1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/smp_lock.h> 32 #include <linux/init.h> 33 #include <linux/mm.h> 34 #include <linux/suspend.h> 35 #include <linux/pagemap.h> 36 #include <linux/kthread.h> 37 #include <linux/poison.h> 38 #include <linux/proc_fs.h> 39 40 #include <asm/uaccess.h> 41 #include <asm/page.h> 42 43 EXPORT_SYMBOL(jbd2_journal_start); 44 EXPORT_SYMBOL(jbd2_journal_restart); 45 EXPORT_SYMBOL(jbd2_journal_extend); 46 EXPORT_SYMBOL(jbd2_journal_stop); 47 EXPORT_SYMBOL(jbd2_journal_lock_updates); 48 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 49 EXPORT_SYMBOL(jbd2_journal_get_write_access); 50 EXPORT_SYMBOL(jbd2_journal_get_create_access); 51 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 52 EXPORT_SYMBOL(jbd2_journal_dirty_data); 53 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 54 EXPORT_SYMBOL(jbd2_journal_release_buffer); 55 EXPORT_SYMBOL(jbd2_journal_forget); 56 #if 0 57 EXPORT_SYMBOL(journal_sync_buffer); 58 #endif 59 EXPORT_SYMBOL(jbd2_journal_flush); 60 EXPORT_SYMBOL(jbd2_journal_revoke); 61 62 EXPORT_SYMBOL(jbd2_journal_init_dev); 63 EXPORT_SYMBOL(jbd2_journal_init_inode); 64 EXPORT_SYMBOL(jbd2_journal_update_format); 65 EXPORT_SYMBOL(jbd2_journal_check_used_features); 66 EXPORT_SYMBOL(jbd2_journal_check_available_features); 67 EXPORT_SYMBOL(jbd2_journal_set_features); 68 EXPORT_SYMBOL(jbd2_journal_create); 69 EXPORT_SYMBOL(jbd2_journal_load); 70 EXPORT_SYMBOL(jbd2_journal_destroy); 71 EXPORT_SYMBOL(jbd2_journal_update_superblock); 72 EXPORT_SYMBOL(jbd2_journal_abort); 73 EXPORT_SYMBOL(jbd2_journal_errno); 74 EXPORT_SYMBOL(jbd2_journal_ack_err); 75 EXPORT_SYMBOL(jbd2_journal_clear_err); 76 EXPORT_SYMBOL(jbd2_log_wait_commit); 77 EXPORT_SYMBOL(jbd2_journal_start_commit); 78 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 79 EXPORT_SYMBOL(jbd2_journal_wipe); 80 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 81 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 82 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 83 EXPORT_SYMBOL(jbd2_journal_force_commit); 84 85 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *); 86 static void __journal_abort_soft (journal_t *journal, int errno); 87 static int jbd2_journal_create_jbd_slab(size_t slab_size); 88 89 /* 90 * Helper function used to manage commit timeouts 91 */ 92 93 static void commit_timeout(unsigned long __data) 94 { 95 struct task_struct * p = (struct task_struct *) __data; 96 97 wake_up_process(p); 98 } 99 100 /* 101 * kjournald2: The main thread function used to manage a logging device 102 * journal. 103 * 104 * This kernel thread is responsible for two things: 105 * 106 * 1) COMMIT: Every so often we need to commit the current state of the 107 * filesystem to disk. The journal thread is responsible for writing 108 * all of the metadata buffers to disk. 109 * 110 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 111 * of the data in that part of the log has been rewritten elsewhere on 112 * the disk. Flushing these old buffers to reclaim space in the log is 113 * known as checkpointing, and this thread is responsible for that job. 114 */ 115 116 static int kjournald2(void *arg) 117 { 118 journal_t *journal = arg; 119 transaction_t *transaction; 120 121 /* 122 * Set up an interval timer which can be used to trigger a commit wakeup 123 * after the commit interval expires 124 */ 125 setup_timer(&journal->j_commit_timer, commit_timeout, 126 (unsigned long)current); 127 128 /* Record that the journal thread is running */ 129 journal->j_task = current; 130 wake_up(&journal->j_wait_done_commit); 131 132 printk(KERN_INFO "kjournald2 starting. Commit interval %ld seconds\n", 133 journal->j_commit_interval / HZ); 134 135 /* 136 * And now, wait forever for commit wakeup events. 137 */ 138 spin_lock(&journal->j_state_lock); 139 140 loop: 141 if (journal->j_flags & JBD2_UNMOUNT) 142 goto end_loop; 143 144 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 145 journal->j_commit_sequence, journal->j_commit_request); 146 147 if (journal->j_commit_sequence != journal->j_commit_request) { 148 jbd_debug(1, "OK, requests differ\n"); 149 spin_unlock(&journal->j_state_lock); 150 del_timer_sync(&journal->j_commit_timer); 151 jbd2_journal_commit_transaction(journal); 152 spin_lock(&journal->j_state_lock); 153 goto loop; 154 } 155 156 wake_up(&journal->j_wait_done_commit); 157 if (freezing(current)) { 158 /* 159 * The simpler the better. Flushing journal isn't a 160 * good idea, because that depends on threads that may 161 * be already stopped. 162 */ 163 jbd_debug(1, "Now suspending kjournald2\n"); 164 spin_unlock(&journal->j_state_lock); 165 refrigerator(); 166 spin_lock(&journal->j_state_lock); 167 } else { 168 /* 169 * We assume on resume that commits are already there, 170 * so we don't sleep 171 */ 172 DEFINE_WAIT(wait); 173 int should_sleep = 1; 174 175 prepare_to_wait(&journal->j_wait_commit, &wait, 176 TASK_INTERRUPTIBLE); 177 if (journal->j_commit_sequence != journal->j_commit_request) 178 should_sleep = 0; 179 transaction = journal->j_running_transaction; 180 if (transaction && time_after_eq(jiffies, 181 transaction->t_expires)) 182 should_sleep = 0; 183 if (journal->j_flags & JBD2_UNMOUNT) 184 should_sleep = 0; 185 if (should_sleep) { 186 spin_unlock(&journal->j_state_lock); 187 schedule(); 188 spin_lock(&journal->j_state_lock); 189 } 190 finish_wait(&journal->j_wait_commit, &wait); 191 } 192 193 jbd_debug(1, "kjournald2 wakes\n"); 194 195 /* 196 * Were we woken up by a commit wakeup event? 197 */ 198 transaction = journal->j_running_transaction; 199 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 200 journal->j_commit_request = transaction->t_tid; 201 jbd_debug(1, "woke because of timeout\n"); 202 } 203 goto loop; 204 205 end_loop: 206 spin_unlock(&journal->j_state_lock); 207 del_timer_sync(&journal->j_commit_timer); 208 journal->j_task = NULL; 209 wake_up(&journal->j_wait_done_commit); 210 jbd_debug(1, "Journal thread exiting.\n"); 211 return 0; 212 } 213 214 static void jbd2_journal_start_thread(journal_t *journal) 215 { 216 kthread_run(kjournald2, journal, "kjournald2"); 217 wait_event(journal->j_wait_done_commit, journal->j_task != 0); 218 } 219 220 static void journal_kill_thread(journal_t *journal) 221 { 222 spin_lock(&journal->j_state_lock); 223 journal->j_flags |= JBD2_UNMOUNT; 224 225 while (journal->j_task) { 226 wake_up(&journal->j_wait_commit); 227 spin_unlock(&journal->j_state_lock); 228 wait_event(journal->j_wait_done_commit, journal->j_task == 0); 229 spin_lock(&journal->j_state_lock); 230 } 231 spin_unlock(&journal->j_state_lock); 232 } 233 234 /* 235 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 236 * 237 * Writes a metadata buffer to a given disk block. The actual IO is not 238 * performed but a new buffer_head is constructed which labels the data 239 * to be written with the correct destination disk block. 240 * 241 * Any magic-number escaping which needs to be done will cause a 242 * copy-out here. If the buffer happens to start with the 243 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 244 * magic number is only written to the log for descripter blocks. In 245 * this case, we copy the data and replace the first word with 0, and we 246 * return a result code which indicates that this buffer needs to be 247 * marked as an escaped buffer in the corresponding log descriptor 248 * block. The missing word can then be restored when the block is read 249 * during recovery. 250 * 251 * If the source buffer has already been modified by a new transaction 252 * since we took the last commit snapshot, we use the frozen copy of 253 * that data for IO. If we end up using the existing buffer_head's data 254 * for the write, then we *have* to lock the buffer to prevent anyone 255 * else from using and possibly modifying it while the IO is in 256 * progress. 257 * 258 * The function returns a pointer to the buffer_heads to be used for IO. 259 * 260 * We assume that the journal has already been locked in this function. 261 * 262 * Return value: 263 * <0: Error 264 * >=0: Finished OK 265 * 266 * On success: 267 * Bit 0 set == escape performed on the data 268 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 269 */ 270 271 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 272 struct journal_head *jh_in, 273 struct journal_head **jh_out, 274 unsigned long blocknr) 275 { 276 int need_copy_out = 0; 277 int done_copy_out = 0; 278 int do_escape = 0; 279 char *mapped_data; 280 struct buffer_head *new_bh; 281 struct journal_head *new_jh; 282 struct page *new_page; 283 unsigned int new_offset; 284 struct buffer_head *bh_in = jh2bh(jh_in); 285 286 /* 287 * The buffer really shouldn't be locked: only the current committing 288 * transaction is allowed to write it, so nobody else is allowed 289 * to do any IO. 290 * 291 * akpm: except if we're journalling data, and write() output is 292 * also part of a shared mapping, and another thread has 293 * decided to launch a writepage() against this buffer. 294 */ 295 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 296 297 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 298 299 /* 300 * If a new transaction has already done a buffer copy-out, then 301 * we use that version of the data for the commit. 302 */ 303 jbd_lock_bh_state(bh_in); 304 repeat: 305 if (jh_in->b_frozen_data) { 306 done_copy_out = 1; 307 new_page = virt_to_page(jh_in->b_frozen_data); 308 new_offset = offset_in_page(jh_in->b_frozen_data); 309 } else { 310 new_page = jh2bh(jh_in)->b_page; 311 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 312 } 313 314 mapped_data = kmap_atomic(new_page, KM_USER0); 315 /* 316 * Check for escaping 317 */ 318 if (*((__be32 *)(mapped_data + new_offset)) == 319 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 320 need_copy_out = 1; 321 do_escape = 1; 322 } 323 kunmap_atomic(mapped_data, KM_USER0); 324 325 /* 326 * Do we need to do a data copy? 327 */ 328 if (need_copy_out && !done_copy_out) { 329 char *tmp; 330 331 jbd_unlock_bh_state(bh_in); 332 tmp = jbd2_slab_alloc(bh_in->b_size, GFP_NOFS); 333 jbd_lock_bh_state(bh_in); 334 if (jh_in->b_frozen_data) { 335 jbd2_slab_free(tmp, bh_in->b_size); 336 goto repeat; 337 } 338 339 jh_in->b_frozen_data = tmp; 340 mapped_data = kmap_atomic(new_page, KM_USER0); 341 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 342 kunmap_atomic(mapped_data, KM_USER0); 343 344 new_page = virt_to_page(tmp); 345 new_offset = offset_in_page(tmp); 346 done_copy_out = 1; 347 } 348 349 /* 350 * Did we need to do an escaping? Now we've done all the 351 * copying, we can finally do so. 352 */ 353 if (do_escape) { 354 mapped_data = kmap_atomic(new_page, KM_USER0); 355 *((unsigned int *)(mapped_data + new_offset)) = 0; 356 kunmap_atomic(mapped_data, KM_USER0); 357 } 358 359 /* keep subsequent assertions sane */ 360 new_bh->b_state = 0; 361 init_buffer(new_bh, NULL, NULL); 362 atomic_set(&new_bh->b_count, 1); 363 jbd_unlock_bh_state(bh_in); 364 365 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 366 367 set_bh_page(new_bh, new_page, new_offset); 368 new_jh->b_transaction = NULL; 369 new_bh->b_size = jh2bh(jh_in)->b_size; 370 new_bh->b_bdev = transaction->t_journal->j_dev; 371 new_bh->b_blocknr = blocknr; 372 set_buffer_mapped(new_bh); 373 set_buffer_dirty(new_bh); 374 375 *jh_out = new_jh; 376 377 /* 378 * The to-be-written buffer needs to get moved to the io queue, 379 * and the original buffer whose contents we are shadowing or 380 * copying is moved to the transaction's shadow queue. 381 */ 382 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 383 jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 384 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 385 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 386 387 return do_escape | (done_copy_out << 1); 388 } 389 390 /* 391 * Allocation code for the journal file. Manage the space left in the 392 * journal, so that we can begin checkpointing when appropriate. 393 */ 394 395 /* 396 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 397 * 398 * Called with the journal already locked. 399 * 400 * Called under j_state_lock 401 */ 402 403 int __jbd2_log_space_left(journal_t *journal) 404 { 405 int left = journal->j_free; 406 407 assert_spin_locked(&journal->j_state_lock); 408 409 /* 410 * Be pessimistic here about the number of those free blocks which 411 * might be required for log descriptor control blocks. 412 */ 413 414 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 415 416 left -= MIN_LOG_RESERVED_BLOCKS; 417 418 if (left <= 0) 419 return 0; 420 left -= (left >> 3); 421 return left; 422 } 423 424 /* 425 * Called under j_state_lock. Returns true if a transaction was started. 426 */ 427 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 428 { 429 /* 430 * Are we already doing a recent enough commit? 431 */ 432 if (!tid_geq(journal->j_commit_request, target)) { 433 /* 434 * We want a new commit: OK, mark the request and wakup the 435 * commit thread. We do _not_ do the commit ourselves. 436 */ 437 438 journal->j_commit_request = target; 439 jbd_debug(1, "JBD: requesting commit %d/%d\n", 440 journal->j_commit_request, 441 journal->j_commit_sequence); 442 wake_up(&journal->j_wait_commit); 443 return 1; 444 } 445 return 0; 446 } 447 448 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 449 { 450 int ret; 451 452 spin_lock(&journal->j_state_lock); 453 ret = __jbd2_log_start_commit(journal, tid); 454 spin_unlock(&journal->j_state_lock); 455 return ret; 456 } 457 458 /* 459 * Force and wait upon a commit if the calling process is not within 460 * transaction. This is used for forcing out undo-protected data which contains 461 * bitmaps, when the fs is running out of space. 462 * 463 * We can only force the running transaction if we don't have an active handle; 464 * otherwise, we will deadlock. 465 * 466 * Returns true if a transaction was started. 467 */ 468 int jbd2_journal_force_commit_nested(journal_t *journal) 469 { 470 transaction_t *transaction = NULL; 471 tid_t tid; 472 473 spin_lock(&journal->j_state_lock); 474 if (journal->j_running_transaction && !current->journal_info) { 475 transaction = journal->j_running_transaction; 476 __jbd2_log_start_commit(journal, transaction->t_tid); 477 } else if (journal->j_committing_transaction) 478 transaction = journal->j_committing_transaction; 479 480 if (!transaction) { 481 spin_unlock(&journal->j_state_lock); 482 return 0; /* Nothing to retry */ 483 } 484 485 tid = transaction->t_tid; 486 spin_unlock(&journal->j_state_lock); 487 jbd2_log_wait_commit(journal, tid); 488 return 1; 489 } 490 491 /* 492 * Start a commit of the current running transaction (if any). Returns true 493 * if a transaction was started, and fills its tid in at *ptid 494 */ 495 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 496 { 497 int ret = 0; 498 499 spin_lock(&journal->j_state_lock); 500 if (journal->j_running_transaction) { 501 tid_t tid = journal->j_running_transaction->t_tid; 502 503 ret = __jbd2_log_start_commit(journal, tid); 504 if (ret && ptid) 505 *ptid = tid; 506 } else if (journal->j_committing_transaction && ptid) { 507 /* 508 * If ext3_write_super() recently started a commit, then we 509 * have to wait for completion of that transaction 510 */ 511 *ptid = journal->j_committing_transaction->t_tid; 512 ret = 1; 513 } 514 spin_unlock(&journal->j_state_lock); 515 return ret; 516 } 517 518 /* 519 * Wait for a specified commit to complete. 520 * The caller may not hold the journal lock. 521 */ 522 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 523 { 524 int err = 0; 525 526 #ifdef CONFIG_JBD_DEBUG 527 spin_lock(&journal->j_state_lock); 528 if (!tid_geq(journal->j_commit_request, tid)) { 529 printk(KERN_EMERG 530 "%s: error: j_commit_request=%d, tid=%d\n", 531 __FUNCTION__, journal->j_commit_request, tid); 532 } 533 spin_unlock(&journal->j_state_lock); 534 #endif 535 spin_lock(&journal->j_state_lock); 536 while (tid_gt(tid, journal->j_commit_sequence)) { 537 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n", 538 tid, journal->j_commit_sequence); 539 wake_up(&journal->j_wait_commit); 540 spin_unlock(&journal->j_state_lock); 541 wait_event(journal->j_wait_done_commit, 542 !tid_gt(tid, journal->j_commit_sequence)); 543 spin_lock(&journal->j_state_lock); 544 } 545 spin_unlock(&journal->j_state_lock); 546 547 if (unlikely(is_journal_aborted(journal))) { 548 printk(KERN_EMERG "journal commit I/O error\n"); 549 err = -EIO; 550 } 551 return err; 552 } 553 554 /* 555 * Log buffer allocation routines: 556 */ 557 558 int jbd2_journal_next_log_block(journal_t *journal, unsigned long *retp) 559 { 560 unsigned long blocknr; 561 562 spin_lock(&journal->j_state_lock); 563 J_ASSERT(journal->j_free > 1); 564 565 blocknr = journal->j_head; 566 journal->j_head++; 567 journal->j_free--; 568 if (journal->j_head == journal->j_last) 569 journal->j_head = journal->j_first; 570 spin_unlock(&journal->j_state_lock); 571 return jbd2_journal_bmap(journal, blocknr, retp); 572 } 573 574 /* 575 * Conversion of logical to physical block numbers for the journal 576 * 577 * On external journals the journal blocks are identity-mapped, so 578 * this is a no-op. If needed, we can use j_blk_offset - everything is 579 * ready. 580 */ 581 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 582 unsigned long *retp) 583 { 584 int err = 0; 585 unsigned long ret; 586 587 if (journal->j_inode) { 588 ret = bmap(journal->j_inode, blocknr); 589 if (ret) 590 *retp = ret; 591 else { 592 char b[BDEVNAME_SIZE]; 593 594 printk(KERN_ALERT "%s: journal block not found " 595 "at offset %lu on %s\n", 596 __FUNCTION__, 597 blocknr, 598 bdevname(journal->j_dev, b)); 599 err = -EIO; 600 __journal_abort_soft(journal, err); 601 } 602 } else { 603 *retp = blocknr; /* +journal->j_blk_offset */ 604 } 605 return err; 606 } 607 608 /* 609 * We play buffer_head aliasing tricks to write data/metadata blocks to 610 * the journal without copying their contents, but for journal 611 * descriptor blocks we do need to generate bona fide buffers. 612 * 613 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 614 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 615 * But we don't bother doing that, so there will be coherency problems with 616 * mmaps of blockdevs which hold live JBD-controlled filesystems. 617 */ 618 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 619 { 620 struct buffer_head *bh; 621 unsigned long blocknr; 622 int err; 623 624 err = jbd2_journal_next_log_block(journal, &blocknr); 625 626 if (err) 627 return NULL; 628 629 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 630 lock_buffer(bh); 631 memset(bh->b_data, 0, journal->j_blocksize); 632 set_buffer_uptodate(bh); 633 unlock_buffer(bh); 634 BUFFER_TRACE(bh, "return this buffer"); 635 return jbd2_journal_add_journal_head(bh); 636 } 637 638 /* 639 * Management for journal control blocks: functions to create and 640 * destroy journal_t structures, and to initialise and read existing 641 * journal blocks from disk. */ 642 643 /* First: create and setup a journal_t object in memory. We initialise 644 * very few fields yet: that has to wait until we have created the 645 * journal structures from from scratch, or loaded them from disk. */ 646 647 static journal_t * journal_init_common (void) 648 { 649 journal_t *journal; 650 int err; 651 652 journal = jbd_kmalloc(sizeof(*journal), GFP_KERNEL); 653 if (!journal) 654 goto fail; 655 memset(journal, 0, sizeof(*journal)); 656 657 init_waitqueue_head(&journal->j_wait_transaction_locked); 658 init_waitqueue_head(&journal->j_wait_logspace); 659 init_waitqueue_head(&journal->j_wait_done_commit); 660 init_waitqueue_head(&journal->j_wait_checkpoint); 661 init_waitqueue_head(&journal->j_wait_commit); 662 init_waitqueue_head(&journal->j_wait_updates); 663 mutex_init(&journal->j_barrier); 664 mutex_init(&journal->j_checkpoint_mutex); 665 spin_lock_init(&journal->j_revoke_lock); 666 spin_lock_init(&journal->j_list_lock); 667 spin_lock_init(&journal->j_state_lock); 668 669 journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE); 670 671 /* The journal is marked for error until we succeed with recovery! */ 672 journal->j_flags = JBD2_ABORT; 673 674 /* Set up a default-sized revoke table for the new mount. */ 675 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 676 if (err) { 677 kfree(journal); 678 goto fail; 679 } 680 return journal; 681 fail: 682 return NULL; 683 } 684 685 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 686 * 687 * Create a journal structure assigned some fixed set of disk blocks to 688 * the journal. We don't actually touch those disk blocks yet, but we 689 * need to set up all of the mapping information to tell the journaling 690 * system where the journal blocks are. 691 * 692 */ 693 694 /** 695 * journal_t * jbd2_journal_init_dev() - creates an initialises a journal structure 696 * @bdev: Block device on which to create the journal 697 * @fs_dev: Device which hold journalled filesystem for this journal. 698 * @start: Block nr Start of journal. 699 * @len: Length of the journal in blocks. 700 * @blocksize: blocksize of journalling device 701 * @returns: a newly created journal_t * 702 * 703 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 704 * range of blocks on an arbitrary block device. 705 * 706 */ 707 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 708 struct block_device *fs_dev, 709 int start, int len, int blocksize) 710 { 711 journal_t *journal = journal_init_common(); 712 struct buffer_head *bh; 713 int n; 714 715 if (!journal) 716 return NULL; 717 718 /* journal descriptor can store up to n blocks -bzzz */ 719 journal->j_blocksize = blocksize; 720 n = journal->j_blocksize / sizeof(journal_block_tag_t); 721 journal->j_wbufsize = n; 722 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 723 if (!journal->j_wbuf) { 724 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 725 __FUNCTION__); 726 kfree(journal); 727 journal = NULL; 728 } 729 journal->j_dev = bdev; 730 journal->j_fs_dev = fs_dev; 731 journal->j_blk_offset = start; 732 journal->j_maxlen = len; 733 734 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 735 J_ASSERT(bh != NULL); 736 journal->j_sb_buffer = bh; 737 journal->j_superblock = (journal_superblock_t *)bh->b_data; 738 739 return journal; 740 } 741 742 /** 743 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 744 * @inode: An inode to create the journal in 745 * 746 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 747 * the journal. The inode must exist already, must support bmap() and 748 * must have all data blocks preallocated. 749 */ 750 journal_t * jbd2_journal_init_inode (struct inode *inode) 751 { 752 struct buffer_head *bh; 753 journal_t *journal = journal_init_common(); 754 int err; 755 int n; 756 unsigned long blocknr; 757 758 if (!journal) 759 return NULL; 760 761 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 762 journal->j_inode = inode; 763 jbd_debug(1, 764 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 765 journal, inode->i_sb->s_id, inode->i_ino, 766 (long long) inode->i_size, 767 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 768 769 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 770 journal->j_blocksize = inode->i_sb->s_blocksize; 771 772 /* journal descriptor can store up to n blocks -bzzz */ 773 n = journal->j_blocksize / sizeof(journal_block_tag_t); 774 journal->j_wbufsize = n; 775 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 776 if (!journal->j_wbuf) { 777 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 778 __FUNCTION__); 779 kfree(journal); 780 return NULL; 781 } 782 783 err = jbd2_journal_bmap(journal, 0, &blocknr); 784 /* If that failed, give up */ 785 if (err) { 786 printk(KERN_ERR "%s: Cannnot locate journal superblock\n", 787 __FUNCTION__); 788 kfree(journal); 789 return NULL; 790 } 791 792 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 793 J_ASSERT(bh != NULL); 794 journal->j_sb_buffer = bh; 795 journal->j_superblock = (journal_superblock_t *)bh->b_data; 796 797 return journal; 798 } 799 800 /* 801 * If the journal init or create aborts, we need to mark the journal 802 * superblock as being NULL to prevent the journal destroy from writing 803 * back a bogus superblock. 804 */ 805 static void journal_fail_superblock (journal_t *journal) 806 { 807 struct buffer_head *bh = journal->j_sb_buffer; 808 brelse(bh); 809 journal->j_sb_buffer = NULL; 810 } 811 812 /* 813 * Given a journal_t structure, initialise the various fields for 814 * startup of a new journaling session. We use this both when creating 815 * a journal, and after recovering an old journal to reset it for 816 * subsequent use. 817 */ 818 819 static int journal_reset(journal_t *journal) 820 { 821 journal_superblock_t *sb = journal->j_superblock; 822 unsigned long first, last; 823 824 first = be32_to_cpu(sb->s_first); 825 last = be32_to_cpu(sb->s_maxlen); 826 827 journal->j_first = first; 828 journal->j_last = last; 829 830 journal->j_head = first; 831 journal->j_tail = first; 832 journal->j_free = last - first; 833 834 journal->j_tail_sequence = journal->j_transaction_sequence; 835 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 836 journal->j_commit_request = journal->j_commit_sequence; 837 838 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 839 840 /* Add the dynamic fields and write it to disk. */ 841 jbd2_journal_update_superblock(journal, 1); 842 jbd2_journal_start_thread(journal); 843 return 0; 844 } 845 846 /** 847 * int jbd2_journal_create() - Initialise the new journal file 848 * @journal: Journal to create. This structure must have been initialised 849 * 850 * Given a journal_t structure which tells us which disk blocks we can 851 * use, create a new journal superblock and initialise all of the 852 * journal fields from scratch. 853 **/ 854 int jbd2_journal_create(journal_t *journal) 855 { 856 unsigned long blocknr; 857 struct buffer_head *bh; 858 journal_superblock_t *sb; 859 int i, err; 860 861 if (journal->j_maxlen < JBD2_MIN_JOURNAL_BLOCKS) { 862 printk (KERN_ERR "Journal length (%d blocks) too short.\n", 863 journal->j_maxlen); 864 journal_fail_superblock(journal); 865 return -EINVAL; 866 } 867 868 if (journal->j_inode == NULL) { 869 /* 870 * We don't know what block to start at! 871 */ 872 printk(KERN_EMERG 873 "%s: creation of journal on external device!\n", 874 __FUNCTION__); 875 BUG(); 876 } 877 878 /* Zero out the entire journal on disk. We cannot afford to 879 have any blocks on disk beginning with JBD2_MAGIC_NUMBER. */ 880 jbd_debug(1, "JBD: Zeroing out journal blocks...\n"); 881 for (i = 0; i < journal->j_maxlen; i++) { 882 err = jbd2_journal_bmap(journal, i, &blocknr); 883 if (err) 884 return err; 885 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 886 lock_buffer(bh); 887 memset (bh->b_data, 0, journal->j_blocksize); 888 BUFFER_TRACE(bh, "marking dirty"); 889 mark_buffer_dirty(bh); 890 BUFFER_TRACE(bh, "marking uptodate"); 891 set_buffer_uptodate(bh); 892 unlock_buffer(bh); 893 __brelse(bh); 894 } 895 896 sync_blockdev(journal->j_dev); 897 jbd_debug(1, "JBD: journal cleared.\n"); 898 899 /* OK, fill in the initial static fields in the new superblock */ 900 sb = journal->j_superblock; 901 902 sb->s_header.h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 903 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2); 904 905 sb->s_blocksize = cpu_to_be32(journal->j_blocksize); 906 sb->s_maxlen = cpu_to_be32(journal->j_maxlen); 907 sb->s_first = cpu_to_be32(1); 908 909 journal->j_transaction_sequence = 1; 910 911 journal->j_flags &= ~JBD2_ABORT; 912 journal->j_format_version = 2; 913 914 return journal_reset(journal); 915 } 916 917 /** 918 * void jbd2_journal_update_superblock() - Update journal sb on disk. 919 * @journal: The journal to update. 920 * @wait: Set to '0' if you don't want to wait for IO completion. 921 * 922 * Update a journal's dynamic superblock fields and write it to disk, 923 * optionally waiting for the IO to complete. 924 */ 925 void jbd2_journal_update_superblock(journal_t *journal, int wait) 926 { 927 journal_superblock_t *sb = journal->j_superblock; 928 struct buffer_head *bh = journal->j_sb_buffer; 929 930 /* 931 * As a special case, if the on-disk copy is already marked as needing 932 * no recovery (s_start == 0) and there are no outstanding transactions 933 * in the filesystem, then we can safely defer the superblock update 934 * until the next commit by setting JBD2_FLUSHED. This avoids 935 * attempting a write to a potential-readonly device. 936 */ 937 if (sb->s_start == 0 && journal->j_tail_sequence == 938 journal->j_transaction_sequence) { 939 jbd_debug(1,"JBD: Skipping superblock update on recovered sb " 940 "(start %ld, seq %d, errno %d)\n", 941 journal->j_tail, journal->j_tail_sequence, 942 journal->j_errno); 943 goto out; 944 } 945 946 spin_lock(&journal->j_state_lock); 947 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n", 948 journal->j_tail, journal->j_tail_sequence, journal->j_errno); 949 950 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 951 sb->s_start = cpu_to_be32(journal->j_tail); 952 sb->s_errno = cpu_to_be32(journal->j_errno); 953 spin_unlock(&journal->j_state_lock); 954 955 BUFFER_TRACE(bh, "marking dirty"); 956 mark_buffer_dirty(bh); 957 if (wait) 958 sync_dirty_buffer(bh); 959 else 960 ll_rw_block(SWRITE, 1, &bh); 961 962 out: 963 /* If we have just flushed the log (by marking s_start==0), then 964 * any future commit will have to be careful to update the 965 * superblock again to re-record the true start of the log. */ 966 967 spin_lock(&journal->j_state_lock); 968 if (sb->s_start) 969 journal->j_flags &= ~JBD2_FLUSHED; 970 else 971 journal->j_flags |= JBD2_FLUSHED; 972 spin_unlock(&journal->j_state_lock); 973 } 974 975 /* 976 * Read the superblock for a given journal, performing initial 977 * validation of the format. 978 */ 979 980 static int journal_get_superblock(journal_t *journal) 981 { 982 struct buffer_head *bh; 983 journal_superblock_t *sb; 984 int err = -EIO; 985 986 bh = journal->j_sb_buffer; 987 988 J_ASSERT(bh != NULL); 989 if (!buffer_uptodate(bh)) { 990 ll_rw_block(READ, 1, &bh); 991 wait_on_buffer(bh); 992 if (!buffer_uptodate(bh)) { 993 printk (KERN_ERR 994 "JBD: IO error reading journal superblock\n"); 995 goto out; 996 } 997 } 998 999 sb = journal->j_superblock; 1000 1001 err = -EINVAL; 1002 1003 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1004 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1005 printk(KERN_WARNING "JBD: no valid journal superblock found\n"); 1006 goto out; 1007 } 1008 1009 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1010 case JBD2_SUPERBLOCK_V1: 1011 journal->j_format_version = 1; 1012 break; 1013 case JBD2_SUPERBLOCK_V2: 1014 journal->j_format_version = 2; 1015 break; 1016 default: 1017 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n"); 1018 goto out; 1019 } 1020 1021 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1022 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1023 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1024 printk (KERN_WARNING "JBD: journal file too short\n"); 1025 goto out; 1026 } 1027 1028 return 0; 1029 1030 out: 1031 journal_fail_superblock(journal); 1032 return err; 1033 } 1034 1035 /* 1036 * Load the on-disk journal superblock and read the key fields into the 1037 * journal_t. 1038 */ 1039 1040 static int load_superblock(journal_t *journal) 1041 { 1042 int err; 1043 journal_superblock_t *sb; 1044 1045 err = journal_get_superblock(journal); 1046 if (err) 1047 return err; 1048 1049 sb = journal->j_superblock; 1050 1051 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1052 journal->j_tail = be32_to_cpu(sb->s_start); 1053 journal->j_first = be32_to_cpu(sb->s_first); 1054 journal->j_last = be32_to_cpu(sb->s_maxlen); 1055 journal->j_errno = be32_to_cpu(sb->s_errno); 1056 1057 return 0; 1058 } 1059 1060 1061 /** 1062 * int jbd2_journal_load() - Read journal from disk. 1063 * @journal: Journal to act on. 1064 * 1065 * Given a journal_t structure which tells us which disk blocks contain 1066 * a journal, read the journal from disk to initialise the in-memory 1067 * structures. 1068 */ 1069 int jbd2_journal_load(journal_t *journal) 1070 { 1071 int err; 1072 journal_superblock_t *sb; 1073 1074 err = load_superblock(journal); 1075 if (err) 1076 return err; 1077 1078 sb = journal->j_superblock; 1079 /* If this is a V2 superblock, then we have to check the 1080 * features flags on it. */ 1081 1082 if (journal->j_format_version >= 2) { 1083 if ((sb->s_feature_ro_compat & 1084 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1085 (sb->s_feature_incompat & 1086 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1087 printk (KERN_WARNING 1088 "JBD: Unrecognised features on journal\n"); 1089 return -EINVAL; 1090 } 1091 } 1092 1093 /* 1094 * Create a slab for this blocksize 1095 */ 1096 err = jbd2_journal_create_jbd_slab(be32_to_cpu(sb->s_blocksize)); 1097 if (err) 1098 return err; 1099 1100 /* Let the recovery code check whether it needs to recover any 1101 * data from the journal. */ 1102 if (jbd2_journal_recover(journal)) 1103 goto recovery_error; 1104 1105 /* OK, we've finished with the dynamic journal bits: 1106 * reinitialise the dynamic contents of the superblock in memory 1107 * and reset them on disk. */ 1108 if (journal_reset(journal)) 1109 goto recovery_error; 1110 1111 journal->j_flags &= ~JBD2_ABORT; 1112 journal->j_flags |= JBD2_LOADED; 1113 return 0; 1114 1115 recovery_error: 1116 printk (KERN_WARNING "JBD: recovery failed\n"); 1117 return -EIO; 1118 } 1119 1120 /** 1121 * void jbd2_journal_destroy() - Release a journal_t structure. 1122 * @journal: Journal to act on. 1123 * 1124 * Release a journal_t structure once it is no longer in use by the 1125 * journaled object. 1126 */ 1127 void jbd2_journal_destroy(journal_t *journal) 1128 { 1129 /* Wait for the commit thread to wake up and die. */ 1130 journal_kill_thread(journal); 1131 1132 /* Force a final log commit */ 1133 if (journal->j_running_transaction) 1134 jbd2_journal_commit_transaction(journal); 1135 1136 /* Force any old transactions to disk */ 1137 1138 /* Totally anal locking here... */ 1139 spin_lock(&journal->j_list_lock); 1140 while (journal->j_checkpoint_transactions != NULL) { 1141 spin_unlock(&journal->j_list_lock); 1142 jbd2_log_do_checkpoint(journal); 1143 spin_lock(&journal->j_list_lock); 1144 } 1145 1146 J_ASSERT(journal->j_running_transaction == NULL); 1147 J_ASSERT(journal->j_committing_transaction == NULL); 1148 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1149 spin_unlock(&journal->j_list_lock); 1150 1151 /* We can now mark the journal as empty. */ 1152 journal->j_tail = 0; 1153 journal->j_tail_sequence = ++journal->j_transaction_sequence; 1154 if (journal->j_sb_buffer) { 1155 jbd2_journal_update_superblock(journal, 1); 1156 brelse(journal->j_sb_buffer); 1157 } 1158 1159 if (journal->j_inode) 1160 iput(journal->j_inode); 1161 if (journal->j_revoke) 1162 jbd2_journal_destroy_revoke(journal); 1163 kfree(journal->j_wbuf); 1164 kfree(journal); 1165 } 1166 1167 1168 /** 1169 *int jbd2_journal_check_used_features () - Check if features specified are used. 1170 * @journal: Journal to check. 1171 * @compat: bitmask of compatible features 1172 * @ro: bitmask of features that force read-only mount 1173 * @incompat: bitmask of incompatible features 1174 * 1175 * Check whether the journal uses all of a given set of 1176 * features. Return true (non-zero) if it does. 1177 **/ 1178 1179 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1180 unsigned long ro, unsigned long incompat) 1181 { 1182 journal_superblock_t *sb; 1183 1184 if (!compat && !ro && !incompat) 1185 return 1; 1186 if (journal->j_format_version == 1) 1187 return 0; 1188 1189 sb = journal->j_superblock; 1190 1191 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1192 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1193 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1194 return 1; 1195 1196 return 0; 1197 } 1198 1199 /** 1200 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1201 * @journal: Journal to check. 1202 * @compat: bitmask of compatible features 1203 * @ro: bitmask of features that force read-only mount 1204 * @incompat: bitmask of incompatible features 1205 * 1206 * Check whether the journaling code supports the use of 1207 * all of a given set of features on this journal. Return true 1208 * (non-zero) if it can. */ 1209 1210 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1211 unsigned long ro, unsigned long incompat) 1212 { 1213 journal_superblock_t *sb; 1214 1215 if (!compat && !ro && !incompat) 1216 return 1; 1217 1218 sb = journal->j_superblock; 1219 1220 /* We can support any known requested features iff the 1221 * superblock is in version 2. Otherwise we fail to support any 1222 * extended sb features. */ 1223 1224 if (journal->j_format_version != 2) 1225 return 0; 1226 1227 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1228 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1229 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1230 return 1; 1231 1232 return 0; 1233 } 1234 1235 /** 1236 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1237 * @journal: Journal to act on. 1238 * @compat: bitmask of compatible features 1239 * @ro: bitmask of features that force read-only mount 1240 * @incompat: bitmask of incompatible features 1241 * 1242 * Mark a given journal feature as present on the 1243 * superblock. Returns true if the requested features could be set. 1244 * 1245 */ 1246 1247 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1248 unsigned long ro, unsigned long incompat) 1249 { 1250 journal_superblock_t *sb; 1251 1252 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1253 return 1; 1254 1255 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1256 return 0; 1257 1258 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1259 compat, ro, incompat); 1260 1261 sb = journal->j_superblock; 1262 1263 sb->s_feature_compat |= cpu_to_be32(compat); 1264 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1265 sb->s_feature_incompat |= cpu_to_be32(incompat); 1266 1267 return 1; 1268 } 1269 1270 1271 /** 1272 * int jbd2_journal_update_format () - Update on-disk journal structure. 1273 * @journal: Journal to act on. 1274 * 1275 * Given an initialised but unloaded journal struct, poke about in the 1276 * on-disk structure to update it to the most recent supported version. 1277 */ 1278 int jbd2_journal_update_format (journal_t *journal) 1279 { 1280 journal_superblock_t *sb; 1281 int err; 1282 1283 err = journal_get_superblock(journal); 1284 if (err) 1285 return err; 1286 1287 sb = journal->j_superblock; 1288 1289 switch (be32_to_cpu(sb->s_header.h_blocktype)) { 1290 case JBD2_SUPERBLOCK_V2: 1291 return 0; 1292 case JBD2_SUPERBLOCK_V1: 1293 return journal_convert_superblock_v1(journal, sb); 1294 default: 1295 break; 1296 } 1297 return -EINVAL; 1298 } 1299 1300 static int journal_convert_superblock_v1(journal_t *journal, 1301 journal_superblock_t *sb) 1302 { 1303 int offset, blocksize; 1304 struct buffer_head *bh; 1305 1306 printk(KERN_WARNING 1307 "JBD: Converting superblock from version 1 to 2.\n"); 1308 1309 /* Pre-initialise new fields to zero */ 1310 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb); 1311 blocksize = be32_to_cpu(sb->s_blocksize); 1312 memset(&sb->s_feature_compat, 0, blocksize-offset); 1313 1314 sb->s_nr_users = cpu_to_be32(1); 1315 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2); 1316 journal->j_format_version = 2; 1317 1318 bh = journal->j_sb_buffer; 1319 BUFFER_TRACE(bh, "marking dirty"); 1320 mark_buffer_dirty(bh); 1321 sync_dirty_buffer(bh); 1322 return 0; 1323 } 1324 1325 1326 /** 1327 * int jbd2_journal_flush () - Flush journal 1328 * @journal: Journal to act on. 1329 * 1330 * Flush all data for a given journal to disk and empty the journal. 1331 * Filesystems can use this when remounting readonly to ensure that 1332 * recovery does not need to happen on remount. 1333 */ 1334 1335 int jbd2_journal_flush(journal_t *journal) 1336 { 1337 int err = 0; 1338 transaction_t *transaction = NULL; 1339 unsigned long old_tail; 1340 1341 spin_lock(&journal->j_state_lock); 1342 1343 /* Force everything buffered to the log... */ 1344 if (journal->j_running_transaction) { 1345 transaction = journal->j_running_transaction; 1346 __jbd2_log_start_commit(journal, transaction->t_tid); 1347 } else if (journal->j_committing_transaction) 1348 transaction = journal->j_committing_transaction; 1349 1350 /* Wait for the log commit to complete... */ 1351 if (transaction) { 1352 tid_t tid = transaction->t_tid; 1353 1354 spin_unlock(&journal->j_state_lock); 1355 jbd2_log_wait_commit(journal, tid); 1356 } else { 1357 spin_unlock(&journal->j_state_lock); 1358 } 1359 1360 /* ...and flush everything in the log out to disk. */ 1361 spin_lock(&journal->j_list_lock); 1362 while (!err && journal->j_checkpoint_transactions != NULL) { 1363 spin_unlock(&journal->j_list_lock); 1364 err = jbd2_log_do_checkpoint(journal); 1365 spin_lock(&journal->j_list_lock); 1366 } 1367 spin_unlock(&journal->j_list_lock); 1368 jbd2_cleanup_journal_tail(journal); 1369 1370 /* Finally, mark the journal as really needing no recovery. 1371 * This sets s_start==0 in the underlying superblock, which is 1372 * the magic code for a fully-recovered superblock. Any future 1373 * commits of data to the journal will restore the current 1374 * s_start value. */ 1375 spin_lock(&journal->j_state_lock); 1376 old_tail = journal->j_tail; 1377 journal->j_tail = 0; 1378 spin_unlock(&journal->j_state_lock); 1379 jbd2_journal_update_superblock(journal, 1); 1380 spin_lock(&journal->j_state_lock); 1381 journal->j_tail = old_tail; 1382 1383 J_ASSERT(!journal->j_running_transaction); 1384 J_ASSERT(!journal->j_committing_transaction); 1385 J_ASSERT(!journal->j_checkpoint_transactions); 1386 J_ASSERT(journal->j_head == journal->j_tail); 1387 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1388 spin_unlock(&journal->j_state_lock); 1389 return err; 1390 } 1391 1392 /** 1393 * int jbd2_journal_wipe() - Wipe journal contents 1394 * @journal: Journal to act on. 1395 * @write: flag (see below) 1396 * 1397 * Wipe out all of the contents of a journal, safely. This will produce 1398 * a warning if the journal contains any valid recovery information. 1399 * Must be called between journal_init_*() and jbd2_journal_load(). 1400 * 1401 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1402 * we merely suppress recovery. 1403 */ 1404 1405 int jbd2_journal_wipe(journal_t *journal, int write) 1406 { 1407 journal_superblock_t *sb; 1408 int err = 0; 1409 1410 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1411 1412 err = load_superblock(journal); 1413 if (err) 1414 return err; 1415 1416 sb = journal->j_superblock; 1417 1418 if (!journal->j_tail) 1419 goto no_recovery; 1420 1421 printk (KERN_WARNING "JBD: %s recovery information on journal\n", 1422 write ? "Clearing" : "Ignoring"); 1423 1424 err = jbd2_journal_skip_recovery(journal); 1425 if (write) 1426 jbd2_journal_update_superblock(journal, 1); 1427 1428 no_recovery: 1429 return err; 1430 } 1431 1432 /* 1433 * journal_dev_name: format a character string to describe on what 1434 * device this journal is present. 1435 */ 1436 1437 static const char *journal_dev_name(journal_t *journal, char *buffer) 1438 { 1439 struct block_device *bdev; 1440 1441 if (journal->j_inode) 1442 bdev = journal->j_inode->i_sb->s_bdev; 1443 else 1444 bdev = journal->j_dev; 1445 1446 return bdevname(bdev, buffer); 1447 } 1448 1449 /* 1450 * Journal abort has very specific semantics, which we describe 1451 * for journal abort. 1452 * 1453 * Two internal function, which provide abort to te jbd layer 1454 * itself are here. 1455 */ 1456 1457 /* 1458 * Quick version for internal journal use (doesn't lock the journal). 1459 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1460 * and don't attempt to make any other journal updates. 1461 */ 1462 void __jbd2_journal_abort_hard(journal_t *journal) 1463 { 1464 transaction_t *transaction; 1465 char b[BDEVNAME_SIZE]; 1466 1467 if (journal->j_flags & JBD2_ABORT) 1468 return; 1469 1470 printk(KERN_ERR "Aborting journal on device %s.\n", 1471 journal_dev_name(journal, b)); 1472 1473 spin_lock(&journal->j_state_lock); 1474 journal->j_flags |= JBD2_ABORT; 1475 transaction = journal->j_running_transaction; 1476 if (transaction) 1477 __jbd2_log_start_commit(journal, transaction->t_tid); 1478 spin_unlock(&journal->j_state_lock); 1479 } 1480 1481 /* Soft abort: record the abort error status in the journal superblock, 1482 * but don't do any other IO. */ 1483 static void __journal_abort_soft (journal_t *journal, int errno) 1484 { 1485 if (journal->j_flags & JBD2_ABORT) 1486 return; 1487 1488 if (!journal->j_errno) 1489 journal->j_errno = errno; 1490 1491 __jbd2_journal_abort_hard(journal); 1492 1493 if (errno) 1494 jbd2_journal_update_superblock(journal, 1); 1495 } 1496 1497 /** 1498 * void jbd2_journal_abort () - Shutdown the journal immediately. 1499 * @journal: the journal to shutdown. 1500 * @errno: an error number to record in the journal indicating 1501 * the reason for the shutdown. 1502 * 1503 * Perform a complete, immediate shutdown of the ENTIRE 1504 * journal (not of a single transaction). This operation cannot be 1505 * undone without closing and reopening the journal. 1506 * 1507 * The jbd2_journal_abort function is intended to support higher level error 1508 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1509 * mode. 1510 * 1511 * Journal abort has very specific semantics. Any existing dirty, 1512 * unjournaled buffers in the main filesystem will still be written to 1513 * disk by bdflush, but the journaling mechanism will be suspended 1514 * immediately and no further transaction commits will be honoured. 1515 * 1516 * Any dirty, journaled buffers will be written back to disk without 1517 * hitting the journal. Atomicity cannot be guaranteed on an aborted 1518 * filesystem, but we _do_ attempt to leave as much data as possible 1519 * behind for fsck to use for cleanup. 1520 * 1521 * Any attempt to get a new transaction handle on a journal which is in 1522 * ABORT state will just result in an -EROFS error return. A 1523 * jbd2_journal_stop on an existing handle will return -EIO if we have 1524 * entered abort state during the update. 1525 * 1526 * Recursive transactions are not disturbed by journal abort until the 1527 * final jbd2_journal_stop, which will receive the -EIO error. 1528 * 1529 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 1530 * which will be recorded (if possible) in the journal superblock. This 1531 * allows a client to record failure conditions in the middle of a 1532 * transaction without having to complete the transaction to record the 1533 * failure to disk. ext3_error, for example, now uses this 1534 * functionality. 1535 * 1536 * Errors which originate from within the journaling layer will NOT 1537 * supply an errno; a null errno implies that absolutely no further 1538 * writes are done to the journal (unless there are any already in 1539 * progress). 1540 * 1541 */ 1542 1543 void jbd2_journal_abort(journal_t *journal, int errno) 1544 { 1545 __journal_abort_soft(journal, errno); 1546 } 1547 1548 /** 1549 * int jbd2_journal_errno () - returns the journal's error state. 1550 * @journal: journal to examine. 1551 * 1552 * This is the errno numbet set with jbd2_journal_abort(), the last 1553 * time the journal was mounted - if the journal was stopped 1554 * without calling abort this will be 0. 1555 * 1556 * If the journal has been aborted on this mount time -EROFS will 1557 * be returned. 1558 */ 1559 int jbd2_journal_errno(journal_t *journal) 1560 { 1561 int err; 1562 1563 spin_lock(&journal->j_state_lock); 1564 if (journal->j_flags & JBD2_ABORT) 1565 err = -EROFS; 1566 else 1567 err = journal->j_errno; 1568 spin_unlock(&journal->j_state_lock); 1569 return err; 1570 } 1571 1572 /** 1573 * int jbd2_journal_clear_err () - clears the journal's error state 1574 * @journal: journal to act on. 1575 * 1576 * An error must be cleared or Acked to take a FS out of readonly 1577 * mode. 1578 */ 1579 int jbd2_journal_clear_err(journal_t *journal) 1580 { 1581 int err = 0; 1582 1583 spin_lock(&journal->j_state_lock); 1584 if (journal->j_flags & JBD2_ABORT) 1585 err = -EROFS; 1586 else 1587 journal->j_errno = 0; 1588 spin_unlock(&journal->j_state_lock); 1589 return err; 1590 } 1591 1592 /** 1593 * void jbd2_journal_ack_err() - Ack journal err. 1594 * @journal: journal to act on. 1595 * 1596 * An error must be cleared or Acked to take a FS out of readonly 1597 * mode. 1598 */ 1599 void jbd2_journal_ack_err(journal_t *journal) 1600 { 1601 spin_lock(&journal->j_state_lock); 1602 if (journal->j_errno) 1603 journal->j_flags |= JBD2_ACK_ERR; 1604 spin_unlock(&journal->j_state_lock); 1605 } 1606 1607 int jbd2_journal_blocks_per_page(struct inode *inode) 1608 { 1609 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1610 } 1611 1612 /* 1613 * Simple support for retrying memory allocations. Introduced to help to 1614 * debug different VM deadlock avoidance strategies. 1615 */ 1616 void * __jbd2_kmalloc (const char *where, size_t size, gfp_t flags, int retry) 1617 { 1618 return kmalloc(size, flags | (retry ? __GFP_NOFAIL : 0)); 1619 } 1620 1621 /* 1622 * jbd slab management: create 1k, 2k, 4k, 8k slabs as needed 1623 * and allocate frozen and commit buffers from these slabs. 1624 * 1625 * Reason for doing this is to avoid, SLAB_DEBUG - since it could 1626 * cause bh to cross page boundary. 1627 */ 1628 1629 #define JBD_MAX_SLABS 5 1630 #define JBD_SLAB_INDEX(size) (size >> 11) 1631 1632 static kmem_cache_t *jbd_slab[JBD_MAX_SLABS]; 1633 static const char *jbd_slab_names[JBD_MAX_SLABS] = { 1634 "jbd_1k", "jbd_2k", "jbd_4k", NULL, "jbd_8k" 1635 }; 1636 1637 static void jbd2_journal_destroy_jbd_slabs(void) 1638 { 1639 int i; 1640 1641 for (i = 0; i < JBD_MAX_SLABS; i++) { 1642 if (jbd_slab[i]) 1643 kmem_cache_destroy(jbd_slab[i]); 1644 jbd_slab[i] = NULL; 1645 } 1646 } 1647 1648 static int jbd2_journal_create_jbd_slab(size_t slab_size) 1649 { 1650 int i = JBD_SLAB_INDEX(slab_size); 1651 1652 BUG_ON(i >= JBD_MAX_SLABS); 1653 1654 /* 1655 * Check if we already have a slab created for this size 1656 */ 1657 if (jbd_slab[i]) 1658 return 0; 1659 1660 /* 1661 * Create a slab and force alignment to be same as slabsize - 1662 * this will make sure that allocations won't cross the page 1663 * boundary. 1664 */ 1665 jbd_slab[i] = kmem_cache_create(jbd_slab_names[i], 1666 slab_size, slab_size, 0, NULL, NULL); 1667 if (!jbd_slab[i]) { 1668 printk(KERN_EMERG "JBD: no memory for jbd_slab cache\n"); 1669 return -ENOMEM; 1670 } 1671 return 0; 1672 } 1673 1674 void * jbd2_slab_alloc(size_t size, gfp_t flags) 1675 { 1676 int idx; 1677 1678 idx = JBD_SLAB_INDEX(size); 1679 BUG_ON(jbd_slab[idx] == NULL); 1680 return kmem_cache_alloc(jbd_slab[idx], flags | __GFP_NOFAIL); 1681 } 1682 1683 void jbd2_slab_free(void *ptr, size_t size) 1684 { 1685 int idx; 1686 1687 idx = JBD_SLAB_INDEX(size); 1688 BUG_ON(jbd_slab[idx] == NULL); 1689 kmem_cache_free(jbd_slab[idx], ptr); 1690 } 1691 1692 /* 1693 * Journal_head storage management 1694 */ 1695 static kmem_cache_t *jbd2_journal_head_cache; 1696 #ifdef CONFIG_JBD_DEBUG 1697 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 1698 #endif 1699 1700 static int journal_init_jbd2_journal_head_cache(void) 1701 { 1702 int retval; 1703 1704 J_ASSERT(jbd2_journal_head_cache == 0); 1705 jbd2_journal_head_cache = kmem_cache_create("journal_head", 1706 sizeof(struct journal_head), 1707 0, /* offset */ 1708 0, /* flags */ 1709 NULL, /* ctor */ 1710 NULL); /* dtor */ 1711 retval = 0; 1712 if (jbd2_journal_head_cache == 0) { 1713 retval = -ENOMEM; 1714 printk(KERN_EMERG "JBD: no memory for journal_head cache\n"); 1715 } 1716 return retval; 1717 } 1718 1719 static void jbd2_journal_destroy_jbd2_journal_head_cache(void) 1720 { 1721 J_ASSERT(jbd2_journal_head_cache != NULL); 1722 kmem_cache_destroy(jbd2_journal_head_cache); 1723 jbd2_journal_head_cache = NULL; 1724 } 1725 1726 /* 1727 * journal_head splicing and dicing 1728 */ 1729 static struct journal_head *journal_alloc_journal_head(void) 1730 { 1731 struct journal_head *ret; 1732 static unsigned long last_warning; 1733 1734 #ifdef CONFIG_JBD_DEBUG 1735 atomic_inc(&nr_journal_heads); 1736 #endif 1737 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1738 if (ret == 0) { 1739 jbd_debug(1, "out of memory for journal_head\n"); 1740 if (time_after(jiffies, last_warning + 5*HZ)) { 1741 printk(KERN_NOTICE "ENOMEM in %s, retrying.\n", 1742 __FUNCTION__); 1743 last_warning = jiffies; 1744 } 1745 while (ret == 0) { 1746 yield(); 1747 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1748 } 1749 } 1750 return ret; 1751 } 1752 1753 static void journal_free_journal_head(struct journal_head *jh) 1754 { 1755 #ifdef CONFIG_JBD_DEBUG 1756 atomic_dec(&nr_journal_heads); 1757 memset(jh, JBD_POISON_FREE, sizeof(*jh)); 1758 #endif 1759 kmem_cache_free(jbd2_journal_head_cache, jh); 1760 } 1761 1762 /* 1763 * A journal_head is attached to a buffer_head whenever JBD has an 1764 * interest in the buffer. 1765 * 1766 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 1767 * is set. This bit is tested in core kernel code where we need to take 1768 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 1769 * there. 1770 * 1771 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 1772 * 1773 * When a buffer has its BH_JBD bit set it is immune from being released by 1774 * core kernel code, mainly via ->b_count. 1775 * 1776 * A journal_head may be detached from its buffer_head when the journal_head's 1777 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL. 1778 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the 1779 * journal_head can be dropped if needed. 1780 * 1781 * Various places in the kernel want to attach a journal_head to a buffer_head 1782 * _before_ attaching the journal_head to a transaction. To protect the 1783 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 1784 * journal_head's b_jcount refcount by one. The caller must call 1785 * jbd2_journal_put_journal_head() to undo this. 1786 * 1787 * So the typical usage would be: 1788 * 1789 * (Attach a journal_head if needed. Increments b_jcount) 1790 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1791 * ... 1792 * jh->b_transaction = xxx; 1793 * jbd2_journal_put_journal_head(jh); 1794 * 1795 * Now, the journal_head's b_jcount is zero, but it is safe from being released 1796 * because it has a non-zero b_transaction. 1797 */ 1798 1799 /* 1800 * Give a buffer_head a journal_head. 1801 * 1802 * Doesn't need the journal lock. 1803 * May sleep. 1804 */ 1805 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 1806 { 1807 struct journal_head *jh; 1808 struct journal_head *new_jh = NULL; 1809 1810 repeat: 1811 if (!buffer_jbd(bh)) { 1812 new_jh = journal_alloc_journal_head(); 1813 memset(new_jh, 0, sizeof(*new_jh)); 1814 } 1815 1816 jbd_lock_bh_journal_head(bh); 1817 if (buffer_jbd(bh)) { 1818 jh = bh2jh(bh); 1819 } else { 1820 J_ASSERT_BH(bh, 1821 (atomic_read(&bh->b_count) > 0) || 1822 (bh->b_page && bh->b_page->mapping)); 1823 1824 if (!new_jh) { 1825 jbd_unlock_bh_journal_head(bh); 1826 goto repeat; 1827 } 1828 1829 jh = new_jh; 1830 new_jh = NULL; /* We consumed it */ 1831 set_buffer_jbd(bh); 1832 bh->b_private = jh; 1833 jh->b_bh = bh; 1834 get_bh(bh); 1835 BUFFER_TRACE(bh, "added journal_head"); 1836 } 1837 jh->b_jcount++; 1838 jbd_unlock_bh_journal_head(bh); 1839 if (new_jh) 1840 journal_free_journal_head(new_jh); 1841 return bh->b_private; 1842 } 1843 1844 /* 1845 * Grab a ref against this buffer_head's journal_head. If it ended up not 1846 * having a journal_head, return NULL 1847 */ 1848 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 1849 { 1850 struct journal_head *jh = NULL; 1851 1852 jbd_lock_bh_journal_head(bh); 1853 if (buffer_jbd(bh)) { 1854 jh = bh2jh(bh); 1855 jh->b_jcount++; 1856 } 1857 jbd_unlock_bh_journal_head(bh); 1858 return jh; 1859 } 1860 1861 static void __journal_remove_journal_head(struct buffer_head *bh) 1862 { 1863 struct journal_head *jh = bh2jh(bh); 1864 1865 J_ASSERT_JH(jh, jh->b_jcount >= 0); 1866 1867 get_bh(bh); 1868 if (jh->b_jcount == 0) { 1869 if (jh->b_transaction == NULL && 1870 jh->b_next_transaction == NULL && 1871 jh->b_cp_transaction == NULL) { 1872 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 1873 J_ASSERT_BH(bh, buffer_jbd(bh)); 1874 J_ASSERT_BH(bh, jh2bh(jh) == bh); 1875 BUFFER_TRACE(bh, "remove journal_head"); 1876 if (jh->b_frozen_data) { 1877 printk(KERN_WARNING "%s: freeing " 1878 "b_frozen_data\n", 1879 __FUNCTION__); 1880 jbd2_slab_free(jh->b_frozen_data, bh->b_size); 1881 } 1882 if (jh->b_committed_data) { 1883 printk(KERN_WARNING "%s: freeing " 1884 "b_committed_data\n", 1885 __FUNCTION__); 1886 jbd2_slab_free(jh->b_committed_data, bh->b_size); 1887 } 1888 bh->b_private = NULL; 1889 jh->b_bh = NULL; /* debug, really */ 1890 clear_buffer_jbd(bh); 1891 __brelse(bh); 1892 journal_free_journal_head(jh); 1893 } else { 1894 BUFFER_TRACE(bh, "journal_head was locked"); 1895 } 1896 } 1897 } 1898 1899 /* 1900 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction 1901 * and has a zero b_jcount then remove and release its journal_head. If we did 1902 * see that the buffer is not used by any transaction we also "logically" 1903 * decrement ->b_count. 1904 * 1905 * We in fact take an additional increment on ->b_count as a convenience, 1906 * because the caller usually wants to do additional things with the bh 1907 * after calling here. 1908 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some 1909 * time. Once the caller has run __brelse(), the buffer is eligible for 1910 * reaping by try_to_free_buffers(). 1911 */ 1912 void jbd2_journal_remove_journal_head(struct buffer_head *bh) 1913 { 1914 jbd_lock_bh_journal_head(bh); 1915 __journal_remove_journal_head(bh); 1916 jbd_unlock_bh_journal_head(bh); 1917 } 1918 1919 /* 1920 * Drop a reference on the passed journal_head. If it fell to zero then try to 1921 * release the journal_head from the buffer_head. 1922 */ 1923 void jbd2_journal_put_journal_head(struct journal_head *jh) 1924 { 1925 struct buffer_head *bh = jh2bh(jh); 1926 1927 jbd_lock_bh_journal_head(bh); 1928 J_ASSERT_JH(jh, jh->b_jcount > 0); 1929 --jh->b_jcount; 1930 if (!jh->b_jcount && !jh->b_transaction) { 1931 __journal_remove_journal_head(bh); 1932 __brelse(bh); 1933 } 1934 jbd_unlock_bh_journal_head(bh); 1935 } 1936 1937 /* 1938 * /proc tunables 1939 */ 1940 #if defined(CONFIG_JBD_DEBUG) 1941 int jbd2_journal_enable_debug; 1942 EXPORT_SYMBOL(jbd2_journal_enable_debug); 1943 #endif 1944 1945 #if defined(CONFIG_JBD_DEBUG) && defined(CONFIG_PROC_FS) 1946 1947 static struct proc_dir_entry *proc_jbd_debug; 1948 1949 static int read_jbd_debug(char *page, char **start, off_t off, 1950 int count, int *eof, void *data) 1951 { 1952 int ret; 1953 1954 ret = sprintf(page + off, "%d\n", jbd2_journal_enable_debug); 1955 *eof = 1; 1956 return ret; 1957 } 1958 1959 static int write_jbd_debug(struct file *file, const char __user *buffer, 1960 unsigned long count, void *data) 1961 { 1962 char buf[32]; 1963 1964 if (count > ARRAY_SIZE(buf) - 1) 1965 count = ARRAY_SIZE(buf) - 1; 1966 if (copy_from_user(buf, buffer, count)) 1967 return -EFAULT; 1968 buf[ARRAY_SIZE(buf) - 1] = '\0'; 1969 jbd2_journal_enable_debug = simple_strtoul(buf, NULL, 10); 1970 return count; 1971 } 1972 1973 #define JBD_PROC_NAME "sys/fs/jbd2-debug" 1974 1975 static void __init create_jbd_proc_entry(void) 1976 { 1977 proc_jbd_debug = create_proc_entry(JBD_PROC_NAME, 0644, NULL); 1978 if (proc_jbd_debug) { 1979 /* Why is this so hard? */ 1980 proc_jbd_debug->read_proc = read_jbd_debug; 1981 proc_jbd_debug->write_proc = write_jbd_debug; 1982 } 1983 } 1984 1985 static void __exit jbd2_remove_jbd_proc_entry(void) 1986 { 1987 if (proc_jbd_debug) 1988 remove_proc_entry(JBD_PROC_NAME, NULL); 1989 } 1990 1991 #else 1992 1993 #define create_jbd_proc_entry() do {} while (0) 1994 #define jbd2_remove_jbd_proc_entry() do {} while (0) 1995 1996 #endif 1997 1998 kmem_cache_t *jbd2_handle_cache; 1999 2000 static int __init journal_init_handle_cache(void) 2001 { 2002 jbd2_handle_cache = kmem_cache_create("journal_handle", 2003 sizeof(handle_t), 2004 0, /* offset */ 2005 0, /* flags */ 2006 NULL, /* ctor */ 2007 NULL); /* dtor */ 2008 if (jbd2_handle_cache == NULL) { 2009 printk(KERN_EMERG "JBD: failed to create handle cache\n"); 2010 return -ENOMEM; 2011 } 2012 return 0; 2013 } 2014 2015 static void jbd2_journal_destroy_handle_cache(void) 2016 { 2017 if (jbd2_handle_cache) 2018 kmem_cache_destroy(jbd2_handle_cache); 2019 } 2020 2021 /* 2022 * Module startup and shutdown 2023 */ 2024 2025 static int __init journal_init_caches(void) 2026 { 2027 int ret; 2028 2029 ret = jbd2_journal_init_revoke_caches(); 2030 if (ret == 0) 2031 ret = journal_init_jbd2_journal_head_cache(); 2032 if (ret == 0) 2033 ret = journal_init_handle_cache(); 2034 return ret; 2035 } 2036 2037 static void jbd2_journal_destroy_caches(void) 2038 { 2039 jbd2_journal_destroy_revoke_caches(); 2040 jbd2_journal_destroy_jbd2_journal_head_cache(); 2041 jbd2_journal_destroy_handle_cache(); 2042 jbd2_journal_destroy_jbd_slabs(); 2043 } 2044 2045 static int __init journal_init(void) 2046 { 2047 int ret; 2048 2049 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2050 2051 ret = journal_init_caches(); 2052 if (ret != 0) 2053 jbd2_journal_destroy_caches(); 2054 create_jbd_proc_entry(); 2055 return ret; 2056 } 2057 2058 static void __exit journal_exit(void) 2059 { 2060 #ifdef CONFIG_JBD_DEBUG 2061 int n = atomic_read(&nr_journal_heads); 2062 if (n) 2063 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n); 2064 #endif 2065 jbd2_remove_jbd_proc_entry(); 2066 jbd2_journal_destroy_caches(); 2067 } 2068 2069 MODULE_LICENSE("GPL"); 2070 module_init(journal_init); 2071 module_exit(journal_exit); 2072 2073