xref: /openbmc/linux/fs/jbd2/journal.c (revision c52c47e4b4fbe4284602fc2ccbfc4a4d8dc05b49)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49 
50 #include <linux/uaccess.h>
51 #include <asm/page.h>
52 
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56 
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60 
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76 
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
102 EXPORT_SYMBOL(jbd2_inode_cache);
103 
104 static void __journal_abort_soft (journal_t *journal, int errno);
105 static int jbd2_journal_create_slab(size_t slab_size);
106 
107 #ifdef CONFIG_JBD2_DEBUG
108 void __jbd2_debug(int level, const char *file, const char *func,
109 		  unsigned int line, const char *fmt, ...)
110 {
111 	struct va_format vaf;
112 	va_list args;
113 
114 	if (level > jbd2_journal_enable_debug)
115 		return;
116 	va_start(args, fmt);
117 	vaf.fmt = fmt;
118 	vaf.va = &args;
119 	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
120 	va_end(args);
121 }
122 EXPORT_SYMBOL(__jbd2_debug);
123 #endif
124 
125 /* Checksumming functions */
126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 {
128 	if (!jbd2_journal_has_csum_v2or3_feature(j))
129 		return 1;
130 
131 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
132 }
133 
134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 {
136 	__u32 csum;
137 	__be32 old_csum;
138 
139 	old_csum = sb->s_checksum;
140 	sb->s_checksum = 0;
141 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
142 	sb->s_checksum = old_csum;
143 
144 	return cpu_to_be32(csum);
145 }
146 
147 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
148 {
149 	if (!jbd2_journal_has_csum_v2or3(j))
150 		return 1;
151 
152 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
153 }
154 
155 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
156 {
157 	if (!jbd2_journal_has_csum_v2or3(j))
158 		return;
159 
160 	sb->s_checksum = jbd2_superblock_csum(j, sb);
161 }
162 
163 /*
164  * Helper function used to manage commit timeouts
165  */
166 
167 static void commit_timeout(unsigned long __data)
168 {
169 	struct task_struct * p = (struct task_struct *) __data;
170 
171 	wake_up_process(p);
172 }
173 
174 /*
175  * kjournald2: The main thread function used to manage a logging device
176  * journal.
177  *
178  * This kernel thread is responsible for two things:
179  *
180  * 1) COMMIT:  Every so often we need to commit the current state of the
181  *    filesystem to disk.  The journal thread is responsible for writing
182  *    all of the metadata buffers to disk.
183  *
184  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185  *    of the data in that part of the log has been rewritten elsewhere on
186  *    the disk.  Flushing these old buffers to reclaim space in the log is
187  *    known as checkpointing, and this thread is responsible for that job.
188  */
189 
190 static int kjournald2(void *arg)
191 {
192 	journal_t *journal = arg;
193 	transaction_t *transaction;
194 
195 	/*
196 	 * Set up an interval timer which can be used to trigger a commit wakeup
197 	 * after the commit interval expires
198 	 */
199 	setup_timer(&journal->j_commit_timer, commit_timeout,
200 			(unsigned long)current);
201 
202 	set_freezable();
203 
204 	/* Record that the journal thread is running */
205 	journal->j_task = current;
206 	wake_up(&journal->j_wait_done_commit);
207 
208 	/*
209 	 * And now, wait forever for commit wakeup events.
210 	 */
211 	write_lock(&journal->j_state_lock);
212 
213 loop:
214 	if (journal->j_flags & JBD2_UNMOUNT)
215 		goto end_loop;
216 
217 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
218 		journal->j_commit_sequence, journal->j_commit_request);
219 
220 	if (journal->j_commit_sequence != journal->j_commit_request) {
221 		jbd_debug(1, "OK, requests differ\n");
222 		write_unlock(&journal->j_state_lock);
223 		del_timer_sync(&journal->j_commit_timer);
224 		jbd2_journal_commit_transaction(journal);
225 		write_lock(&journal->j_state_lock);
226 		goto loop;
227 	}
228 
229 	wake_up(&journal->j_wait_done_commit);
230 	if (freezing(current)) {
231 		/*
232 		 * The simpler the better. Flushing journal isn't a
233 		 * good idea, because that depends on threads that may
234 		 * be already stopped.
235 		 */
236 		jbd_debug(1, "Now suspending kjournald2\n");
237 		write_unlock(&journal->j_state_lock);
238 		try_to_freeze();
239 		write_lock(&journal->j_state_lock);
240 	} else {
241 		/*
242 		 * We assume on resume that commits are already there,
243 		 * so we don't sleep
244 		 */
245 		DEFINE_WAIT(wait);
246 		int should_sleep = 1;
247 
248 		prepare_to_wait(&journal->j_wait_commit, &wait,
249 				TASK_INTERRUPTIBLE);
250 		if (journal->j_commit_sequence != journal->j_commit_request)
251 			should_sleep = 0;
252 		transaction = journal->j_running_transaction;
253 		if (transaction && time_after_eq(jiffies,
254 						transaction->t_expires))
255 			should_sleep = 0;
256 		if (journal->j_flags & JBD2_UNMOUNT)
257 			should_sleep = 0;
258 		if (should_sleep) {
259 			write_unlock(&journal->j_state_lock);
260 			schedule();
261 			write_lock(&journal->j_state_lock);
262 		}
263 		finish_wait(&journal->j_wait_commit, &wait);
264 	}
265 
266 	jbd_debug(1, "kjournald2 wakes\n");
267 
268 	/*
269 	 * Were we woken up by a commit wakeup event?
270 	 */
271 	transaction = journal->j_running_transaction;
272 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
273 		journal->j_commit_request = transaction->t_tid;
274 		jbd_debug(1, "woke because of timeout\n");
275 	}
276 	goto loop;
277 
278 end_loop:
279 	del_timer_sync(&journal->j_commit_timer);
280 	journal->j_task = NULL;
281 	wake_up(&journal->j_wait_done_commit);
282 	jbd_debug(1, "Journal thread exiting.\n");
283 	write_unlock(&journal->j_state_lock);
284 	return 0;
285 }
286 
287 static int jbd2_journal_start_thread(journal_t *journal)
288 {
289 	struct task_struct *t;
290 
291 	t = kthread_run(kjournald2, journal, "jbd2/%s",
292 			journal->j_devname);
293 	if (IS_ERR(t))
294 		return PTR_ERR(t);
295 
296 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
297 	return 0;
298 }
299 
300 static void journal_kill_thread(journal_t *journal)
301 {
302 	write_lock(&journal->j_state_lock);
303 	journal->j_flags |= JBD2_UNMOUNT;
304 
305 	while (journal->j_task) {
306 		write_unlock(&journal->j_state_lock);
307 		wake_up(&journal->j_wait_commit);
308 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
309 		write_lock(&journal->j_state_lock);
310 	}
311 	write_unlock(&journal->j_state_lock);
312 }
313 
314 /*
315  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
316  *
317  * Writes a metadata buffer to a given disk block.  The actual IO is not
318  * performed but a new buffer_head is constructed which labels the data
319  * to be written with the correct destination disk block.
320  *
321  * Any magic-number escaping which needs to be done will cause a
322  * copy-out here.  If the buffer happens to start with the
323  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
324  * magic number is only written to the log for descripter blocks.  In
325  * this case, we copy the data and replace the first word with 0, and we
326  * return a result code which indicates that this buffer needs to be
327  * marked as an escaped buffer in the corresponding log descriptor
328  * block.  The missing word can then be restored when the block is read
329  * during recovery.
330  *
331  * If the source buffer has already been modified by a new transaction
332  * since we took the last commit snapshot, we use the frozen copy of
333  * that data for IO. If we end up using the existing buffer_head's data
334  * for the write, then we have to make sure nobody modifies it while the
335  * IO is in progress. do_get_write_access() handles this.
336  *
337  * The function returns a pointer to the buffer_head to be used for IO.
338  *
339  *
340  * Return value:
341  *  <0: Error
342  * >=0: Finished OK
343  *
344  * On success:
345  * Bit 0 set == escape performed on the data
346  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
347  */
348 
349 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
350 				  struct journal_head  *jh_in,
351 				  struct buffer_head **bh_out,
352 				  sector_t blocknr)
353 {
354 	int need_copy_out = 0;
355 	int done_copy_out = 0;
356 	int do_escape = 0;
357 	char *mapped_data;
358 	struct buffer_head *new_bh;
359 	struct page *new_page;
360 	unsigned int new_offset;
361 	struct buffer_head *bh_in = jh2bh(jh_in);
362 	journal_t *journal = transaction->t_journal;
363 
364 	/*
365 	 * The buffer really shouldn't be locked: only the current committing
366 	 * transaction is allowed to write it, so nobody else is allowed
367 	 * to do any IO.
368 	 *
369 	 * akpm: except if we're journalling data, and write() output is
370 	 * also part of a shared mapping, and another thread has
371 	 * decided to launch a writepage() against this buffer.
372 	 */
373 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
374 
375 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
376 
377 	/* keep subsequent assertions sane */
378 	atomic_set(&new_bh->b_count, 1);
379 
380 	jbd_lock_bh_state(bh_in);
381 repeat:
382 	/*
383 	 * If a new transaction has already done a buffer copy-out, then
384 	 * we use that version of the data for the commit.
385 	 */
386 	if (jh_in->b_frozen_data) {
387 		done_copy_out = 1;
388 		new_page = virt_to_page(jh_in->b_frozen_data);
389 		new_offset = offset_in_page(jh_in->b_frozen_data);
390 	} else {
391 		new_page = jh2bh(jh_in)->b_page;
392 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
393 	}
394 
395 	mapped_data = kmap_atomic(new_page);
396 	/*
397 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
398 	 * before checking for escaping, as the trigger may modify the magic
399 	 * offset.  If a copy-out happens afterwards, it will have the correct
400 	 * data in the buffer.
401 	 */
402 	if (!done_copy_out)
403 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
404 					   jh_in->b_triggers);
405 
406 	/*
407 	 * Check for escaping
408 	 */
409 	if (*((__be32 *)(mapped_data + new_offset)) ==
410 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
411 		need_copy_out = 1;
412 		do_escape = 1;
413 	}
414 	kunmap_atomic(mapped_data);
415 
416 	/*
417 	 * Do we need to do a data copy?
418 	 */
419 	if (need_copy_out && !done_copy_out) {
420 		char *tmp;
421 
422 		jbd_unlock_bh_state(bh_in);
423 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
424 		if (!tmp) {
425 			brelse(new_bh);
426 			return -ENOMEM;
427 		}
428 		jbd_lock_bh_state(bh_in);
429 		if (jh_in->b_frozen_data) {
430 			jbd2_free(tmp, bh_in->b_size);
431 			goto repeat;
432 		}
433 
434 		jh_in->b_frozen_data = tmp;
435 		mapped_data = kmap_atomic(new_page);
436 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
437 		kunmap_atomic(mapped_data);
438 
439 		new_page = virt_to_page(tmp);
440 		new_offset = offset_in_page(tmp);
441 		done_copy_out = 1;
442 
443 		/*
444 		 * This isn't strictly necessary, as we're using frozen
445 		 * data for the escaping, but it keeps consistency with
446 		 * b_frozen_data usage.
447 		 */
448 		jh_in->b_frozen_triggers = jh_in->b_triggers;
449 	}
450 
451 	/*
452 	 * Did we need to do an escaping?  Now we've done all the
453 	 * copying, we can finally do so.
454 	 */
455 	if (do_escape) {
456 		mapped_data = kmap_atomic(new_page);
457 		*((unsigned int *)(mapped_data + new_offset)) = 0;
458 		kunmap_atomic(mapped_data);
459 	}
460 
461 	set_bh_page(new_bh, new_page, new_offset);
462 	new_bh->b_size = bh_in->b_size;
463 	new_bh->b_bdev = journal->j_dev;
464 	new_bh->b_blocknr = blocknr;
465 	new_bh->b_private = bh_in;
466 	set_buffer_mapped(new_bh);
467 	set_buffer_dirty(new_bh);
468 
469 	*bh_out = new_bh;
470 
471 	/*
472 	 * The to-be-written buffer needs to get moved to the io queue,
473 	 * and the original buffer whose contents we are shadowing or
474 	 * copying is moved to the transaction's shadow queue.
475 	 */
476 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
477 	spin_lock(&journal->j_list_lock);
478 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
479 	spin_unlock(&journal->j_list_lock);
480 	set_buffer_shadow(bh_in);
481 	jbd_unlock_bh_state(bh_in);
482 
483 	return do_escape | (done_copy_out << 1);
484 }
485 
486 /*
487  * Allocation code for the journal file.  Manage the space left in the
488  * journal, so that we can begin checkpointing when appropriate.
489  */
490 
491 /*
492  * Called with j_state_lock locked for writing.
493  * Returns true if a transaction commit was started.
494  */
495 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
496 {
497 	/* Return if the txn has already requested to be committed */
498 	if (journal->j_commit_request == target)
499 		return 0;
500 
501 	/*
502 	 * The only transaction we can possibly wait upon is the
503 	 * currently running transaction (if it exists).  Otherwise,
504 	 * the target tid must be an old one.
505 	 */
506 	if (journal->j_running_transaction &&
507 	    journal->j_running_transaction->t_tid == target) {
508 		/*
509 		 * We want a new commit: OK, mark the request and wakeup the
510 		 * commit thread.  We do _not_ do the commit ourselves.
511 		 */
512 
513 		journal->j_commit_request = target;
514 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
515 			  journal->j_commit_request,
516 			  journal->j_commit_sequence);
517 		journal->j_running_transaction->t_requested = jiffies;
518 		wake_up(&journal->j_wait_commit);
519 		return 1;
520 	} else if (!tid_geq(journal->j_commit_request, target))
521 		/* This should never happen, but if it does, preserve
522 		   the evidence before kjournald goes into a loop and
523 		   increments j_commit_sequence beyond all recognition. */
524 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
525 			  journal->j_commit_request,
526 			  journal->j_commit_sequence,
527 			  target, journal->j_running_transaction ?
528 			  journal->j_running_transaction->t_tid : 0);
529 	return 0;
530 }
531 
532 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
533 {
534 	int ret;
535 
536 	write_lock(&journal->j_state_lock);
537 	ret = __jbd2_log_start_commit(journal, tid);
538 	write_unlock(&journal->j_state_lock);
539 	return ret;
540 }
541 
542 /*
543  * Force and wait any uncommitted transactions.  We can only force the running
544  * transaction if we don't have an active handle, otherwise, we will deadlock.
545  * Returns: <0 in case of error,
546  *           0 if nothing to commit,
547  *           1 if transaction was successfully committed.
548  */
549 static int __jbd2_journal_force_commit(journal_t *journal)
550 {
551 	transaction_t *transaction = NULL;
552 	tid_t tid;
553 	int need_to_start = 0, ret = 0;
554 
555 	read_lock(&journal->j_state_lock);
556 	if (journal->j_running_transaction && !current->journal_info) {
557 		transaction = journal->j_running_transaction;
558 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
559 			need_to_start = 1;
560 	} else if (journal->j_committing_transaction)
561 		transaction = journal->j_committing_transaction;
562 
563 	if (!transaction) {
564 		/* Nothing to commit */
565 		read_unlock(&journal->j_state_lock);
566 		return 0;
567 	}
568 	tid = transaction->t_tid;
569 	read_unlock(&journal->j_state_lock);
570 	if (need_to_start)
571 		jbd2_log_start_commit(journal, tid);
572 	ret = jbd2_log_wait_commit(journal, tid);
573 	if (!ret)
574 		ret = 1;
575 
576 	return ret;
577 }
578 
579 /**
580  * Force and wait upon a commit if the calling process is not within
581  * transaction.  This is used for forcing out undo-protected data which contains
582  * bitmaps, when the fs is running out of space.
583  *
584  * @journal: journal to force
585  * Returns true if progress was made.
586  */
587 int jbd2_journal_force_commit_nested(journal_t *journal)
588 {
589 	int ret;
590 
591 	ret = __jbd2_journal_force_commit(journal);
592 	return ret > 0;
593 }
594 
595 /**
596  * int journal_force_commit() - force any uncommitted transactions
597  * @journal: journal to force
598  *
599  * Caller want unconditional commit. We can only force the running transaction
600  * if we don't have an active handle, otherwise, we will deadlock.
601  */
602 int jbd2_journal_force_commit(journal_t *journal)
603 {
604 	int ret;
605 
606 	J_ASSERT(!current->journal_info);
607 	ret = __jbd2_journal_force_commit(journal);
608 	if (ret > 0)
609 		ret = 0;
610 	return ret;
611 }
612 
613 /*
614  * Start a commit of the current running transaction (if any).  Returns true
615  * if a transaction is going to be committed (or is currently already
616  * committing), and fills its tid in at *ptid
617  */
618 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
619 {
620 	int ret = 0;
621 
622 	write_lock(&journal->j_state_lock);
623 	if (journal->j_running_transaction) {
624 		tid_t tid = journal->j_running_transaction->t_tid;
625 
626 		__jbd2_log_start_commit(journal, tid);
627 		/* There's a running transaction and we've just made sure
628 		 * it's commit has been scheduled. */
629 		if (ptid)
630 			*ptid = tid;
631 		ret = 1;
632 	} else if (journal->j_committing_transaction) {
633 		/*
634 		 * If commit has been started, then we have to wait for
635 		 * completion of that transaction.
636 		 */
637 		if (ptid)
638 			*ptid = journal->j_committing_transaction->t_tid;
639 		ret = 1;
640 	}
641 	write_unlock(&journal->j_state_lock);
642 	return ret;
643 }
644 
645 /*
646  * Return 1 if a given transaction has not yet sent barrier request
647  * connected with a transaction commit. If 0 is returned, transaction
648  * may or may not have sent the barrier. Used to avoid sending barrier
649  * twice in common cases.
650  */
651 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
652 {
653 	int ret = 0;
654 	transaction_t *commit_trans;
655 
656 	if (!(journal->j_flags & JBD2_BARRIER))
657 		return 0;
658 	read_lock(&journal->j_state_lock);
659 	/* Transaction already committed? */
660 	if (tid_geq(journal->j_commit_sequence, tid))
661 		goto out;
662 	commit_trans = journal->j_committing_transaction;
663 	if (!commit_trans || commit_trans->t_tid != tid) {
664 		ret = 1;
665 		goto out;
666 	}
667 	/*
668 	 * Transaction is being committed and we already proceeded to
669 	 * submitting a flush to fs partition?
670 	 */
671 	if (journal->j_fs_dev != journal->j_dev) {
672 		if (!commit_trans->t_need_data_flush ||
673 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
674 			goto out;
675 	} else {
676 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
677 			goto out;
678 	}
679 	ret = 1;
680 out:
681 	read_unlock(&journal->j_state_lock);
682 	return ret;
683 }
684 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
685 
686 /*
687  * Wait for a specified commit to complete.
688  * The caller may not hold the journal lock.
689  */
690 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
691 {
692 	int err = 0;
693 
694 	read_lock(&journal->j_state_lock);
695 #ifdef CONFIG_PROVE_LOCKING
696 	/*
697 	 * Some callers make sure transaction is already committing and in that
698 	 * case we cannot block on open handles anymore. So don't warn in that
699 	 * case.
700 	 */
701 	if (tid_gt(tid, journal->j_commit_sequence) &&
702 	    (!journal->j_committing_transaction ||
703 	     journal->j_committing_transaction->t_tid != tid)) {
704 		read_unlock(&journal->j_state_lock);
705 		jbd2_might_wait_for_commit(journal);
706 		read_lock(&journal->j_state_lock);
707 	}
708 #endif
709 #ifdef CONFIG_JBD2_DEBUG
710 	if (!tid_geq(journal->j_commit_request, tid)) {
711 		printk(KERN_ERR
712 		       "%s: error: j_commit_request=%d, tid=%d\n",
713 		       __func__, journal->j_commit_request, tid);
714 	}
715 #endif
716 	while (tid_gt(tid, journal->j_commit_sequence)) {
717 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
718 				  tid, journal->j_commit_sequence);
719 		read_unlock(&journal->j_state_lock);
720 		wake_up(&journal->j_wait_commit);
721 		wait_event(journal->j_wait_done_commit,
722 				!tid_gt(tid, journal->j_commit_sequence));
723 		read_lock(&journal->j_state_lock);
724 	}
725 	read_unlock(&journal->j_state_lock);
726 
727 	if (unlikely(is_journal_aborted(journal)))
728 		err = -EIO;
729 	return err;
730 }
731 
732 /*
733  * When this function returns the transaction corresponding to tid
734  * will be completed.  If the transaction has currently running, start
735  * committing that transaction before waiting for it to complete.  If
736  * the transaction id is stale, it is by definition already completed,
737  * so just return SUCCESS.
738  */
739 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
740 {
741 	int	need_to_wait = 1;
742 
743 	read_lock(&journal->j_state_lock);
744 	if (journal->j_running_transaction &&
745 	    journal->j_running_transaction->t_tid == tid) {
746 		if (journal->j_commit_request != tid) {
747 			/* transaction not yet started, so request it */
748 			read_unlock(&journal->j_state_lock);
749 			jbd2_log_start_commit(journal, tid);
750 			goto wait_commit;
751 		}
752 	} else if (!(journal->j_committing_transaction &&
753 		     journal->j_committing_transaction->t_tid == tid))
754 		need_to_wait = 0;
755 	read_unlock(&journal->j_state_lock);
756 	if (!need_to_wait)
757 		return 0;
758 wait_commit:
759 	return jbd2_log_wait_commit(journal, tid);
760 }
761 EXPORT_SYMBOL(jbd2_complete_transaction);
762 
763 /*
764  * Log buffer allocation routines:
765  */
766 
767 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
768 {
769 	unsigned long blocknr;
770 
771 	write_lock(&journal->j_state_lock);
772 	J_ASSERT(journal->j_free > 1);
773 
774 	blocknr = journal->j_head;
775 	journal->j_head++;
776 	journal->j_free--;
777 	if (journal->j_head == journal->j_last)
778 		journal->j_head = journal->j_first;
779 	write_unlock(&journal->j_state_lock);
780 	return jbd2_journal_bmap(journal, blocknr, retp);
781 }
782 
783 /*
784  * Conversion of logical to physical block numbers for the journal
785  *
786  * On external journals the journal blocks are identity-mapped, so
787  * this is a no-op.  If needed, we can use j_blk_offset - everything is
788  * ready.
789  */
790 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
791 		 unsigned long long *retp)
792 {
793 	int err = 0;
794 	unsigned long long ret;
795 
796 	if (journal->j_inode) {
797 		ret = bmap(journal->j_inode, blocknr);
798 		if (ret)
799 			*retp = ret;
800 		else {
801 			printk(KERN_ALERT "%s: journal block not found "
802 					"at offset %lu on %s\n",
803 			       __func__, blocknr, journal->j_devname);
804 			err = -EIO;
805 			__journal_abort_soft(journal, err);
806 		}
807 	} else {
808 		*retp = blocknr; /* +journal->j_blk_offset */
809 	}
810 	return err;
811 }
812 
813 /*
814  * We play buffer_head aliasing tricks to write data/metadata blocks to
815  * the journal without copying their contents, but for journal
816  * descriptor blocks we do need to generate bona fide buffers.
817  *
818  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
819  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
820  * But we don't bother doing that, so there will be coherency problems with
821  * mmaps of blockdevs which hold live JBD-controlled filesystems.
822  */
823 struct buffer_head *
824 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
825 {
826 	journal_t *journal = transaction->t_journal;
827 	struct buffer_head *bh;
828 	unsigned long long blocknr;
829 	journal_header_t *header;
830 	int err;
831 
832 	err = jbd2_journal_next_log_block(journal, &blocknr);
833 
834 	if (err)
835 		return NULL;
836 
837 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
838 	if (!bh)
839 		return NULL;
840 	lock_buffer(bh);
841 	memset(bh->b_data, 0, journal->j_blocksize);
842 	header = (journal_header_t *)bh->b_data;
843 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
844 	header->h_blocktype = cpu_to_be32(type);
845 	header->h_sequence = cpu_to_be32(transaction->t_tid);
846 	set_buffer_uptodate(bh);
847 	unlock_buffer(bh);
848 	BUFFER_TRACE(bh, "return this buffer");
849 	return bh;
850 }
851 
852 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
853 {
854 	struct jbd2_journal_block_tail *tail;
855 	__u32 csum;
856 
857 	if (!jbd2_journal_has_csum_v2or3(j))
858 		return;
859 
860 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
861 			sizeof(struct jbd2_journal_block_tail));
862 	tail->t_checksum = 0;
863 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
864 	tail->t_checksum = cpu_to_be32(csum);
865 }
866 
867 /*
868  * Return tid of the oldest transaction in the journal and block in the journal
869  * where the transaction starts.
870  *
871  * If the journal is now empty, return which will be the next transaction ID
872  * we will write and where will that transaction start.
873  *
874  * The return value is 0 if journal tail cannot be pushed any further, 1 if
875  * it can.
876  */
877 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
878 			      unsigned long *block)
879 {
880 	transaction_t *transaction;
881 	int ret;
882 
883 	read_lock(&journal->j_state_lock);
884 	spin_lock(&journal->j_list_lock);
885 	transaction = journal->j_checkpoint_transactions;
886 	if (transaction) {
887 		*tid = transaction->t_tid;
888 		*block = transaction->t_log_start;
889 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
890 		*tid = transaction->t_tid;
891 		*block = transaction->t_log_start;
892 	} else if ((transaction = journal->j_running_transaction) != NULL) {
893 		*tid = transaction->t_tid;
894 		*block = journal->j_head;
895 	} else {
896 		*tid = journal->j_transaction_sequence;
897 		*block = journal->j_head;
898 	}
899 	ret = tid_gt(*tid, journal->j_tail_sequence);
900 	spin_unlock(&journal->j_list_lock);
901 	read_unlock(&journal->j_state_lock);
902 
903 	return ret;
904 }
905 
906 /*
907  * Update information in journal structure and in on disk journal superblock
908  * about log tail. This function does not check whether information passed in
909  * really pushes log tail further. It's responsibility of the caller to make
910  * sure provided log tail information is valid (e.g. by holding
911  * j_checkpoint_mutex all the time between computing log tail and calling this
912  * function as is the case with jbd2_cleanup_journal_tail()).
913  *
914  * Requires j_checkpoint_mutex
915  */
916 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
917 {
918 	unsigned long freed;
919 	int ret;
920 
921 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
922 
923 	/*
924 	 * We cannot afford for write to remain in drive's caches since as
925 	 * soon as we update j_tail, next transaction can start reusing journal
926 	 * space and if we lose sb update during power failure we'd replay
927 	 * old transaction with possibly newly overwritten data.
928 	 */
929 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA);
930 	if (ret)
931 		goto out;
932 
933 	write_lock(&journal->j_state_lock);
934 	freed = block - journal->j_tail;
935 	if (block < journal->j_tail)
936 		freed += journal->j_last - journal->j_first;
937 
938 	trace_jbd2_update_log_tail(journal, tid, block, freed);
939 	jbd_debug(1,
940 		  "Cleaning journal tail from %d to %d (offset %lu), "
941 		  "freeing %lu\n",
942 		  journal->j_tail_sequence, tid, block, freed);
943 
944 	journal->j_free += freed;
945 	journal->j_tail_sequence = tid;
946 	journal->j_tail = block;
947 	write_unlock(&journal->j_state_lock);
948 
949 out:
950 	return ret;
951 }
952 
953 /*
954  * This is a variaon of __jbd2_update_log_tail which checks for validity of
955  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
956  * with other threads updating log tail.
957  */
958 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
959 {
960 	mutex_lock_io(&journal->j_checkpoint_mutex);
961 	if (tid_gt(tid, journal->j_tail_sequence))
962 		__jbd2_update_log_tail(journal, tid, block);
963 	mutex_unlock(&journal->j_checkpoint_mutex);
964 }
965 
966 struct jbd2_stats_proc_session {
967 	journal_t *journal;
968 	struct transaction_stats_s *stats;
969 	int start;
970 	int max;
971 };
972 
973 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
974 {
975 	return *pos ? NULL : SEQ_START_TOKEN;
976 }
977 
978 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
979 {
980 	return NULL;
981 }
982 
983 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
984 {
985 	struct jbd2_stats_proc_session *s = seq->private;
986 
987 	if (v != SEQ_START_TOKEN)
988 		return 0;
989 	seq_printf(seq, "%lu transactions (%lu requested), "
990 		   "each up to %u blocks\n",
991 		   s->stats->ts_tid, s->stats->ts_requested,
992 		   s->journal->j_max_transaction_buffers);
993 	if (s->stats->ts_tid == 0)
994 		return 0;
995 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
996 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
997 	seq_printf(seq, "  %ums request delay\n",
998 	    (s->stats->ts_requested == 0) ? 0 :
999 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1000 			     s->stats->ts_requested));
1001 	seq_printf(seq, "  %ums running transaction\n",
1002 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1003 	seq_printf(seq, "  %ums transaction was being locked\n",
1004 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1005 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1006 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1007 	seq_printf(seq, "  %ums logging transaction\n",
1008 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1009 	seq_printf(seq, "  %lluus average transaction commit time\n",
1010 		   div_u64(s->journal->j_average_commit_time, 1000));
1011 	seq_printf(seq, "  %lu handles per transaction\n",
1012 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1013 	seq_printf(seq, "  %lu blocks per transaction\n",
1014 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1015 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1016 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1017 	return 0;
1018 }
1019 
1020 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1021 {
1022 }
1023 
1024 static const struct seq_operations jbd2_seq_info_ops = {
1025 	.start  = jbd2_seq_info_start,
1026 	.next   = jbd2_seq_info_next,
1027 	.stop   = jbd2_seq_info_stop,
1028 	.show   = jbd2_seq_info_show,
1029 };
1030 
1031 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1032 {
1033 	journal_t *journal = PDE_DATA(inode);
1034 	struct jbd2_stats_proc_session *s;
1035 	int rc, size;
1036 
1037 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1038 	if (s == NULL)
1039 		return -ENOMEM;
1040 	size = sizeof(struct transaction_stats_s);
1041 	s->stats = kmalloc(size, GFP_KERNEL);
1042 	if (s->stats == NULL) {
1043 		kfree(s);
1044 		return -ENOMEM;
1045 	}
1046 	spin_lock(&journal->j_history_lock);
1047 	memcpy(s->stats, &journal->j_stats, size);
1048 	s->journal = journal;
1049 	spin_unlock(&journal->j_history_lock);
1050 
1051 	rc = seq_open(file, &jbd2_seq_info_ops);
1052 	if (rc == 0) {
1053 		struct seq_file *m = file->private_data;
1054 		m->private = s;
1055 	} else {
1056 		kfree(s->stats);
1057 		kfree(s);
1058 	}
1059 	return rc;
1060 
1061 }
1062 
1063 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1064 {
1065 	struct seq_file *seq = file->private_data;
1066 	struct jbd2_stats_proc_session *s = seq->private;
1067 	kfree(s->stats);
1068 	kfree(s);
1069 	return seq_release(inode, file);
1070 }
1071 
1072 static const struct file_operations jbd2_seq_info_fops = {
1073 	.owner		= THIS_MODULE,
1074 	.open           = jbd2_seq_info_open,
1075 	.read           = seq_read,
1076 	.llseek         = seq_lseek,
1077 	.release        = jbd2_seq_info_release,
1078 };
1079 
1080 static struct proc_dir_entry *proc_jbd2_stats;
1081 
1082 static void jbd2_stats_proc_init(journal_t *journal)
1083 {
1084 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1085 	if (journal->j_proc_entry) {
1086 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1087 				 &jbd2_seq_info_fops, journal);
1088 	}
1089 }
1090 
1091 static void jbd2_stats_proc_exit(journal_t *journal)
1092 {
1093 	remove_proc_entry("info", journal->j_proc_entry);
1094 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1095 }
1096 
1097 /*
1098  * Management for journal control blocks: functions to create and
1099  * destroy journal_t structures, and to initialise and read existing
1100  * journal blocks from disk.  */
1101 
1102 /* First: create and setup a journal_t object in memory.  We initialise
1103  * very few fields yet: that has to wait until we have created the
1104  * journal structures from from scratch, or loaded them from disk. */
1105 
1106 static journal_t *journal_init_common(struct block_device *bdev,
1107 			struct block_device *fs_dev,
1108 			unsigned long long start, int len, int blocksize)
1109 {
1110 	static struct lock_class_key jbd2_trans_commit_key;
1111 	journal_t *journal;
1112 	int err;
1113 	struct buffer_head *bh;
1114 	int n;
1115 
1116 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1117 	if (!journal)
1118 		return NULL;
1119 
1120 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1121 	init_waitqueue_head(&journal->j_wait_done_commit);
1122 	init_waitqueue_head(&journal->j_wait_commit);
1123 	init_waitqueue_head(&journal->j_wait_updates);
1124 	init_waitqueue_head(&journal->j_wait_reserved);
1125 	mutex_init(&journal->j_barrier);
1126 	mutex_init(&journal->j_checkpoint_mutex);
1127 	spin_lock_init(&journal->j_revoke_lock);
1128 	spin_lock_init(&journal->j_list_lock);
1129 	rwlock_init(&journal->j_state_lock);
1130 
1131 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1132 	journal->j_min_batch_time = 0;
1133 	journal->j_max_batch_time = 15000; /* 15ms */
1134 	atomic_set(&journal->j_reserved_credits, 0);
1135 
1136 	/* The journal is marked for error until we succeed with recovery! */
1137 	journal->j_flags = JBD2_ABORT;
1138 
1139 	/* Set up a default-sized revoke table for the new mount. */
1140 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1141 	if (err)
1142 		goto err_cleanup;
1143 
1144 	spin_lock_init(&journal->j_history_lock);
1145 
1146 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1147 			 &jbd2_trans_commit_key, 0);
1148 
1149 	/* journal descriptor can store up to n blocks -bzzz */
1150 	journal->j_blocksize = blocksize;
1151 	journal->j_dev = bdev;
1152 	journal->j_fs_dev = fs_dev;
1153 	journal->j_blk_offset = start;
1154 	journal->j_maxlen = len;
1155 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1156 	journal->j_wbufsize = n;
1157 	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1158 					GFP_KERNEL);
1159 	if (!journal->j_wbuf)
1160 		goto err_cleanup;
1161 
1162 	bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1163 	if (!bh) {
1164 		pr_err("%s: Cannot get buffer for journal superblock\n",
1165 			__func__);
1166 		goto err_cleanup;
1167 	}
1168 	journal->j_sb_buffer = bh;
1169 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1170 
1171 	return journal;
1172 
1173 err_cleanup:
1174 	kfree(journal->j_wbuf);
1175 	jbd2_journal_destroy_revoke(journal);
1176 	kfree(journal);
1177 	return NULL;
1178 }
1179 
1180 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1181  *
1182  * Create a journal structure assigned some fixed set of disk blocks to
1183  * the journal.  We don't actually touch those disk blocks yet, but we
1184  * need to set up all of the mapping information to tell the journaling
1185  * system where the journal blocks are.
1186  *
1187  */
1188 
1189 /**
1190  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1191  *  @bdev: Block device on which to create the journal
1192  *  @fs_dev: Device which hold journalled filesystem for this journal.
1193  *  @start: Block nr Start of journal.
1194  *  @len:  Length of the journal in blocks.
1195  *  @blocksize: blocksize of journalling device
1196  *
1197  *  Returns: a newly created journal_t *
1198  *
1199  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1200  *  range of blocks on an arbitrary block device.
1201  *
1202  */
1203 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1204 			struct block_device *fs_dev,
1205 			unsigned long long start, int len, int blocksize)
1206 {
1207 	journal_t *journal;
1208 
1209 	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1210 	if (!journal)
1211 		return NULL;
1212 
1213 	bdevname(journal->j_dev, journal->j_devname);
1214 	strreplace(journal->j_devname, '/', '!');
1215 	jbd2_stats_proc_init(journal);
1216 
1217 	return journal;
1218 }
1219 
1220 /**
1221  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1222  *  @inode: An inode to create the journal in
1223  *
1224  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1225  * the journal.  The inode must exist already, must support bmap() and
1226  * must have all data blocks preallocated.
1227  */
1228 journal_t *jbd2_journal_init_inode(struct inode *inode)
1229 {
1230 	journal_t *journal;
1231 	char *p;
1232 	unsigned long long blocknr;
1233 
1234 	blocknr = bmap(inode, 0);
1235 	if (!blocknr) {
1236 		pr_err("%s: Cannot locate journal superblock\n",
1237 			__func__);
1238 		return NULL;
1239 	}
1240 
1241 	jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1242 		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1243 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1244 
1245 	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1246 			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1247 			inode->i_sb->s_blocksize);
1248 	if (!journal)
1249 		return NULL;
1250 
1251 	journal->j_inode = inode;
1252 	bdevname(journal->j_dev, journal->j_devname);
1253 	p = strreplace(journal->j_devname, '/', '!');
1254 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1255 	jbd2_stats_proc_init(journal);
1256 
1257 	return journal;
1258 }
1259 
1260 /*
1261  * If the journal init or create aborts, we need to mark the journal
1262  * superblock as being NULL to prevent the journal destroy from writing
1263  * back a bogus superblock.
1264  */
1265 static void journal_fail_superblock (journal_t *journal)
1266 {
1267 	struct buffer_head *bh = journal->j_sb_buffer;
1268 	brelse(bh);
1269 	journal->j_sb_buffer = NULL;
1270 }
1271 
1272 /*
1273  * Given a journal_t structure, initialise the various fields for
1274  * startup of a new journaling session.  We use this both when creating
1275  * a journal, and after recovering an old journal to reset it for
1276  * subsequent use.
1277  */
1278 
1279 static int journal_reset(journal_t *journal)
1280 {
1281 	journal_superblock_t *sb = journal->j_superblock;
1282 	unsigned long long first, last;
1283 
1284 	first = be32_to_cpu(sb->s_first);
1285 	last = be32_to_cpu(sb->s_maxlen);
1286 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1287 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1288 		       first, last);
1289 		journal_fail_superblock(journal);
1290 		return -EINVAL;
1291 	}
1292 
1293 	journal->j_first = first;
1294 	journal->j_last = last;
1295 
1296 	journal->j_head = first;
1297 	journal->j_tail = first;
1298 	journal->j_free = last - first;
1299 
1300 	journal->j_tail_sequence = journal->j_transaction_sequence;
1301 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1302 	journal->j_commit_request = journal->j_commit_sequence;
1303 
1304 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1305 
1306 	/*
1307 	 * As a special case, if the on-disk copy is already marked as needing
1308 	 * no recovery (s_start == 0), then we can safely defer the superblock
1309 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1310 	 * attempting a write to a potential-readonly device.
1311 	 */
1312 	if (sb->s_start == 0) {
1313 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1314 			"(start %ld, seq %d, errno %d)\n",
1315 			journal->j_tail, journal->j_tail_sequence,
1316 			journal->j_errno);
1317 		journal->j_flags |= JBD2_FLUSHED;
1318 	} else {
1319 		/* Lock here to make assertions happy... */
1320 		mutex_lock_io(&journal->j_checkpoint_mutex);
1321 		/*
1322 		 * Update log tail information. We use REQ_FUA since new
1323 		 * transaction will start reusing journal space and so we
1324 		 * must make sure information about current log tail is on
1325 		 * disk before that.
1326 		 */
1327 		jbd2_journal_update_sb_log_tail(journal,
1328 						journal->j_tail_sequence,
1329 						journal->j_tail,
1330 						REQ_FUA);
1331 		mutex_unlock(&journal->j_checkpoint_mutex);
1332 	}
1333 	return jbd2_journal_start_thread(journal);
1334 }
1335 
1336 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1337 {
1338 	struct buffer_head *bh = journal->j_sb_buffer;
1339 	journal_superblock_t *sb = journal->j_superblock;
1340 	int ret;
1341 
1342 	trace_jbd2_write_superblock(journal, write_flags);
1343 	if (!(journal->j_flags & JBD2_BARRIER))
1344 		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1345 	lock_buffer(bh);
1346 	if (buffer_write_io_error(bh)) {
1347 		/*
1348 		 * Oh, dear.  A previous attempt to write the journal
1349 		 * superblock failed.  This could happen because the
1350 		 * USB device was yanked out.  Or it could happen to
1351 		 * be a transient write error and maybe the block will
1352 		 * be remapped.  Nothing we can do but to retry the
1353 		 * write and hope for the best.
1354 		 */
1355 		printk(KERN_ERR "JBD2: previous I/O error detected "
1356 		       "for journal superblock update for %s.\n",
1357 		       journal->j_devname);
1358 		clear_buffer_write_io_error(bh);
1359 		set_buffer_uptodate(bh);
1360 	}
1361 	jbd2_superblock_csum_set(journal, sb);
1362 	get_bh(bh);
1363 	bh->b_end_io = end_buffer_write_sync;
1364 	ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1365 	wait_on_buffer(bh);
1366 	if (buffer_write_io_error(bh)) {
1367 		clear_buffer_write_io_error(bh);
1368 		set_buffer_uptodate(bh);
1369 		ret = -EIO;
1370 	}
1371 	if (ret) {
1372 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1373 		       "journal superblock for %s.\n", ret,
1374 		       journal->j_devname);
1375 		jbd2_journal_abort(journal, ret);
1376 	}
1377 
1378 	return ret;
1379 }
1380 
1381 /**
1382  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1383  * @journal: The journal to update.
1384  * @tail_tid: TID of the new transaction at the tail of the log
1385  * @tail_block: The first block of the transaction at the tail of the log
1386  * @write_op: With which operation should we write the journal sb
1387  *
1388  * Update a journal's superblock information about log tail and write it to
1389  * disk, waiting for the IO to complete.
1390  */
1391 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1392 				     unsigned long tail_block, int write_op)
1393 {
1394 	journal_superblock_t *sb = journal->j_superblock;
1395 	int ret;
1396 
1397 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1398 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1399 		  tail_block, tail_tid);
1400 
1401 	sb->s_sequence = cpu_to_be32(tail_tid);
1402 	sb->s_start    = cpu_to_be32(tail_block);
1403 
1404 	ret = jbd2_write_superblock(journal, write_op);
1405 	if (ret)
1406 		goto out;
1407 
1408 	/* Log is no longer empty */
1409 	write_lock(&journal->j_state_lock);
1410 	WARN_ON(!sb->s_sequence);
1411 	journal->j_flags &= ~JBD2_FLUSHED;
1412 	write_unlock(&journal->j_state_lock);
1413 
1414 out:
1415 	return ret;
1416 }
1417 
1418 /**
1419  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1420  * @journal: The journal to update.
1421  * @write_op: With which operation should we write the journal sb
1422  *
1423  * Update a journal's dynamic superblock fields to show that journal is empty.
1424  * Write updated superblock to disk waiting for IO to complete.
1425  */
1426 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1427 {
1428 	journal_superblock_t *sb = journal->j_superblock;
1429 
1430 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1431 	read_lock(&journal->j_state_lock);
1432 	/* Is it already empty? */
1433 	if (sb->s_start == 0) {
1434 		read_unlock(&journal->j_state_lock);
1435 		return;
1436 	}
1437 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1438 		  journal->j_tail_sequence);
1439 
1440 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1441 	sb->s_start    = cpu_to_be32(0);
1442 	read_unlock(&journal->j_state_lock);
1443 
1444 	jbd2_write_superblock(journal, write_op);
1445 
1446 	/* Log is no longer empty */
1447 	write_lock(&journal->j_state_lock);
1448 	journal->j_flags |= JBD2_FLUSHED;
1449 	write_unlock(&journal->j_state_lock);
1450 }
1451 
1452 
1453 /**
1454  * jbd2_journal_update_sb_errno() - Update error in the journal.
1455  * @journal: The journal to update.
1456  *
1457  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1458  * to complete.
1459  */
1460 void jbd2_journal_update_sb_errno(journal_t *journal)
1461 {
1462 	journal_superblock_t *sb = journal->j_superblock;
1463 
1464 	read_lock(&journal->j_state_lock);
1465 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1466 		  journal->j_errno);
1467 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1468 	read_unlock(&journal->j_state_lock);
1469 
1470 	jbd2_write_superblock(journal, REQ_FUA);
1471 }
1472 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1473 
1474 /*
1475  * Read the superblock for a given journal, performing initial
1476  * validation of the format.
1477  */
1478 static int journal_get_superblock(journal_t *journal)
1479 {
1480 	struct buffer_head *bh;
1481 	journal_superblock_t *sb;
1482 	int err = -EIO;
1483 
1484 	bh = journal->j_sb_buffer;
1485 
1486 	J_ASSERT(bh != NULL);
1487 	if (!buffer_uptodate(bh)) {
1488 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1489 		wait_on_buffer(bh);
1490 		if (!buffer_uptodate(bh)) {
1491 			printk(KERN_ERR
1492 				"JBD2: IO error reading journal superblock\n");
1493 			goto out;
1494 		}
1495 	}
1496 
1497 	if (buffer_verified(bh))
1498 		return 0;
1499 
1500 	sb = journal->j_superblock;
1501 
1502 	err = -EINVAL;
1503 
1504 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1505 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1506 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1507 		goto out;
1508 	}
1509 
1510 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1511 	case JBD2_SUPERBLOCK_V1:
1512 		journal->j_format_version = 1;
1513 		break;
1514 	case JBD2_SUPERBLOCK_V2:
1515 		journal->j_format_version = 2;
1516 		break;
1517 	default:
1518 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1519 		goto out;
1520 	}
1521 
1522 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1523 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1524 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1525 		printk(KERN_WARNING "JBD2: journal file too short\n");
1526 		goto out;
1527 	}
1528 
1529 	if (be32_to_cpu(sb->s_first) == 0 ||
1530 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1531 		printk(KERN_WARNING
1532 			"JBD2: Invalid start block of journal: %u\n",
1533 			be32_to_cpu(sb->s_first));
1534 		goto out;
1535 	}
1536 
1537 	if (jbd2_has_feature_csum2(journal) &&
1538 	    jbd2_has_feature_csum3(journal)) {
1539 		/* Can't have checksum v2 and v3 at the same time! */
1540 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1541 		       "at the same time!\n");
1542 		goto out;
1543 	}
1544 
1545 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1546 	    jbd2_has_feature_checksum(journal)) {
1547 		/* Can't have checksum v1 and v2 on at the same time! */
1548 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1549 		       "at the same time!\n");
1550 		goto out;
1551 	}
1552 
1553 	if (!jbd2_verify_csum_type(journal, sb)) {
1554 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1555 		goto out;
1556 	}
1557 
1558 	/* Load the checksum driver */
1559 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1560 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1561 		if (IS_ERR(journal->j_chksum_driver)) {
1562 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1563 			err = PTR_ERR(journal->j_chksum_driver);
1564 			journal->j_chksum_driver = NULL;
1565 			goto out;
1566 		}
1567 	}
1568 
1569 	/* Check superblock checksum */
1570 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1571 		printk(KERN_ERR "JBD2: journal checksum error\n");
1572 		err = -EFSBADCRC;
1573 		goto out;
1574 	}
1575 
1576 	/* Precompute checksum seed for all metadata */
1577 	if (jbd2_journal_has_csum_v2or3(journal))
1578 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1579 						   sizeof(sb->s_uuid));
1580 
1581 	set_buffer_verified(bh);
1582 
1583 	return 0;
1584 
1585 out:
1586 	journal_fail_superblock(journal);
1587 	return err;
1588 }
1589 
1590 /*
1591  * Load the on-disk journal superblock and read the key fields into the
1592  * journal_t.
1593  */
1594 
1595 static int load_superblock(journal_t *journal)
1596 {
1597 	int err;
1598 	journal_superblock_t *sb;
1599 
1600 	err = journal_get_superblock(journal);
1601 	if (err)
1602 		return err;
1603 
1604 	sb = journal->j_superblock;
1605 
1606 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1607 	journal->j_tail = be32_to_cpu(sb->s_start);
1608 	journal->j_first = be32_to_cpu(sb->s_first);
1609 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1610 	journal->j_errno = be32_to_cpu(sb->s_errno);
1611 
1612 	return 0;
1613 }
1614 
1615 
1616 /**
1617  * int jbd2_journal_load() - Read journal from disk.
1618  * @journal: Journal to act on.
1619  *
1620  * Given a journal_t structure which tells us which disk blocks contain
1621  * a journal, read the journal from disk to initialise the in-memory
1622  * structures.
1623  */
1624 int jbd2_journal_load(journal_t *journal)
1625 {
1626 	int err;
1627 	journal_superblock_t *sb;
1628 
1629 	err = load_superblock(journal);
1630 	if (err)
1631 		return err;
1632 
1633 	sb = journal->j_superblock;
1634 	/* If this is a V2 superblock, then we have to check the
1635 	 * features flags on it. */
1636 
1637 	if (journal->j_format_version >= 2) {
1638 		if ((sb->s_feature_ro_compat &
1639 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1640 		    (sb->s_feature_incompat &
1641 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1642 			printk(KERN_WARNING
1643 				"JBD2: Unrecognised features on journal\n");
1644 			return -EINVAL;
1645 		}
1646 	}
1647 
1648 	/*
1649 	 * Create a slab for this blocksize
1650 	 */
1651 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1652 	if (err)
1653 		return err;
1654 
1655 	/* Let the recovery code check whether it needs to recover any
1656 	 * data from the journal. */
1657 	if (jbd2_journal_recover(journal))
1658 		goto recovery_error;
1659 
1660 	if (journal->j_failed_commit) {
1661 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1662 		       "is corrupt.\n", journal->j_failed_commit,
1663 		       journal->j_devname);
1664 		return -EFSCORRUPTED;
1665 	}
1666 
1667 	/* OK, we've finished with the dynamic journal bits:
1668 	 * reinitialise the dynamic contents of the superblock in memory
1669 	 * and reset them on disk. */
1670 	if (journal_reset(journal))
1671 		goto recovery_error;
1672 
1673 	journal->j_flags &= ~JBD2_ABORT;
1674 	journal->j_flags |= JBD2_LOADED;
1675 	return 0;
1676 
1677 recovery_error:
1678 	printk(KERN_WARNING "JBD2: recovery failed\n");
1679 	return -EIO;
1680 }
1681 
1682 /**
1683  * void jbd2_journal_destroy() - Release a journal_t structure.
1684  * @journal: Journal to act on.
1685  *
1686  * Release a journal_t structure once it is no longer in use by the
1687  * journaled object.
1688  * Return <0 if we couldn't clean up the journal.
1689  */
1690 int jbd2_journal_destroy(journal_t *journal)
1691 {
1692 	int err = 0;
1693 
1694 	/* Wait for the commit thread to wake up and die. */
1695 	journal_kill_thread(journal);
1696 
1697 	/* Force a final log commit */
1698 	if (journal->j_running_transaction)
1699 		jbd2_journal_commit_transaction(journal);
1700 
1701 	/* Force any old transactions to disk */
1702 
1703 	/* Totally anal locking here... */
1704 	spin_lock(&journal->j_list_lock);
1705 	while (journal->j_checkpoint_transactions != NULL) {
1706 		spin_unlock(&journal->j_list_lock);
1707 		mutex_lock_io(&journal->j_checkpoint_mutex);
1708 		err = jbd2_log_do_checkpoint(journal);
1709 		mutex_unlock(&journal->j_checkpoint_mutex);
1710 		/*
1711 		 * If checkpointing failed, just free the buffers to avoid
1712 		 * looping forever
1713 		 */
1714 		if (err) {
1715 			jbd2_journal_destroy_checkpoint(journal);
1716 			spin_lock(&journal->j_list_lock);
1717 			break;
1718 		}
1719 		spin_lock(&journal->j_list_lock);
1720 	}
1721 
1722 	J_ASSERT(journal->j_running_transaction == NULL);
1723 	J_ASSERT(journal->j_committing_transaction == NULL);
1724 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1725 	spin_unlock(&journal->j_list_lock);
1726 
1727 	if (journal->j_sb_buffer) {
1728 		if (!is_journal_aborted(journal)) {
1729 			mutex_lock_io(&journal->j_checkpoint_mutex);
1730 
1731 			write_lock(&journal->j_state_lock);
1732 			journal->j_tail_sequence =
1733 				++journal->j_transaction_sequence;
1734 			write_unlock(&journal->j_state_lock);
1735 
1736 			jbd2_mark_journal_empty(journal,
1737 					REQ_PREFLUSH | REQ_FUA);
1738 			mutex_unlock(&journal->j_checkpoint_mutex);
1739 		} else
1740 			err = -EIO;
1741 		brelse(journal->j_sb_buffer);
1742 	}
1743 
1744 	if (journal->j_proc_entry)
1745 		jbd2_stats_proc_exit(journal);
1746 	iput(journal->j_inode);
1747 	if (journal->j_revoke)
1748 		jbd2_journal_destroy_revoke(journal);
1749 	if (journal->j_chksum_driver)
1750 		crypto_free_shash(journal->j_chksum_driver);
1751 	kfree(journal->j_wbuf);
1752 	kfree(journal);
1753 
1754 	return err;
1755 }
1756 
1757 
1758 /**
1759  *int jbd2_journal_check_used_features () - Check if features specified are used.
1760  * @journal: Journal to check.
1761  * @compat: bitmask of compatible features
1762  * @ro: bitmask of features that force read-only mount
1763  * @incompat: bitmask of incompatible features
1764  *
1765  * Check whether the journal uses all of a given set of
1766  * features.  Return true (non-zero) if it does.
1767  **/
1768 
1769 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1770 				 unsigned long ro, unsigned long incompat)
1771 {
1772 	journal_superblock_t *sb;
1773 
1774 	if (!compat && !ro && !incompat)
1775 		return 1;
1776 	/* Load journal superblock if it is not loaded yet. */
1777 	if (journal->j_format_version == 0 &&
1778 	    journal_get_superblock(journal) != 0)
1779 		return 0;
1780 	if (journal->j_format_version == 1)
1781 		return 0;
1782 
1783 	sb = journal->j_superblock;
1784 
1785 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1786 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1787 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1788 		return 1;
1789 
1790 	return 0;
1791 }
1792 
1793 /**
1794  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1795  * @journal: Journal to check.
1796  * @compat: bitmask of compatible features
1797  * @ro: bitmask of features that force read-only mount
1798  * @incompat: bitmask of incompatible features
1799  *
1800  * Check whether the journaling code supports the use of
1801  * all of a given set of features on this journal.  Return true
1802  * (non-zero) if it can. */
1803 
1804 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1805 				      unsigned long ro, unsigned long incompat)
1806 {
1807 	if (!compat && !ro && !incompat)
1808 		return 1;
1809 
1810 	/* We can support any known requested features iff the
1811 	 * superblock is in version 2.  Otherwise we fail to support any
1812 	 * extended sb features. */
1813 
1814 	if (journal->j_format_version != 2)
1815 		return 0;
1816 
1817 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1818 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1819 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1820 		return 1;
1821 
1822 	return 0;
1823 }
1824 
1825 /**
1826  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1827  * @journal: Journal to act on.
1828  * @compat: bitmask of compatible features
1829  * @ro: bitmask of features that force read-only mount
1830  * @incompat: bitmask of incompatible features
1831  *
1832  * Mark a given journal feature as present on the
1833  * superblock.  Returns true if the requested features could be set.
1834  *
1835  */
1836 
1837 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1838 			  unsigned long ro, unsigned long incompat)
1839 {
1840 #define INCOMPAT_FEATURE_ON(f) \
1841 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1842 #define COMPAT_FEATURE_ON(f) \
1843 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1844 	journal_superblock_t *sb;
1845 
1846 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1847 		return 1;
1848 
1849 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1850 		return 0;
1851 
1852 	/* If enabling v2 checksums, turn on v3 instead */
1853 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1854 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1855 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1856 	}
1857 
1858 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1859 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1860 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1861 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1862 
1863 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1864 		  compat, ro, incompat);
1865 
1866 	sb = journal->j_superblock;
1867 
1868 	/* If enabling v3 checksums, update superblock */
1869 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1870 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1871 		sb->s_feature_compat &=
1872 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1873 
1874 		/* Load the checksum driver */
1875 		if (journal->j_chksum_driver == NULL) {
1876 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1877 								      0, 0);
1878 			if (IS_ERR(journal->j_chksum_driver)) {
1879 				printk(KERN_ERR "JBD2: Cannot load crc32c "
1880 				       "driver.\n");
1881 				journal->j_chksum_driver = NULL;
1882 				return 0;
1883 			}
1884 
1885 			/* Precompute checksum seed for all metadata */
1886 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1887 							   sb->s_uuid,
1888 							   sizeof(sb->s_uuid));
1889 		}
1890 	}
1891 
1892 	/* If enabling v1 checksums, downgrade superblock */
1893 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1894 		sb->s_feature_incompat &=
1895 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1896 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1897 
1898 	sb->s_feature_compat    |= cpu_to_be32(compat);
1899 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1900 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1901 
1902 	return 1;
1903 #undef COMPAT_FEATURE_ON
1904 #undef INCOMPAT_FEATURE_ON
1905 }
1906 
1907 /*
1908  * jbd2_journal_clear_features () - Clear a given journal feature in the
1909  * 				    superblock
1910  * @journal: Journal to act on.
1911  * @compat: bitmask of compatible features
1912  * @ro: bitmask of features that force read-only mount
1913  * @incompat: bitmask of incompatible features
1914  *
1915  * Clear a given journal feature as present on the
1916  * superblock.
1917  */
1918 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1919 				unsigned long ro, unsigned long incompat)
1920 {
1921 	journal_superblock_t *sb;
1922 
1923 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1924 		  compat, ro, incompat);
1925 
1926 	sb = journal->j_superblock;
1927 
1928 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1929 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1930 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1931 }
1932 EXPORT_SYMBOL(jbd2_journal_clear_features);
1933 
1934 /**
1935  * int jbd2_journal_flush () - Flush journal
1936  * @journal: Journal to act on.
1937  *
1938  * Flush all data for a given journal to disk and empty the journal.
1939  * Filesystems can use this when remounting readonly to ensure that
1940  * recovery does not need to happen on remount.
1941  */
1942 
1943 int jbd2_journal_flush(journal_t *journal)
1944 {
1945 	int err = 0;
1946 	transaction_t *transaction = NULL;
1947 
1948 	write_lock(&journal->j_state_lock);
1949 
1950 	/* Force everything buffered to the log... */
1951 	if (journal->j_running_transaction) {
1952 		transaction = journal->j_running_transaction;
1953 		__jbd2_log_start_commit(journal, transaction->t_tid);
1954 	} else if (journal->j_committing_transaction)
1955 		transaction = journal->j_committing_transaction;
1956 
1957 	/* Wait for the log commit to complete... */
1958 	if (transaction) {
1959 		tid_t tid = transaction->t_tid;
1960 
1961 		write_unlock(&journal->j_state_lock);
1962 		jbd2_log_wait_commit(journal, tid);
1963 	} else {
1964 		write_unlock(&journal->j_state_lock);
1965 	}
1966 
1967 	/* ...and flush everything in the log out to disk. */
1968 	spin_lock(&journal->j_list_lock);
1969 	while (!err && journal->j_checkpoint_transactions != NULL) {
1970 		spin_unlock(&journal->j_list_lock);
1971 		mutex_lock_io(&journal->j_checkpoint_mutex);
1972 		err = jbd2_log_do_checkpoint(journal);
1973 		mutex_unlock(&journal->j_checkpoint_mutex);
1974 		spin_lock(&journal->j_list_lock);
1975 	}
1976 	spin_unlock(&journal->j_list_lock);
1977 
1978 	if (is_journal_aborted(journal))
1979 		return -EIO;
1980 
1981 	mutex_lock_io(&journal->j_checkpoint_mutex);
1982 	if (!err) {
1983 		err = jbd2_cleanup_journal_tail(journal);
1984 		if (err < 0) {
1985 			mutex_unlock(&journal->j_checkpoint_mutex);
1986 			goto out;
1987 		}
1988 		err = 0;
1989 	}
1990 
1991 	/* Finally, mark the journal as really needing no recovery.
1992 	 * This sets s_start==0 in the underlying superblock, which is
1993 	 * the magic code for a fully-recovered superblock.  Any future
1994 	 * commits of data to the journal will restore the current
1995 	 * s_start value. */
1996 	jbd2_mark_journal_empty(journal, REQ_FUA);
1997 	mutex_unlock(&journal->j_checkpoint_mutex);
1998 	write_lock(&journal->j_state_lock);
1999 	J_ASSERT(!journal->j_running_transaction);
2000 	J_ASSERT(!journal->j_committing_transaction);
2001 	J_ASSERT(!journal->j_checkpoint_transactions);
2002 	J_ASSERT(journal->j_head == journal->j_tail);
2003 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2004 	write_unlock(&journal->j_state_lock);
2005 out:
2006 	return err;
2007 }
2008 
2009 /**
2010  * int jbd2_journal_wipe() - Wipe journal contents
2011  * @journal: Journal to act on.
2012  * @write: flag (see below)
2013  *
2014  * Wipe out all of the contents of a journal, safely.  This will produce
2015  * a warning if the journal contains any valid recovery information.
2016  * Must be called between journal_init_*() and jbd2_journal_load().
2017  *
2018  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2019  * we merely suppress recovery.
2020  */
2021 
2022 int jbd2_journal_wipe(journal_t *journal, int write)
2023 {
2024 	int err = 0;
2025 
2026 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2027 
2028 	err = load_superblock(journal);
2029 	if (err)
2030 		return err;
2031 
2032 	if (!journal->j_tail)
2033 		goto no_recovery;
2034 
2035 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2036 		write ? "Clearing" : "Ignoring");
2037 
2038 	err = jbd2_journal_skip_recovery(journal);
2039 	if (write) {
2040 		/* Lock to make assertions happy... */
2041 		mutex_lock(&journal->j_checkpoint_mutex);
2042 		jbd2_mark_journal_empty(journal, REQ_FUA);
2043 		mutex_unlock(&journal->j_checkpoint_mutex);
2044 	}
2045 
2046  no_recovery:
2047 	return err;
2048 }
2049 
2050 /*
2051  * Journal abort has very specific semantics, which we describe
2052  * for journal abort.
2053  *
2054  * Two internal functions, which provide abort to the jbd layer
2055  * itself are here.
2056  */
2057 
2058 /*
2059  * Quick version for internal journal use (doesn't lock the journal).
2060  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2061  * and don't attempt to make any other journal updates.
2062  */
2063 void __jbd2_journal_abort_hard(journal_t *journal)
2064 {
2065 	transaction_t *transaction;
2066 
2067 	if (journal->j_flags & JBD2_ABORT)
2068 		return;
2069 
2070 	printk(KERN_ERR "Aborting journal on device %s.\n",
2071 	       journal->j_devname);
2072 
2073 	write_lock(&journal->j_state_lock);
2074 	journal->j_flags |= JBD2_ABORT;
2075 	transaction = journal->j_running_transaction;
2076 	if (transaction)
2077 		__jbd2_log_start_commit(journal, transaction->t_tid);
2078 	write_unlock(&journal->j_state_lock);
2079 }
2080 
2081 /* Soft abort: record the abort error status in the journal superblock,
2082  * but don't do any other IO. */
2083 static void __journal_abort_soft (journal_t *journal, int errno)
2084 {
2085 	if (journal->j_flags & JBD2_ABORT)
2086 		return;
2087 
2088 	if (!journal->j_errno)
2089 		journal->j_errno = errno;
2090 
2091 	__jbd2_journal_abort_hard(journal);
2092 
2093 	if (errno) {
2094 		jbd2_journal_update_sb_errno(journal);
2095 		write_lock(&journal->j_state_lock);
2096 		journal->j_flags |= JBD2_REC_ERR;
2097 		write_unlock(&journal->j_state_lock);
2098 	}
2099 }
2100 
2101 /**
2102  * void jbd2_journal_abort () - Shutdown the journal immediately.
2103  * @journal: the journal to shutdown.
2104  * @errno:   an error number to record in the journal indicating
2105  *           the reason for the shutdown.
2106  *
2107  * Perform a complete, immediate shutdown of the ENTIRE
2108  * journal (not of a single transaction).  This operation cannot be
2109  * undone without closing and reopening the journal.
2110  *
2111  * The jbd2_journal_abort function is intended to support higher level error
2112  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2113  * mode.
2114  *
2115  * Journal abort has very specific semantics.  Any existing dirty,
2116  * unjournaled buffers in the main filesystem will still be written to
2117  * disk by bdflush, but the journaling mechanism will be suspended
2118  * immediately and no further transaction commits will be honoured.
2119  *
2120  * Any dirty, journaled buffers will be written back to disk without
2121  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2122  * filesystem, but we _do_ attempt to leave as much data as possible
2123  * behind for fsck to use for cleanup.
2124  *
2125  * Any attempt to get a new transaction handle on a journal which is in
2126  * ABORT state will just result in an -EROFS error return.  A
2127  * jbd2_journal_stop on an existing handle will return -EIO if we have
2128  * entered abort state during the update.
2129  *
2130  * Recursive transactions are not disturbed by journal abort until the
2131  * final jbd2_journal_stop, which will receive the -EIO error.
2132  *
2133  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2134  * which will be recorded (if possible) in the journal superblock.  This
2135  * allows a client to record failure conditions in the middle of a
2136  * transaction without having to complete the transaction to record the
2137  * failure to disk.  ext3_error, for example, now uses this
2138  * functionality.
2139  *
2140  * Errors which originate from within the journaling layer will NOT
2141  * supply an errno; a null errno implies that absolutely no further
2142  * writes are done to the journal (unless there are any already in
2143  * progress).
2144  *
2145  */
2146 
2147 void jbd2_journal_abort(journal_t *journal, int errno)
2148 {
2149 	__journal_abort_soft(journal, errno);
2150 }
2151 
2152 /**
2153  * int jbd2_journal_errno () - returns the journal's error state.
2154  * @journal: journal to examine.
2155  *
2156  * This is the errno number set with jbd2_journal_abort(), the last
2157  * time the journal was mounted - if the journal was stopped
2158  * without calling abort this will be 0.
2159  *
2160  * If the journal has been aborted on this mount time -EROFS will
2161  * be returned.
2162  */
2163 int jbd2_journal_errno(journal_t *journal)
2164 {
2165 	int err;
2166 
2167 	read_lock(&journal->j_state_lock);
2168 	if (journal->j_flags & JBD2_ABORT)
2169 		err = -EROFS;
2170 	else
2171 		err = journal->j_errno;
2172 	read_unlock(&journal->j_state_lock);
2173 	return err;
2174 }
2175 
2176 /**
2177  * int jbd2_journal_clear_err () - clears the journal's error state
2178  * @journal: journal to act on.
2179  *
2180  * An error must be cleared or acked to take a FS out of readonly
2181  * mode.
2182  */
2183 int jbd2_journal_clear_err(journal_t *journal)
2184 {
2185 	int err = 0;
2186 
2187 	write_lock(&journal->j_state_lock);
2188 	if (journal->j_flags & JBD2_ABORT)
2189 		err = -EROFS;
2190 	else
2191 		journal->j_errno = 0;
2192 	write_unlock(&journal->j_state_lock);
2193 	return err;
2194 }
2195 
2196 /**
2197  * void jbd2_journal_ack_err() - Ack journal err.
2198  * @journal: journal to act on.
2199  *
2200  * An error must be cleared or acked to take a FS out of readonly
2201  * mode.
2202  */
2203 void jbd2_journal_ack_err(journal_t *journal)
2204 {
2205 	write_lock(&journal->j_state_lock);
2206 	if (journal->j_errno)
2207 		journal->j_flags |= JBD2_ACK_ERR;
2208 	write_unlock(&journal->j_state_lock);
2209 }
2210 
2211 int jbd2_journal_blocks_per_page(struct inode *inode)
2212 {
2213 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2214 }
2215 
2216 /*
2217  * helper functions to deal with 32 or 64bit block numbers.
2218  */
2219 size_t journal_tag_bytes(journal_t *journal)
2220 {
2221 	size_t sz;
2222 
2223 	if (jbd2_has_feature_csum3(journal))
2224 		return sizeof(journal_block_tag3_t);
2225 
2226 	sz = sizeof(journal_block_tag_t);
2227 
2228 	if (jbd2_has_feature_csum2(journal))
2229 		sz += sizeof(__u16);
2230 
2231 	if (jbd2_has_feature_64bit(journal))
2232 		return sz;
2233 	else
2234 		return sz - sizeof(__u32);
2235 }
2236 
2237 /*
2238  * JBD memory management
2239  *
2240  * These functions are used to allocate block-sized chunks of memory
2241  * used for making copies of buffer_head data.  Very often it will be
2242  * page-sized chunks of data, but sometimes it will be in
2243  * sub-page-size chunks.  (For example, 16k pages on Power systems
2244  * with a 4k block file system.)  For blocks smaller than a page, we
2245  * use a SLAB allocator.  There are slab caches for each block size,
2246  * which are allocated at mount time, if necessary, and we only free
2247  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2248  * this reason we don't need to a mutex to protect access to
2249  * jbd2_slab[] allocating or releasing memory; only in
2250  * jbd2_journal_create_slab().
2251  */
2252 #define JBD2_MAX_SLABS 8
2253 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2254 
2255 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2256 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2257 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2258 };
2259 
2260 
2261 static void jbd2_journal_destroy_slabs(void)
2262 {
2263 	int i;
2264 
2265 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2266 		if (jbd2_slab[i])
2267 			kmem_cache_destroy(jbd2_slab[i]);
2268 		jbd2_slab[i] = NULL;
2269 	}
2270 }
2271 
2272 static int jbd2_journal_create_slab(size_t size)
2273 {
2274 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2275 	int i = order_base_2(size) - 10;
2276 	size_t slab_size;
2277 
2278 	if (size == PAGE_SIZE)
2279 		return 0;
2280 
2281 	if (i >= JBD2_MAX_SLABS)
2282 		return -EINVAL;
2283 
2284 	if (unlikely(i < 0))
2285 		i = 0;
2286 	mutex_lock(&jbd2_slab_create_mutex);
2287 	if (jbd2_slab[i]) {
2288 		mutex_unlock(&jbd2_slab_create_mutex);
2289 		return 0;	/* Already created */
2290 	}
2291 
2292 	slab_size = 1 << (i+10);
2293 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2294 					 slab_size, 0, NULL);
2295 	mutex_unlock(&jbd2_slab_create_mutex);
2296 	if (!jbd2_slab[i]) {
2297 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2298 		return -ENOMEM;
2299 	}
2300 	return 0;
2301 }
2302 
2303 static struct kmem_cache *get_slab(size_t size)
2304 {
2305 	int i = order_base_2(size) - 10;
2306 
2307 	BUG_ON(i >= JBD2_MAX_SLABS);
2308 	if (unlikely(i < 0))
2309 		i = 0;
2310 	BUG_ON(jbd2_slab[i] == NULL);
2311 	return jbd2_slab[i];
2312 }
2313 
2314 void *jbd2_alloc(size_t size, gfp_t flags)
2315 {
2316 	void *ptr;
2317 
2318 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2319 
2320 	if (size < PAGE_SIZE)
2321 		ptr = kmem_cache_alloc(get_slab(size), flags);
2322 	else
2323 		ptr = (void *)__get_free_pages(flags, get_order(size));
2324 
2325 	/* Check alignment; SLUB has gotten this wrong in the past,
2326 	 * and this can lead to user data corruption! */
2327 	BUG_ON(((unsigned long) ptr) & (size-1));
2328 
2329 	return ptr;
2330 }
2331 
2332 void jbd2_free(void *ptr, size_t size)
2333 {
2334 	if (size < PAGE_SIZE)
2335 		kmem_cache_free(get_slab(size), ptr);
2336 	else
2337 		free_pages((unsigned long)ptr, get_order(size));
2338 };
2339 
2340 /*
2341  * Journal_head storage management
2342  */
2343 static struct kmem_cache *jbd2_journal_head_cache;
2344 #ifdef CONFIG_JBD2_DEBUG
2345 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2346 #endif
2347 
2348 static int jbd2_journal_init_journal_head_cache(void)
2349 {
2350 	int retval;
2351 
2352 	J_ASSERT(jbd2_journal_head_cache == NULL);
2353 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2354 				sizeof(struct journal_head),
2355 				0,		/* offset */
2356 				SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2357 				NULL);		/* ctor */
2358 	retval = 0;
2359 	if (!jbd2_journal_head_cache) {
2360 		retval = -ENOMEM;
2361 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2362 	}
2363 	return retval;
2364 }
2365 
2366 static void jbd2_journal_destroy_journal_head_cache(void)
2367 {
2368 	if (jbd2_journal_head_cache) {
2369 		kmem_cache_destroy(jbd2_journal_head_cache);
2370 		jbd2_journal_head_cache = NULL;
2371 	}
2372 }
2373 
2374 /*
2375  * journal_head splicing and dicing
2376  */
2377 static struct journal_head *journal_alloc_journal_head(void)
2378 {
2379 	struct journal_head *ret;
2380 
2381 #ifdef CONFIG_JBD2_DEBUG
2382 	atomic_inc(&nr_journal_heads);
2383 #endif
2384 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2385 	if (!ret) {
2386 		jbd_debug(1, "out of memory for journal_head\n");
2387 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2388 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2389 				GFP_NOFS | __GFP_NOFAIL);
2390 	}
2391 	return ret;
2392 }
2393 
2394 static void journal_free_journal_head(struct journal_head *jh)
2395 {
2396 #ifdef CONFIG_JBD2_DEBUG
2397 	atomic_dec(&nr_journal_heads);
2398 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2399 #endif
2400 	kmem_cache_free(jbd2_journal_head_cache, jh);
2401 }
2402 
2403 /*
2404  * A journal_head is attached to a buffer_head whenever JBD has an
2405  * interest in the buffer.
2406  *
2407  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2408  * is set.  This bit is tested in core kernel code where we need to take
2409  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2410  * there.
2411  *
2412  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2413  *
2414  * When a buffer has its BH_JBD bit set it is immune from being released by
2415  * core kernel code, mainly via ->b_count.
2416  *
2417  * A journal_head is detached from its buffer_head when the journal_head's
2418  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2419  * transaction (b_cp_transaction) hold their references to b_jcount.
2420  *
2421  * Various places in the kernel want to attach a journal_head to a buffer_head
2422  * _before_ attaching the journal_head to a transaction.  To protect the
2423  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2424  * journal_head's b_jcount refcount by one.  The caller must call
2425  * jbd2_journal_put_journal_head() to undo this.
2426  *
2427  * So the typical usage would be:
2428  *
2429  *	(Attach a journal_head if needed.  Increments b_jcount)
2430  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2431  *	...
2432  *      (Get another reference for transaction)
2433  *	jbd2_journal_grab_journal_head(bh);
2434  *	jh->b_transaction = xxx;
2435  *	(Put original reference)
2436  *	jbd2_journal_put_journal_head(jh);
2437  */
2438 
2439 /*
2440  * Give a buffer_head a journal_head.
2441  *
2442  * May sleep.
2443  */
2444 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2445 {
2446 	struct journal_head *jh;
2447 	struct journal_head *new_jh = NULL;
2448 
2449 repeat:
2450 	if (!buffer_jbd(bh))
2451 		new_jh = journal_alloc_journal_head();
2452 
2453 	jbd_lock_bh_journal_head(bh);
2454 	if (buffer_jbd(bh)) {
2455 		jh = bh2jh(bh);
2456 	} else {
2457 		J_ASSERT_BH(bh,
2458 			(atomic_read(&bh->b_count) > 0) ||
2459 			(bh->b_page && bh->b_page->mapping));
2460 
2461 		if (!new_jh) {
2462 			jbd_unlock_bh_journal_head(bh);
2463 			goto repeat;
2464 		}
2465 
2466 		jh = new_jh;
2467 		new_jh = NULL;		/* We consumed it */
2468 		set_buffer_jbd(bh);
2469 		bh->b_private = jh;
2470 		jh->b_bh = bh;
2471 		get_bh(bh);
2472 		BUFFER_TRACE(bh, "added journal_head");
2473 	}
2474 	jh->b_jcount++;
2475 	jbd_unlock_bh_journal_head(bh);
2476 	if (new_jh)
2477 		journal_free_journal_head(new_jh);
2478 	return bh->b_private;
2479 }
2480 
2481 /*
2482  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2483  * having a journal_head, return NULL
2484  */
2485 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2486 {
2487 	struct journal_head *jh = NULL;
2488 
2489 	jbd_lock_bh_journal_head(bh);
2490 	if (buffer_jbd(bh)) {
2491 		jh = bh2jh(bh);
2492 		jh->b_jcount++;
2493 	}
2494 	jbd_unlock_bh_journal_head(bh);
2495 	return jh;
2496 }
2497 
2498 static void __journal_remove_journal_head(struct buffer_head *bh)
2499 {
2500 	struct journal_head *jh = bh2jh(bh);
2501 
2502 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2503 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2504 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2505 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2506 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2507 	J_ASSERT_BH(bh, buffer_jbd(bh));
2508 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2509 	BUFFER_TRACE(bh, "remove journal_head");
2510 	if (jh->b_frozen_data) {
2511 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2512 		jbd2_free(jh->b_frozen_data, bh->b_size);
2513 	}
2514 	if (jh->b_committed_data) {
2515 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2516 		jbd2_free(jh->b_committed_data, bh->b_size);
2517 	}
2518 	bh->b_private = NULL;
2519 	jh->b_bh = NULL;	/* debug, really */
2520 	clear_buffer_jbd(bh);
2521 	journal_free_journal_head(jh);
2522 }
2523 
2524 /*
2525  * Drop a reference on the passed journal_head.  If it fell to zero then
2526  * release the journal_head from the buffer_head.
2527  */
2528 void jbd2_journal_put_journal_head(struct journal_head *jh)
2529 {
2530 	struct buffer_head *bh = jh2bh(jh);
2531 
2532 	jbd_lock_bh_journal_head(bh);
2533 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2534 	--jh->b_jcount;
2535 	if (!jh->b_jcount) {
2536 		__journal_remove_journal_head(bh);
2537 		jbd_unlock_bh_journal_head(bh);
2538 		__brelse(bh);
2539 	} else
2540 		jbd_unlock_bh_journal_head(bh);
2541 }
2542 
2543 /*
2544  * Initialize jbd inode head
2545  */
2546 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2547 {
2548 	jinode->i_transaction = NULL;
2549 	jinode->i_next_transaction = NULL;
2550 	jinode->i_vfs_inode = inode;
2551 	jinode->i_flags = 0;
2552 	INIT_LIST_HEAD(&jinode->i_list);
2553 }
2554 
2555 /*
2556  * Function to be called before we start removing inode from memory (i.e.,
2557  * clear_inode() is a fine place to be called from). It removes inode from
2558  * transaction's lists.
2559  */
2560 void jbd2_journal_release_jbd_inode(journal_t *journal,
2561 				    struct jbd2_inode *jinode)
2562 {
2563 	if (!journal)
2564 		return;
2565 restart:
2566 	spin_lock(&journal->j_list_lock);
2567 	/* Is commit writing out inode - we have to wait */
2568 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2569 		wait_queue_head_t *wq;
2570 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2571 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2572 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2573 		spin_unlock(&journal->j_list_lock);
2574 		schedule();
2575 		finish_wait(wq, &wait.wait);
2576 		goto restart;
2577 	}
2578 
2579 	if (jinode->i_transaction) {
2580 		list_del(&jinode->i_list);
2581 		jinode->i_transaction = NULL;
2582 	}
2583 	spin_unlock(&journal->j_list_lock);
2584 }
2585 
2586 
2587 #ifdef CONFIG_PROC_FS
2588 
2589 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2590 
2591 static void __init jbd2_create_jbd_stats_proc_entry(void)
2592 {
2593 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2594 }
2595 
2596 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2597 {
2598 	if (proc_jbd2_stats)
2599 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2600 }
2601 
2602 #else
2603 
2604 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2605 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2606 
2607 #endif
2608 
2609 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2610 
2611 static int __init jbd2_journal_init_handle_cache(void)
2612 {
2613 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2614 	if (jbd2_handle_cache == NULL) {
2615 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2616 		return -ENOMEM;
2617 	}
2618 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2619 	if (jbd2_inode_cache == NULL) {
2620 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2621 		kmem_cache_destroy(jbd2_handle_cache);
2622 		return -ENOMEM;
2623 	}
2624 	return 0;
2625 }
2626 
2627 static void jbd2_journal_destroy_handle_cache(void)
2628 {
2629 	if (jbd2_handle_cache)
2630 		kmem_cache_destroy(jbd2_handle_cache);
2631 	if (jbd2_inode_cache)
2632 		kmem_cache_destroy(jbd2_inode_cache);
2633 
2634 }
2635 
2636 /*
2637  * Module startup and shutdown
2638  */
2639 
2640 static int __init journal_init_caches(void)
2641 {
2642 	int ret;
2643 
2644 	ret = jbd2_journal_init_revoke_caches();
2645 	if (ret == 0)
2646 		ret = jbd2_journal_init_journal_head_cache();
2647 	if (ret == 0)
2648 		ret = jbd2_journal_init_handle_cache();
2649 	if (ret == 0)
2650 		ret = jbd2_journal_init_transaction_cache();
2651 	return ret;
2652 }
2653 
2654 static void jbd2_journal_destroy_caches(void)
2655 {
2656 	jbd2_journal_destroy_revoke_caches();
2657 	jbd2_journal_destroy_journal_head_cache();
2658 	jbd2_journal_destroy_handle_cache();
2659 	jbd2_journal_destroy_transaction_cache();
2660 	jbd2_journal_destroy_slabs();
2661 }
2662 
2663 static int __init journal_init(void)
2664 {
2665 	int ret;
2666 
2667 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2668 
2669 	ret = journal_init_caches();
2670 	if (ret == 0) {
2671 		jbd2_create_jbd_stats_proc_entry();
2672 	} else {
2673 		jbd2_journal_destroy_caches();
2674 	}
2675 	return ret;
2676 }
2677 
2678 static void __exit journal_exit(void)
2679 {
2680 #ifdef CONFIG_JBD2_DEBUG
2681 	int n = atomic_read(&nr_journal_heads);
2682 	if (n)
2683 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2684 #endif
2685 	jbd2_remove_jbd_stats_proc_entry();
2686 	jbd2_journal_destroy_caches();
2687 }
2688 
2689 MODULE_LICENSE("GPL");
2690 module_init(journal_init);
2691 module_exit(journal_exit);
2692 
2693