1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/math64.h> 40 #include <linux/hash.h> 41 #include <linux/log2.h> 42 #include <linux/vmalloc.h> 43 #include <linux/backing-dev.h> 44 #include <linux/bitops.h> 45 #include <linux/ratelimit.h> 46 47 #define CREATE_TRACE_POINTS 48 #include <trace/events/jbd2.h> 49 50 #include <linux/uaccess.h> 51 #include <asm/page.h> 52 53 #ifdef CONFIG_JBD2_DEBUG 54 ushort jbd2_journal_enable_debug __read_mostly; 55 EXPORT_SYMBOL(jbd2_journal_enable_debug); 56 57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 59 #endif 60 61 EXPORT_SYMBOL(jbd2_journal_extend); 62 EXPORT_SYMBOL(jbd2_journal_stop); 63 EXPORT_SYMBOL(jbd2_journal_lock_updates); 64 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 65 EXPORT_SYMBOL(jbd2_journal_get_write_access); 66 EXPORT_SYMBOL(jbd2_journal_get_create_access); 67 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 68 EXPORT_SYMBOL(jbd2_journal_set_triggers); 69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 70 EXPORT_SYMBOL(jbd2_journal_forget); 71 #if 0 72 EXPORT_SYMBOL(journal_sync_buffer); 73 #endif 74 EXPORT_SYMBOL(jbd2_journal_flush); 75 EXPORT_SYMBOL(jbd2_journal_revoke); 76 77 EXPORT_SYMBOL(jbd2_journal_init_dev); 78 EXPORT_SYMBOL(jbd2_journal_init_inode); 79 EXPORT_SYMBOL(jbd2_journal_check_used_features); 80 EXPORT_SYMBOL(jbd2_journal_check_available_features); 81 EXPORT_SYMBOL(jbd2_journal_set_features); 82 EXPORT_SYMBOL(jbd2_journal_load); 83 EXPORT_SYMBOL(jbd2_journal_destroy); 84 EXPORT_SYMBOL(jbd2_journal_abort); 85 EXPORT_SYMBOL(jbd2_journal_errno); 86 EXPORT_SYMBOL(jbd2_journal_ack_err); 87 EXPORT_SYMBOL(jbd2_journal_clear_err); 88 EXPORT_SYMBOL(jbd2_log_wait_commit); 89 EXPORT_SYMBOL(jbd2_log_start_commit); 90 EXPORT_SYMBOL(jbd2_journal_start_commit); 91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 92 EXPORT_SYMBOL(jbd2_journal_wipe); 93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 94 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 96 EXPORT_SYMBOL(jbd2_journal_force_commit); 97 EXPORT_SYMBOL(jbd2_journal_inode_add_write); 98 EXPORT_SYMBOL(jbd2_journal_inode_add_wait); 99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 102 EXPORT_SYMBOL(jbd2_inode_cache); 103 104 static void __journal_abort_soft (journal_t *journal, int errno); 105 static int jbd2_journal_create_slab(size_t slab_size); 106 107 #ifdef CONFIG_JBD2_DEBUG 108 void __jbd2_debug(int level, const char *file, const char *func, 109 unsigned int line, const char *fmt, ...) 110 { 111 struct va_format vaf; 112 va_list args; 113 114 if (level > jbd2_journal_enable_debug) 115 return; 116 va_start(args, fmt); 117 vaf.fmt = fmt; 118 vaf.va = &args; 119 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf); 120 va_end(args); 121 } 122 EXPORT_SYMBOL(__jbd2_debug); 123 #endif 124 125 /* Checksumming functions */ 126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 127 { 128 if (!jbd2_journal_has_csum_v2or3_feature(j)) 129 return 1; 130 131 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 132 } 133 134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 135 { 136 __u32 csum; 137 __be32 old_csum; 138 139 old_csum = sb->s_checksum; 140 sb->s_checksum = 0; 141 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 142 sb->s_checksum = old_csum; 143 144 return cpu_to_be32(csum); 145 } 146 147 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb) 148 { 149 if (!jbd2_journal_has_csum_v2or3(j)) 150 return 1; 151 152 return sb->s_checksum == jbd2_superblock_csum(j, sb); 153 } 154 155 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb) 156 { 157 if (!jbd2_journal_has_csum_v2or3(j)) 158 return; 159 160 sb->s_checksum = jbd2_superblock_csum(j, sb); 161 } 162 163 /* 164 * Helper function used to manage commit timeouts 165 */ 166 167 static void commit_timeout(unsigned long __data) 168 { 169 struct task_struct * p = (struct task_struct *) __data; 170 171 wake_up_process(p); 172 } 173 174 /* 175 * kjournald2: The main thread function used to manage a logging device 176 * journal. 177 * 178 * This kernel thread is responsible for two things: 179 * 180 * 1) COMMIT: Every so often we need to commit the current state of the 181 * filesystem to disk. The journal thread is responsible for writing 182 * all of the metadata buffers to disk. 183 * 184 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 185 * of the data in that part of the log has been rewritten elsewhere on 186 * the disk. Flushing these old buffers to reclaim space in the log is 187 * known as checkpointing, and this thread is responsible for that job. 188 */ 189 190 static int kjournald2(void *arg) 191 { 192 journal_t *journal = arg; 193 transaction_t *transaction; 194 195 /* 196 * Set up an interval timer which can be used to trigger a commit wakeup 197 * after the commit interval expires 198 */ 199 setup_timer(&journal->j_commit_timer, commit_timeout, 200 (unsigned long)current); 201 202 set_freezable(); 203 204 /* Record that the journal thread is running */ 205 journal->j_task = current; 206 wake_up(&journal->j_wait_done_commit); 207 208 /* 209 * And now, wait forever for commit wakeup events. 210 */ 211 write_lock(&journal->j_state_lock); 212 213 loop: 214 if (journal->j_flags & JBD2_UNMOUNT) 215 goto end_loop; 216 217 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 218 journal->j_commit_sequence, journal->j_commit_request); 219 220 if (journal->j_commit_sequence != journal->j_commit_request) { 221 jbd_debug(1, "OK, requests differ\n"); 222 write_unlock(&journal->j_state_lock); 223 del_timer_sync(&journal->j_commit_timer); 224 jbd2_journal_commit_transaction(journal); 225 write_lock(&journal->j_state_lock); 226 goto loop; 227 } 228 229 wake_up(&journal->j_wait_done_commit); 230 if (freezing(current)) { 231 /* 232 * The simpler the better. Flushing journal isn't a 233 * good idea, because that depends on threads that may 234 * be already stopped. 235 */ 236 jbd_debug(1, "Now suspending kjournald2\n"); 237 write_unlock(&journal->j_state_lock); 238 try_to_freeze(); 239 write_lock(&journal->j_state_lock); 240 } else { 241 /* 242 * We assume on resume that commits are already there, 243 * so we don't sleep 244 */ 245 DEFINE_WAIT(wait); 246 int should_sleep = 1; 247 248 prepare_to_wait(&journal->j_wait_commit, &wait, 249 TASK_INTERRUPTIBLE); 250 if (journal->j_commit_sequence != journal->j_commit_request) 251 should_sleep = 0; 252 transaction = journal->j_running_transaction; 253 if (transaction && time_after_eq(jiffies, 254 transaction->t_expires)) 255 should_sleep = 0; 256 if (journal->j_flags & JBD2_UNMOUNT) 257 should_sleep = 0; 258 if (should_sleep) { 259 write_unlock(&journal->j_state_lock); 260 schedule(); 261 write_lock(&journal->j_state_lock); 262 } 263 finish_wait(&journal->j_wait_commit, &wait); 264 } 265 266 jbd_debug(1, "kjournald2 wakes\n"); 267 268 /* 269 * Were we woken up by a commit wakeup event? 270 */ 271 transaction = journal->j_running_transaction; 272 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 273 journal->j_commit_request = transaction->t_tid; 274 jbd_debug(1, "woke because of timeout\n"); 275 } 276 goto loop; 277 278 end_loop: 279 del_timer_sync(&journal->j_commit_timer); 280 journal->j_task = NULL; 281 wake_up(&journal->j_wait_done_commit); 282 jbd_debug(1, "Journal thread exiting.\n"); 283 write_unlock(&journal->j_state_lock); 284 return 0; 285 } 286 287 static int jbd2_journal_start_thread(journal_t *journal) 288 { 289 struct task_struct *t; 290 291 t = kthread_run(kjournald2, journal, "jbd2/%s", 292 journal->j_devname); 293 if (IS_ERR(t)) 294 return PTR_ERR(t); 295 296 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 297 return 0; 298 } 299 300 static void journal_kill_thread(journal_t *journal) 301 { 302 write_lock(&journal->j_state_lock); 303 journal->j_flags |= JBD2_UNMOUNT; 304 305 while (journal->j_task) { 306 write_unlock(&journal->j_state_lock); 307 wake_up(&journal->j_wait_commit); 308 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 309 write_lock(&journal->j_state_lock); 310 } 311 write_unlock(&journal->j_state_lock); 312 } 313 314 /* 315 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 316 * 317 * Writes a metadata buffer to a given disk block. The actual IO is not 318 * performed but a new buffer_head is constructed which labels the data 319 * to be written with the correct destination disk block. 320 * 321 * Any magic-number escaping which needs to be done will cause a 322 * copy-out here. If the buffer happens to start with the 323 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 324 * magic number is only written to the log for descripter blocks. In 325 * this case, we copy the data and replace the first word with 0, and we 326 * return a result code which indicates that this buffer needs to be 327 * marked as an escaped buffer in the corresponding log descriptor 328 * block. The missing word can then be restored when the block is read 329 * during recovery. 330 * 331 * If the source buffer has already been modified by a new transaction 332 * since we took the last commit snapshot, we use the frozen copy of 333 * that data for IO. If we end up using the existing buffer_head's data 334 * for the write, then we have to make sure nobody modifies it while the 335 * IO is in progress. do_get_write_access() handles this. 336 * 337 * The function returns a pointer to the buffer_head to be used for IO. 338 * 339 * 340 * Return value: 341 * <0: Error 342 * >=0: Finished OK 343 * 344 * On success: 345 * Bit 0 set == escape performed on the data 346 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 347 */ 348 349 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 350 struct journal_head *jh_in, 351 struct buffer_head **bh_out, 352 sector_t blocknr) 353 { 354 int need_copy_out = 0; 355 int done_copy_out = 0; 356 int do_escape = 0; 357 char *mapped_data; 358 struct buffer_head *new_bh; 359 struct page *new_page; 360 unsigned int new_offset; 361 struct buffer_head *bh_in = jh2bh(jh_in); 362 journal_t *journal = transaction->t_journal; 363 364 /* 365 * The buffer really shouldn't be locked: only the current committing 366 * transaction is allowed to write it, so nobody else is allowed 367 * to do any IO. 368 * 369 * akpm: except if we're journalling data, and write() output is 370 * also part of a shared mapping, and another thread has 371 * decided to launch a writepage() against this buffer. 372 */ 373 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 374 375 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 376 377 /* keep subsequent assertions sane */ 378 atomic_set(&new_bh->b_count, 1); 379 380 jbd_lock_bh_state(bh_in); 381 repeat: 382 /* 383 * If a new transaction has already done a buffer copy-out, then 384 * we use that version of the data for the commit. 385 */ 386 if (jh_in->b_frozen_data) { 387 done_copy_out = 1; 388 new_page = virt_to_page(jh_in->b_frozen_data); 389 new_offset = offset_in_page(jh_in->b_frozen_data); 390 } else { 391 new_page = jh2bh(jh_in)->b_page; 392 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 393 } 394 395 mapped_data = kmap_atomic(new_page); 396 /* 397 * Fire data frozen trigger if data already wasn't frozen. Do this 398 * before checking for escaping, as the trigger may modify the magic 399 * offset. If a copy-out happens afterwards, it will have the correct 400 * data in the buffer. 401 */ 402 if (!done_copy_out) 403 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 404 jh_in->b_triggers); 405 406 /* 407 * Check for escaping 408 */ 409 if (*((__be32 *)(mapped_data + new_offset)) == 410 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 411 need_copy_out = 1; 412 do_escape = 1; 413 } 414 kunmap_atomic(mapped_data); 415 416 /* 417 * Do we need to do a data copy? 418 */ 419 if (need_copy_out && !done_copy_out) { 420 char *tmp; 421 422 jbd_unlock_bh_state(bh_in); 423 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 424 if (!tmp) { 425 brelse(new_bh); 426 return -ENOMEM; 427 } 428 jbd_lock_bh_state(bh_in); 429 if (jh_in->b_frozen_data) { 430 jbd2_free(tmp, bh_in->b_size); 431 goto repeat; 432 } 433 434 jh_in->b_frozen_data = tmp; 435 mapped_data = kmap_atomic(new_page); 436 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 437 kunmap_atomic(mapped_data); 438 439 new_page = virt_to_page(tmp); 440 new_offset = offset_in_page(tmp); 441 done_copy_out = 1; 442 443 /* 444 * This isn't strictly necessary, as we're using frozen 445 * data for the escaping, but it keeps consistency with 446 * b_frozen_data usage. 447 */ 448 jh_in->b_frozen_triggers = jh_in->b_triggers; 449 } 450 451 /* 452 * Did we need to do an escaping? Now we've done all the 453 * copying, we can finally do so. 454 */ 455 if (do_escape) { 456 mapped_data = kmap_atomic(new_page); 457 *((unsigned int *)(mapped_data + new_offset)) = 0; 458 kunmap_atomic(mapped_data); 459 } 460 461 set_bh_page(new_bh, new_page, new_offset); 462 new_bh->b_size = bh_in->b_size; 463 new_bh->b_bdev = journal->j_dev; 464 new_bh->b_blocknr = blocknr; 465 new_bh->b_private = bh_in; 466 set_buffer_mapped(new_bh); 467 set_buffer_dirty(new_bh); 468 469 *bh_out = new_bh; 470 471 /* 472 * The to-be-written buffer needs to get moved to the io queue, 473 * and the original buffer whose contents we are shadowing or 474 * copying is moved to the transaction's shadow queue. 475 */ 476 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 477 spin_lock(&journal->j_list_lock); 478 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 479 spin_unlock(&journal->j_list_lock); 480 set_buffer_shadow(bh_in); 481 jbd_unlock_bh_state(bh_in); 482 483 return do_escape | (done_copy_out << 1); 484 } 485 486 /* 487 * Allocation code for the journal file. Manage the space left in the 488 * journal, so that we can begin checkpointing when appropriate. 489 */ 490 491 /* 492 * Called with j_state_lock locked for writing. 493 * Returns true if a transaction commit was started. 494 */ 495 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 496 { 497 /* Return if the txn has already requested to be committed */ 498 if (journal->j_commit_request == target) 499 return 0; 500 501 /* 502 * The only transaction we can possibly wait upon is the 503 * currently running transaction (if it exists). Otherwise, 504 * the target tid must be an old one. 505 */ 506 if (journal->j_running_transaction && 507 journal->j_running_transaction->t_tid == target) { 508 /* 509 * We want a new commit: OK, mark the request and wakeup the 510 * commit thread. We do _not_ do the commit ourselves. 511 */ 512 513 journal->j_commit_request = target; 514 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 515 journal->j_commit_request, 516 journal->j_commit_sequence); 517 journal->j_running_transaction->t_requested = jiffies; 518 wake_up(&journal->j_wait_commit); 519 return 1; 520 } else if (!tid_geq(journal->j_commit_request, target)) 521 /* This should never happen, but if it does, preserve 522 the evidence before kjournald goes into a loop and 523 increments j_commit_sequence beyond all recognition. */ 524 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 525 journal->j_commit_request, 526 journal->j_commit_sequence, 527 target, journal->j_running_transaction ? 528 journal->j_running_transaction->t_tid : 0); 529 return 0; 530 } 531 532 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 533 { 534 int ret; 535 536 write_lock(&journal->j_state_lock); 537 ret = __jbd2_log_start_commit(journal, tid); 538 write_unlock(&journal->j_state_lock); 539 return ret; 540 } 541 542 /* 543 * Force and wait any uncommitted transactions. We can only force the running 544 * transaction if we don't have an active handle, otherwise, we will deadlock. 545 * Returns: <0 in case of error, 546 * 0 if nothing to commit, 547 * 1 if transaction was successfully committed. 548 */ 549 static int __jbd2_journal_force_commit(journal_t *journal) 550 { 551 transaction_t *transaction = NULL; 552 tid_t tid; 553 int need_to_start = 0, ret = 0; 554 555 read_lock(&journal->j_state_lock); 556 if (journal->j_running_transaction && !current->journal_info) { 557 transaction = journal->j_running_transaction; 558 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 559 need_to_start = 1; 560 } else if (journal->j_committing_transaction) 561 transaction = journal->j_committing_transaction; 562 563 if (!transaction) { 564 /* Nothing to commit */ 565 read_unlock(&journal->j_state_lock); 566 return 0; 567 } 568 tid = transaction->t_tid; 569 read_unlock(&journal->j_state_lock); 570 if (need_to_start) 571 jbd2_log_start_commit(journal, tid); 572 ret = jbd2_log_wait_commit(journal, tid); 573 if (!ret) 574 ret = 1; 575 576 return ret; 577 } 578 579 /** 580 * Force and wait upon a commit if the calling process is not within 581 * transaction. This is used for forcing out undo-protected data which contains 582 * bitmaps, when the fs is running out of space. 583 * 584 * @journal: journal to force 585 * Returns true if progress was made. 586 */ 587 int jbd2_journal_force_commit_nested(journal_t *journal) 588 { 589 int ret; 590 591 ret = __jbd2_journal_force_commit(journal); 592 return ret > 0; 593 } 594 595 /** 596 * int journal_force_commit() - force any uncommitted transactions 597 * @journal: journal to force 598 * 599 * Caller want unconditional commit. We can only force the running transaction 600 * if we don't have an active handle, otherwise, we will deadlock. 601 */ 602 int jbd2_journal_force_commit(journal_t *journal) 603 { 604 int ret; 605 606 J_ASSERT(!current->journal_info); 607 ret = __jbd2_journal_force_commit(journal); 608 if (ret > 0) 609 ret = 0; 610 return ret; 611 } 612 613 /* 614 * Start a commit of the current running transaction (if any). Returns true 615 * if a transaction is going to be committed (or is currently already 616 * committing), and fills its tid in at *ptid 617 */ 618 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 619 { 620 int ret = 0; 621 622 write_lock(&journal->j_state_lock); 623 if (journal->j_running_transaction) { 624 tid_t tid = journal->j_running_transaction->t_tid; 625 626 __jbd2_log_start_commit(journal, tid); 627 /* There's a running transaction and we've just made sure 628 * it's commit has been scheduled. */ 629 if (ptid) 630 *ptid = tid; 631 ret = 1; 632 } else if (journal->j_committing_transaction) { 633 /* 634 * If commit has been started, then we have to wait for 635 * completion of that transaction. 636 */ 637 if (ptid) 638 *ptid = journal->j_committing_transaction->t_tid; 639 ret = 1; 640 } 641 write_unlock(&journal->j_state_lock); 642 return ret; 643 } 644 645 /* 646 * Return 1 if a given transaction has not yet sent barrier request 647 * connected with a transaction commit. If 0 is returned, transaction 648 * may or may not have sent the barrier. Used to avoid sending barrier 649 * twice in common cases. 650 */ 651 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 652 { 653 int ret = 0; 654 transaction_t *commit_trans; 655 656 if (!(journal->j_flags & JBD2_BARRIER)) 657 return 0; 658 read_lock(&journal->j_state_lock); 659 /* Transaction already committed? */ 660 if (tid_geq(journal->j_commit_sequence, tid)) 661 goto out; 662 commit_trans = journal->j_committing_transaction; 663 if (!commit_trans || commit_trans->t_tid != tid) { 664 ret = 1; 665 goto out; 666 } 667 /* 668 * Transaction is being committed and we already proceeded to 669 * submitting a flush to fs partition? 670 */ 671 if (journal->j_fs_dev != journal->j_dev) { 672 if (!commit_trans->t_need_data_flush || 673 commit_trans->t_state >= T_COMMIT_DFLUSH) 674 goto out; 675 } else { 676 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 677 goto out; 678 } 679 ret = 1; 680 out: 681 read_unlock(&journal->j_state_lock); 682 return ret; 683 } 684 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 685 686 /* 687 * Wait for a specified commit to complete. 688 * The caller may not hold the journal lock. 689 */ 690 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 691 { 692 int err = 0; 693 694 read_lock(&journal->j_state_lock); 695 #ifdef CONFIG_PROVE_LOCKING 696 /* 697 * Some callers make sure transaction is already committing and in that 698 * case we cannot block on open handles anymore. So don't warn in that 699 * case. 700 */ 701 if (tid_gt(tid, journal->j_commit_sequence) && 702 (!journal->j_committing_transaction || 703 journal->j_committing_transaction->t_tid != tid)) { 704 read_unlock(&journal->j_state_lock); 705 jbd2_might_wait_for_commit(journal); 706 read_lock(&journal->j_state_lock); 707 } 708 #endif 709 #ifdef CONFIG_JBD2_DEBUG 710 if (!tid_geq(journal->j_commit_request, tid)) { 711 printk(KERN_ERR 712 "%s: error: j_commit_request=%d, tid=%d\n", 713 __func__, journal->j_commit_request, tid); 714 } 715 #endif 716 while (tid_gt(tid, journal->j_commit_sequence)) { 717 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 718 tid, journal->j_commit_sequence); 719 read_unlock(&journal->j_state_lock); 720 wake_up(&journal->j_wait_commit); 721 wait_event(journal->j_wait_done_commit, 722 !tid_gt(tid, journal->j_commit_sequence)); 723 read_lock(&journal->j_state_lock); 724 } 725 read_unlock(&journal->j_state_lock); 726 727 if (unlikely(is_journal_aborted(journal))) 728 err = -EIO; 729 return err; 730 } 731 732 /* 733 * When this function returns the transaction corresponding to tid 734 * will be completed. If the transaction has currently running, start 735 * committing that transaction before waiting for it to complete. If 736 * the transaction id is stale, it is by definition already completed, 737 * so just return SUCCESS. 738 */ 739 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 740 { 741 int need_to_wait = 1; 742 743 read_lock(&journal->j_state_lock); 744 if (journal->j_running_transaction && 745 journal->j_running_transaction->t_tid == tid) { 746 if (journal->j_commit_request != tid) { 747 /* transaction not yet started, so request it */ 748 read_unlock(&journal->j_state_lock); 749 jbd2_log_start_commit(journal, tid); 750 goto wait_commit; 751 } 752 } else if (!(journal->j_committing_transaction && 753 journal->j_committing_transaction->t_tid == tid)) 754 need_to_wait = 0; 755 read_unlock(&journal->j_state_lock); 756 if (!need_to_wait) 757 return 0; 758 wait_commit: 759 return jbd2_log_wait_commit(journal, tid); 760 } 761 EXPORT_SYMBOL(jbd2_complete_transaction); 762 763 /* 764 * Log buffer allocation routines: 765 */ 766 767 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 768 { 769 unsigned long blocknr; 770 771 write_lock(&journal->j_state_lock); 772 J_ASSERT(journal->j_free > 1); 773 774 blocknr = journal->j_head; 775 journal->j_head++; 776 journal->j_free--; 777 if (journal->j_head == journal->j_last) 778 journal->j_head = journal->j_first; 779 write_unlock(&journal->j_state_lock); 780 return jbd2_journal_bmap(journal, blocknr, retp); 781 } 782 783 /* 784 * Conversion of logical to physical block numbers for the journal 785 * 786 * On external journals the journal blocks are identity-mapped, so 787 * this is a no-op. If needed, we can use j_blk_offset - everything is 788 * ready. 789 */ 790 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 791 unsigned long long *retp) 792 { 793 int err = 0; 794 unsigned long long ret; 795 796 if (journal->j_inode) { 797 ret = bmap(journal->j_inode, blocknr); 798 if (ret) 799 *retp = ret; 800 else { 801 printk(KERN_ALERT "%s: journal block not found " 802 "at offset %lu on %s\n", 803 __func__, blocknr, journal->j_devname); 804 err = -EIO; 805 __journal_abort_soft(journal, err); 806 } 807 } else { 808 *retp = blocknr; /* +journal->j_blk_offset */ 809 } 810 return err; 811 } 812 813 /* 814 * We play buffer_head aliasing tricks to write data/metadata blocks to 815 * the journal without copying their contents, but for journal 816 * descriptor blocks we do need to generate bona fide buffers. 817 * 818 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 819 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 820 * But we don't bother doing that, so there will be coherency problems with 821 * mmaps of blockdevs which hold live JBD-controlled filesystems. 822 */ 823 struct buffer_head * 824 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 825 { 826 journal_t *journal = transaction->t_journal; 827 struct buffer_head *bh; 828 unsigned long long blocknr; 829 journal_header_t *header; 830 int err; 831 832 err = jbd2_journal_next_log_block(journal, &blocknr); 833 834 if (err) 835 return NULL; 836 837 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 838 if (!bh) 839 return NULL; 840 lock_buffer(bh); 841 memset(bh->b_data, 0, journal->j_blocksize); 842 header = (journal_header_t *)bh->b_data; 843 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 844 header->h_blocktype = cpu_to_be32(type); 845 header->h_sequence = cpu_to_be32(transaction->t_tid); 846 set_buffer_uptodate(bh); 847 unlock_buffer(bh); 848 BUFFER_TRACE(bh, "return this buffer"); 849 return bh; 850 } 851 852 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 853 { 854 struct jbd2_journal_block_tail *tail; 855 __u32 csum; 856 857 if (!jbd2_journal_has_csum_v2or3(j)) 858 return; 859 860 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 861 sizeof(struct jbd2_journal_block_tail)); 862 tail->t_checksum = 0; 863 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 864 tail->t_checksum = cpu_to_be32(csum); 865 } 866 867 /* 868 * Return tid of the oldest transaction in the journal and block in the journal 869 * where the transaction starts. 870 * 871 * If the journal is now empty, return which will be the next transaction ID 872 * we will write and where will that transaction start. 873 * 874 * The return value is 0 if journal tail cannot be pushed any further, 1 if 875 * it can. 876 */ 877 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 878 unsigned long *block) 879 { 880 transaction_t *transaction; 881 int ret; 882 883 read_lock(&journal->j_state_lock); 884 spin_lock(&journal->j_list_lock); 885 transaction = journal->j_checkpoint_transactions; 886 if (transaction) { 887 *tid = transaction->t_tid; 888 *block = transaction->t_log_start; 889 } else if ((transaction = journal->j_committing_transaction) != NULL) { 890 *tid = transaction->t_tid; 891 *block = transaction->t_log_start; 892 } else if ((transaction = journal->j_running_transaction) != NULL) { 893 *tid = transaction->t_tid; 894 *block = journal->j_head; 895 } else { 896 *tid = journal->j_transaction_sequence; 897 *block = journal->j_head; 898 } 899 ret = tid_gt(*tid, journal->j_tail_sequence); 900 spin_unlock(&journal->j_list_lock); 901 read_unlock(&journal->j_state_lock); 902 903 return ret; 904 } 905 906 /* 907 * Update information in journal structure and in on disk journal superblock 908 * about log tail. This function does not check whether information passed in 909 * really pushes log tail further. It's responsibility of the caller to make 910 * sure provided log tail information is valid (e.g. by holding 911 * j_checkpoint_mutex all the time between computing log tail and calling this 912 * function as is the case with jbd2_cleanup_journal_tail()). 913 * 914 * Requires j_checkpoint_mutex 915 */ 916 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 917 { 918 unsigned long freed; 919 int ret; 920 921 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 922 923 /* 924 * We cannot afford for write to remain in drive's caches since as 925 * soon as we update j_tail, next transaction can start reusing journal 926 * space and if we lose sb update during power failure we'd replay 927 * old transaction with possibly newly overwritten data. 928 */ 929 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA); 930 if (ret) 931 goto out; 932 933 write_lock(&journal->j_state_lock); 934 freed = block - journal->j_tail; 935 if (block < journal->j_tail) 936 freed += journal->j_last - journal->j_first; 937 938 trace_jbd2_update_log_tail(journal, tid, block, freed); 939 jbd_debug(1, 940 "Cleaning journal tail from %d to %d (offset %lu), " 941 "freeing %lu\n", 942 journal->j_tail_sequence, tid, block, freed); 943 944 journal->j_free += freed; 945 journal->j_tail_sequence = tid; 946 journal->j_tail = block; 947 write_unlock(&journal->j_state_lock); 948 949 out: 950 return ret; 951 } 952 953 /* 954 * This is a variaon of __jbd2_update_log_tail which checks for validity of 955 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 956 * with other threads updating log tail. 957 */ 958 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 959 { 960 mutex_lock_io(&journal->j_checkpoint_mutex); 961 if (tid_gt(tid, journal->j_tail_sequence)) 962 __jbd2_update_log_tail(journal, tid, block); 963 mutex_unlock(&journal->j_checkpoint_mutex); 964 } 965 966 struct jbd2_stats_proc_session { 967 journal_t *journal; 968 struct transaction_stats_s *stats; 969 int start; 970 int max; 971 }; 972 973 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 974 { 975 return *pos ? NULL : SEQ_START_TOKEN; 976 } 977 978 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 979 { 980 return NULL; 981 } 982 983 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 984 { 985 struct jbd2_stats_proc_session *s = seq->private; 986 987 if (v != SEQ_START_TOKEN) 988 return 0; 989 seq_printf(seq, "%lu transactions (%lu requested), " 990 "each up to %u blocks\n", 991 s->stats->ts_tid, s->stats->ts_requested, 992 s->journal->j_max_transaction_buffers); 993 if (s->stats->ts_tid == 0) 994 return 0; 995 seq_printf(seq, "average: \n %ums waiting for transaction\n", 996 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 997 seq_printf(seq, " %ums request delay\n", 998 (s->stats->ts_requested == 0) ? 0 : 999 jiffies_to_msecs(s->stats->run.rs_request_delay / 1000 s->stats->ts_requested)); 1001 seq_printf(seq, " %ums running transaction\n", 1002 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1003 seq_printf(seq, " %ums transaction was being locked\n", 1004 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1005 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1006 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1007 seq_printf(seq, " %ums logging transaction\n", 1008 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1009 seq_printf(seq, " %lluus average transaction commit time\n", 1010 div_u64(s->journal->j_average_commit_time, 1000)); 1011 seq_printf(seq, " %lu handles per transaction\n", 1012 s->stats->run.rs_handle_count / s->stats->ts_tid); 1013 seq_printf(seq, " %lu blocks per transaction\n", 1014 s->stats->run.rs_blocks / s->stats->ts_tid); 1015 seq_printf(seq, " %lu logged blocks per transaction\n", 1016 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1017 return 0; 1018 } 1019 1020 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1021 { 1022 } 1023 1024 static const struct seq_operations jbd2_seq_info_ops = { 1025 .start = jbd2_seq_info_start, 1026 .next = jbd2_seq_info_next, 1027 .stop = jbd2_seq_info_stop, 1028 .show = jbd2_seq_info_show, 1029 }; 1030 1031 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1032 { 1033 journal_t *journal = PDE_DATA(inode); 1034 struct jbd2_stats_proc_session *s; 1035 int rc, size; 1036 1037 s = kmalloc(sizeof(*s), GFP_KERNEL); 1038 if (s == NULL) 1039 return -ENOMEM; 1040 size = sizeof(struct transaction_stats_s); 1041 s->stats = kmalloc(size, GFP_KERNEL); 1042 if (s->stats == NULL) { 1043 kfree(s); 1044 return -ENOMEM; 1045 } 1046 spin_lock(&journal->j_history_lock); 1047 memcpy(s->stats, &journal->j_stats, size); 1048 s->journal = journal; 1049 spin_unlock(&journal->j_history_lock); 1050 1051 rc = seq_open(file, &jbd2_seq_info_ops); 1052 if (rc == 0) { 1053 struct seq_file *m = file->private_data; 1054 m->private = s; 1055 } else { 1056 kfree(s->stats); 1057 kfree(s); 1058 } 1059 return rc; 1060 1061 } 1062 1063 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1064 { 1065 struct seq_file *seq = file->private_data; 1066 struct jbd2_stats_proc_session *s = seq->private; 1067 kfree(s->stats); 1068 kfree(s); 1069 return seq_release(inode, file); 1070 } 1071 1072 static const struct file_operations jbd2_seq_info_fops = { 1073 .owner = THIS_MODULE, 1074 .open = jbd2_seq_info_open, 1075 .read = seq_read, 1076 .llseek = seq_lseek, 1077 .release = jbd2_seq_info_release, 1078 }; 1079 1080 static struct proc_dir_entry *proc_jbd2_stats; 1081 1082 static void jbd2_stats_proc_init(journal_t *journal) 1083 { 1084 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1085 if (journal->j_proc_entry) { 1086 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1087 &jbd2_seq_info_fops, journal); 1088 } 1089 } 1090 1091 static void jbd2_stats_proc_exit(journal_t *journal) 1092 { 1093 remove_proc_entry("info", journal->j_proc_entry); 1094 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1095 } 1096 1097 /* 1098 * Management for journal control blocks: functions to create and 1099 * destroy journal_t structures, and to initialise and read existing 1100 * journal blocks from disk. */ 1101 1102 /* First: create and setup a journal_t object in memory. We initialise 1103 * very few fields yet: that has to wait until we have created the 1104 * journal structures from from scratch, or loaded them from disk. */ 1105 1106 static journal_t *journal_init_common(struct block_device *bdev, 1107 struct block_device *fs_dev, 1108 unsigned long long start, int len, int blocksize) 1109 { 1110 static struct lock_class_key jbd2_trans_commit_key; 1111 journal_t *journal; 1112 int err; 1113 struct buffer_head *bh; 1114 int n; 1115 1116 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1117 if (!journal) 1118 return NULL; 1119 1120 init_waitqueue_head(&journal->j_wait_transaction_locked); 1121 init_waitqueue_head(&journal->j_wait_done_commit); 1122 init_waitqueue_head(&journal->j_wait_commit); 1123 init_waitqueue_head(&journal->j_wait_updates); 1124 init_waitqueue_head(&journal->j_wait_reserved); 1125 mutex_init(&journal->j_barrier); 1126 mutex_init(&journal->j_checkpoint_mutex); 1127 spin_lock_init(&journal->j_revoke_lock); 1128 spin_lock_init(&journal->j_list_lock); 1129 rwlock_init(&journal->j_state_lock); 1130 1131 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1132 journal->j_min_batch_time = 0; 1133 journal->j_max_batch_time = 15000; /* 15ms */ 1134 atomic_set(&journal->j_reserved_credits, 0); 1135 1136 /* The journal is marked for error until we succeed with recovery! */ 1137 journal->j_flags = JBD2_ABORT; 1138 1139 /* Set up a default-sized revoke table for the new mount. */ 1140 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1141 if (err) 1142 goto err_cleanup; 1143 1144 spin_lock_init(&journal->j_history_lock); 1145 1146 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1147 &jbd2_trans_commit_key, 0); 1148 1149 /* journal descriptor can store up to n blocks -bzzz */ 1150 journal->j_blocksize = blocksize; 1151 journal->j_dev = bdev; 1152 journal->j_fs_dev = fs_dev; 1153 journal->j_blk_offset = start; 1154 journal->j_maxlen = len; 1155 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1156 journal->j_wbufsize = n; 1157 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1158 GFP_KERNEL); 1159 if (!journal->j_wbuf) 1160 goto err_cleanup; 1161 1162 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1163 if (!bh) { 1164 pr_err("%s: Cannot get buffer for journal superblock\n", 1165 __func__); 1166 goto err_cleanup; 1167 } 1168 journal->j_sb_buffer = bh; 1169 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1170 1171 return journal; 1172 1173 err_cleanup: 1174 kfree(journal->j_wbuf); 1175 jbd2_journal_destroy_revoke(journal); 1176 kfree(journal); 1177 return NULL; 1178 } 1179 1180 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1181 * 1182 * Create a journal structure assigned some fixed set of disk blocks to 1183 * the journal. We don't actually touch those disk blocks yet, but we 1184 * need to set up all of the mapping information to tell the journaling 1185 * system where the journal blocks are. 1186 * 1187 */ 1188 1189 /** 1190 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1191 * @bdev: Block device on which to create the journal 1192 * @fs_dev: Device which hold journalled filesystem for this journal. 1193 * @start: Block nr Start of journal. 1194 * @len: Length of the journal in blocks. 1195 * @blocksize: blocksize of journalling device 1196 * 1197 * Returns: a newly created journal_t * 1198 * 1199 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1200 * range of blocks on an arbitrary block device. 1201 * 1202 */ 1203 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1204 struct block_device *fs_dev, 1205 unsigned long long start, int len, int blocksize) 1206 { 1207 journal_t *journal; 1208 1209 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1210 if (!journal) 1211 return NULL; 1212 1213 bdevname(journal->j_dev, journal->j_devname); 1214 strreplace(journal->j_devname, '/', '!'); 1215 jbd2_stats_proc_init(journal); 1216 1217 return journal; 1218 } 1219 1220 /** 1221 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1222 * @inode: An inode to create the journal in 1223 * 1224 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1225 * the journal. The inode must exist already, must support bmap() and 1226 * must have all data blocks preallocated. 1227 */ 1228 journal_t *jbd2_journal_init_inode(struct inode *inode) 1229 { 1230 journal_t *journal; 1231 char *p; 1232 unsigned long long blocknr; 1233 1234 blocknr = bmap(inode, 0); 1235 if (!blocknr) { 1236 pr_err("%s: Cannot locate journal superblock\n", 1237 __func__); 1238 return NULL; 1239 } 1240 1241 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1242 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1243 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1244 1245 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1246 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1247 inode->i_sb->s_blocksize); 1248 if (!journal) 1249 return NULL; 1250 1251 journal->j_inode = inode; 1252 bdevname(journal->j_dev, journal->j_devname); 1253 p = strreplace(journal->j_devname, '/', '!'); 1254 sprintf(p, "-%lu", journal->j_inode->i_ino); 1255 jbd2_stats_proc_init(journal); 1256 1257 return journal; 1258 } 1259 1260 /* 1261 * If the journal init or create aborts, we need to mark the journal 1262 * superblock as being NULL to prevent the journal destroy from writing 1263 * back a bogus superblock. 1264 */ 1265 static void journal_fail_superblock (journal_t *journal) 1266 { 1267 struct buffer_head *bh = journal->j_sb_buffer; 1268 brelse(bh); 1269 journal->j_sb_buffer = NULL; 1270 } 1271 1272 /* 1273 * Given a journal_t structure, initialise the various fields for 1274 * startup of a new journaling session. We use this both when creating 1275 * a journal, and after recovering an old journal to reset it for 1276 * subsequent use. 1277 */ 1278 1279 static int journal_reset(journal_t *journal) 1280 { 1281 journal_superblock_t *sb = journal->j_superblock; 1282 unsigned long long first, last; 1283 1284 first = be32_to_cpu(sb->s_first); 1285 last = be32_to_cpu(sb->s_maxlen); 1286 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1287 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1288 first, last); 1289 journal_fail_superblock(journal); 1290 return -EINVAL; 1291 } 1292 1293 journal->j_first = first; 1294 journal->j_last = last; 1295 1296 journal->j_head = first; 1297 journal->j_tail = first; 1298 journal->j_free = last - first; 1299 1300 journal->j_tail_sequence = journal->j_transaction_sequence; 1301 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1302 journal->j_commit_request = journal->j_commit_sequence; 1303 1304 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1305 1306 /* 1307 * As a special case, if the on-disk copy is already marked as needing 1308 * no recovery (s_start == 0), then we can safely defer the superblock 1309 * update until the next commit by setting JBD2_FLUSHED. This avoids 1310 * attempting a write to a potential-readonly device. 1311 */ 1312 if (sb->s_start == 0) { 1313 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1314 "(start %ld, seq %d, errno %d)\n", 1315 journal->j_tail, journal->j_tail_sequence, 1316 journal->j_errno); 1317 journal->j_flags |= JBD2_FLUSHED; 1318 } else { 1319 /* Lock here to make assertions happy... */ 1320 mutex_lock_io(&journal->j_checkpoint_mutex); 1321 /* 1322 * Update log tail information. We use REQ_FUA since new 1323 * transaction will start reusing journal space and so we 1324 * must make sure information about current log tail is on 1325 * disk before that. 1326 */ 1327 jbd2_journal_update_sb_log_tail(journal, 1328 journal->j_tail_sequence, 1329 journal->j_tail, 1330 REQ_FUA); 1331 mutex_unlock(&journal->j_checkpoint_mutex); 1332 } 1333 return jbd2_journal_start_thread(journal); 1334 } 1335 1336 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1337 { 1338 struct buffer_head *bh = journal->j_sb_buffer; 1339 journal_superblock_t *sb = journal->j_superblock; 1340 int ret; 1341 1342 trace_jbd2_write_superblock(journal, write_flags); 1343 if (!(journal->j_flags & JBD2_BARRIER)) 1344 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1345 lock_buffer(bh); 1346 if (buffer_write_io_error(bh)) { 1347 /* 1348 * Oh, dear. A previous attempt to write the journal 1349 * superblock failed. This could happen because the 1350 * USB device was yanked out. Or it could happen to 1351 * be a transient write error and maybe the block will 1352 * be remapped. Nothing we can do but to retry the 1353 * write and hope for the best. 1354 */ 1355 printk(KERN_ERR "JBD2: previous I/O error detected " 1356 "for journal superblock update for %s.\n", 1357 journal->j_devname); 1358 clear_buffer_write_io_error(bh); 1359 set_buffer_uptodate(bh); 1360 } 1361 jbd2_superblock_csum_set(journal, sb); 1362 get_bh(bh); 1363 bh->b_end_io = end_buffer_write_sync; 1364 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1365 wait_on_buffer(bh); 1366 if (buffer_write_io_error(bh)) { 1367 clear_buffer_write_io_error(bh); 1368 set_buffer_uptodate(bh); 1369 ret = -EIO; 1370 } 1371 if (ret) { 1372 printk(KERN_ERR "JBD2: Error %d detected when updating " 1373 "journal superblock for %s.\n", ret, 1374 journal->j_devname); 1375 jbd2_journal_abort(journal, ret); 1376 } 1377 1378 return ret; 1379 } 1380 1381 /** 1382 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1383 * @journal: The journal to update. 1384 * @tail_tid: TID of the new transaction at the tail of the log 1385 * @tail_block: The first block of the transaction at the tail of the log 1386 * @write_op: With which operation should we write the journal sb 1387 * 1388 * Update a journal's superblock information about log tail and write it to 1389 * disk, waiting for the IO to complete. 1390 */ 1391 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1392 unsigned long tail_block, int write_op) 1393 { 1394 journal_superblock_t *sb = journal->j_superblock; 1395 int ret; 1396 1397 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1398 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1399 tail_block, tail_tid); 1400 1401 sb->s_sequence = cpu_to_be32(tail_tid); 1402 sb->s_start = cpu_to_be32(tail_block); 1403 1404 ret = jbd2_write_superblock(journal, write_op); 1405 if (ret) 1406 goto out; 1407 1408 /* Log is no longer empty */ 1409 write_lock(&journal->j_state_lock); 1410 WARN_ON(!sb->s_sequence); 1411 journal->j_flags &= ~JBD2_FLUSHED; 1412 write_unlock(&journal->j_state_lock); 1413 1414 out: 1415 return ret; 1416 } 1417 1418 /** 1419 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1420 * @journal: The journal to update. 1421 * @write_op: With which operation should we write the journal sb 1422 * 1423 * Update a journal's dynamic superblock fields to show that journal is empty. 1424 * Write updated superblock to disk waiting for IO to complete. 1425 */ 1426 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1427 { 1428 journal_superblock_t *sb = journal->j_superblock; 1429 1430 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1431 read_lock(&journal->j_state_lock); 1432 /* Is it already empty? */ 1433 if (sb->s_start == 0) { 1434 read_unlock(&journal->j_state_lock); 1435 return; 1436 } 1437 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1438 journal->j_tail_sequence); 1439 1440 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1441 sb->s_start = cpu_to_be32(0); 1442 read_unlock(&journal->j_state_lock); 1443 1444 jbd2_write_superblock(journal, write_op); 1445 1446 /* Log is no longer empty */ 1447 write_lock(&journal->j_state_lock); 1448 journal->j_flags |= JBD2_FLUSHED; 1449 write_unlock(&journal->j_state_lock); 1450 } 1451 1452 1453 /** 1454 * jbd2_journal_update_sb_errno() - Update error in the journal. 1455 * @journal: The journal to update. 1456 * 1457 * Update a journal's errno. Write updated superblock to disk waiting for IO 1458 * to complete. 1459 */ 1460 void jbd2_journal_update_sb_errno(journal_t *journal) 1461 { 1462 journal_superblock_t *sb = journal->j_superblock; 1463 1464 read_lock(&journal->j_state_lock); 1465 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", 1466 journal->j_errno); 1467 sb->s_errno = cpu_to_be32(journal->j_errno); 1468 read_unlock(&journal->j_state_lock); 1469 1470 jbd2_write_superblock(journal, REQ_FUA); 1471 } 1472 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1473 1474 /* 1475 * Read the superblock for a given journal, performing initial 1476 * validation of the format. 1477 */ 1478 static int journal_get_superblock(journal_t *journal) 1479 { 1480 struct buffer_head *bh; 1481 journal_superblock_t *sb; 1482 int err = -EIO; 1483 1484 bh = journal->j_sb_buffer; 1485 1486 J_ASSERT(bh != NULL); 1487 if (!buffer_uptodate(bh)) { 1488 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1489 wait_on_buffer(bh); 1490 if (!buffer_uptodate(bh)) { 1491 printk(KERN_ERR 1492 "JBD2: IO error reading journal superblock\n"); 1493 goto out; 1494 } 1495 } 1496 1497 if (buffer_verified(bh)) 1498 return 0; 1499 1500 sb = journal->j_superblock; 1501 1502 err = -EINVAL; 1503 1504 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1505 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1506 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1507 goto out; 1508 } 1509 1510 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1511 case JBD2_SUPERBLOCK_V1: 1512 journal->j_format_version = 1; 1513 break; 1514 case JBD2_SUPERBLOCK_V2: 1515 journal->j_format_version = 2; 1516 break; 1517 default: 1518 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1519 goto out; 1520 } 1521 1522 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1523 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1524 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1525 printk(KERN_WARNING "JBD2: journal file too short\n"); 1526 goto out; 1527 } 1528 1529 if (be32_to_cpu(sb->s_first) == 0 || 1530 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1531 printk(KERN_WARNING 1532 "JBD2: Invalid start block of journal: %u\n", 1533 be32_to_cpu(sb->s_first)); 1534 goto out; 1535 } 1536 1537 if (jbd2_has_feature_csum2(journal) && 1538 jbd2_has_feature_csum3(journal)) { 1539 /* Can't have checksum v2 and v3 at the same time! */ 1540 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1541 "at the same time!\n"); 1542 goto out; 1543 } 1544 1545 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1546 jbd2_has_feature_checksum(journal)) { 1547 /* Can't have checksum v1 and v2 on at the same time! */ 1548 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1549 "at the same time!\n"); 1550 goto out; 1551 } 1552 1553 if (!jbd2_verify_csum_type(journal, sb)) { 1554 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1555 goto out; 1556 } 1557 1558 /* Load the checksum driver */ 1559 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1560 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1561 if (IS_ERR(journal->j_chksum_driver)) { 1562 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1563 err = PTR_ERR(journal->j_chksum_driver); 1564 journal->j_chksum_driver = NULL; 1565 goto out; 1566 } 1567 } 1568 1569 /* Check superblock checksum */ 1570 if (!jbd2_superblock_csum_verify(journal, sb)) { 1571 printk(KERN_ERR "JBD2: journal checksum error\n"); 1572 err = -EFSBADCRC; 1573 goto out; 1574 } 1575 1576 /* Precompute checksum seed for all metadata */ 1577 if (jbd2_journal_has_csum_v2or3(journal)) 1578 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1579 sizeof(sb->s_uuid)); 1580 1581 set_buffer_verified(bh); 1582 1583 return 0; 1584 1585 out: 1586 journal_fail_superblock(journal); 1587 return err; 1588 } 1589 1590 /* 1591 * Load the on-disk journal superblock and read the key fields into the 1592 * journal_t. 1593 */ 1594 1595 static int load_superblock(journal_t *journal) 1596 { 1597 int err; 1598 journal_superblock_t *sb; 1599 1600 err = journal_get_superblock(journal); 1601 if (err) 1602 return err; 1603 1604 sb = journal->j_superblock; 1605 1606 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1607 journal->j_tail = be32_to_cpu(sb->s_start); 1608 journal->j_first = be32_to_cpu(sb->s_first); 1609 journal->j_last = be32_to_cpu(sb->s_maxlen); 1610 journal->j_errno = be32_to_cpu(sb->s_errno); 1611 1612 return 0; 1613 } 1614 1615 1616 /** 1617 * int jbd2_journal_load() - Read journal from disk. 1618 * @journal: Journal to act on. 1619 * 1620 * Given a journal_t structure which tells us which disk blocks contain 1621 * a journal, read the journal from disk to initialise the in-memory 1622 * structures. 1623 */ 1624 int jbd2_journal_load(journal_t *journal) 1625 { 1626 int err; 1627 journal_superblock_t *sb; 1628 1629 err = load_superblock(journal); 1630 if (err) 1631 return err; 1632 1633 sb = journal->j_superblock; 1634 /* If this is a V2 superblock, then we have to check the 1635 * features flags on it. */ 1636 1637 if (journal->j_format_version >= 2) { 1638 if ((sb->s_feature_ro_compat & 1639 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1640 (sb->s_feature_incompat & 1641 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1642 printk(KERN_WARNING 1643 "JBD2: Unrecognised features on journal\n"); 1644 return -EINVAL; 1645 } 1646 } 1647 1648 /* 1649 * Create a slab for this blocksize 1650 */ 1651 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1652 if (err) 1653 return err; 1654 1655 /* Let the recovery code check whether it needs to recover any 1656 * data from the journal. */ 1657 if (jbd2_journal_recover(journal)) 1658 goto recovery_error; 1659 1660 if (journal->j_failed_commit) { 1661 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1662 "is corrupt.\n", journal->j_failed_commit, 1663 journal->j_devname); 1664 return -EFSCORRUPTED; 1665 } 1666 1667 /* OK, we've finished with the dynamic journal bits: 1668 * reinitialise the dynamic contents of the superblock in memory 1669 * and reset them on disk. */ 1670 if (journal_reset(journal)) 1671 goto recovery_error; 1672 1673 journal->j_flags &= ~JBD2_ABORT; 1674 journal->j_flags |= JBD2_LOADED; 1675 return 0; 1676 1677 recovery_error: 1678 printk(KERN_WARNING "JBD2: recovery failed\n"); 1679 return -EIO; 1680 } 1681 1682 /** 1683 * void jbd2_journal_destroy() - Release a journal_t structure. 1684 * @journal: Journal to act on. 1685 * 1686 * Release a journal_t structure once it is no longer in use by the 1687 * journaled object. 1688 * Return <0 if we couldn't clean up the journal. 1689 */ 1690 int jbd2_journal_destroy(journal_t *journal) 1691 { 1692 int err = 0; 1693 1694 /* Wait for the commit thread to wake up and die. */ 1695 journal_kill_thread(journal); 1696 1697 /* Force a final log commit */ 1698 if (journal->j_running_transaction) 1699 jbd2_journal_commit_transaction(journal); 1700 1701 /* Force any old transactions to disk */ 1702 1703 /* Totally anal locking here... */ 1704 spin_lock(&journal->j_list_lock); 1705 while (journal->j_checkpoint_transactions != NULL) { 1706 spin_unlock(&journal->j_list_lock); 1707 mutex_lock_io(&journal->j_checkpoint_mutex); 1708 err = jbd2_log_do_checkpoint(journal); 1709 mutex_unlock(&journal->j_checkpoint_mutex); 1710 /* 1711 * If checkpointing failed, just free the buffers to avoid 1712 * looping forever 1713 */ 1714 if (err) { 1715 jbd2_journal_destroy_checkpoint(journal); 1716 spin_lock(&journal->j_list_lock); 1717 break; 1718 } 1719 spin_lock(&journal->j_list_lock); 1720 } 1721 1722 J_ASSERT(journal->j_running_transaction == NULL); 1723 J_ASSERT(journal->j_committing_transaction == NULL); 1724 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1725 spin_unlock(&journal->j_list_lock); 1726 1727 if (journal->j_sb_buffer) { 1728 if (!is_journal_aborted(journal)) { 1729 mutex_lock_io(&journal->j_checkpoint_mutex); 1730 1731 write_lock(&journal->j_state_lock); 1732 journal->j_tail_sequence = 1733 ++journal->j_transaction_sequence; 1734 write_unlock(&journal->j_state_lock); 1735 1736 jbd2_mark_journal_empty(journal, 1737 REQ_PREFLUSH | REQ_FUA); 1738 mutex_unlock(&journal->j_checkpoint_mutex); 1739 } else 1740 err = -EIO; 1741 brelse(journal->j_sb_buffer); 1742 } 1743 1744 if (journal->j_proc_entry) 1745 jbd2_stats_proc_exit(journal); 1746 iput(journal->j_inode); 1747 if (journal->j_revoke) 1748 jbd2_journal_destroy_revoke(journal); 1749 if (journal->j_chksum_driver) 1750 crypto_free_shash(journal->j_chksum_driver); 1751 kfree(journal->j_wbuf); 1752 kfree(journal); 1753 1754 return err; 1755 } 1756 1757 1758 /** 1759 *int jbd2_journal_check_used_features () - Check if features specified are used. 1760 * @journal: Journal to check. 1761 * @compat: bitmask of compatible features 1762 * @ro: bitmask of features that force read-only mount 1763 * @incompat: bitmask of incompatible features 1764 * 1765 * Check whether the journal uses all of a given set of 1766 * features. Return true (non-zero) if it does. 1767 **/ 1768 1769 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1770 unsigned long ro, unsigned long incompat) 1771 { 1772 journal_superblock_t *sb; 1773 1774 if (!compat && !ro && !incompat) 1775 return 1; 1776 /* Load journal superblock if it is not loaded yet. */ 1777 if (journal->j_format_version == 0 && 1778 journal_get_superblock(journal) != 0) 1779 return 0; 1780 if (journal->j_format_version == 1) 1781 return 0; 1782 1783 sb = journal->j_superblock; 1784 1785 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1786 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1787 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1788 return 1; 1789 1790 return 0; 1791 } 1792 1793 /** 1794 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1795 * @journal: Journal to check. 1796 * @compat: bitmask of compatible features 1797 * @ro: bitmask of features that force read-only mount 1798 * @incompat: bitmask of incompatible features 1799 * 1800 * Check whether the journaling code supports the use of 1801 * all of a given set of features on this journal. Return true 1802 * (non-zero) if it can. */ 1803 1804 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1805 unsigned long ro, unsigned long incompat) 1806 { 1807 if (!compat && !ro && !incompat) 1808 return 1; 1809 1810 /* We can support any known requested features iff the 1811 * superblock is in version 2. Otherwise we fail to support any 1812 * extended sb features. */ 1813 1814 if (journal->j_format_version != 2) 1815 return 0; 1816 1817 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1818 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1819 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1820 return 1; 1821 1822 return 0; 1823 } 1824 1825 /** 1826 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1827 * @journal: Journal to act on. 1828 * @compat: bitmask of compatible features 1829 * @ro: bitmask of features that force read-only mount 1830 * @incompat: bitmask of incompatible features 1831 * 1832 * Mark a given journal feature as present on the 1833 * superblock. Returns true if the requested features could be set. 1834 * 1835 */ 1836 1837 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1838 unsigned long ro, unsigned long incompat) 1839 { 1840 #define INCOMPAT_FEATURE_ON(f) \ 1841 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1842 #define COMPAT_FEATURE_ON(f) \ 1843 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1844 journal_superblock_t *sb; 1845 1846 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1847 return 1; 1848 1849 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1850 return 0; 1851 1852 /* If enabling v2 checksums, turn on v3 instead */ 1853 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 1854 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 1855 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 1856 } 1857 1858 /* Asking for checksumming v3 and v1? Only give them v3. */ 1859 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 1860 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1861 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1862 1863 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1864 compat, ro, incompat); 1865 1866 sb = journal->j_superblock; 1867 1868 /* If enabling v3 checksums, update superblock */ 1869 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 1870 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1871 sb->s_feature_compat &= 1872 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1873 1874 /* Load the checksum driver */ 1875 if (journal->j_chksum_driver == NULL) { 1876 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 1877 0, 0); 1878 if (IS_ERR(journal->j_chksum_driver)) { 1879 printk(KERN_ERR "JBD2: Cannot load crc32c " 1880 "driver.\n"); 1881 journal->j_chksum_driver = NULL; 1882 return 0; 1883 } 1884 1885 /* Precompute checksum seed for all metadata */ 1886 journal->j_csum_seed = jbd2_chksum(journal, ~0, 1887 sb->s_uuid, 1888 sizeof(sb->s_uuid)); 1889 } 1890 } 1891 1892 /* If enabling v1 checksums, downgrade superblock */ 1893 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1894 sb->s_feature_incompat &= 1895 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 1896 JBD2_FEATURE_INCOMPAT_CSUM_V3); 1897 1898 sb->s_feature_compat |= cpu_to_be32(compat); 1899 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1900 sb->s_feature_incompat |= cpu_to_be32(incompat); 1901 1902 return 1; 1903 #undef COMPAT_FEATURE_ON 1904 #undef INCOMPAT_FEATURE_ON 1905 } 1906 1907 /* 1908 * jbd2_journal_clear_features () - Clear a given journal feature in the 1909 * superblock 1910 * @journal: Journal to act on. 1911 * @compat: bitmask of compatible features 1912 * @ro: bitmask of features that force read-only mount 1913 * @incompat: bitmask of incompatible features 1914 * 1915 * Clear a given journal feature as present on the 1916 * superblock. 1917 */ 1918 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1919 unsigned long ro, unsigned long incompat) 1920 { 1921 journal_superblock_t *sb; 1922 1923 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1924 compat, ro, incompat); 1925 1926 sb = journal->j_superblock; 1927 1928 sb->s_feature_compat &= ~cpu_to_be32(compat); 1929 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1930 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1931 } 1932 EXPORT_SYMBOL(jbd2_journal_clear_features); 1933 1934 /** 1935 * int jbd2_journal_flush () - Flush journal 1936 * @journal: Journal to act on. 1937 * 1938 * Flush all data for a given journal to disk and empty the journal. 1939 * Filesystems can use this when remounting readonly to ensure that 1940 * recovery does not need to happen on remount. 1941 */ 1942 1943 int jbd2_journal_flush(journal_t *journal) 1944 { 1945 int err = 0; 1946 transaction_t *transaction = NULL; 1947 1948 write_lock(&journal->j_state_lock); 1949 1950 /* Force everything buffered to the log... */ 1951 if (journal->j_running_transaction) { 1952 transaction = journal->j_running_transaction; 1953 __jbd2_log_start_commit(journal, transaction->t_tid); 1954 } else if (journal->j_committing_transaction) 1955 transaction = journal->j_committing_transaction; 1956 1957 /* Wait for the log commit to complete... */ 1958 if (transaction) { 1959 tid_t tid = transaction->t_tid; 1960 1961 write_unlock(&journal->j_state_lock); 1962 jbd2_log_wait_commit(journal, tid); 1963 } else { 1964 write_unlock(&journal->j_state_lock); 1965 } 1966 1967 /* ...and flush everything in the log out to disk. */ 1968 spin_lock(&journal->j_list_lock); 1969 while (!err && journal->j_checkpoint_transactions != NULL) { 1970 spin_unlock(&journal->j_list_lock); 1971 mutex_lock_io(&journal->j_checkpoint_mutex); 1972 err = jbd2_log_do_checkpoint(journal); 1973 mutex_unlock(&journal->j_checkpoint_mutex); 1974 spin_lock(&journal->j_list_lock); 1975 } 1976 spin_unlock(&journal->j_list_lock); 1977 1978 if (is_journal_aborted(journal)) 1979 return -EIO; 1980 1981 mutex_lock_io(&journal->j_checkpoint_mutex); 1982 if (!err) { 1983 err = jbd2_cleanup_journal_tail(journal); 1984 if (err < 0) { 1985 mutex_unlock(&journal->j_checkpoint_mutex); 1986 goto out; 1987 } 1988 err = 0; 1989 } 1990 1991 /* Finally, mark the journal as really needing no recovery. 1992 * This sets s_start==0 in the underlying superblock, which is 1993 * the magic code for a fully-recovered superblock. Any future 1994 * commits of data to the journal will restore the current 1995 * s_start value. */ 1996 jbd2_mark_journal_empty(journal, REQ_FUA); 1997 mutex_unlock(&journal->j_checkpoint_mutex); 1998 write_lock(&journal->j_state_lock); 1999 J_ASSERT(!journal->j_running_transaction); 2000 J_ASSERT(!journal->j_committing_transaction); 2001 J_ASSERT(!journal->j_checkpoint_transactions); 2002 J_ASSERT(journal->j_head == journal->j_tail); 2003 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2004 write_unlock(&journal->j_state_lock); 2005 out: 2006 return err; 2007 } 2008 2009 /** 2010 * int jbd2_journal_wipe() - Wipe journal contents 2011 * @journal: Journal to act on. 2012 * @write: flag (see below) 2013 * 2014 * Wipe out all of the contents of a journal, safely. This will produce 2015 * a warning if the journal contains any valid recovery information. 2016 * Must be called between journal_init_*() and jbd2_journal_load(). 2017 * 2018 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2019 * we merely suppress recovery. 2020 */ 2021 2022 int jbd2_journal_wipe(journal_t *journal, int write) 2023 { 2024 int err = 0; 2025 2026 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2027 2028 err = load_superblock(journal); 2029 if (err) 2030 return err; 2031 2032 if (!journal->j_tail) 2033 goto no_recovery; 2034 2035 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2036 write ? "Clearing" : "Ignoring"); 2037 2038 err = jbd2_journal_skip_recovery(journal); 2039 if (write) { 2040 /* Lock to make assertions happy... */ 2041 mutex_lock(&journal->j_checkpoint_mutex); 2042 jbd2_mark_journal_empty(journal, REQ_FUA); 2043 mutex_unlock(&journal->j_checkpoint_mutex); 2044 } 2045 2046 no_recovery: 2047 return err; 2048 } 2049 2050 /* 2051 * Journal abort has very specific semantics, which we describe 2052 * for journal abort. 2053 * 2054 * Two internal functions, which provide abort to the jbd layer 2055 * itself are here. 2056 */ 2057 2058 /* 2059 * Quick version for internal journal use (doesn't lock the journal). 2060 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 2061 * and don't attempt to make any other journal updates. 2062 */ 2063 void __jbd2_journal_abort_hard(journal_t *journal) 2064 { 2065 transaction_t *transaction; 2066 2067 if (journal->j_flags & JBD2_ABORT) 2068 return; 2069 2070 printk(KERN_ERR "Aborting journal on device %s.\n", 2071 journal->j_devname); 2072 2073 write_lock(&journal->j_state_lock); 2074 journal->j_flags |= JBD2_ABORT; 2075 transaction = journal->j_running_transaction; 2076 if (transaction) 2077 __jbd2_log_start_commit(journal, transaction->t_tid); 2078 write_unlock(&journal->j_state_lock); 2079 } 2080 2081 /* Soft abort: record the abort error status in the journal superblock, 2082 * but don't do any other IO. */ 2083 static void __journal_abort_soft (journal_t *journal, int errno) 2084 { 2085 if (journal->j_flags & JBD2_ABORT) 2086 return; 2087 2088 if (!journal->j_errno) 2089 journal->j_errno = errno; 2090 2091 __jbd2_journal_abort_hard(journal); 2092 2093 if (errno) { 2094 jbd2_journal_update_sb_errno(journal); 2095 write_lock(&journal->j_state_lock); 2096 journal->j_flags |= JBD2_REC_ERR; 2097 write_unlock(&journal->j_state_lock); 2098 } 2099 } 2100 2101 /** 2102 * void jbd2_journal_abort () - Shutdown the journal immediately. 2103 * @journal: the journal to shutdown. 2104 * @errno: an error number to record in the journal indicating 2105 * the reason for the shutdown. 2106 * 2107 * Perform a complete, immediate shutdown of the ENTIRE 2108 * journal (not of a single transaction). This operation cannot be 2109 * undone without closing and reopening the journal. 2110 * 2111 * The jbd2_journal_abort function is intended to support higher level error 2112 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2113 * mode. 2114 * 2115 * Journal abort has very specific semantics. Any existing dirty, 2116 * unjournaled buffers in the main filesystem will still be written to 2117 * disk by bdflush, but the journaling mechanism will be suspended 2118 * immediately and no further transaction commits will be honoured. 2119 * 2120 * Any dirty, journaled buffers will be written back to disk without 2121 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2122 * filesystem, but we _do_ attempt to leave as much data as possible 2123 * behind for fsck to use for cleanup. 2124 * 2125 * Any attempt to get a new transaction handle on a journal which is in 2126 * ABORT state will just result in an -EROFS error return. A 2127 * jbd2_journal_stop on an existing handle will return -EIO if we have 2128 * entered abort state during the update. 2129 * 2130 * Recursive transactions are not disturbed by journal abort until the 2131 * final jbd2_journal_stop, which will receive the -EIO error. 2132 * 2133 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2134 * which will be recorded (if possible) in the journal superblock. This 2135 * allows a client to record failure conditions in the middle of a 2136 * transaction without having to complete the transaction to record the 2137 * failure to disk. ext3_error, for example, now uses this 2138 * functionality. 2139 * 2140 * Errors which originate from within the journaling layer will NOT 2141 * supply an errno; a null errno implies that absolutely no further 2142 * writes are done to the journal (unless there are any already in 2143 * progress). 2144 * 2145 */ 2146 2147 void jbd2_journal_abort(journal_t *journal, int errno) 2148 { 2149 __journal_abort_soft(journal, errno); 2150 } 2151 2152 /** 2153 * int jbd2_journal_errno () - returns the journal's error state. 2154 * @journal: journal to examine. 2155 * 2156 * This is the errno number set with jbd2_journal_abort(), the last 2157 * time the journal was mounted - if the journal was stopped 2158 * without calling abort this will be 0. 2159 * 2160 * If the journal has been aborted on this mount time -EROFS will 2161 * be returned. 2162 */ 2163 int jbd2_journal_errno(journal_t *journal) 2164 { 2165 int err; 2166 2167 read_lock(&journal->j_state_lock); 2168 if (journal->j_flags & JBD2_ABORT) 2169 err = -EROFS; 2170 else 2171 err = journal->j_errno; 2172 read_unlock(&journal->j_state_lock); 2173 return err; 2174 } 2175 2176 /** 2177 * int jbd2_journal_clear_err () - clears the journal's error state 2178 * @journal: journal to act on. 2179 * 2180 * An error must be cleared or acked to take a FS out of readonly 2181 * mode. 2182 */ 2183 int jbd2_journal_clear_err(journal_t *journal) 2184 { 2185 int err = 0; 2186 2187 write_lock(&journal->j_state_lock); 2188 if (journal->j_flags & JBD2_ABORT) 2189 err = -EROFS; 2190 else 2191 journal->j_errno = 0; 2192 write_unlock(&journal->j_state_lock); 2193 return err; 2194 } 2195 2196 /** 2197 * void jbd2_journal_ack_err() - Ack journal err. 2198 * @journal: journal to act on. 2199 * 2200 * An error must be cleared or acked to take a FS out of readonly 2201 * mode. 2202 */ 2203 void jbd2_journal_ack_err(journal_t *journal) 2204 { 2205 write_lock(&journal->j_state_lock); 2206 if (journal->j_errno) 2207 journal->j_flags |= JBD2_ACK_ERR; 2208 write_unlock(&journal->j_state_lock); 2209 } 2210 2211 int jbd2_journal_blocks_per_page(struct inode *inode) 2212 { 2213 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2214 } 2215 2216 /* 2217 * helper functions to deal with 32 or 64bit block numbers. 2218 */ 2219 size_t journal_tag_bytes(journal_t *journal) 2220 { 2221 size_t sz; 2222 2223 if (jbd2_has_feature_csum3(journal)) 2224 return sizeof(journal_block_tag3_t); 2225 2226 sz = sizeof(journal_block_tag_t); 2227 2228 if (jbd2_has_feature_csum2(journal)) 2229 sz += sizeof(__u16); 2230 2231 if (jbd2_has_feature_64bit(journal)) 2232 return sz; 2233 else 2234 return sz - sizeof(__u32); 2235 } 2236 2237 /* 2238 * JBD memory management 2239 * 2240 * These functions are used to allocate block-sized chunks of memory 2241 * used for making copies of buffer_head data. Very often it will be 2242 * page-sized chunks of data, but sometimes it will be in 2243 * sub-page-size chunks. (For example, 16k pages on Power systems 2244 * with a 4k block file system.) For blocks smaller than a page, we 2245 * use a SLAB allocator. There are slab caches for each block size, 2246 * which are allocated at mount time, if necessary, and we only free 2247 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2248 * this reason we don't need to a mutex to protect access to 2249 * jbd2_slab[] allocating or releasing memory; only in 2250 * jbd2_journal_create_slab(). 2251 */ 2252 #define JBD2_MAX_SLABS 8 2253 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2254 2255 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2256 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2257 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2258 }; 2259 2260 2261 static void jbd2_journal_destroy_slabs(void) 2262 { 2263 int i; 2264 2265 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2266 if (jbd2_slab[i]) 2267 kmem_cache_destroy(jbd2_slab[i]); 2268 jbd2_slab[i] = NULL; 2269 } 2270 } 2271 2272 static int jbd2_journal_create_slab(size_t size) 2273 { 2274 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2275 int i = order_base_2(size) - 10; 2276 size_t slab_size; 2277 2278 if (size == PAGE_SIZE) 2279 return 0; 2280 2281 if (i >= JBD2_MAX_SLABS) 2282 return -EINVAL; 2283 2284 if (unlikely(i < 0)) 2285 i = 0; 2286 mutex_lock(&jbd2_slab_create_mutex); 2287 if (jbd2_slab[i]) { 2288 mutex_unlock(&jbd2_slab_create_mutex); 2289 return 0; /* Already created */ 2290 } 2291 2292 slab_size = 1 << (i+10); 2293 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2294 slab_size, 0, NULL); 2295 mutex_unlock(&jbd2_slab_create_mutex); 2296 if (!jbd2_slab[i]) { 2297 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2298 return -ENOMEM; 2299 } 2300 return 0; 2301 } 2302 2303 static struct kmem_cache *get_slab(size_t size) 2304 { 2305 int i = order_base_2(size) - 10; 2306 2307 BUG_ON(i >= JBD2_MAX_SLABS); 2308 if (unlikely(i < 0)) 2309 i = 0; 2310 BUG_ON(jbd2_slab[i] == NULL); 2311 return jbd2_slab[i]; 2312 } 2313 2314 void *jbd2_alloc(size_t size, gfp_t flags) 2315 { 2316 void *ptr; 2317 2318 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2319 2320 if (size < PAGE_SIZE) 2321 ptr = kmem_cache_alloc(get_slab(size), flags); 2322 else 2323 ptr = (void *)__get_free_pages(flags, get_order(size)); 2324 2325 /* Check alignment; SLUB has gotten this wrong in the past, 2326 * and this can lead to user data corruption! */ 2327 BUG_ON(((unsigned long) ptr) & (size-1)); 2328 2329 return ptr; 2330 } 2331 2332 void jbd2_free(void *ptr, size_t size) 2333 { 2334 if (size < PAGE_SIZE) 2335 kmem_cache_free(get_slab(size), ptr); 2336 else 2337 free_pages((unsigned long)ptr, get_order(size)); 2338 }; 2339 2340 /* 2341 * Journal_head storage management 2342 */ 2343 static struct kmem_cache *jbd2_journal_head_cache; 2344 #ifdef CONFIG_JBD2_DEBUG 2345 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2346 #endif 2347 2348 static int jbd2_journal_init_journal_head_cache(void) 2349 { 2350 int retval; 2351 2352 J_ASSERT(jbd2_journal_head_cache == NULL); 2353 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2354 sizeof(struct journal_head), 2355 0, /* offset */ 2356 SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU, 2357 NULL); /* ctor */ 2358 retval = 0; 2359 if (!jbd2_journal_head_cache) { 2360 retval = -ENOMEM; 2361 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2362 } 2363 return retval; 2364 } 2365 2366 static void jbd2_journal_destroy_journal_head_cache(void) 2367 { 2368 if (jbd2_journal_head_cache) { 2369 kmem_cache_destroy(jbd2_journal_head_cache); 2370 jbd2_journal_head_cache = NULL; 2371 } 2372 } 2373 2374 /* 2375 * journal_head splicing and dicing 2376 */ 2377 static struct journal_head *journal_alloc_journal_head(void) 2378 { 2379 struct journal_head *ret; 2380 2381 #ifdef CONFIG_JBD2_DEBUG 2382 atomic_inc(&nr_journal_heads); 2383 #endif 2384 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2385 if (!ret) { 2386 jbd_debug(1, "out of memory for journal_head\n"); 2387 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2388 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2389 GFP_NOFS | __GFP_NOFAIL); 2390 } 2391 return ret; 2392 } 2393 2394 static void journal_free_journal_head(struct journal_head *jh) 2395 { 2396 #ifdef CONFIG_JBD2_DEBUG 2397 atomic_dec(&nr_journal_heads); 2398 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2399 #endif 2400 kmem_cache_free(jbd2_journal_head_cache, jh); 2401 } 2402 2403 /* 2404 * A journal_head is attached to a buffer_head whenever JBD has an 2405 * interest in the buffer. 2406 * 2407 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2408 * is set. This bit is tested in core kernel code where we need to take 2409 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2410 * there. 2411 * 2412 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2413 * 2414 * When a buffer has its BH_JBD bit set it is immune from being released by 2415 * core kernel code, mainly via ->b_count. 2416 * 2417 * A journal_head is detached from its buffer_head when the journal_head's 2418 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2419 * transaction (b_cp_transaction) hold their references to b_jcount. 2420 * 2421 * Various places in the kernel want to attach a journal_head to a buffer_head 2422 * _before_ attaching the journal_head to a transaction. To protect the 2423 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2424 * journal_head's b_jcount refcount by one. The caller must call 2425 * jbd2_journal_put_journal_head() to undo this. 2426 * 2427 * So the typical usage would be: 2428 * 2429 * (Attach a journal_head if needed. Increments b_jcount) 2430 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2431 * ... 2432 * (Get another reference for transaction) 2433 * jbd2_journal_grab_journal_head(bh); 2434 * jh->b_transaction = xxx; 2435 * (Put original reference) 2436 * jbd2_journal_put_journal_head(jh); 2437 */ 2438 2439 /* 2440 * Give a buffer_head a journal_head. 2441 * 2442 * May sleep. 2443 */ 2444 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2445 { 2446 struct journal_head *jh; 2447 struct journal_head *new_jh = NULL; 2448 2449 repeat: 2450 if (!buffer_jbd(bh)) 2451 new_jh = journal_alloc_journal_head(); 2452 2453 jbd_lock_bh_journal_head(bh); 2454 if (buffer_jbd(bh)) { 2455 jh = bh2jh(bh); 2456 } else { 2457 J_ASSERT_BH(bh, 2458 (atomic_read(&bh->b_count) > 0) || 2459 (bh->b_page && bh->b_page->mapping)); 2460 2461 if (!new_jh) { 2462 jbd_unlock_bh_journal_head(bh); 2463 goto repeat; 2464 } 2465 2466 jh = new_jh; 2467 new_jh = NULL; /* We consumed it */ 2468 set_buffer_jbd(bh); 2469 bh->b_private = jh; 2470 jh->b_bh = bh; 2471 get_bh(bh); 2472 BUFFER_TRACE(bh, "added journal_head"); 2473 } 2474 jh->b_jcount++; 2475 jbd_unlock_bh_journal_head(bh); 2476 if (new_jh) 2477 journal_free_journal_head(new_jh); 2478 return bh->b_private; 2479 } 2480 2481 /* 2482 * Grab a ref against this buffer_head's journal_head. If it ended up not 2483 * having a journal_head, return NULL 2484 */ 2485 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2486 { 2487 struct journal_head *jh = NULL; 2488 2489 jbd_lock_bh_journal_head(bh); 2490 if (buffer_jbd(bh)) { 2491 jh = bh2jh(bh); 2492 jh->b_jcount++; 2493 } 2494 jbd_unlock_bh_journal_head(bh); 2495 return jh; 2496 } 2497 2498 static void __journal_remove_journal_head(struct buffer_head *bh) 2499 { 2500 struct journal_head *jh = bh2jh(bh); 2501 2502 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2503 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2504 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2505 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2506 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2507 J_ASSERT_BH(bh, buffer_jbd(bh)); 2508 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2509 BUFFER_TRACE(bh, "remove journal_head"); 2510 if (jh->b_frozen_data) { 2511 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2512 jbd2_free(jh->b_frozen_data, bh->b_size); 2513 } 2514 if (jh->b_committed_data) { 2515 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2516 jbd2_free(jh->b_committed_data, bh->b_size); 2517 } 2518 bh->b_private = NULL; 2519 jh->b_bh = NULL; /* debug, really */ 2520 clear_buffer_jbd(bh); 2521 journal_free_journal_head(jh); 2522 } 2523 2524 /* 2525 * Drop a reference on the passed journal_head. If it fell to zero then 2526 * release the journal_head from the buffer_head. 2527 */ 2528 void jbd2_journal_put_journal_head(struct journal_head *jh) 2529 { 2530 struct buffer_head *bh = jh2bh(jh); 2531 2532 jbd_lock_bh_journal_head(bh); 2533 J_ASSERT_JH(jh, jh->b_jcount > 0); 2534 --jh->b_jcount; 2535 if (!jh->b_jcount) { 2536 __journal_remove_journal_head(bh); 2537 jbd_unlock_bh_journal_head(bh); 2538 __brelse(bh); 2539 } else 2540 jbd_unlock_bh_journal_head(bh); 2541 } 2542 2543 /* 2544 * Initialize jbd inode head 2545 */ 2546 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2547 { 2548 jinode->i_transaction = NULL; 2549 jinode->i_next_transaction = NULL; 2550 jinode->i_vfs_inode = inode; 2551 jinode->i_flags = 0; 2552 INIT_LIST_HEAD(&jinode->i_list); 2553 } 2554 2555 /* 2556 * Function to be called before we start removing inode from memory (i.e., 2557 * clear_inode() is a fine place to be called from). It removes inode from 2558 * transaction's lists. 2559 */ 2560 void jbd2_journal_release_jbd_inode(journal_t *journal, 2561 struct jbd2_inode *jinode) 2562 { 2563 if (!journal) 2564 return; 2565 restart: 2566 spin_lock(&journal->j_list_lock); 2567 /* Is commit writing out inode - we have to wait */ 2568 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2569 wait_queue_head_t *wq; 2570 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2571 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2572 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2573 spin_unlock(&journal->j_list_lock); 2574 schedule(); 2575 finish_wait(wq, &wait.wait); 2576 goto restart; 2577 } 2578 2579 if (jinode->i_transaction) { 2580 list_del(&jinode->i_list); 2581 jinode->i_transaction = NULL; 2582 } 2583 spin_unlock(&journal->j_list_lock); 2584 } 2585 2586 2587 #ifdef CONFIG_PROC_FS 2588 2589 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2590 2591 static void __init jbd2_create_jbd_stats_proc_entry(void) 2592 { 2593 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2594 } 2595 2596 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2597 { 2598 if (proc_jbd2_stats) 2599 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2600 } 2601 2602 #else 2603 2604 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2605 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2606 2607 #endif 2608 2609 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2610 2611 static int __init jbd2_journal_init_handle_cache(void) 2612 { 2613 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2614 if (jbd2_handle_cache == NULL) { 2615 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2616 return -ENOMEM; 2617 } 2618 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2619 if (jbd2_inode_cache == NULL) { 2620 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2621 kmem_cache_destroy(jbd2_handle_cache); 2622 return -ENOMEM; 2623 } 2624 return 0; 2625 } 2626 2627 static void jbd2_journal_destroy_handle_cache(void) 2628 { 2629 if (jbd2_handle_cache) 2630 kmem_cache_destroy(jbd2_handle_cache); 2631 if (jbd2_inode_cache) 2632 kmem_cache_destroy(jbd2_inode_cache); 2633 2634 } 2635 2636 /* 2637 * Module startup and shutdown 2638 */ 2639 2640 static int __init journal_init_caches(void) 2641 { 2642 int ret; 2643 2644 ret = jbd2_journal_init_revoke_caches(); 2645 if (ret == 0) 2646 ret = jbd2_journal_init_journal_head_cache(); 2647 if (ret == 0) 2648 ret = jbd2_journal_init_handle_cache(); 2649 if (ret == 0) 2650 ret = jbd2_journal_init_transaction_cache(); 2651 return ret; 2652 } 2653 2654 static void jbd2_journal_destroy_caches(void) 2655 { 2656 jbd2_journal_destroy_revoke_caches(); 2657 jbd2_journal_destroy_journal_head_cache(); 2658 jbd2_journal_destroy_handle_cache(); 2659 jbd2_journal_destroy_transaction_cache(); 2660 jbd2_journal_destroy_slabs(); 2661 } 2662 2663 static int __init journal_init(void) 2664 { 2665 int ret; 2666 2667 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2668 2669 ret = journal_init_caches(); 2670 if (ret == 0) { 2671 jbd2_create_jbd_stats_proc_entry(); 2672 } else { 2673 jbd2_journal_destroy_caches(); 2674 } 2675 return ret; 2676 } 2677 2678 static void __exit journal_exit(void) 2679 { 2680 #ifdef CONFIG_JBD2_DEBUG 2681 int n = atomic_read(&nr_journal_heads); 2682 if (n) 2683 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 2684 #endif 2685 jbd2_remove_jbd_stats_proc_entry(); 2686 jbd2_journal_destroy_caches(); 2687 } 2688 2689 MODULE_LICENSE("GPL"); 2690 module_init(journal_init); 2691 module_exit(journal_exit); 2692 2693