1 /* 2 * JFFS2 -- Journalling Flash File System, Version 2. 3 * 4 * Copyright (C) 2001-2003 Red Hat, Inc. 5 * 6 * Created by David Woodhouse <dwmw2@infradead.org> 7 * 8 * For licensing information, see the file 'LICENCE' in this directory. 9 * 10 * $Id: nodelist.h,v 1.126 2004/11/19 15:06:29 dedekind Exp $ 11 * 12 */ 13 14 #ifndef __JFFS2_NODELIST_H__ 15 #define __JFFS2_NODELIST_H__ 16 17 #include <linux/config.h> 18 #include <linux/fs.h> 19 #include <linux/types.h> 20 #include <linux/jffs2.h> 21 #include <linux/jffs2_fs_sb.h> 22 #include <linux/jffs2_fs_i.h> 23 24 #ifdef __ECOS 25 #include "os-ecos.h" 26 #else 27 #include <linux/mtd/compatmac.h> /* For min/max in older kernels */ 28 #include "os-linux.h" 29 #endif 30 31 #ifndef CONFIG_JFFS2_FS_DEBUG 32 #define CONFIG_JFFS2_FS_DEBUG 1 33 #endif 34 35 #if CONFIG_JFFS2_FS_DEBUG > 0 36 #define D1(x) x 37 #else 38 #define D1(x) 39 #endif 40 41 #if CONFIG_JFFS2_FS_DEBUG > 1 42 #define D2(x) x 43 #else 44 #define D2(x) 45 #endif 46 47 #define JFFS2_NATIVE_ENDIAN 48 49 /* Note we handle mode bits conversion from JFFS2 (i.e. Linux) to/from 50 whatever OS we're actually running on here too. */ 51 52 #if defined(JFFS2_NATIVE_ENDIAN) 53 #define cpu_to_je16(x) ((jint16_t){x}) 54 #define cpu_to_je32(x) ((jint32_t){x}) 55 #define cpu_to_jemode(x) ((jmode_t){os_to_jffs2_mode(x)}) 56 57 #define je16_to_cpu(x) ((x).v16) 58 #define je32_to_cpu(x) ((x).v32) 59 #define jemode_to_cpu(x) (jffs2_to_os_mode((x).m)) 60 #elif defined(JFFS2_BIG_ENDIAN) 61 #define cpu_to_je16(x) ((jint16_t){cpu_to_be16(x)}) 62 #define cpu_to_je32(x) ((jint32_t){cpu_to_be32(x)}) 63 #define cpu_to_jemode(x) ((jmode_t){cpu_to_be32(os_to_jffs2_mode(x))}) 64 65 #define je16_to_cpu(x) (be16_to_cpu(x.v16)) 66 #define je32_to_cpu(x) (be32_to_cpu(x.v32)) 67 #define jemode_to_cpu(x) (be32_to_cpu(jffs2_to_os_mode((x).m))) 68 #elif defined(JFFS2_LITTLE_ENDIAN) 69 #define cpu_to_je16(x) ((jint16_t){cpu_to_le16(x)}) 70 #define cpu_to_je32(x) ((jint32_t){cpu_to_le32(x)}) 71 #define cpu_to_jemode(x) ((jmode_t){cpu_to_le32(os_to_jffs2_mode(x))}) 72 73 #define je16_to_cpu(x) (le16_to_cpu(x.v16)) 74 #define je32_to_cpu(x) (le32_to_cpu(x.v32)) 75 #define jemode_to_cpu(x) (le32_to_cpu(jffs2_to_os_mode((x).m))) 76 #else 77 #error wibble 78 #endif 79 80 /* 81 This is all we need to keep in-core for each raw node during normal 82 operation. As and when we do read_inode on a particular inode, we can 83 scan the nodes which are listed for it and build up a proper map of 84 which nodes are currently valid. JFFSv1 always used to keep that whole 85 map in core for each inode. 86 */ 87 struct jffs2_raw_node_ref 88 { 89 struct jffs2_raw_node_ref *next_in_ino; /* Points to the next raw_node_ref 90 for this inode. If this is the last, it points to the inode_cache 91 for this inode instead. The inode_cache will have NULL in the first 92 word so you know when you've got there :) */ 93 struct jffs2_raw_node_ref *next_phys; 94 uint32_t flash_offset; 95 uint32_t __totlen; /* This may die; use ref_totlen(c, jeb, ) below */ 96 }; 97 98 /* flash_offset & 3 always has to be zero, because nodes are 99 always aligned at 4 bytes. So we have a couple of extra bits 100 to play with, which indicate the node's status; see below: */ 101 #define REF_UNCHECKED 0 /* We haven't yet checked the CRC or built its inode */ 102 #define REF_OBSOLETE 1 /* Obsolete, can be completely ignored */ 103 #define REF_PRISTINE 2 /* Completely clean. GC without looking */ 104 #define REF_NORMAL 3 /* Possibly overlapped. Read the page and write again on GC */ 105 #define ref_flags(ref) ((ref)->flash_offset & 3) 106 #define ref_offset(ref) ((ref)->flash_offset & ~3) 107 #define ref_obsolete(ref) (((ref)->flash_offset & 3) == REF_OBSOLETE) 108 #define mark_ref_normal(ref) do { (ref)->flash_offset = ref_offset(ref) | REF_NORMAL; } while(0) 109 110 /* For each inode in the filesystem, we need to keep a record of 111 nlink, because it would be a PITA to scan the whole directory tree 112 at read_inode() time to calculate it, and to keep sufficient information 113 in the raw_node_ref (basically both parent and child inode number for 114 dirent nodes) would take more space than this does. We also keep 115 a pointer to the first physical node which is part of this inode, too. 116 */ 117 struct jffs2_inode_cache { 118 struct jffs2_full_dirent *scan_dents; /* Used during scan to hold 119 temporary lists of dirents, and later must be set to 120 NULL to mark the end of the raw_node_ref->next_in_ino 121 chain. */ 122 struct jffs2_inode_cache *next; 123 struct jffs2_raw_node_ref *nodes; 124 uint32_t ino; 125 int nlink; 126 int state; 127 }; 128 129 /* Inode states for 'state' above. We need the 'GC' state to prevent 130 someone from doing a read_inode() while we're moving a 'REF_PRISTINE' 131 node without going through all the iget() nonsense */ 132 #define INO_STATE_UNCHECKED 0 /* CRC checks not yet done */ 133 #define INO_STATE_CHECKING 1 /* CRC checks in progress */ 134 #define INO_STATE_PRESENT 2 /* In core */ 135 #define INO_STATE_CHECKEDABSENT 3 /* Checked, cleared again */ 136 #define INO_STATE_GC 4 /* GCing a 'pristine' node */ 137 #define INO_STATE_READING 5 /* In read_inode() */ 138 139 #define INOCACHE_HASHSIZE 128 140 141 /* 142 Larger representation of a raw node, kept in-core only when the 143 struct inode for this particular ino is instantiated. 144 */ 145 146 struct jffs2_full_dnode 147 { 148 struct jffs2_raw_node_ref *raw; 149 uint32_t ofs; /* The offset to which the data of this node belongs */ 150 uint32_t size; 151 uint32_t frags; /* Number of fragments which currently refer 152 to this node. When this reaches zero, 153 the node is obsolete. */ 154 }; 155 156 /* 157 Even larger representation of a raw node, kept in-core only while 158 we're actually building up the original map of which nodes go where, 159 in read_inode() 160 */ 161 struct jffs2_tmp_dnode_info 162 { 163 struct jffs2_tmp_dnode_info *next; 164 struct jffs2_full_dnode *fn; 165 uint32_t version; 166 }; 167 168 struct jffs2_full_dirent 169 { 170 struct jffs2_raw_node_ref *raw; 171 struct jffs2_full_dirent *next; 172 uint32_t version; 173 uint32_t ino; /* == zero for unlink */ 174 unsigned int nhash; 175 unsigned char type; 176 unsigned char name[0]; 177 }; 178 179 /* 180 Fragments - used to build a map of which raw node to obtain 181 data from for each part of the ino 182 */ 183 struct jffs2_node_frag 184 { 185 struct rb_node rb; 186 struct jffs2_full_dnode *node; /* NULL for holes */ 187 uint32_t size; 188 uint32_t ofs; /* The offset to which this fragment belongs */ 189 }; 190 191 struct jffs2_eraseblock 192 { 193 struct list_head list; 194 int bad_count; 195 uint32_t offset; /* of this block in the MTD */ 196 197 uint32_t unchecked_size; 198 uint32_t used_size; 199 uint32_t dirty_size; 200 uint32_t wasted_size; 201 uint32_t free_size; /* Note that sector_size - free_size 202 is the address of the first free space */ 203 struct jffs2_raw_node_ref *first_node; 204 struct jffs2_raw_node_ref *last_node; 205 206 struct jffs2_raw_node_ref *gc_node; /* Next node to be garbage collected */ 207 }; 208 209 #define ACCT_SANITY_CHECK(c, jeb) do { \ 210 struct jffs2_eraseblock *___j = jeb; \ 211 if ((___j) && ___j->used_size + ___j->dirty_size + ___j->free_size + ___j->wasted_size + ___j->unchecked_size != c->sector_size) { \ 212 printk(KERN_NOTICE "Eeep. Space accounting for block at 0x%08x is screwed\n", ___j->offset); \ 213 printk(KERN_NOTICE "free 0x%08x + dirty 0x%08x + used %08x + wasted %08x + unchecked %08x != total %08x\n", \ 214 ___j->free_size, ___j->dirty_size, ___j->used_size, ___j->wasted_size, ___j->unchecked_size, c->sector_size); \ 215 BUG(); \ 216 } \ 217 if (c->used_size + c->dirty_size + c->free_size + c->erasing_size + c->bad_size + c->wasted_size + c->unchecked_size != c->flash_size) { \ 218 printk(KERN_NOTICE "Eeep. Space accounting superblock info is screwed\n"); \ 219 printk(KERN_NOTICE "free 0x%08x + dirty 0x%08x + used %08x + erasing %08x + bad %08x + wasted %08x + unchecked %08x != total %08x\n", \ 220 c->free_size, c->dirty_size, c->used_size, c->erasing_size, c->bad_size, c->wasted_size, c->unchecked_size, c->flash_size); \ 221 BUG(); \ 222 } \ 223 } while(0) 224 225 static inline void paranoia_failed_dump(struct jffs2_eraseblock *jeb) 226 { 227 struct jffs2_raw_node_ref *ref; 228 int i=0; 229 230 printk(KERN_NOTICE); 231 for (ref = jeb->first_node; ref; ref = ref->next_phys) { 232 printk("%08x->", ref_offset(ref)); 233 if (++i == 8) { 234 i = 0; 235 printk("\n" KERN_NOTICE); 236 } 237 } 238 printk("\n"); 239 } 240 241 242 #define ACCT_PARANOIA_CHECK(jeb) do { \ 243 uint32_t my_used_size = 0; \ 244 uint32_t my_unchecked_size = 0; \ 245 struct jffs2_raw_node_ref *ref2 = jeb->first_node; \ 246 while (ref2) { \ 247 if (unlikely(ref2->flash_offset < jeb->offset || \ 248 ref2->flash_offset > jeb->offset + c->sector_size)) { \ 249 printk(KERN_NOTICE "Node %08x shouldn't be in block at %08x!\n", \ 250 ref_offset(ref2), jeb->offset); \ 251 paranoia_failed_dump(jeb); \ 252 BUG(); \ 253 } \ 254 if (ref_flags(ref2) == REF_UNCHECKED) \ 255 my_unchecked_size += ref_totlen(c, jeb, ref2); \ 256 else if (!ref_obsolete(ref2)) \ 257 my_used_size += ref_totlen(c, jeb, ref2); \ 258 if (unlikely((!ref2->next_phys) != (ref2 == jeb->last_node))) { \ 259 if (!ref2->next_phys) \ 260 printk("ref for node at %p (phys %08x) has next_phys->%p (----), last_node->%p (phys %08x)\n", \ 261 ref2, ref_offset(ref2), ref2->next_phys, \ 262 jeb->last_node, ref_offset(jeb->last_node)); \ 263 else \ 264 printk("ref for node at %p (phys %08x) has next_phys->%p (%08x), last_node->%p (phys %08x)\n", \ 265 ref2, ref_offset(ref2), ref2->next_phys, ref_offset(ref2->next_phys), \ 266 jeb->last_node, ref_offset(jeb->last_node)); \ 267 paranoia_failed_dump(jeb); \ 268 BUG(); \ 269 } \ 270 ref2 = ref2->next_phys; \ 271 } \ 272 if (my_used_size != jeb->used_size) { \ 273 printk(KERN_NOTICE "Calculated used size %08x != stored used size %08x\n", my_used_size, jeb->used_size); \ 274 BUG(); \ 275 } \ 276 if (my_unchecked_size != jeb->unchecked_size) { \ 277 printk(KERN_NOTICE "Calculated unchecked size %08x != stored unchecked size %08x\n", my_unchecked_size, jeb->unchecked_size); \ 278 BUG(); \ 279 } \ 280 } while(0) 281 282 /* Calculate totlen from surrounding nodes or eraseblock */ 283 static inline uint32_t __ref_totlen(struct jffs2_sb_info *c, 284 struct jffs2_eraseblock *jeb, 285 struct jffs2_raw_node_ref *ref) 286 { 287 uint32_t ref_end; 288 289 if (ref->next_phys) 290 ref_end = ref_offset(ref->next_phys); 291 else { 292 if (!jeb) 293 jeb = &c->blocks[ref->flash_offset / c->sector_size]; 294 295 /* Last node in block. Use free_space */ 296 BUG_ON(ref != jeb->last_node); 297 ref_end = jeb->offset + c->sector_size - jeb->free_size; 298 } 299 return ref_end - ref_offset(ref); 300 } 301 302 static inline uint32_t ref_totlen(struct jffs2_sb_info *c, 303 struct jffs2_eraseblock *jeb, 304 struct jffs2_raw_node_ref *ref) 305 { 306 uint32_t ret; 307 308 D1(if (jeb && jeb != &c->blocks[ref->flash_offset / c->sector_size]) { 309 printk(KERN_CRIT "ref_totlen called with wrong block -- at 0x%08x instead of 0x%08x; ref 0x%08x\n", 310 jeb->offset, c->blocks[ref->flash_offset / c->sector_size].offset, ref_offset(ref)); 311 BUG(); 312 }) 313 314 #if 1 315 ret = ref->__totlen; 316 #else 317 /* This doesn't actually work yet */ 318 ret = __ref_totlen(c, jeb, ref); 319 if (ret != ref->__totlen) { 320 printk(KERN_CRIT "Totlen for ref at %p (0x%08x-0x%08x) miscalculated as 0x%x instead of %x\n", 321 ref, ref_offset(ref), ref_offset(ref)+ref->__totlen, 322 ret, ref->__totlen); 323 if (!jeb) 324 jeb = &c->blocks[ref->flash_offset / c->sector_size]; 325 paranoia_failed_dump(jeb); 326 BUG(); 327 } 328 #endif 329 return ret; 330 } 331 332 333 #define ALLOC_NORMAL 0 /* Normal allocation */ 334 #define ALLOC_DELETION 1 /* Deletion node. Best to allow it */ 335 #define ALLOC_GC 2 /* Space requested for GC. Give it or die */ 336 #define ALLOC_NORETRY 3 /* For jffs2_write_dnode: On failure, return -EAGAIN instead of retrying */ 337 338 /* How much dirty space before it goes on the very_dirty_list */ 339 #define VERYDIRTY(c, size) ((size) >= ((c)->sector_size / 2)) 340 341 /* check if dirty space is more than 255 Byte */ 342 #define ISDIRTY(size) ((size) > sizeof (struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN) 343 344 #define PAD(x) (((x)+3)&~3) 345 346 static inline struct jffs2_inode_cache *jffs2_raw_ref_to_ic(struct jffs2_raw_node_ref *raw) 347 { 348 while(raw->next_in_ino) { 349 raw = raw->next_in_ino; 350 } 351 352 return ((struct jffs2_inode_cache *)raw); 353 } 354 355 static inline struct jffs2_node_frag *frag_first(struct rb_root *root) 356 { 357 struct rb_node *node = root->rb_node; 358 359 if (!node) 360 return NULL; 361 while(node->rb_left) 362 node = node->rb_left; 363 return rb_entry(node, struct jffs2_node_frag, rb); 364 } 365 #define rb_parent(rb) ((rb)->rb_parent) 366 #define frag_next(frag) rb_entry(rb_next(&(frag)->rb), struct jffs2_node_frag, rb) 367 #define frag_prev(frag) rb_entry(rb_prev(&(frag)->rb), struct jffs2_node_frag, rb) 368 #define frag_parent(frag) rb_entry(rb_parent(&(frag)->rb), struct jffs2_node_frag, rb) 369 #define frag_left(frag) rb_entry((frag)->rb.rb_left, struct jffs2_node_frag, rb) 370 #define frag_right(frag) rb_entry((frag)->rb.rb_right, struct jffs2_node_frag, rb) 371 #define frag_erase(frag, list) rb_erase(&frag->rb, list); 372 373 /* nodelist.c */ 374 D2(void jffs2_print_frag_list(struct jffs2_inode_info *f)); 375 void jffs2_add_fd_to_list(struct jffs2_sb_info *c, struct jffs2_full_dirent *new, struct jffs2_full_dirent **list); 376 int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f, 377 struct jffs2_tmp_dnode_info **tnp, struct jffs2_full_dirent **fdp, 378 uint32_t *highest_version, uint32_t *latest_mctime, 379 uint32_t *mctime_ver); 380 void jffs2_set_inocache_state(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, int state); 381 struct jffs2_inode_cache *jffs2_get_ino_cache(struct jffs2_sb_info *c, uint32_t ino); 382 void jffs2_add_ino_cache (struct jffs2_sb_info *c, struct jffs2_inode_cache *new); 383 void jffs2_del_ino_cache(struct jffs2_sb_info *c, struct jffs2_inode_cache *old); 384 void jffs2_free_ino_caches(struct jffs2_sb_info *c); 385 void jffs2_free_raw_node_refs(struct jffs2_sb_info *c); 386 struct jffs2_node_frag *jffs2_lookup_node_frag(struct rb_root *fragtree, uint32_t offset); 387 void jffs2_kill_fragtree(struct rb_root *root, struct jffs2_sb_info *c_delete); 388 void jffs2_fragtree_insert(struct jffs2_node_frag *newfrag, struct jffs2_node_frag *base); 389 struct rb_node *rb_next(struct rb_node *); 390 struct rb_node *rb_prev(struct rb_node *); 391 void rb_replace_node(struct rb_node *victim, struct rb_node *new, struct rb_root *root); 392 393 /* nodemgmt.c */ 394 int jffs2_thread_should_wake(struct jffs2_sb_info *c); 395 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio); 396 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len); 397 int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new); 398 void jffs2_complete_reservation(struct jffs2_sb_info *c); 399 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *raw); 400 void jffs2_dump_block_lists(struct jffs2_sb_info *c); 401 402 /* write.c */ 403 int jffs2_do_new_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, uint32_t mode, struct jffs2_raw_inode *ri); 404 405 struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, const unsigned char *data, uint32_t datalen, uint32_t flash_ofs, int alloc_mode); 406 struct jffs2_full_dirent *jffs2_write_dirent(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_raw_dirent *rd, const unsigned char *name, uint32_t namelen, uint32_t flash_ofs, int alloc_mode); 407 int jffs2_write_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f, 408 struct jffs2_raw_inode *ri, unsigned char *buf, 409 uint32_t offset, uint32_t writelen, uint32_t *retlen); 410 int jffs2_do_create(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, struct jffs2_inode_info *f, struct jffs2_raw_inode *ri, const char *name, int namelen); 411 int jffs2_do_unlink(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, const char *name, int namelen, struct jffs2_inode_info *dead_f); 412 int jffs2_do_link (struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, uint32_t ino, uint8_t type, const char *name, int namelen); 413 414 415 /* readinode.c */ 416 void jffs2_truncate_fraglist (struct jffs2_sb_info *c, struct rb_root *list, uint32_t size); 417 int jffs2_add_full_dnode_to_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_full_dnode *fn); 418 int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, 419 uint32_t ino, struct jffs2_raw_inode *latest_node); 420 int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic); 421 void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f); 422 423 /* malloc.c */ 424 int jffs2_create_slab_caches(void); 425 void jffs2_destroy_slab_caches(void); 426 427 struct jffs2_full_dirent *jffs2_alloc_full_dirent(int namesize); 428 void jffs2_free_full_dirent(struct jffs2_full_dirent *); 429 struct jffs2_full_dnode *jffs2_alloc_full_dnode(void); 430 void jffs2_free_full_dnode(struct jffs2_full_dnode *); 431 struct jffs2_raw_dirent *jffs2_alloc_raw_dirent(void); 432 void jffs2_free_raw_dirent(struct jffs2_raw_dirent *); 433 struct jffs2_raw_inode *jffs2_alloc_raw_inode(void); 434 void jffs2_free_raw_inode(struct jffs2_raw_inode *); 435 struct jffs2_tmp_dnode_info *jffs2_alloc_tmp_dnode_info(void); 436 void jffs2_free_tmp_dnode_info(struct jffs2_tmp_dnode_info *); 437 struct jffs2_raw_node_ref *jffs2_alloc_raw_node_ref(void); 438 void jffs2_free_raw_node_ref(struct jffs2_raw_node_ref *); 439 struct jffs2_node_frag *jffs2_alloc_node_frag(void); 440 void jffs2_free_node_frag(struct jffs2_node_frag *); 441 struct jffs2_inode_cache *jffs2_alloc_inode_cache(void); 442 void jffs2_free_inode_cache(struct jffs2_inode_cache *); 443 444 /* gc.c */ 445 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c); 446 447 /* read.c */ 448 int jffs2_read_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, 449 struct jffs2_full_dnode *fd, unsigned char *buf, 450 int ofs, int len); 451 int jffs2_read_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f, 452 unsigned char *buf, uint32_t offset, uint32_t len); 453 char *jffs2_getlink(struct jffs2_sb_info *c, struct jffs2_inode_info *f); 454 455 /* scan.c */ 456 int jffs2_scan_medium(struct jffs2_sb_info *c); 457 void jffs2_rotate_lists(struct jffs2_sb_info *c); 458 459 /* build.c */ 460 int jffs2_do_mount_fs(struct jffs2_sb_info *c); 461 462 /* erase.c */ 463 void jffs2_erase_pending_blocks(struct jffs2_sb_info *c, int count); 464 465 #ifdef CONFIG_JFFS2_FS_NAND 466 /* wbuf.c */ 467 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino); 468 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c); 469 int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb); 470 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb); 471 #endif 472 473 #endif /* __JFFS2_NODELIST_H__ */ 474