed in tree anchor (inode) and
1863  *	the root is copied to a single new right child page
1864  *	since root page << non-root page, and
1865  *	the split root page contains a single entry for the
1866  *	new right child page.
1867  *
1868  * parameter:
1869  *
1870  * return: 0 - success;
1871  *	   errno - failure;
1872  *	return new page pinned;
1873  */
1874 static int dtSplitRoot(tid_t tid,
1875 	    struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1876 {
1877 	struct super_block *sb = ip->i_sb;
1878 	struct metapage *smp;
1879 	dtroot_t *sp;
1880 	struct metapage *rmp;
1881 	dtpage_t *rp;
1882 	s64 rbn;
1883 	int xlen;
1884 	int xsize;
1885 	struct dtslot *f;
1886 	s8 *stbl;
1887 	int fsi, stblsize, n;
1888 	struct idtentry *s;
1889 	pxd_t *ppxd;
1890 	struct pxdlist *pxdlist;
1891 	pxd_t *pxd;
1892 	struct dt_lock *dtlck;
1893 	struct tlock *tlck;
1894 	struct lv *lv;
1895 	int rc;
1896 
1897 	/* get split root page */
1898 	smp = split->mp;
1899 	sp = &JFS_IP(ip)->i_dtroot;
1900 
1901 	/*
1902 	 *	allocate/initialize a single (right) child page
1903 	 *
1904 	 * N.B. at first split, a one (or two) block to fit new entry
1905 	 * is allocated; at subsequent split, a full page is allocated;
1906 	 */
1907 	pxdlist = split->pxdlist;
1908 	pxd = &pxdlist->pxd[pxdlist->npxd];
1909 	pxdlist->npxd++;
1910 	rbn = addressPXD(pxd);
1911 	xlen = lengthPXD(pxd);
1912 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1913 	rmp = get_metapage(ip, rbn, xsize, 1);
1914 	if (!rmp)
1915 		return -EIO;
1916 
1917 	rp = rmp->data;
1918 
1919 	/* Allocate blocks to quota. */
1920 	rc = dquot_alloc_block(ip, lengthPXD(pxd));
1921 	if (rc) {
1922 		release_metapage(rmp);
1923 		return rc;
1924 	}
1925 
1926 	BT_MARK_DIRTY(rmp, ip);
1927 	/*
1928 	 * acquire a transaction lock on the new right page
1929 	 */
1930 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1931 	dtlck = (struct dt_lock *) & tlck->lock;
1932 
1933 	rp->header.flag =
1934 	    (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1935 	rp->header.self = *pxd;
1936 
1937 	/* initialize sibling pointers */
1938 	rp->header.next = 0;
1939 	rp->header.prev = 0;
1940 
1941 	/*
1942 	 *	move in-line root page into new right page extent
1943 	 */
1944 	/* linelock header + copied entries + new stbl (1st slot) in new page */
1945 	ASSERT(dtlck->index == 0);
1946 	lv = & dtlck->lv[0];
1947 	lv->offset = 0;
1948 	lv->length = 10;	/* 1 + 8 + 1 */
1949 	dtlck->index++;
1950 
1951 	n = xsize >> L2DTSLOTSIZE;
1952 	rp->header.maxslot = n;
1953 	stblsize = (n + 31) >> L2DTSLOTSIZE;
1954 
1955 	/* copy old stbl to new stbl at start of extended area */
1956 	rp->header.stblindex = DTROOTMAXSLOT;
1957 	stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1958 	memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1959 	rp->header.nextindex = sp->header.nextindex;
1960 
1961 	/* copy old data area to start of new data area */
1962 	memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1963 
1964 	/*
1965 	 * append free region of newly extended area at tail of freelist
1966 	 */
1967 	/* init free region of newly extended area */
1968 	fsi = n = DTROOTMAXSLOT + stblsize;
1969 	f = &rp->slot[fsi];
1970 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1971 		f->next = fsi;
1972 	f->next = -1;
1973 
1974 	/* append new free region at tail of old freelist */
1975 	fsi = sp->header.freelist;
1976 	if (fsi == -1)
1977 		rp->header.freelist = n;
1978 	else {
1979 		rp->header.freelist = fsi;
1980 
1981 		do {
1982 			f = &rp->slot[fsi];
1983 			fsi = f->next;
1984 		} while (fsi != -1);
1985 
1986 		f->next = n;
1987 	}
1988 
1989 	rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1990 
1991 	/*
1992 	 * Update directory index table for entries now in right page
1993 	 */
1994 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1995 		s64 lblock;
1996 		struct metapage *mp = NULL;
1997 		struct ldtentry *ldtentry;
1998 
1999 		stbl = DT_GETSTBL(rp);
2000 		for (n = 0; n < rp->header.nextindex; n++) {
2001 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
2002 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
2003 				     rbn, n, &mp, &lblock);
2004 		}
2005 		if (mp)
2006 			release_metapage(mp);
2007 	}
2008 	/*
2009 	 * insert the new entry into the new right/child page
2010 	 * (skip index in the new right page will not change)
2011 	 */
2012 	dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2013 
2014 	/*
2015 	 *	reset parent/root page
2016 	 *
2017 	 * set the 1st entry offset to 0, which force the left-most key
2018 	 * at any level of the tree to be less than any search key.
2019 	 *
2020 	 * The btree comparison code guarantees that the left-most key on any
2021 	 * level of the tree is never used, so it doesn't need to be filled in.
2022 	 */
2023 	BT_MARK_DIRTY(smp, ip);
2024 	/*
2025 	 * acquire a transaction lock on the root page (in-memory inode)
2026 	 */
2027 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2028 	dtlck = (struct dt_lock *) & tlck->lock;
2029 
2030 	/* linelock root */
2031 	ASSERT(dtlck->index == 0);
2032 	lv = & dtlck->lv[0];
2033 	lv->offset = 0;
2034 	lv->length = DTROOTMAXSLOT;
2035 	dtlck->index++;
2036 
2037 	/* update page header of root */
2038 	if (sp->header.flag & BT_LEAF) {
2039 		sp->header.flag &= ~BT_LEAF;
2040 		sp->header.flag |= BT_INTERNAL;
2041 	}
2042 
2043 	/* init the first entry */
2044 	s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2045 	ppxd = (pxd_t *) s;
2046 	*ppxd = *pxd;
2047 	s->next = -1;
2048 	s->namlen = 0;
2049 
2050 	stbl = sp->header.stbl;
2051 	stbl[0] = DTENTRYSTART;
2052 	sp->header.nextindex = 1;
2053 
2054 	/* init freelist */
2055 	fsi = DTENTRYSTART + 1;
2056 	f = &sp->slot[fsi];
2057 
2058 	/* init free region of remaining area */
2059 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2060 		f->next = fsi;
2061 	f->next = -1;
2062 
2063 	sp->header.freelist = DTENTRYSTART + 1;
2064 	sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2065 
2066 	*rmpp = rmp;
2067 
2068 	return 0;
2069 }
2070 
2071 
2072 /*
2073  *	dtDelete()
2074  *
2075  * function: delete the entry(s) referenced by a key.
2076  *
2077  * parameter:
2078  *
2079  * return:
2080  */
2081 int dtDelete(tid_t tid,
2082 	 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2083 {
2084 	int rc = 0;
2085 	s64 bn;
2086 	struct metapage *mp, *imp;
2087 	dtpage_t *p;
2088 	int index;
2089 	struct btstack btstack;
2090 	struct dt_lock *dtlck;
2091 	struct tlock *tlck;
2092 	struct lv *lv;
2093 	int i;
2094 	struct ldtentry *ldtentry;
2095 	u8 *stbl;
2096 	u32 table_index, next_index;
2097 	struct metapage *nmp;
2098 	dtpage_t *np;
2099 
2100 	/*
2101 	 *	search for the entry to delete:
2102 	 *
2103 	 * dtSearch() returns (leaf page pinned, index at which to delete).
2104 	 */
2105 	if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2106 		return rc;
2107 
2108 	/* retrieve search result */
2109 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2110 
2111 	/*
2112 	 * We need to find put the index of the next entry into the
2113 	 * directory index table in order to resume a readdir from this
2114 	 * entry.
2115 	 */
2116 	if (DO_INDEX(ip)) {
2117 		stbl = DT_GETSTBL(p);
2118 		ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2119 		table_index = le32_to_cpu(ldtentry->index);
2120 		if (index == (p->header.nextindex - 1)) {
2121 			/*
2122 			 * Last entry in this leaf page
2123 			 */
2124 			if ((p->header.flag & BT_ROOT)
2125 			    || (p->header.next == 0))
2126 				next_index = -1;
2127 			else {
2128 				/* Read next leaf page */
2129 				DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2130 					   nmp, PSIZE, np, rc);
2131 				if (rc)
2132 					next_index = -1;
2133 				else {
2134 					stbl = DT_GETSTBL(np);
2135 					ldtentry =
2136 					    (struct ldtentry *) & np->
2137 					    slot[stbl[0]];
2138 					next_index =
2139 					    le32_to_cpu(ldtentry->index);
2140 					DT_PUTPAGE(nmp);
2141 				}
2142 			}
2143 		} else {
2144 			ldtentry =
2145 			    (struct ldtentry *) & p->slot[stbl[index + 1]];
2146 			next_index = le32_to_cpu(ldtentry->index);
2147 		}
2148 		free_index(tid, ip, table_index, next_index);
2149 	}
2150 	/*
2151 	 * the leaf page becomes empty, delete the page
2152 	 */
2153 	if (p->header.nextindex == 1) {
2154 		/* delete empty page */
2155 		rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2156 	}
2157 	/*
2158 	 * the leaf page has other entries remaining:
2159 	 *
2160 	 * delete the entry from the leaf page.
2161 	 */
2162 	else {
2163 		BT_MARK_DIRTY(mp, ip);
2164 		/*
2165 		 * acquire a transaction lock on the leaf page
2166 		 */
2167 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2168 		dtlck = (struct dt_lock *) & tlck->lock;
2169 
2170 		/*
2171 		 * Do not assume that dtlck->index will be zero.  During a
2172 		 * rename within a directory, this transaction may have
2173 		 * modified this page already when adding the new entry.
2174 		 */
2175 
2176 		/* linelock header */
2177 		if (dtlck->index >= dtlck->maxcnt)
2178 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2179 		lv = & dtlck->lv[dtlck->index];
2180 		lv->offset = 0;
2181 		lv->length = 1;
2182 		dtlck->index++;
2183 
2184 		/* linelock stbl of non-root leaf page */
2185 		if (!(p->header.flag & BT_ROOT)) {
2186 			if (dtlck->index >= dtlck->maxcnt)
2187 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2188 			lv = & dtlck->lv[dtlck->index];
2189 			i = index >> L2DTSLOTSIZE;
2190 			lv->offset = p->header.stblindex + i;
2191 			lv->length =
2192 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2193 			    i + 1;
2194 			dtlck->index++;
2195 		}
2196 
2197 		/* free the leaf entry */
2198 		dtDeleteEntry(p, index, &dtlck);
2199 
2200 		/*
2201 		 * Update directory index table for entries moved in stbl
2202 		 */
2203 		if (DO_INDEX(ip) && index < p->header.nextindex) {
2204 			s64 lblock;
2205 
2206 			imp = NULL;
2207 			stbl = DT_GETSTBL(p);
2208 			for (i = index; i < p->header.nextindex; i++) {
2209 				ldtentry =
2210 				    (struct ldtentry *) & p->slot[stbl[i]];
2211 				modify_index(tid, ip,
2212 					     le32_to_cpu(ldtentry->index),
2213 					     bn, i, &imp, &lblock);
2214 			}
2215 			if (imp)
2216 				release_metapage(imp);
2217 		}
2218 
2219 		DT_PUTPAGE(mp);
2220 	}
2221 
2222 	return rc;
2223 }
2224 
2225 
2226 /*
2227  *	dtDeleteUp()
2228  *
2229  * function:
2230  *	free empty pages as propagating deletion up the tree
2231  *
2232  * parameter:
2233  *
2234  * return:
2235  */
2236 static int dtDeleteUp(tid_t tid, struct inode *ip,
2237 	   struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2238 {
2239 	int rc = 0;
2240 	struct metapage *mp;
2241 	dtpage_t *p;
2242 	int index, nextindex;
2243 	int xlen;
2244 	struct btframe *parent;
2245 	struct dt_lock *dtlck;
2246 	struct tlock *tlck;
2247 	struct lv *lv;
2248 	struct pxd_lock *pxdlock;
2249 	int i;
2250 
2251 	/*
2252 	 *	keep the root leaf page which has become empty
2253 	 */
2254 	if (BT_IS_ROOT(fmp)) {
2255 		/*
2256 		 * reset the root
2257 		 *
2258 		 * dtInitRoot() acquires txlock on the root
2259 		 */
2260 		dtInitRoot(tid, ip, PARENT(ip));
2261 
2262 		DT_PUTPAGE(fmp);
2263 
2264 		return 0;
2265 	}
2266 
2267 	/*
2268 	 *	free the non-root leaf page
2269 	 */
2270 	/*
2271 	 * acquire a transaction lock on the page
2272 	 *
2273 	 * write FREEXTENT|NOREDOPAGE log record
2274 	 * N.B. linelock is overlaid as freed extent descriptor, and
2275 	 * the buffer page is freed;
2276 	 */
2277 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2278 	pxdlock = (struct pxd_lock *) & tlck->lock;
2279 	pxdlock->flag = mlckFREEPXD;
2280 	pxdlock->pxd = fp->header.self;
2281 	pxdlock->index = 1;
2282 
2283 	/* update sibling pointers */
2284 	if ((rc = dtRelink(tid, ip, fp))) {
2285 		BT_PUTPAGE(fmp);
2286 		return rc;
2287 	}
2288 
2289 	xlen = lengthPXD(&fp->header.self);
2290 
2291 	/* Free quota allocation. */
2292 	dquot_free_block(ip, xlen);
2293 
2294 	/* free/invalidate its buffer page */
2295 	discard_metapage(fmp);
2296 
2297 	/*
2298 	 *	propagate page deletion up the directory tree
2299 	 *
2300 	 * If the delete from the parent page makes it empty,
2301 	 * continue all the way up the tree.
2302 	 * stop if the root page is reached (which is never deleted) or
2303 	 * if the entry deletion does not empty the page.
2304 	 */
2305 	while ((parent = BT_POP(btstack)) != NULL) {
2306 		/* pin the parent page <sp> */
2307 		DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2308 		if (rc)
2309 			return rc;
2310 
2311 		/*
2312 		 * free the extent of the child page deleted
2313 		 */
2314 		index = parent->index;
2315 
2316 		/*
2317 		 * delete the entry for the child page from parent
2318 		 */
2319 		nextindex = p->header.nextindex;
2320 
2321 		/*
2322 		 * the parent has the single entry being deleted:
2323 		 *
2324 		 * free the parent page which has become empty.
2325 		 */
2326 		if (nextindex == 1) {
2327 			/*
2328 			 * keep the root internal page which has become empty
2329 			 */
2330 			if (p->header.flag & BT_ROOT) {
2331 				/*
2332 				 * reset the root
2333 				 *
2334 				 * dtInitRoot() acquires txlock on the root
2335 				 */
2336 				dtInitRoot(tid, ip, PARENT(ip));
2337 
2338 				DT_PUTPAGE(mp);
2339 
2340 				return 0;
2341 			}
2342 			/*
2343 			 * free the parent page
2344 			 */
2345 			else {
2346 				/*
2347 				 * acquire a transaction lock on the page
2348 				 *
2349 				 * write FREEXTENT|NOREDOPAGE log record
2350 				 */
2351 				tlck =
2352 				    txMaplock(tid, ip,
2353 					      tlckDTREE | tlckFREE);
2354 				pxdlock = (struct pxd_lock *) & tlck->lock;
2355 				pxdlock->flag = mlckFREEPXD;
2356 				pxdlock->pxd = p->header.self;
2357 				pxdlock->index = 1;
2358 
2359 				/* update sibling pointers */
2360 				if ((rc = dtRelink(tid, ip, p))) {
2361 					DT_PUTPAGE(mp);
2362 					return rc;
2363 				}
2364 
2365 				xlen = lengthPXD(&p->header.self);
2366 
2367 				/* Free quota allocation */
2368 				dquot_free_block(ip, xlen);
2369 
2370 				/* free/invalidate its buffer page */
2371 				discard_metapage(mp);
2372 
2373 				/* propagate up */
2374 				continue;
2375 			}
2376 		}
2377 
2378 		/*
2379 		 * the parent has other entries remaining:
2380 		 *
2381 		 * delete the router entry from the parent page.
2382 		 */
2383 		BT_MARK_DIRTY(mp, ip);
2384 		/*
2385 		 * acquire a transaction lock on the page
2386 		 *
2387 		 * action: router entry deletion
2388 		 */
2389 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2390 		dtlck = (struct dt_lock *) & tlck->lock;
2391 
2392 		/* linelock header */
2393 		if (dtlck->index >= dtlck->maxcnt)
2394 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2395 		lv = & dtlck->lv[dtlck->index];
2396 		lv->offset = 0;
2397 		lv->length = 1;
2398 		dtlck->index++;
2399 
2400 		/* linelock stbl of non-root leaf page */
2401 		if (!(p->header.flag & BT_ROOT)) {
2402 			if (dtlck->index < dtlck->maxcnt)
2403 				lv++;
2404 			else {
2405 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2406 				lv = & dtlck->lv[0];
2407 			}
2408 			i = index >> L2DTSLOTSIZE;
2409 			lv->offset = p->header.stblindex + i;
2410 			lv->length =
2411 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2412 			    i + 1;
2413 			dtlck->index++;
2414 		}
2415 
2416 		/* free the router entry */
2417 		dtDeleteEntry(p, index, &dtlck);
2418 
2419 		/* reset key of new leftmost entry of level (for consistency) */
2420 		if (index == 0 &&
2421 		    ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2422 			dtTruncateEntry(p, 0, &dtlck);
2423 
2424 		/* unpin the parent page */
2425 		DT_PUTPAGE(mp);
2426 
2427 		/* exit propagation up */
2428 		break;
2429 	}
2430 
2431 	if (!DO_INDEX(ip))
2432 		ip->i_size -= PSIZE;
2433 
2434 	return 0;
2435 }
2436 
2437 #ifdef _NOTYET
2438 /*
2439  * NAME:	dtRelocate()
2440  *
2441  * FUNCTION:	relocate dtpage (internal or leaf) of directory;
2442  *		This function is mainly used by defragfs utility.
2443  */
2444 int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd,
2445 	       s64 nxaddr)
2446 {
2447 	int rc = 0;
2448 	struct metapage *mp, *pmp, *lmp, *rmp;
2449 	dtpage_t *p, *pp, *rp = 0, *lp= 0;
2450 	s64 bn;
2451 	int index;
2452 	struct btstack btstack;
2453 	pxd_t *pxd;
2454 	s64 oxaddr, nextbn, prevbn;
2455 	int xlen, xsize;
2456 	struct tlock *tlck;
2457 	struct dt_lock *dtlck;
2458 	struct pxd_lock *pxdlock;
2459 	s8 *stbl;
2460 	struct lv *lv;
2461 
2462 	oxaddr = addressPXD(opxd);
2463 	xlen = lengthPXD(opxd);
2464 
2465 	jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2466 		   (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr,
2467 		   xlen);
2468 
2469 	/*
2470 	 *	1. get the internal parent dtpage covering
2471 	 *	router entry for the tartget page to be relocated;
2472 	 */
2473 	rc = dtSearchNode(ip, lmxaddr, opxd, &btstack);
2474 	if (rc)
2475 		return rc;
2476 
2477 	/* retrieve search result */
2478 	DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index);
2479 	jfs_info("dtRelocate: parent router entry validated.");
2480 
2481 	/*
2482 	 *	2. relocate the target dtpage
2483 	 */
2484 	/* read in the target page from src extent */
2485 	DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc);
2486 	if (rc) {
2487 		/* release the pinned parent page */
2488 		DT_PUTPAGE(pmp);
2489 		return rc;
2490 	}
2491 
2492 	/*
2493 	 * read in sibling pages if any to update sibling pointers;
2494 	 */
2495 	rmp = NULL;
2496 	if (p->header.next) {
2497 		nextbn = le64_to_cpu(p->header.next);
2498 		DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc);
2499 		if (rc) {
2500 			DT_PUTPAGE(mp);
2501 			DT_PUTPAGE(pmp);
2502 			return (rc);
2503 		}
2504 	}
2505 
2506 	lmp = NULL;
2507 	if (p->header.prev) {
2508 		prevbn = le64_to_cpu(p->header.prev);
2509 		DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc);
2510 		if (rc) {
2511 			DT_PUTPAGE(mp);
2512 			DT_PUTPAGE(pmp);
2513 			if (rmp)
2514 				DT_PUTPAGE(rmp);
2515 			return (rc);
2516 		}
2517 	}
2518 
2519 	/* at this point, all xtpages to be updated are in memory */
2520 
2521 	/*
2522 	 * update sibling pointers of sibling dtpages if any;
2523 	 */
2524 	if (lmp) {
2525 		tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK);
2526 		dtlck = (struct dt_lock *) & tlck->lock;
2527 		/* linelock header */
2528 		ASSERT(dtlck->index == 0);
2529 		lv = & dtlck->lv[0];
2530 		lv->offset = 0;
2531 		lv->length = 1;
2532 		dtlck->index++;
2533 
2534 		lp->header.next = cpu_to_le64(nxaddr);
2535 		DT_PUTPAGE(lmp);
2536 	}
2537 
2538 	if (rmp) {
2539 		tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK);
2540 		dtlck = (struct dt_lock *) & tlck->lock;
2541 		/* linelock header */
2542 		ASSERT(dtlck->index == 0);
2543 		lv = & dtlck->lv[0];
2544 		lv->offset = 0;
2545 		lv->length = 1;
2546 		dtlck->index++;
2547 
2548 		rp->header.prev = cpu_to_le64(nxaddr);
2549 		DT_PUTPAGE(rmp);
2550 	}
2551 
2552 	/*
2553 	 * update the target dtpage to be relocated
2554 	 *
2555 	 * write LOG_REDOPAGE of LOG_NEW type for dst page
2556 	 * for the whole target page (logredo() will apply
2557 	 * after image and update bmap for allocation of the
2558 	 * dst extent), and update bmap for allocation of
2559 	 * the dst extent;
2560 	 */
2561 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW);
2562 	dtlck = (struct dt_lock *) & tlck->lock;
2563 	/* linelock header */
2564 	ASSERT(dtlck->index == 0);
2565 	lv = & dtlck->lv[0];
2566 
2567 	/* update the self address in the dtpage header */
2568 	pxd = &p->header.self;
2569 	PXDaddress(pxd, nxaddr);
2570 
2571 	/* the dst page is the same as the src page, i.e.,
2572 	 * linelock for afterimage of the whole page;
2573 	 */
2574 	lv->offset = 0;
2575 	lv->length = p->header.maxslot;
2576 	dtlck->index++;
2577 
2578 	/* update the buffer extent descriptor of the dtpage */
2579 	xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize;
2580 
2581 	/* unpin the relocated page */
2582 	DT_PUTPAGE(mp);
2583 	jfs_info("dtRelocate: target dtpage relocated.");
2584 
2585 	/* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2586 	 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2587 	 * will also force a bmap update ).
2588 	 */
2589 
2590 	/*
2591 	 *	3. acquire maplock for the source extent to be freed;
2592 	 */
2593 	/* for dtpage relocation, write a LOG_NOREDOPAGE record
2594 	 * for the source dtpage (logredo() will init NoRedoPage
2595 	 * filter and will also update bmap for free of the source
2596 	 * dtpage), and upadte bmap for free of the source dtpage;
2597 	 */
2598 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2599 	pxdlock = (struct pxd_lock *) & tlck->lock;
2600 	pxdlock->flag = mlckFREEPXD;
2601 	PXDaddress(&pxdlock->pxd, oxaddr);
2602 	PXDlength(&pxdlock->pxd, xlen);
2603 	pxdlock->index = 1;
2604 
2605 	/*
2606 	 *	4. update the parent router entry for relocation;
2607 	 *
2608 	 * acquire tlck for the parent entry covering the target dtpage;
2609 	 * write LOG_REDOPAGE to apply after image only;
2610 	 */
2611 	jfs_info("dtRelocate: update parent router entry.");
2612 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
2613 	dtlck = (struct dt_lock *) & tlck->lock;
2614 	lv = & dtlck->lv[dtlck->index];
2615 
2616 	/* update the PXD with the new address */
2617 	stbl = DT_GETSTBL(pp);
2618 	pxd = (pxd_t *) & pp->slot[stbl[index]];
2619 	PXDaddress(pxd, nxaddr);
2620 	lv->offset = stbl[index];
2621 	lv->length = 1;
2622 	dtlck->index++;
2623 
2624 	/* unpin the parent dtpage */
2625 	DT_PUTPAGE(pmp);
2626 
2627 	return rc;
2628 }
2629 
2630 /*
2631  * NAME:	dtSearchNode()
2632  *
2633  * FUNCTION:	Search for an dtpage containing a specified address
2634  *		This function is mainly used by defragfs utility.
2635  *
2636  * NOTE:	Search result on stack, the found page is pinned at exit.
2637  *		The result page must be an internal dtpage.
2638  *		lmxaddr give the address of the left most page of the
2639  *		dtree level, in which the required dtpage resides.
2640  */
2641 static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd,
2642 			struct btstack * btstack)
2643 {
2644 	int rc = 0;
2645 	s64 bn;
2646 	struct metapage *mp;
2647 	dtpage_t *p;
2648 	int psize = 288;	/* initial in-line directory */
2649 	s8 *stbl;
2650 	int i;
2651 	pxd_t *pxd;
2652 	struct btframe *btsp;
2653 
2654 	BT_CLR(btstack);	/* reset stack */
2655 
2656 	/*
2657 	 *	descend tree to the level with specified leftmost page
2658 	 *
2659 	 *  by convention, root bn = 0.
2660 	 */
2661 	for (bn = 0;;) {
2662 		/* get/pin the page to search */
2663 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
2664 		if (rc)
2665 			return rc;
2666 
2667 		/* does the xaddr of leftmost page of the levevl
2668 		 * matches levevl search key ?
2669 		 */
2670 		if (p->header.flag & BT_ROOT) {
2671 			if (lmxaddr == 0)
2672 				break;
2673 		} else if (addressPXD(&p->header.self) == lmxaddr)
2674 			break;
2675 
2676 		/*
2677 		 * descend down to leftmost child page
2678 		 */
2679 		if (p->header.flag & BT_LEAF) {
2680 			DT_PUTPAGE(mp);
2681 			return -ESTALE;
2682 		}
2683 
2684 		/* get the leftmost entry */
2685 		stbl = DT_GETSTBL(p);
2686 		pxd = (pxd_t *) & p->slot[stbl[0]];
2687 
2688 		/* get the child page block address */
2689 		bn = addressPXD(pxd);
2690 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
2691 		/* unpin the parent page */
2692 		DT_PUTPAGE(mp);
2693 	}
2694 
2695 	/*
2696 	 *	search each page at the current levevl
2697 	 */
2698       loop:
2699 	stbl = DT_GETSTBL(p);
2700 	for (i = 0; i < p->header.nextindex; i++) {
2701 		pxd = (pxd_t *) & p->slot[stbl[i]];
2702 
2703 		/* found the specified router entry */
2704 		if (addressPXD(pxd) == addressPXD(kpxd) &&
2705 		    lengthPXD(pxd) == lengthPXD(kpxd)) {
2706 			btsp = btstack->top;
2707 			btsp->bn = bn;
2708 			btsp->index = i;
2709 			btsp->mp = mp;
2710 
2711 			return 0;
2712 		}
2713 	}
2714 
2715 	/* get the right sibling page if any */
2716 	if (p->header.next)
2717 		bn = le64_to_cpu(p->header.next);
2718 	else {
2719 		DT_PUTPAGE(mp);
2720 		return -ESTALE;
2721 	}
2722 
2723 	/* unpin current page */
2724 	DT_PUTPAGE(mp);
2725 
2726 	/* get the right sibling page */
2727 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2728 	if (rc)
2729 		return rc;
2730 
2731 	goto loop;
2732 }
2733 #endif /* _NOTYET */
2734 
2735 /*
2736  *	dtRelink()
2737  *
2738  * function:
2739  *	link around a freed page.
2740  *
2741  * parameter:
2742  *	fp:	page to be freed
2743  *
2744  * return:
2745  */
2746 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2747 {
2748 	int rc;
2749 	struct metapage *mp;
2750 	s64 nextbn, prevbn;
2751 	struct tlock *tlck;
2752 	struct dt_lock *dtlck;
2753 	struct lv *lv;
2754 
2755 	nextbn = le64_to_cpu(p->header.next);
2756 	prevbn = le64_to_cpu(p->header.prev);
2757 
2758 	/* update prev pointer of the next page */
2759 	if (nextbn != 0) {
2760 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2761 		if (rc)
2762 			return rc;
2763 
2764 		BT_MARK_DIRTY(mp, ip);
2765 		/*
2766 		 * acquire a transaction lock on the next page
2767 		 *
2768 		 * action: update prev pointer;
2769 		 */
2770 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2771 		jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2772 			tlck, ip, mp);
2773 		dtlck = (struct dt_lock *) & tlck->lock;
2774 
2775 		/* linelock header */
2776 		if (dtlck->index >= dtlck->maxcnt)
2777 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2778 		lv = & dtlck->lv[dtlck->index];
2779 		lv->offset = 0;
2780 		lv->length = 1;
2781 		dtlck->index++;
2782 
2783 		p->header.prev = cpu_to_le64(prevbn);
2784 		DT_PUTPAGE(mp);
2785 	}
2786 
2787 	/* update next pointer of the previous page */
2788 	if (prevbn != 0) {
2789 		DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2790 		if (rc)
2791 			return rc;
2792 
2793 		BT_MARK_DIRTY(mp, ip);
2794 		/*
2795 		 * acquire a transaction lock on the prev page
2796 		 *
2797 		 * action: update next pointer;
2798 		 */
2799 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2800 		jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2801 			tlck, ip, mp);
2802 		dtlck = (struct dt_lock *) & tlck->lock;
2803 
2804 		/* linelock header */
2805 		if (dtlck->index >= dtlck->maxcnt)
2806 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2807 		lv = & dtlck->lv[dtlck->index];
2808 		lv->offset = 0;
2809 		lv->length = 1;
2810 		dtlck->index++;
2811 
2812 		p->header.next = cpu_to_le64(nextbn);
2813 		DT_PUTPAGE(mp);
2814 	}
2815 
2816 	return 0;
2817 }
2818 
2819 
2820 /*
2821  *	dtInitRoot()
2822  *
2823  * initialize directory root (inline in inode)
2824  */
2825 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2826 {
2827 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2828 	dtroot_t *p;
2829 	int fsi;
2830 	struct dtslot *f;
2831 	struct tlock *tlck;
2832 	struct dt_lock *dtlck;
2833 	struct lv *lv;
2834 	u16 xflag_save;
2835 
2836 	/*
2837 	 * If this was previously an non-empty directory, we need to remove
2838 	 * the old directory table.
2839 	 */
2840 	if (DO_INDEX(ip)) {
2841 		if (!jfs_dirtable_inline(ip)) {
2842 			struct tblock *tblk = tid_to_tblock(tid);
2843 			/*
2844 			 * We're playing games with the tid's xflag.  If
2845 			 * we're removing a regular file, the file's xtree
2846 			 * is committed with COMMIT_PMAP, but we always
2847 			 * commit the directories xtree with COMMIT_PWMAP.
2848 			 */
2849 			xflag_save = tblk->xflag;
2850 			tblk->xflag = 0;
2851 			/*
2852 			 * xtTruncate isn't guaranteed to fully truncate
2853 			 * the xtree.  The caller needs to check i_size
2854 			 * after committing the transaction to see if
2855 			 * additional truncation is needed.  The
2856 			 * COMMIT_Stale flag tells caller that we
2857 			 * initiated the truncation.
2858 			 */
2859 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2860 			set_cflag(COMMIT_Stale, ip);
2861 
2862 			tblk->xflag = xflag_save;
2863 		} else
2864 			ip->i_size = 1;
2865 
2866 		jfs_ip->next_index = 2;
2867 	} else
2868 		ip->i_size = IDATASIZE;
2869 
2870 	/*
2871 	 * acquire a transaction lock on the root
2872 	 *
2873 	 * action: directory initialization;
2874 	 */
2875 	tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2876 		      tlckDTREE | tlckENTRY | tlckBTROOT);
2877 	dtlck = (struct dt_lock *) & tlck->lock;
2878 
2879 	/* linelock root */
2880 	ASSERT(dtlck->index == 0);
2881 	lv = & dtlck->lv[0];
2882 	lv->offset = 0;
2883 	lv->length = DTROOTMAXSLOT;
2884 	dtlck->index++;
2885 
2886 	p = &jfs_ip->i_dtroot;
2887 
2888 	p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2889 
2890 	p->header.nextindex = 0;
2891 
2892 	/* init freelist */
2893 	fsi = 1;
2894 	f = &p->slot[fsi];
2895 
2896 	/* init data area of root */
2897 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2898 		f->next = fsi;
2899 	f->next = -1;
2900 
2901 	p->header.freelist = 1;
2902 	p->header.freecnt = 8;
2903 
2904 	/* init '..' entry */
2905 	p->header.idotdot = cpu_to_le32(idotdot);
2906 
2907 	return;
2908 }
2909 
2910 /*
2911  *	add_missing_indices()
2912  *
2913  * function: Fix dtree page in which one or more entries has an invalid index.
2914  *	     fsck.jfs should really fix this, but it currently does not.
2915  *	     Called from jfs_readdir when bad index is detected.
2916  */
2917 static void add_missing_indices(struct inode *inode, s64 bn)
2918 {
2919 	struct ldtentry *d;
2920 	struct dt_lock *dtlck;
2921 	int i;
2922 	uint index;
2923 	struct lv *lv;
2924 	struct metapage *mp;
2925 	dtpage_t *p;
2926 	int rc;
2927 	s8 *stbl;
2928 	tid_t tid;
2929 	struct tlock *tlck;
2930 
2931 	tid = txBegin(inode->i_sb, 0);
2932 
2933 	DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2934 
2935 	if (rc) {
2936 		printk(KERN_ERR "DT_GETPAGE failed!\n");
2937 		goto end;
2938 	}
2939 	BT_MARK_DIRTY(mp, inode);
2940 
2941 	ASSERT(p->header.flag & BT_LEAF);
2942 
2943 	tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2944 	if (BT_IS_ROOT(mp))
2945 		tlck->type |= tlckBTROOT;
2946 
2947 	dtlck = (struct dt_lock *) &tlck->lock;
2948 
2949 	stbl = DT_GETSTBL(p);
2950 	for (i = 0; i < p->header.nextindex; i++) {
2951 		d = (struct ldtentry *) &p->slot[stbl[i]];
2952 		index = le32_to_cpu(d->index);
2953 		if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2954 			d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2955 			if (dtlck->index >= dtlck->maxcnt)
2956 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2957 			lv = &dtlck->lv[dtlck->index];
2958 			lv->offset = stbl[i];
2959 			lv->length = 1;
2960 			dtlck->index++;
2961 		}
2962 	}
2963 
2964 	DT_PUTPAGE(mp);
2965 	(void) txCommit(tid, 1, &inode, 0);
2966 end:
2967 	txEnd(tid);
2968 }
2969 
2970 /*
2971  * Buffer to hold directory entry info while traversing a dtree page
2972  * before being fed to the filldir function
2973  */
2974 struct jfs_dirent {
2975 	loff_t position;
2976 	int ino;
2977 	u16 name_len;
2978 	char name[0];
2979 };
2980 
2981 /*
2982  * function to determine next variable-sized jfs_dirent in buffer
2983  */
2984 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2985 {
2986 	return (struct jfs_dirent *)
2987 		((char *)dirent +
2988 		 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2989 		   sizeof (loff_t) - 1) &
2990 		  ~(sizeof (loff_t) - 1)));
2991 }
2992 
2993 /*
2994  *	jfs_readdir()
2995  *
2996  * function: read directory entries sequentially
2997  *	from the specified entry offset
2998  *
2999  * parameter:
3000  *
3001  * return: offset = (pn, index) of start entry
3002  *	of next jfs_readdir()/dtRead()
3003  */
3004 int jfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
3005 {
3006 	struct inode *ip = filp->f_path.dentry->d_inode;
3007 	struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
3008 	int rc = 0;
3009 	loff_t dtpos;	/* legacy OS/2 style position */
3010 	struct dtoffset {
3011 		s16 pn;
3012 		s16 index;
3013 		s32 unused;
3014 	} *dtoffset = (struct dtoffset *) &dtpos;
3015 	s64 bn;
3016 	struct metapage *mp;
3017 	dtpage_t *p;
3018 	int index;
3019 	s8 *stbl;
3020 	struct btstack btstack;
3021 	int i, next;
3022 	struct ldtentry *d;
3023 	struct dtslot *t;
3024 	int d_namleft, len, outlen;
3025 	unsigned long dirent_buf;
3026 	char *name_ptr;
3027 	u32 dir_index;
3028 	int do_index = 0;
3029 	uint loop_count = 0;
3030 	struct jfs_dirent *jfs_dirent;
3031 	int jfs_dirents;
3032 	int overflow, fix_page, page_fixed = 0;
3033 	static int unique_pos = 2;	/* If we can't fix broken index */
3034 
3035 	if (filp->f_pos == DIREND)
3036 		return 0;
3037 
3038 	if (DO_INDEX(ip)) {
3039 		/*
3040 		 * persistent index is stored in directory entries.
3041 		 * Special cases:	 0 = .
3042 		 *			 1 = ..
3043 		 *			-1 = End of directory
3044 		 */
3045 		do_index = 1;
3046 
3047 		dir_index = (u32) filp->f_pos;
3048 
3049 		if (dir_index > 1) {
3050 			struct dir_table_slot dirtab_slot;
3051 
3052 			if (dtEmpty(ip) ||
3053 			    (dir_index >= JFS_IP(ip)->next_index)) {
3054 				/* Stale position.  Directory has shrunk */
3055 				filp->f_pos = DIREND;
3056 				return 0;
3057 			}
3058 		      repeat:
3059 			rc = read_index(ip, dir_index, &dirtab_slot);
3060 			if (rc) {
3061 				filp->f_pos = DIREND;
3062 				return rc;
3063 			}
3064 			if (dirtab_slot.flag == DIR_INDEX_FREE) {
3065 				if (loop_count++ > JFS_IP(ip)->next_index) {
3066 					jfs_err("jfs_readdir detected "
3067 						   "infinite loop!");
3068 					filp->f_pos = DIREND;
3069 					return 0;
3070 				}
3071 				dir_index = le32_to_cpu(dirtab_slot.addr2);
3072 				if (dir_index == -1) {
3073 					filp->f_pos = DIREND;
3074 					return 0;
3075 				}
3076 				goto repeat;
3077 			}
3078 			bn = addressDTS(&dirtab_slot);
3079 			index = dirtab_slot.slot;
3080 			DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3081 			if (rc) {
3082 				filp->f_pos = DIREND;
3083 				return 0;
3084 			}
3085 			if (p->header.flag & BT_INTERNAL) {
3086 				jfs_err("jfs_readdir: bad index table");
3087 				DT_PUTPAGE(mp);
3088 				filp->f_pos = -1;
3089 				return 0;
3090 			}
3091 		} else {
3092 			if (dir_index == 0) {
3093 				/*
3094 				 * self "."
3095 				 */
3096 				filp->f_pos = 0;
3097 				if (filldir(dirent, ".", 1, 0, ip->i_ino,
3098 					    DT_DIR))
3099 					return 0;
3100 			}
3101 			/*
3102 			 * parent ".."
3103 			 */
3104 			filp->f_pos = 1;
3105 			if (filldir(dirent, "..", 2, 1, PARENT(ip), DT_DIR))
3106 				return 0;
3107 
3108 			/*
3109 			 * Find first entry of left-most leaf
3110 			 */
3111 			if (dtEmpty(ip)) {
3112 				filp->f_pos = DIREND;
3113 				return 0;
3114 			}
3115 
3116 			if ((rc = dtReadFirst(ip, &btstack)))
3117 				return rc;
3118 
3119 			DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3120 		}
3121 	} else {
3122 		/*
3123 		 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3124 		 *
3125 		 * pn = index = 0:	First entry "."
3126 		 * pn = 0; index = 1:	Second entry ".."
3127 		 * pn > 0:		Real entries, pn=1 -> leftmost page
3128 		 * pn = index = -1:	No more entries
3129 		 */
3130 		dtpos = filp->f_pos;
3131 		if (dtpos == 0) {
3132 			/* build "." entry */
3133 
3134 			if (filldir(dirent, ".", 1, filp->f_pos, ip->i_ino,
3135 				    DT_DIR))
3136 				return 0;
3137 			dtoffset->index = 1;
3138 			filp->f_pos = dtpos;
3139 		}
3140 
3141 		if (dtoffset->pn == 0) {
3142 			if (dtoffset->index == 1) {
3143 				/* build ".." entry */
3144 
3145 				if (filldir(dirent, "..", 2, filp->f_pos,
3146 					    PARENT(ip), DT_DIR))
3147 					return 0;
3148 			} else {
3149 				jfs_err("jfs_readdir called with "
3150 					"invalid offset!");
3151 			}
3152 			dtoffset->pn = 1;
3153 			dtoffset->index = 0;
3154 			filp->f_pos = dtpos;
3155 		}
3156 
3157 		if (dtEmpty(ip)) {
3158 			filp->f_pos = DIREND;
3159 			return 0;
3160 		}
3161 
3162 		if ((rc = dtReadNext(ip, &filp->f_pos, &btstack))) {
3163 			jfs_err("jfs_readdir: unexpected rc = %d "
3164 				"from dtReadNext", rc);
3165 			filp->f_pos = DIREND;
3166 			return 0;
3167 		}
3168 		/* get start leaf page and index */
3169 		DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3170 
3171 		/* offset beyond directory eof ? */
3172 		if (bn < 0) {
3173 			filp->f_pos = DIREND;
3174 			return 0;
3175 		}
3176 	}
3177 
3178 	dirent_buf = __get_free_page(GFP_KERNEL);
3179 	if (dirent_buf == 0) {
3180 		DT_PUTPAGE(mp);
3181 		jfs_warn("jfs_readdir: __get_free_page failed!");
3182 		filp->f_pos = DIREND;
3183 		return -ENOMEM;
3184 	}
3185 
3186 	while (1) {
3187 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3188 		jfs_dirents = 0;
3189 		overflow = fix_page = 0;
3190 
3191 		stbl = DT_GETSTBL(p);
3192 
3193 		for (i = index; i < p->header.nextindex; i++) {
3194 			d = (struct ldtentry *) & p->slot[stbl[i]];
3195 
3196 			if (((long) jfs_dirent + d->namlen + 1) >
3197 			    (dirent_buf + PAGE_SIZE)) {
3198 				/* DBCS codepages could overrun dirent_buf */
3199 				index = i;
3200 				overflow = 1;
3201 				break;
3202 			}
3203 
3204 			d_namleft = d->namlen;
3205 			name_ptr = jfs_dirent->name;
3206 			jfs_dirent->ino = le32_to_cpu(d->inumber);
3207 
3208 			if (do_index) {
3209 				len = min(d_namleft, DTLHDRDATALEN);
3210 				jfs_dirent->position = le32_to_cpu(d->index);
3211 				/*
3212 				 * d->index should always be valid, but it
3213 				 * isn't.  fsck.jfs doesn't create the
3214 				 * directory index for the lost+found
3215 				 * directory.  Rather than let it go,
3216 				 * we can try to fix it.
3217 				 */
3218 				if ((jfs_dirent->position < 2) ||
3219 				    (jfs_dirent->position >=
3220 				     JFS_IP(ip)->next_index)) {
3221 					if (!page_fixed && !isReadOnly(ip)) {
3222 						fix_page = 1;
3223 						/*
3224 						 * setting overflow and setting
3225 						 * index to i will cause the
3226 						 * same page to be processed
3227 						 * again starting here
3228 						 */
3229 						overflow = 1;
3230 						index = i;
3231 						break;
3232 					}
3233 					jfs_dirent->position = unique_pos++;
3234 				}
3235 			} else {
3236 				jfs_dirent->position = dtpos;
3237 				len = min(d_namleft, DTLHDRDATALEN_LEGACY);
3238 			}
3239 
3240 			/* copy the name of head/only segment */
3241 			outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
3242 						   codepage);
3243 			jfs_dirent->name_len = outlen;
3244 
3245 			/* copy name in the additional segment(s) */
3246 			next = d->next;
3247 			while (next >= 0) {
3248 				t = (struct dtslot *) & p->slot[next];
3249 				name_ptr += outlen;
3250 				d_namleft -= len;
3251 				/* Sanity Check */
3252 				if (d_namleft == 0) {
3253 					jfs_error(ip->i_sb,
3254 						  "JFS:Dtree error: ino = "
3255 						  "%ld, bn=%Ld, index = %d",
3256 						  (long)ip->i_ino,
3257 						  (long long)bn,
3258 						  i);
3259 					goto skip_one;
3260 				}
3261 				len = min(d_namleft, DTSLOTDATALEN);
3262 				outlen = jfs_strfromUCS_le(name_ptr, t->name,
3263 							   len, codepage);
3264 				jfs_dirent->name_len += outlen;
3265 
3266 				next = t->next;
3267 			}
3268 
3269 			jfs_dirents++;
3270 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3271 skip_one:
3272 			if (!do_index)
3273 				dtoffset->index++;
3274 		}
3275 
3276 		if (!overflow) {
3277 			/* Point to next leaf page */
3278 			if (p->header.flag & BT_ROOT)
3279 				bn = 0;
3280 			else {
3281 				bn = le64_to_cpu(p->header.next);
3282 				index = 0;
3283 				/* update offset (pn:index) for new page */
3284 				if (!do_index) {
3285 					dtoffset->pn++;
3286 					dtoffset->index = 0;
3287 				}
3288 			}
3289 			page_fixed = 0;
3290 		}
3291 
3292 		/* unpin previous leaf page */
3293 		DT_PUTPAGE(mp);
3294 
3295 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3296 		while (jfs_dirents--) {
3297 			filp->f_pos = jfs_dirent->position;
3298 			if (filldir(dirent, jfs_dirent->name,
3299 				    jfs_dirent->name_len, filp->f_pos,
3300 				    jfs_dirent->ino, DT_UNKNOWN))
3301 				goto out;
3302 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3303 		}
3304 
3305 		if (fix_page) {
3306 			add_missing_indices(ip, bn);
3307 			page_fixed = 1;
3308 		}
3309 
3310 		if (!overflow && (bn == 0)) {
3311 			filp->f_pos = DIREND;
3312 			break;
3313 		}
3314 
3315 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3316 		if (rc) {
3317 			free_page(dirent_buf);
3318 			return rc;
3319 		}
3320 	}
3321 
3322       out:
3323 	free_page(dirent_buf);
3324 
3325 	return rc;
3326 }
3327 
3328 
3329 /*
3330  *	dtReadFirst()
3331  *
3332  * function: get the leftmost page of the directory
3333  */
3334 static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3335 {
3336 	int rc = 0;
3337 	s64 bn;
3338 	int psize = 288;	/* initial in-line directory */
3339 	struct metapage *mp;
3340 	dtpage_t *p;
3341 	s8 *stbl;
3342 	struct btframe *btsp;
3343 	pxd_t *xd;
3344 
3345 	BT_CLR(btstack);	/* reset stack */
3346 
3347 	/*
3348 	 *	descend leftmost path of the tree
3349 	 *
3350 	 * by convention, root bn = 0.
3351 	 */
3352 	for (bn = 0;;) {
3353 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
3354 		if (rc)
3355 			return rc;
3356 
3357 		/*
3358 		 * leftmost leaf page
3359 		 */
3360 		if (p->header.flag & BT_LEAF) {
3361 			/* return leftmost entry */
3362 			btsp = btstack->top;
3363 			btsp->bn = bn;
3364 			btsp->index = 0;
3365 			btsp->mp = mp;
3366 
3367 			return 0;
3368 		}
3369 
3370 		/*
3371 		 * descend down to leftmost child page
3372 		 */
3373 		if (BT_STACK_FULL(btstack)) {
3374 			DT_PUTPAGE(mp);
3375 			jfs_error(ip->i_sb, "dtReadFirst: btstack overrun");
3376 			BT_STACK_DUMP(btstack);
3377 			return -EIO;
3378 		}
3379 		/* push (bn, index) of the parent page/entry */
3380 		BT_PUSH(btstack, bn, 0);
3381 
3382 		/* get the leftmost entry */
3383 		stbl = DT_GETSTBL(p);
3384 		xd = (pxd_t *) & p->slot[stbl[0]];
3385 
3386 		/* get the child page block address */
3387 		bn = addressPXD(xd);
3388 		psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3389 
3390 		/* unpin the parent page */
3391 		DT_PUTPAGE(mp);
3392 	}
3393 }
3394 
3395 
3396 /*
3397  *	dtReadNext()
3398  *
3399  * function: get the page of the specified offset (pn:index)
3400  *
3401  * return: if (offset > eof), bn = -1;
3402  *
3403  * note: if index > nextindex of the target leaf page,
3404  * start with 1st entry of next leaf page;
3405  */
3406 static int dtReadNext(struct inode *ip, loff_t * offset,
3407 		      struct btstack * btstack)
3408 {
3409 	int rc = 0;
3410 	struct dtoffset {
3411 		s16 pn;
3412 		s16 index;
3413 		s32 unused;
3414 	} *dtoffset = (struct dtoffset *) offset;
3415 	s64 bn;
3416 	struct metapage *mp;
3417 	dtpage_t *p;
3418 	int index;
3419 	int pn;
3420 	s8 *stbl;
3421 	struct btframe *btsp, *parent;
3422 	pxd_t *xd;
3423 
3424 	/*
3425 	 * get leftmost leaf page pinned
3426 	 */
3427 	if ((rc = dtReadFirst(ip, btstack)))
3428 		return rc;
3429 
3430 	/* get leaf page */
3431 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3432 
3433 	/* get the start offset (pn:index) */
3434 	pn = dtoffset->pn - 1;	/* Now pn = 0 represents leftmost leaf */
3435 	index = dtoffset->index;
3436 
3437 	/* start at leftmost page ? */
3438 	if (pn == 0) {
3439 		/* offset beyond eof ? */
3440 		if (index < p->header.nextindex)
3441 			goto out;
3442 
3443 		if (p->header.flag & BT_ROOT) {
3444 			bn = -1;
3445 			goto out;
3446 		}
3447 
3448 		/* start with 1st entry of next leaf page */
3449 		dtoffset->pn++;
3450 		dtoffset->index = index = 0;
3451 		goto a;
3452 	}
3453 
3454 	/* start at non-leftmost page: scan parent pages for large pn */
3455 	if (p->header.flag & BT_ROOT) {
3456 		bn = -1;
3457 		goto out;
3458 	}
3459 
3460 	/* start after next leaf page ? */
3461 	if (pn > 1)
3462 		goto b;
3463 
3464 	/* get leaf page pn = 1 */
3465       a:
3466 	bn = le64_to_cpu(p->header.next);
3467 
3468 	/* unpin leaf page */
3469 	DT_PUTPAGE(mp);
3470 
3471 	/* offset beyond eof ? */
3472 	if (bn == 0) {
3473 		bn = -1;
3474 		goto out;
3475 	}
3476 
3477 	goto c;
3478 
3479 	/*
3480 	 * scan last internal page level to get target leaf page
3481 	 */
3482       b:
3483 	/* unpin leftmost leaf page */
3484 	DT_PUTPAGE(mp);
3485 
3486 	/* get left most parent page */
3487 	btsp = btstack->top;
3488 	parent = btsp - 1;
3489 	bn = parent->bn;
3490 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3491 	if (rc)
3492 		return rc;
3493 
3494 	/* scan parent pages at last internal page level */
3495 	while (pn >= p->header.nextindex) {
3496 		pn -= p->header.nextindex;
3497 
3498 		/* get next parent page address */
3499 		bn = le64_to_cpu(p->header.next);
3500 
3501 		/* unpin current parent page */
3502 		DT_PUTPAGE(mp);
3503 
3504 		/* offset beyond eof ? */
3505 		if (bn == 0) {
3506 			bn = -1;
3507 			goto out;
3508 		}
3509 
3510 		/* get next parent page */
3511 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3512 		if (rc)
3513 			return rc;
3514 
3515 		/* update parent page stack frame */
3516 		parent->bn = bn;
3517 	}
3518 
3519 	/* get leaf page address */
3520 	stbl = DT_GETSTBL(p);
3521 	xd = (pxd_t *) & p->slot[stbl[pn]];
3522 	bn = addressPXD(xd);
3523 
3524 	/* unpin parent page */
3525 	DT_PUTPAGE(mp);
3526 
3527 	/*
3528 	 * get target leaf page
3529 	 */
3530       c:
3531 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3532 	if (rc)
3533 		return rc;
3534 
3535 	/*
3536 	 * leaf page has been completed:
3537 	 * start with 1st entry of next leaf page
3538 	 */
3539 	if (index >= p->header.nextindex) {
3540 		bn = le64_to_cpu(p->header.next);
3541 
3542 		/* unpin leaf page */
3543 		DT_PUTPAGE(mp);
3544 
3545 		/* offset beyond eof ? */
3546 		if (bn == 0) {
3547 			bn = -1;
3548 			goto out;
3549 		}
3550 
3551 		/* get next leaf page */
3552 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3553 		if (rc)
3554 			return rc;
3555 
3556 		/* start with 1st entry of next leaf page */
3557 		dtoffset->pn++;
3558 		dtoffset->index = 0;
3559 	}
3560 
3561       out:
3562 	/* return target leaf page pinned */
3563 	btsp = btstack->top;
3564 	btsp->bn = bn;
3565 	btsp->index = dtoffset->index;
3566 	btsp->mp = mp;
3567 
3568 	return 0;
3569 }
3570 
3571 
3572 /*
3573  *	dtCompare()
3574  *
3575  * function: compare search key with an internal entry
3576  *
3577  * return:
3578  *	< 0 if k is < record
3579  *	= 0 if k is = record
3580  *	> 0 if k is > record
3581  */
3582 static int dtCompare(struct component_name * key,	/* search key */
3583 		     dtpage_t * p,	/* directory page */
3584 		     int si)
3585 {				/* entry slot index */
3586 	wchar_t *kname;
3587 	__le16 *name;
3588 	int klen, namlen, len, rc;
3589 	struct idtentry *ih;
3590 	struct dtslot *t;
3591 
3592 	/*
3593 	 * force the left-most key on internal pages, at any level of
3594 	 * the tree, to be less than any search key.
3595 	 * this obviates having to update the leftmost key on an internal
3596 	 * page when the user inserts a new key in the tree smaller than
3597 	 * anything that has been stored.
3598 	 *
3599 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3600 	 * at any internal page at any level of the tree,
3601 	 * it descends to child of the entry anyway -
3602 	 * ? make the entry as min size dummy entry)
3603 	 *
3604 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3605 	 * return (1);
3606 	 */
3607 
3608 	kname = key->name;
3609 	klen = key->namlen;
3610 
3611 	ih = (struct idtentry *) & p->slot[si];
3612 	si = ih->next;
3613 	name = ih->name;
3614 	namlen = ih->namlen;
3615 	len = min(namlen, DTIHDRDATALEN);
3616 
3617 	/* compare with head/only segment */
3618 	len = min(klen, len);
3619 	if ((rc = UniStrncmp_le(kname, name, len)))
3620 		return rc;
3621 
3622 	klen -= len;
3623 	namlen -= len;
3624 
3625 	/* compare with additional segment(s) */
3626 	kname += len;
3627 	while (klen > 0 && namlen > 0) {
3628 		/* compare with next name segment */
3629 		t = (struct dtslot *) & p->slot[si];
3630 		len = min(namlen, DTSLOTDATALEN);
3631 		len = min(klen, len);
3632 		name = t->name;
3633 		if ((rc = UniStrncmp_le(kname, name, len)))
3634 			return rc;
3635 
3636 		klen -= len;
3637 		namlen -= len;
3638 		kname += len;
3639 		si = t->next;
3640 	}
3641 
3642 	return (klen - namlen);
3643 }
3644 
3645 
3646 
3647 
3648 /*
3649  *	ciCompare()
3650  *
3651  * function: compare search key with an (leaf/internal) entry
3652  *
3653  * return:
3654  *	< 0 if k is < record
3655  *	= 0 if k is = record
3656  *	> 0 if k is > record
3657  */
3658 static int ciCompare(struct component_name * key,	/* search key */
3659 		     dtpage_t * p,	/* directory page */
3660 		     int si,	/* entry slot index */
3661 		     int flag)
3662 {
3663 	wchar_t *kname, x;
3664 	__le16 *name;
3665 	int klen, namlen, len, rc;
3666 	struct ldtentry *lh;
3667 	struct idtentry *ih;
3668 	struct dtslot *t;
3669 	int i;
3670 
3671 	/*
3672 	 * force the left-most key on internal pages, at any level of
3673 	 * the tree, to be less than any search key.
3674 	 * this obviates having to update the leftmost key on an internal
3675 	 * page when the user inserts a new key in the tree smaller than
3676 	 * anything that has been stored.
3677 	 *
3678 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3679 	 * at any internal page at any level of the tree,
3680 	 * it descends to child of the entry anyway -
3681 	 * ? make the entry as min size dummy entry)
3682 	 *
3683 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3684 	 * return (1);
3685 	 */
3686 
3687 	kname = key->name;
3688 	klen = key->namlen;
3689 
3690 	/*
3691 	 * leaf page entry
3692 	 */
3693 	if (p->header.flag & BT_LEAF) {
3694 		lh = (struct ldtentry *) & p->slot[si];
3695 		si = lh->next;
3696 		name = lh->name;
3697 		namlen = lh->namlen;
3698 		if (flag & JFS_DIR_INDEX)
3699 			len = min(namlen, DTLHDRDATALEN);
3700 		else
3701 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3702 	}
3703 	/*
3704 	 * internal page entry
3705 	 */
3706 	else {
3707 		ih = (struct idtentry *) & p->slot[si];
3708 		si = ih->next;
3709 		name = ih->name;
3710 		namlen = ih->namlen;
3711 		len = min(namlen, DTIHDRDATALEN);
3712 	}
3713 
3714 	/* compare with head/only segment */
3715 	len = min(klen, len);
3716 	for (i = 0; i < len; i++, kname++, name++) {
3717 		/* only uppercase if case-insensitive support is on */
3718 		if ((flag & JFS_OS2) == JFS_OS2)
3719 			x = UniToupper(le16_to_cpu(*name));
3720 		else
3721 			x = le16_to_cpu(*name);
3722 		if ((rc = *kname - x))
3723 			return rc;
3724 	}
3725 
3726 	klen -= len;
3727 	namlen -= len;
3728 
3729 	/* compare with additional segment(s) */
3730 	while (klen > 0 && namlen > 0) {
3731 		/* compare with next name segment */
3732 		t = (struct dtslot *) & p->slot[si];
3733 		len = min(namlen, DTSLOTDATALEN);
3734 		len = min(klen, len);
3735 		name = t->name;
3736 		for (i = 0; i < len; i++, kname++, name++) {
3737 			/* only uppercase if case-insensitive support is on */
3738 			if ((flag & JFS_OS2) == JFS_OS2)
3739 				x = UniToupper(le16_to_cpu(*name));
3740 			else
3741 				x = le16_to_cpu(*name);
3742 
3743 			if ((rc = *kname - x))
3744 				return rc;
3745 		}
3746 
3747 		klen -= len;
3748 		namlen -= len;
3749 		si = t->next;
3750 	}
3751 
3752 	return (klen - namlen);
3753 }
3754 
3755 
3756 /*
3757  *	ciGetLeafPrefixKey()
3758  *
3759  * function: compute prefix of suffix compression
3760  *	     from two adjacent leaf entries
3761  *	     across page boundary
3762  *
3763  * return: non-zero on error
3764  *
3765  */
3766 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3767 			       int ri, struct component_name * key, int flag)
3768 {
3769 	int klen, namlen;
3770 	wchar_t *pl, *pr, *kname;
3771 	struct component_name lkey;
3772 	struct component_name rkey;
3773 
3774 	lkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3775 					GFP_KERNEL);
3776 	if (lkey.name == NULL)
3777 		return -ENOMEM;
3778 
3779 	rkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3780 					GFP_KERNEL);
3781 	if (rkey.name == NULL) {
3782 		kfree(lkey.name);
3783 		return -ENOMEM;
3784 	}
3785 
3786 	/* get left and right key */
3787 	dtGetKey(lp, li, &lkey, flag);
3788 	lkey.name[lkey.namlen] = 0;
3789 
3790 	if ((flag & JFS_OS2) == JFS_OS2)
3791 		ciToUpper(&lkey);
3792 
3793 	dtGetKey(rp, ri, &rkey, flag);
3794 	rkey.name[rkey.namlen] = 0;
3795 
3796 
3797 	if ((flag & JFS_OS2) == JFS_OS2)
3798 		ciToUpper(&rkey);
3799 
3800 	/* compute prefix */
3801 	klen = 0;
3802 	kname = key->name;
3803 	namlen = min(lkey.namlen, rkey.namlen);
3804 	for (pl = lkey.name, pr = rkey.name;
3805 	     namlen; pl++, pr++, namlen--, klen++, kname++) {
3806 		*kname = *pr;
3807 		if (*pl != *pr) {
3808 			key->namlen = klen + 1;
3809 			goto free_names;
3810 		}
3811 	}
3812 
3813 	/* l->namlen <= r->namlen since l <= r */
3814 	if (lkey.namlen < rkey.namlen) {
3815 		*kname = *pr;
3816 		key->namlen = klen + 1;
3817 	} else			/* l->namelen == r->namelen */
3818 		key->namlen = klen;
3819 
3820 free_names:
3821 	kfree(lkey.name);
3822 	kfree(rkey.name);
3823 	return 0;
3824 }
3825 
3826 
3827 
3828 /*
3829  *	dtGetKey()
3830  *
3831  * function: get key of the entry
3832  */
3833 static void dtGetKey(dtpage_t * p, int i,	/* entry index */
3834 		     struct component_name * key, int flag)
3835 {
3836 	int si;
3837 	s8 *stbl;
3838 	struct ldtentry *lh;
3839 	struct idtentry *ih;
3840 	struct dtslot *t;
3841 	int namlen, len;
3842 	wchar_t *kname;
3843 	__le16 *name;
3844 
3845 	/* get entry */
3846 	stbl = DT_GETSTBL(p);
3847 	si = stbl[i];
3848 	if (p->header.flag & BT_LEAF) {
3849 		lh = (struct ldtentry *) & p->slot[si];
3850 		si = lh->next;
3851 		namlen = lh->namlen;
3852 		name = lh->name;
3853 		if (flag & JFS_DIR_INDEX)
3854 			len = min(namlen, DTLHDRDATALEN);
3855 		else
3856 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3857 	} else {
3858 		ih = (struct idtentry *) & p->slot[si];
3859 		si = ih->next;
3860 		namlen = ih->namlen;
3861 		name = ih->name;
3862 		len = min(namlen, DTIHDRDATALEN);
3863 	}
3864 
3865 	key->namlen = namlen;
3866 	kname = key->name;
3867 
3868 	/*
3869 	 * move head/only segment
3870 	 */
3871 	UniStrncpy_from_le(kname, name, len);
3872 
3873 	/*
3874 	 * move additional segment(s)
3875 	 */
3876 	while (si >= 0) {
3877 		/* get next segment */
3878 		t = &p->slot[si];
3879 		kname += len;
3880 		namlen -= len;
3881 		len = min(namlen, DTSLOTDATALEN);
3882 		UniStrncpy_from_le(kname, t->name, len);
3883 
3884 		si = t->next;
3885 	}
3886 }
3887 
3888 
3889 /*
3890  *	dtInsertEntry()
3891  *
3892  * function: allocate free slot(s) and
3893  *	     write a leaf/internal entry
3894  *
3895  * return: entry slot index
3896  */
3897 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3898 			  ddata_t * data, struct dt_lock ** dtlock)
3899 {
3900 	struct dtslot *h, *t;
3901 	struct ldtentry *lh = NULL;
3902 	struct idtentry *ih = NULL;
3903 	int hsi, fsi, klen, len, nextindex;
3904 	wchar_t *kname;
3905 	__le16 *name;
3906 	s8 *stbl;
3907 	pxd_t *xd;
3908 	struct dt_lock *dtlck = *dtlock;
3909 	struct lv *lv;
3910 	int xsi, n;
3911 	s64 bn = 0;
3912 	struct metapage *mp = NULL;
3913 
3914 	klen = key->namlen;
3915 	kname = key->name;
3916 
3917 	/* allocate a free slot */
3918 	hsi = fsi = p->header.freelist;
3919 	h = &p->slot[fsi];
3920 	p->header.freelist = h->next;
3921 	--p->header.freecnt;
3922 
3923 	/* open new linelock */
3924 	if (dtlck->index >= dtlck->maxcnt)
3925 		dtlck = (struct dt_lock *) txLinelock(dtlck);
3926 
3927 	lv = & dtlck->lv[dtlck->index];
3928 	lv->offset = hsi;
3929 
3930 	/* write head/only segment */
3931 	if (p->header.flag & BT_LEAF) {
3932 		lh = (struct ldtentry *) h;
3933 		lh->next = h->next;
3934 		lh->inumber = cpu_to_le32(data->leaf.ino);
3935 		lh->namlen = klen;
3936 		name = lh->name;
3937 		if (data->leaf.ip) {
3938 			len = min(klen, DTLHDRDATALEN);
3939 			if (!(p->header.flag & BT_ROOT))
3940 				bn = addressPXD(&p->header.self);
3941 			lh->index = cpu_to_le32(add_index(data->leaf.tid,
3942 							  data->leaf.ip,
3943 							  bn, index));
3944 		} else
3945 			len = min(klen, DTLHDRDATALEN_LEGACY);
3946 	} else {
3947 		ih = (struct idtentry *) h;
3948 		ih->next = h->next;
3949 		xd = (pxd_t *) ih;
3950 		*xd = data->xd;
3951 		ih->namlen = klen;
3952 		name = ih->name;
3953 		len = min(klen, DTIHDRDATALEN);
3954 	}
3955 
3956 	UniStrncpy_to_le(name, kname, len);
3957 
3958 	n = 1;
3959 	xsi = hsi;
3960 
3961 	/* write additional segment(s) */
3962 	t = h;
3963 	klen -= len;
3964 	while (klen) {
3965 		/* get free slot */
3966 		fsi = p->header.freelist;
3967 		t = &p->slot[fsi];
3968 		p->header.freelist = t->next;
3969 		--p->header.freecnt;
3970 
3971 		/* is next slot contiguous ? */
3972 		if (fsi != xsi + 1) {
3973 			/* close current linelock */
3974 			lv->length = n;
3975 			dtlck->index++;
3976 
3977 			/* open new linelock */
3978 			if (dtlck->index < dtlck->maxcnt)
3979 				lv++;
3980 			else {
3981 				dtlck = (struct dt_lock *) txLinelock(dtlck);
3982 				lv = & dtlck->lv[0];
3983 			}
3984 
3985 			lv->offset = fsi;
3986 			n = 0;
3987 		}
3988 
3989 		kname += len;
3990 		len = min(klen, DTSLOTDATALEN);
3991 		UniStrncpy_to_le(t->name, kname, len);
3992 
3993 		n++;
3994 		xsi = fsi;
3995 		klen -= len;
3996 	}
3997 
3998 	/* close current linelock */
3999 	lv->length = n;
4000 	dtlck->index++;
4001 
4002 	*dtlock = dtlck;
4003 
4004 	/* terminate last/only segment */
4005 	if (h == t) {
4006 		/* single segment entry */
4007 		if (p->header.flag & BT_LEAF)
4008 			lh->next = -1;
4009 		else
4010 			ih->next = -1;
4011 	} else
4012 		/* multi-segment entry */
4013 		t->next = -1;
4014 
4015 	/* if insert into middle, shift right succeeding entries in stbl */
4016 	stbl = DT_GETSTBL(p);
4017 	nextindex = p->header.nextindex;
4018 	if (index < nextindex) {
4019 		memmove(stbl + index + 1, stbl + index, nextindex - index);
4020 
4021 		if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
4022 			s64 lblock;
4023 
4024 			/*
4025 			 * Need to update slot number for entries that moved
4026 			 * in the stbl
4027 			 */
4028 			mp = NULL;
4029 			for (n = index + 1; n <= nextindex; n++) {
4030 				lh = (struct ldtentry *) & (p->slot[stbl[n]]);
4031 				modify_index(data->leaf.tid, data->leaf.ip,
4032 					     le32_to_cpu(lh->index), bn, n,
4033 					     &mp, &lblock);
4034 			}
4035 			if (mp)
4036 				release_metapage(mp);
4037 		}
4038 	}
4039 
4040 	stbl[index] = hsi;
4041 
4042 	/* advance next available entry index of stbl */
4043 	++p->header.nextindex;
4044 }
4045 
4046 
4047 /*
4048  *	dtMoveEntry()
4049  *
4050  * function: move entries from split/left page to new/right page
4051  *
4052  *	nextindex of dst page and freelist/freecnt of both pages
4053  *	are updated.
4054  */
4055 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
4056 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
4057 			int do_index)
4058 {
4059 	int ssi, next;		/* src slot index */
4060 	int di;			/* dst entry index */
4061 	int dsi;		/* dst slot index */
4062 	s8 *sstbl, *dstbl;	/* sorted entry table */
4063 	int snamlen, len;
4064 	struct ldtentry *slh, *dlh = NULL;
4065 	struct idtentry *sih, *dih = NULL;
4066 	struct dtslot *h, *s, *d;
4067 	struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
4068 	struct lv *slv, *dlv;
4069 	int xssi, ns, nd;
4070 	int sfsi;
4071 
4072 	sstbl = (s8 *) & sp->slot[sp->header.stblindex];
4073 	dstbl = (s8 *) & dp->slot[dp->header.stblindex];
4074 
4075 	dsi = dp->header.freelist;	/* first (whole page) free slot */
4076 	sfsi = sp->header.freelist;
4077 
4078 	/* linelock destination entry slot */
4079 	dlv = & ddtlck->lv[ddtlck->index];
4080 	dlv->offset = dsi;
4081 
4082 	/* linelock source entry slot */
4083 	slv = & sdtlck->lv[sdtlck->index];
4084 	slv->offset = sstbl[si];
4085 	xssi = slv->offset - 1;
4086 
4087 	/*
4088 	 * move entries
4089 	 */
4090 	ns = nd = 0;
4091 	for (di = 0; si < sp->header.nextindex; si++, di++) {
4092 		ssi = sstbl[si];
4093 		dstbl[di] = dsi;
4094 
4095 		/* is next slot contiguous ? */
4096 		if (ssi != xssi + 1) {
4097 			/* close current linelock */
4098 			slv->length = ns;
4099 			sdtlck->index++;
4100 
4101 			/* open new linelock */
4102 			if (sdtlck->index < sdtlck->maxcnt)
4103 				slv++;
4104 			else {
4105 				sdtlck = (struct dt_lock *) txLinelock(sdtlck);
4106 				slv = & sdtlck->lv[0];
4107 			}
4108 
4109 			slv->offset = ssi;
4110 			ns = 0;
4111 		}
4112 
4113 		/*
4114 		 * move head/only segment of an entry
4115 		 */
4116 		/* get dst slot */
4117 		h = d = &dp->slot[dsi];
4118 
4119 		/* get src slot and move */
4120 		s = &sp->slot[ssi];
4121 		if (sp->header.flag & BT_LEAF) {
4122 			/* get source entry */
4123 			slh = (struct ldtentry *) s;
4124 			dlh = (struct ldtentry *) h;
4125 			snamlen = slh->namlen;
4126 
4127 			if (do_index) {
4128 				len = min(snamlen, DTLHDRDATALEN);
4129 				dlh->index = slh->index; /* little-endian */
4130 			} else
4131 				len = min(snamlen, DTLHDRDATALEN_LEGACY);
4132 
4133 			memcpy(dlh, slh, 6 + len * 2);
4134 
4135 			next = slh->next;
4136 
4137 			/* update dst head/only segment next field */
4138 			dsi++;
4139 			dlh->next = dsi;
4140 		} else {
4141 			sih = (struct idtentry *) s;
4142 			snamlen = sih->namlen;
4143 
4144 			len = min(snamlen, DTIHDRDATALEN);
4145 			dih = (struct idtentry *) h;
4146 			memcpy(dih, sih, 10 + len * 2);
4147 			next = sih->next;
4148 
4149 			dsi++;
4150 			dih->next = dsi;
4151 		}
4152 
4153 		/* free src head/only segment */
4154 		s->next = sfsi;
4155 		s->cnt = 1;
4156 		sfsi = ssi;
4157 
4158 		ns++;
4159 		nd++;
4160 		xssi = ssi;
4161 
4162 		/*
4163 		 * move additional segment(s) of the entry
4164 		 */
4165 		snamlen -= len;
4166 		while ((ssi = next) >= 0) {
4167 			/* is next slot contiguous ? */
4168 			if (ssi != xssi + 1) {
4169 				/* close current linelock */
4170 				slv->length = ns;
4171 				sdtlck->index++;
4172 
4173 				/* open new linelock */
4174 				if (sdtlck->index < sdtlck->maxcnt)
4175 					slv++;
4176 				else {
4177 					sdtlck =
4178 					    (struct dt_lock *)
4179 					    txLinelock(sdtlck);
4180 					slv = & sdtlck->lv[0];
4181 				}
4182 
4183 				slv->offset = ssi;
4184 				ns = 0;
4185 			}
4186 
4187 			/* get next source segment */
4188 			s = &sp->slot[ssi];
4189 
4190 			/* get next destination free slot */
4191 			d++;
4192 
4193 			len = min(snamlen, DTSLOTDATALEN);
4194 			UniStrncpy_le(d->name, s->name, len);
4195 
4196 			ns++;
4197 			nd++;
4198 			xssi = ssi;
4199 
4200 			dsi++;
4201 			d->next = dsi;
4202 
4203 			/* free source segment */
4204 			next = s->next;
4205 			s->next = sfsi;
4206 			s->cnt = 1;
4207 			sfsi = ssi;
4208 
4209 			snamlen -= len;
4210 		}		/* end while */
4211 
4212 		/* terminate dst last/only segment */
4213 		if (h == d) {
4214 			/* single segment entry */
4215 			if (dp->header.flag & BT_LEAF)
4216 				dlh->next = -1;
4217 			else
4218 				dih->next = -1;
4219 		} else
4220 			/* multi-segment entry */
4221 			d->next = -1;
4222 	}			/* end for */
4223 
4224 	/* close current linelock */
4225 	slv->length = ns;
4226 	sdtlck->index++;
4227 	*sdtlock = sdtlck;
4228 
4229 	dlv->length = nd;
4230 	ddtlck->index++;
4231 	*ddtlock = ddtlck;
4232 
4233 	/* update source header */
4234 	sp->header.freelist = sfsi;
4235 	sp->header.freecnt += nd;
4236 
4237 	/* update destination header */
4238 	dp->header.nextindex = di;
4239 
4240 	dp->header.freelist = dsi;
4241 	dp->header.freecnt -= nd;
4242 }
4243 
4244 
4245 /*
4246  *	dtDeleteEntry()
4247  *
4248  * function: free a (leaf/internal) entry
4249  *
4250  * log freelist header, stbl, and each segment slot of entry
4251  * (even though last/only segment next field is modified,
4252  * physical image logging requires all segment slots of
4253  * the entry logged to avoid applying previous updates
4254  * to the same slots)
4255  */
4256 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
4257 {
4258 	int fsi;		/* free entry slot index */
4259 	s8 *stbl;
4260 	struct dtslot *t;
4261 	int si, freecnt;
4262 	struct dt_lock *dtlck = *dtlock;
4263 	struct lv *lv;
4264 	int xsi, n;
4265 
4266 	/* get free entry slot index */
4267 	stbl = DT_GETSTBL(p);
4268 	fsi = stbl[fi];
4269 
4270 	/* open new linelock */
4271 	if (dtlck->index >= dtlck->maxcnt)
4272 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4273 	lv = & dtlck->lv[dtlck->index];
4274 
4275 	lv->offset = fsi;
4276 
4277 	/* get the head/only segment */
4278 	t = &p->slot[fsi];
4279 	if (p->header.flag & BT_LEAF)
4280 		si = ((struct ldtentry *) t)->next;
4281 	else
4282 		si = ((struct idtentry *) t)->next;
4283 	t->next = si;
4284 	t->cnt = 1;
4285 
4286 	n = freecnt = 1;
4287 	xsi = fsi;
4288 
4289 	/* find the last/only segment */
4290 	while (si >= 0) {
4291 		/* is next slot contiguous ? */
4292 		if (si != xsi + 1) {
4293 			/* close current linelock */
4294 			lv->length = n;
4295 			dtlck->index++;
4296 
4297 			/* open new linelock */
4298 			if (dtlck->index < dtlck->maxcnt)
4299 				lv++;
4300 			else {
4301 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4302 				lv = & dtlck->lv[0];
4303 			}
4304 
4305 			lv->offset = si;
4306 			n = 0;
4307 		}
4308 
4309 		n++;
4310 		xsi = si;
4311 		freecnt++;
4312 
4313 		t = &p->slot[si];
4314 		t->cnt = 1;
4315 		si = t->next;
4316 	}
4317 
4318 	/* close current linelock */
4319 	lv->length = n;
4320 	dtlck->index++;
4321 
4322 	*dtlock = dtlck;
4323 
4324 	/* update freelist */
4325 	t->next = p->header.freelist;
4326 	p->header.freelist = fsi;
4327 	p->header.freecnt += freecnt;
4328 
4329 	/* if delete from middle,
4330 	 * shift left the succedding entries in the stbl
4331 	 */
4332 	si = p->header.nextindex;
4333 	if (fi < si - 1)
4334 		memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4335 
4336 	p->header.nextindex--;
4337 }
4338 
4339 
4340 /*
4341  *	dtTruncateEntry()
4342  *
4343  * function: truncate a (leaf/internal) entry
4344  *
4345  * log freelist header, stbl, and each segment slot of entry
4346  * (even though last/only segment next field is modified,
4347  * physical image logging requires all segment slots of
4348  * the entry logged to avoid applying previous updates
4349  * to the same slots)
4350  */
4351 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4352 {
4353 	int tsi;		/* truncate entry slot index */
4354 	s8 *stbl;
4355 	struct dtslot *t;
4356 	int si, freecnt;
4357 	struct dt_lock *dtlck = *dtlock;
4358 	struct lv *lv;
4359 	int fsi, xsi, n;
4360 
4361 	/* get free entry slot index */
4362 	stbl = DT_GETSTBL(p);
4363 	tsi = stbl[ti];
4364 
4365 	/* open new linelock */
4366 	if (dtlck->index >= dtlck->maxcnt)
4367 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4368 	lv = & dtlck->lv[dtlck->index];
4369 
4370 	lv->offset = tsi;
4371 
4372 	/* get the head/only segment */
4373 	t = &p->slot[tsi];
4374 	ASSERT(p->header.flag & BT_INTERNAL);
4375 	((struct idtentry *) t)->namlen = 0;
4376 	si = ((struct idtentry *) t)->next;
4377 	((struct idtentry *) t)->next = -1;
4378 
4379 	n = 1;
4380 	freecnt = 0;
4381 	fsi = si;
4382 	xsi = tsi;
4383 
4384 	/* find the last/only segment */
4385 	while (si >= 0) {
4386 		/* is next slot contiguous ? */
4387 		if (si != xsi + 1) {
4388 			/* close current linelock */
4389 			lv->length = n;
4390 			dtlck->index++;
4391 
4392 			/* open new linelock */
4393 			if (dtlck->index < dtlck->maxcnt)
4394 				lv++;
4395 			else {
4396 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4397 				lv = & dtlck->lv[0];
4398 			}
4399 
4400 			lv->offset = si;
4401 			n = 0;
4402 		}
4403 
4404 		n++;
4405 		xsi = si;
4406 		freecnt++;
4407 
4408 		t = &p->slot[si];
4409 		t->cnt = 1;
4410 		si = t->next;
4411 	}
4412 
4413 	/* close current linelock */
4414 	lv->length = n;
4415 	dtlck->index++;
4416 
4417 	*dtlock = dtlck;
4418 
4419 	/* update freelist */
4420 	if (freecnt == 0)
4421 		return;
4422 	t->next = p->header.freelist;
4423 	p->header.freelist = fsi;
4424 	p->header.freecnt += freecnt;
4425 }
4426 
4427 
4428 /*
4429  *	dtLinelockFreelist()
4430  */
4431 static void dtLinelockFreelist(dtpage_t * p,	/* directory page */
4432 			       int m,	/* max slot index */
4433 			       struct dt_lock ** dtlock)
4434 {
4435 	int fsi;		/* free entry slot index */
4436 	struct dtslot *t;
4437 	int si;
4438 	struct dt_lock *dtlck = *dtlock;
4439 	struct lv *lv;
4440 	int xsi, n;
4441 
4442 	/* get free entry slot index */
4443 	fsi = p->header.freelist;
4444 
4445 	/* open new linelock */
4446 	if (dtlck->index >= dtlck->maxcnt)
4447 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4448 	lv = & dtlck->lv[dtlck->index];
4449 
4450 	lv->offset = fsi;
4451 
4452 	n = 1;
4453 	xsi = fsi;
4454 
4455 	t = &p->slot[fsi];
4456 	si = t->next;
4457 
4458 	/* find the last/only segment */
4459 	while (si < m && si >= 0) {
4460 		/* is next slot contiguous ? */
4461 		if (si != xsi + 1) {
4462 			/* close current linelock */
4463 			lv->length = n;
4464 			dtlck->index++;
4465 
4466 			/* open new linelock */
4467 			if (dtlck->index < dtlck->maxcnt)
4468 				lv++;
4469 			else {
4470 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4471 				lv = & dtlck->lv[0];
4472 			}
4473 
4474 			lv->offset = si;
4475 			n = 0;
4476 		}
4477 
4478 		n++;
4479 		xsi = si;
4480 
4481 		t = &p->slot[si];
4482 		si = t->next;
4483 	}
4484 
4485 	/* close current linelock */
4486 	lv->length = n;
4487 	dtlck->index++;
4488 
4489 	*dtlock = dtlck;
4490 }
4491 
4492 
4493 /*
4494  * NAME: dtModify
4495  *
4496  * FUNCTION: Modify the inode number part of a directory entry
4497  *
4498  * PARAMETERS:
4499  *	tid	- Transaction id
4500  *	ip	- Inode of parent directory
4501  *	key	- Name of entry to be modified
4502  *	orig_ino	- Original inode number expected in entry
4503  *	new_ino	- New inode number to put into entry
4504  *	flag	- JFS_RENAME
4505  *
4506  * RETURNS:
4507  *	-ESTALE	- If entry found does not match orig_ino passed in
4508  *	-ENOENT	- If no entry can be found to match key
4509  *	0	- If successfully modified entry
4510  */
4511 int dtModify(tid_t tid, struct inode *ip,
4512 	 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4513 {
4514 	int rc;
4515 	s64 bn;
4516 	struct metapage *mp;
4517 	dtpage_t *p;
4518 	int index;
4519 	struct btstack btstack;
4520 	struct tlock *tlck;
4521 	struct dt_lock *dtlck;
4522 	struct lv *lv;
4523 	s8 *stbl;
4524 	int entry_si;		/* entry slot index */
4525 	struct ldtentry *entry;
4526 
4527 	/*
4528 	 *	search for the entry to modify:
4529 	 *
4530 	 * dtSearch() returns (leaf page pinned, index at which to modify).
4531 	 */
4532 	if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4533 		return rc;
4534 
4535 	/* retrieve search result */
4536 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4537 
4538 	BT_MARK_DIRTY(mp, ip);
4539 	/*
4540 	 * acquire a transaction lock on the leaf page of named entry
4541 	 */
4542 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4543 	dtlck = (struct dt_lock *) & tlck->lock;
4544 
4545 	/* get slot index of the entry */
4546 	stbl = DT_GETSTBL(p);
4547 	entry_si = stbl[index];
4548 
4549 	/* linelock entry */
4550 	ASSERT(dtlck->index == 0);
4551 	lv = & dtlck->lv[0];
4552 	lv->offset = entry_si;
4553 	lv->length = 1;
4554 	dtlck->index++;
4555 
4556 	/* get the head/only segment */
4557 	entry = (struct ldtentry *) & p->slot[entry_si];
4558 
4559 	/* substitute the inode number of the entry */
4560 	entry->inumber = cpu_to_le32(new_ino);
4561 
4562 	/* unpin the leaf page */
4563 	DT_PUTPAGE(mp);
4564 
4565 	return 0;
4566 }
4567