1 /* 2 * JFFS2 -- Journalling Flash File System, Version 2. 3 * 4 * Copyright (C) 2001-2003 Red Hat, Inc. 5 * 6 * Created by David Woodhouse <dwmw2@infradead.org> 7 * 8 * For licensing information, see the file 'LICENCE' in this directory. 9 * 10 * $Id: scan.c,v 1.125 2005/09/30 13:59:13 dedekind Exp $ 11 * 12 */ 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/slab.h> 16 #include <linux/mtd/mtd.h> 17 #include <linux/pagemap.h> 18 #include <linux/crc32.h> 19 #include <linux/compiler.h> 20 #include "nodelist.h" 21 #include "summary.h" 22 #include "debug.h" 23 24 #define DEFAULT_EMPTY_SCAN_SIZE 1024 25 26 #define noisy_printk(noise, args...) do { \ 27 if (*(noise)) { \ 28 printk(KERN_NOTICE args); \ 29 (*(noise))--; \ 30 if (!(*(noise))) { \ 31 printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \ 32 } \ 33 } \ 34 } while(0) 35 36 static uint32_t pseudo_random; 37 38 static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 39 unsigned char *buf, uint32_t buf_size, struct jffs2_summary *s); 40 41 /* These helper functions _must_ increase ofs and also do the dirty/used space accounting. 42 * Returning an error will abort the mount - bad checksums etc. should just mark the space 43 * as dirty. 44 */ 45 static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 46 struct jffs2_raw_inode *ri, uint32_t ofs, struct jffs2_summary *s); 47 static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 48 struct jffs2_raw_dirent *rd, uint32_t ofs, struct jffs2_summary *s); 49 50 static inline int min_free(struct jffs2_sb_info *c) 51 { 52 uint32_t min = 2 * sizeof(struct jffs2_raw_inode); 53 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER 54 if (!jffs2_can_mark_obsolete(c) && min < c->wbuf_pagesize) 55 return c->wbuf_pagesize; 56 #endif 57 return min; 58 59 } 60 61 static inline uint32_t EMPTY_SCAN_SIZE(uint32_t sector_size) { 62 if (sector_size < DEFAULT_EMPTY_SCAN_SIZE) 63 return sector_size; 64 else 65 return DEFAULT_EMPTY_SCAN_SIZE; 66 } 67 68 static int file_dirty(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) 69 { 70 int ret; 71 72 if ((ret = jffs2_prealloc_raw_node_refs(c, jeb, 1))) 73 return ret; 74 if ((ret = jffs2_scan_dirty_space(c, jeb, jeb->free_size))) 75 return ret; 76 /* Turned wasted size into dirty, since we apparently 77 think it's recoverable now. */ 78 jeb->dirty_size += jeb->wasted_size; 79 c->dirty_size += jeb->wasted_size; 80 c->wasted_size -= jeb->wasted_size; 81 jeb->wasted_size = 0; 82 if (VERYDIRTY(c, jeb->dirty_size)) { 83 list_add(&jeb->list, &c->very_dirty_list); 84 } else { 85 list_add(&jeb->list, &c->dirty_list); 86 } 87 return 0; 88 } 89 90 int jffs2_scan_medium(struct jffs2_sb_info *c) 91 { 92 int i, ret; 93 uint32_t empty_blocks = 0, bad_blocks = 0; 94 unsigned char *flashbuf = NULL; 95 uint32_t buf_size = 0; 96 struct jffs2_summary *s = NULL; /* summary info collected by the scan process */ 97 #ifndef __ECOS 98 size_t pointlen; 99 100 if (c->mtd->point) { 101 ret = c->mtd->point (c->mtd, 0, c->mtd->size, &pointlen, &flashbuf); 102 if (!ret && pointlen < c->mtd->size) { 103 /* Don't muck about if it won't let us point to the whole flash */ 104 D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", pointlen)); 105 c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size); 106 flashbuf = NULL; 107 } 108 if (ret) 109 D1(printk(KERN_DEBUG "MTD point failed %d\n", ret)); 110 } 111 #endif 112 if (!flashbuf) { 113 /* For NAND it's quicker to read a whole eraseblock at a time, 114 apparently */ 115 if (jffs2_cleanmarker_oob(c)) 116 buf_size = c->sector_size; 117 else 118 buf_size = PAGE_SIZE; 119 120 /* Respect kmalloc limitations */ 121 if (buf_size > 128*1024) 122 buf_size = 128*1024; 123 124 D1(printk(KERN_DEBUG "Allocating readbuf of %d bytes\n", buf_size)); 125 flashbuf = kmalloc(buf_size, GFP_KERNEL); 126 if (!flashbuf) 127 return -ENOMEM; 128 } 129 130 if (jffs2_sum_active()) { 131 s = kmalloc(sizeof(struct jffs2_summary), GFP_KERNEL); 132 if (!s) { 133 JFFS2_WARNING("Can't allocate memory for summary\n"); 134 return -ENOMEM; 135 } 136 memset(s, 0, sizeof(struct jffs2_summary)); 137 } 138 139 for (i=0; i<c->nr_blocks; i++) { 140 struct jffs2_eraseblock *jeb = &c->blocks[i]; 141 142 /* reset summary info for next eraseblock scan */ 143 jffs2_sum_reset_collected(s); 144 145 ret = jffs2_scan_eraseblock(c, jeb, buf_size?flashbuf:(flashbuf+jeb->offset), 146 buf_size, s); 147 148 if (ret < 0) 149 goto out; 150 151 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 152 153 /* Now decide which list to put it on */ 154 switch(ret) { 155 case BLK_STATE_ALLFF: 156 /* 157 * Empty block. Since we can't be sure it 158 * was entirely erased, we just queue it for erase 159 * again. It will be marked as such when the erase 160 * is complete. Meanwhile we still count it as empty 161 * for later checks. 162 */ 163 empty_blocks++; 164 list_add(&jeb->list, &c->erase_pending_list); 165 c->nr_erasing_blocks++; 166 break; 167 168 case BLK_STATE_CLEANMARKER: 169 /* Only a CLEANMARKER node is valid */ 170 if (!jeb->dirty_size) { 171 /* It's actually free */ 172 list_add(&jeb->list, &c->free_list); 173 c->nr_free_blocks++; 174 } else { 175 /* Dirt */ 176 D1(printk(KERN_DEBUG "Adding all-dirty block at 0x%08x to erase_pending_list\n", jeb->offset)); 177 list_add(&jeb->list, &c->erase_pending_list); 178 c->nr_erasing_blocks++; 179 } 180 break; 181 182 case BLK_STATE_CLEAN: 183 /* Full (or almost full) of clean data. Clean list */ 184 list_add(&jeb->list, &c->clean_list); 185 break; 186 187 case BLK_STATE_PARTDIRTY: 188 /* Some data, but not full. Dirty list. */ 189 /* We want to remember the block with most free space 190 and stick it in the 'nextblock' position to start writing to it. */ 191 if (jeb->free_size > min_free(c) && 192 (!c->nextblock || c->nextblock->free_size < jeb->free_size)) { 193 /* Better candidate for the next writes to go to */ 194 if (c->nextblock) { 195 ret = file_dirty(c, c->nextblock); 196 if (ret) 197 return ret; 198 /* deleting summary information of the old nextblock */ 199 jffs2_sum_reset_collected(c->summary); 200 } 201 /* update collected summary information for the current nextblock */ 202 jffs2_sum_move_collected(c, s); 203 D1(printk(KERN_DEBUG "jffs2_scan_medium(): new nextblock = 0x%08x\n", jeb->offset)); 204 c->nextblock = jeb; 205 } else { 206 ret = file_dirty(c, jeb); 207 if (ret) 208 return ret; 209 } 210 break; 211 212 case BLK_STATE_ALLDIRTY: 213 /* Nothing valid - not even a clean marker. Needs erasing. */ 214 /* For now we just put it on the erasing list. We'll start the erases later */ 215 D1(printk(KERN_NOTICE "JFFS2: Erase block at 0x%08x is not formatted. It will be erased\n", jeb->offset)); 216 list_add(&jeb->list, &c->erase_pending_list); 217 c->nr_erasing_blocks++; 218 break; 219 220 case BLK_STATE_BADBLOCK: 221 D1(printk(KERN_NOTICE "JFFS2: Block at 0x%08x is bad\n", jeb->offset)); 222 list_add(&jeb->list, &c->bad_list); 223 c->bad_size += c->sector_size; 224 c->free_size -= c->sector_size; 225 bad_blocks++; 226 break; 227 default: 228 printk(KERN_WARNING "jffs2_scan_medium(): unknown block state\n"); 229 BUG(); 230 } 231 } 232 233 /* Nextblock dirty is always seen as wasted, because we cannot recycle it now */ 234 if (c->nextblock && (c->nextblock->dirty_size)) { 235 c->nextblock->wasted_size += c->nextblock->dirty_size; 236 c->wasted_size += c->nextblock->dirty_size; 237 c->dirty_size -= c->nextblock->dirty_size; 238 c->nextblock->dirty_size = 0; 239 } 240 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER 241 if (!jffs2_can_mark_obsolete(c) && c->wbuf_pagesize && c->nextblock && (c->nextblock->free_size % c->wbuf_pagesize)) { 242 /* If we're going to start writing into a block which already 243 contains data, and the end of the data isn't page-aligned, 244 skip a little and align it. */ 245 246 uint32_t skip = c->nextblock->free_size % c->wbuf_pagesize; 247 248 D1(printk(KERN_DEBUG "jffs2_scan_medium(): Skipping %d bytes in nextblock to ensure page alignment\n", 249 skip)); 250 jffs2_prealloc_raw_node_refs(c, c->nextblock, 1); 251 jffs2_scan_dirty_space(c, c->nextblock, skip); 252 } 253 #endif 254 if (c->nr_erasing_blocks) { 255 if ( !c->used_size && ((c->nr_free_blocks+empty_blocks+bad_blocks)!= c->nr_blocks || bad_blocks == c->nr_blocks) ) { 256 printk(KERN_NOTICE "Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n"); 257 printk(KERN_NOTICE "empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",empty_blocks,bad_blocks,c->nr_blocks); 258 ret = -EIO; 259 goto out; 260 } 261 jffs2_erase_pending_trigger(c); 262 } 263 ret = 0; 264 out: 265 if (buf_size) 266 kfree(flashbuf); 267 #ifndef __ECOS 268 else 269 c->mtd->unpoint(c->mtd, flashbuf, 0, c->mtd->size); 270 #endif 271 if (s) 272 kfree(s); 273 274 return ret; 275 } 276 277 static int jffs2_fill_scan_buf(struct jffs2_sb_info *c, void *buf, 278 uint32_t ofs, uint32_t len) 279 { 280 int ret; 281 size_t retlen; 282 283 ret = jffs2_flash_read(c, ofs, len, &retlen, buf); 284 if (ret) { 285 D1(printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret)); 286 return ret; 287 } 288 if (retlen < len) { 289 D1(printk(KERN_WARNING "Read at 0x%x gave only 0x%zx bytes\n", ofs, retlen)); 290 return -EIO; 291 } 292 return 0; 293 } 294 295 int jffs2_scan_classify_jeb(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) 296 { 297 if ((jeb->used_size + jeb->unchecked_size) == PAD(c->cleanmarker_size) && !jeb->dirty_size 298 && (!jeb->first_node || !ref_next(jeb->first_node)) ) 299 return BLK_STATE_CLEANMARKER; 300 301 /* move blocks with max 4 byte dirty space to cleanlist */ 302 else if (!ISDIRTY(c->sector_size - (jeb->used_size + jeb->unchecked_size))) { 303 c->dirty_size -= jeb->dirty_size; 304 c->wasted_size += jeb->dirty_size; 305 jeb->wasted_size += jeb->dirty_size; 306 jeb->dirty_size = 0; 307 return BLK_STATE_CLEAN; 308 } else if (jeb->used_size || jeb->unchecked_size) 309 return BLK_STATE_PARTDIRTY; 310 else 311 return BLK_STATE_ALLDIRTY; 312 } 313 314 #ifdef CONFIG_JFFS2_FS_XATTR 315 static int jffs2_scan_xattr_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 316 struct jffs2_raw_xattr *rx, uint32_t ofs, 317 struct jffs2_summary *s) 318 { 319 struct jffs2_xattr_datum *xd; 320 uint32_t xid, version, totlen, crc; 321 int err; 322 323 crc = crc32(0, rx, sizeof(struct jffs2_raw_xattr) - 4); 324 if (crc != je32_to_cpu(rx->node_crc)) { 325 JFFS2_WARNING("node CRC failed at %#08x, read=%#08x, calc=%#08x\n", 326 ofs, je32_to_cpu(rx->node_crc), crc); 327 if ((err = jffs2_scan_dirty_space(c, jeb, je32_to_cpu(rx->totlen)))) 328 return err; 329 return 0; 330 } 331 332 xid = je32_to_cpu(rx->xid); 333 version = je32_to_cpu(rx->version); 334 335 totlen = PAD(sizeof(struct jffs2_raw_xattr) 336 + rx->name_len + 1 + je16_to_cpu(rx->value_len)); 337 if (totlen != je32_to_cpu(rx->totlen)) { 338 JFFS2_WARNING("node length mismatch at %#08x, read=%u, calc=%u\n", 339 ofs, je32_to_cpu(rx->totlen), totlen); 340 if ((err = jffs2_scan_dirty_space(c, jeb, je32_to_cpu(rx->totlen)))) 341 return err; 342 return 0; 343 } 344 345 xd = jffs2_setup_xattr_datum(c, xid, version); 346 if (IS_ERR(xd)) 347 return PTR_ERR(xd); 348 349 if (xd->version > version) { 350 struct jffs2_raw_node_ref *raw 351 = jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, totlen, NULL); 352 raw->next_in_ino = xd->node->next_in_ino; 353 xd->node->next_in_ino = raw; 354 } else { 355 xd->version = version; 356 xd->xprefix = rx->xprefix; 357 xd->name_len = rx->name_len; 358 xd->value_len = je16_to_cpu(rx->value_len); 359 xd->data_crc = je32_to_cpu(rx->data_crc); 360 361 jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, totlen, (void *)xd); 362 } 363 364 if (jffs2_sum_active()) 365 jffs2_sum_add_xattr_mem(s, rx, ofs - jeb->offset); 366 dbg_xattr("scaning xdatum at %#08x (xid=%u, version=%u)\n", 367 ofs, xd->xid, xd->version); 368 return 0; 369 } 370 371 static int jffs2_scan_xref_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 372 struct jffs2_raw_xref *rr, uint32_t ofs, 373 struct jffs2_summary *s) 374 { 375 struct jffs2_xattr_ref *ref; 376 uint32_t crc; 377 int err; 378 379 crc = crc32(0, rr, sizeof(*rr) - 4); 380 if (crc != je32_to_cpu(rr->node_crc)) { 381 JFFS2_WARNING("node CRC failed at %#08x, read=%#08x, calc=%#08x\n", 382 ofs, je32_to_cpu(rr->node_crc), crc); 383 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(rr->totlen))))) 384 return err; 385 return 0; 386 } 387 388 if (PAD(sizeof(struct jffs2_raw_xref)) != je32_to_cpu(rr->totlen)) { 389 JFFS2_WARNING("node length mismatch at %#08x, read=%u, calc=%zd\n", 390 ofs, je32_to_cpu(rr->totlen), 391 PAD(sizeof(struct jffs2_raw_xref))); 392 if ((err = jffs2_scan_dirty_space(c, jeb, je32_to_cpu(rr->totlen)))) 393 return err; 394 return 0; 395 } 396 397 ref = jffs2_alloc_xattr_ref(); 398 if (!ref) 399 return -ENOMEM; 400 401 /* BEFORE jffs2_build_xattr_subsystem() called, 402 * and AFTER xattr_ref is marked as a dead xref, 403 * ref->xid is used to store 32bit xid, xd is not used 404 * ref->ino is used to store 32bit inode-number, ic is not used 405 * Thoes variables are declared as union, thus using those 406 * are exclusive. In a similar way, ref->next is temporarily 407 * used to chain all xattr_ref object. It's re-chained to 408 * jffs2_inode_cache in jffs2_build_xattr_subsystem() correctly. 409 */ 410 ref->ino = je32_to_cpu(rr->ino); 411 ref->xid = je32_to_cpu(rr->xid); 412 ref->xseqno = je32_to_cpu(rr->xseqno); 413 if (ref->xseqno > c->highest_xseqno) 414 c->highest_xseqno = (ref->xseqno & ~XREF_DELETE_MARKER); 415 ref->next = c->xref_temp; 416 c->xref_temp = ref; 417 418 jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, PAD(je32_to_cpu(rr->totlen)), (void *)ref); 419 420 if (jffs2_sum_active()) 421 jffs2_sum_add_xref_mem(s, rr, ofs - jeb->offset); 422 dbg_xattr("scan xref at %#08x (xid=%u, ino=%u)\n", 423 ofs, ref->xid, ref->ino); 424 return 0; 425 } 426 #endif 427 428 /* Called with 'buf_size == 0' if buf is in fact a pointer _directly_ into 429 the flash, XIP-style */ 430 static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 431 unsigned char *buf, uint32_t buf_size, struct jffs2_summary *s) { 432 struct jffs2_unknown_node *node; 433 struct jffs2_unknown_node crcnode; 434 uint32_t ofs, prevofs; 435 uint32_t hdr_crc, buf_ofs, buf_len; 436 int err; 437 int noise = 0; 438 439 440 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER 441 int cleanmarkerfound = 0; 442 #endif 443 444 ofs = jeb->offset; 445 prevofs = jeb->offset - 1; 446 447 D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs)); 448 449 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER 450 if (jffs2_cleanmarker_oob(c)) { 451 int ret = jffs2_check_nand_cleanmarker(c, jeb); 452 D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret)); 453 /* Even if it's not found, we still scan to see 454 if the block is empty. We use this information 455 to decide whether to erase it or not. */ 456 switch (ret) { 457 case 0: cleanmarkerfound = 1; break; 458 case 1: break; 459 case 2: return BLK_STATE_BADBLOCK; 460 case 3: return BLK_STATE_ALLDIRTY; /* Block has failed to erase min. once */ 461 default: return ret; 462 } 463 } 464 #endif 465 466 if (jffs2_sum_active()) { 467 struct jffs2_sum_marker *sm; 468 void *sumptr = NULL; 469 uint32_t sumlen; 470 471 if (!buf_size) { 472 /* XIP case. Just look, point at the summary if it's there */ 473 sm = (void *)buf + c->sector_size - sizeof(*sm); 474 if (je32_to_cpu(sm->magic) == JFFS2_SUM_MAGIC) { 475 sumptr = buf + je32_to_cpu(sm->offset); 476 sumlen = c->sector_size - je32_to_cpu(sm->offset); 477 } 478 } else { 479 /* If NAND flash, read a whole page of it. Else just the end */ 480 if (c->wbuf_pagesize) 481 buf_len = c->wbuf_pagesize; 482 else 483 buf_len = sizeof(*sm); 484 485 /* Read as much as we want into the _end_ of the preallocated buffer */ 486 err = jffs2_fill_scan_buf(c, buf + buf_size - buf_len, 487 jeb->offset + c->sector_size - buf_len, 488 buf_len); 489 if (err) 490 return err; 491 492 sm = (void *)buf + buf_size - sizeof(*sm); 493 if (je32_to_cpu(sm->magic) == JFFS2_SUM_MAGIC) { 494 sumlen = c->sector_size - je32_to_cpu(sm->offset); 495 sumptr = buf + buf_size - sumlen; 496 497 /* Now, make sure the summary itself is available */ 498 if (sumlen > buf_size) { 499 /* Need to kmalloc for this. */ 500 sumptr = kmalloc(sumlen, GFP_KERNEL); 501 if (!sumptr) 502 return -ENOMEM; 503 memcpy(sumptr + sumlen - buf_len, buf + buf_size - buf_len, buf_len); 504 } 505 if (buf_len < sumlen) { 506 /* Need to read more so that the entire summary node is present */ 507 err = jffs2_fill_scan_buf(c, sumptr, 508 jeb->offset + c->sector_size - sumlen, 509 sumlen - buf_len); 510 if (err) 511 return err; 512 } 513 } 514 515 } 516 517 if (sumptr) { 518 err = jffs2_sum_scan_sumnode(c, jeb, sumptr, sumlen, &pseudo_random); 519 520 if (buf_size && sumlen > buf_size) 521 kfree(sumptr); 522 /* If it returns with a real error, bail. 523 If it returns positive, that's a block classification 524 (i.e. BLK_STATE_xxx) so return that too. 525 If it returns zero, fall through to full scan. */ 526 if (err) 527 return err; 528 } 529 } 530 531 buf_ofs = jeb->offset; 532 533 if (!buf_size) { 534 /* This is the XIP case -- we're reading _directly_ from the flash chip */ 535 buf_len = c->sector_size; 536 } else { 537 buf_len = EMPTY_SCAN_SIZE(c->sector_size); 538 err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len); 539 if (err) 540 return err; 541 } 542 543 /* We temporarily use 'ofs' as a pointer into the buffer/jeb */ 544 ofs = 0; 545 546 /* Scan only 4KiB of 0xFF before declaring it's empty */ 547 while(ofs < EMPTY_SCAN_SIZE(c->sector_size) && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF) 548 ofs += 4; 549 550 if (ofs == EMPTY_SCAN_SIZE(c->sector_size)) { 551 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER 552 if (jffs2_cleanmarker_oob(c)) { 553 /* scan oob, take care of cleanmarker */ 554 int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound); 555 D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret)); 556 switch (ret) { 557 case 0: return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF; 558 case 1: return BLK_STATE_ALLDIRTY; 559 default: return ret; 560 } 561 } 562 #endif 563 D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset)); 564 if (c->cleanmarker_size == 0) 565 return BLK_STATE_CLEANMARKER; /* don't bother with re-erase */ 566 else 567 return BLK_STATE_ALLFF; /* OK to erase if all blocks are like this */ 568 } 569 if (ofs) { 570 D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset, 571 jeb->offset + ofs)); 572 if ((err = jffs2_prealloc_raw_node_refs(c, jeb, 1))) 573 return err; 574 if ((err = jffs2_scan_dirty_space(c, jeb, ofs))) 575 return err; 576 } 577 578 /* Now ofs is a complete physical flash offset as it always was... */ 579 ofs += jeb->offset; 580 581 noise = 10; 582 583 dbg_summary("no summary found in jeb 0x%08x. Apply original scan.\n",jeb->offset); 584 585 scan_more: 586 while(ofs < jeb->offset + c->sector_size) { 587 588 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 589 590 /* Make sure there are node refs available for use */ 591 err = jffs2_prealloc_raw_node_refs(c, jeb, 2); 592 if (err) 593 return err; 594 595 cond_resched(); 596 597 if (ofs & 3) { 598 printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs); 599 ofs = PAD(ofs); 600 continue; 601 } 602 if (ofs == prevofs) { 603 printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs); 604 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 605 return err; 606 ofs += 4; 607 continue; 608 } 609 prevofs = ofs; 610 611 if (jeb->offset + c->sector_size < ofs + sizeof(*node)) { 612 D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node), 613 jeb->offset, c->sector_size, ofs, sizeof(*node))); 614 if ((err = jffs2_scan_dirty_space(c, jeb, (jeb->offset + c->sector_size)-ofs))) 615 return err; 616 break; 617 } 618 619 if (buf_ofs + buf_len < ofs + sizeof(*node)) { 620 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 621 D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n", 622 sizeof(struct jffs2_unknown_node), buf_len, ofs)); 623 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 624 if (err) 625 return err; 626 buf_ofs = ofs; 627 } 628 629 node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs]; 630 631 if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) { 632 uint32_t inbuf_ofs; 633 uint32_t empty_start; 634 635 empty_start = ofs; 636 ofs += 4; 637 638 D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs)); 639 more_empty: 640 inbuf_ofs = ofs - buf_ofs; 641 while (inbuf_ofs < buf_len) { 642 if (*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff) { 643 printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n", 644 empty_start, ofs); 645 if ((err = jffs2_scan_dirty_space(c, jeb, ofs-empty_start))) 646 return err; 647 goto scan_more; 648 } 649 650 inbuf_ofs+=4; 651 ofs += 4; 652 } 653 /* Ran off end. */ 654 D1(printk(KERN_DEBUG "Empty flash to end of buffer at 0x%08x\n", ofs)); 655 656 /* If we're only checking the beginning of a block with a cleanmarker, 657 bail now */ 658 if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) && 659 c->cleanmarker_size && !jeb->dirty_size && !ref_next(jeb->first_node)) { 660 D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE(c->sector_size))); 661 return BLK_STATE_CLEANMARKER; 662 } 663 664 /* See how much more there is to read in this eraseblock... */ 665 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 666 if (!buf_len) { 667 /* No more to read. Break out of main loop without marking 668 this range of empty space as dirty (because it's not) */ 669 D1(printk(KERN_DEBUG "Empty flash at %08x runs to end of block. Treating as free_space\n", 670 empty_start)); 671 break; 672 } 673 D1(printk(KERN_DEBUG "Reading another 0x%x at 0x%08x\n", buf_len, ofs)); 674 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 675 if (err) 676 return err; 677 buf_ofs = ofs; 678 goto more_empty; 679 } 680 681 if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) { 682 printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs); 683 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 684 return err; 685 ofs += 4; 686 continue; 687 } 688 if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) { 689 D1(printk(KERN_DEBUG "Dirty bitmask at 0x%08x\n", ofs)); 690 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 691 return err; 692 ofs += 4; 693 continue; 694 } 695 if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) { 696 printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs); 697 printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n"); 698 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 699 return err; 700 ofs += 4; 701 continue; 702 } 703 if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) { 704 /* OK. We're out of possibilities. Whinge and move on */ 705 noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n", 706 JFFS2_MAGIC_BITMASK, ofs, 707 je16_to_cpu(node->magic)); 708 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 709 return err; 710 ofs += 4; 711 continue; 712 } 713 /* We seem to have a node of sorts. Check the CRC */ 714 crcnode.magic = node->magic; 715 crcnode.nodetype = cpu_to_je16( je16_to_cpu(node->nodetype) | JFFS2_NODE_ACCURATE); 716 crcnode.totlen = node->totlen; 717 hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4); 718 719 if (hdr_crc != je32_to_cpu(node->hdr_crc)) { 720 noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n", 721 ofs, je16_to_cpu(node->magic), 722 je16_to_cpu(node->nodetype), 723 je32_to_cpu(node->totlen), 724 je32_to_cpu(node->hdr_crc), 725 hdr_crc); 726 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 727 return err; 728 ofs += 4; 729 continue; 730 } 731 732 if (ofs + je32_to_cpu(node->totlen) > 733 jeb->offset + c->sector_size) { 734 /* Eep. Node goes over the end of the erase block. */ 735 printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n", 736 ofs, je32_to_cpu(node->totlen)); 737 printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n"); 738 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 739 return err; 740 ofs += 4; 741 continue; 742 } 743 744 if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) { 745 /* Wheee. This is an obsoleted node */ 746 D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs)); 747 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen))))) 748 return err; 749 ofs += PAD(je32_to_cpu(node->totlen)); 750 continue; 751 } 752 753 switch(je16_to_cpu(node->nodetype)) { 754 case JFFS2_NODETYPE_INODE: 755 if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) { 756 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 757 D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n", 758 sizeof(struct jffs2_raw_inode), buf_len, ofs)); 759 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 760 if (err) 761 return err; 762 buf_ofs = ofs; 763 node = (void *)buf; 764 } 765 err = jffs2_scan_inode_node(c, jeb, (void *)node, ofs, s); 766 if (err) return err; 767 ofs += PAD(je32_to_cpu(node->totlen)); 768 break; 769 770 case JFFS2_NODETYPE_DIRENT: 771 if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) { 772 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 773 D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n", 774 je32_to_cpu(node->totlen), buf_len, ofs)); 775 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 776 if (err) 777 return err; 778 buf_ofs = ofs; 779 node = (void *)buf; 780 } 781 err = jffs2_scan_dirent_node(c, jeb, (void *)node, ofs, s); 782 if (err) return err; 783 ofs += PAD(je32_to_cpu(node->totlen)); 784 break; 785 786 #ifdef CONFIG_JFFS2_FS_XATTR 787 case JFFS2_NODETYPE_XATTR: 788 if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) { 789 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 790 D1(printk(KERN_DEBUG "Fewer than %d bytes (xattr node)" 791 " left to end of buf. Reading 0x%x at 0x%08x\n", 792 je32_to_cpu(node->totlen), buf_len, ofs)); 793 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 794 if (err) 795 return err; 796 buf_ofs = ofs; 797 node = (void *)buf; 798 } 799 err = jffs2_scan_xattr_node(c, jeb, (void *)node, ofs, s); 800 if (err) 801 return err; 802 ofs += PAD(je32_to_cpu(node->totlen)); 803 break; 804 case JFFS2_NODETYPE_XREF: 805 if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) { 806 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 807 D1(printk(KERN_DEBUG "Fewer than %d bytes (xref node)" 808 " left to end of buf. Reading 0x%x at 0x%08x\n", 809 je32_to_cpu(node->totlen), buf_len, ofs)); 810 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 811 if (err) 812 return err; 813 buf_ofs = ofs; 814 node = (void *)buf; 815 } 816 err = jffs2_scan_xref_node(c, jeb, (void *)node, ofs, s); 817 if (err) 818 return err; 819 ofs += PAD(je32_to_cpu(node->totlen)); 820 break; 821 #endif /* CONFIG_JFFS2_FS_XATTR */ 822 823 case JFFS2_NODETYPE_CLEANMARKER: 824 D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs)); 825 if (je32_to_cpu(node->totlen) != c->cleanmarker_size) { 826 printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n", 827 ofs, je32_to_cpu(node->totlen), c->cleanmarker_size); 828 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(sizeof(struct jffs2_unknown_node))))) 829 return err; 830 ofs += PAD(sizeof(struct jffs2_unknown_node)); 831 } else if (jeb->first_node) { 832 printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset); 833 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(sizeof(struct jffs2_unknown_node))))) 834 return err; 835 ofs += PAD(sizeof(struct jffs2_unknown_node)); 836 } else { 837 jffs2_link_node_ref(c, jeb, ofs | REF_NORMAL, c->cleanmarker_size, NULL); 838 839 ofs += PAD(c->cleanmarker_size); 840 } 841 break; 842 843 case JFFS2_NODETYPE_PADDING: 844 if (jffs2_sum_active()) 845 jffs2_sum_add_padding_mem(s, je32_to_cpu(node->totlen)); 846 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen))))) 847 return err; 848 ofs += PAD(je32_to_cpu(node->totlen)); 849 break; 850 851 default: 852 switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) { 853 case JFFS2_FEATURE_ROCOMPAT: 854 printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs); 855 c->flags |= JFFS2_SB_FLAG_RO; 856 if (!(jffs2_is_readonly(c))) 857 return -EROFS; 858 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen))))) 859 return err; 860 ofs += PAD(je32_to_cpu(node->totlen)); 861 break; 862 863 case JFFS2_FEATURE_INCOMPAT: 864 printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs); 865 return -EINVAL; 866 867 case JFFS2_FEATURE_RWCOMPAT_DELETE: 868 D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs)); 869 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen))))) 870 return err; 871 ofs += PAD(je32_to_cpu(node->totlen)); 872 break; 873 874 case JFFS2_FEATURE_RWCOMPAT_COPY: { 875 D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs)); 876 877 jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, PAD(je32_to_cpu(node->totlen)), NULL); 878 879 /* We can't summarise nodes we don't grok */ 880 jffs2_sum_disable_collecting(s); 881 ofs += PAD(je32_to_cpu(node->totlen)); 882 break; 883 } 884 } 885 } 886 } 887 888 if (jffs2_sum_active()) { 889 if (PAD(s->sum_size + JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size) { 890 dbg_summary("There is not enough space for " 891 "summary information, disabling for this jeb!\n"); 892 jffs2_sum_disable_collecting(s); 893 } 894 } 895 896 D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x, wasted 0x%08x\n", 897 jeb->offset,jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size, jeb->wasted_size)); 898 899 /* mark_node_obsolete can add to wasted !! */ 900 if (jeb->wasted_size) { 901 jeb->dirty_size += jeb->wasted_size; 902 c->dirty_size += jeb->wasted_size; 903 c->wasted_size -= jeb->wasted_size; 904 jeb->wasted_size = 0; 905 } 906 907 return jffs2_scan_classify_jeb(c, jeb); 908 } 909 910 struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino) 911 { 912 struct jffs2_inode_cache *ic; 913 914 ic = jffs2_get_ino_cache(c, ino); 915 if (ic) 916 return ic; 917 918 if (ino > c->highest_ino) 919 c->highest_ino = ino; 920 921 ic = jffs2_alloc_inode_cache(); 922 if (!ic) { 923 printk(KERN_NOTICE "jffs2_scan_make_inode_cache(): allocation of inode cache failed\n"); 924 return NULL; 925 } 926 memset(ic, 0, sizeof(*ic)); 927 928 ic->ino = ino; 929 ic->nodes = (void *)ic; 930 jffs2_add_ino_cache(c, ic); 931 if (ino == 1) 932 ic->nlink = 1; 933 return ic; 934 } 935 936 static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 937 struct jffs2_raw_inode *ri, uint32_t ofs, struct jffs2_summary *s) 938 { 939 struct jffs2_inode_cache *ic; 940 uint32_t ino = je32_to_cpu(ri->ino); 941 int err; 942 943 D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", ofs)); 944 945 /* We do very little here now. Just check the ino# to which we should attribute 946 this node; we can do all the CRC checking etc. later. There's a tradeoff here -- 947 we used to scan the flash once only, reading everything we want from it into 948 memory, then building all our in-core data structures and freeing the extra 949 information. Now we allow the first part of the mount to complete a lot quicker, 950 but we have to go _back_ to the flash in order to finish the CRC checking, etc. 951 Which means that the _full_ amount of time to get to proper write mode with GC 952 operational may actually be _longer_ than before. Sucks to be me. */ 953 954 ic = jffs2_get_ino_cache(c, ino); 955 if (!ic) { 956 /* Inocache get failed. Either we read a bogus ino# or it's just genuinely the 957 first node we found for this inode. Do a CRC check to protect against the former 958 case */ 959 uint32_t crc = crc32(0, ri, sizeof(*ri)-8); 960 961 if (crc != je32_to_cpu(ri->node_crc)) { 962 printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", 963 ofs, je32_to_cpu(ri->node_crc), crc); 964 /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */ 965 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(ri->totlen))))) 966 return err; 967 return 0; 968 } 969 ic = jffs2_scan_make_ino_cache(c, ino); 970 if (!ic) 971 return -ENOMEM; 972 } 973 974 /* Wheee. It worked */ 975 jffs2_link_node_ref(c, jeb, ofs | REF_UNCHECKED, PAD(je32_to_cpu(ri->totlen)), ic); 976 977 D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n", 978 je32_to_cpu(ri->ino), je32_to_cpu(ri->version), 979 je32_to_cpu(ri->offset), 980 je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize))); 981 982 pseudo_random += je32_to_cpu(ri->version); 983 984 if (jffs2_sum_active()) { 985 jffs2_sum_add_inode_mem(s, ri, ofs - jeb->offset); 986 } 987 988 return 0; 989 } 990 991 static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 992 struct jffs2_raw_dirent *rd, uint32_t ofs, struct jffs2_summary *s) 993 { 994 struct jffs2_full_dirent *fd; 995 struct jffs2_inode_cache *ic; 996 uint32_t crc; 997 int err; 998 999 D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs)); 1000 1001 /* We don't get here unless the node is still valid, so we don't have to 1002 mask in the ACCURATE bit any more. */ 1003 crc = crc32(0, rd, sizeof(*rd)-8); 1004 1005 if (crc != je32_to_cpu(rd->node_crc)) { 1006 printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", 1007 ofs, je32_to_cpu(rd->node_crc), crc); 1008 /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */ 1009 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(rd->totlen))))) 1010 return err; 1011 return 0; 1012 } 1013 1014 pseudo_random += je32_to_cpu(rd->version); 1015 1016 fd = jffs2_alloc_full_dirent(rd->nsize+1); 1017 if (!fd) { 1018 return -ENOMEM; 1019 } 1020 memcpy(&fd->name, rd->name, rd->nsize); 1021 fd->name[rd->nsize] = 0; 1022 1023 crc = crc32(0, fd->name, rd->nsize); 1024 if (crc != je32_to_cpu(rd->name_crc)) { 1025 printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", 1026 ofs, je32_to_cpu(rd->name_crc), crc); 1027 D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, je32_to_cpu(rd->ino))); 1028 jffs2_free_full_dirent(fd); 1029 /* FIXME: Why do we believe totlen? */ 1030 /* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */ 1031 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(rd->totlen))))) 1032 return err; 1033 return 0; 1034 } 1035 ic = jffs2_scan_make_ino_cache(c, je32_to_cpu(rd->pino)); 1036 if (!ic) { 1037 jffs2_free_full_dirent(fd); 1038 return -ENOMEM; 1039 } 1040 1041 fd->raw = jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, PAD(je32_to_cpu(rd->totlen)), ic); 1042 1043 fd->next = NULL; 1044 fd->version = je32_to_cpu(rd->version); 1045 fd->ino = je32_to_cpu(rd->ino); 1046 fd->nhash = full_name_hash(fd->name, rd->nsize); 1047 fd->type = rd->type; 1048 jffs2_add_fd_to_list(c, fd, &ic->scan_dents); 1049 1050 if (jffs2_sum_active()) { 1051 jffs2_sum_add_dirent_mem(s, rd, ofs - jeb->offset); 1052 } 1053 1054 return 0; 1055 } 1056 1057 static int count_list(struct list_head *l) 1058 { 1059 uint32_t count = 0; 1060 struct list_head *tmp; 1061 1062 list_for_each(tmp, l) { 1063 count++; 1064 } 1065 return count; 1066 } 1067 1068 /* Note: This breaks if list_empty(head). I don't care. You 1069 might, if you copy this code and use it elsewhere :) */ 1070 static void rotate_list(struct list_head *head, uint32_t count) 1071 { 1072 struct list_head *n = head->next; 1073 1074 list_del(head); 1075 while(count--) { 1076 n = n->next; 1077 } 1078 list_add(head, n); 1079 } 1080 1081 void jffs2_rotate_lists(struct jffs2_sb_info *c) 1082 { 1083 uint32_t x; 1084 uint32_t rotateby; 1085 1086 x = count_list(&c->clean_list); 1087 if (x) { 1088 rotateby = pseudo_random % x; 1089 rotate_list((&c->clean_list), rotateby); 1090 } 1091 1092 x = count_list(&c->very_dirty_list); 1093 if (x) { 1094 rotateby = pseudo_random % x; 1095 rotate_list((&c->very_dirty_list), rotateby); 1096 } 1097 1098 x = count_list(&c->dirty_list); 1099 if (x) { 1100 rotateby = pseudo_random % x; 1101 rotate_list((&c->dirty_list), rotateby); 1102 } 1103 1104 x = count_list(&c->erasable_list); 1105 if (x) { 1106 rotateby = pseudo_random % x; 1107 rotate_list((&c->erasable_list), rotateby); 1108 } 1109 1110 if (c->nr_erasing_blocks) { 1111 rotateby = pseudo_random % c->nr_erasing_blocks; 1112 rotate_list((&c->erase_pending_list), rotateby); 1113 } 1114 1115 if (c->nr_free_blocks) { 1116 rotateby = pseudo_random % c->nr_free_blocks; 1117 rotate_list((&c->free_list), rotateby); 1118 } 1119 } 1120