xref: /openbmc/linux/fs/jbd2/journal.c (revision c225aa57ff4ffe715df4692676b77c815a337236)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 
42 #include <asm/uaccess.h>
43 #include <asm/page.h>
44 
45 EXPORT_SYMBOL(jbd2_journal_start);
46 EXPORT_SYMBOL(jbd2_journal_restart);
47 EXPORT_SYMBOL(jbd2_journal_extend);
48 EXPORT_SYMBOL(jbd2_journal_stop);
49 EXPORT_SYMBOL(jbd2_journal_lock_updates);
50 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
51 EXPORT_SYMBOL(jbd2_journal_get_write_access);
52 EXPORT_SYMBOL(jbd2_journal_get_create_access);
53 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
54 EXPORT_SYMBOL(jbd2_journal_set_triggers);
55 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
56 EXPORT_SYMBOL(jbd2_journal_release_buffer);
57 EXPORT_SYMBOL(jbd2_journal_forget);
58 #if 0
59 EXPORT_SYMBOL(journal_sync_buffer);
60 #endif
61 EXPORT_SYMBOL(jbd2_journal_flush);
62 EXPORT_SYMBOL(jbd2_journal_revoke);
63 
64 EXPORT_SYMBOL(jbd2_journal_init_dev);
65 EXPORT_SYMBOL(jbd2_journal_init_inode);
66 EXPORT_SYMBOL(jbd2_journal_update_format);
67 EXPORT_SYMBOL(jbd2_journal_check_used_features);
68 EXPORT_SYMBOL(jbd2_journal_check_available_features);
69 EXPORT_SYMBOL(jbd2_journal_set_features);
70 EXPORT_SYMBOL(jbd2_journal_load);
71 EXPORT_SYMBOL(jbd2_journal_destroy);
72 EXPORT_SYMBOL(jbd2_journal_abort);
73 EXPORT_SYMBOL(jbd2_journal_errno);
74 EXPORT_SYMBOL(jbd2_journal_ack_err);
75 EXPORT_SYMBOL(jbd2_journal_clear_err);
76 EXPORT_SYMBOL(jbd2_log_wait_commit);
77 EXPORT_SYMBOL(jbd2_journal_start_commit);
78 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
79 EXPORT_SYMBOL(jbd2_journal_wipe);
80 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
81 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
82 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
83 EXPORT_SYMBOL(jbd2_journal_force_commit);
84 EXPORT_SYMBOL(jbd2_journal_file_inode);
85 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
86 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
87 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
88 
89 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
90 static void __journal_abort_soft (journal_t *journal, int errno);
91 
92 /*
93  * Helper function used to manage commit timeouts
94  */
95 
96 static void commit_timeout(unsigned long __data)
97 {
98 	struct task_struct * p = (struct task_struct *) __data;
99 
100 	wake_up_process(p);
101 }
102 
103 /*
104  * kjournald2: The main thread function used to manage a logging device
105  * journal.
106  *
107  * This kernel thread is responsible for two things:
108  *
109  * 1) COMMIT:  Every so often we need to commit the current state of the
110  *    filesystem to disk.  The journal thread is responsible for writing
111  *    all of the metadata buffers to disk.
112  *
113  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
114  *    of the data in that part of the log has been rewritten elsewhere on
115  *    the disk.  Flushing these old buffers to reclaim space in the log is
116  *    known as checkpointing, and this thread is responsible for that job.
117  */
118 
119 static int kjournald2(void *arg)
120 {
121 	journal_t *journal = arg;
122 	transaction_t *transaction;
123 
124 	/*
125 	 * Set up an interval timer which can be used to trigger a commit wakeup
126 	 * after the commit interval expires
127 	 */
128 	setup_timer(&journal->j_commit_timer, commit_timeout,
129 			(unsigned long)current);
130 
131 	/* Record that the journal thread is running */
132 	journal->j_task = current;
133 	wake_up(&journal->j_wait_done_commit);
134 
135 	printk(KERN_INFO "kjournald2 starting: pid %d, dev %s, "
136 	       "commit interval %ld seconds\n", current->pid,
137 	       journal->j_devname, journal->j_commit_interval / HZ);
138 
139 	/*
140 	 * And now, wait forever for commit wakeup events.
141 	 */
142 	spin_lock(&journal->j_state_lock);
143 
144 loop:
145 	if (journal->j_flags & JBD2_UNMOUNT)
146 		goto end_loop;
147 
148 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
149 		journal->j_commit_sequence, journal->j_commit_request);
150 
151 	if (journal->j_commit_sequence != journal->j_commit_request) {
152 		jbd_debug(1, "OK, requests differ\n");
153 		spin_unlock(&journal->j_state_lock);
154 		del_timer_sync(&journal->j_commit_timer);
155 		jbd2_journal_commit_transaction(journal);
156 		spin_lock(&journal->j_state_lock);
157 		goto loop;
158 	}
159 
160 	wake_up(&journal->j_wait_done_commit);
161 	if (freezing(current)) {
162 		/*
163 		 * The simpler the better. Flushing journal isn't a
164 		 * good idea, because that depends on threads that may
165 		 * be already stopped.
166 		 */
167 		jbd_debug(1, "Now suspending kjournald2\n");
168 		spin_unlock(&journal->j_state_lock);
169 		refrigerator();
170 		spin_lock(&journal->j_state_lock);
171 	} else {
172 		/*
173 		 * We assume on resume that commits are already there,
174 		 * so we don't sleep
175 		 */
176 		DEFINE_WAIT(wait);
177 		int should_sleep = 1;
178 
179 		prepare_to_wait(&journal->j_wait_commit, &wait,
180 				TASK_INTERRUPTIBLE);
181 		if (journal->j_commit_sequence != journal->j_commit_request)
182 			should_sleep = 0;
183 		transaction = journal->j_running_transaction;
184 		if (transaction && time_after_eq(jiffies,
185 						transaction->t_expires))
186 			should_sleep = 0;
187 		if (journal->j_flags & JBD2_UNMOUNT)
188 			should_sleep = 0;
189 		if (should_sleep) {
190 			spin_unlock(&journal->j_state_lock);
191 			schedule();
192 			spin_lock(&journal->j_state_lock);
193 		}
194 		finish_wait(&journal->j_wait_commit, &wait);
195 	}
196 
197 	jbd_debug(1, "kjournald2 wakes\n");
198 
199 	/*
200 	 * Were we woken up by a commit wakeup event?
201 	 */
202 	transaction = journal->j_running_transaction;
203 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
204 		journal->j_commit_request = transaction->t_tid;
205 		jbd_debug(1, "woke because of timeout\n");
206 	}
207 	goto loop;
208 
209 end_loop:
210 	spin_unlock(&journal->j_state_lock);
211 	del_timer_sync(&journal->j_commit_timer);
212 	journal->j_task = NULL;
213 	wake_up(&journal->j_wait_done_commit);
214 	jbd_debug(1, "Journal thread exiting.\n");
215 	return 0;
216 }
217 
218 static int jbd2_journal_start_thread(journal_t *journal)
219 {
220 	struct task_struct *t;
221 
222 	t = kthread_run(kjournald2, journal, "kjournald2");
223 	if (IS_ERR(t))
224 		return PTR_ERR(t);
225 
226 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
227 	return 0;
228 }
229 
230 static void journal_kill_thread(journal_t *journal)
231 {
232 	spin_lock(&journal->j_state_lock);
233 	journal->j_flags |= JBD2_UNMOUNT;
234 
235 	while (journal->j_task) {
236 		wake_up(&journal->j_wait_commit);
237 		spin_unlock(&journal->j_state_lock);
238 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
239 		spin_lock(&journal->j_state_lock);
240 	}
241 	spin_unlock(&journal->j_state_lock);
242 }
243 
244 /*
245  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
246  *
247  * Writes a metadata buffer to a given disk block.  The actual IO is not
248  * performed but a new buffer_head is constructed which labels the data
249  * to be written with the correct destination disk block.
250  *
251  * Any magic-number escaping which needs to be done will cause a
252  * copy-out here.  If the buffer happens to start with the
253  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
254  * magic number is only written to the log for descripter blocks.  In
255  * this case, we copy the data and replace the first word with 0, and we
256  * return a result code which indicates that this buffer needs to be
257  * marked as an escaped buffer in the corresponding log descriptor
258  * block.  The missing word can then be restored when the block is read
259  * during recovery.
260  *
261  * If the source buffer has already been modified by a new transaction
262  * since we took the last commit snapshot, we use the frozen copy of
263  * that data for IO.  If we end up using the existing buffer_head's data
264  * for the write, then we *have* to lock the buffer to prevent anyone
265  * else from using and possibly modifying it while the IO is in
266  * progress.
267  *
268  * The function returns a pointer to the buffer_heads to be used for IO.
269  *
270  * We assume that the journal has already been locked in this function.
271  *
272  * Return value:
273  *  <0: Error
274  * >=0: Finished OK
275  *
276  * On success:
277  * Bit 0 set == escape performed on the data
278  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
279  */
280 
281 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
282 				  struct journal_head  *jh_in,
283 				  struct journal_head **jh_out,
284 				  unsigned long long blocknr)
285 {
286 	int need_copy_out = 0;
287 	int done_copy_out = 0;
288 	int do_escape = 0;
289 	char *mapped_data;
290 	struct buffer_head *new_bh;
291 	struct journal_head *new_jh;
292 	struct page *new_page;
293 	unsigned int new_offset;
294 	struct buffer_head *bh_in = jh2bh(jh_in);
295 	struct jbd2_buffer_trigger_type *triggers;
296 
297 	/*
298 	 * The buffer really shouldn't be locked: only the current committing
299 	 * transaction is allowed to write it, so nobody else is allowed
300 	 * to do any IO.
301 	 *
302 	 * akpm: except if we're journalling data, and write() output is
303 	 * also part of a shared mapping, and another thread has
304 	 * decided to launch a writepage() against this buffer.
305 	 */
306 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
307 
308 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
309 
310 	/*
311 	 * If a new transaction has already done a buffer copy-out, then
312 	 * we use that version of the data for the commit.
313 	 */
314 	jbd_lock_bh_state(bh_in);
315 repeat:
316 	if (jh_in->b_frozen_data) {
317 		done_copy_out = 1;
318 		new_page = virt_to_page(jh_in->b_frozen_data);
319 		new_offset = offset_in_page(jh_in->b_frozen_data);
320 		triggers = jh_in->b_frozen_triggers;
321 	} else {
322 		new_page = jh2bh(jh_in)->b_page;
323 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
324 		triggers = jh_in->b_triggers;
325 	}
326 
327 	mapped_data = kmap_atomic(new_page, KM_USER0);
328 	/*
329 	 * Fire any commit trigger.  Do this before checking for escaping,
330 	 * as the trigger may modify the magic offset.  If a copy-out
331 	 * happens afterwards, it will have the correct data in the buffer.
332 	 */
333 	jbd2_buffer_commit_trigger(jh_in, mapped_data + new_offset,
334 				   triggers);
335 
336 	/*
337 	 * Check for escaping
338 	 */
339 	if (*((__be32 *)(mapped_data + new_offset)) ==
340 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
341 		need_copy_out = 1;
342 		do_escape = 1;
343 	}
344 	kunmap_atomic(mapped_data, KM_USER0);
345 
346 	/*
347 	 * Do we need to do a data copy?
348 	 */
349 	if (need_copy_out && !done_copy_out) {
350 		char *tmp;
351 
352 		jbd_unlock_bh_state(bh_in);
353 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
354 		jbd_lock_bh_state(bh_in);
355 		if (jh_in->b_frozen_data) {
356 			jbd2_free(tmp, bh_in->b_size);
357 			goto repeat;
358 		}
359 
360 		jh_in->b_frozen_data = tmp;
361 		mapped_data = kmap_atomic(new_page, KM_USER0);
362 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
363 		kunmap_atomic(mapped_data, KM_USER0);
364 
365 		new_page = virt_to_page(tmp);
366 		new_offset = offset_in_page(tmp);
367 		done_copy_out = 1;
368 
369 		/*
370 		 * This isn't strictly necessary, as we're using frozen
371 		 * data for the escaping, but it keeps consistency with
372 		 * b_frozen_data usage.
373 		 */
374 		jh_in->b_frozen_triggers = jh_in->b_triggers;
375 	}
376 
377 	/*
378 	 * Did we need to do an escaping?  Now we've done all the
379 	 * copying, we can finally do so.
380 	 */
381 	if (do_escape) {
382 		mapped_data = kmap_atomic(new_page, KM_USER0);
383 		*((unsigned int *)(mapped_data + new_offset)) = 0;
384 		kunmap_atomic(mapped_data, KM_USER0);
385 	}
386 
387 	/* keep subsequent assertions sane */
388 	new_bh->b_state = 0;
389 	init_buffer(new_bh, NULL, NULL);
390 	atomic_set(&new_bh->b_count, 1);
391 	jbd_unlock_bh_state(bh_in);
392 
393 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
394 
395 	set_bh_page(new_bh, new_page, new_offset);
396 	new_jh->b_transaction = NULL;
397 	new_bh->b_size = jh2bh(jh_in)->b_size;
398 	new_bh->b_bdev = transaction->t_journal->j_dev;
399 	new_bh->b_blocknr = blocknr;
400 	set_buffer_mapped(new_bh);
401 	set_buffer_dirty(new_bh);
402 
403 	*jh_out = new_jh;
404 
405 	/*
406 	 * The to-be-written buffer needs to get moved to the io queue,
407 	 * and the original buffer whose contents we are shadowing or
408 	 * copying is moved to the transaction's shadow queue.
409 	 */
410 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
411 	jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
412 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
413 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
414 
415 	return do_escape | (done_copy_out << 1);
416 }
417 
418 /*
419  * Allocation code for the journal file.  Manage the space left in the
420  * journal, so that we can begin checkpointing when appropriate.
421  */
422 
423 /*
424  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
425  *
426  * Called with the journal already locked.
427  *
428  * Called under j_state_lock
429  */
430 
431 int __jbd2_log_space_left(journal_t *journal)
432 {
433 	int left = journal->j_free;
434 
435 	assert_spin_locked(&journal->j_state_lock);
436 
437 	/*
438 	 * Be pessimistic here about the number of those free blocks which
439 	 * might be required for log descriptor control blocks.
440 	 */
441 
442 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
443 
444 	left -= MIN_LOG_RESERVED_BLOCKS;
445 
446 	if (left <= 0)
447 		return 0;
448 	left -= (left >> 3);
449 	return left;
450 }
451 
452 /*
453  * Called under j_state_lock.  Returns true if a transaction was started.
454  */
455 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
456 {
457 	/*
458 	 * Are we already doing a recent enough commit?
459 	 */
460 	if (!tid_geq(journal->j_commit_request, target)) {
461 		/*
462 		 * We want a new commit: OK, mark the request and wakup the
463 		 * commit thread.  We do _not_ do the commit ourselves.
464 		 */
465 
466 		journal->j_commit_request = target;
467 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
468 			  journal->j_commit_request,
469 			  journal->j_commit_sequence);
470 		wake_up(&journal->j_wait_commit);
471 		return 1;
472 	}
473 	return 0;
474 }
475 
476 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
477 {
478 	int ret;
479 
480 	spin_lock(&journal->j_state_lock);
481 	ret = __jbd2_log_start_commit(journal, tid);
482 	spin_unlock(&journal->j_state_lock);
483 	return ret;
484 }
485 
486 /*
487  * Force and wait upon a commit if the calling process is not within
488  * transaction.  This is used for forcing out undo-protected data which contains
489  * bitmaps, when the fs is running out of space.
490  *
491  * We can only force the running transaction if we don't have an active handle;
492  * otherwise, we will deadlock.
493  *
494  * Returns true if a transaction was started.
495  */
496 int jbd2_journal_force_commit_nested(journal_t *journal)
497 {
498 	transaction_t *transaction = NULL;
499 	tid_t tid;
500 
501 	spin_lock(&journal->j_state_lock);
502 	if (journal->j_running_transaction && !current->journal_info) {
503 		transaction = journal->j_running_transaction;
504 		__jbd2_log_start_commit(journal, transaction->t_tid);
505 	} else if (journal->j_committing_transaction)
506 		transaction = journal->j_committing_transaction;
507 
508 	if (!transaction) {
509 		spin_unlock(&journal->j_state_lock);
510 		return 0;	/* Nothing to retry */
511 	}
512 
513 	tid = transaction->t_tid;
514 	spin_unlock(&journal->j_state_lock);
515 	jbd2_log_wait_commit(journal, tid);
516 	return 1;
517 }
518 
519 /*
520  * Start a commit of the current running transaction (if any).  Returns true
521  * if a transaction was started, and fills its tid in at *ptid
522  */
523 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
524 {
525 	int ret = 0;
526 
527 	spin_lock(&journal->j_state_lock);
528 	if (journal->j_running_transaction) {
529 		tid_t tid = journal->j_running_transaction->t_tid;
530 
531 		ret = __jbd2_log_start_commit(journal, tid);
532 		if (ret && ptid)
533 			*ptid = tid;
534 	} else if (journal->j_committing_transaction && ptid) {
535 		/*
536 		 * If ext3_write_super() recently started a commit, then we
537 		 * have to wait for completion of that transaction
538 		 */
539 		*ptid = journal->j_committing_transaction->t_tid;
540 		ret = 1;
541 	}
542 	spin_unlock(&journal->j_state_lock);
543 	return ret;
544 }
545 
546 /*
547  * Wait for a specified commit to complete.
548  * The caller may not hold the journal lock.
549  */
550 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
551 {
552 	int err = 0;
553 
554 #ifdef CONFIG_JBD2_DEBUG
555 	spin_lock(&journal->j_state_lock);
556 	if (!tid_geq(journal->j_commit_request, tid)) {
557 		printk(KERN_EMERG
558 		       "%s: error: j_commit_request=%d, tid=%d\n",
559 		       __func__, journal->j_commit_request, tid);
560 	}
561 	spin_unlock(&journal->j_state_lock);
562 #endif
563 	spin_lock(&journal->j_state_lock);
564 	while (tid_gt(tid, journal->j_commit_sequence)) {
565 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
566 				  tid, journal->j_commit_sequence);
567 		wake_up(&journal->j_wait_commit);
568 		spin_unlock(&journal->j_state_lock);
569 		wait_event(journal->j_wait_done_commit,
570 				!tid_gt(tid, journal->j_commit_sequence));
571 		spin_lock(&journal->j_state_lock);
572 	}
573 	spin_unlock(&journal->j_state_lock);
574 
575 	if (unlikely(is_journal_aborted(journal))) {
576 		printk(KERN_EMERG "journal commit I/O error\n");
577 		err = -EIO;
578 	}
579 	return err;
580 }
581 
582 /*
583  * Log buffer allocation routines:
584  */
585 
586 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
587 {
588 	unsigned long blocknr;
589 
590 	spin_lock(&journal->j_state_lock);
591 	J_ASSERT(journal->j_free > 1);
592 
593 	blocknr = journal->j_head;
594 	journal->j_head++;
595 	journal->j_free--;
596 	if (journal->j_head == journal->j_last)
597 		journal->j_head = journal->j_first;
598 	spin_unlock(&journal->j_state_lock);
599 	return jbd2_journal_bmap(journal, blocknr, retp);
600 }
601 
602 /*
603  * Conversion of logical to physical block numbers for the journal
604  *
605  * On external journals the journal blocks are identity-mapped, so
606  * this is a no-op.  If needed, we can use j_blk_offset - everything is
607  * ready.
608  */
609 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
610 		 unsigned long long *retp)
611 {
612 	int err = 0;
613 	unsigned long long ret;
614 
615 	if (journal->j_inode) {
616 		ret = bmap(journal->j_inode, blocknr);
617 		if (ret)
618 			*retp = ret;
619 		else {
620 			printk(KERN_ALERT "%s: journal block not found "
621 					"at offset %lu on %s\n",
622 			       __func__, blocknr, journal->j_devname);
623 			err = -EIO;
624 			__journal_abort_soft(journal, err);
625 		}
626 	} else {
627 		*retp = blocknr; /* +journal->j_blk_offset */
628 	}
629 	return err;
630 }
631 
632 /*
633  * We play buffer_head aliasing tricks to write data/metadata blocks to
634  * the journal without copying their contents, but for journal
635  * descriptor blocks we do need to generate bona fide buffers.
636  *
637  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
638  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
639  * But we don't bother doing that, so there will be coherency problems with
640  * mmaps of blockdevs which hold live JBD-controlled filesystems.
641  */
642 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
643 {
644 	struct buffer_head *bh;
645 	unsigned long long blocknr;
646 	int err;
647 
648 	err = jbd2_journal_next_log_block(journal, &blocknr);
649 
650 	if (err)
651 		return NULL;
652 
653 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
654 	if (!bh)
655 		return NULL;
656 	lock_buffer(bh);
657 	memset(bh->b_data, 0, journal->j_blocksize);
658 	set_buffer_uptodate(bh);
659 	unlock_buffer(bh);
660 	BUFFER_TRACE(bh, "return this buffer");
661 	return jbd2_journal_add_journal_head(bh);
662 }
663 
664 struct jbd2_stats_proc_session {
665 	journal_t *journal;
666 	struct transaction_stats_s *stats;
667 	int start;
668 	int max;
669 };
670 
671 static void *jbd2_history_skip_empty(struct jbd2_stats_proc_session *s,
672 					struct transaction_stats_s *ts,
673 					int first)
674 {
675 	if (ts == s->stats + s->max)
676 		ts = s->stats;
677 	if (!first && ts == s->stats + s->start)
678 		return NULL;
679 	while (ts->ts_type == 0) {
680 		ts++;
681 		if (ts == s->stats + s->max)
682 			ts = s->stats;
683 		if (ts == s->stats + s->start)
684 			return NULL;
685 	}
686 	return ts;
687 
688 }
689 
690 static void *jbd2_seq_history_start(struct seq_file *seq, loff_t *pos)
691 {
692 	struct jbd2_stats_proc_session *s = seq->private;
693 	struct transaction_stats_s *ts;
694 	int l = *pos;
695 
696 	if (l == 0)
697 		return SEQ_START_TOKEN;
698 	ts = jbd2_history_skip_empty(s, s->stats + s->start, 1);
699 	if (!ts)
700 		return NULL;
701 	l--;
702 	while (l) {
703 		ts = jbd2_history_skip_empty(s, ++ts, 0);
704 		if (!ts)
705 			break;
706 		l--;
707 	}
708 	return ts;
709 }
710 
711 static void *jbd2_seq_history_next(struct seq_file *seq, void *v, loff_t *pos)
712 {
713 	struct jbd2_stats_proc_session *s = seq->private;
714 	struct transaction_stats_s *ts = v;
715 
716 	++*pos;
717 	if (v == SEQ_START_TOKEN)
718 		return jbd2_history_skip_empty(s, s->stats + s->start, 1);
719 	else
720 		return jbd2_history_skip_empty(s, ++ts, 0);
721 }
722 
723 static int jbd2_seq_history_show(struct seq_file *seq, void *v)
724 {
725 	struct transaction_stats_s *ts = v;
726 	if (v == SEQ_START_TOKEN) {
727 		seq_printf(seq, "%-4s %-5s %-5s %-5s %-5s %-5s %-5s %-6s %-5s "
728 				"%-5s %-5s %-5s %-5s %-5s\n", "R/C", "tid",
729 				"wait", "run", "lock", "flush", "log", "hndls",
730 				"block", "inlog", "ctime", "write", "drop",
731 				"close");
732 		return 0;
733 	}
734 	if (ts->ts_type == JBD2_STATS_RUN)
735 		seq_printf(seq, "%-4s %-5lu %-5u %-5u %-5u %-5u %-5u "
736 				"%-6lu %-5lu %-5lu\n", "R", ts->ts_tid,
737 				jiffies_to_msecs(ts->u.run.rs_wait),
738 				jiffies_to_msecs(ts->u.run.rs_running),
739 				jiffies_to_msecs(ts->u.run.rs_locked),
740 				jiffies_to_msecs(ts->u.run.rs_flushing),
741 				jiffies_to_msecs(ts->u.run.rs_logging),
742 				ts->u.run.rs_handle_count,
743 				ts->u.run.rs_blocks,
744 				ts->u.run.rs_blocks_logged);
745 	else if (ts->ts_type == JBD2_STATS_CHECKPOINT)
746 		seq_printf(seq, "%-4s %-5lu %48s %-5u %-5lu %-5lu %-5lu\n",
747 				"C", ts->ts_tid, " ",
748 				jiffies_to_msecs(ts->u.chp.cs_chp_time),
749 				ts->u.chp.cs_written, ts->u.chp.cs_dropped,
750 				ts->u.chp.cs_forced_to_close);
751 	else
752 		J_ASSERT(0);
753 	return 0;
754 }
755 
756 static void jbd2_seq_history_stop(struct seq_file *seq, void *v)
757 {
758 }
759 
760 static struct seq_operations jbd2_seq_history_ops = {
761 	.start  = jbd2_seq_history_start,
762 	.next   = jbd2_seq_history_next,
763 	.stop   = jbd2_seq_history_stop,
764 	.show   = jbd2_seq_history_show,
765 };
766 
767 static int jbd2_seq_history_open(struct inode *inode, struct file *file)
768 {
769 	journal_t *journal = PDE(inode)->data;
770 	struct jbd2_stats_proc_session *s;
771 	int rc, size;
772 
773 	s = kmalloc(sizeof(*s), GFP_KERNEL);
774 	if (s == NULL)
775 		return -ENOMEM;
776 	size = sizeof(struct transaction_stats_s) * journal->j_history_max;
777 	s->stats = kmalloc(size, GFP_KERNEL);
778 	if (s->stats == NULL) {
779 		kfree(s);
780 		return -ENOMEM;
781 	}
782 	spin_lock(&journal->j_history_lock);
783 	memcpy(s->stats, journal->j_history, size);
784 	s->max = journal->j_history_max;
785 	s->start = journal->j_history_cur % s->max;
786 	spin_unlock(&journal->j_history_lock);
787 
788 	rc = seq_open(file, &jbd2_seq_history_ops);
789 	if (rc == 0) {
790 		struct seq_file *m = file->private_data;
791 		m->private = s;
792 	} else {
793 		kfree(s->stats);
794 		kfree(s);
795 	}
796 	return rc;
797 
798 }
799 
800 static int jbd2_seq_history_release(struct inode *inode, struct file *file)
801 {
802 	struct seq_file *seq = file->private_data;
803 	struct jbd2_stats_proc_session *s = seq->private;
804 
805 	kfree(s->stats);
806 	kfree(s);
807 	return seq_release(inode, file);
808 }
809 
810 static struct file_operations jbd2_seq_history_fops = {
811 	.owner		= THIS_MODULE,
812 	.open           = jbd2_seq_history_open,
813 	.read           = seq_read,
814 	.llseek         = seq_lseek,
815 	.release        = jbd2_seq_history_release,
816 };
817 
818 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
819 {
820 	return *pos ? NULL : SEQ_START_TOKEN;
821 }
822 
823 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
824 {
825 	return NULL;
826 }
827 
828 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
829 {
830 	struct jbd2_stats_proc_session *s = seq->private;
831 
832 	if (v != SEQ_START_TOKEN)
833 		return 0;
834 	seq_printf(seq, "%lu transaction, each upto %u blocks\n",
835 			s->stats->ts_tid,
836 			s->journal->j_max_transaction_buffers);
837 	if (s->stats->ts_tid == 0)
838 		return 0;
839 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
840 	    jiffies_to_msecs(s->stats->u.run.rs_wait / s->stats->ts_tid));
841 	seq_printf(seq, "  %ums running transaction\n",
842 	    jiffies_to_msecs(s->stats->u.run.rs_running / s->stats->ts_tid));
843 	seq_printf(seq, "  %ums transaction was being locked\n",
844 	    jiffies_to_msecs(s->stats->u.run.rs_locked / s->stats->ts_tid));
845 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
846 	    jiffies_to_msecs(s->stats->u.run.rs_flushing / s->stats->ts_tid));
847 	seq_printf(seq, "  %ums logging transaction\n",
848 	    jiffies_to_msecs(s->stats->u.run.rs_logging / s->stats->ts_tid));
849 	seq_printf(seq, "  %lluus average transaction commit time\n",
850 		   div_u64(s->journal->j_average_commit_time, 1000));
851 	seq_printf(seq, "  %lu handles per transaction\n",
852 	    s->stats->u.run.rs_handle_count / s->stats->ts_tid);
853 	seq_printf(seq, "  %lu blocks per transaction\n",
854 	    s->stats->u.run.rs_blocks / s->stats->ts_tid);
855 	seq_printf(seq, "  %lu logged blocks per transaction\n",
856 	    s->stats->u.run.rs_blocks_logged / s->stats->ts_tid);
857 	return 0;
858 }
859 
860 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
861 {
862 }
863 
864 static struct seq_operations jbd2_seq_info_ops = {
865 	.start  = jbd2_seq_info_start,
866 	.next   = jbd2_seq_info_next,
867 	.stop   = jbd2_seq_info_stop,
868 	.show   = jbd2_seq_info_show,
869 };
870 
871 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
872 {
873 	journal_t *journal = PDE(inode)->data;
874 	struct jbd2_stats_proc_session *s;
875 	int rc, size;
876 
877 	s = kmalloc(sizeof(*s), GFP_KERNEL);
878 	if (s == NULL)
879 		return -ENOMEM;
880 	size = sizeof(struct transaction_stats_s);
881 	s->stats = kmalloc(size, GFP_KERNEL);
882 	if (s->stats == NULL) {
883 		kfree(s);
884 		return -ENOMEM;
885 	}
886 	spin_lock(&journal->j_history_lock);
887 	memcpy(s->stats, &journal->j_stats, size);
888 	s->journal = journal;
889 	spin_unlock(&journal->j_history_lock);
890 
891 	rc = seq_open(file, &jbd2_seq_info_ops);
892 	if (rc == 0) {
893 		struct seq_file *m = file->private_data;
894 		m->private = s;
895 	} else {
896 		kfree(s->stats);
897 		kfree(s);
898 	}
899 	return rc;
900 
901 }
902 
903 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
904 {
905 	struct seq_file *seq = file->private_data;
906 	struct jbd2_stats_proc_session *s = seq->private;
907 	kfree(s->stats);
908 	kfree(s);
909 	return seq_release(inode, file);
910 }
911 
912 static struct file_operations jbd2_seq_info_fops = {
913 	.owner		= THIS_MODULE,
914 	.open           = jbd2_seq_info_open,
915 	.read           = seq_read,
916 	.llseek         = seq_lseek,
917 	.release        = jbd2_seq_info_release,
918 };
919 
920 static struct proc_dir_entry *proc_jbd2_stats;
921 
922 static void jbd2_stats_proc_init(journal_t *journal)
923 {
924 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
925 	if (journal->j_proc_entry) {
926 		proc_create_data("history", S_IRUGO, journal->j_proc_entry,
927 				 &jbd2_seq_history_fops, journal);
928 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
929 				 &jbd2_seq_info_fops, journal);
930 	}
931 }
932 
933 static void jbd2_stats_proc_exit(journal_t *journal)
934 {
935 	remove_proc_entry("info", journal->j_proc_entry);
936 	remove_proc_entry("history", journal->j_proc_entry);
937 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
938 }
939 
940 static void journal_init_stats(journal_t *journal)
941 {
942 	int size;
943 
944 	if (!proc_jbd2_stats)
945 		return;
946 
947 	journal->j_history_max = 100;
948 	size = sizeof(struct transaction_stats_s) * journal->j_history_max;
949 	journal->j_history = kzalloc(size, GFP_KERNEL);
950 	if (!journal->j_history) {
951 		journal->j_history_max = 0;
952 		return;
953 	}
954 	spin_lock_init(&journal->j_history_lock);
955 }
956 
957 /*
958  * Management for journal control blocks: functions to create and
959  * destroy journal_t structures, and to initialise and read existing
960  * journal blocks from disk.  */
961 
962 /* First: create and setup a journal_t object in memory.  We initialise
963  * very few fields yet: that has to wait until we have created the
964  * journal structures from from scratch, or loaded them from disk. */
965 
966 static journal_t * journal_init_common (void)
967 {
968 	journal_t *journal;
969 	int err;
970 
971 	journal = kzalloc(sizeof(*journal), GFP_KERNEL|__GFP_NOFAIL);
972 	if (!journal)
973 		goto fail;
974 
975 	init_waitqueue_head(&journal->j_wait_transaction_locked);
976 	init_waitqueue_head(&journal->j_wait_logspace);
977 	init_waitqueue_head(&journal->j_wait_done_commit);
978 	init_waitqueue_head(&journal->j_wait_checkpoint);
979 	init_waitqueue_head(&journal->j_wait_commit);
980 	init_waitqueue_head(&journal->j_wait_updates);
981 	mutex_init(&journal->j_barrier);
982 	mutex_init(&journal->j_checkpoint_mutex);
983 	spin_lock_init(&journal->j_revoke_lock);
984 	spin_lock_init(&journal->j_list_lock);
985 	spin_lock_init(&journal->j_state_lock);
986 
987 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
988 	journal->j_min_batch_time = 0;
989 	journal->j_max_batch_time = 15000; /* 15ms */
990 
991 	/* The journal is marked for error until we succeed with recovery! */
992 	journal->j_flags = JBD2_ABORT;
993 
994 	/* Set up a default-sized revoke table for the new mount. */
995 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
996 	if (err) {
997 		kfree(journal);
998 		goto fail;
999 	}
1000 
1001 	journal_init_stats(journal);
1002 
1003 	return journal;
1004 fail:
1005 	return NULL;
1006 }
1007 
1008 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1009  *
1010  * Create a journal structure assigned some fixed set of disk blocks to
1011  * the journal.  We don't actually touch those disk blocks yet, but we
1012  * need to set up all of the mapping information to tell the journaling
1013  * system where the journal blocks are.
1014  *
1015  */
1016 
1017 /**
1018  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1019  *  @bdev: Block device on which to create the journal
1020  *  @fs_dev: Device which hold journalled filesystem for this journal.
1021  *  @start: Block nr Start of journal.
1022  *  @len:  Length of the journal in blocks.
1023  *  @blocksize: blocksize of journalling device
1024  *
1025  *  Returns: a newly created journal_t *
1026  *
1027  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1028  *  range of blocks on an arbitrary block device.
1029  *
1030  */
1031 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1032 			struct block_device *fs_dev,
1033 			unsigned long long start, int len, int blocksize)
1034 {
1035 	journal_t *journal = journal_init_common();
1036 	struct buffer_head *bh;
1037 	char *p;
1038 	int n;
1039 
1040 	if (!journal)
1041 		return NULL;
1042 
1043 	/* journal descriptor can store up to n blocks -bzzz */
1044 	journal->j_blocksize = blocksize;
1045 	jbd2_stats_proc_init(journal);
1046 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1047 	journal->j_wbufsize = n;
1048 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1049 	if (!journal->j_wbuf) {
1050 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
1051 			__func__);
1052 		goto out_err;
1053 	}
1054 	journal->j_dev = bdev;
1055 	journal->j_fs_dev = fs_dev;
1056 	journal->j_blk_offset = start;
1057 	journal->j_maxlen = len;
1058 	bdevname(journal->j_dev, journal->j_devname);
1059 	p = journal->j_devname;
1060 	while ((p = strchr(p, '/')))
1061 		*p = '!';
1062 
1063 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1064 	if (!bh) {
1065 		printk(KERN_ERR
1066 		       "%s: Cannot get buffer for journal superblock\n",
1067 		       __func__);
1068 		goto out_err;
1069 	}
1070 	journal->j_sb_buffer = bh;
1071 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1072 
1073 	return journal;
1074 out_err:
1075 	jbd2_stats_proc_exit(journal);
1076 	kfree(journal);
1077 	return NULL;
1078 }
1079 
1080 /**
1081  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1082  *  @inode: An inode to create the journal in
1083  *
1084  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1085  * the journal.  The inode must exist already, must support bmap() and
1086  * must have all data blocks preallocated.
1087  */
1088 journal_t * jbd2_journal_init_inode (struct inode *inode)
1089 {
1090 	struct buffer_head *bh;
1091 	journal_t *journal = journal_init_common();
1092 	char *p;
1093 	int err;
1094 	int n;
1095 	unsigned long long blocknr;
1096 
1097 	if (!journal)
1098 		return NULL;
1099 
1100 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1101 	journal->j_inode = inode;
1102 	bdevname(journal->j_dev, journal->j_devname);
1103 	p = journal->j_devname;
1104 	while ((p = strchr(p, '/')))
1105 		*p = '!';
1106 	p = journal->j_devname + strlen(journal->j_devname);
1107 	sprintf(p, ":%lu", journal->j_inode->i_ino);
1108 	jbd_debug(1,
1109 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1110 		  journal, inode->i_sb->s_id, inode->i_ino,
1111 		  (long long) inode->i_size,
1112 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1113 
1114 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1115 	journal->j_blocksize = inode->i_sb->s_blocksize;
1116 	jbd2_stats_proc_init(journal);
1117 
1118 	/* journal descriptor can store up to n blocks -bzzz */
1119 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1120 	journal->j_wbufsize = n;
1121 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1122 	if (!journal->j_wbuf) {
1123 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
1124 			__func__);
1125 		goto out_err;
1126 	}
1127 
1128 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1129 	/* If that failed, give up */
1130 	if (err) {
1131 		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
1132 		       __func__);
1133 		goto out_err;
1134 	}
1135 
1136 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1137 	if (!bh) {
1138 		printk(KERN_ERR
1139 		       "%s: Cannot get buffer for journal superblock\n",
1140 		       __func__);
1141 		goto out_err;
1142 	}
1143 	journal->j_sb_buffer = bh;
1144 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1145 
1146 	return journal;
1147 out_err:
1148 	jbd2_stats_proc_exit(journal);
1149 	kfree(journal);
1150 	return NULL;
1151 }
1152 
1153 /*
1154  * If the journal init or create aborts, we need to mark the journal
1155  * superblock as being NULL to prevent the journal destroy from writing
1156  * back a bogus superblock.
1157  */
1158 static void journal_fail_superblock (journal_t *journal)
1159 {
1160 	struct buffer_head *bh = journal->j_sb_buffer;
1161 	brelse(bh);
1162 	journal->j_sb_buffer = NULL;
1163 }
1164 
1165 /*
1166  * Given a journal_t structure, initialise the various fields for
1167  * startup of a new journaling session.  We use this both when creating
1168  * a journal, and after recovering an old journal to reset it for
1169  * subsequent use.
1170  */
1171 
1172 static int journal_reset(journal_t *journal)
1173 {
1174 	journal_superblock_t *sb = journal->j_superblock;
1175 	unsigned long long first, last;
1176 
1177 	first = be32_to_cpu(sb->s_first);
1178 	last = be32_to_cpu(sb->s_maxlen);
1179 
1180 	journal->j_first = first;
1181 	journal->j_last = last;
1182 
1183 	journal->j_head = first;
1184 	journal->j_tail = first;
1185 	journal->j_free = last - first;
1186 
1187 	journal->j_tail_sequence = journal->j_transaction_sequence;
1188 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1189 	journal->j_commit_request = journal->j_commit_sequence;
1190 
1191 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1192 
1193 	/* Add the dynamic fields and write it to disk. */
1194 	jbd2_journal_update_superblock(journal, 1);
1195 	return jbd2_journal_start_thread(journal);
1196 }
1197 
1198 /**
1199  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1200  * @journal: The journal to update.
1201  * @wait: Set to '0' if you don't want to wait for IO completion.
1202  *
1203  * Update a journal's dynamic superblock fields and write it to disk,
1204  * optionally waiting for the IO to complete.
1205  */
1206 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1207 {
1208 	journal_superblock_t *sb = journal->j_superblock;
1209 	struct buffer_head *bh = journal->j_sb_buffer;
1210 
1211 	/*
1212 	 * As a special case, if the on-disk copy is already marked as needing
1213 	 * no recovery (s_start == 0) and there are no outstanding transactions
1214 	 * in the filesystem, then we can safely defer the superblock update
1215 	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1216 	 * attempting a write to a potential-readonly device.
1217 	 */
1218 	if (sb->s_start == 0 && journal->j_tail_sequence ==
1219 				journal->j_transaction_sequence) {
1220 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1221 			"(start %ld, seq %d, errno %d)\n",
1222 			journal->j_tail, journal->j_tail_sequence,
1223 			journal->j_errno);
1224 		goto out;
1225 	}
1226 
1227 	if (buffer_write_io_error(bh)) {
1228 		/*
1229 		 * Oh, dear.  A previous attempt to write the journal
1230 		 * superblock failed.  This could happen because the
1231 		 * USB device was yanked out.  Or it could happen to
1232 		 * be a transient write error and maybe the block will
1233 		 * be remapped.  Nothing we can do but to retry the
1234 		 * write and hope for the best.
1235 		 */
1236 		printk(KERN_ERR "JBD2: previous I/O error detected "
1237 		       "for journal superblock update for %s.\n",
1238 		       journal->j_devname);
1239 		clear_buffer_write_io_error(bh);
1240 		set_buffer_uptodate(bh);
1241 	}
1242 
1243 	spin_lock(&journal->j_state_lock);
1244 	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1245 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1246 
1247 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1248 	sb->s_start    = cpu_to_be32(journal->j_tail);
1249 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1250 	spin_unlock(&journal->j_state_lock);
1251 
1252 	BUFFER_TRACE(bh, "marking dirty");
1253 	mark_buffer_dirty(bh);
1254 	if (wait) {
1255 		sync_dirty_buffer(bh);
1256 		if (buffer_write_io_error(bh)) {
1257 			printk(KERN_ERR "JBD2: I/O error detected "
1258 			       "when updating journal superblock for %s.\n",
1259 			       journal->j_devname);
1260 			clear_buffer_write_io_error(bh);
1261 			set_buffer_uptodate(bh);
1262 		}
1263 	} else
1264 		ll_rw_block(SWRITE, 1, &bh);
1265 
1266 out:
1267 	/* If we have just flushed the log (by marking s_start==0), then
1268 	 * any future commit will have to be careful to update the
1269 	 * superblock again to re-record the true start of the log. */
1270 
1271 	spin_lock(&journal->j_state_lock);
1272 	if (sb->s_start)
1273 		journal->j_flags &= ~JBD2_FLUSHED;
1274 	else
1275 		journal->j_flags |= JBD2_FLUSHED;
1276 	spin_unlock(&journal->j_state_lock);
1277 }
1278 
1279 /*
1280  * Read the superblock for a given journal, performing initial
1281  * validation of the format.
1282  */
1283 
1284 static int journal_get_superblock(journal_t *journal)
1285 {
1286 	struct buffer_head *bh;
1287 	journal_superblock_t *sb;
1288 	int err = -EIO;
1289 
1290 	bh = journal->j_sb_buffer;
1291 
1292 	J_ASSERT(bh != NULL);
1293 	if (!buffer_uptodate(bh)) {
1294 		ll_rw_block(READ, 1, &bh);
1295 		wait_on_buffer(bh);
1296 		if (!buffer_uptodate(bh)) {
1297 			printk (KERN_ERR
1298 				"JBD: IO error reading journal superblock\n");
1299 			goto out;
1300 		}
1301 	}
1302 
1303 	sb = journal->j_superblock;
1304 
1305 	err = -EINVAL;
1306 
1307 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1308 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1309 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1310 		goto out;
1311 	}
1312 
1313 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1314 	case JBD2_SUPERBLOCK_V1:
1315 		journal->j_format_version = 1;
1316 		break;
1317 	case JBD2_SUPERBLOCK_V2:
1318 		journal->j_format_version = 2;
1319 		break;
1320 	default:
1321 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1322 		goto out;
1323 	}
1324 
1325 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1326 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1327 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1328 		printk (KERN_WARNING "JBD: journal file too short\n");
1329 		goto out;
1330 	}
1331 
1332 	return 0;
1333 
1334 out:
1335 	journal_fail_superblock(journal);
1336 	return err;
1337 }
1338 
1339 /*
1340  * Load the on-disk journal superblock and read the key fields into the
1341  * journal_t.
1342  */
1343 
1344 static int load_superblock(journal_t *journal)
1345 {
1346 	int err;
1347 	journal_superblock_t *sb;
1348 
1349 	err = journal_get_superblock(journal);
1350 	if (err)
1351 		return err;
1352 
1353 	sb = journal->j_superblock;
1354 
1355 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1356 	journal->j_tail = be32_to_cpu(sb->s_start);
1357 	journal->j_first = be32_to_cpu(sb->s_first);
1358 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1359 	journal->j_errno = be32_to_cpu(sb->s_errno);
1360 
1361 	return 0;
1362 }
1363 
1364 
1365 /**
1366  * int jbd2_journal_load() - Read journal from disk.
1367  * @journal: Journal to act on.
1368  *
1369  * Given a journal_t structure which tells us which disk blocks contain
1370  * a journal, read the journal from disk to initialise the in-memory
1371  * structures.
1372  */
1373 int jbd2_journal_load(journal_t *journal)
1374 {
1375 	int err;
1376 	journal_superblock_t *sb;
1377 
1378 	err = load_superblock(journal);
1379 	if (err)
1380 		return err;
1381 
1382 	sb = journal->j_superblock;
1383 	/* If this is a V2 superblock, then we have to check the
1384 	 * features flags on it. */
1385 
1386 	if (journal->j_format_version >= 2) {
1387 		if ((sb->s_feature_ro_compat &
1388 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1389 		    (sb->s_feature_incompat &
1390 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1391 			printk (KERN_WARNING
1392 				"JBD: Unrecognised features on journal\n");
1393 			return -EINVAL;
1394 		}
1395 	}
1396 
1397 	/* Let the recovery code check whether it needs to recover any
1398 	 * data from the journal. */
1399 	if (jbd2_journal_recover(journal))
1400 		goto recovery_error;
1401 
1402 	/* OK, we've finished with the dynamic journal bits:
1403 	 * reinitialise the dynamic contents of the superblock in memory
1404 	 * and reset them on disk. */
1405 	if (journal_reset(journal))
1406 		goto recovery_error;
1407 
1408 	journal->j_flags &= ~JBD2_ABORT;
1409 	journal->j_flags |= JBD2_LOADED;
1410 	return 0;
1411 
1412 recovery_error:
1413 	printk (KERN_WARNING "JBD: recovery failed\n");
1414 	return -EIO;
1415 }
1416 
1417 /**
1418  * void jbd2_journal_destroy() - Release a journal_t structure.
1419  * @journal: Journal to act on.
1420  *
1421  * Release a journal_t structure once it is no longer in use by the
1422  * journaled object.
1423  * Return <0 if we couldn't clean up the journal.
1424  */
1425 int jbd2_journal_destroy(journal_t *journal)
1426 {
1427 	int err = 0;
1428 
1429 	/* Wait for the commit thread to wake up and die. */
1430 	journal_kill_thread(journal);
1431 
1432 	/* Force a final log commit */
1433 	if (journal->j_running_transaction)
1434 		jbd2_journal_commit_transaction(journal);
1435 
1436 	/* Force any old transactions to disk */
1437 
1438 	/* Totally anal locking here... */
1439 	spin_lock(&journal->j_list_lock);
1440 	while (journal->j_checkpoint_transactions != NULL) {
1441 		spin_unlock(&journal->j_list_lock);
1442 		mutex_lock(&journal->j_checkpoint_mutex);
1443 		jbd2_log_do_checkpoint(journal);
1444 		mutex_unlock(&journal->j_checkpoint_mutex);
1445 		spin_lock(&journal->j_list_lock);
1446 	}
1447 
1448 	J_ASSERT(journal->j_running_transaction == NULL);
1449 	J_ASSERT(journal->j_committing_transaction == NULL);
1450 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1451 	spin_unlock(&journal->j_list_lock);
1452 
1453 	if (journal->j_sb_buffer) {
1454 		if (!is_journal_aborted(journal)) {
1455 			/* We can now mark the journal as empty. */
1456 			journal->j_tail = 0;
1457 			journal->j_tail_sequence =
1458 				++journal->j_transaction_sequence;
1459 			jbd2_journal_update_superblock(journal, 1);
1460 		} else {
1461 			err = -EIO;
1462 		}
1463 		brelse(journal->j_sb_buffer);
1464 	}
1465 
1466 	if (journal->j_proc_entry)
1467 		jbd2_stats_proc_exit(journal);
1468 	if (journal->j_inode)
1469 		iput(journal->j_inode);
1470 	if (journal->j_revoke)
1471 		jbd2_journal_destroy_revoke(journal);
1472 	kfree(journal->j_wbuf);
1473 	kfree(journal);
1474 
1475 	return err;
1476 }
1477 
1478 
1479 /**
1480  *int jbd2_journal_check_used_features () - Check if features specified are used.
1481  * @journal: Journal to check.
1482  * @compat: bitmask of compatible features
1483  * @ro: bitmask of features that force read-only mount
1484  * @incompat: bitmask of incompatible features
1485  *
1486  * Check whether the journal uses all of a given set of
1487  * features.  Return true (non-zero) if it does.
1488  **/
1489 
1490 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1491 				 unsigned long ro, unsigned long incompat)
1492 {
1493 	journal_superblock_t *sb;
1494 
1495 	if (!compat && !ro && !incompat)
1496 		return 1;
1497 	if (journal->j_format_version == 1)
1498 		return 0;
1499 
1500 	sb = journal->j_superblock;
1501 
1502 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1503 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1504 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1505 		return 1;
1506 
1507 	return 0;
1508 }
1509 
1510 /**
1511  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1512  * @journal: Journal to check.
1513  * @compat: bitmask of compatible features
1514  * @ro: bitmask of features that force read-only mount
1515  * @incompat: bitmask of incompatible features
1516  *
1517  * Check whether the journaling code supports the use of
1518  * all of a given set of features on this journal.  Return true
1519  * (non-zero) if it can. */
1520 
1521 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1522 				      unsigned long ro, unsigned long incompat)
1523 {
1524 	journal_superblock_t *sb;
1525 
1526 	if (!compat && !ro && !incompat)
1527 		return 1;
1528 
1529 	sb = journal->j_superblock;
1530 
1531 	/* We can support any known requested features iff the
1532 	 * superblock is in version 2.  Otherwise we fail to support any
1533 	 * extended sb features. */
1534 
1535 	if (journal->j_format_version != 2)
1536 		return 0;
1537 
1538 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1539 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1540 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1541 		return 1;
1542 
1543 	return 0;
1544 }
1545 
1546 /**
1547  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1548  * @journal: Journal to act on.
1549  * @compat: bitmask of compatible features
1550  * @ro: bitmask of features that force read-only mount
1551  * @incompat: bitmask of incompatible features
1552  *
1553  * Mark a given journal feature as present on the
1554  * superblock.  Returns true if the requested features could be set.
1555  *
1556  */
1557 
1558 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1559 			  unsigned long ro, unsigned long incompat)
1560 {
1561 	journal_superblock_t *sb;
1562 
1563 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1564 		return 1;
1565 
1566 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1567 		return 0;
1568 
1569 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1570 		  compat, ro, incompat);
1571 
1572 	sb = journal->j_superblock;
1573 
1574 	sb->s_feature_compat    |= cpu_to_be32(compat);
1575 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1576 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1577 
1578 	return 1;
1579 }
1580 
1581 /*
1582  * jbd2_journal_clear_features () - Clear a given journal feature in the
1583  * 				    superblock
1584  * @journal: Journal to act on.
1585  * @compat: bitmask of compatible features
1586  * @ro: bitmask of features that force read-only mount
1587  * @incompat: bitmask of incompatible features
1588  *
1589  * Clear a given journal feature as present on the
1590  * superblock.
1591  */
1592 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1593 				unsigned long ro, unsigned long incompat)
1594 {
1595 	journal_superblock_t *sb;
1596 
1597 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1598 		  compat, ro, incompat);
1599 
1600 	sb = journal->j_superblock;
1601 
1602 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1603 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1604 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1605 }
1606 EXPORT_SYMBOL(jbd2_journal_clear_features);
1607 
1608 /**
1609  * int jbd2_journal_update_format () - Update on-disk journal structure.
1610  * @journal: Journal to act on.
1611  *
1612  * Given an initialised but unloaded journal struct, poke about in the
1613  * on-disk structure to update it to the most recent supported version.
1614  */
1615 int jbd2_journal_update_format (journal_t *journal)
1616 {
1617 	journal_superblock_t *sb;
1618 	int err;
1619 
1620 	err = journal_get_superblock(journal);
1621 	if (err)
1622 		return err;
1623 
1624 	sb = journal->j_superblock;
1625 
1626 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1627 	case JBD2_SUPERBLOCK_V2:
1628 		return 0;
1629 	case JBD2_SUPERBLOCK_V1:
1630 		return journal_convert_superblock_v1(journal, sb);
1631 	default:
1632 		break;
1633 	}
1634 	return -EINVAL;
1635 }
1636 
1637 static int journal_convert_superblock_v1(journal_t *journal,
1638 					 journal_superblock_t *sb)
1639 {
1640 	int offset, blocksize;
1641 	struct buffer_head *bh;
1642 
1643 	printk(KERN_WARNING
1644 		"JBD: Converting superblock from version 1 to 2.\n");
1645 
1646 	/* Pre-initialise new fields to zero */
1647 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1648 	blocksize = be32_to_cpu(sb->s_blocksize);
1649 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1650 
1651 	sb->s_nr_users = cpu_to_be32(1);
1652 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1653 	journal->j_format_version = 2;
1654 
1655 	bh = journal->j_sb_buffer;
1656 	BUFFER_TRACE(bh, "marking dirty");
1657 	mark_buffer_dirty(bh);
1658 	sync_dirty_buffer(bh);
1659 	return 0;
1660 }
1661 
1662 
1663 /**
1664  * int jbd2_journal_flush () - Flush journal
1665  * @journal: Journal to act on.
1666  *
1667  * Flush all data for a given journal to disk and empty the journal.
1668  * Filesystems can use this when remounting readonly to ensure that
1669  * recovery does not need to happen on remount.
1670  */
1671 
1672 int jbd2_journal_flush(journal_t *journal)
1673 {
1674 	int err = 0;
1675 	transaction_t *transaction = NULL;
1676 	unsigned long old_tail;
1677 
1678 	spin_lock(&journal->j_state_lock);
1679 
1680 	/* Force everything buffered to the log... */
1681 	if (journal->j_running_transaction) {
1682 		transaction = journal->j_running_transaction;
1683 		__jbd2_log_start_commit(journal, transaction->t_tid);
1684 	} else if (journal->j_committing_transaction)
1685 		transaction = journal->j_committing_transaction;
1686 
1687 	/* Wait for the log commit to complete... */
1688 	if (transaction) {
1689 		tid_t tid = transaction->t_tid;
1690 
1691 		spin_unlock(&journal->j_state_lock);
1692 		jbd2_log_wait_commit(journal, tid);
1693 	} else {
1694 		spin_unlock(&journal->j_state_lock);
1695 	}
1696 
1697 	/* ...and flush everything in the log out to disk. */
1698 	spin_lock(&journal->j_list_lock);
1699 	while (!err && journal->j_checkpoint_transactions != NULL) {
1700 		spin_unlock(&journal->j_list_lock);
1701 		mutex_lock(&journal->j_checkpoint_mutex);
1702 		err = jbd2_log_do_checkpoint(journal);
1703 		mutex_unlock(&journal->j_checkpoint_mutex);
1704 		spin_lock(&journal->j_list_lock);
1705 	}
1706 	spin_unlock(&journal->j_list_lock);
1707 
1708 	if (is_journal_aborted(journal))
1709 		return -EIO;
1710 
1711 	jbd2_cleanup_journal_tail(journal);
1712 
1713 	/* Finally, mark the journal as really needing no recovery.
1714 	 * This sets s_start==0 in the underlying superblock, which is
1715 	 * the magic code for a fully-recovered superblock.  Any future
1716 	 * commits of data to the journal will restore the current
1717 	 * s_start value. */
1718 	spin_lock(&journal->j_state_lock);
1719 	old_tail = journal->j_tail;
1720 	journal->j_tail = 0;
1721 	spin_unlock(&journal->j_state_lock);
1722 	jbd2_journal_update_superblock(journal, 1);
1723 	spin_lock(&journal->j_state_lock);
1724 	journal->j_tail = old_tail;
1725 
1726 	J_ASSERT(!journal->j_running_transaction);
1727 	J_ASSERT(!journal->j_committing_transaction);
1728 	J_ASSERT(!journal->j_checkpoint_transactions);
1729 	J_ASSERT(journal->j_head == journal->j_tail);
1730 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1731 	spin_unlock(&journal->j_state_lock);
1732 	return 0;
1733 }
1734 
1735 /**
1736  * int jbd2_journal_wipe() - Wipe journal contents
1737  * @journal: Journal to act on.
1738  * @write: flag (see below)
1739  *
1740  * Wipe out all of the contents of a journal, safely.  This will produce
1741  * a warning if the journal contains any valid recovery information.
1742  * Must be called between journal_init_*() and jbd2_journal_load().
1743  *
1744  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1745  * we merely suppress recovery.
1746  */
1747 
1748 int jbd2_journal_wipe(journal_t *journal, int write)
1749 {
1750 	journal_superblock_t *sb;
1751 	int err = 0;
1752 
1753 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1754 
1755 	err = load_superblock(journal);
1756 	if (err)
1757 		return err;
1758 
1759 	sb = journal->j_superblock;
1760 
1761 	if (!journal->j_tail)
1762 		goto no_recovery;
1763 
1764 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1765 		write ? "Clearing" : "Ignoring");
1766 
1767 	err = jbd2_journal_skip_recovery(journal);
1768 	if (write)
1769 		jbd2_journal_update_superblock(journal, 1);
1770 
1771  no_recovery:
1772 	return err;
1773 }
1774 
1775 /*
1776  * Journal abort has very specific semantics, which we describe
1777  * for journal abort.
1778  *
1779  * Two internal function, which provide abort to te jbd layer
1780  * itself are here.
1781  */
1782 
1783 /*
1784  * Quick version for internal journal use (doesn't lock the journal).
1785  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1786  * and don't attempt to make any other journal updates.
1787  */
1788 void __jbd2_journal_abort_hard(journal_t *journal)
1789 {
1790 	transaction_t *transaction;
1791 
1792 	if (journal->j_flags & JBD2_ABORT)
1793 		return;
1794 
1795 	printk(KERN_ERR "Aborting journal on device %s.\n",
1796 	       journal->j_devname);
1797 
1798 	spin_lock(&journal->j_state_lock);
1799 	journal->j_flags |= JBD2_ABORT;
1800 	transaction = journal->j_running_transaction;
1801 	if (transaction)
1802 		__jbd2_log_start_commit(journal, transaction->t_tid);
1803 	spin_unlock(&journal->j_state_lock);
1804 }
1805 
1806 /* Soft abort: record the abort error status in the journal superblock,
1807  * but don't do any other IO. */
1808 static void __journal_abort_soft (journal_t *journal, int errno)
1809 {
1810 	if (journal->j_flags & JBD2_ABORT)
1811 		return;
1812 
1813 	if (!journal->j_errno)
1814 		journal->j_errno = errno;
1815 
1816 	__jbd2_journal_abort_hard(journal);
1817 
1818 	if (errno)
1819 		jbd2_journal_update_superblock(journal, 1);
1820 }
1821 
1822 /**
1823  * void jbd2_journal_abort () - Shutdown the journal immediately.
1824  * @journal: the journal to shutdown.
1825  * @errno:   an error number to record in the journal indicating
1826  *           the reason for the shutdown.
1827  *
1828  * Perform a complete, immediate shutdown of the ENTIRE
1829  * journal (not of a single transaction).  This operation cannot be
1830  * undone without closing and reopening the journal.
1831  *
1832  * The jbd2_journal_abort function is intended to support higher level error
1833  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1834  * mode.
1835  *
1836  * Journal abort has very specific semantics.  Any existing dirty,
1837  * unjournaled buffers in the main filesystem will still be written to
1838  * disk by bdflush, but the journaling mechanism will be suspended
1839  * immediately and no further transaction commits will be honoured.
1840  *
1841  * Any dirty, journaled buffers will be written back to disk without
1842  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1843  * filesystem, but we _do_ attempt to leave as much data as possible
1844  * behind for fsck to use for cleanup.
1845  *
1846  * Any attempt to get a new transaction handle on a journal which is in
1847  * ABORT state will just result in an -EROFS error return.  A
1848  * jbd2_journal_stop on an existing handle will return -EIO if we have
1849  * entered abort state during the update.
1850  *
1851  * Recursive transactions are not disturbed by journal abort until the
1852  * final jbd2_journal_stop, which will receive the -EIO error.
1853  *
1854  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1855  * which will be recorded (if possible) in the journal superblock.  This
1856  * allows a client to record failure conditions in the middle of a
1857  * transaction without having to complete the transaction to record the
1858  * failure to disk.  ext3_error, for example, now uses this
1859  * functionality.
1860  *
1861  * Errors which originate from within the journaling layer will NOT
1862  * supply an errno; a null errno implies that absolutely no further
1863  * writes are done to the journal (unless there are any already in
1864  * progress).
1865  *
1866  */
1867 
1868 void jbd2_journal_abort(journal_t *journal, int errno)
1869 {
1870 	__journal_abort_soft(journal, errno);
1871 }
1872 
1873 /**
1874  * int jbd2_journal_errno () - returns the journal's error state.
1875  * @journal: journal to examine.
1876  *
1877  * This is the errno numbet set with jbd2_journal_abort(), the last
1878  * time the journal was mounted - if the journal was stopped
1879  * without calling abort this will be 0.
1880  *
1881  * If the journal has been aborted on this mount time -EROFS will
1882  * be returned.
1883  */
1884 int jbd2_journal_errno(journal_t *journal)
1885 {
1886 	int err;
1887 
1888 	spin_lock(&journal->j_state_lock);
1889 	if (journal->j_flags & JBD2_ABORT)
1890 		err = -EROFS;
1891 	else
1892 		err = journal->j_errno;
1893 	spin_unlock(&journal->j_state_lock);
1894 	return err;
1895 }
1896 
1897 /**
1898  * int jbd2_journal_clear_err () - clears the journal's error state
1899  * @journal: journal to act on.
1900  *
1901  * An error must be cleared or Acked to take a FS out of readonly
1902  * mode.
1903  */
1904 int jbd2_journal_clear_err(journal_t *journal)
1905 {
1906 	int err = 0;
1907 
1908 	spin_lock(&journal->j_state_lock);
1909 	if (journal->j_flags & JBD2_ABORT)
1910 		err = -EROFS;
1911 	else
1912 		journal->j_errno = 0;
1913 	spin_unlock(&journal->j_state_lock);
1914 	return err;
1915 }
1916 
1917 /**
1918  * void jbd2_journal_ack_err() - Ack journal err.
1919  * @journal: journal to act on.
1920  *
1921  * An error must be cleared or Acked to take a FS out of readonly
1922  * mode.
1923  */
1924 void jbd2_journal_ack_err(journal_t *journal)
1925 {
1926 	spin_lock(&journal->j_state_lock);
1927 	if (journal->j_errno)
1928 		journal->j_flags |= JBD2_ACK_ERR;
1929 	spin_unlock(&journal->j_state_lock);
1930 }
1931 
1932 int jbd2_journal_blocks_per_page(struct inode *inode)
1933 {
1934 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1935 }
1936 
1937 /*
1938  * helper functions to deal with 32 or 64bit block numbers.
1939  */
1940 size_t journal_tag_bytes(journal_t *journal)
1941 {
1942 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1943 		return JBD2_TAG_SIZE64;
1944 	else
1945 		return JBD2_TAG_SIZE32;
1946 }
1947 
1948 /*
1949  * Journal_head storage management
1950  */
1951 static struct kmem_cache *jbd2_journal_head_cache;
1952 #ifdef CONFIG_JBD2_DEBUG
1953 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1954 #endif
1955 
1956 static int journal_init_jbd2_journal_head_cache(void)
1957 {
1958 	int retval;
1959 
1960 	J_ASSERT(jbd2_journal_head_cache == NULL);
1961 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1962 				sizeof(struct journal_head),
1963 				0,		/* offset */
1964 				SLAB_TEMPORARY,	/* flags */
1965 				NULL);		/* ctor */
1966 	retval = 0;
1967 	if (!jbd2_journal_head_cache) {
1968 		retval = -ENOMEM;
1969 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1970 	}
1971 	return retval;
1972 }
1973 
1974 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1975 {
1976 	if (jbd2_journal_head_cache) {
1977 		kmem_cache_destroy(jbd2_journal_head_cache);
1978 		jbd2_journal_head_cache = NULL;
1979 	}
1980 }
1981 
1982 /*
1983  * journal_head splicing and dicing
1984  */
1985 static struct journal_head *journal_alloc_journal_head(void)
1986 {
1987 	struct journal_head *ret;
1988 	static unsigned long last_warning;
1989 
1990 #ifdef CONFIG_JBD2_DEBUG
1991 	atomic_inc(&nr_journal_heads);
1992 #endif
1993 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1994 	if (!ret) {
1995 		jbd_debug(1, "out of memory for journal_head\n");
1996 		if (time_after(jiffies, last_warning + 5*HZ)) {
1997 			printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1998 			       __func__);
1999 			last_warning = jiffies;
2000 		}
2001 		while (!ret) {
2002 			yield();
2003 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2004 		}
2005 	}
2006 	return ret;
2007 }
2008 
2009 static void journal_free_journal_head(struct journal_head *jh)
2010 {
2011 #ifdef CONFIG_JBD2_DEBUG
2012 	atomic_dec(&nr_journal_heads);
2013 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2014 #endif
2015 	kmem_cache_free(jbd2_journal_head_cache, jh);
2016 }
2017 
2018 /*
2019  * A journal_head is attached to a buffer_head whenever JBD has an
2020  * interest in the buffer.
2021  *
2022  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2023  * is set.  This bit is tested in core kernel code where we need to take
2024  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2025  * there.
2026  *
2027  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2028  *
2029  * When a buffer has its BH_JBD bit set it is immune from being released by
2030  * core kernel code, mainly via ->b_count.
2031  *
2032  * A journal_head may be detached from its buffer_head when the journal_head's
2033  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2034  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2035  * journal_head can be dropped if needed.
2036  *
2037  * Various places in the kernel want to attach a journal_head to a buffer_head
2038  * _before_ attaching the journal_head to a transaction.  To protect the
2039  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2040  * journal_head's b_jcount refcount by one.  The caller must call
2041  * jbd2_journal_put_journal_head() to undo this.
2042  *
2043  * So the typical usage would be:
2044  *
2045  *	(Attach a journal_head if needed.  Increments b_jcount)
2046  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2047  *	...
2048  *	jh->b_transaction = xxx;
2049  *	jbd2_journal_put_journal_head(jh);
2050  *
2051  * Now, the journal_head's b_jcount is zero, but it is safe from being released
2052  * because it has a non-zero b_transaction.
2053  */
2054 
2055 /*
2056  * Give a buffer_head a journal_head.
2057  *
2058  * Doesn't need the journal lock.
2059  * May sleep.
2060  */
2061 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2062 {
2063 	struct journal_head *jh;
2064 	struct journal_head *new_jh = NULL;
2065 
2066 repeat:
2067 	if (!buffer_jbd(bh)) {
2068 		new_jh = journal_alloc_journal_head();
2069 		memset(new_jh, 0, sizeof(*new_jh));
2070 	}
2071 
2072 	jbd_lock_bh_journal_head(bh);
2073 	if (buffer_jbd(bh)) {
2074 		jh = bh2jh(bh);
2075 	} else {
2076 		J_ASSERT_BH(bh,
2077 			(atomic_read(&bh->b_count) > 0) ||
2078 			(bh->b_page && bh->b_page->mapping));
2079 
2080 		if (!new_jh) {
2081 			jbd_unlock_bh_journal_head(bh);
2082 			goto repeat;
2083 		}
2084 
2085 		jh = new_jh;
2086 		new_jh = NULL;		/* We consumed it */
2087 		set_buffer_jbd(bh);
2088 		bh->b_private = jh;
2089 		jh->b_bh = bh;
2090 		get_bh(bh);
2091 		BUFFER_TRACE(bh, "added journal_head");
2092 	}
2093 	jh->b_jcount++;
2094 	jbd_unlock_bh_journal_head(bh);
2095 	if (new_jh)
2096 		journal_free_journal_head(new_jh);
2097 	return bh->b_private;
2098 }
2099 
2100 /*
2101  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2102  * having a journal_head, return NULL
2103  */
2104 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2105 {
2106 	struct journal_head *jh = NULL;
2107 
2108 	jbd_lock_bh_journal_head(bh);
2109 	if (buffer_jbd(bh)) {
2110 		jh = bh2jh(bh);
2111 		jh->b_jcount++;
2112 	}
2113 	jbd_unlock_bh_journal_head(bh);
2114 	return jh;
2115 }
2116 
2117 static void __journal_remove_journal_head(struct buffer_head *bh)
2118 {
2119 	struct journal_head *jh = bh2jh(bh);
2120 
2121 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2122 
2123 	get_bh(bh);
2124 	if (jh->b_jcount == 0) {
2125 		if (jh->b_transaction == NULL &&
2126 				jh->b_next_transaction == NULL &&
2127 				jh->b_cp_transaction == NULL) {
2128 			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2129 			J_ASSERT_BH(bh, buffer_jbd(bh));
2130 			J_ASSERT_BH(bh, jh2bh(jh) == bh);
2131 			BUFFER_TRACE(bh, "remove journal_head");
2132 			if (jh->b_frozen_data) {
2133 				printk(KERN_WARNING "%s: freeing "
2134 						"b_frozen_data\n",
2135 						__func__);
2136 				jbd2_free(jh->b_frozen_data, bh->b_size);
2137 			}
2138 			if (jh->b_committed_data) {
2139 				printk(KERN_WARNING "%s: freeing "
2140 						"b_committed_data\n",
2141 						__func__);
2142 				jbd2_free(jh->b_committed_data, bh->b_size);
2143 			}
2144 			bh->b_private = NULL;
2145 			jh->b_bh = NULL;	/* debug, really */
2146 			clear_buffer_jbd(bh);
2147 			__brelse(bh);
2148 			journal_free_journal_head(jh);
2149 		} else {
2150 			BUFFER_TRACE(bh, "journal_head was locked");
2151 		}
2152 	}
2153 }
2154 
2155 /*
2156  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2157  * and has a zero b_jcount then remove and release its journal_head.   If we did
2158  * see that the buffer is not used by any transaction we also "logically"
2159  * decrement ->b_count.
2160  *
2161  * We in fact take an additional increment on ->b_count as a convenience,
2162  * because the caller usually wants to do additional things with the bh
2163  * after calling here.
2164  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2165  * time.  Once the caller has run __brelse(), the buffer is eligible for
2166  * reaping by try_to_free_buffers().
2167  */
2168 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2169 {
2170 	jbd_lock_bh_journal_head(bh);
2171 	__journal_remove_journal_head(bh);
2172 	jbd_unlock_bh_journal_head(bh);
2173 }
2174 
2175 /*
2176  * Drop a reference on the passed journal_head.  If it fell to zero then try to
2177  * release the journal_head from the buffer_head.
2178  */
2179 void jbd2_journal_put_journal_head(struct journal_head *jh)
2180 {
2181 	struct buffer_head *bh = jh2bh(jh);
2182 
2183 	jbd_lock_bh_journal_head(bh);
2184 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2185 	--jh->b_jcount;
2186 	if (!jh->b_jcount && !jh->b_transaction) {
2187 		__journal_remove_journal_head(bh);
2188 		__brelse(bh);
2189 	}
2190 	jbd_unlock_bh_journal_head(bh);
2191 }
2192 
2193 /*
2194  * Initialize jbd inode head
2195  */
2196 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2197 {
2198 	jinode->i_transaction = NULL;
2199 	jinode->i_next_transaction = NULL;
2200 	jinode->i_vfs_inode = inode;
2201 	jinode->i_flags = 0;
2202 	INIT_LIST_HEAD(&jinode->i_list);
2203 }
2204 
2205 /*
2206  * Function to be called before we start removing inode from memory (i.e.,
2207  * clear_inode() is a fine place to be called from). It removes inode from
2208  * transaction's lists.
2209  */
2210 void jbd2_journal_release_jbd_inode(journal_t *journal,
2211 				    struct jbd2_inode *jinode)
2212 {
2213 	int writeout = 0;
2214 
2215 	if (!journal)
2216 		return;
2217 restart:
2218 	spin_lock(&journal->j_list_lock);
2219 	/* Is commit writing out inode - we have to wait */
2220 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2221 		wait_queue_head_t *wq;
2222 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2223 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2224 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2225 		spin_unlock(&journal->j_list_lock);
2226 		schedule();
2227 		finish_wait(wq, &wait.wait);
2228 		goto restart;
2229 	}
2230 
2231 	/* Do we need to wait for data writeback? */
2232 	if (journal->j_committing_transaction == jinode->i_transaction)
2233 		writeout = 1;
2234 	if (jinode->i_transaction) {
2235 		list_del(&jinode->i_list);
2236 		jinode->i_transaction = NULL;
2237 	}
2238 	spin_unlock(&journal->j_list_lock);
2239 }
2240 
2241 /*
2242  * debugfs tunables
2243  */
2244 #ifdef CONFIG_JBD2_DEBUG
2245 u8 jbd2_journal_enable_debug __read_mostly;
2246 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2247 
2248 #define JBD2_DEBUG_NAME "jbd2-debug"
2249 
2250 static struct dentry *jbd2_debugfs_dir;
2251 static struct dentry *jbd2_debug;
2252 
2253 static void __init jbd2_create_debugfs_entry(void)
2254 {
2255 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2256 	if (jbd2_debugfs_dir)
2257 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, S_IRUGO,
2258 					       jbd2_debugfs_dir,
2259 					       &jbd2_journal_enable_debug);
2260 }
2261 
2262 static void __exit jbd2_remove_debugfs_entry(void)
2263 {
2264 	debugfs_remove(jbd2_debug);
2265 	debugfs_remove(jbd2_debugfs_dir);
2266 }
2267 
2268 #else
2269 
2270 static void __init jbd2_create_debugfs_entry(void)
2271 {
2272 }
2273 
2274 static void __exit jbd2_remove_debugfs_entry(void)
2275 {
2276 }
2277 
2278 #endif
2279 
2280 #ifdef CONFIG_PROC_FS
2281 
2282 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2283 
2284 static void __init jbd2_create_jbd_stats_proc_entry(void)
2285 {
2286 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2287 }
2288 
2289 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2290 {
2291 	if (proc_jbd2_stats)
2292 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2293 }
2294 
2295 #else
2296 
2297 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2298 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2299 
2300 #endif
2301 
2302 struct kmem_cache *jbd2_handle_cache;
2303 
2304 static int __init journal_init_handle_cache(void)
2305 {
2306 	jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2307 				sizeof(handle_t),
2308 				0,		/* offset */
2309 				SLAB_TEMPORARY,	/* flags */
2310 				NULL);		/* ctor */
2311 	if (jbd2_handle_cache == NULL) {
2312 		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2313 		return -ENOMEM;
2314 	}
2315 	return 0;
2316 }
2317 
2318 static void jbd2_journal_destroy_handle_cache(void)
2319 {
2320 	if (jbd2_handle_cache)
2321 		kmem_cache_destroy(jbd2_handle_cache);
2322 }
2323 
2324 /*
2325  * Module startup and shutdown
2326  */
2327 
2328 static int __init journal_init_caches(void)
2329 {
2330 	int ret;
2331 
2332 	ret = jbd2_journal_init_revoke_caches();
2333 	if (ret == 0)
2334 		ret = journal_init_jbd2_journal_head_cache();
2335 	if (ret == 0)
2336 		ret = journal_init_handle_cache();
2337 	return ret;
2338 }
2339 
2340 static void jbd2_journal_destroy_caches(void)
2341 {
2342 	jbd2_journal_destroy_revoke_caches();
2343 	jbd2_journal_destroy_jbd2_journal_head_cache();
2344 	jbd2_journal_destroy_handle_cache();
2345 }
2346 
2347 static int __init journal_init(void)
2348 {
2349 	int ret;
2350 
2351 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2352 
2353 	ret = journal_init_caches();
2354 	if (ret == 0) {
2355 		jbd2_create_debugfs_entry();
2356 		jbd2_create_jbd_stats_proc_entry();
2357 	} else {
2358 		jbd2_journal_destroy_caches();
2359 	}
2360 	return ret;
2361 }
2362 
2363 static void __exit journal_exit(void)
2364 {
2365 #ifdef CONFIG_JBD2_DEBUG
2366 	int n = atomic_read(&nr_journal_heads);
2367 	if (n)
2368 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2369 #endif
2370 	jbd2_remove_debugfs_entry();
2371 	jbd2_remove_jbd_stats_proc_entry();
2372 	jbd2_journal_destroy_caches();
2373 }
2374 
2375 MODULE_LICENSE("GPL");
2376 module_init(journal_init);
2377 module_exit(journal_exit);
2378 
2379