1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/debugfs.h> 39 #include <linux/seq_file.h> 40 #include <linux/math64.h> 41 #include <linux/hash.h> 42 #include <linux/log2.h> 43 #include <linux/vmalloc.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bitops.h> 46 #include <linux/ratelimit.h> 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/jbd2.h> 50 51 #include <asm/uaccess.h> 52 #include <asm/page.h> 53 #include <asm/system.h> 54 55 EXPORT_SYMBOL(jbd2_journal_extend); 56 EXPORT_SYMBOL(jbd2_journal_stop); 57 EXPORT_SYMBOL(jbd2_journal_lock_updates); 58 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 59 EXPORT_SYMBOL(jbd2_journal_get_write_access); 60 EXPORT_SYMBOL(jbd2_journal_get_create_access); 61 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 62 EXPORT_SYMBOL(jbd2_journal_set_triggers); 63 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 64 EXPORT_SYMBOL(jbd2_journal_release_buffer); 65 EXPORT_SYMBOL(jbd2_journal_forget); 66 #if 0 67 EXPORT_SYMBOL(journal_sync_buffer); 68 #endif 69 EXPORT_SYMBOL(jbd2_journal_flush); 70 EXPORT_SYMBOL(jbd2_journal_revoke); 71 72 EXPORT_SYMBOL(jbd2_journal_init_dev); 73 EXPORT_SYMBOL(jbd2_journal_init_inode); 74 EXPORT_SYMBOL(jbd2_journal_update_format); 75 EXPORT_SYMBOL(jbd2_journal_check_used_features); 76 EXPORT_SYMBOL(jbd2_journal_check_available_features); 77 EXPORT_SYMBOL(jbd2_journal_set_features); 78 EXPORT_SYMBOL(jbd2_journal_load); 79 EXPORT_SYMBOL(jbd2_journal_destroy); 80 EXPORT_SYMBOL(jbd2_journal_abort); 81 EXPORT_SYMBOL(jbd2_journal_errno); 82 EXPORT_SYMBOL(jbd2_journal_ack_err); 83 EXPORT_SYMBOL(jbd2_journal_clear_err); 84 EXPORT_SYMBOL(jbd2_log_wait_commit); 85 EXPORT_SYMBOL(jbd2_log_start_commit); 86 EXPORT_SYMBOL(jbd2_journal_start_commit); 87 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 88 EXPORT_SYMBOL(jbd2_journal_wipe); 89 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 90 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 91 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 92 EXPORT_SYMBOL(jbd2_journal_force_commit); 93 EXPORT_SYMBOL(jbd2_journal_file_inode); 94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 97 98 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *); 99 static void __journal_abort_soft (journal_t *journal, int errno); 100 static int jbd2_journal_create_slab(size_t slab_size); 101 102 /* 103 * Helper function used to manage commit timeouts 104 */ 105 106 static void commit_timeout(unsigned long __data) 107 { 108 struct task_struct * p = (struct task_struct *) __data; 109 110 wake_up_process(p); 111 } 112 113 /* 114 * kjournald2: The main thread function used to manage a logging device 115 * journal. 116 * 117 * This kernel thread is responsible for two things: 118 * 119 * 1) COMMIT: Every so often we need to commit the current state of the 120 * filesystem to disk. The journal thread is responsible for writing 121 * all of the metadata buffers to disk. 122 * 123 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 124 * of the data in that part of the log has been rewritten elsewhere on 125 * the disk. Flushing these old buffers to reclaim space in the log is 126 * known as checkpointing, and this thread is responsible for that job. 127 */ 128 129 static int kjournald2(void *arg) 130 { 131 journal_t *journal = arg; 132 transaction_t *transaction; 133 134 /* 135 * Set up an interval timer which can be used to trigger a commit wakeup 136 * after the commit interval expires 137 */ 138 setup_timer(&journal->j_commit_timer, commit_timeout, 139 (unsigned long)current); 140 141 /* Record that the journal thread is running */ 142 journal->j_task = current; 143 wake_up(&journal->j_wait_done_commit); 144 145 /* 146 * And now, wait forever for commit wakeup events. 147 */ 148 write_lock(&journal->j_state_lock); 149 150 loop: 151 if (journal->j_flags & JBD2_UNMOUNT) 152 goto end_loop; 153 154 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 155 journal->j_commit_sequence, journal->j_commit_request); 156 157 if (journal->j_commit_sequence != journal->j_commit_request) { 158 jbd_debug(1, "OK, requests differ\n"); 159 write_unlock(&journal->j_state_lock); 160 del_timer_sync(&journal->j_commit_timer); 161 jbd2_journal_commit_transaction(journal); 162 write_lock(&journal->j_state_lock); 163 goto loop; 164 } 165 166 wake_up(&journal->j_wait_done_commit); 167 if (freezing(current)) { 168 /* 169 * The simpler the better. Flushing journal isn't a 170 * good idea, because that depends on threads that may 171 * be already stopped. 172 */ 173 jbd_debug(1, "Now suspending kjournald2\n"); 174 write_unlock(&journal->j_state_lock); 175 refrigerator(); 176 write_lock(&journal->j_state_lock); 177 } else { 178 /* 179 * We assume on resume that commits are already there, 180 * so we don't sleep 181 */ 182 DEFINE_WAIT(wait); 183 int should_sleep = 1; 184 185 prepare_to_wait(&journal->j_wait_commit, &wait, 186 TASK_INTERRUPTIBLE); 187 if (journal->j_commit_sequence != journal->j_commit_request) 188 should_sleep = 0; 189 transaction = journal->j_running_transaction; 190 if (transaction && time_after_eq(jiffies, 191 transaction->t_expires)) 192 should_sleep = 0; 193 if (journal->j_flags & JBD2_UNMOUNT) 194 should_sleep = 0; 195 if (should_sleep) { 196 write_unlock(&journal->j_state_lock); 197 schedule(); 198 write_lock(&journal->j_state_lock); 199 } 200 finish_wait(&journal->j_wait_commit, &wait); 201 } 202 203 jbd_debug(1, "kjournald2 wakes\n"); 204 205 /* 206 * Were we woken up by a commit wakeup event? 207 */ 208 transaction = journal->j_running_transaction; 209 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 210 journal->j_commit_request = transaction->t_tid; 211 jbd_debug(1, "woke because of timeout\n"); 212 } 213 goto loop; 214 215 end_loop: 216 write_unlock(&journal->j_state_lock); 217 del_timer_sync(&journal->j_commit_timer); 218 journal->j_task = NULL; 219 wake_up(&journal->j_wait_done_commit); 220 jbd_debug(1, "Journal thread exiting.\n"); 221 return 0; 222 } 223 224 static int jbd2_journal_start_thread(journal_t *journal) 225 { 226 struct task_struct *t; 227 228 t = kthread_run(kjournald2, journal, "jbd2/%s", 229 journal->j_devname); 230 if (IS_ERR(t)) 231 return PTR_ERR(t); 232 233 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 234 return 0; 235 } 236 237 static void journal_kill_thread(journal_t *journal) 238 { 239 write_lock(&journal->j_state_lock); 240 journal->j_flags |= JBD2_UNMOUNT; 241 242 while (journal->j_task) { 243 wake_up(&journal->j_wait_commit); 244 write_unlock(&journal->j_state_lock); 245 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 246 write_lock(&journal->j_state_lock); 247 } 248 write_unlock(&journal->j_state_lock); 249 } 250 251 /* 252 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 253 * 254 * Writes a metadata buffer to a given disk block. The actual IO is not 255 * performed but a new buffer_head is constructed which labels the data 256 * to be written with the correct destination disk block. 257 * 258 * Any magic-number escaping which needs to be done will cause a 259 * copy-out here. If the buffer happens to start with the 260 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 261 * magic number is only written to the log for descripter blocks. In 262 * this case, we copy the data and replace the first word with 0, and we 263 * return a result code which indicates that this buffer needs to be 264 * marked as an escaped buffer in the corresponding log descriptor 265 * block. The missing word can then be restored when the block is read 266 * during recovery. 267 * 268 * If the source buffer has already been modified by a new transaction 269 * since we took the last commit snapshot, we use the frozen copy of 270 * that data for IO. If we end up using the existing buffer_head's data 271 * for the write, then we *have* to lock the buffer to prevent anyone 272 * else from using and possibly modifying it while the IO is in 273 * progress. 274 * 275 * The function returns a pointer to the buffer_heads to be used for IO. 276 * 277 * We assume that the journal has already been locked in this function. 278 * 279 * Return value: 280 * <0: Error 281 * >=0: Finished OK 282 * 283 * On success: 284 * Bit 0 set == escape performed on the data 285 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 286 */ 287 288 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 289 struct journal_head *jh_in, 290 struct journal_head **jh_out, 291 unsigned long long blocknr) 292 { 293 int need_copy_out = 0; 294 int done_copy_out = 0; 295 int do_escape = 0; 296 char *mapped_data; 297 struct buffer_head *new_bh; 298 struct journal_head *new_jh; 299 struct page *new_page; 300 unsigned int new_offset; 301 struct buffer_head *bh_in = jh2bh(jh_in); 302 journal_t *journal = transaction->t_journal; 303 304 /* 305 * The buffer really shouldn't be locked: only the current committing 306 * transaction is allowed to write it, so nobody else is allowed 307 * to do any IO. 308 * 309 * akpm: except if we're journalling data, and write() output is 310 * also part of a shared mapping, and another thread has 311 * decided to launch a writepage() against this buffer. 312 */ 313 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 314 315 retry_alloc: 316 new_bh = alloc_buffer_head(GFP_NOFS); 317 if (!new_bh) { 318 /* 319 * Failure is not an option, but __GFP_NOFAIL is going 320 * away; so we retry ourselves here. 321 */ 322 congestion_wait(BLK_RW_ASYNC, HZ/50); 323 goto retry_alloc; 324 } 325 326 /* keep subsequent assertions sane */ 327 new_bh->b_state = 0; 328 init_buffer(new_bh, NULL, NULL); 329 atomic_set(&new_bh->b_count, 1); 330 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 331 332 /* 333 * If a new transaction has already done a buffer copy-out, then 334 * we use that version of the data for the commit. 335 */ 336 jbd_lock_bh_state(bh_in); 337 repeat: 338 if (jh_in->b_frozen_data) { 339 done_copy_out = 1; 340 new_page = virt_to_page(jh_in->b_frozen_data); 341 new_offset = offset_in_page(jh_in->b_frozen_data); 342 } else { 343 new_page = jh2bh(jh_in)->b_page; 344 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 345 } 346 347 mapped_data = kmap_atomic(new_page, KM_USER0); 348 /* 349 * Fire data frozen trigger if data already wasn't frozen. Do this 350 * before checking for escaping, as the trigger may modify the magic 351 * offset. If a copy-out happens afterwards, it will have the correct 352 * data in the buffer. 353 */ 354 if (!done_copy_out) 355 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 356 jh_in->b_triggers); 357 358 /* 359 * Check for escaping 360 */ 361 if (*((__be32 *)(mapped_data + new_offset)) == 362 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 363 need_copy_out = 1; 364 do_escape = 1; 365 } 366 kunmap_atomic(mapped_data, KM_USER0); 367 368 /* 369 * Do we need to do a data copy? 370 */ 371 if (need_copy_out && !done_copy_out) { 372 char *tmp; 373 374 jbd_unlock_bh_state(bh_in); 375 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 376 if (!tmp) { 377 jbd2_journal_put_journal_head(new_jh); 378 return -ENOMEM; 379 } 380 jbd_lock_bh_state(bh_in); 381 if (jh_in->b_frozen_data) { 382 jbd2_free(tmp, bh_in->b_size); 383 goto repeat; 384 } 385 386 jh_in->b_frozen_data = tmp; 387 mapped_data = kmap_atomic(new_page, KM_USER0); 388 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 389 kunmap_atomic(mapped_data, KM_USER0); 390 391 new_page = virt_to_page(tmp); 392 new_offset = offset_in_page(tmp); 393 done_copy_out = 1; 394 395 /* 396 * This isn't strictly necessary, as we're using frozen 397 * data for the escaping, but it keeps consistency with 398 * b_frozen_data usage. 399 */ 400 jh_in->b_frozen_triggers = jh_in->b_triggers; 401 } 402 403 /* 404 * Did we need to do an escaping? Now we've done all the 405 * copying, we can finally do so. 406 */ 407 if (do_escape) { 408 mapped_data = kmap_atomic(new_page, KM_USER0); 409 *((unsigned int *)(mapped_data + new_offset)) = 0; 410 kunmap_atomic(mapped_data, KM_USER0); 411 } 412 413 set_bh_page(new_bh, new_page, new_offset); 414 new_jh->b_transaction = NULL; 415 new_bh->b_size = jh2bh(jh_in)->b_size; 416 new_bh->b_bdev = transaction->t_journal->j_dev; 417 new_bh->b_blocknr = blocknr; 418 set_buffer_mapped(new_bh); 419 set_buffer_dirty(new_bh); 420 421 *jh_out = new_jh; 422 423 /* 424 * The to-be-written buffer needs to get moved to the io queue, 425 * and the original buffer whose contents we are shadowing or 426 * copying is moved to the transaction's shadow queue. 427 */ 428 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 429 spin_lock(&journal->j_list_lock); 430 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 431 spin_unlock(&journal->j_list_lock); 432 jbd_unlock_bh_state(bh_in); 433 434 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 435 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 436 437 return do_escape | (done_copy_out << 1); 438 } 439 440 /* 441 * Allocation code for the journal file. Manage the space left in the 442 * journal, so that we can begin checkpointing when appropriate. 443 */ 444 445 /* 446 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 447 * 448 * Called with the journal already locked. 449 * 450 * Called under j_state_lock 451 */ 452 453 int __jbd2_log_space_left(journal_t *journal) 454 { 455 int left = journal->j_free; 456 457 /* assert_spin_locked(&journal->j_state_lock); */ 458 459 /* 460 * Be pessimistic here about the number of those free blocks which 461 * might be required for log descriptor control blocks. 462 */ 463 464 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 465 466 left -= MIN_LOG_RESERVED_BLOCKS; 467 468 if (left <= 0) 469 return 0; 470 left -= (left >> 3); 471 return left; 472 } 473 474 /* 475 * Called under j_state_lock. Returns true if a transaction commit was started. 476 */ 477 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 478 { 479 /* 480 * Are we already doing a recent enough commit? 481 */ 482 if (!tid_geq(journal->j_commit_request, target)) { 483 /* 484 * We want a new commit: OK, mark the request and wakeup the 485 * commit thread. We do _not_ do the commit ourselves. 486 */ 487 488 journal->j_commit_request = target; 489 jbd_debug(1, "JBD: requesting commit %d/%d\n", 490 journal->j_commit_request, 491 journal->j_commit_sequence); 492 wake_up(&journal->j_wait_commit); 493 return 1; 494 } 495 return 0; 496 } 497 498 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 499 { 500 int ret; 501 502 write_lock(&journal->j_state_lock); 503 ret = __jbd2_log_start_commit(journal, tid); 504 write_unlock(&journal->j_state_lock); 505 return ret; 506 } 507 508 /* 509 * Force and wait upon a commit if the calling process is not within 510 * transaction. This is used for forcing out undo-protected data which contains 511 * bitmaps, when the fs is running out of space. 512 * 513 * We can only force the running transaction if we don't have an active handle; 514 * otherwise, we will deadlock. 515 * 516 * Returns true if a transaction was started. 517 */ 518 int jbd2_journal_force_commit_nested(journal_t *journal) 519 { 520 transaction_t *transaction = NULL; 521 tid_t tid; 522 523 read_lock(&journal->j_state_lock); 524 if (journal->j_running_transaction && !current->journal_info) { 525 transaction = journal->j_running_transaction; 526 __jbd2_log_start_commit(journal, transaction->t_tid); 527 } else if (journal->j_committing_transaction) 528 transaction = journal->j_committing_transaction; 529 530 if (!transaction) { 531 read_unlock(&journal->j_state_lock); 532 return 0; /* Nothing to retry */ 533 } 534 535 tid = transaction->t_tid; 536 read_unlock(&journal->j_state_lock); 537 jbd2_log_wait_commit(journal, tid); 538 return 1; 539 } 540 541 /* 542 * Start a commit of the current running transaction (if any). Returns true 543 * if a transaction is going to be committed (or is currently already 544 * committing), and fills its tid in at *ptid 545 */ 546 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 547 { 548 int ret = 0; 549 550 write_lock(&journal->j_state_lock); 551 if (journal->j_running_transaction) { 552 tid_t tid = journal->j_running_transaction->t_tid; 553 554 __jbd2_log_start_commit(journal, tid); 555 /* There's a running transaction and we've just made sure 556 * it's commit has been scheduled. */ 557 if (ptid) 558 *ptid = tid; 559 ret = 1; 560 } else if (journal->j_committing_transaction) { 561 /* 562 * If ext3_write_super() recently started a commit, then we 563 * have to wait for completion of that transaction 564 */ 565 if (ptid) 566 *ptid = journal->j_committing_transaction->t_tid; 567 ret = 1; 568 } 569 write_unlock(&journal->j_state_lock); 570 return ret; 571 } 572 573 /* 574 * Wait for a specified commit to complete. 575 * The caller may not hold the journal lock. 576 */ 577 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 578 { 579 int err = 0; 580 581 read_lock(&journal->j_state_lock); 582 #ifdef CONFIG_JBD2_DEBUG 583 if (!tid_geq(journal->j_commit_request, tid)) { 584 printk(KERN_EMERG 585 "%s: error: j_commit_request=%d, tid=%d\n", 586 __func__, journal->j_commit_request, tid); 587 } 588 #endif 589 while (tid_gt(tid, journal->j_commit_sequence)) { 590 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n", 591 tid, journal->j_commit_sequence); 592 wake_up(&journal->j_wait_commit); 593 read_unlock(&journal->j_state_lock); 594 wait_event(journal->j_wait_done_commit, 595 !tid_gt(tid, journal->j_commit_sequence)); 596 read_lock(&journal->j_state_lock); 597 } 598 read_unlock(&journal->j_state_lock); 599 600 if (unlikely(is_journal_aborted(journal))) { 601 printk(KERN_EMERG "journal commit I/O error\n"); 602 err = -EIO; 603 } 604 return err; 605 } 606 607 /* 608 * Log buffer allocation routines: 609 */ 610 611 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 612 { 613 unsigned long blocknr; 614 615 write_lock(&journal->j_state_lock); 616 J_ASSERT(journal->j_free > 1); 617 618 blocknr = journal->j_head; 619 journal->j_head++; 620 journal->j_free--; 621 if (journal->j_head == journal->j_last) 622 journal->j_head = journal->j_first; 623 write_unlock(&journal->j_state_lock); 624 return jbd2_journal_bmap(journal, blocknr, retp); 625 } 626 627 /* 628 * Conversion of logical to physical block numbers for the journal 629 * 630 * On external journals the journal blocks are identity-mapped, so 631 * this is a no-op. If needed, we can use j_blk_offset - everything is 632 * ready. 633 */ 634 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 635 unsigned long long *retp) 636 { 637 int err = 0; 638 unsigned long long ret; 639 640 if (journal->j_inode) { 641 ret = bmap(journal->j_inode, blocknr); 642 if (ret) 643 *retp = ret; 644 else { 645 printk(KERN_ALERT "%s: journal block not found " 646 "at offset %lu on %s\n", 647 __func__, blocknr, journal->j_devname); 648 err = -EIO; 649 __journal_abort_soft(journal, err); 650 } 651 } else { 652 *retp = blocknr; /* +journal->j_blk_offset */ 653 } 654 return err; 655 } 656 657 /* 658 * We play buffer_head aliasing tricks to write data/metadata blocks to 659 * the journal without copying their contents, but for journal 660 * descriptor blocks we do need to generate bona fide buffers. 661 * 662 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 663 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 664 * But we don't bother doing that, so there will be coherency problems with 665 * mmaps of blockdevs which hold live JBD-controlled filesystems. 666 */ 667 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 668 { 669 struct buffer_head *bh; 670 unsigned long long blocknr; 671 int err; 672 673 err = jbd2_journal_next_log_block(journal, &blocknr); 674 675 if (err) 676 return NULL; 677 678 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 679 if (!bh) 680 return NULL; 681 lock_buffer(bh); 682 memset(bh->b_data, 0, journal->j_blocksize); 683 set_buffer_uptodate(bh); 684 unlock_buffer(bh); 685 BUFFER_TRACE(bh, "return this buffer"); 686 return jbd2_journal_add_journal_head(bh); 687 } 688 689 struct jbd2_stats_proc_session { 690 journal_t *journal; 691 struct transaction_stats_s *stats; 692 int start; 693 int max; 694 }; 695 696 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 697 { 698 return *pos ? NULL : SEQ_START_TOKEN; 699 } 700 701 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 702 { 703 return NULL; 704 } 705 706 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 707 { 708 struct jbd2_stats_proc_session *s = seq->private; 709 710 if (v != SEQ_START_TOKEN) 711 return 0; 712 seq_printf(seq, "%lu transaction, each up to %u blocks\n", 713 s->stats->ts_tid, 714 s->journal->j_max_transaction_buffers); 715 if (s->stats->ts_tid == 0) 716 return 0; 717 seq_printf(seq, "average: \n %ums waiting for transaction\n", 718 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 719 seq_printf(seq, " %ums running transaction\n", 720 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 721 seq_printf(seq, " %ums transaction was being locked\n", 722 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 723 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 724 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 725 seq_printf(seq, " %ums logging transaction\n", 726 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 727 seq_printf(seq, " %lluus average transaction commit time\n", 728 div_u64(s->journal->j_average_commit_time, 1000)); 729 seq_printf(seq, " %lu handles per transaction\n", 730 s->stats->run.rs_handle_count / s->stats->ts_tid); 731 seq_printf(seq, " %lu blocks per transaction\n", 732 s->stats->run.rs_blocks / s->stats->ts_tid); 733 seq_printf(seq, " %lu logged blocks per transaction\n", 734 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 735 return 0; 736 } 737 738 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 739 { 740 } 741 742 static const struct seq_operations jbd2_seq_info_ops = { 743 .start = jbd2_seq_info_start, 744 .next = jbd2_seq_info_next, 745 .stop = jbd2_seq_info_stop, 746 .show = jbd2_seq_info_show, 747 }; 748 749 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 750 { 751 journal_t *journal = PDE(inode)->data; 752 struct jbd2_stats_proc_session *s; 753 int rc, size; 754 755 s = kmalloc(sizeof(*s), GFP_KERNEL); 756 if (s == NULL) 757 return -ENOMEM; 758 size = sizeof(struct transaction_stats_s); 759 s->stats = kmalloc(size, GFP_KERNEL); 760 if (s->stats == NULL) { 761 kfree(s); 762 return -ENOMEM; 763 } 764 spin_lock(&journal->j_history_lock); 765 memcpy(s->stats, &journal->j_stats, size); 766 s->journal = journal; 767 spin_unlock(&journal->j_history_lock); 768 769 rc = seq_open(file, &jbd2_seq_info_ops); 770 if (rc == 0) { 771 struct seq_file *m = file->private_data; 772 m->private = s; 773 } else { 774 kfree(s->stats); 775 kfree(s); 776 } 777 return rc; 778 779 } 780 781 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 782 { 783 struct seq_file *seq = file->private_data; 784 struct jbd2_stats_proc_session *s = seq->private; 785 kfree(s->stats); 786 kfree(s); 787 return seq_release(inode, file); 788 } 789 790 static const struct file_operations jbd2_seq_info_fops = { 791 .owner = THIS_MODULE, 792 .open = jbd2_seq_info_open, 793 .read = seq_read, 794 .llseek = seq_lseek, 795 .release = jbd2_seq_info_release, 796 }; 797 798 static struct proc_dir_entry *proc_jbd2_stats; 799 800 static void jbd2_stats_proc_init(journal_t *journal) 801 { 802 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 803 if (journal->j_proc_entry) { 804 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 805 &jbd2_seq_info_fops, journal); 806 } 807 } 808 809 static void jbd2_stats_proc_exit(journal_t *journal) 810 { 811 remove_proc_entry("info", journal->j_proc_entry); 812 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 813 } 814 815 /* 816 * Management for journal control blocks: functions to create and 817 * destroy journal_t structures, and to initialise and read existing 818 * journal blocks from disk. */ 819 820 /* First: create and setup a journal_t object in memory. We initialise 821 * very few fields yet: that has to wait until we have created the 822 * journal structures from from scratch, or loaded them from disk. */ 823 824 static journal_t * journal_init_common (void) 825 { 826 journal_t *journal; 827 int err; 828 829 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 830 if (!journal) 831 return NULL; 832 833 init_waitqueue_head(&journal->j_wait_transaction_locked); 834 init_waitqueue_head(&journal->j_wait_logspace); 835 init_waitqueue_head(&journal->j_wait_done_commit); 836 init_waitqueue_head(&journal->j_wait_checkpoint); 837 init_waitqueue_head(&journal->j_wait_commit); 838 init_waitqueue_head(&journal->j_wait_updates); 839 mutex_init(&journal->j_barrier); 840 mutex_init(&journal->j_checkpoint_mutex); 841 spin_lock_init(&journal->j_revoke_lock); 842 spin_lock_init(&journal->j_list_lock); 843 rwlock_init(&journal->j_state_lock); 844 845 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 846 journal->j_min_batch_time = 0; 847 journal->j_max_batch_time = 15000; /* 15ms */ 848 849 /* The journal is marked for error until we succeed with recovery! */ 850 journal->j_flags = JBD2_ABORT; 851 852 /* Set up a default-sized revoke table for the new mount. */ 853 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 854 if (err) { 855 kfree(journal); 856 return NULL; 857 } 858 859 spin_lock_init(&journal->j_history_lock); 860 861 return journal; 862 } 863 864 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 865 * 866 * Create a journal structure assigned some fixed set of disk blocks to 867 * the journal. We don't actually touch those disk blocks yet, but we 868 * need to set up all of the mapping information to tell the journaling 869 * system where the journal blocks are. 870 * 871 */ 872 873 /** 874 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 875 * @bdev: Block device on which to create the journal 876 * @fs_dev: Device which hold journalled filesystem for this journal. 877 * @start: Block nr Start of journal. 878 * @len: Length of the journal in blocks. 879 * @blocksize: blocksize of journalling device 880 * 881 * Returns: a newly created journal_t * 882 * 883 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 884 * range of blocks on an arbitrary block device. 885 * 886 */ 887 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 888 struct block_device *fs_dev, 889 unsigned long long start, int len, int blocksize) 890 { 891 journal_t *journal = journal_init_common(); 892 struct buffer_head *bh; 893 char *p; 894 int n; 895 896 if (!journal) 897 return NULL; 898 899 /* journal descriptor can store up to n blocks -bzzz */ 900 journal->j_blocksize = blocksize; 901 journal->j_dev = bdev; 902 journal->j_fs_dev = fs_dev; 903 journal->j_blk_offset = start; 904 journal->j_maxlen = len; 905 bdevname(journal->j_dev, journal->j_devname); 906 p = journal->j_devname; 907 while ((p = strchr(p, '/'))) 908 *p = '!'; 909 jbd2_stats_proc_init(journal); 910 n = journal->j_blocksize / sizeof(journal_block_tag_t); 911 journal->j_wbufsize = n; 912 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 913 if (!journal->j_wbuf) { 914 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 915 __func__); 916 goto out_err; 917 } 918 919 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 920 if (!bh) { 921 printk(KERN_ERR 922 "%s: Cannot get buffer for journal superblock\n", 923 __func__); 924 goto out_err; 925 } 926 journal->j_sb_buffer = bh; 927 journal->j_superblock = (journal_superblock_t *)bh->b_data; 928 929 return journal; 930 out_err: 931 kfree(journal->j_wbuf); 932 jbd2_stats_proc_exit(journal); 933 kfree(journal); 934 return NULL; 935 } 936 937 /** 938 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 939 * @inode: An inode to create the journal in 940 * 941 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 942 * the journal. The inode must exist already, must support bmap() and 943 * must have all data blocks preallocated. 944 */ 945 journal_t * jbd2_journal_init_inode (struct inode *inode) 946 { 947 struct buffer_head *bh; 948 journal_t *journal = journal_init_common(); 949 char *p; 950 int err; 951 int n; 952 unsigned long long blocknr; 953 954 if (!journal) 955 return NULL; 956 957 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 958 journal->j_inode = inode; 959 bdevname(journal->j_dev, journal->j_devname); 960 p = journal->j_devname; 961 while ((p = strchr(p, '/'))) 962 *p = '!'; 963 p = journal->j_devname + strlen(journal->j_devname); 964 sprintf(p, "-%lu", journal->j_inode->i_ino); 965 jbd_debug(1, 966 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 967 journal, inode->i_sb->s_id, inode->i_ino, 968 (long long) inode->i_size, 969 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 970 971 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 972 journal->j_blocksize = inode->i_sb->s_blocksize; 973 jbd2_stats_proc_init(journal); 974 975 /* journal descriptor can store up to n blocks -bzzz */ 976 n = journal->j_blocksize / sizeof(journal_block_tag_t); 977 journal->j_wbufsize = n; 978 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 979 if (!journal->j_wbuf) { 980 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n", 981 __func__); 982 goto out_err; 983 } 984 985 err = jbd2_journal_bmap(journal, 0, &blocknr); 986 /* If that failed, give up */ 987 if (err) { 988 printk(KERN_ERR "%s: Cannnot locate journal superblock\n", 989 __func__); 990 goto out_err; 991 } 992 993 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 994 if (!bh) { 995 printk(KERN_ERR 996 "%s: Cannot get buffer for journal superblock\n", 997 __func__); 998 goto out_err; 999 } 1000 journal->j_sb_buffer = bh; 1001 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1002 1003 return journal; 1004 out_err: 1005 kfree(journal->j_wbuf); 1006 jbd2_stats_proc_exit(journal); 1007 kfree(journal); 1008 return NULL; 1009 } 1010 1011 /* 1012 * If the journal init or create aborts, we need to mark the journal 1013 * superblock as being NULL to prevent the journal destroy from writing 1014 * back a bogus superblock. 1015 */ 1016 static void journal_fail_superblock (journal_t *journal) 1017 { 1018 struct buffer_head *bh = journal->j_sb_buffer; 1019 brelse(bh); 1020 journal->j_sb_buffer = NULL; 1021 } 1022 1023 /* 1024 * Given a journal_t structure, initialise the various fields for 1025 * startup of a new journaling session. We use this both when creating 1026 * a journal, and after recovering an old journal to reset it for 1027 * subsequent use. 1028 */ 1029 1030 static int journal_reset(journal_t *journal) 1031 { 1032 journal_superblock_t *sb = journal->j_superblock; 1033 unsigned long long first, last; 1034 1035 first = be32_to_cpu(sb->s_first); 1036 last = be32_to_cpu(sb->s_maxlen); 1037 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1038 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n", 1039 first, last); 1040 journal_fail_superblock(journal); 1041 return -EINVAL; 1042 } 1043 1044 journal->j_first = first; 1045 journal->j_last = last; 1046 1047 journal->j_head = first; 1048 journal->j_tail = first; 1049 journal->j_free = last - first; 1050 1051 journal->j_tail_sequence = journal->j_transaction_sequence; 1052 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1053 journal->j_commit_request = journal->j_commit_sequence; 1054 1055 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1056 1057 /* Add the dynamic fields and write it to disk. */ 1058 jbd2_journal_update_superblock(journal, 1); 1059 return jbd2_journal_start_thread(journal); 1060 } 1061 1062 /** 1063 * void jbd2_journal_update_superblock() - Update journal sb on disk. 1064 * @journal: The journal to update. 1065 * @wait: Set to '0' if you don't want to wait for IO completion. 1066 * 1067 * Update a journal's dynamic superblock fields and write it to disk, 1068 * optionally waiting for the IO to complete. 1069 */ 1070 void jbd2_journal_update_superblock(journal_t *journal, int wait) 1071 { 1072 journal_superblock_t *sb = journal->j_superblock; 1073 struct buffer_head *bh = journal->j_sb_buffer; 1074 1075 /* 1076 * As a special case, if the on-disk copy is already marked as needing 1077 * no recovery (s_start == 0) and there are no outstanding transactions 1078 * in the filesystem, then we can safely defer the superblock update 1079 * until the next commit by setting JBD2_FLUSHED. This avoids 1080 * attempting a write to a potential-readonly device. 1081 */ 1082 if (sb->s_start == 0 && journal->j_tail_sequence == 1083 journal->j_transaction_sequence) { 1084 jbd_debug(1,"JBD: Skipping superblock update on recovered sb " 1085 "(start %ld, seq %d, errno %d)\n", 1086 journal->j_tail, journal->j_tail_sequence, 1087 journal->j_errno); 1088 goto out; 1089 } 1090 1091 if (buffer_write_io_error(bh)) { 1092 /* 1093 * Oh, dear. A previous attempt to write the journal 1094 * superblock failed. This could happen because the 1095 * USB device was yanked out. Or it could happen to 1096 * be a transient write error and maybe the block will 1097 * be remapped. Nothing we can do but to retry the 1098 * write and hope for the best. 1099 */ 1100 printk(KERN_ERR "JBD2: previous I/O error detected " 1101 "for journal superblock update for %s.\n", 1102 journal->j_devname); 1103 clear_buffer_write_io_error(bh); 1104 set_buffer_uptodate(bh); 1105 } 1106 1107 read_lock(&journal->j_state_lock); 1108 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n", 1109 journal->j_tail, journal->j_tail_sequence, journal->j_errno); 1110 1111 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1112 sb->s_start = cpu_to_be32(journal->j_tail); 1113 sb->s_errno = cpu_to_be32(journal->j_errno); 1114 read_unlock(&journal->j_state_lock); 1115 1116 BUFFER_TRACE(bh, "marking dirty"); 1117 mark_buffer_dirty(bh); 1118 if (wait) { 1119 sync_dirty_buffer(bh); 1120 if (buffer_write_io_error(bh)) { 1121 printk(KERN_ERR "JBD2: I/O error detected " 1122 "when updating journal superblock for %s.\n", 1123 journal->j_devname); 1124 clear_buffer_write_io_error(bh); 1125 set_buffer_uptodate(bh); 1126 } 1127 } else 1128 write_dirty_buffer(bh, WRITE); 1129 1130 out: 1131 /* If we have just flushed the log (by marking s_start==0), then 1132 * any future commit will have to be careful to update the 1133 * superblock again to re-record the true start of the log. */ 1134 1135 write_lock(&journal->j_state_lock); 1136 if (sb->s_start) 1137 journal->j_flags &= ~JBD2_FLUSHED; 1138 else 1139 journal->j_flags |= JBD2_FLUSHED; 1140 write_unlock(&journal->j_state_lock); 1141 } 1142 1143 /* 1144 * Read the superblock for a given journal, performing initial 1145 * validation of the format. 1146 */ 1147 1148 static int journal_get_superblock(journal_t *journal) 1149 { 1150 struct buffer_head *bh; 1151 journal_superblock_t *sb; 1152 int err = -EIO; 1153 1154 bh = journal->j_sb_buffer; 1155 1156 J_ASSERT(bh != NULL); 1157 if (!buffer_uptodate(bh)) { 1158 ll_rw_block(READ, 1, &bh); 1159 wait_on_buffer(bh); 1160 if (!buffer_uptodate(bh)) { 1161 printk (KERN_ERR 1162 "JBD: IO error reading journal superblock\n"); 1163 goto out; 1164 } 1165 } 1166 1167 sb = journal->j_superblock; 1168 1169 err = -EINVAL; 1170 1171 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1172 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1173 printk(KERN_WARNING "JBD: no valid journal superblock found\n"); 1174 goto out; 1175 } 1176 1177 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1178 case JBD2_SUPERBLOCK_V1: 1179 journal->j_format_version = 1; 1180 break; 1181 case JBD2_SUPERBLOCK_V2: 1182 journal->j_format_version = 2; 1183 break; 1184 default: 1185 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n"); 1186 goto out; 1187 } 1188 1189 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1190 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1191 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1192 printk (KERN_WARNING "JBD: journal file too short\n"); 1193 goto out; 1194 } 1195 1196 return 0; 1197 1198 out: 1199 journal_fail_superblock(journal); 1200 return err; 1201 } 1202 1203 /* 1204 * Load the on-disk journal superblock and read the key fields into the 1205 * journal_t. 1206 */ 1207 1208 static int load_superblock(journal_t *journal) 1209 { 1210 int err; 1211 journal_superblock_t *sb; 1212 1213 err = journal_get_superblock(journal); 1214 if (err) 1215 return err; 1216 1217 sb = journal->j_superblock; 1218 1219 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1220 journal->j_tail = be32_to_cpu(sb->s_start); 1221 journal->j_first = be32_to_cpu(sb->s_first); 1222 journal->j_last = be32_to_cpu(sb->s_maxlen); 1223 journal->j_errno = be32_to_cpu(sb->s_errno); 1224 1225 return 0; 1226 } 1227 1228 1229 /** 1230 * int jbd2_journal_load() - Read journal from disk. 1231 * @journal: Journal to act on. 1232 * 1233 * Given a journal_t structure which tells us which disk blocks contain 1234 * a journal, read the journal from disk to initialise the in-memory 1235 * structures. 1236 */ 1237 int jbd2_journal_load(journal_t *journal) 1238 { 1239 int err; 1240 journal_superblock_t *sb; 1241 1242 err = load_superblock(journal); 1243 if (err) 1244 return err; 1245 1246 sb = journal->j_superblock; 1247 /* If this is a V2 superblock, then we have to check the 1248 * features flags on it. */ 1249 1250 if (journal->j_format_version >= 2) { 1251 if ((sb->s_feature_ro_compat & 1252 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1253 (sb->s_feature_incompat & 1254 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1255 printk (KERN_WARNING 1256 "JBD: Unrecognised features on journal\n"); 1257 return -EINVAL; 1258 } 1259 } 1260 1261 /* 1262 * Create a slab for this blocksize 1263 */ 1264 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1265 if (err) 1266 return err; 1267 1268 /* Let the recovery code check whether it needs to recover any 1269 * data from the journal. */ 1270 if (jbd2_journal_recover(journal)) 1271 goto recovery_error; 1272 1273 if (journal->j_failed_commit) { 1274 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1275 "is corrupt.\n", journal->j_failed_commit, 1276 journal->j_devname); 1277 return -EIO; 1278 } 1279 1280 /* OK, we've finished with the dynamic journal bits: 1281 * reinitialise the dynamic contents of the superblock in memory 1282 * and reset them on disk. */ 1283 if (journal_reset(journal)) 1284 goto recovery_error; 1285 1286 journal->j_flags &= ~JBD2_ABORT; 1287 journal->j_flags |= JBD2_LOADED; 1288 return 0; 1289 1290 recovery_error: 1291 printk (KERN_WARNING "JBD: recovery failed\n"); 1292 return -EIO; 1293 } 1294 1295 /** 1296 * void jbd2_journal_destroy() - Release a journal_t structure. 1297 * @journal: Journal to act on. 1298 * 1299 * Release a journal_t structure once it is no longer in use by the 1300 * journaled object. 1301 * Return <0 if we couldn't clean up the journal. 1302 */ 1303 int jbd2_journal_destroy(journal_t *journal) 1304 { 1305 int err = 0; 1306 1307 /* Wait for the commit thread to wake up and die. */ 1308 journal_kill_thread(journal); 1309 1310 /* Force a final log commit */ 1311 if (journal->j_running_transaction) 1312 jbd2_journal_commit_transaction(journal); 1313 1314 /* Force any old transactions to disk */ 1315 1316 /* Totally anal locking here... */ 1317 spin_lock(&journal->j_list_lock); 1318 while (journal->j_checkpoint_transactions != NULL) { 1319 spin_unlock(&journal->j_list_lock); 1320 mutex_lock(&journal->j_checkpoint_mutex); 1321 jbd2_log_do_checkpoint(journal); 1322 mutex_unlock(&journal->j_checkpoint_mutex); 1323 spin_lock(&journal->j_list_lock); 1324 } 1325 1326 J_ASSERT(journal->j_running_transaction == NULL); 1327 J_ASSERT(journal->j_committing_transaction == NULL); 1328 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1329 spin_unlock(&journal->j_list_lock); 1330 1331 if (journal->j_sb_buffer) { 1332 if (!is_journal_aborted(journal)) { 1333 /* We can now mark the journal as empty. */ 1334 journal->j_tail = 0; 1335 journal->j_tail_sequence = 1336 ++journal->j_transaction_sequence; 1337 jbd2_journal_update_superblock(journal, 1); 1338 } else { 1339 err = -EIO; 1340 } 1341 brelse(journal->j_sb_buffer); 1342 } 1343 1344 if (journal->j_proc_entry) 1345 jbd2_stats_proc_exit(journal); 1346 if (journal->j_inode) 1347 iput(journal->j_inode); 1348 if (journal->j_revoke) 1349 jbd2_journal_destroy_revoke(journal); 1350 kfree(journal->j_wbuf); 1351 kfree(journal); 1352 1353 return err; 1354 } 1355 1356 1357 /** 1358 *int jbd2_journal_check_used_features () - Check if features specified are used. 1359 * @journal: Journal to check. 1360 * @compat: bitmask of compatible features 1361 * @ro: bitmask of features that force read-only mount 1362 * @incompat: bitmask of incompatible features 1363 * 1364 * Check whether the journal uses all of a given set of 1365 * features. Return true (non-zero) if it does. 1366 **/ 1367 1368 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1369 unsigned long ro, unsigned long incompat) 1370 { 1371 journal_superblock_t *sb; 1372 1373 if (!compat && !ro && !incompat) 1374 return 1; 1375 /* Load journal superblock if it is not loaded yet. */ 1376 if (journal->j_format_version == 0 && 1377 journal_get_superblock(journal) != 0) 1378 return 0; 1379 if (journal->j_format_version == 1) 1380 return 0; 1381 1382 sb = journal->j_superblock; 1383 1384 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1385 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1386 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1387 return 1; 1388 1389 return 0; 1390 } 1391 1392 /** 1393 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1394 * @journal: Journal to check. 1395 * @compat: bitmask of compatible features 1396 * @ro: bitmask of features that force read-only mount 1397 * @incompat: bitmask of incompatible features 1398 * 1399 * Check whether the journaling code supports the use of 1400 * all of a given set of features on this journal. Return true 1401 * (non-zero) if it can. */ 1402 1403 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1404 unsigned long ro, unsigned long incompat) 1405 { 1406 if (!compat && !ro && !incompat) 1407 return 1; 1408 1409 /* We can support any known requested features iff the 1410 * superblock is in version 2. Otherwise we fail to support any 1411 * extended sb features. */ 1412 1413 if (journal->j_format_version != 2) 1414 return 0; 1415 1416 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1417 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1418 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1419 return 1; 1420 1421 return 0; 1422 } 1423 1424 /** 1425 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1426 * @journal: Journal to act on. 1427 * @compat: bitmask of compatible features 1428 * @ro: bitmask of features that force read-only mount 1429 * @incompat: bitmask of incompatible features 1430 * 1431 * Mark a given journal feature as present on the 1432 * superblock. Returns true if the requested features could be set. 1433 * 1434 */ 1435 1436 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1437 unsigned long ro, unsigned long incompat) 1438 { 1439 journal_superblock_t *sb; 1440 1441 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1442 return 1; 1443 1444 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1445 return 0; 1446 1447 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1448 compat, ro, incompat); 1449 1450 sb = journal->j_superblock; 1451 1452 sb->s_feature_compat |= cpu_to_be32(compat); 1453 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1454 sb->s_feature_incompat |= cpu_to_be32(incompat); 1455 1456 return 1; 1457 } 1458 1459 /* 1460 * jbd2_journal_clear_features () - Clear a given journal feature in the 1461 * superblock 1462 * @journal: Journal to act on. 1463 * @compat: bitmask of compatible features 1464 * @ro: bitmask of features that force read-only mount 1465 * @incompat: bitmask of incompatible features 1466 * 1467 * Clear a given journal feature as present on the 1468 * superblock. 1469 */ 1470 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1471 unsigned long ro, unsigned long incompat) 1472 { 1473 journal_superblock_t *sb; 1474 1475 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1476 compat, ro, incompat); 1477 1478 sb = journal->j_superblock; 1479 1480 sb->s_feature_compat &= ~cpu_to_be32(compat); 1481 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1482 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1483 } 1484 EXPORT_SYMBOL(jbd2_journal_clear_features); 1485 1486 /** 1487 * int jbd2_journal_update_format () - Update on-disk journal structure. 1488 * @journal: Journal to act on. 1489 * 1490 * Given an initialised but unloaded journal struct, poke about in the 1491 * on-disk structure to update it to the most recent supported version. 1492 */ 1493 int jbd2_journal_update_format (journal_t *journal) 1494 { 1495 journal_superblock_t *sb; 1496 int err; 1497 1498 err = journal_get_superblock(journal); 1499 if (err) 1500 return err; 1501 1502 sb = journal->j_superblock; 1503 1504 switch (be32_to_cpu(sb->s_header.h_blocktype)) { 1505 case JBD2_SUPERBLOCK_V2: 1506 return 0; 1507 case JBD2_SUPERBLOCK_V1: 1508 return journal_convert_superblock_v1(journal, sb); 1509 default: 1510 break; 1511 } 1512 return -EINVAL; 1513 } 1514 1515 static int journal_convert_superblock_v1(journal_t *journal, 1516 journal_superblock_t *sb) 1517 { 1518 int offset, blocksize; 1519 struct buffer_head *bh; 1520 1521 printk(KERN_WARNING 1522 "JBD: Converting superblock from version 1 to 2.\n"); 1523 1524 /* Pre-initialise new fields to zero */ 1525 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb); 1526 blocksize = be32_to_cpu(sb->s_blocksize); 1527 memset(&sb->s_feature_compat, 0, blocksize-offset); 1528 1529 sb->s_nr_users = cpu_to_be32(1); 1530 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2); 1531 journal->j_format_version = 2; 1532 1533 bh = journal->j_sb_buffer; 1534 BUFFER_TRACE(bh, "marking dirty"); 1535 mark_buffer_dirty(bh); 1536 sync_dirty_buffer(bh); 1537 return 0; 1538 } 1539 1540 1541 /** 1542 * int jbd2_journal_flush () - Flush journal 1543 * @journal: Journal to act on. 1544 * 1545 * Flush all data for a given journal to disk and empty the journal. 1546 * Filesystems can use this when remounting readonly to ensure that 1547 * recovery does not need to happen on remount. 1548 */ 1549 1550 int jbd2_journal_flush(journal_t *journal) 1551 { 1552 int err = 0; 1553 transaction_t *transaction = NULL; 1554 unsigned long old_tail; 1555 1556 write_lock(&journal->j_state_lock); 1557 1558 /* Force everything buffered to the log... */ 1559 if (journal->j_running_transaction) { 1560 transaction = journal->j_running_transaction; 1561 __jbd2_log_start_commit(journal, transaction->t_tid); 1562 } else if (journal->j_committing_transaction) 1563 transaction = journal->j_committing_transaction; 1564 1565 /* Wait for the log commit to complete... */ 1566 if (transaction) { 1567 tid_t tid = transaction->t_tid; 1568 1569 write_unlock(&journal->j_state_lock); 1570 jbd2_log_wait_commit(journal, tid); 1571 } else { 1572 write_unlock(&journal->j_state_lock); 1573 } 1574 1575 /* ...and flush everything in the log out to disk. */ 1576 spin_lock(&journal->j_list_lock); 1577 while (!err && journal->j_checkpoint_transactions != NULL) { 1578 spin_unlock(&journal->j_list_lock); 1579 mutex_lock(&journal->j_checkpoint_mutex); 1580 err = jbd2_log_do_checkpoint(journal); 1581 mutex_unlock(&journal->j_checkpoint_mutex); 1582 spin_lock(&journal->j_list_lock); 1583 } 1584 spin_unlock(&journal->j_list_lock); 1585 1586 if (is_journal_aborted(journal)) 1587 return -EIO; 1588 1589 jbd2_cleanup_journal_tail(journal); 1590 1591 /* Finally, mark the journal as really needing no recovery. 1592 * This sets s_start==0 in the underlying superblock, which is 1593 * the magic code for a fully-recovered superblock. Any future 1594 * commits of data to the journal will restore the current 1595 * s_start value. */ 1596 write_lock(&journal->j_state_lock); 1597 old_tail = journal->j_tail; 1598 journal->j_tail = 0; 1599 write_unlock(&journal->j_state_lock); 1600 jbd2_journal_update_superblock(journal, 1); 1601 write_lock(&journal->j_state_lock); 1602 journal->j_tail = old_tail; 1603 1604 J_ASSERT(!journal->j_running_transaction); 1605 J_ASSERT(!journal->j_committing_transaction); 1606 J_ASSERT(!journal->j_checkpoint_transactions); 1607 J_ASSERT(journal->j_head == journal->j_tail); 1608 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1609 write_unlock(&journal->j_state_lock); 1610 return 0; 1611 } 1612 1613 /** 1614 * int jbd2_journal_wipe() - Wipe journal contents 1615 * @journal: Journal to act on. 1616 * @write: flag (see below) 1617 * 1618 * Wipe out all of the contents of a journal, safely. This will produce 1619 * a warning if the journal contains any valid recovery information. 1620 * Must be called between journal_init_*() and jbd2_journal_load(). 1621 * 1622 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1623 * we merely suppress recovery. 1624 */ 1625 1626 int jbd2_journal_wipe(journal_t *journal, int write) 1627 { 1628 int err = 0; 1629 1630 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1631 1632 err = load_superblock(journal); 1633 if (err) 1634 return err; 1635 1636 if (!journal->j_tail) 1637 goto no_recovery; 1638 1639 printk (KERN_WARNING "JBD: %s recovery information on journal\n", 1640 write ? "Clearing" : "Ignoring"); 1641 1642 err = jbd2_journal_skip_recovery(journal); 1643 if (write) 1644 jbd2_journal_update_superblock(journal, 1); 1645 1646 no_recovery: 1647 return err; 1648 } 1649 1650 /* 1651 * Journal abort has very specific semantics, which we describe 1652 * for journal abort. 1653 * 1654 * Two internal functions, which provide abort to the jbd layer 1655 * itself are here. 1656 */ 1657 1658 /* 1659 * Quick version for internal journal use (doesn't lock the journal). 1660 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1661 * and don't attempt to make any other journal updates. 1662 */ 1663 void __jbd2_journal_abort_hard(journal_t *journal) 1664 { 1665 transaction_t *transaction; 1666 1667 if (journal->j_flags & JBD2_ABORT) 1668 return; 1669 1670 printk(KERN_ERR "Aborting journal on device %s.\n", 1671 journal->j_devname); 1672 1673 write_lock(&journal->j_state_lock); 1674 journal->j_flags |= JBD2_ABORT; 1675 transaction = journal->j_running_transaction; 1676 if (transaction) 1677 __jbd2_log_start_commit(journal, transaction->t_tid); 1678 write_unlock(&journal->j_state_lock); 1679 } 1680 1681 /* Soft abort: record the abort error status in the journal superblock, 1682 * but don't do any other IO. */ 1683 static void __journal_abort_soft (journal_t *journal, int errno) 1684 { 1685 if (journal->j_flags & JBD2_ABORT) 1686 return; 1687 1688 if (!journal->j_errno) 1689 journal->j_errno = errno; 1690 1691 __jbd2_journal_abort_hard(journal); 1692 1693 if (errno) 1694 jbd2_journal_update_superblock(journal, 1); 1695 } 1696 1697 /** 1698 * void jbd2_journal_abort () - Shutdown the journal immediately. 1699 * @journal: the journal to shutdown. 1700 * @errno: an error number to record in the journal indicating 1701 * the reason for the shutdown. 1702 * 1703 * Perform a complete, immediate shutdown of the ENTIRE 1704 * journal (not of a single transaction). This operation cannot be 1705 * undone without closing and reopening the journal. 1706 * 1707 * The jbd2_journal_abort function is intended to support higher level error 1708 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1709 * mode. 1710 * 1711 * Journal abort has very specific semantics. Any existing dirty, 1712 * unjournaled buffers in the main filesystem will still be written to 1713 * disk by bdflush, but the journaling mechanism will be suspended 1714 * immediately and no further transaction commits will be honoured. 1715 * 1716 * Any dirty, journaled buffers will be written back to disk without 1717 * hitting the journal. Atomicity cannot be guaranteed on an aborted 1718 * filesystem, but we _do_ attempt to leave as much data as possible 1719 * behind for fsck to use for cleanup. 1720 * 1721 * Any attempt to get a new transaction handle on a journal which is in 1722 * ABORT state will just result in an -EROFS error return. A 1723 * jbd2_journal_stop on an existing handle will return -EIO if we have 1724 * entered abort state during the update. 1725 * 1726 * Recursive transactions are not disturbed by journal abort until the 1727 * final jbd2_journal_stop, which will receive the -EIO error. 1728 * 1729 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 1730 * which will be recorded (if possible) in the journal superblock. This 1731 * allows a client to record failure conditions in the middle of a 1732 * transaction without having to complete the transaction to record the 1733 * failure to disk. ext3_error, for example, now uses this 1734 * functionality. 1735 * 1736 * Errors which originate from within the journaling layer will NOT 1737 * supply an errno; a null errno implies that absolutely no further 1738 * writes are done to the journal (unless there are any already in 1739 * progress). 1740 * 1741 */ 1742 1743 void jbd2_journal_abort(journal_t *journal, int errno) 1744 { 1745 __journal_abort_soft(journal, errno); 1746 } 1747 1748 /** 1749 * int jbd2_journal_errno () - returns the journal's error state. 1750 * @journal: journal to examine. 1751 * 1752 * This is the errno number set with jbd2_journal_abort(), the last 1753 * time the journal was mounted - if the journal was stopped 1754 * without calling abort this will be 0. 1755 * 1756 * If the journal has been aborted on this mount time -EROFS will 1757 * be returned. 1758 */ 1759 int jbd2_journal_errno(journal_t *journal) 1760 { 1761 int err; 1762 1763 read_lock(&journal->j_state_lock); 1764 if (journal->j_flags & JBD2_ABORT) 1765 err = -EROFS; 1766 else 1767 err = journal->j_errno; 1768 read_unlock(&journal->j_state_lock); 1769 return err; 1770 } 1771 1772 /** 1773 * int jbd2_journal_clear_err () - clears the journal's error state 1774 * @journal: journal to act on. 1775 * 1776 * An error must be cleared or acked to take a FS out of readonly 1777 * mode. 1778 */ 1779 int jbd2_journal_clear_err(journal_t *journal) 1780 { 1781 int err = 0; 1782 1783 write_lock(&journal->j_state_lock); 1784 if (journal->j_flags & JBD2_ABORT) 1785 err = -EROFS; 1786 else 1787 journal->j_errno = 0; 1788 write_unlock(&journal->j_state_lock); 1789 return err; 1790 } 1791 1792 /** 1793 * void jbd2_journal_ack_err() - Ack journal err. 1794 * @journal: journal to act on. 1795 * 1796 * An error must be cleared or acked to take a FS out of readonly 1797 * mode. 1798 */ 1799 void jbd2_journal_ack_err(journal_t *journal) 1800 { 1801 write_lock(&journal->j_state_lock); 1802 if (journal->j_errno) 1803 journal->j_flags |= JBD2_ACK_ERR; 1804 write_unlock(&journal->j_state_lock); 1805 } 1806 1807 int jbd2_journal_blocks_per_page(struct inode *inode) 1808 { 1809 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1810 } 1811 1812 /* 1813 * helper functions to deal with 32 or 64bit block numbers. 1814 */ 1815 size_t journal_tag_bytes(journal_t *journal) 1816 { 1817 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 1818 return JBD2_TAG_SIZE64; 1819 else 1820 return JBD2_TAG_SIZE32; 1821 } 1822 1823 /* 1824 * JBD memory management 1825 * 1826 * These functions are used to allocate block-sized chunks of memory 1827 * used for making copies of buffer_head data. Very often it will be 1828 * page-sized chunks of data, but sometimes it will be in 1829 * sub-page-size chunks. (For example, 16k pages on Power systems 1830 * with a 4k block file system.) For blocks smaller than a page, we 1831 * use a SLAB allocator. There are slab caches for each block size, 1832 * which are allocated at mount time, if necessary, and we only free 1833 * (all of) the slab caches when/if the jbd2 module is unloaded. For 1834 * this reason we don't need to a mutex to protect access to 1835 * jbd2_slab[] allocating or releasing memory; only in 1836 * jbd2_journal_create_slab(). 1837 */ 1838 #define JBD2_MAX_SLABS 8 1839 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 1840 1841 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 1842 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 1843 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 1844 }; 1845 1846 1847 static void jbd2_journal_destroy_slabs(void) 1848 { 1849 int i; 1850 1851 for (i = 0; i < JBD2_MAX_SLABS; i++) { 1852 if (jbd2_slab[i]) 1853 kmem_cache_destroy(jbd2_slab[i]); 1854 jbd2_slab[i] = NULL; 1855 } 1856 } 1857 1858 static int jbd2_journal_create_slab(size_t size) 1859 { 1860 static DEFINE_MUTEX(jbd2_slab_create_mutex); 1861 int i = order_base_2(size) - 10; 1862 size_t slab_size; 1863 1864 if (size == PAGE_SIZE) 1865 return 0; 1866 1867 if (i >= JBD2_MAX_SLABS) 1868 return -EINVAL; 1869 1870 if (unlikely(i < 0)) 1871 i = 0; 1872 mutex_lock(&jbd2_slab_create_mutex); 1873 if (jbd2_slab[i]) { 1874 mutex_unlock(&jbd2_slab_create_mutex); 1875 return 0; /* Already created */ 1876 } 1877 1878 slab_size = 1 << (i+10); 1879 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 1880 slab_size, 0, NULL); 1881 mutex_unlock(&jbd2_slab_create_mutex); 1882 if (!jbd2_slab[i]) { 1883 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 1884 return -ENOMEM; 1885 } 1886 return 0; 1887 } 1888 1889 static struct kmem_cache *get_slab(size_t size) 1890 { 1891 int i = order_base_2(size) - 10; 1892 1893 BUG_ON(i >= JBD2_MAX_SLABS); 1894 if (unlikely(i < 0)) 1895 i = 0; 1896 BUG_ON(jbd2_slab[i] == NULL); 1897 return jbd2_slab[i]; 1898 } 1899 1900 void *jbd2_alloc(size_t size, gfp_t flags) 1901 { 1902 void *ptr; 1903 1904 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 1905 1906 flags |= __GFP_REPEAT; 1907 if (size == PAGE_SIZE) 1908 ptr = (void *)__get_free_pages(flags, 0); 1909 else if (size > PAGE_SIZE) { 1910 int order = get_order(size); 1911 1912 if (order < 3) 1913 ptr = (void *)__get_free_pages(flags, order); 1914 else 1915 ptr = vmalloc(size); 1916 } else 1917 ptr = kmem_cache_alloc(get_slab(size), flags); 1918 1919 /* Check alignment; SLUB has gotten this wrong in the past, 1920 * and this can lead to user data corruption! */ 1921 BUG_ON(((unsigned long) ptr) & (size-1)); 1922 1923 return ptr; 1924 } 1925 1926 void jbd2_free(void *ptr, size_t size) 1927 { 1928 if (size == PAGE_SIZE) { 1929 free_pages((unsigned long)ptr, 0); 1930 return; 1931 } 1932 if (size > PAGE_SIZE) { 1933 int order = get_order(size); 1934 1935 if (order < 3) 1936 free_pages((unsigned long)ptr, order); 1937 else 1938 vfree(ptr); 1939 return; 1940 } 1941 kmem_cache_free(get_slab(size), ptr); 1942 }; 1943 1944 /* 1945 * Journal_head storage management 1946 */ 1947 static struct kmem_cache *jbd2_journal_head_cache; 1948 #ifdef CONFIG_JBD2_DEBUG 1949 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 1950 #endif 1951 1952 static int journal_init_jbd2_journal_head_cache(void) 1953 { 1954 int retval; 1955 1956 J_ASSERT(jbd2_journal_head_cache == NULL); 1957 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 1958 sizeof(struct journal_head), 1959 0, /* offset */ 1960 SLAB_TEMPORARY, /* flags */ 1961 NULL); /* ctor */ 1962 retval = 0; 1963 if (!jbd2_journal_head_cache) { 1964 retval = -ENOMEM; 1965 printk(KERN_EMERG "JBD: no memory for journal_head cache\n"); 1966 } 1967 return retval; 1968 } 1969 1970 static void jbd2_journal_destroy_jbd2_journal_head_cache(void) 1971 { 1972 if (jbd2_journal_head_cache) { 1973 kmem_cache_destroy(jbd2_journal_head_cache); 1974 jbd2_journal_head_cache = NULL; 1975 } 1976 } 1977 1978 /* 1979 * journal_head splicing and dicing 1980 */ 1981 static struct journal_head *journal_alloc_journal_head(void) 1982 { 1983 struct journal_head *ret; 1984 1985 #ifdef CONFIG_JBD2_DEBUG 1986 atomic_inc(&nr_journal_heads); 1987 #endif 1988 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1989 if (!ret) { 1990 jbd_debug(1, "out of memory for journal_head\n"); 1991 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 1992 while (!ret) { 1993 yield(); 1994 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 1995 } 1996 } 1997 return ret; 1998 } 1999 2000 static void journal_free_journal_head(struct journal_head *jh) 2001 { 2002 #ifdef CONFIG_JBD2_DEBUG 2003 atomic_dec(&nr_journal_heads); 2004 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2005 #endif 2006 kmem_cache_free(jbd2_journal_head_cache, jh); 2007 } 2008 2009 /* 2010 * A journal_head is attached to a buffer_head whenever JBD has an 2011 * interest in the buffer. 2012 * 2013 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2014 * is set. This bit is tested in core kernel code where we need to take 2015 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2016 * there. 2017 * 2018 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2019 * 2020 * When a buffer has its BH_JBD bit set it is immune from being released by 2021 * core kernel code, mainly via ->b_count. 2022 * 2023 * A journal_head may be detached from its buffer_head when the journal_head's 2024 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL. 2025 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the 2026 * journal_head can be dropped if needed. 2027 * 2028 * Various places in the kernel want to attach a journal_head to a buffer_head 2029 * _before_ attaching the journal_head to a transaction. To protect the 2030 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2031 * journal_head's b_jcount refcount by one. The caller must call 2032 * jbd2_journal_put_journal_head() to undo this. 2033 * 2034 * So the typical usage would be: 2035 * 2036 * (Attach a journal_head if needed. Increments b_jcount) 2037 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2038 * ... 2039 * jh->b_transaction = xxx; 2040 * jbd2_journal_put_journal_head(jh); 2041 * 2042 * Now, the journal_head's b_jcount is zero, but it is safe from being released 2043 * because it has a non-zero b_transaction. 2044 */ 2045 2046 /* 2047 * Give a buffer_head a journal_head. 2048 * 2049 * Doesn't need the journal lock. 2050 * May sleep. 2051 */ 2052 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2053 { 2054 struct journal_head *jh; 2055 struct journal_head *new_jh = NULL; 2056 2057 repeat: 2058 if (!buffer_jbd(bh)) { 2059 new_jh = journal_alloc_journal_head(); 2060 memset(new_jh, 0, sizeof(*new_jh)); 2061 } 2062 2063 jbd_lock_bh_journal_head(bh); 2064 if (buffer_jbd(bh)) { 2065 jh = bh2jh(bh); 2066 } else { 2067 J_ASSERT_BH(bh, 2068 (atomic_read(&bh->b_count) > 0) || 2069 (bh->b_page && bh->b_page->mapping)); 2070 2071 if (!new_jh) { 2072 jbd_unlock_bh_journal_head(bh); 2073 goto repeat; 2074 } 2075 2076 jh = new_jh; 2077 new_jh = NULL; /* We consumed it */ 2078 set_buffer_jbd(bh); 2079 bh->b_private = jh; 2080 jh->b_bh = bh; 2081 get_bh(bh); 2082 BUFFER_TRACE(bh, "added journal_head"); 2083 } 2084 jh->b_jcount++; 2085 jbd_unlock_bh_journal_head(bh); 2086 if (new_jh) 2087 journal_free_journal_head(new_jh); 2088 return bh->b_private; 2089 } 2090 2091 /* 2092 * Grab a ref against this buffer_head's journal_head. If it ended up not 2093 * having a journal_head, return NULL 2094 */ 2095 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2096 { 2097 struct journal_head *jh = NULL; 2098 2099 jbd_lock_bh_journal_head(bh); 2100 if (buffer_jbd(bh)) { 2101 jh = bh2jh(bh); 2102 jh->b_jcount++; 2103 } 2104 jbd_unlock_bh_journal_head(bh); 2105 return jh; 2106 } 2107 2108 static void __journal_remove_journal_head(struct buffer_head *bh) 2109 { 2110 struct journal_head *jh = bh2jh(bh); 2111 2112 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2113 2114 get_bh(bh); 2115 if (jh->b_jcount == 0) { 2116 if (jh->b_transaction == NULL && 2117 jh->b_next_transaction == NULL && 2118 jh->b_cp_transaction == NULL) { 2119 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2120 J_ASSERT_BH(bh, buffer_jbd(bh)); 2121 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2122 BUFFER_TRACE(bh, "remove journal_head"); 2123 if (jh->b_frozen_data) { 2124 printk(KERN_WARNING "%s: freeing " 2125 "b_frozen_data\n", 2126 __func__); 2127 jbd2_free(jh->b_frozen_data, bh->b_size); 2128 } 2129 if (jh->b_committed_data) { 2130 printk(KERN_WARNING "%s: freeing " 2131 "b_committed_data\n", 2132 __func__); 2133 jbd2_free(jh->b_committed_data, bh->b_size); 2134 } 2135 bh->b_private = NULL; 2136 jh->b_bh = NULL; /* debug, really */ 2137 clear_buffer_jbd(bh); 2138 __brelse(bh); 2139 journal_free_journal_head(jh); 2140 } else { 2141 BUFFER_TRACE(bh, "journal_head was locked"); 2142 } 2143 } 2144 } 2145 2146 /* 2147 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction 2148 * and has a zero b_jcount then remove and release its journal_head. If we did 2149 * see that the buffer is not used by any transaction we also "logically" 2150 * decrement ->b_count. 2151 * 2152 * We in fact take an additional increment on ->b_count as a convenience, 2153 * because the caller usually wants to do additional things with the bh 2154 * after calling here. 2155 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some 2156 * time. Once the caller has run __brelse(), the buffer is eligible for 2157 * reaping by try_to_free_buffers(). 2158 */ 2159 void jbd2_journal_remove_journal_head(struct buffer_head *bh) 2160 { 2161 jbd_lock_bh_journal_head(bh); 2162 __journal_remove_journal_head(bh); 2163 jbd_unlock_bh_journal_head(bh); 2164 } 2165 2166 /* 2167 * Drop a reference on the passed journal_head. If it fell to zero then try to 2168 * release the journal_head from the buffer_head. 2169 */ 2170 void jbd2_journal_put_journal_head(struct journal_head *jh) 2171 { 2172 struct buffer_head *bh = jh2bh(jh); 2173 2174 jbd_lock_bh_journal_head(bh); 2175 J_ASSERT_JH(jh, jh->b_jcount > 0); 2176 --jh->b_jcount; 2177 if (!jh->b_jcount && !jh->b_transaction) { 2178 __journal_remove_journal_head(bh); 2179 __brelse(bh); 2180 } 2181 jbd_unlock_bh_journal_head(bh); 2182 } 2183 2184 /* 2185 * Initialize jbd inode head 2186 */ 2187 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2188 { 2189 jinode->i_transaction = NULL; 2190 jinode->i_next_transaction = NULL; 2191 jinode->i_vfs_inode = inode; 2192 jinode->i_flags = 0; 2193 INIT_LIST_HEAD(&jinode->i_list); 2194 } 2195 2196 /* 2197 * Function to be called before we start removing inode from memory (i.e., 2198 * clear_inode() is a fine place to be called from). It removes inode from 2199 * transaction's lists. 2200 */ 2201 void jbd2_journal_release_jbd_inode(journal_t *journal, 2202 struct jbd2_inode *jinode) 2203 { 2204 if (!journal) 2205 return; 2206 restart: 2207 spin_lock(&journal->j_list_lock); 2208 /* Is commit writing out inode - we have to wait */ 2209 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) { 2210 wait_queue_head_t *wq; 2211 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2212 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2213 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2214 spin_unlock(&journal->j_list_lock); 2215 schedule(); 2216 finish_wait(wq, &wait.wait); 2217 goto restart; 2218 } 2219 2220 if (jinode->i_transaction) { 2221 list_del(&jinode->i_list); 2222 jinode->i_transaction = NULL; 2223 } 2224 spin_unlock(&journal->j_list_lock); 2225 } 2226 2227 /* 2228 * debugfs tunables 2229 */ 2230 #ifdef CONFIG_JBD2_DEBUG 2231 u8 jbd2_journal_enable_debug __read_mostly; 2232 EXPORT_SYMBOL(jbd2_journal_enable_debug); 2233 2234 #define JBD2_DEBUG_NAME "jbd2-debug" 2235 2236 static struct dentry *jbd2_debugfs_dir; 2237 static struct dentry *jbd2_debug; 2238 2239 static void __init jbd2_create_debugfs_entry(void) 2240 { 2241 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL); 2242 if (jbd2_debugfs_dir) 2243 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, 2244 S_IRUGO | S_IWUSR, 2245 jbd2_debugfs_dir, 2246 &jbd2_journal_enable_debug); 2247 } 2248 2249 static void __exit jbd2_remove_debugfs_entry(void) 2250 { 2251 debugfs_remove(jbd2_debug); 2252 debugfs_remove(jbd2_debugfs_dir); 2253 } 2254 2255 #else 2256 2257 static void __init jbd2_create_debugfs_entry(void) 2258 { 2259 } 2260 2261 static void __exit jbd2_remove_debugfs_entry(void) 2262 { 2263 } 2264 2265 #endif 2266 2267 #ifdef CONFIG_PROC_FS 2268 2269 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2270 2271 static void __init jbd2_create_jbd_stats_proc_entry(void) 2272 { 2273 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2274 } 2275 2276 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2277 { 2278 if (proc_jbd2_stats) 2279 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2280 } 2281 2282 #else 2283 2284 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2285 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2286 2287 #endif 2288 2289 struct kmem_cache *jbd2_handle_cache; 2290 2291 static int __init journal_init_handle_cache(void) 2292 { 2293 jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle", 2294 sizeof(handle_t), 2295 0, /* offset */ 2296 SLAB_TEMPORARY, /* flags */ 2297 NULL); /* ctor */ 2298 if (jbd2_handle_cache == NULL) { 2299 printk(KERN_EMERG "JBD: failed to create handle cache\n"); 2300 return -ENOMEM; 2301 } 2302 return 0; 2303 } 2304 2305 static void jbd2_journal_destroy_handle_cache(void) 2306 { 2307 if (jbd2_handle_cache) 2308 kmem_cache_destroy(jbd2_handle_cache); 2309 } 2310 2311 /* 2312 * Module startup and shutdown 2313 */ 2314 2315 static int __init journal_init_caches(void) 2316 { 2317 int ret; 2318 2319 ret = jbd2_journal_init_revoke_caches(); 2320 if (ret == 0) 2321 ret = journal_init_jbd2_journal_head_cache(); 2322 if (ret == 0) 2323 ret = journal_init_handle_cache(); 2324 return ret; 2325 } 2326 2327 static void jbd2_journal_destroy_caches(void) 2328 { 2329 jbd2_journal_destroy_revoke_caches(); 2330 jbd2_journal_destroy_jbd2_journal_head_cache(); 2331 jbd2_journal_destroy_handle_cache(); 2332 jbd2_journal_destroy_slabs(); 2333 } 2334 2335 static int __init journal_init(void) 2336 { 2337 int ret; 2338 2339 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2340 2341 ret = journal_init_caches(); 2342 if (ret == 0) { 2343 jbd2_create_debugfs_entry(); 2344 jbd2_create_jbd_stats_proc_entry(); 2345 } else { 2346 jbd2_journal_destroy_caches(); 2347 } 2348 return ret; 2349 } 2350 2351 static void __exit journal_exit(void) 2352 { 2353 #ifdef CONFIG_JBD2_DEBUG 2354 int n = atomic_read(&nr_journal_heads); 2355 if (n) 2356 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n); 2357 #endif 2358 jbd2_remove_debugfs_entry(); 2359 jbd2_remove_jbd_stats_proc_entry(); 2360 jbd2_journal_destroy_caches(); 2361 } 2362 2363 /* 2364 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4 2365 * tracing infrastructure to map a dev_t to a device name. 2366 * 2367 * The caller should use rcu_read_lock() in order to make sure the 2368 * device name stays valid until its done with it. We use 2369 * rcu_read_lock() as well to make sure we're safe in case the caller 2370 * gets sloppy, and because rcu_read_lock() is cheap and can be safely 2371 * nested. 2372 */ 2373 struct devname_cache { 2374 struct rcu_head rcu; 2375 dev_t device; 2376 char devname[BDEVNAME_SIZE]; 2377 }; 2378 #define CACHE_SIZE_BITS 6 2379 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS]; 2380 static DEFINE_SPINLOCK(devname_cache_lock); 2381 2382 static void free_devcache(struct rcu_head *rcu) 2383 { 2384 kfree(rcu); 2385 } 2386 2387 const char *jbd2_dev_to_name(dev_t device) 2388 { 2389 int i = hash_32(device, CACHE_SIZE_BITS); 2390 char *ret; 2391 struct block_device *bd; 2392 static struct devname_cache *new_dev; 2393 2394 rcu_read_lock(); 2395 if (devcache[i] && devcache[i]->device == device) { 2396 ret = devcache[i]->devname; 2397 rcu_read_unlock(); 2398 return ret; 2399 } 2400 rcu_read_unlock(); 2401 2402 new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL); 2403 if (!new_dev) 2404 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */ 2405 spin_lock(&devname_cache_lock); 2406 if (devcache[i]) { 2407 if (devcache[i]->device == device) { 2408 kfree(new_dev); 2409 ret = devcache[i]->devname; 2410 spin_unlock(&devname_cache_lock); 2411 return ret; 2412 } 2413 call_rcu(&devcache[i]->rcu, free_devcache); 2414 } 2415 devcache[i] = new_dev; 2416 devcache[i]->device = device; 2417 bd = bdget(device); 2418 if (bd) { 2419 bdevname(bd, devcache[i]->devname); 2420 bdput(bd); 2421 } else 2422 __bdevname(device, devcache[i]->devname); 2423 ret = devcache[i]->devname; 2424 spin_unlock(&devname_cache_lock); 2425 return ret; 2426 } 2427 EXPORT_SYMBOL(jbd2_dev_to_name); 2428 2429 MODULE_LICENSE("GPL"); 2430 module_init(journal_init); 2431 module_exit(journal_exit); 2432 2433