xref: /openbmc/linux/fs/jbd2/journal.c (revision f7f4bccb729844a0fa873e224e3a6f7eeed095bb)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/mm.h>
34 #include <linux/suspend.h>
35 #include <linux/pagemap.h>
36 #include <linux/kthread.h>
37 #include <linux/poison.h>
38 #include <linux/proc_fs.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/page.h>
42 
43 EXPORT_SYMBOL(jbd2_journal_start);
44 EXPORT_SYMBOL(jbd2_journal_restart);
45 EXPORT_SYMBOL(jbd2_journal_extend);
46 EXPORT_SYMBOL(jbd2_journal_stop);
47 EXPORT_SYMBOL(jbd2_journal_lock_updates);
48 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
49 EXPORT_SYMBOL(jbd2_journal_get_write_access);
50 EXPORT_SYMBOL(jbd2_journal_get_create_access);
51 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
52 EXPORT_SYMBOL(jbd2_journal_dirty_data);
53 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
54 EXPORT_SYMBOL(jbd2_journal_release_buffer);
55 EXPORT_SYMBOL(jbd2_journal_forget);
56 #if 0
57 EXPORT_SYMBOL(journal_sync_buffer);
58 #endif
59 EXPORT_SYMBOL(jbd2_journal_flush);
60 EXPORT_SYMBOL(jbd2_journal_revoke);
61 
62 EXPORT_SYMBOL(jbd2_journal_init_dev);
63 EXPORT_SYMBOL(jbd2_journal_init_inode);
64 EXPORT_SYMBOL(jbd2_journal_update_format);
65 EXPORT_SYMBOL(jbd2_journal_check_used_features);
66 EXPORT_SYMBOL(jbd2_journal_check_available_features);
67 EXPORT_SYMBOL(jbd2_journal_set_features);
68 EXPORT_SYMBOL(jbd2_journal_create);
69 EXPORT_SYMBOL(jbd2_journal_load);
70 EXPORT_SYMBOL(jbd2_journal_destroy);
71 EXPORT_SYMBOL(jbd2_journal_update_superblock);
72 EXPORT_SYMBOL(jbd2_journal_abort);
73 EXPORT_SYMBOL(jbd2_journal_errno);
74 EXPORT_SYMBOL(jbd2_journal_ack_err);
75 EXPORT_SYMBOL(jbd2_journal_clear_err);
76 EXPORT_SYMBOL(jbd2_log_wait_commit);
77 EXPORT_SYMBOL(jbd2_journal_start_commit);
78 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
79 EXPORT_SYMBOL(jbd2_journal_wipe);
80 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
81 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
82 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
83 EXPORT_SYMBOL(jbd2_journal_force_commit);
84 
85 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
86 static void __journal_abort_soft (journal_t *journal, int errno);
87 static int jbd2_journal_create_jbd_slab(size_t slab_size);
88 
89 /*
90  * Helper function used to manage commit timeouts
91  */
92 
93 static void commit_timeout(unsigned long __data)
94 {
95 	struct task_struct * p = (struct task_struct *) __data;
96 
97 	wake_up_process(p);
98 }
99 
100 /*
101  * kjournald2: The main thread function used to manage a logging device
102  * journal.
103  *
104  * This kernel thread is responsible for two things:
105  *
106  * 1) COMMIT:  Every so often we need to commit the current state of the
107  *    filesystem to disk.  The journal thread is responsible for writing
108  *    all of the metadata buffers to disk.
109  *
110  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
111  *    of the data in that part of the log has been rewritten elsewhere on
112  *    the disk.  Flushing these old buffers to reclaim space in the log is
113  *    known as checkpointing, and this thread is responsible for that job.
114  */
115 
116 static int kjournald2(void *arg)
117 {
118 	journal_t *journal = arg;
119 	transaction_t *transaction;
120 
121 	/*
122 	 * Set up an interval timer which can be used to trigger a commit wakeup
123 	 * after the commit interval expires
124 	 */
125 	setup_timer(&journal->j_commit_timer, commit_timeout,
126 			(unsigned long)current);
127 
128 	/* Record that the journal thread is running */
129 	journal->j_task = current;
130 	wake_up(&journal->j_wait_done_commit);
131 
132 	printk(KERN_INFO "kjournald2 starting.  Commit interval %ld seconds\n",
133 			journal->j_commit_interval / HZ);
134 
135 	/*
136 	 * And now, wait forever for commit wakeup events.
137 	 */
138 	spin_lock(&journal->j_state_lock);
139 
140 loop:
141 	if (journal->j_flags & JBD2_UNMOUNT)
142 		goto end_loop;
143 
144 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
145 		journal->j_commit_sequence, journal->j_commit_request);
146 
147 	if (journal->j_commit_sequence != journal->j_commit_request) {
148 		jbd_debug(1, "OK, requests differ\n");
149 		spin_unlock(&journal->j_state_lock);
150 		del_timer_sync(&journal->j_commit_timer);
151 		jbd2_journal_commit_transaction(journal);
152 		spin_lock(&journal->j_state_lock);
153 		goto loop;
154 	}
155 
156 	wake_up(&journal->j_wait_done_commit);
157 	if (freezing(current)) {
158 		/*
159 		 * The simpler the better. Flushing journal isn't a
160 		 * good idea, because that depends on threads that may
161 		 * be already stopped.
162 		 */
163 		jbd_debug(1, "Now suspending kjournald2\n");
164 		spin_unlock(&journal->j_state_lock);
165 		refrigerator();
166 		spin_lock(&journal->j_state_lock);
167 	} else {
168 		/*
169 		 * We assume on resume that commits are already there,
170 		 * so we don't sleep
171 		 */
172 		DEFINE_WAIT(wait);
173 		int should_sleep = 1;
174 
175 		prepare_to_wait(&journal->j_wait_commit, &wait,
176 				TASK_INTERRUPTIBLE);
177 		if (journal->j_commit_sequence != journal->j_commit_request)
178 			should_sleep = 0;
179 		transaction = journal->j_running_transaction;
180 		if (transaction && time_after_eq(jiffies,
181 						transaction->t_expires))
182 			should_sleep = 0;
183 		if (journal->j_flags & JBD2_UNMOUNT)
184 			should_sleep = 0;
185 		if (should_sleep) {
186 			spin_unlock(&journal->j_state_lock);
187 			schedule();
188 			spin_lock(&journal->j_state_lock);
189 		}
190 		finish_wait(&journal->j_wait_commit, &wait);
191 	}
192 
193 	jbd_debug(1, "kjournald2 wakes\n");
194 
195 	/*
196 	 * Were we woken up by a commit wakeup event?
197 	 */
198 	transaction = journal->j_running_transaction;
199 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
200 		journal->j_commit_request = transaction->t_tid;
201 		jbd_debug(1, "woke because of timeout\n");
202 	}
203 	goto loop;
204 
205 end_loop:
206 	spin_unlock(&journal->j_state_lock);
207 	del_timer_sync(&journal->j_commit_timer);
208 	journal->j_task = NULL;
209 	wake_up(&journal->j_wait_done_commit);
210 	jbd_debug(1, "Journal thread exiting.\n");
211 	return 0;
212 }
213 
214 static void jbd2_journal_start_thread(journal_t *journal)
215 {
216 	kthread_run(kjournald2, journal, "kjournald2");
217 	wait_event(journal->j_wait_done_commit, journal->j_task != 0);
218 }
219 
220 static void journal_kill_thread(journal_t *journal)
221 {
222 	spin_lock(&journal->j_state_lock);
223 	journal->j_flags |= JBD2_UNMOUNT;
224 
225 	while (journal->j_task) {
226 		wake_up(&journal->j_wait_commit);
227 		spin_unlock(&journal->j_state_lock);
228 		wait_event(journal->j_wait_done_commit, journal->j_task == 0);
229 		spin_lock(&journal->j_state_lock);
230 	}
231 	spin_unlock(&journal->j_state_lock);
232 }
233 
234 /*
235  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
236  *
237  * Writes a metadata buffer to a given disk block.  The actual IO is not
238  * performed but a new buffer_head is constructed which labels the data
239  * to be written with the correct destination disk block.
240  *
241  * Any magic-number escaping which needs to be done will cause a
242  * copy-out here.  If the buffer happens to start with the
243  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
244  * magic number is only written to the log for descripter blocks.  In
245  * this case, we copy the data and replace the first word with 0, and we
246  * return a result code which indicates that this buffer needs to be
247  * marked as an escaped buffer in the corresponding log descriptor
248  * block.  The missing word can then be restored when the block is read
249  * during recovery.
250  *
251  * If the source buffer has already been modified by a new transaction
252  * since we took the last commit snapshot, we use the frozen copy of
253  * that data for IO.  If we end up using the existing buffer_head's data
254  * for the write, then we *have* to lock the buffer to prevent anyone
255  * else from using and possibly modifying it while the IO is in
256  * progress.
257  *
258  * The function returns a pointer to the buffer_heads to be used for IO.
259  *
260  * We assume that the journal has already been locked in this function.
261  *
262  * Return value:
263  *  <0: Error
264  * >=0: Finished OK
265  *
266  * On success:
267  * Bit 0 set == escape performed on the data
268  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
269  */
270 
271 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
272 				  struct journal_head  *jh_in,
273 				  struct journal_head **jh_out,
274 				  unsigned long blocknr)
275 {
276 	int need_copy_out = 0;
277 	int done_copy_out = 0;
278 	int do_escape = 0;
279 	char *mapped_data;
280 	struct buffer_head *new_bh;
281 	struct journal_head *new_jh;
282 	struct page *new_page;
283 	unsigned int new_offset;
284 	struct buffer_head *bh_in = jh2bh(jh_in);
285 
286 	/*
287 	 * The buffer really shouldn't be locked: only the current committing
288 	 * transaction is allowed to write it, so nobody else is allowed
289 	 * to do any IO.
290 	 *
291 	 * akpm: except if we're journalling data, and write() output is
292 	 * also part of a shared mapping, and another thread has
293 	 * decided to launch a writepage() against this buffer.
294 	 */
295 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
296 
297 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
298 
299 	/*
300 	 * If a new transaction has already done a buffer copy-out, then
301 	 * we use that version of the data for the commit.
302 	 */
303 	jbd_lock_bh_state(bh_in);
304 repeat:
305 	if (jh_in->b_frozen_data) {
306 		done_copy_out = 1;
307 		new_page = virt_to_page(jh_in->b_frozen_data);
308 		new_offset = offset_in_page(jh_in->b_frozen_data);
309 	} else {
310 		new_page = jh2bh(jh_in)->b_page;
311 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
312 	}
313 
314 	mapped_data = kmap_atomic(new_page, KM_USER0);
315 	/*
316 	 * Check for escaping
317 	 */
318 	if (*((__be32 *)(mapped_data + new_offset)) ==
319 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
320 		need_copy_out = 1;
321 		do_escape = 1;
322 	}
323 	kunmap_atomic(mapped_data, KM_USER0);
324 
325 	/*
326 	 * Do we need to do a data copy?
327 	 */
328 	if (need_copy_out && !done_copy_out) {
329 		char *tmp;
330 
331 		jbd_unlock_bh_state(bh_in);
332 		tmp = jbd2_slab_alloc(bh_in->b_size, GFP_NOFS);
333 		jbd_lock_bh_state(bh_in);
334 		if (jh_in->b_frozen_data) {
335 			jbd2_slab_free(tmp, bh_in->b_size);
336 			goto repeat;
337 		}
338 
339 		jh_in->b_frozen_data = tmp;
340 		mapped_data = kmap_atomic(new_page, KM_USER0);
341 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
342 		kunmap_atomic(mapped_data, KM_USER0);
343 
344 		new_page = virt_to_page(tmp);
345 		new_offset = offset_in_page(tmp);
346 		done_copy_out = 1;
347 	}
348 
349 	/*
350 	 * Did we need to do an escaping?  Now we've done all the
351 	 * copying, we can finally do so.
352 	 */
353 	if (do_escape) {
354 		mapped_data = kmap_atomic(new_page, KM_USER0);
355 		*((unsigned int *)(mapped_data + new_offset)) = 0;
356 		kunmap_atomic(mapped_data, KM_USER0);
357 	}
358 
359 	/* keep subsequent assertions sane */
360 	new_bh->b_state = 0;
361 	init_buffer(new_bh, NULL, NULL);
362 	atomic_set(&new_bh->b_count, 1);
363 	jbd_unlock_bh_state(bh_in);
364 
365 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
366 
367 	set_bh_page(new_bh, new_page, new_offset);
368 	new_jh->b_transaction = NULL;
369 	new_bh->b_size = jh2bh(jh_in)->b_size;
370 	new_bh->b_bdev = transaction->t_journal->j_dev;
371 	new_bh->b_blocknr = blocknr;
372 	set_buffer_mapped(new_bh);
373 	set_buffer_dirty(new_bh);
374 
375 	*jh_out = new_jh;
376 
377 	/*
378 	 * The to-be-written buffer needs to get moved to the io queue,
379 	 * and the original buffer whose contents we are shadowing or
380 	 * copying is moved to the transaction's shadow queue.
381 	 */
382 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
383 	jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
384 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
385 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
386 
387 	return do_escape | (done_copy_out << 1);
388 }
389 
390 /*
391  * Allocation code for the journal file.  Manage the space left in the
392  * journal, so that we can begin checkpointing when appropriate.
393  */
394 
395 /*
396  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
397  *
398  * Called with the journal already locked.
399  *
400  * Called under j_state_lock
401  */
402 
403 int __jbd2_log_space_left(journal_t *journal)
404 {
405 	int left = journal->j_free;
406 
407 	assert_spin_locked(&journal->j_state_lock);
408 
409 	/*
410 	 * Be pessimistic here about the number of those free blocks which
411 	 * might be required for log descriptor control blocks.
412 	 */
413 
414 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
415 
416 	left -= MIN_LOG_RESERVED_BLOCKS;
417 
418 	if (left <= 0)
419 		return 0;
420 	left -= (left >> 3);
421 	return left;
422 }
423 
424 /*
425  * Called under j_state_lock.  Returns true if a transaction was started.
426  */
427 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
428 {
429 	/*
430 	 * Are we already doing a recent enough commit?
431 	 */
432 	if (!tid_geq(journal->j_commit_request, target)) {
433 		/*
434 		 * We want a new commit: OK, mark the request and wakup the
435 		 * commit thread.  We do _not_ do the commit ourselves.
436 		 */
437 
438 		journal->j_commit_request = target;
439 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
440 			  journal->j_commit_request,
441 			  journal->j_commit_sequence);
442 		wake_up(&journal->j_wait_commit);
443 		return 1;
444 	}
445 	return 0;
446 }
447 
448 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
449 {
450 	int ret;
451 
452 	spin_lock(&journal->j_state_lock);
453 	ret = __jbd2_log_start_commit(journal, tid);
454 	spin_unlock(&journal->j_state_lock);
455 	return ret;
456 }
457 
458 /*
459  * Force and wait upon a commit if the calling process is not within
460  * transaction.  This is used for forcing out undo-protected data which contains
461  * bitmaps, when the fs is running out of space.
462  *
463  * We can only force the running transaction if we don't have an active handle;
464  * otherwise, we will deadlock.
465  *
466  * Returns true if a transaction was started.
467  */
468 int jbd2_journal_force_commit_nested(journal_t *journal)
469 {
470 	transaction_t *transaction = NULL;
471 	tid_t tid;
472 
473 	spin_lock(&journal->j_state_lock);
474 	if (journal->j_running_transaction && !current->journal_info) {
475 		transaction = journal->j_running_transaction;
476 		__jbd2_log_start_commit(journal, transaction->t_tid);
477 	} else if (journal->j_committing_transaction)
478 		transaction = journal->j_committing_transaction;
479 
480 	if (!transaction) {
481 		spin_unlock(&journal->j_state_lock);
482 		return 0;	/* Nothing to retry */
483 	}
484 
485 	tid = transaction->t_tid;
486 	spin_unlock(&journal->j_state_lock);
487 	jbd2_log_wait_commit(journal, tid);
488 	return 1;
489 }
490 
491 /*
492  * Start a commit of the current running transaction (if any).  Returns true
493  * if a transaction was started, and fills its tid in at *ptid
494  */
495 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
496 {
497 	int ret = 0;
498 
499 	spin_lock(&journal->j_state_lock);
500 	if (journal->j_running_transaction) {
501 		tid_t tid = journal->j_running_transaction->t_tid;
502 
503 		ret = __jbd2_log_start_commit(journal, tid);
504 		if (ret && ptid)
505 			*ptid = tid;
506 	} else if (journal->j_committing_transaction && ptid) {
507 		/*
508 		 * If ext3_write_super() recently started a commit, then we
509 		 * have to wait for completion of that transaction
510 		 */
511 		*ptid = journal->j_committing_transaction->t_tid;
512 		ret = 1;
513 	}
514 	spin_unlock(&journal->j_state_lock);
515 	return ret;
516 }
517 
518 /*
519  * Wait for a specified commit to complete.
520  * The caller may not hold the journal lock.
521  */
522 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
523 {
524 	int err = 0;
525 
526 #ifdef CONFIG_JBD_DEBUG
527 	spin_lock(&journal->j_state_lock);
528 	if (!tid_geq(journal->j_commit_request, tid)) {
529 		printk(KERN_EMERG
530 		       "%s: error: j_commit_request=%d, tid=%d\n",
531 		       __FUNCTION__, journal->j_commit_request, tid);
532 	}
533 	spin_unlock(&journal->j_state_lock);
534 #endif
535 	spin_lock(&journal->j_state_lock);
536 	while (tid_gt(tid, journal->j_commit_sequence)) {
537 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
538 				  tid, journal->j_commit_sequence);
539 		wake_up(&journal->j_wait_commit);
540 		spin_unlock(&journal->j_state_lock);
541 		wait_event(journal->j_wait_done_commit,
542 				!tid_gt(tid, journal->j_commit_sequence));
543 		spin_lock(&journal->j_state_lock);
544 	}
545 	spin_unlock(&journal->j_state_lock);
546 
547 	if (unlikely(is_journal_aborted(journal))) {
548 		printk(KERN_EMERG "journal commit I/O error\n");
549 		err = -EIO;
550 	}
551 	return err;
552 }
553 
554 /*
555  * Log buffer allocation routines:
556  */
557 
558 int jbd2_journal_next_log_block(journal_t *journal, unsigned long *retp)
559 {
560 	unsigned long blocknr;
561 
562 	spin_lock(&journal->j_state_lock);
563 	J_ASSERT(journal->j_free > 1);
564 
565 	blocknr = journal->j_head;
566 	journal->j_head++;
567 	journal->j_free--;
568 	if (journal->j_head == journal->j_last)
569 		journal->j_head = journal->j_first;
570 	spin_unlock(&journal->j_state_lock);
571 	return jbd2_journal_bmap(journal, blocknr, retp);
572 }
573 
574 /*
575  * Conversion of logical to physical block numbers for the journal
576  *
577  * On external journals the journal blocks are identity-mapped, so
578  * this is a no-op.  If needed, we can use j_blk_offset - everything is
579  * ready.
580  */
581 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
582 		 unsigned long *retp)
583 {
584 	int err = 0;
585 	unsigned long ret;
586 
587 	if (journal->j_inode) {
588 		ret = bmap(journal->j_inode, blocknr);
589 		if (ret)
590 			*retp = ret;
591 		else {
592 			char b[BDEVNAME_SIZE];
593 
594 			printk(KERN_ALERT "%s: journal block not found "
595 					"at offset %lu on %s\n",
596 				__FUNCTION__,
597 				blocknr,
598 				bdevname(journal->j_dev, b));
599 			err = -EIO;
600 			__journal_abort_soft(journal, err);
601 		}
602 	} else {
603 		*retp = blocknr; /* +journal->j_blk_offset */
604 	}
605 	return err;
606 }
607 
608 /*
609  * We play buffer_head aliasing tricks to write data/metadata blocks to
610  * the journal without copying their contents, but for journal
611  * descriptor blocks we do need to generate bona fide buffers.
612  *
613  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
614  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
615  * But we don't bother doing that, so there will be coherency problems with
616  * mmaps of blockdevs which hold live JBD-controlled filesystems.
617  */
618 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
619 {
620 	struct buffer_head *bh;
621 	unsigned long blocknr;
622 	int err;
623 
624 	err = jbd2_journal_next_log_block(journal, &blocknr);
625 
626 	if (err)
627 		return NULL;
628 
629 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
630 	lock_buffer(bh);
631 	memset(bh->b_data, 0, journal->j_blocksize);
632 	set_buffer_uptodate(bh);
633 	unlock_buffer(bh);
634 	BUFFER_TRACE(bh, "return this buffer");
635 	return jbd2_journal_add_journal_head(bh);
636 }
637 
638 /*
639  * Management for journal control blocks: functions to create and
640  * destroy journal_t structures, and to initialise and read existing
641  * journal blocks from disk.  */
642 
643 /* First: create and setup a journal_t object in memory.  We initialise
644  * very few fields yet: that has to wait until we have created the
645  * journal structures from from scratch, or loaded them from disk. */
646 
647 static journal_t * journal_init_common (void)
648 {
649 	journal_t *journal;
650 	int err;
651 
652 	journal = jbd_kmalloc(sizeof(*journal), GFP_KERNEL);
653 	if (!journal)
654 		goto fail;
655 	memset(journal, 0, sizeof(*journal));
656 
657 	init_waitqueue_head(&journal->j_wait_transaction_locked);
658 	init_waitqueue_head(&journal->j_wait_logspace);
659 	init_waitqueue_head(&journal->j_wait_done_commit);
660 	init_waitqueue_head(&journal->j_wait_checkpoint);
661 	init_waitqueue_head(&journal->j_wait_commit);
662 	init_waitqueue_head(&journal->j_wait_updates);
663 	mutex_init(&journal->j_barrier);
664 	mutex_init(&journal->j_checkpoint_mutex);
665 	spin_lock_init(&journal->j_revoke_lock);
666 	spin_lock_init(&journal->j_list_lock);
667 	spin_lock_init(&journal->j_state_lock);
668 
669 	journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
670 
671 	/* The journal is marked for error until we succeed with recovery! */
672 	journal->j_flags = JBD2_ABORT;
673 
674 	/* Set up a default-sized revoke table for the new mount. */
675 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
676 	if (err) {
677 		kfree(journal);
678 		goto fail;
679 	}
680 	return journal;
681 fail:
682 	return NULL;
683 }
684 
685 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
686  *
687  * Create a journal structure assigned some fixed set of disk blocks to
688  * the journal.  We don't actually touch those disk blocks yet, but we
689  * need to set up all of the mapping information to tell the journaling
690  * system where the journal blocks are.
691  *
692  */
693 
694 /**
695  *  journal_t * jbd2_journal_init_dev() - creates an initialises a journal structure
696  *  @bdev: Block device on which to create the journal
697  *  @fs_dev: Device which hold journalled filesystem for this journal.
698  *  @start: Block nr Start of journal.
699  *  @len:  Length of the journal in blocks.
700  *  @blocksize: blocksize of journalling device
701  *  @returns: a newly created journal_t *
702  *
703  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
704  *  range of blocks on an arbitrary block device.
705  *
706  */
707 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
708 			struct block_device *fs_dev,
709 			int start, int len, int blocksize)
710 {
711 	journal_t *journal = journal_init_common();
712 	struct buffer_head *bh;
713 	int n;
714 
715 	if (!journal)
716 		return NULL;
717 
718 	/* journal descriptor can store up to n blocks -bzzz */
719 	journal->j_blocksize = blocksize;
720 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
721 	journal->j_wbufsize = n;
722 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
723 	if (!journal->j_wbuf) {
724 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
725 			__FUNCTION__);
726 		kfree(journal);
727 		journal = NULL;
728 	}
729 	journal->j_dev = bdev;
730 	journal->j_fs_dev = fs_dev;
731 	journal->j_blk_offset = start;
732 	journal->j_maxlen = len;
733 
734 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
735 	J_ASSERT(bh != NULL);
736 	journal->j_sb_buffer = bh;
737 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
738 
739 	return journal;
740 }
741 
742 /**
743  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
744  *  @inode: An inode to create the journal in
745  *
746  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
747  * the journal.  The inode must exist already, must support bmap() and
748  * must have all data blocks preallocated.
749  */
750 journal_t * jbd2_journal_init_inode (struct inode *inode)
751 {
752 	struct buffer_head *bh;
753 	journal_t *journal = journal_init_common();
754 	int err;
755 	int n;
756 	unsigned long blocknr;
757 
758 	if (!journal)
759 		return NULL;
760 
761 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
762 	journal->j_inode = inode;
763 	jbd_debug(1,
764 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
765 		  journal, inode->i_sb->s_id, inode->i_ino,
766 		  (long long) inode->i_size,
767 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
768 
769 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
770 	journal->j_blocksize = inode->i_sb->s_blocksize;
771 
772 	/* journal descriptor can store up to n blocks -bzzz */
773 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
774 	journal->j_wbufsize = n;
775 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
776 	if (!journal->j_wbuf) {
777 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
778 			__FUNCTION__);
779 		kfree(journal);
780 		return NULL;
781 	}
782 
783 	err = jbd2_journal_bmap(journal, 0, &blocknr);
784 	/* If that failed, give up */
785 	if (err) {
786 		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
787 		       __FUNCTION__);
788 		kfree(journal);
789 		return NULL;
790 	}
791 
792 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
793 	J_ASSERT(bh != NULL);
794 	journal->j_sb_buffer = bh;
795 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
796 
797 	return journal;
798 }
799 
800 /*
801  * If the journal init or create aborts, we need to mark the journal
802  * superblock as being NULL to prevent the journal destroy from writing
803  * back a bogus superblock.
804  */
805 static void journal_fail_superblock (journal_t *journal)
806 {
807 	struct buffer_head *bh = journal->j_sb_buffer;
808 	brelse(bh);
809 	journal->j_sb_buffer = NULL;
810 }
811 
812 /*
813  * Given a journal_t structure, initialise the various fields for
814  * startup of a new journaling session.  We use this both when creating
815  * a journal, and after recovering an old journal to reset it for
816  * subsequent use.
817  */
818 
819 static int journal_reset(journal_t *journal)
820 {
821 	journal_superblock_t *sb = journal->j_superblock;
822 	unsigned long first, last;
823 
824 	first = be32_to_cpu(sb->s_first);
825 	last = be32_to_cpu(sb->s_maxlen);
826 
827 	journal->j_first = first;
828 	journal->j_last = last;
829 
830 	journal->j_head = first;
831 	journal->j_tail = first;
832 	journal->j_free = last - first;
833 
834 	journal->j_tail_sequence = journal->j_transaction_sequence;
835 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
836 	journal->j_commit_request = journal->j_commit_sequence;
837 
838 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
839 
840 	/* Add the dynamic fields and write it to disk. */
841 	jbd2_journal_update_superblock(journal, 1);
842 	jbd2_journal_start_thread(journal);
843 	return 0;
844 }
845 
846 /**
847  * int jbd2_journal_create() - Initialise the new journal file
848  * @journal: Journal to create. This structure must have been initialised
849  *
850  * Given a journal_t structure which tells us which disk blocks we can
851  * use, create a new journal superblock and initialise all of the
852  * journal fields from scratch.
853  **/
854 int jbd2_journal_create(journal_t *journal)
855 {
856 	unsigned long blocknr;
857 	struct buffer_head *bh;
858 	journal_superblock_t *sb;
859 	int i, err;
860 
861 	if (journal->j_maxlen < JBD2_MIN_JOURNAL_BLOCKS) {
862 		printk (KERN_ERR "Journal length (%d blocks) too short.\n",
863 			journal->j_maxlen);
864 		journal_fail_superblock(journal);
865 		return -EINVAL;
866 	}
867 
868 	if (journal->j_inode == NULL) {
869 		/*
870 		 * We don't know what block to start at!
871 		 */
872 		printk(KERN_EMERG
873 		       "%s: creation of journal on external device!\n",
874 		       __FUNCTION__);
875 		BUG();
876 	}
877 
878 	/* Zero out the entire journal on disk.  We cannot afford to
879 	   have any blocks on disk beginning with JBD2_MAGIC_NUMBER. */
880 	jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
881 	for (i = 0; i < journal->j_maxlen; i++) {
882 		err = jbd2_journal_bmap(journal, i, &blocknr);
883 		if (err)
884 			return err;
885 		bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
886 		lock_buffer(bh);
887 		memset (bh->b_data, 0, journal->j_blocksize);
888 		BUFFER_TRACE(bh, "marking dirty");
889 		mark_buffer_dirty(bh);
890 		BUFFER_TRACE(bh, "marking uptodate");
891 		set_buffer_uptodate(bh);
892 		unlock_buffer(bh);
893 		__brelse(bh);
894 	}
895 
896 	sync_blockdev(journal->j_dev);
897 	jbd_debug(1, "JBD: journal cleared.\n");
898 
899 	/* OK, fill in the initial static fields in the new superblock */
900 	sb = journal->j_superblock;
901 
902 	sb->s_header.h_magic	 = cpu_to_be32(JBD2_MAGIC_NUMBER);
903 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
904 
905 	sb->s_blocksize	= cpu_to_be32(journal->j_blocksize);
906 	sb->s_maxlen	= cpu_to_be32(journal->j_maxlen);
907 	sb->s_first	= cpu_to_be32(1);
908 
909 	journal->j_transaction_sequence = 1;
910 
911 	journal->j_flags &= ~JBD2_ABORT;
912 	journal->j_format_version = 2;
913 
914 	return journal_reset(journal);
915 }
916 
917 /**
918  * void jbd2_journal_update_superblock() - Update journal sb on disk.
919  * @journal: The journal to update.
920  * @wait: Set to '0' if you don't want to wait for IO completion.
921  *
922  * Update a journal's dynamic superblock fields and write it to disk,
923  * optionally waiting for the IO to complete.
924  */
925 void jbd2_journal_update_superblock(journal_t *journal, int wait)
926 {
927 	journal_superblock_t *sb = journal->j_superblock;
928 	struct buffer_head *bh = journal->j_sb_buffer;
929 
930 	/*
931 	 * As a special case, if the on-disk copy is already marked as needing
932 	 * no recovery (s_start == 0) and there are no outstanding transactions
933 	 * in the filesystem, then we can safely defer the superblock update
934 	 * until the next commit by setting JBD2_FLUSHED.  This avoids
935 	 * attempting a write to a potential-readonly device.
936 	 */
937 	if (sb->s_start == 0 && journal->j_tail_sequence ==
938 				journal->j_transaction_sequence) {
939 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
940 			"(start %ld, seq %d, errno %d)\n",
941 			journal->j_tail, journal->j_tail_sequence,
942 			journal->j_errno);
943 		goto out;
944 	}
945 
946 	spin_lock(&journal->j_state_lock);
947 	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
948 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
949 
950 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
951 	sb->s_start    = cpu_to_be32(journal->j_tail);
952 	sb->s_errno    = cpu_to_be32(journal->j_errno);
953 	spin_unlock(&journal->j_state_lock);
954 
955 	BUFFER_TRACE(bh, "marking dirty");
956 	mark_buffer_dirty(bh);
957 	if (wait)
958 		sync_dirty_buffer(bh);
959 	else
960 		ll_rw_block(SWRITE, 1, &bh);
961 
962 out:
963 	/* If we have just flushed the log (by marking s_start==0), then
964 	 * any future commit will have to be careful to update the
965 	 * superblock again to re-record the true start of the log. */
966 
967 	spin_lock(&journal->j_state_lock);
968 	if (sb->s_start)
969 		journal->j_flags &= ~JBD2_FLUSHED;
970 	else
971 		journal->j_flags |= JBD2_FLUSHED;
972 	spin_unlock(&journal->j_state_lock);
973 }
974 
975 /*
976  * Read the superblock for a given journal, performing initial
977  * validation of the format.
978  */
979 
980 static int journal_get_superblock(journal_t *journal)
981 {
982 	struct buffer_head *bh;
983 	journal_superblock_t *sb;
984 	int err = -EIO;
985 
986 	bh = journal->j_sb_buffer;
987 
988 	J_ASSERT(bh != NULL);
989 	if (!buffer_uptodate(bh)) {
990 		ll_rw_block(READ, 1, &bh);
991 		wait_on_buffer(bh);
992 		if (!buffer_uptodate(bh)) {
993 			printk (KERN_ERR
994 				"JBD: IO error reading journal superblock\n");
995 			goto out;
996 		}
997 	}
998 
999 	sb = journal->j_superblock;
1000 
1001 	err = -EINVAL;
1002 
1003 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1004 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1005 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1006 		goto out;
1007 	}
1008 
1009 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1010 	case JBD2_SUPERBLOCK_V1:
1011 		journal->j_format_version = 1;
1012 		break;
1013 	case JBD2_SUPERBLOCK_V2:
1014 		journal->j_format_version = 2;
1015 		break;
1016 	default:
1017 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1018 		goto out;
1019 	}
1020 
1021 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1022 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1023 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1024 		printk (KERN_WARNING "JBD: journal file too short\n");
1025 		goto out;
1026 	}
1027 
1028 	return 0;
1029 
1030 out:
1031 	journal_fail_superblock(journal);
1032 	return err;
1033 }
1034 
1035 /*
1036  * Load the on-disk journal superblock and read the key fields into the
1037  * journal_t.
1038  */
1039 
1040 static int load_superblock(journal_t *journal)
1041 {
1042 	int err;
1043 	journal_superblock_t *sb;
1044 
1045 	err = journal_get_superblock(journal);
1046 	if (err)
1047 		return err;
1048 
1049 	sb = journal->j_superblock;
1050 
1051 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1052 	journal->j_tail = be32_to_cpu(sb->s_start);
1053 	journal->j_first = be32_to_cpu(sb->s_first);
1054 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1055 	journal->j_errno = be32_to_cpu(sb->s_errno);
1056 
1057 	return 0;
1058 }
1059 
1060 
1061 /**
1062  * int jbd2_journal_load() - Read journal from disk.
1063  * @journal: Journal to act on.
1064  *
1065  * Given a journal_t structure which tells us which disk blocks contain
1066  * a journal, read the journal from disk to initialise the in-memory
1067  * structures.
1068  */
1069 int jbd2_journal_load(journal_t *journal)
1070 {
1071 	int err;
1072 	journal_superblock_t *sb;
1073 
1074 	err = load_superblock(journal);
1075 	if (err)
1076 		return err;
1077 
1078 	sb = journal->j_superblock;
1079 	/* If this is a V2 superblock, then we have to check the
1080 	 * features flags on it. */
1081 
1082 	if (journal->j_format_version >= 2) {
1083 		if ((sb->s_feature_ro_compat &
1084 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1085 		    (sb->s_feature_incompat &
1086 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1087 			printk (KERN_WARNING
1088 				"JBD: Unrecognised features on journal\n");
1089 			return -EINVAL;
1090 		}
1091 	}
1092 
1093 	/*
1094 	 * Create a slab for this blocksize
1095 	 */
1096 	err = jbd2_journal_create_jbd_slab(be32_to_cpu(sb->s_blocksize));
1097 	if (err)
1098 		return err;
1099 
1100 	/* Let the recovery code check whether it needs to recover any
1101 	 * data from the journal. */
1102 	if (jbd2_journal_recover(journal))
1103 		goto recovery_error;
1104 
1105 	/* OK, we've finished with the dynamic journal bits:
1106 	 * reinitialise the dynamic contents of the superblock in memory
1107 	 * and reset them on disk. */
1108 	if (journal_reset(journal))
1109 		goto recovery_error;
1110 
1111 	journal->j_flags &= ~JBD2_ABORT;
1112 	journal->j_flags |= JBD2_LOADED;
1113 	return 0;
1114 
1115 recovery_error:
1116 	printk (KERN_WARNING "JBD: recovery failed\n");
1117 	return -EIO;
1118 }
1119 
1120 /**
1121  * void jbd2_journal_destroy() - Release a journal_t structure.
1122  * @journal: Journal to act on.
1123  *
1124  * Release a journal_t structure once it is no longer in use by the
1125  * journaled object.
1126  */
1127 void jbd2_journal_destroy(journal_t *journal)
1128 {
1129 	/* Wait for the commit thread to wake up and die. */
1130 	journal_kill_thread(journal);
1131 
1132 	/* Force a final log commit */
1133 	if (journal->j_running_transaction)
1134 		jbd2_journal_commit_transaction(journal);
1135 
1136 	/* Force any old transactions to disk */
1137 
1138 	/* Totally anal locking here... */
1139 	spin_lock(&journal->j_list_lock);
1140 	while (journal->j_checkpoint_transactions != NULL) {
1141 		spin_unlock(&journal->j_list_lock);
1142 		jbd2_log_do_checkpoint(journal);
1143 		spin_lock(&journal->j_list_lock);
1144 	}
1145 
1146 	J_ASSERT(journal->j_running_transaction == NULL);
1147 	J_ASSERT(journal->j_committing_transaction == NULL);
1148 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1149 	spin_unlock(&journal->j_list_lock);
1150 
1151 	/* We can now mark the journal as empty. */
1152 	journal->j_tail = 0;
1153 	journal->j_tail_sequence = ++journal->j_transaction_sequence;
1154 	if (journal->j_sb_buffer) {
1155 		jbd2_journal_update_superblock(journal, 1);
1156 		brelse(journal->j_sb_buffer);
1157 	}
1158 
1159 	if (journal->j_inode)
1160 		iput(journal->j_inode);
1161 	if (journal->j_revoke)
1162 		jbd2_journal_destroy_revoke(journal);
1163 	kfree(journal->j_wbuf);
1164 	kfree(journal);
1165 }
1166 
1167 
1168 /**
1169  *int jbd2_journal_check_used_features () - Check if features specified are used.
1170  * @journal: Journal to check.
1171  * @compat: bitmask of compatible features
1172  * @ro: bitmask of features that force read-only mount
1173  * @incompat: bitmask of incompatible features
1174  *
1175  * Check whether the journal uses all of a given set of
1176  * features.  Return true (non-zero) if it does.
1177  **/
1178 
1179 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1180 				 unsigned long ro, unsigned long incompat)
1181 {
1182 	journal_superblock_t *sb;
1183 
1184 	if (!compat && !ro && !incompat)
1185 		return 1;
1186 	if (journal->j_format_version == 1)
1187 		return 0;
1188 
1189 	sb = journal->j_superblock;
1190 
1191 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1192 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1193 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1194 		return 1;
1195 
1196 	return 0;
1197 }
1198 
1199 /**
1200  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1201  * @journal: Journal to check.
1202  * @compat: bitmask of compatible features
1203  * @ro: bitmask of features that force read-only mount
1204  * @incompat: bitmask of incompatible features
1205  *
1206  * Check whether the journaling code supports the use of
1207  * all of a given set of features on this journal.  Return true
1208  * (non-zero) if it can. */
1209 
1210 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1211 				      unsigned long ro, unsigned long incompat)
1212 {
1213 	journal_superblock_t *sb;
1214 
1215 	if (!compat && !ro && !incompat)
1216 		return 1;
1217 
1218 	sb = journal->j_superblock;
1219 
1220 	/* We can support any known requested features iff the
1221 	 * superblock is in version 2.  Otherwise we fail to support any
1222 	 * extended sb features. */
1223 
1224 	if (journal->j_format_version != 2)
1225 		return 0;
1226 
1227 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1228 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1229 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1230 		return 1;
1231 
1232 	return 0;
1233 }
1234 
1235 /**
1236  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1237  * @journal: Journal to act on.
1238  * @compat: bitmask of compatible features
1239  * @ro: bitmask of features that force read-only mount
1240  * @incompat: bitmask of incompatible features
1241  *
1242  * Mark a given journal feature as present on the
1243  * superblock.  Returns true if the requested features could be set.
1244  *
1245  */
1246 
1247 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1248 			  unsigned long ro, unsigned long incompat)
1249 {
1250 	journal_superblock_t *sb;
1251 
1252 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1253 		return 1;
1254 
1255 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1256 		return 0;
1257 
1258 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1259 		  compat, ro, incompat);
1260 
1261 	sb = journal->j_superblock;
1262 
1263 	sb->s_feature_compat    |= cpu_to_be32(compat);
1264 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1265 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1266 
1267 	return 1;
1268 }
1269 
1270 
1271 /**
1272  * int jbd2_journal_update_format () - Update on-disk journal structure.
1273  * @journal: Journal to act on.
1274  *
1275  * Given an initialised but unloaded journal struct, poke about in the
1276  * on-disk structure to update it to the most recent supported version.
1277  */
1278 int jbd2_journal_update_format (journal_t *journal)
1279 {
1280 	journal_superblock_t *sb;
1281 	int err;
1282 
1283 	err = journal_get_superblock(journal);
1284 	if (err)
1285 		return err;
1286 
1287 	sb = journal->j_superblock;
1288 
1289 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1290 	case JBD2_SUPERBLOCK_V2:
1291 		return 0;
1292 	case JBD2_SUPERBLOCK_V1:
1293 		return journal_convert_superblock_v1(journal, sb);
1294 	default:
1295 		break;
1296 	}
1297 	return -EINVAL;
1298 }
1299 
1300 static int journal_convert_superblock_v1(journal_t *journal,
1301 					 journal_superblock_t *sb)
1302 {
1303 	int offset, blocksize;
1304 	struct buffer_head *bh;
1305 
1306 	printk(KERN_WARNING
1307 		"JBD: Converting superblock from version 1 to 2.\n");
1308 
1309 	/* Pre-initialise new fields to zero */
1310 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1311 	blocksize = be32_to_cpu(sb->s_blocksize);
1312 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1313 
1314 	sb->s_nr_users = cpu_to_be32(1);
1315 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1316 	journal->j_format_version = 2;
1317 
1318 	bh = journal->j_sb_buffer;
1319 	BUFFER_TRACE(bh, "marking dirty");
1320 	mark_buffer_dirty(bh);
1321 	sync_dirty_buffer(bh);
1322 	return 0;
1323 }
1324 
1325 
1326 /**
1327  * int jbd2_journal_flush () - Flush journal
1328  * @journal: Journal to act on.
1329  *
1330  * Flush all data for a given journal to disk and empty the journal.
1331  * Filesystems can use this when remounting readonly to ensure that
1332  * recovery does not need to happen on remount.
1333  */
1334 
1335 int jbd2_journal_flush(journal_t *journal)
1336 {
1337 	int err = 0;
1338 	transaction_t *transaction = NULL;
1339 	unsigned long old_tail;
1340 
1341 	spin_lock(&journal->j_state_lock);
1342 
1343 	/* Force everything buffered to the log... */
1344 	if (journal->j_running_transaction) {
1345 		transaction = journal->j_running_transaction;
1346 		__jbd2_log_start_commit(journal, transaction->t_tid);
1347 	} else if (journal->j_committing_transaction)
1348 		transaction = journal->j_committing_transaction;
1349 
1350 	/* Wait for the log commit to complete... */
1351 	if (transaction) {
1352 		tid_t tid = transaction->t_tid;
1353 
1354 		spin_unlock(&journal->j_state_lock);
1355 		jbd2_log_wait_commit(journal, tid);
1356 	} else {
1357 		spin_unlock(&journal->j_state_lock);
1358 	}
1359 
1360 	/* ...and flush everything in the log out to disk. */
1361 	spin_lock(&journal->j_list_lock);
1362 	while (!err && journal->j_checkpoint_transactions != NULL) {
1363 		spin_unlock(&journal->j_list_lock);
1364 		err = jbd2_log_do_checkpoint(journal);
1365 		spin_lock(&journal->j_list_lock);
1366 	}
1367 	spin_unlock(&journal->j_list_lock);
1368 	jbd2_cleanup_journal_tail(journal);
1369 
1370 	/* Finally, mark the journal as really needing no recovery.
1371 	 * This sets s_start==0 in the underlying superblock, which is
1372 	 * the magic code for a fully-recovered superblock.  Any future
1373 	 * commits of data to the journal will restore the current
1374 	 * s_start value. */
1375 	spin_lock(&journal->j_state_lock);
1376 	old_tail = journal->j_tail;
1377 	journal->j_tail = 0;
1378 	spin_unlock(&journal->j_state_lock);
1379 	jbd2_journal_update_superblock(journal, 1);
1380 	spin_lock(&journal->j_state_lock);
1381 	journal->j_tail = old_tail;
1382 
1383 	J_ASSERT(!journal->j_running_transaction);
1384 	J_ASSERT(!journal->j_committing_transaction);
1385 	J_ASSERT(!journal->j_checkpoint_transactions);
1386 	J_ASSERT(journal->j_head == journal->j_tail);
1387 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1388 	spin_unlock(&journal->j_state_lock);
1389 	return err;
1390 }
1391 
1392 /**
1393  * int jbd2_journal_wipe() - Wipe journal contents
1394  * @journal: Journal to act on.
1395  * @write: flag (see below)
1396  *
1397  * Wipe out all of the contents of a journal, safely.  This will produce
1398  * a warning if the journal contains any valid recovery information.
1399  * Must be called between journal_init_*() and jbd2_journal_load().
1400  *
1401  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1402  * we merely suppress recovery.
1403  */
1404 
1405 int jbd2_journal_wipe(journal_t *journal, int write)
1406 {
1407 	journal_superblock_t *sb;
1408 	int err = 0;
1409 
1410 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1411 
1412 	err = load_superblock(journal);
1413 	if (err)
1414 		return err;
1415 
1416 	sb = journal->j_superblock;
1417 
1418 	if (!journal->j_tail)
1419 		goto no_recovery;
1420 
1421 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1422 		write ? "Clearing" : "Ignoring");
1423 
1424 	err = jbd2_journal_skip_recovery(journal);
1425 	if (write)
1426 		jbd2_journal_update_superblock(journal, 1);
1427 
1428  no_recovery:
1429 	return err;
1430 }
1431 
1432 /*
1433  * journal_dev_name: format a character string to describe on what
1434  * device this journal is present.
1435  */
1436 
1437 static const char *journal_dev_name(journal_t *journal, char *buffer)
1438 {
1439 	struct block_device *bdev;
1440 
1441 	if (journal->j_inode)
1442 		bdev = journal->j_inode->i_sb->s_bdev;
1443 	else
1444 		bdev = journal->j_dev;
1445 
1446 	return bdevname(bdev, buffer);
1447 }
1448 
1449 /*
1450  * Journal abort has very specific semantics, which we describe
1451  * for journal abort.
1452  *
1453  * Two internal function, which provide abort to te jbd layer
1454  * itself are here.
1455  */
1456 
1457 /*
1458  * Quick version for internal journal use (doesn't lock the journal).
1459  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1460  * and don't attempt to make any other journal updates.
1461  */
1462 void __jbd2_journal_abort_hard(journal_t *journal)
1463 {
1464 	transaction_t *transaction;
1465 	char b[BDEVNAME_SIZE];
1466 
1467 	if (journal->j_flags & JBD2_ABORT)
1468 		return;
1469 
1470 	printk(KERN_ERR "Aborting journal on device %s.\n",
1471 		journal_dev_name(journal, b));
1472 
1473 	spin_lock(&journal->j_state_lock);
1474 	journal->j_flags |= JBD2_ABORT;
1475 	transaction = journal->j_running_transaction;
1476 	if (transaction)
1477 		__jbd2_log_start_commit(journal, transaction->t_tid);
1478 	spin_unlock(&journal->j_state_lock);
1479 }
1480 
1481 /* Soft abort: record the abort error status in the journal superblock,
1482  * but don't do any other IO. */
1483 static void __journal_abort_soft (journal_t *journal, int errno)
1484 {
1485 	if (journal->j_flags & JBD2_ABORT)
1486 		return;
1487 
1488 	if (!journal->j_errno)
1489 		journal->j_errno = errno;
1490 
1491 	__jbd2_journal_abort_hard(journal);
1492 
1493 	if (errno)
1494 		jbd2_journal_update_superblock(journal, 1);
1495 }
1496 
1497 /**
1498  * void jbd2_journal_abort () - Shutdown the journal immediately.
1499  * @journal: the journal to shutdown.
1500  * @errno:   an error number to record in the journal indicating
1501  *           the reason for the shutdown.
1502  *
1503  * Perform a complete, immediate shutdown of the ENTIRE
1504  * journal (not of a single transaction).  This operation cannot be
1505  * undone without closing and reopening the journal.
1506  *
1507  * The jbd2_journal_abort function is intended to support higher level error
1508  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1509  * mode.
1510  *
1511  * Journal abort has very specific semantics.  Any existing dirty,
1512  * unjournaled buffers in the main filesystem will still be written to
1513  * disk by bdflush, but the journaling mechanism will be suspended
1514  * immediately and no further transaction commits will be honoured.
1515  *
1516  * Any dirty, journaled buffers will be written back to disk without
1517  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1518  * filesystem, but we _do_ attempt to leave as much data as possible
1519  * behind for fsck to use for cleanup.
1520  *
1521  * Any attempt to get a new transaction handle on a journal which is in
1522  * ABORT state will just result in an -EROFS error return.  A
1523  * jbd2_journal_stop on an existing handle will return -EIO if we have
1524  * entered abort state during the update.
1525  *
1526  * Recursive transactions are not disturbed by journal abort until the
1527  * final jbd2_journal_stop, which will receive the -EIO error.
1528  *
1529  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1530  * which will be recorded (if possible) in the journal superblock.  This
1531  * allows a client to record failure conditions in the middle of a
1532  * transaction without having to complete the transaction to record the
1533  * failure to disk.  ext3_error, for example, now uses this
1534  * functionality.
1535  *
1536  * Errors which originate from within the journaling layer will NOT
1537  * supply an errno; a null errno implies that absolutely no further
1538  * writes are done to the journal (unless there are any already in
1539  * progress).
1540  *
1541  */
1542 
1543 void jbd2_journal_abort(journal_t *journal, int errno)
1544 {
1545 	__journal_abort_soft(journal, errno);
1546 }
1547 
1548 /**
1549  * int jbd2_journal_errno () - returns the journal's error state.
1550  * @journal: journal to examine.
1551  *
1552  * This is the errno numbet set with jbd2_journal_abort(), the last
1553  * time the journal was mounted - if the journal was stopped
1554  * without calling abort this will be 0.
1555  *
1556  * If the journal has been aborted on this mount time -EROFS will
1557  * be returned.
1558  */
1559 int jbd2_journal_errno(journal_t *journal)
1560 {
1561 	int err;
1562 
1563 	spin_lock(&journal->j_state_lock);
1564 	if (journal->j_flags & JBD2_ABORT)
1565 		err = -EROFS;
1566 	else
1567 		err = journal->j_errno;
1568 	spin_unlock(&journal->j_state_lock);
1569 	return err;
1570 }
1571 
1572 /**
1573  * int jbd2_journal_clear_err () - clears the journal's error state
1574  * @journal: journal to act on.
1575  *
1576  * An error must be cleared or Acked to take a FS out of readonly
1577  * mode.
1578  */
1579 int jbd2_journal_clear_err(journal_t *journal)
1580 {
1581 	int err = 0;
1582 
1583 	spin_lock(&journal->j_state_lock);
1584 	if (journal->j_flags & JBD2_ABORT)
1585 		err = -EROFS;
1586 	else
1587 		journal->j_errno = 0;
1588 	spin_unlock(&journal->j_state_lock);
1589 	return err;
1590 }
1591 
1592 /**
1593  * void jbd2_journal_ack_err() - Ack journal err.
1594  * @journal: journal to act on.
1595  *
1596  * An error must be cleared or Acked to take a FS out of readonly
1597  * mode.
1598  */
1599 void jbd2_journal_ack_err(journal_t *journal)
1600 {
1601 	spin_lock(&journal->j_state_lock);
1602 	if (journal->j_errno)
1603 		journal->j_flags |= JBD2_ACK_ERR;
1604 	spin_unlock(&journal->j_state_lock);
1605 }
1606 
1607 int jbd2_journal_blocks_per_page(struct inode *inode)
1608 {
1609 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1610 }
1611 
1612 /*
1613  * Simple support for retrying memory allocations.  Introduced to help to
1614  * debug different VM deadlock avoidance strategies.
1615  */
1616 void * __jbd2_kmalloc (const char *where, size_t size, gfp_t flags, int retry)
1617 {
1618 	return kmalloc(size, flags | (retry ? __GFP_NOFAIL : 0));
1619 }
1620 
1621 /*
1622  * jbd slab management: create 1k, 2k, 4k, 8k slabs as needed
1623  * and allocate frozen and commit buffers from these slabs.
1624  *
1625  * Reason for doing this is to avoid, SLAB_DEBUG - since it could
1626  * cause bh to cross page boundary.
1627  */
1628 
1629 #define JBD_MAX_SLABS 5
1630 #define JBD_SLAB_INDEX(size)  (size >> 11)
1631 
1632 static kmem_cache_t *jbd_slab[JBD_MAX_SLABS];
1633 static const char *jbd_slab_names[JBD_MAX_SLABS] = {
1634 	"jbd_1k", "jbd_2k", "jbd_4k", NULL, "jbd_8k"
1635 };
1636 
1637 static void jbd2_journal_destroy_jbd_slabs(void)
1638 {
1639 	int i;
1640 
1641 	for (i = 0; i < JBD_MAX_SLABS; i++) {
1642 		if (jbd_slab[i])
1643 			kmem_cache_destroy(jbd_slab[i]);
1644 		jbd_slab[i] = NULL;
1645 	}
1646 }
1647 
1648 static int jbd2_journal_create_jbd_slab(size_t slab_size)
1649 {
1650 	int i = JBD_SLAB_INDEX(slab_size);
1651 
1652 	BUG_ON(i >= JBD_MAX_SLABS);
1653 
1654 	/*
1655 	 * Check if we already have a slab created for this size
1656 	 */
1657 	if (jbd_slab[i])
1658 		return 0;
1659 
1660 	/*
1661 	 * Create a slab and force alignment to be same as slabsize -
1662 	 * this will make sure that allocations won't cross the page
1663 	 * boundary.
1664 	 */
1665 	jbd_slab[i] = kmem_cache_create(jbd_slab_names[i],
1666 				slab_size, slab_size, 0, NULL, NULL);
1667 	if (!jbd_slab[i]) {
1668 		printk(KERN_EMERG "JBD: no memory for jbd_slab cache\n");
1669 		return -ENOMEM;
1670 	}
1671 	return 0;
1672 }
1673 
1674 void * jbd2_slab_alloc(size_t size, gfp_t flags)
1675 {
1676 	int idx;
1677 
1678 	idx = JBD_SLAB_INDEX(size);
1679 	BUG_ON(jbd_slab[idx] == NULL);
1680 	return kmem_cache_alloc(jbd_slab[idx], flags | __GFP_NOFAIL);
1681 }
1682 
1683 void jbd2_slab_free(void *ptr,  size_t size)
1684 {
1685 	int idx;
1686 
1687 	idx = JBD_SLAB_INDEX(size);
1688 	BUG_ON(jbd_slab[idx] == NULL);
1689 	kmem_cache_free(jbd_slab[idx], ptr);
1690 }
1691 
1692 /*
1693  * Journal_head storage management
1694  */
1695 static kmem_cache_t *jbd2_journal_head_cache;
1696 #ifdef CONFIG_JBD_DEBUG
1697 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1698 #endif
1699 
1700 static int journal_init_jbd2_journal_head_cache(void)
1701 {
1702 	int retval;
1703 
1704 	J_ASSERT(jbd2_journal_head_cache == 0);
1705 	jbd2_journal_head_cache = kmem_cache_create("journal_head",
1706 				sizeof(struct journal_head),
1707 				0,		/* offset */
1708 				0,		/* flags */
1709 				NULL,		/* ctor */
1710 				NULL);		/* dtor */
1711 	retval = 0;
1712 	if (jbd2_journal_head_cache == 0) {
1713 		retval = -ENOMEM;
1714 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1715 	}
1716 	return retval;
1717 }
1718 
1719 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1720 {
1721 	J_ASSERT(jbd2_journal_head_cache != NULL);
1722 	kmem_cache_destroy(jbd2_journal_head_cache);
1723 	jbd2_journal_head_cache = NULL;
1724 }
1725 
1726 /*
1727  * journal_head splicing and dicing
1728  */
1729 static struct journal_head *journal_alloc_journal_head(void)
1730 {
1731 	struct journal_head *ret;
1732 	static unsigned long last_warning;
1733 
1734 #ifdef CONFIG_JBD_DEBUG
1735 	atomic_inc(&nr_journal_heads);
1736 #endif
1737 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1738 	if (ret == 0) {
1739 		jbd_debug(1, "out of memory for journal_head\n");
1740 		if (time_after(jiffies, last_warning + 5*HZ)) {
1741 			printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1742 			       __FUNCTION__);
1743 			last_warning = jiffies;
1744 		}
1745 		while (ret == 0) {
1746 			yield();
1747 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1748 		}
1749 	}
1750 	return ret;
1751 }
1752 
1753 static void journal_free_journal_head(struct journal_head *jh)
1754 {
1755 #ifdef CONFIG_JBD_DEBUG
1756 	atomic_dec(&nr_journal_heads);
1757 	memset(jh, JBD_POISON_FREE, sizeof(*jh));
1758 #endif
1759 	kmem_cache_free(jbd2_journal_head_cache, jh);
1760 }
1761 
1762 /*
1763  * A journal_head is attached to a buffer_head whenever JBD has an
1764  * interest in the buffer.
1765  *
1766  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1767  * is set.  This bit is tested in core kernel code where we need to take
1768  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1769  * there.
1770  *
1771  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1772  *
1773  * When a buffer has its BH_JBD bit set it is immune from being released by
1774  * core kernel code, mainly via ->b_count.
1775  *
1776  * A journal_head may be detached from its buffer_head when the journal_head's
1777  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1778  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
1779  * journal_head can be dropped if needed.
1780  *
1781  * Various places in the kernel want to attach a journal_head to a buffer_head
1782  * _before_ attaching the journal_head to a transaction.  To protect the
1783  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
1784  * journal_head's b_jcount refcount by one.  The caller must call
1785  * jbd2_journal_put_journal_head() to undo this.
1786  *
1787  * So the typical usage would be:
1788  *
1789  *	(Attach a journal_head if needed.  Increments b_jcount)
1790  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1791  *	...
1792  *	jh->b_transaction = xxx;
1793  *	jbd2_journal_put_journal_head(jh);
1794  *
1795  * Now, the journal_head's b_jcount is zero, but it is safe from being released
1796  * because it has a non-zero b_transaction.
1797  */
1798 
1799 /*
1800  * Give a buffer_head a journal_head.
1801  *
1802  * Doesn't need the journal lock.
1803  * May sleep.
1804  */
1805 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
1806 {
1807 	struct journal_head *jh;
1808 	struct journal_head *new_jh = NULL;
1809 
1810 repeat:
1811 	if (!buffer_jbd(bh)) {
1812 		new_jh = journal_alloc_journal_head();
1813 		memset(new_jh, 0, sizeof(*new_jh));
1814 	}
1815 
1816 	jbd_lock_bh_journal_head(bh);
1817 	if (buffer_jbd(bh)) {
1818 		jh = bh2jh(bh);
1819 	} else {
1820 		J_ASSERT_BH(bh,
1821 			(atomic_read(&bh->b_count) > 0) ||
1822 			(bh->b_page && bh->b_page->mapping));
1823 
1824 		if (!new_jh) {
1825 			jbd_unlock_bh_journal_head(bh);
1826 			goto repeat;
1827 		}
1828 
1829 		jh = new_jh;
1830 		new_jh = NULL;		/* We consumed it */
1831 		set_buffer_jbd(bh);
1832 		bh->b_private = jh;
1833 		jh->b_bh = bh;
1834 		get_bh(bh);
1835 		BUFFER_TRACE(bh, "added journal_head");
1836 	}
1837 	jh->b_jcount++;
1838 	jbd_unlock_bh_journal_head(bh);
1839 	if (new_jh)
1840 		journal_free_journal_head(new_jh);
1841 	return bh->b_private;
1842 }
1843 
1844 /*
1845  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1846  * having a journal_head, return NULL
1847  */
1848 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
1849 {
1850 	struct journal_head *jh = NULL;
1851 
1852 	jbd_lock_bh_journal_head(bh);
1853 	if (buffer_jbd(bh)) {
1854 		jh = bh2jh(bh);
1855 		jh->b_jcount++;
1856 	}
1857 	jbd_unlock_bh_journal_head(bh);
1858 	return jh;
1859 }
1860 
1861 static void __journal_remove_journal_head(struct buffer_head *bh)
1862 {
1863 	struct journal_head *jh = bh2jh(bh);
1864 
1865 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
1866 
1867 	get_bh(bh);
1868 	if (jh->b_jcount == 0) {
1869 		if (jh->b_transaction == NULL &&
1870 				jh->b_next_transaction == NULL &&
1871 				jh->b_cp_transaction == NULL) {
1872 			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1873 			J_ASSERT_BH(bh, buffer_jbd(bh));
1874 			J_ASSERT_BH(bh, jh2bh(jh) == bh);
1875 			BUFFER_TRACE(bh, "remove journal_head");
1876 			if (jh->b_frozen_data) {
1877 				printk(KERN_WARNING "%s: freeing "
1878 						"b_frozen_data\n",
1879 						__FUNCTION__);
1880 				jbd2_slab_free(jh->b_frozen_data, bh->b_size);
1881 			}
1882 			if (jh->b_committed_data) {
1883 				printk(KERN_WARNING "%s: freeing "
1884 						"b_committed_data\n",
1885 						__FUNCTION__);
1886 				jbd2_slab_free(jh->b_committed_data, bh->b_size);
1887 			}
1888 			bh->b_private = NULL;
1889 			jh->b_bh = NULL;	/* debug, really */
1890 			clear_buffer_jbd(bh);
1891 			__brelse(bh);
1892 			journal_free_journal_head(jh);
1893 		} else {
1894 			BUFFER_TRACE(bh, "journal_head was locked");
1895 		}
1896 	}
1897 }
1898 
1899 /*
1900  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
1901  * and has a zero b_jcount then remove and release its journal_head.   If we did
1902  * see that the buffer is not used by any transaction we also "logically"
1903  * decrement ->b_count.
1904  *
1905  * We in fact take an additional increment on ->b_count as a convenience,
1906  * because the caller usually wants to do additional things with the bh
1907  * after calling here.
1908  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
1909  * time.  Once the caller has run __brelse(), the buffer is eligible for
1910  * reaping by try_to_free_buffers().
1911  */
1912 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
1913 {
1914 	jbd_lock_bh_journal_head(bh);
1915 	__journal_remove_journal_head(bh);
1916 	jbd_unlock_bh_journal_head(bh);
1917 }
1918 
1919 /*
1920  * Drop a reference on the passed journal_head.  If it fell to zero then try to
1921  * release the journal_head from the buffer_head.
1922  */
1923 void jbd2_journal_put_journal_head(struct journal_head *jh)
1924 {
1925 	struct buffer_head *bh = jh2bh(jh);
1926 
1927 	jbd_lock_bh_journal_head(bh);
1928 	J_ASSERT_JH(jh, jh->b_jcount > 0);
1929 	--jh->b_jcount;
1930 	if (!jh->b_jcount && !jh->b_transaction) {
1931 		__journal_remove_journal_head(bh);
1932 		__brelse(bh);
1933 	}
1934 	jbd_unlock_bh_journal_head(bh);
1935 }
1936 
1937 /*
1938  * /proc tunables
1939  */
1940 #if defined(CONFIG_JBD_DEBUG)
1941 int jbd2_journal_enable_debug;
1942 EXPORT_SYMBOL(jbd2_journal_enable_debug);
1943 #endif
1944 
1945 #if defined(CONFIG_JBD_DEBUG) && defined(CONFIG_PROC_FS)
1946 
1947 static struct proc_dir_entry *proc_jbd_debug;
1948 
1949 static int read_jbd_debug(char *page, char **start, off_t off,
1950 			  int count, int *eof, void *data)
1951 {
1952 	int ret;
1953 
1954 	ret = sprintf(page + off, "%d\n", jbd2_journal_enable_debug);
1955 	*eof = 1;
1956 	return ret;
1957 }
1958 
1959 static int write_jbd_debug(struct file *file, const char __user *buffer,
1960 			   unsigned long count, void *data)
1961 {
1962 	char buf[32];
1963 
1964 	if (count > ARRAY_SIZE(buf) - 1)
1965 		count = ARRAY_SIZE(buf) - 1;
1966 	if (copy_from_user(buf, buffer, count))
1967 		return -EFAULT;
1968 	buf[ARRAY_SIZE(buf) - 1] = '\0';
1969 	jbd2_journal_enable_debug = simple_strtoul(buf, NULL, 10);
1970 	return count;
1971 }
1972 
1973 #define JBD_PROC_NAME "sys/fs/jbd2-debug"
1974 
1975 static void __init create_jbd_proc_entry(void)
1976 {
1977 	proc_jbd_debug = create_proc_entry(JBD_PROC_NAME, 0644, NULL);
1978 	if (proc_jbd_debug) {
1979 		/* Why is this so hard? */
1980 		proc_jbd_debug->read_proc = read_jbd_debug;
1981 		proc_jbd_debug->write_proc = write_jbd_debug;
1982 	}
1983 }
1984 
1985 static void __exit jbd2_remove_jbd_proc_entry(void)
1986 {
1987 	if (proc_jbd_debug)
1988 		remove_proc_entry(JBD_PROC_NAME, NULL);
1989 }
1990 
1991 #else
1992 
1993 #define create_jbd_proc_entry() do {} while (0)
1994 #define jbd2_remove_jbd_proc_entry() do {} while (0)
1995 
1996 #endif
1997 
1998 kmem_cache_t *jbd2_handle_cache;
1999 
2000 static int __init journal_init_handle_cache(void)
2001 {
2002 	jbd2_handle_cache = kmem_cache_create("journal_handle",
2003 				sizeof(handle_t),
2004 				0,		/* offset */
2005 				0,		/* flags */
2006 				NULL,		/* ctor */
2007 				NULL);		/* dtor */
2008 	if (jbd2_handle_cache == NULL) {
2009 		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2010 		return -ENOMEM;
2011 	}
2012 	return 0;
2013 }
2014 
2015 static void jbd2_journal_destroy_handle_cache(void)
2016 {
2017 	if (jbd2_handle_cache)
2018 		kmem_cache_destroy(jbd2_handle_cache);
2019 }
2020 
2021 /*
2022  * Module startup and shutdown
2023  */
2024 
2025 static int __init journal_init_caches(void)
2026 {
2027 	int ret;
2028 
2029 	ret = jbd2_journal_init_revoke_caches();
2030 	if (ret == 0)
2031 		ret = journal_init_jbd2_journal_head_cache();
2032 	if (ret == 0)
2033 		ret = journal_init_handle_cache();
2034 	return ret;
2035 }
2036 
2037 static void jbd2_journal_destroy_caches(void)
2038 {
2039 	jbd2_journal_destroy_revoke_caches();
2040 	jbd2_journal_destroy_jbd2_journal_head_cache();
2041 	jbd2_journal_destroy_handle_cache();
2042 	jbd2_journal_destroy_jbd_slabs();
2043 }
2044 
2045 static int __init journal_init(void)
2046 {
2047 	int ret;
2048 
2049 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2050 
2051 	ret = journal_init_caches();
2052 	if (ret != 0)
2053 		jbd2_journal_destroy_caches();
2054 	create_jbd_proc_entry();
2055 	return ret;
2056 }
2057 
2058 static void __exit journal_exit(void)
2059 {
2060 #ifdef CONFIG_JBD_DEBUG
2061 	int n = atomic_read(&nr_journal_heads);
2062 	if (n)
2063 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2064 #endif
2065 	jbd2_remove_jbd_proc_entry();
2066 	jbd2_journal_destroy_caches();
2067 }
2068 
2069 MODULE_LICENSE("GPL");
2070 module_init(journal_init);
2071 module_exit(journal_exit);
2072 
2073