1 /* 2 * JFFS2 -- Journalling Flash File System, Version 2. 3 * 4 * Copyright (C) 2001-2003 Red Hat, Inc. 5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de> 6 * 7 * Created by David Woodhouse <dwmw2@infradead.org> 8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> 9 * 10 * For licensing information, see the file 'LICENCE' in this directory. 11 * 12 * $Id: wbuf.c,v 1.82 2004/11/20 22:08:31 dwmw2 Exp $ 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/slab.h> 18 #include <linux/mtd/mtd.h> 19 #include <linux/crc32.h> 20 #include <linux/mtd/nand.h> 21 #include "nodelist.h" 22 23 /* For testing write failures */ 24 #undef BREAKME 25 #undef BREAKMEHEADER 26 27 #ifdef BREAKME 28 static unsigned char *brokenbuf; 29 #endif 30 31 /* max. erase failures before we mark a block bad */ 32 #define MAX_ERASE_FAILURES 2 33 34 /* two seconds timeout for timed wbuf-flushing */ 35 #define WBUF_FLUSH_TIMEOUT 2 * HZ 36 37 struct jffs2_inodirty { 38 uint32_t ino; 39 struct jffs2_inodirty *next; 40 }; 41 42 static struct jffs2_inodirty inodirty_nomem; 43 44 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) 45 { 46 struct jffs2_inodirty *this = c->wbuf_inodes; 47 48 /* If a malloc failed, consider _everything_ dirty */ 49 if (this == &inodirty_nomem) 50 return 1; 51 52 /* If ino == 0, _any_ non-GC writes mean 'yes' */ 53 if (this && !ino) 54 return 1; 55 56 /* Look to see if the inode in question is pending in the wbuf */ 57 while (this) { 58 if (this->ino == ino) 59 return 1; 60 this = this->next; 61 } 62 return 0; 63 } 64 65 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) 66 { 67 struct jffs2_inodirty *this; 68 69 this = c->wbuf_inodes; 70 71 if (this != &inodirty_nomem) { 72 while (this) { 73 struct jffs2_inodirty *next = this->next; 74 kfree(this); 75 this = next; 76 } 77 } 78 c->wbuf_inodes = NULL; 79 } 80 81 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) 82 { 83 struct jffs2_inodirty *new; 84 85 /* Mark the superblock dirty so that kupdated will flush... */ 86 OFNI_BS_2SFFJ(c)->s_dirt = 1; 87 88 if (jffs2_wbuf_pending_for_ino(c, ino)) 89 return; 90 91 new = kmalloc(sizeof(*new), GFP_KERNEL); 92 if (!new) { 93 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n")); 94 jffs2_clear_wbuf_ino_list(c); 95 c->wbuf_inodes = &inodirty_nomem; 96 return; 97 } 98 new->ino = ino; 99 new->next = c->wbuf_inodes; 100 c->wbuf_inodes = new; 101 return; 102 } 103 104 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) 105 { 106 struct list_head *this, *next; 107 static int n; 108 109 if (list_empty(&c->erasable_pending_wbuf_list)) 110 return; 111 112 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { 113 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); 114 115 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); 116 list_del(this); 117 if ((jiffies + (n++)) & 127) { 118 /* Most of the time, we just erase it immediately. Otherwise we 119 spend ages scanning it on mount, etc. */ 120 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); 121 list_add_tail(&jeb->list, &c->erase_pending_list); 122 c->nr_erasing_blocks++; 123 jffs2_erase_pending_trigger(c); 124 } else { 125 /* Sometimes, however, we leave it elsewhere so it doesn't get 126 immediately reused, and we spread the load a bit. */ 127 D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); 128 list_add_tail(&jeb->list, &c->erasable_list); 129 } 130 } 131 } 132 133 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) 134 { 135 D1(printk("About to refile bad block at %08x\n", jeb->offset)); 136 137 D2(jffs2_dump_block_lists(c)); 138 /* File the existing block on the bad_used_list.... */ 139 if (c->nextblock == jeb) 140 c->nextblock = NULL; 141 else /* Not sure this should ever happen... need more coffee */ 142 list_del(&jeb->list); 143 if (jeb->first_node) { 144 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset)); 145 list_add(&jeb->list, &c->bad_used_list); 146 } else { 147 BUG(); 148 /* It has to have had some nodes or we couldn't be here */ 149 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset)); 150 list_add(&jeb->list, &c->erase_pending_list); 151 c->nr_erasing_blocks++; 152 jffs2_erase_pending_trigger(c); 153 } 154 D2(jffs2_dump_block_lists(c)); 155 156 /* Adjust its size counts accordingly */ 157 c->wasted_size += jeb->free_size; 158 c->free_size -= jeb->free_size; 159 jeb->wasted_size += jeb->free_size; 160 jeb->free_size = 0; 161 162 ACCT_SANITY_CHECK(c,jeb); 163 D1(ACCT_PARANOIA_CHECK(jeb)); 164 } 165 166 /* Recover from failure to write wbuf. Recover the nodes up to the 167 * wbuf, not the one which we were starting to try to write. */ 168 169 static void jffs2_wbuf_recover(struct jffs2_sb_info *c) 170 { 171 struct jffs2_eraseblock *jeb, *new_jeb; 172 struct jffs2_raw_node_ref **first_raw, **raw; 173 size_t retlen; 174 int ret; 175 unsigned char *buf; 176 uint32_t start, end, ofs, len; 177 178 spin_lock(&c->erase_completion_lock); 179 180 jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 181 182 jffs2_block_refile(c, jeb); 183 184 /* Find the first node to be recovered, by skipping over every 185 node which ends before the wbuf starts, or which is obsolete. */ 186 first_raw = &jeb->first_node; 187 while (*first_raw && 188 (ref_obsolete(*first_raw) || 189 (ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) { 190 D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", 191 ref_offset(*first_raw), ref_flags(*first_raw), 192 (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)), 193 c->wbuf_ofs)); 194 first_raw = &(*first_raw)->next_phys; 195 } 196 197 if (!*first_raw) { 198 /* All nodes were obsolete. Nothing to recover. */ 199 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n")); 200 spin_unlock(&c->erase_completion_lock); 201 return; 202 } 203 204 start = ref_offset(*first_raw); 205 end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw); 206 207 /* Find the last node to be recovered */ 208 raw = first_raw; 209 while ((*raw)) { 210 if (!ref_obsolete(*raw)) 211 end = ref_offset(*raw) + ref_totlen(c, jeb, *raw); 212 213 raw = &(*raw)->next_phys; 214 } 215 spin_unlock(&c->erase_completion_lock); 216 217 D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end)); 218 219 buf = NULL; 220 if (start < c->wbuf_ofs) { 221 /* First affected node was already partially written. 222 * Attempt to reread the old data into our buffer. */ 223 224 buf = kmalloc(end - start, GFP_KERNEL); 225 if (!buf) { 226 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n"); 227 228 goto read_failed; 229 } 230 231 /* Do the read... */ 232 if (jffs2_cleanmarker_oob(c)) 233 ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo); 234 else 235 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf); 236 237 if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) { 238 /* ECC recovered */ 239 ret = 0; 240 } 241 if (ret || retlen != c->wbuf_ofs - start) { 242 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n"); 243 244 kfree(buf); 245 buf = NULL; 246 read_failed: 247 first_raw = &(*first_raw)->next_phys; 248 /* If this was the only node to be recovered, give up */ 249 if (!(*first_raw)) 250 return; 251 252 /* It wasn't. Go on and try to recover nodes complete in the wbuf */ 253 start = ref_offset(*first_raw); 254 } else { 255 /* Read succeeded. Copy the remaining data from the wbuf */ 256 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); 257 } 258 } 259 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. 260 Either 'buf' contains the data, or we find it in the wbuf */ 261 262 263 /* ... and get an allocation of space from a shiny new block instead */ 264 ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len); 265 if (ret) { 266 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n"); 267 if (buf) 268 kfree(buf); 269 return; 270 } 271 if (end-start >= c->wbuf_pagesize) { 272 /* Need to do another write immediately. This, btw, 273 means that we'll be writing from 'buf' and not from 274 the wbuf. Since if we're writing from the wbuf there 275 won't be more than a wbuf full of data, now will 276 there? :) */ 277 278 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); 279 280 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n", 281 towrite, ofs)); 282 283 #ifdef BREAKMEHEADER 284 static int breakme; 285 if (breakme++ == 20) { 286 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs); 287 breakme = 0; 288 c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, 289 brokenbuf, NULL, c->oobinfo); 290 ret = -EIO; 291 } else 292 #endif 293 if (jffs2_cleanmarker_oob(c)) 294 ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, 295 buf, NULL, c->oobinfo); 296 else 297 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, buf); 298 299 if (ret || retlen != towrite) { 300 /* Argh. We tried. Really we did. */ 301 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n"); 302 kfree(buf); 303 304 if (retlen) { 305 struct jffs2_raw_node_ref *raw2; 306 307 raw2 = jffs2_alloc_raw_node_ref(); 308 if (!raw2) 309 return; 310 311 raw2->flash_offset = ofs | REF_OBSOLETE; 312 raw2->__totlen = ref_totlen(c, jeb, *first_raw); 313 raw2->next_phys = NULL; 314 raw2->next_in_ino = NULL; 315 316 jffs2_add_physical_node_ref(c, raw2); 317 } 318 return; 319 } 320 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs); 321 322 c->wbuf_len = (end - start) - towrite; 323 c->wbuf_ofs = ofs + towrite; 324 memcpy(c->wbuf, buf + towrite, c->wbuf_len); 325 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */ 326 327 kfree(buf); 328 } else { 329 /* OK, now we're left with the dregs in whichever buffer we're using */ 330 if (buf) { 331 memcpy(c->wbuf, buf, end-start); 332 kfree(buf); 333 } else { 334 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); 335 } 336 c->wbuf_ofs = ofs; 337 c->wbuf_len = end - start; 338 } 339 340 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ 341 new_jeb = &c->blocks[ofs / c->sector_size]; 342 343 spin_lock(&c->erase_completion_lock); 344 if (new_jeb->first_node) { 345 /* Odd, but possible with ST flash later maybe */ 346 new_jeb->last_node->next_phys = *first_raw; 347 } else { 348 new_jeb->first_node = *first_raw; 349 } 350 351 raw = first_raw; 352 while (*raw) { 353 uint32_t rawlen = ref_totlen(c, jeb, *raw); 354 355 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n", 356 rawlen, ref_offset(*raw), ref_flags(*raw), ofs)); 357 358 if (ref_obsolete(*raw)) { 359 /* Shouldn't really happen much */ 360 new_jeb->dirty_size += rawlen; 361 new_jeb->free_size -= rawlen; 362 c->dirty_size += rawlen; 363 } else { 364 new_jeb->used_size += rawlen; 365 new_jeb->free_size -= rawlen; 366 jeb->dirty_size += rawlen; 367 jeb->used_size -= rawlen; 368 c->dirty_size += rawlen; 369 } 370 c->free_size -= rawlen; 371 (*raw)->flash_offset = ofs | ref_flags(*raw); 372 ofs += rawlen; 373 new_jeb->last_node = *raw; 374 375 raw = &(*raw)->next_phys; 376 } 377 378 /* Fix up the original jeb now it's on the bad_list */ 379 *first_raw = NULL; 380 if (first_raw == &jeb->first_node) { 381 jeb->last_node = NULL; 382 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset)); 383 list_del(&jeb->list); 384 list_add(&jeb->list, &c->erase_pending_list); 385 c->nr_erasing_blocks++; 386 jffs2_erase_pending_trigger(c); 387 } 388 else 389 jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys); 390 391 ACCT_SANITY_CHECK(c,jeb); 392 D1(ACCT_PARANOIA_CHECK(jeb)); 393 394 ACCT_SANITY_CHECK(c,new_jeb); 395 D1(ACCT_PARANOIA_CHECK(new_jeb)); 396 397 spin_unlock(&c->erase_completion_lock); 398 399 D1(printk(KERN_DEBUG "wbuf recovery completed OK\n")); 400 } 401 402 /* Meaning of pad argument: 403 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. 404 1: Pad, do not adjust nextblock free_size 405 2: Pad, adjust nextblock free_size 406 */ 407 #define NOPAD 0 408 #define PAD_NOACCOUNT 1 409 #define PAD_ACCOUNTING 2 410 411 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) 412 { 413 int ret; 414 size_t retlen; 415 416 /* Nothing to do if not NAND flash. In particular, we shouldn't 417 del_timer() the timer we never initialised. */ 418 if (jffs2_can_mark_obsolete(c)) 419 return 0; 420 421 if (!down_trylock(&c->alloc_sem)) { 422 up(&c->alloc_sem); 423 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); 424 BUG(); 425 } 426 427 if(!c->wbuf || !c->wbuf_len) 428 return 0; 429 430 /* claim remaining space on the page 431 this happens, if we have a change to a new block, 432 or if fsync forces us to flush the writebuffer. 433 if we have a switch to next page, we will not have 434 enough remaining space for this. 435 */ 436 if (pad) { 437 c->wbuf_len = PAD(c->wbuf_len); 438 439 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR 440 with 8 byte page size */ 441 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); 442 443 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { 444 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); 445 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 446 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); 447 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); 448 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); 449 } 450 } 451 /* else jffs2_flash_writev has actually filled in the rest of the 452 buffer for us, and will deal with the node refs etc. later. */ 453 454 #ifdef BREAKME 455 static int breakme; 456 if (breakme++ == 20) { 457 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs); 458 breakme = 0; 459 c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, 460 &retlen, brokenbuf, NULL, c->oobinfo); 461 ret = -EIO; 462 } else 463 #endif 464 465 if (jffs2_cleanmarker_oob(c)) 466 ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo); 467 else 468 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf); 469 470 if (ret || retlen != c->wbuf_pagesize) { 471 if (ret) 472 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret); 473 else { 474 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", 475 retlen, c->wbuf_pagesize); 476 ret = -EIO; 477 } 478 479 jffs2_wbuf_recover(c); 480 481 return ret; 482 } 483 484 spin_lock(&c->erase_completion_lock); 485 486 /* Adjust free size of the block if we padded. */ 487 if (pad) { 488 struct jffs2_eraseblock *jeb; 489 490 jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 491 492 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", 493 (jeb==c->nextblock)?"next":"", jeb->offset)); 494 495 /* wbuf_pagesize - wbuf_len is the amount of space that's to be 496 padded. If there is less free space in the block than that, 497 something screwed up */ 498 if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) { 499 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", 500 c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len); 501 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", 502 jeb->offset, jeb->free_size); 503 BUG(); 504 } 505 jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len); 506 c->free_size -= (c->wbuf_pagesize - c->wbuf_len); 507 jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len); 508 c->wasted_size += (c->wbuf_pagesize - c->wbuf_len); 509 } 510 511 /* Stick any now-obsoleted blocks on the erase_pending_list */ 512 jffs2_refile_wbuf_blocks(c); 513 jffs2_clear_wbuf_ino_list(c); 514 spin_unlock(&c->erase_completion_lock); 515 516 memset(c->wbuf,0xff,c->wbuf_pagesize); 517 /* adjust write buffer offset, else we get a non contiguous write bug */ 518 c->wbuf_ofs += c->wbuf_pagesize; 519 c->wbuf_len = 0; 520 return 0; 521 } 522 523 /* Trigger garbage collection to flush the write-buffer. 524 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are 525 outstanding. If ino arg non-zero, do it only if a write for the 526 given inode is outstanding. */ 527 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) 528 { 529 uint32_t old_wbuf_ofs; 530 uint32_t old_wbuf_len; 531 int ret = 0; 532 533 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino)); 534 535 down(&c->alloc_sem); 536 if (!jffs2_wbuf_pending_for_ino(c, ino)) { 537 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino)); 538 up(&c->alloc_sem); 539 return 0; 540 } 541 542 old_wbuf_ofs = c->wbuf_ofs; 543 old_wbuf_len = c->wbuf_len; 544 545 if (c->unchecked_size) { 546 /* GC won't make any progress for a while */ 547 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n")); 548 down_write(&c->wbuf_sem); 549 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 550 up_write(&c->wbuf_sem); 551 } else while (old_wbuf_len && 552 old_wbuf_ofs == c->wbuf_ofs) { 553 554 up(&c->alloc_sem); 555 556 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n")); 557 558 ret = jffs2_garbage_collect_pass(c); 559 if (ret) { 560 /* GC failed. Flush it with padding instead */ 561 down(&c->alloc_sem); 562 down_write(&c->wbuf_sem); 563 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 564 up_write(&c->wbuf_sem); 565 break; 566 } 567 down(&c->alloc_sem); 568 } 569 570 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n")); 571 572 up(&c->alloc_sem); 573 return ret; 574 } 575 576 /* Pad write-buffer to end and write it, wasting space. */ 577 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) 578 { 579 int ret; 580 581 down_write(&c->wbuf_sem); 582 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 583 up_write(&c->wbuf_sem); 584 585 return ret; 586 } 587 588 #define PAGE_DIV(x) ( (x) & (~(c->wbuf_pagesize - 1)) ) 589 #define PAGE_MOD(x) ( (x) & (c->wbuf_pagesize - 1) ) 590 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino) 591 { 592 struct kvec outvecs[3]; 593 uint32_t totlen = 0; 594 uint32_t split_ofs = 0; 595 uint32_t old_totlen; 596 int ret, splitvec = -1; 597 int invec, outvec; 598 size_t wbuf_retlen; 599 unsigned char *wbuf_ptr; 600 size_t donelen = 0; 601 uint32_t outvec_to = to; 602 603 /* If not NAND flash, don't bother */ 604 if (!c->wbuf) 605 return jffs2_flash_direct_writev(c, invecs, count, to, retlen); 606 607 down_write(&c->wbuf_sem); 608 609 /* If wbuf_ofs is not initialized, set it to target address */ 610 if (c->wbuf_ofs == 0xFFFFFFFF) { 611 c->wbuf_ofs = PAGE_DIV(to); 612 c->wbuf_len = PAGE_MOD(to); 613 memset(c->wbuf,0xff,c->wbuf_pagesize); 614 } 615 616 /* Fixup the wbuf if we are moving to a new eraseblock. The checks below 617 fail for ECC'd NOR because cleanmarker == 16, so a block starts at 618 xxx0010. */ 619 if (jffs2_nor_ecc(c)) { 620 if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) { 621 c->wbuf_ofs = PAGE_DIV(to); 622 c->wbuf_len = PAGE_MOD(to); 623 memset(c->wbuf,0xff,c->wbuf_pagesize); 624 } 625 } 626 627 /* Sanity checks on target address. 628 It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs), 629 and it's permitted to write at the beginning of a new 630 erase block. Anything else, and you die. 631 New block starts at xxx000c (0-b = block header) 632 */ 633 if ( (to & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) { 634 /* It's a write to a new block */ 635 if (c->wbuf_len) { 636 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs)); 637 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 638 if (ret) { 639 /* the underlying layer has to check wbuf_len to do the cleanup */ 640 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); 641 *retlen = 0; 642 goto exit; 643 } 644 } 645 /* set pointer to new block */ 646 c->wbuf_ofs = PAGE_DIV(to); 647 c->wbuf_len = PAGE_MOD(to); 648 } 649 650 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { 651 /* We're not writing immediately after the writebuffer. Bad. */ 652 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to); 653 if (c->wbuf_len) 654 printk(KERN_CRIT "wbuf was previously %08x-%08x\n", 655 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); 656 BUG(); 657 } 658 659 /* Note outvecs[3] above. We know count is never greater than 2 */ 660 if (count > 2) { 661 printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count); 662 BUG(); 663 } 664 665 invec = 0; 666 outvec = 0; 667 668 /* Fill writebuffer first, if already in use */ 669 if (c->wbuf_len) { 670 uint32_t invec_ofs = 0; 671 672 /* adjust alignment offset */ 673 if (c->wbuf_len != PAGE_MOD(to)) { 674 c->wbuf_len = PAGE_MOD(to); 675 /* take care of alignment to next page */ 676 if (!c->wbuf_len) 677 c->wbuf_len = c->wbuf_pagesize; 678 } 679 680 while(c->wbuf_len < c->wbuf_pagesize) { 681 uint32_t thislen; 682 683 if (invec == count) 684 goto alldone; 685 686 thislen = c->wbuf_pagesize - c->wbuf_len; 687 688 if (thislen >= invecs[invec].iov_len) 689 thislen = invecs[invec].iov_len; 690 691 invec_ofs = thislen; 692 693 memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen); 694 c->wbuf_len += thislen; 695 donelen += thislen; 696 /* Get next invec, if actual did not fill the buffer */ 697 if (c->wbuf_len < c->wbuf_pagesize) 698 invec++; 699 } 700 701 /* write buffer is full, flush buffer */ 702 ret = __jffs2_flush_wbuf(c, NOPAD); 703 if (ret) { 704 /* the underlying layer has to check wbuf_len to do the cleanup */ 705 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); 706 /* Retlen zero to make sure our caller doesn't mark the space dirty. 707 We've already done everything that's necessary */ 708 *retlen = 0; 709 goto exit; 710 } 711 outvec_to += donelen; 712 c->wbuf_ofs = outvec_to; 713 714 /* All invecs done ? */ 715 if (invec == count) 716 goto alldone; 717 718 /* Set up the first outvec, containing the remainder of the 719 invec we partially used */ 720 if (invecs[invec].iov_len > invec_ofs) { 721 outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs; 722 totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs; 723 if (totlen > c->wbuf_pagesize) { 724 splitvec = outvec; 725 split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen); 726 } 727 outvec++; 728 } 729 invec++; 730 } 731 732 /* OK, now we've flushed the wbuf and the start of the bits 733 we have been asked to write, now to write the rest.... */ 734 735 /* totlen holds the amount of data still to be written */ 736 old_totlen = totlen; 737 for ( ; invec < count; invec++,outvec++ ) { 738 outvecs[outvec].iov_base = invecs[invec].iov_base; 739 totlen += outvecs[outvec].iov_len = invecs[invec].iov_len; 740 if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) { 741 splitvec = outvec; 742 split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen); 743 old_totlen = totlen; 744 } 745 } 746 747 /* Now the outvecs array holds all the remaining data to write */ 748 /* Up to splitvec,split_ofs is to be written immediately. The rest 749 goes into the (now-empty) wbuf */ 750 751 if (splitvec != -1) { 752 uint32_t remainder; 753 754 remainder = outvecs[splitvec].iov_len - split_ofs; 755 outvecs[splitvec].iov_len = split_ofs; 756 757 /* We did cross a page boundary, so we write some now */ 758 if (jffs2_cleanmarker_oob(c)) 759 ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo); 760 else 761 ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen); 762 763 if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) { 764 /* At this point we have no problem, 765 c->wbuf is empty. 766 */ 767 *retlen = donelen; 768 goto exit; 769 } 770 771 donelen += wbuf_retlen; 772 c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen); 773 774 if (remainder) { 775 outvecs[splitvec].iov_base += split_ofs; 776 outvecs[splitvec].iov_len = remainder; 777 } else { 778 splitvec++; 779 } 780 781 } else { 782 splitvec = 0; 783 } 784 785 /* Now splitvec points to the start of the bits we have to copy 786 into the wbuf */ 787 wbuf_ptr = c->wbuf; 788 789 for ( ; splitvec < outvec; splitvec++) { 790 /* Don't copy the wbuf into itself */ 791 if (outvecs[splitvec].iov_base == c->wbuf) 792 continue; 793 memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len); 794 wbuf_ptr += outvecs[splitvec].iov_len; 795 donelen += outvecs[splitvec].iov_len; 796 } 797 c->wbuf_len = wbuf_ptr - c->wbuf; 798 799 /* If there's a remainder in the wbuf and it's a non-GC write, 800 remember that the wbuf affects this ino */ 801 alldone: 802 *retlen = donelen; 803 804 if (c->wbuf_len && ino) 805 jffs2_wbuf_dirties_inode(c, ino); 806 807 ret = 0; 808 809 exit: 810 up_write(&c->wbuf_sem); 811 return ret; 812 } 813 814 /* 815 * This is the entry for flash write. 816 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev 817 */ 818 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf) 819 { 820 struct kvec vecs[1]; 821 822 if (jffs2_can_mark_obsolete(c)) 823 return c->mtd->write(c->mtd, ofs, len, retlen, buf); 824 825 vecs[0].iov_base = (unsigned char *) buf; 826 vecs[0].iov_len = len; 827 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); 828 } 829 830 /* 831 Handle readback from writebuffer and ECC failure return 832 */ 833 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) 834 { 835 loff_t orbf = 0, owbf = 0, lwbf = 0; 836 int ret; 837 838 /* Read flash */ 839 if (!jffs2_can_mark_obsolete(c)) { 840 down_read(&c->wbuf_sem); 841 842 if (jffs2_cleanmarker_oob(c)) 843 ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo); 844 else 845 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); 846 847 if ( (ret == -EBADMSG) && (*retlen == len) ) { 848 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n", 849 len, ofs); 850 /* 851 * We have the raw data without ECC correction in the buffer, maybe 852 * we are lucky and all data or parts are correct. We check the node. 853 * If data are corrupted node check will sort it out. 854 * We keep this block, it will fail on write or erase and the we 855 * mark it bad. Or should we do that now? But we should give him a chance. 856 * Maybe we had a system crash or power loss before the ecc write or 857 * a erase was completed. 858 * So we return success. :) 859 */ 860 ret = 0; 861 } 862 } else 863 return c->mtd->read(c->mtd, ofs, len, retlen, buf); 864 865 /* if no writebuffer available or write buffer empty, return */ 866 if (!c->wbuf_pagesize || !c->wbuf_len) 867 goto exit; 868 869 /* if we read in a different block, return */ 870 if ( (ofs & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) 871 goto exit; 872 873 if (ofs >= c->wbuf_ofs) { 874 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */ 875 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */ 876 goto exit; 877 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */ 878 if (lwbf > len) 879 lwbf = len; 880 } else { 881 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */ 882 if (orbf > len) /* is write beyond write buffer ? */ 883 goto exit; 884 lwbf = len - orbf; /* number of bytes to copy */ 885 if (lwbf > c->wbuf_len) 886 lwbf = c->wbuf_len; 887 } 888 if (lwbf > 0) 889 memcpy(buf+orbf,c->wbuf+owbf,lwbf); 890 891 exit: 892 up_read(&c->wbuf_sem); 893 return ret; 894 } 895 896 /* 897 * Check, if the out of band area is empty 898 */ 899 int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode) 900 { 901 unsigned char *buf; 902 int ret = 0; 903 int i,len,page; 904 size_t retlen; 905 int oob_size; 906 907 /* allocate a buffer for all oob data in this sector */ 908 oob_size = c->mtd->oobsize; 909 len = 4 * oob_size; 910 buf = kmalloc(len, GFP_KERNEL); 911 if (!buf) { 912 printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n"); 913 return -ENOMEM; 914 } 915 /* 916 * if mode = 0, we scan for a total empty oob area, else we have 917 * to take care of the cleanmarker in the first page of the block 918 */ 919 ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf); 920 if (ret) { 921 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); 922 goto out; 923 } 924 925 if (retlen < len) { 926 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read " 927 "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset)); 928 ret = -EIO; 929 goto out; 930 } 931 932 /* Special check for first page */ 933 for(i = 0; i < oob_size ; i++) { 934 /* Yeah, we know about the cleanmarker. */ 935 if (mode && i >= c->fsdata_pos && 936 i < c->fsdata_pos + c->fsdata_len) 937 continue; 938 939 if (buf[i] != 0xFF) { 940 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n", 941 buf[page+i], page+i, jeb->offset)); 942 ret = 1; 943 goto out; 944 } 945 } 946 947 /* we know, we are aligned :) */ 948 for (page = oob_size; page < len; page += sizeof(long)) { 949 unsigned long dat = *(unsigned long *)(&buf[page]); 950 if(dat != -1) { 951 ret = 1; 952 goto out; 953 } 954 } 955 956 out: 957 kfree(buf); 958 959 return ret; 960 } 961 962 /* 963 * Scan for a valid cleanmarker and for bad blocks 964 * For virtual blocks (concatenated physical blocks) check the cleanmarker 965 * only in the first page of the first physical block, but scan for bad blocks in all 966 * physical blocks 967 */ 968 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) 969 { 970 struct jffs2_unknown_node n; 971 unsigned char buf[2 * NAND_MAX_OOBSIZE]; 972 unsigned char *p; 973 int ret, i, cnt, retval = 0; 974 size_t retlen, offset; 975 int oob_size; 976 977 offset = jeb->offset; 978 oob_size = c->mtd->oobsize; 979 980 /* Loop through the physical blocks */ 981 for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) { 982 /* Check first if the block is bad. */ 983 if (c->mtd->block_isbad (c->mtd, offset)) { 984 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset)); 985 return 2; 986 } 987 /* 988 * We read oob data from page 0 and 1 of the block. 989 * page 0 contains cleanmarker and badblock info 990 * page 1 contains failure count of this block 991 */ 992 ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf); 993 994 if (ret) { 995 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); 996 return ret; 997 } 998 if (retlen < (oob_size << 1)) { 999 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset)); 1000 return -EIO; 1001 } 1002 1003 /* Check cleanmarker only on the first physical block */ 1004 if (!cnt) { 1005 n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK); 1006 n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER); 1007 n.totlen = cpu_to_je32 (8); 1008 p = (unsigned char *) &n; 1009 1010 for (i = 0; i < c->fsdata_len; i++) { 1011 if (buf[c->fsdata_pos + i] != p[i]) { 1012 retval = 1; 1013 } 1014 } 1015 D1(if (retval == 1) { 1016 printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset); 1017 printk(KERN_WARNING "OOB at %08x was ", offset); 1018 for (i=0; i < oob_size; i++) { 1019 printk("%02x ", buf[i]); 1020 } 1021 printk("\n"); 1022 }) 1023 } 1024 offset += c->mtd->erasesize; 1025 } 1026 return retval; 1027 } 1028 1029 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) 1030 { 1031 struct jffs2_unknown_node n; 1032 int ret; 1033 size_t retlen; 1034 1035 n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 1036 n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); 1037 n.totlen = cpu_to_je32(8); 1038 1039 ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n); 1040 1041 if (ret) { 1042 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); 1043 return ret; 1044 } 1045 if (retlen != c->fsdata_len) { 1046 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len)); 1047 return ret; 1048 } 1049 return 0; 1050 } 1051 1052 /* 1053 * On NAND we try to mark this block bad. If the block was erased more 1054 * than MAX_ERASE_FAILURES we mark it finaly bad. 1055 * Don't care about failures. This block remains on the erase-pending 1056 * or badblock list as long as nobody manipulates the flash with 1057 * a bootloader or something like that. 1058 */ 1059 1060 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) 1061 { 1062 int ret; 1063 1064 /* if the count is < max, we try to write the counter to the 2nd page oob area */ 1065 if( ++jeb->bad_count < MAX_ERASE_FAILURES) 1066 return 0; 1067 1068 if (!c->mtd->block_markbad) 1069 return 1; // What else can we do? 1070 1071 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset)); 1072 ret = c->mtd->block_markbad(c->mtd, bad_offset); 1073 1074 if (ret) { 1075 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); 1076 return ret; 1077 } 1078 return 1; 1079 } 1080 1081 #define NAND_JFFS2_OOB16_FSDALEN 8 1082 1083 static struct nand_oobinfo jffs2_oobinfo_docecc = { 1084 .useecc = MTD_NANDECC_PLACE, 1085 .eccbytes = 6, 1086 .eccpos = {0,1,2,3,4,5} 1087 }; 1088 1089 1090 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c) 1091 { 1092 struct nand_oobinfo *oinfo = &c->mtd->oobinfo; 1093 1094 /* Do this only, if we have an oob buffer */ 1095 if (!c->mtd->oobsize) 1096 return 0; 1097 1098 /* Cleanmarker is out-of-band, so inline size zero */ 1099 c->cleanmarker_size = 0; 1100 1101 /* Should we use autoplacement ? */ 1102 if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) { 1103 D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n")); 1104 /* Get the position of the free bytes */ 1105 if (!oinfo->oobfree[0][1]) { 1106 printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n"); 1107 return -ENOSPC; 1108 } 1109 c->fsdata_pos = oinfo->oobfree[0][0]; 1110 c->fsdata_len = oinfo->oobfree[0][1]; 1111 if (c->fsdata_len > 8) 1112 c->fsdata_len = 8; 1113 } else { 1114 /* This is just a legacy fallback and should go away soon */ 1115 switch(c->mtd->ecctype) { 1116 case MTD_ECC_RS_DiskOnChip: 1117 printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n"); 1118 c->oobinfo = &jffs2_oobinfo_docecc; 1119 c->fsdata_pos = 6; 1120 c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN; 1121 c->badblock_pos = 15; 1122 break; 1123 1124 default: 1125 D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n")); 1126 return -EINVAL; 1127 } 1128 } 1129 return 0; 1130 } 1131 1132 int jffs2_nand_flash_setup(struct jffs2_sb_info *c) 1133 { 1134 int res; 1135 1136 /* Initialise write buffer */ 1137 init_rwsem(&c->wbuf_sem); 1138 c->wbuf_pagesize = c->mtd->oobblock; 1139 c->wbuf_ofs = 0xFFFFFFFF; 1140 1141 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1142 if (!c->wbuf) 1143 return -ENOMEM; 1144 1145 res = jffs2_nand_set_oobinfo(c); 1146 1147 #ifdef BREAKME 1148 if (!brokenbuf) 1149 brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1150 if (!brokenbuf) { 1151 kfree(c->wbuf); 1152 return -ENOMEM; 1153 } 1154 memset(brokenbuf, 0xdb, c->wbuf_pagesize); 1155 #endif 1156 return res; 1157 } 1158 1159 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) 1160 { 1161 kfree(c->wbuf); 1162 } 1163 1164 #ifdef CONFIG_JFFS2_FS_NOR_ECC 1165 int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) { 1166 /* Cleanmarker is actually larger on the flashes */ 1167 c->cleanmarker_size = 16; 1168 1169 /* Initialize write buffer */ 1170 init_rwsem(&c->wbuf_sem); 1171 c->wbuf_pagesize = c->mtd->eccsize; 1172 c->wbuf_ofs = 0xFFFFFFFF; 1173 1174 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1175 if (!c->wbuf) 1176 return -ENOMEM; 1177 1178 return 0; 1179 } 1180 1181 void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) { 1182 kfree(c->wbuf); 1183 } 1184 #endif 1185