xref: /openbmc/linux/fs/jbd2/journal.c (revision b7271b0a39947f757d7969f6150dcb16c1976b91)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50 
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 #include <asm/system.h>
54 
55 EXPORT_SYMBOL(jbd2_journal_extend);
56 EXPORT_SYMBOL(jbd2_journal_stop);
57 EXPORT_SYMBOL(jbd2_journal_lock_updates);
58 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
59 EXPORT_SYMBOL(jbd2_journal_get_write_access);
60 EXPORT_SYMBOL(jbd2_journal_get_create_access);
61 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
62 EXPORT_SYMBOL(jbd2_journal_set_triggers);
63 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
64 EXPORT_SYMBOL(jbd2_journal_release_buffer);
65 EXPORT_SYMBOL(jbd2_journal_forget);
66 #if 0
67 EXPORT_SYMBOL(journal_sync_buffer);
68 #endif
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71 
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_update_format);
75 EXPORT_SYMBOL(jbd2_journal_check_used_features);
76 EXPORT_SYMBOL(jbd2_journal_check_available_features);
77 EXPORT_SYMBOL(jbd2_journal_set_features);
78 EXPORT_SYMBOL(jbd2_journal_load);
79 EXPORT_SYMBOL(jbd2_journal_destroy);
80 EXPORT_SYMBOL(jbd2_journal_abort);
81 EXPORT_SYMBOL(jbd2_journal_errno);
82 EXPORT_SYMBOL(jbd2_journal_ack_err);
83 EXPORT_SYMBOL(jbd2_journal_clear_err);
84 EXPORT_SYMBOL(jbd2_log_wait_commit);
85 EXPORT_SYMBOL(jbd2_log_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_start_commit);
87 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
88 EXPORT_SYMBOL(jbd2_journal_wipe);
89 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
90 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
91 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
92 EXPORT_SYMBOL(jbd2_journal_force_commit);
93 EXPORT_SYMBOL(jbd2_journal_file_inode);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 
98 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
99 static void __journal_abort_soft (journal_t *journal, int errno);
100 static int jbd2_journal_create_slab(size_t slab_size);
101 
102 /*
103  * Helper function used to manage commit timeouts
104  */
105 
106 static void commit_timeout(unsigned long __data)
107 {
108 	struct task_struct * p = (struct task_struct *) __data;
109 
110 	wake_up_process(p);
111 }
112 
113 /*
114  * kjournald2: The main thread function used to manage a logging device
115  * journal.
116  *
117  * This kernel thread is responsible for two things:
118  *
119  * 1) COMMIT:  Every so often we need to commit the current state of the
120  *    filesystem to disk.  The journal thread is responsible for writing
121  *    all of the metadata buffers to disk.
122  *
123  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
124  *    of the data in that part of the log has been rewritten elsewhere on
125  *    the disk.  Flushing these old buffers to reclaim space in the log is
126  *    known as checkpointing, and this thread is responsible for that job.
127  */
128 
129 static int kjournald2(void *arg)
130 {
131 	journal_t *journal = arg;
132 	transaction_t *transaction;
133 
134 	/*
135 	 * Set up an interval timer which can be used to trigger a commit wakeup
136 	 * after the commit interval expires
137 	 */
138 	setup_timer(&journal->j_commit_timer, commit_timeout,
139 			(unsigned long)current);
140 
141 	/* Record that the journal thread is running */
142 	journal->j_task = current;
143 	wake_up(&journal->j_wait_done_commit);
144 
145 	/*
146 	 * And now, wait forever for commit wakeup events.
147 	 */
148 	write_lock(&journal->j_state_lock);
149 
150 loop:
151 	if (journal->j_flags & JBD2_UNMOUNT)
152 		goto end_loop;
153 
154 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
155 		journal->j_commit_sequence, journal->j_commit_request);
156 
157 	if (journal->j_commit_sequence != journal->j_commit_request) {
158 		jbd_debug(1, "OK, requests differ\n");
159 		write_unlock(&journal->j_state_lock);
160 		del_timer_sync(&journal->j_commit_timer);
161 		jbd2_journal_commit_transaction(journal);
162 		write_lock(&journal->j_state_lock);
163 		goto loop;
164 	}
165 
166 	wake_up(&journal->j_wait_done_commit);
167 	if (freezing(current)) {
168 		/*
169 		 * The simpler the better. Flushing journal isn't a
170 		 * good idea, because that depends on threads that may
171 		 * be already stopped.
172 		 */
173 		jbd_debug(1, "Now suspending kjournald2\n");
174 		write_unlock(&journal->j_state_lock);
175 		refrigerator();
176 		write_lock(&journal->j_state_lock);
177 	} else {
178 		/*
179 		 * We assume on resume that commits are already there,
180 		 * so we don't sleep
181 		 */
182 		DEFINE_WAIT(wait);
183 		int should_sleep = 1;
184 
185 		prepare_to_wait(&journal->j_wait_commit, &wait,
186 				TASK_INTERRUPTIBLE);
187 		if (journal->j_commit_sequence != journal->j_commit_request)
188 			should_sleep = 0;
189 		transaction = journal->j_running_transaction;
190 		if (transaction && time_after_eq(jiffies,
191 						transaction->t_expires))
192 			should_sleep = 0;
193 		if (journal->j_flags & JBD2_UNMOUNT)
194 			should_sleep = 0;
195 		if (should_sleep) {
196 			write_unlock(&journal->j_state_lock);
197 			schedule();
198 			write_lock(&journal->j_state_lock);
199 		}
200 		finish_wait(&journal->j_wait_commit, &wait);
201 	}
202 
203 	jbd_debug(1, "kjournald2 wakes\n");
204 
205 	/*
206 	 * Were we woken up by a commit wakeup event?
207 	 */
208 	transaction = journal->j_running_transaction;
209 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
210 		journal->j_commit_request = transaction->t_tid;
211 		jbd_debug(1, "woke because of timeout\n");
212 	}
213 	goto loop;
214 
215 end_loop:
216 	write_unlock(&journal->j_state_lock);
217 	del_timer_sync(&journal->j_commit_timer);
218 	journal->j_task = NULL;
219 	wake_up(&journal->j_wait_done_commit);
220 	jbd_debug(1, "Journal thread exiting.\n");
221 	return 0;
222 }
223 
224 static int jbd2_journal_start_thread(journal_t *journal)
225 {
226 	struct task_struct *t;
227 
228 	t = kthread_run(kjournald2, journal, "jbd2/%s",
229 			journal->j_devname);
230 	if (IS_ERR(t))
231 		return PTR_ERR(t);
232 
233 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
234 	return 0;
235 }
236 
237 static void journal_kill_thread(journal_t *journal)
238 {
239 	write_lock(&journal->j_state_lock);
240 	journal->j_flags |= JBD2_UNMOUNT;
241 
242 	while (journal->j_task) {
243 		wake_up(&journal->j_wait_commit);
244 		write_unlock(&journal->j_state_lock);
245 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
246 		write_lock(&journal->j_state_lock);
247 	}
248 	write_unlock(&journal->j_state_lock);
249 }
250 
251 /*
252  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
253  *
254  * Writes a metadata buffer to a given disk block.  The actual IO is not
255  * performed but a new buffer_head is constructed which labels the data
256  * to be written with the correct destination disk block.
257  *
258  * Any magic-number escaping which needs to be done will cause a
259  * copy-out here.  If the buffer happens to start with the
260  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
261  * magic number is only written to the log for descripter blocks.  In
262  * this case, we copy the data and replace the first word with 0, and we
263  * return a result code which indicates that this buffer needs to be
264  * marked as an escaped buffer in the corresponding log descriptor
265  * block.  The missing word can then be restored when the block is read
266  * during recovery.
267  *
268  * If the source buffer has already been modified by a new transaction
269  * since we took the last commit snapshot, we use the frozen copy of
270  * that data for IO.  If we end up using the existing buffer_head's data
271  * for the write, then we *have* to lock the buffer to prevent anyone
272  * else from using and possibly modifying it while the IO is in
273  * progress.
274  *
275  * The function returns a pointer to the buffer_heads to be used for IO.
276  *
277  * We assume that the journal has already been locked in this function.
278  *
279  * Return value:
280  *  <0: Error
281  * >=0: Finished OK
282  *
283  * On success:
284  * Bit 0 set == escape performed on the data
285  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
286  */
287 
288 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
289 				  struct journal_head  *jh_in,
290 				  struct journal_head **jh_out,
291 				  unsigned long long blocknr)
292 {
293 	int need_copy_out = 0;
294 	int done_copy_out = 0;
295 	int do_escape = 0;
296 	char *mapped_data;
297 	struct buffer_head *new_bh;
298 	struct journal_head *new_jh;
299 	struct page *new_page;
300 	unsigned int new_offset;
301 	struct buffer_head *bh_in = jh2bh(jh_in);
302 	journal_t *journal = transaction->t_journal;
303 
304 	/*
305 	 * The buffer really shouldn't be locked: only the current committing
306 	 * transaction is allowed to write it, so nobody else is allowed
307 	 * to do any IO.
308 	 *
309 	 * akpm: except if we're journalling data, and write() output is
310 	 * also part of a shared mapping, and another thread has
311 	 * decided to launch a writepage() against this buffer.
312 	 */
313 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
314 
315 retry_alloc:
316 	new_bh = alloc_buffer_head(GFP_NOFS);
317 	if (!new_bh) {
318 		/*
319 		 * Failure is not an option, but __GFP_NOFAIL is going
320 		 * away; so we retry ourselves here.
321 		 */
322 		congestion_wait(BLK_RW_ASYNC, HZ/50);
323 		goto retry_alloc;
324 	}
325 
326 	/* keep subsequent assertions sane */
327 	new_bh->b_state = 0;
328 	init_buffer(new_bh, NULL, NULL);
329 	atomic_set(&new_bh->b_count, 1);
330 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
331 
332 	/*
333 	 * If a new transaction has already done a buffer copy-out, then
334 	 * we use that version of the data for the commit.
335 	 */
336 	jbd_lock_bh_state(bh_in);
337 repeat:
338 	if (jh_in->b_frozen_data) {
339 		done_copy_out = 1;
340 		new_page = virt_to_page(jh_in->b_frozen_data);
341 		new_offset = offset_in_page(jh_in->b_frozen_data);
342 	} else {
343 		new_page = jh2bh(jh_in)->b_page;
344 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
345 	}
346 
347 	mapped_data = kmap_atomic(new_page, KM_USER0);
348 	/*
349 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
350 	 * before checking for escaping, as the trigger may modify the magic
351 	 * offset.  If a copy-out happens afterwards, it will have the correct
352 	 * data in the buffer.
353 	 */
354 	if (!done_copy_out)
355 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
356 					   jh_in->b_triggers);
357 
358 	/*
359 	 * Check for escaping
360 	 */
361 	if (*((__be32 *)(mapped_data + new_offset)) ==
362 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
363 		need_copy_out = 1;
364 		do_escape = 1;
365 	}
366 	kunmap_atomic(mapped_data, KM_USER0);
367 
368 	/*
369 	 * Do we need to do a data copy?
370 	 */
371 	if (need_copy_out && !done_copy_out) {
372 		char *tmp;
373 
374 		jbd_unlock_bh_state(bh_in);
375 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
376 		if (!tmp) {
377 			jbd2_journal_put_journal_head(new_jh);
378 			return -ENOMEM;
379 		}
380 		jbd_lock_bh_state(bh_in);
381 		if (jh_in->b_frozen_data) {
382 			jbd2_free(tmp, bh_in->b_size);
383 			goto repeat;
384 		}
385 
386 		jh_in->b_frozen_data = tmp;
387 		mapped_data = kmap_atomic(new_page, KM_USER0);
388 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
389 		kunmap_atomic(mapped_data, KM_USER0);
390 
391 		new_page = virt_to_page(tmp);
392 		new_offset = offset_in_page(tmp);
393 		done_copy_out = 1;
394 
395 		/*
396 		 * This isn't strictly necessary, as we're using frozen
397 		 * data for the escaping, but it keeps consistency with
398 		 * b_frozen_data usage.
399 		 */
400 		jh_in->b_frozen_triggers = jh_in->b_triggers;
401 	}
402 
403 	/*
404 	 * Did we need to do an escaping?  Now we've done all the
405 	 * copying, we can finally do so.
406 	 */
407 	if (do_escape) {
408 		mapped_data = kmap_atomic(new_page, KM_USER0);
409 		*((unsigned int *)(mapped_data + new_offset)) = 0;
410 		kunmap_atomic(mapped_data, KM_USER0);
411 	}
412 
413 	set_bh_page(new_bh, new_page, new_offset);
414 	new_jh->b_transaction = NULL;
415 	new_bh->b_size = jh2bh(jh_in)->b_size;
416 	new_bh->b_bdev = transaction->t_journal->j_dev;
417 	new_bh->b_blocknr = blocknr;
418 	set_buffer_mapped(new_bh);
419 	set_buffer_dirty(new_bh);
420 
421 	*jh_out = new_jh;
422 
423 	/*
424 	 * The to-be-written buffer needs to get moved to the io queue,
425 	 * and the original buffer whose contents we are shadowing or
426 	 * copying is moved to the transaction's shadow queue.
427 	 */
428 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
429 	spin_lock(&journal->j_list_lock);
430 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
431 	spin_unlock(&journal->j_list_lock);
432 	jbd_unlock_bh_state(bh_in);
433 
434 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
435 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
436 
437 	return do_escape | (done_copy_out << 1);
438 }
439 
440 /*
441  * Allocation code for the journal file.  Manage the space left in the
442  * journal, so that we can begin checkpointing when appropriate.
443  */
444 
445 /*
446  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
447  *
448  * Called with the journal already locked.
449  *
450  * Called under j_state_lock
451  */
452 
453 int __jbd2_log_space_left(journal_t *journal)
454 {
455 	int left = journal->j_free;
456 
457 	/* assert_spin_locked(&journal->j_state_lock); */
458 
459 	/*
460 	 * Be pessimistic here about the number of those free blocks which
461 	 * might be required for log descriptor control blocks.
462 	 */
463 
464 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
465 
466 	left -= MIN_LOG_RESERVED_BLOCKS;
467 
468 	if (left <= 0)
469 		return 0;
470 	left -= (left >> 3);
471 	return left;
472 }
473 
474 /*
475  * Called under j_state_lock.  Returns true if a transaction commit was started.
476  */
477 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
478 {
479 	/*
480 	 * Are we already doing a recent enough commit?
481 	 */
482 	if (!tid_geq(journal->j_commit_request, target)) {
483 		/*
484 		 * We want a new commit: OK, mark the request and wakeup the
485 		 * commit thread.  We do _not_ do the commit ourselves.
486 		 */
487 
488 		journal->j_commit_request = target;
489 		jbd_debug(1, "JBD: requesting commit %d/%d\n",
490 			  journal->j_commit_request,
491 			  journal->j_commit_sequence);
492 		wake_up(&journal->j_wait_commit);
493 		return 1;
494 	}
495 	return 0;
496 }
497 
498 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
499 {
500 	int ret;
501 
502 	write_lock(&journal->j_state_lock);
503 	ret = __jbd2_log_start_commit(journal, tid);
504 	write_unlock(&journal->j_state_lock);
505 	return ret;
506 }
507 
508 /*
509  * Force and wait upon a commit if the calling process is not within
510  * transaction.  This is used for forcing out undo-protected data which contains
511  * bitmaps, when the fs is running out of space.
512  *
513  * We can only force the running transaction if we don't have an active handle;
514  * otherwise, we will deadlock.
515  *
516  * Returns true if a transaction was started.
517  */
518 int jbd2_journal_force_commit_nested(journal_t *journal)
519 {
520 	transaction_t *transaction = NULL;
521 	tid_t tid;
522 
523 	read_lock(&journal->j_state_lock);
524 	if (journal->j_running_transaction && !current->journal_info) {
525 		transaction = journal->j_running_transaction;
526 		__jbd2_log_start_commit(journal, transaction->t_tid);
527 	} else if (journal->j_committing_transaction)
528 		transaction = journal->j_committing_transaction;
529 
530 	if (!transaction) {
531 		read_unlock(&journal->j_state_lock);
532 		return 0;	/* Nothing to retry */
533 	}
534 
535 	tid = transaction->t_tid;
536 	read_unlock(&journal->j_state_lock);
537 	jbd2_log_wait_commit(journal, tid);
538 	return 1;
539 }
540 
541 /*
542  * Start a commit of the current running transaction (if any).  Returns true
543  * if a transaction is going to be committed (or is currently already
544  * committing), and fills its tid in at *ptid
545  */
546 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
547 {
548 	int ret = 0;
549 
550 	write_lock(&journal->j_state_lock);
551 	if (journal->j_running_transaction) {
552 		tid_t tid = journal->j_running_transaction->t_tid;
553 
554 		__jbd2_log_start_commit(journal, tid);
555 		/* There's a running transaction and we've just made sure
556 		 * it's commit has been scheduled. */
557 		if (ptid)
558 			*ptid = tid;
559 		ret = 1;
560 	} else if (journal->j_committing_transaction) {
561 		/*
562 		 * If ext3_write_super() recently started a commit, then we
563 		 * have to wait for completion of that transaction
564 		 */
565 		if (ptid)
566 			*ptid = journal->j_committing_transaction->t_tid;
567 		ret = 1;
568 	}
569 	write_unlock(&journal->j_state_lock);
570 	return ret;
571 }
572 
573 /*
574  * Wait for a specified commit to complete.
575  * The caller may not hold the journal lock.
576  */
577 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
578 {
579 	int err = 0;
580 
581 	read_lock(&journal->j_state_lock);
582 #ifdef CONFIG_JBD2_DEBUG
583 	if (!tid_geq(journal->j_commit_request, tid)) {
584 		printk(KERN_EMERG
585 		       "%s: error: j_commit_request=%d, tid=%d\n",
586 		       __func__, journal->j_commit_request, tid);
587 	}
588 #endif
589 	while (tid_gt(tid, journal->j_commit_sequence)) {
590 		jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
591 				  tid, journal->j_commit_sequence);
592 		wake_up(&journal->j_wait_commit);
593 		read_unlock(&journal->j_state_lock);
594 		wait_event(journal->j_wait_done_commit,
595 				!tid_gt(tid, journal->j_commit_sequence));
596 		read_lock(&journal->j_state_lock);
597 	}
598 	read_unlock(&journal->j_state_lock);
599 
600 	if (unlikely(is_journal_aborted(journal))) {
601 		printk(KERN_EMERG "journal commit I/O error\n");
602 		err = -EIO;
603 	}
604 	return err;
605 }
606 
607 /*
608  * Log buffer allocation routines:
609  */
610 
611 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
612 {
613 	unsigned long blocknr;
614 
615 	write_lock(&journal->j_state_lock);
616 	J_ASSERT(journal->j_free > 1);
617 
618 	blocknr = journal->j_head;
619 	journal->j_head++;
620 	journal->j_free--;
621 	if (journal->j_head == journal->j_last)
622 		journal->j_head = journal->j_first;
623 	write_unlock(&journal->j_state_lock);
624 	return jbd2_journal_bmap(journal, blocknr, retp);
625 }
626 
627 /*
628  * Conversion of logical to physical block numbers for the journal
629  *
630  * On external journals the journal blocks are identity-mapped, so
631  * this is a no-op.  If needed, we can use j_blk_offset - everything is
632  * ready.
633  */
634 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
635 		 unsigned long long *retp)
636 {
637 	int err = 0;
638 	unsigned long long ret;
639 
640 	if (journal->j_inode) {
641 		ret = bmap(journal->j_inode, blocknr);
642 		if (ret)
643 			*retp = ret;
644 		else {
645 			printk(KERN_ALERT "%s: journal block not found "
646 					"at offset %lu on %s\n",
647 			       __func__, blocknr, journal->j_devname);
648 			err = -EIO;
649 			__journal_abort_soft(journal, err);
650 		}
651 	} else {
652 		*retp = blocknr; /* +journal->j_blk_offset */
653 	}
654 	return err;
655 }
656 
657 /*
658  * We play buffer_head aliasing tricks to write data/metadata blocks to
659  * the journal without copying their contents, but for journal
660  * descriptor blocks we do need to generate bona fide buffers.
661  *
662  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
663  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
664  * But we don't bother doing that, so there will be coherency problems with
665  * mmaps of blockdevs which hold live JBD-controlled filesystems.
666  */
667 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
668 {
669 	struct buffer_head *bh;
670 	unsigned long long blocknr;
671 	int err;
672 
673 	err = jbd2_journal_next_log_block(journal, &blocknr);
674 
675 	if (err)
676 		return NULL;
677 
678 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
679 	if (!bh)
680 		return NULL;
681 	lock_buffer(bh);
682 	memset(bh->b_data, 0, journal->j_blocksize);
683 	set_buffer_uptodate(bh);
684 	unlock_buffer(bh);
685 	BUFFER_TRACE(bh, "return this buffer");
686 	return jbd2_journal_add_journal_head(bh);
687 }
688 
689 struct jbd2_stats_proc_session {
690 	journal_t *journal;
691 	struct transaction_stats_s *stats;
692 	int start;
693 	int max;
694 };
695 
696 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
697 {
698 	return *pos ? NULL : SEQ_START_TOKEN;
699 }
700 
701 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
702 {
703 	return NULL;
704 }
705 
706 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
707 {
708 	struct jbd2_stats_proc_session *s = seq->private;
709 
710 	if (v != SEQ_START_TOKEN)
711 		return 0;
712 	seq_printf(seq, "%lu transaction, each up to %u blocks\n",
713 			s->stats->ts_tid,
714 			s->journal->j_max_transaction_buffers);
715 	if (s->stats->ts_tid == 0)
716 		return 0;
717 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
718 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
719 	seq_printf(seq, "  %ums running transaction\n",
720 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
721 	seq_printf(seq, "  %ums transaction was being locked\n",
722 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
723 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
724 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
725 	seq_printf(seq, "  %ums logging transaction\n",
726 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
727 	seq_printf(seq, "  %lluus average transaction commit time\n",
728 		   div_u64(s->journal->j_average_commit_time, 1000));
729 	seq_printf(seq, "  %lu handles per transaction\n",
730 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
731 	seq_printf(seq, "  %lu blocks per transaction\n",
732 	    s->stats->run.rs_blocks / s->stats->ts_tid);
733 	seq_printf(seq, "  %lu logged blocks per transaction\n",
734 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
735 	return 0;
736 }
737 
738 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
739 {
740 }
741 
742 static const struct seq_operations jbd2_seq_info_ops = {
743 	.start  = jbd2_seq_info_start,
744 	.next   = jbd2_seq_info_next,
745 	.stop   = jbd2_seq_info_stop,
746 	.show   = jbd2_seq_info_show,
747 };
748 
749 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
750 {
751 	journal_t *journal = PDE(inode)->data;
752 	struct jbd2_stats_proc_session *s;
753 	int rc, size;
754 
755 	s = kmalloc(sizeof(*s), GFP_KERNEL);
756 	if (s == NULL)
757 		return -ENOMEM;
758 	size = sizeof(struct transaction_stats_s);
759 	s->stats = kmalloc(size, GFP_KERNEL);
760 	if (s->stats == NULL) {
761 		kfree(s);
762 		return -ENOMEM;
763 	}
764 	spin_lock(&journal->j_history_lock);
765 	memcpy(s->stats, &journal->j_stats, size);
766 	s->journal = journal;
767 	spin_unlock(&journal->j_history_lock);
768 
769 	rc = seq_open(file, &jbd2_seq_info_ops);
770 	if (rc == 0) {
771 		struct seq_file *m = file->private_data;
772 		m->private = s;
773 	} else {
774 		kfree(s->stats);
775 		kfree(s);
776 	}
777 	return rc;
778 
779 }
780 
781 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
782 {
783 	struct seq_file *seq = file->private_data;
784 	struct jbd2_stats_proc_session *s = seq->private;
785 	kfree(s->stats);
786 	kfree(s);
787 	return seq_release(inode, file);
788 }
789 
790 static const struct file_operations jbd2_seq_info_fops = {
791 	.owner		= THIS_MODULE,
792 	.open           = jbd2_seq_info_open,
793 	.read           = seq_read,
794 	.llseek         = seq_lseek,
795 	.release        = jbd2_seq_info_release,
796 };
797 
798 static struct proc_dir_entry *proc_jbd2_stats;
799 
800 static void jbd2_stats_proc_init(journal_t *journal)
801 {
802 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
803 	if (journal->j_proc_entry) {
804 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
805 				 &jbd2_seq_info_fops, journal);
806 	}
807 }
808 
809 static void jbd2_stats_proc_exit(journal_t *journal)
810 {
811 	remove_proc_entry("info", journal->j_proc_entry);
812 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
813 }
814 
815 /*
816  * Management for journal control blocks: functions to create and
817  * destroy journal_t structures, and to initialise and read existing
818  * journal blocks from disk.  */
819 
820 /* First: create and setup a journal_t object in memory.  We initialise
821  * very few fields yet: that has to wait until we have created the
822  * journal structures from from scratch, or loaded them from disk. */
823 
824 static journal_t * journal_init_common (void)
825 {
826 	journal_t *journal;
827 	int err;
828 
829 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
830 	if (!journal)
831 		return NULL;
832 
833 	init_waitqueue_head(&journal->j_wait_transaction_locked);
834 	init_waitqueue_head(&journal->j_wait_logspace);
835 	init_waitqueue_head(&journal->j_wait_done_commit);
836 	init_waitqueue_head(&journal->j_wait_checkpoint);
837 	init_waitqueue_head(&journal->j_wait_commit);
838 	init_waitqueue_head(&journal->j_wait_updates);
839 	mutex_init(&journal->j_barrier);
840 	mutex_init(&journal->j_checkpoint_mutex);
841 	spin_lock_init(&journal->j_revoke_lock);
842 	spin_lock_init(&journal->j_list_lock);
843 	rwlock_init(&journal->j_state_lock);
844 
845 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
846 	journal->j_min_batch_time = 0;
847 	journal->j_max_batch_time = 15000; /* 15ms */
848 
849 	/* The journal is marked for error until we succeed with recovery! */
850 	journal->j_flags = JBD2_ABORT;
851 
852 	/* Set up a default-sized revoke table for the new mount. */
853 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
854 	if (err) {
855 		kfree(journal);
856 		return NULL;
857 	}
858 
859 	spin_lock_init(&journal->j_history_lock);
860 
861 	return journal;
862 }
863 
864 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
865  *
866  * Create a journal structure assigned some fixed set of disk blocks to
867  * the journal.  We don't actually touch those disk blocks yet, but we
868  * need to set up all of the mapping information to tell the journaling
869  * system where the journal blocks are.
870  *
871  */
872 
873 /**
874  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
875  *  @bdev: Block device on which to create the journal
876  *  @fs_dev: Device which hold journalled filesystem for this journal.
877  *  @start: Block nr Start of journal.
878  *  @len:  Length of the journal in blocks.
879  *  @blocksize: blocksize of journalling device
880  *
881  *  Returns: a newly created journal_t *
882  *
883  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
884  *  range of blocks on an arbitrary block device.
885  *
886  */
887 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
888 			struct block_device *fs_dev,
889 			unsigned long long start, int len, int blocksize)
890 {
891 	journal_t *journal = journal_init_common();
892 	struct buffer_head *bh;
893 	char *p;
894 	int n;
895 
896 	if (!journal)
897 		return NULL;
898 
899 	/* journal descriptor can store up to n blocks -bzzz */
900 	journal->j_blocksize = blocksize;
901 	journal->j_dev = bdev;
902 	journal->j_fs_dev = fs_dev;
903 	journal->j_blk_offset = start;
904 	journal->j_maxlen = len;
905 	bdevname(journal->j_dev, journal->j_devname);
906 	p = journal->j_devname;
907 	while ((p = strchr(p, '/')))
908 		*p = '!';
909 	jbd2_stats_proc_init(journal);
910 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
911 	journal->j_wbufsize = n;
912 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
913 	if (!journal->j_wbuf) {
914 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
915 			__func__);
916 		goto out_err;
917 	}
918 
919 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
920 	if (!bh) {
921 		printk(KERN_ERR
922 		       "%s: Cannot get buffer for journal superblock\n",
923 		       __func__);
924 		goto out_err;
925 	}
926 	journal->j_sb_buffer = bh;
927 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
928 
929 	return journal;
930 out_err:
931 	kfree(journal->j_wbuf);
932 	jbd2_stats_proc_exit(journal);
933 	kfree(journal);
934 	return NULL;
935 }
936 
937 /**
938  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
939  *  @inode: An inode to create the journal in
940  *
941  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
942  * the journal.  The inode must exist already, must support bmap() and
943  * must have all data blocks preallocated.
944  */
945 journal_t * jbd2_journal_init_inode (struct inode *inode)
946 {
947 	struct buffer_head *bh;
948 	journal_t *journal = journal_init_common();
949 	char *p;
950 	int err;
951 	int n;
952 	unsigned long long blocknr;
953 
954 	if (!journal)
955 		return NULL;
956 
957 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
958 	journal->j_inode = inode;
959 	bdevname(journal->j_dev, journal->j_devname);
960 	p = journal->j_devname;
961 	while ((p = strchr(p, '/')))
962 		*p = '!';
963 	p = journal->j_devname + strlen(journal->j_devname);
964 	sprintf(p, "-%lu", journal->j_inode->i_ino);
965 	jbd_debug(1,
966 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
967 		  journal, inode->i_sb->s_id, inode->i_ino,
968 		  (long long) inode->i_size,
969 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
970 
971 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
972 	journal->j_blocksize = inode->i_sb->s_blocksize;
973 	jbd2_stats_proc_init(journal);
974 
975 	/* journal descriptor can store up to n blocks -bzzz */
976 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
977 	journal->j_wbufsize = n;
978 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
979 	if (!journal->j_wbuf) {
980 		printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
981 			__func__);
982 		goto out_err;
983 	}
984 
985 	err = jbd2_journal_bmap(journal, 0, &blocknr);
986 	/* If that failed, give up */
987 	if (err) {
988 		printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
989 		       __func__);
990 		goto out_err;
991 	}
992 
993 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
994 	if (!bh) {
995 		printk(KERN_ERR
996 		       "%s: Cannot get buffer for journal superblock\n",
997 		       __func__);
998 		goto out_err;
999 	}
1000 	journal->j_sb_buffer = bh;
1001 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1002 
1003 	return journal;
1004 out_err:
1005 	kfree(journal->j_wbuf);
1006 	jbd2_stats_proc_exit(journal);
1007 	kfree(journal);
1008 	return NULL;
1009 }
1010 
1011 /*
1012  * If the journal init or create aborts, we need to mark the journal
1013  * superblock as being NULL to prevent the journal destroy from writing
1014  * back a bogus superblock.
1015  */
1016 static void journal_fail_superblock (journal_t *journal)
1017 {
1018 	struct buffer_head *bh = journal->j_sb_buffer;
1019 	brelse(bh);
1020 	journal->j_sb_buffer = NULL;
1021 }
1022 
1023 /*
1024  * Given a journal_t structure, initialise the various fields for
1025  * startup of a new journaling session.  We use this both when creating
1026  * a journal, and after recovering an old journal to reset it for
1027  * subsequent use.
1028  */
1029 
1030 static int journal_reset(journal_t *journal)
1031 {
1032 	journal_superblock_t *sb = journal->j_superblock;
1033 	unsigned long long first, last;
1034 
1035 	first = be32_to_cpu(sb->s_first);
1036 	last = be32_to_cpu(sb->s_maxlen);
1037 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1038 		printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1039 		       first, last);
1040 		journal_fail_superblock(journal);
1041 		return -EINVAL;
1042 	}
1043 
1044 	journal->j_first = first;
1045 	journal->j_last = last;
1046 
1047 	journal->j_head = first;
1048 	journal->j_tail = first;
1049 	journal->j_free = last - first;
1050 
1051 	journal->j_tail_sequence = journal->j_transaction_sequence;
1052 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1053 	journal->j_commit_request = journal->j_commit_sequence;
1054 
1055 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1056 
1057 	/* Add the dynamic fields and write it to disk. */
1058 	jbd2_journal_update_superblock(journal, 1);
1059 	return jbd2_journal_start_thread(journal);
1060 }
1061 
1062 /**
1063  * void jbd2_journal_update_superblock() - Update journal sb on disk.
1064  * @journal: The journal to update.
1065  * @wait: Set to '0' if you don't want to wait for IO completion.
1066  *
1067  * Update a journal's dynamic superblock fields and write it to disk,
1068  * optionally waiting for the IO to complete.
1069  */
1070 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1071 {
1072 	journal_superblock_t *sb = journal->j_superblock;
1073 	struct buffer_head *bh = journal->j_sb_buffer;
1074 
1075 	/*
1076 	 * As a special case, if the on-disk copy is already marked as needing
1077 	 * no recovery (s_start == 0) and there are no outstanding transactions
1078 	 * in the filesystem, then we can safely defer the superblock update
1079 	 * until the next commit by setting JBD2_FLUSHED.  This avoids
1080 	 * attempting a write to a potential-readonly device.
1081 	 */
1082 	if (sb->s_start == 0 && journal->j_tail_sequence ==
1083 				journal->j_transaction_sequence) {
1084 		jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1085 			"(start %ld, seq %d, errno %d)\n",
1086 			journal->j_tail, journal->j_tail_sequence,
1087 			journal->j_errno);
1088 		goto out;
1089 	}
1090 
1091 	if (buffer_write_io_error(bh)) {
1092 		/*
1093 		 * Oh, dear.  A previous attempt to write the journal
1094 		 * superblock failed.  This could happen because the
1095 		 * USB device was yanked out.  Or it could happen to
1096 		 * be a transient write error and maybe the block will
1097 		 * be remapped.  Nothing we can do but to retry the
1098 		 * write and hope for the best.
1099 		 */
1100 		printk(KERN_ERR "JBD2: previous I/O error detected "
1101 		       "for journal superblock update for %s.\n",
1102 		       journal->j_devname);
1103 		clear_buffer_write_io_error(bh);
1104 		set_buffer_uptodate(bh);
1105 	}
1106 
1107 	read_lock(&journal->j_state_lock);
1108 	jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1109 		  journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1110 
1111 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1112 	sb->s_start    = cpu_to_be32(journal->j_tail);
1113 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1114 	read_unlock(&journal->j_state_lock);
1115 
1116 	BUFFER_TRACE(bh, "marking dirty");
1117 	mark_buffer_dirty(bh);
1118 	if (wait) {
1119 		sync_dirty_buffer(bh);
1120 		if (buffer_write_io_error(bh)) {
1121 			printk(KERN_ERR "JBD2: I/O error detected "
1122 			       "when updating journal superblock for %s.\n",
1123 			       journal->j_devname);
1124 			clear_buffer_write_io_error(bh);
1125 			set_buffer_uptodate(bh);
1126 		}
1127 	} else
1128 		write_dirty_buffer(bh, WRITE);
1129 
1130 out:
1131 	/* If we have just flushed the log (by marking s_start==0), then
1132 	 * any future commit will have to be careful to update the
1133 	 * superblock again to re-record the true start of the log. */
1134 
1135 	write_lock(&journal->j_state_lock);
1136 	if (sb->s_start)
1137 		journal->j_flags &= ~JBD2_FLUSHED;
1138 	else
1139 		journal->j_flags |= JBD2_FLUSHED;
1140 	write_unlock(&journal->j_state_lock);
1141 }
1142 
1143 /*
1144  * Read the superblock for a given journal, performing initial
1145  * validation of the format.
1146  */
1147 
1148 static int journal_get_superblock(journal_t *journal)
1149 {
1150 	struct buffer_head *bh;
1151 	journal_superblock_t *sb;
1152 	int err = -EIO;
1153 
1154 	bh = journal->j_sb_buffer;
1155 
1156 	J_ASSERT(bh != NULL);
1157 	if (!buffer_uptodate(bh)) {
1158 		ll_rw_block(READ, 1, &bh);
1159 		wait_on_buffer(bh);
1160 		if (!buffer_uptodate(bh)) {
1161 			printk (KERN_ERR
1162 				"JBD: IO error reading journal superblock\n");
1163 			goto out;
1164 		}
1165 	}
1166 
1167 	sb = journal->j_superblock;
1168 
1169 	err = -EINVAL;
1170 
1171 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1172 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1173 		printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1174 		goto out;
1175 	}
1176 
1177 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1178 	case JBD2_SUPERBLOCK_V1:
1179 		journal->j_format_version = 1;
1180 		break;
1181 	case JBD2_SUPERBLOCK_V2:
1182 		journal->j_format_version = 2;
1183 		break;
1184 	default:
1185 		printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1186 		goto out;
1187 	}
1188 
1189 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1190 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1191 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1192 		printk (KERN_WARNING "JBD: journal file too short\n");
1193 		goto out;
1194 	}
1195 
1196 	return 0;
1197 
1198 out:
1199 	journal_fail_superblock(journal);
1200 	return err;
1201 }
1202 
1203 /*
1204  * Load the on-disk journal superblock and read the key fields into the
1205  * journal_t.
1206  */
1207 
1208 static int load_superblock(journal_t *journal)
1209 {
1210 	int err;
1211 	journal_superblock_t *sb;
1212 
1213 	err = journal_get_superblock(journal);
1214 	if (err)
1215 		return err;
1216 
1217 	sb = journal->j_superblock;
1218 
1219 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1220 	journal->j_tail = be32_to_cpu(sb->s_start);
1221 	journal->j_first = be32_to_cpu(sb->s_first);
1222 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1223 	journal->j_errno = be32_to_cpu(sb->s_errno);
1224 
1225 	return 0;
1226 }
1227 
1228 
1229 /**
1230  * int jbd2_journal_load() - Read journal from disk.
1231  * @journal: Journal to act on.
1232  *
1233  * Given a journal_t structure which tells us which disk blocks contain
1234  * a journal, read the journal from disk to initialise the in-memory
1235  * structures.
1236  */
1237 int jbd2_journal_load(journal_t *journal)
1238 {
1239 	int err;
1240 	journal_superblock_t *sb;
1241 
1242 	err = load_superblock(journal);
1243 	if (err)
1244 		return err;
1245 
1246 	sb = journal->j_superblock;
1247 	/* If this is a V2 superblock, then we have to check the
1248 	 * features flags on it. */
1249 
1250 	if (journal->j_format_version >= 2) {
1251 		if ((sb->s_feature_ro_compat &
1252 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1253 		    (sb->s_feature_incompat &
1254 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1255 			printk (KERN_WARNING
1256 				"JBD: Unrecognised features on journal\n");
1257 			return -EINVAL;
1258 		}
1259 	}
1260 
1261 	/*
1262 	 * Create a slab for this blocksize
1263 	 */
1264 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1265 	if (err)
1266 		return err;
1267 
1268 	/* Let the recovery code check whether it needs to recover any
1269 	 * data from the journal. */
1270 	if (jbd2_journal_recover(journal))
1271 		goto recovery_error;
1272 
1273 	if (journal->j_failed_commit) {
1274 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1275 		       "is corrupt.\n", journal->j_failed_commit,
1276 		       journal->j_devname);
1277 		return -EIO;
1278 	}
1279 
1280 	/* OK, we've finished with the dynamic journal bits:
1281 	 * reinitialise the dynamic contents of the superblock in memory
1282 	 * and reset them on disk. */
1283 	if (journal_reset(journal))
1284 		goto recovery_error;
1285 
1286 	journal->j_flags &= ~JBD2_ABORT;
1287 	journal->j_flags |= JBD2_LOADED;
1288 	return 0;
1289 
1290 recovery_error:
1291 	printk (KERN_WARNING "JBD: recovery failed\n");
1292 	return -EIO;
1293 }
1294 
1295 /**
1296  * void jbd2_journal_destroy() - Release a journal_t structure.
1297  * @journal: Journal to act on.
1298  *
1299  * Release a journal_t structure once it is no longer in use by the
1300  * journaled object.
1301  * Return <0 if we couldn't clean up the journal.
1302  */
1303 int jbd2_journal_destroy(journal_t *journal)
1304 {
1305 	int err = 0;
1306 
1307 	/* Wait for the commit thread to wake up and die. */
1308 	journal_kill_thread(journal);
1309 
1310 	/* Force a final log commit */
1311 	if (journal->j_running_transaction)
1312 		jbd2_journal_commit_transaction(journal);
1313 
1314 	/* Force any old transactions to disk */
1315 
1316 	/* Totally anal locking here... */
1317 	spin_lock(&journal->j_list_lock);
1318 	while (journal->j_checkpoint_transactions != NULL) {
1319 		spin_unlock(&journal->j_list_lock);
1320 		mutex_lock(&journal->j_checkpoint_mutex);
1321 		jbd2_log_do_checkpoint(journal);
1322 		mutex_unlock(&journal->j_checkpoint_mutex);
1323 		spin_lock(&journal->j_list_lock);
1324 	}
1325 
1326 	J_ASSERT(journal->j_running_transaction == NULL);
1327 	J_ASSERT(journal->j_committing_transaction == NULL);
1328 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1329 	spin_unlock(&journal->j_list_lock);
1330 
1331 	if (journal->j_sb_buffer) {
1332 		if (!is_journal_aborted(journal)) {
1333 			/* We can now mark the journal as empty. */
1334 			journal->j_tail = 0;
1335 			journal->j_tail_sequence =
1336 				++journal->j_transaction_sequence;
1337 			jbd2_journal_update_superblock(journal, 1);
1338 		} else {
1339 			err = -EIO;
1340 		}
1341 		brelse(journal->j_sb_buffer);
1342 	}
1343 
1344 	if (journal->j_proc_entry)
1345 		jbd2_stats_proc_exit(journal);
1346 	if (journal->j_inode)
1347 		iput(journal->j_inode);
1348 	if (journal->j_revoke)
1349 		jbd2_journal_destroy_revoke(journal);
1350 	kfree(journal->j_wbuf);
1351 	kfree(journal);
1352 
1353 	return err;
1354 }
1355 
1356 
1357 /**
1358  *int jbd2_journal_check_used_features () - Check if features specified are used.
1359  * @journal: Journal to check.
1360  * @compat: bitmask of compatible features
1361  * @ro: bitmask of features that force read-only mount
1362  * @incompat: bitmask of incompatible features
1363  *
1364  * Check whether the journal uses all of a given set of
1365  * features.  Return true (non-zero) if it does.
1366  **/
1367 
1368 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1369 				 unsigned long ro, unsigned long incompat)
1370 {
1371 	journal_superblock_t *sb;
1372 
1373 	if (!compat && !ro && !incompat)
1374 		return 1;
1375 	/* Load journal superblock if it is not loaded yet. */
1376 	if (journal->j_format_version == 0 &&
1377 	    journal_get_superblock(journal) != 0)
1378 		return 0;
1379 	if (journal->j_format_version == 1)
1380 		return 0;
1381 
1382 	sb = journal->j_superblock;
1383 
1384 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1385 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1386 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1387 		return 1;
1388 
1389 	return 0;
1390 }
1391 
1392 /**
1393  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1394  * @journal: Journal to check.
1395  * @compat: bitmask of compatible features
1396  * @ro: bitmask of features that force read-only mount
1397  * @incompat: bitmask of incompatible features
1398  *
1399  * Check whether the journaling code supports the use of
1400  * all of a given set of features on this journal.  Return true
1401  * (non-zero) if it can. */
1402 
1403 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1404 				      unsigned long ro, unsigned long incompat)
1405 {
1406 	if (!compat && !ro && !incompat)
1407 		return 1;
1408 
1409 	/* We can support any known requested features iff the
1410 	 * superblock is in version 2.  Otherwise we fail to support any
1411 	 * extended sb features. */
1412 
1413 	if (journal->j_format_version != 2)
1414 		return 0;
1415 
1416 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1417 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1418 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1419 		return 1;
1420 
1421 	return 0;
1422 }
1423 
1424 /**
1425  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1426  * @journal: Journal to act on.
1427  * @compat: bitmask of compatible features
1428  * @ro: bitmask of features that force read-only mount
1429  * @incompat: bitmask of incompatible features
1430  *
1431  * Mark a given journal feature as present on the
1432  * superblock.  Returns true if the requested features could be set.
1433  *
1434  */
1435 
1436 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1437 			  unsigned long ro, unsigned long incompat)
1438 {
1439 	journal_superblock_t *sb;
1440 
1441 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1442 		return 1;
1443 
1444 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1445 		return 0;
1446 
1447 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1448 		  compat, ro, incompat);
1449 
1450 	sb = journal->j_superblock;
1451 
1452 	sb->s_feature_compat    |= cpu_to_be32(compat);
1453 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1454 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1455 
1456 	return 1;
1457 }
1458 
1459 /*
1460  * jbd2_journal_clear_features () - Clear a given journal feature in the
1461  * 				    superblock
1462  * @journal: Journal to act on.
1463  * @compat: bitmask of compatible features
1464  * @ro: bitmask of features that force read-only mount
1465  * @incompat: bitmask of incompatible features
1466  *
1467  * Clear a given journal feature as present on the
1468  * superblock.
1469  */
1470 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1471 				unsigned long ro, unsigned long incompat)
1472 {
1473 	journal_superblock_t *sb;
1474 
1475 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1476 		  compat, ro, incompat);
1477 
1478 	sb = journal->j_superblock;
1479 
1480 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1481 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1482 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1483 }
1484 EXPORT_SYMBOL(jbd2_journal_clear_features);
1485 
1486 /**
1487  * int jbd2_journal_update_format () - Update on-disk journal structure.
1488  * @journal: Journal to act on.
1489  *
1490  * Given an initialised but unloaded journal struct, poke about in the
1491  * on-disk structure to update it to the most recent supported version.
1492  */
1493 int jbd2_journal_update_format (journal_t *journal)
1494 {
1495 	journal_superblock_t *sb;
1496 	int err;
1497 
1498 	err = journal_get_superblock(journal);
1499 	if (err)
1500 		return err;
1501 
1502 	sb = journal->j_superblock;
1503 
1504 	switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1505 	case JBD2_SUPERBLOCK_V2:
1506 		return 0;
1507 	case JBD2_SUPERBLOCK_V1:
1508 		return journal_convert_superblock_v1(journal, sb);
1509 	default:
1510 		break;
1511 	}
1512 	return -EINVAL;
1513 }
1514 
1515 static int journal_convert_superblock_v1(journal_t *journal,
1516 					 journal_superblock_t *sb)
1517 {
1518 	int offset, blocksize;
1519 	struct buffer_head *bh;
1520 
1521 	printk(KERN_WARNING
1522 		"JBD: Converting superblock from version 1 to 2.\n");
1523 
1524 	/* Pre-initialise new fields to zero */
1525 	offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1526 	blocksize = be32_to_cpu(sb->s_blocksize);
1527 	memset(&sb->s_feature_compat, 0, blocksize-offset);
1528 
1529 	sb->s_nr_users = cpu_to_be32(1);
1530 	sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1531 	journal->j_format_version = 2;
1532 
1533 	bh = journal->j_sb_buffer;
1534 	BUFFER_TRACE(bh, "marking dirty");
1535 	mark_buffer_dirty(bh);
1536 	sync_dirty_buffer(bh);
1537 	return 0;
1538 }
1539 
1540 
1541 /**
1542  * int jbd2_journal_flush () - Flush journal
1543  * @journal: Journal to act on.
1544  *
1545  * Flush all data for a given journal to disk and empty the journal.
1546  * Filesystems can use this when remounting readonly to ensure that
1547  * recovery does not need to happen on remount.
1548  */
1549 
1550 int jbd2_journal_flush(journal_t *journal)
1551 {
1552 	int err = 0;
1553 	transaction_t *transaction = NULL;
1554 	unsigned long old_tail;
1555 
1556 	write_lock(&journal->j_state_lock);
1557 
1558 	/* Force everything buffered to the log... */
1559 	if (journal->j_running_transaction) {
1560 		transaction = journal->j_running_transaction;
1561 		__jbd2_log_start_commit(journal, transaction->t_tid);
1562 	} else if (journal->j_committing_transaction)
1563 		transaction = journal->j_committing_transaction;
1564 
1565 	/* Wait for the log commit to complete... */
1566 	if (transaction) {
1567 		tid_t tid = transaction->t_tid;
1568 
1569 		write_unlock(&journal->j_state_lock);
1570 		jbd2_log_wait_commit(journal, tid);
1571 	} else {
1572 		write_unlock(&journal->j_state_lock);
1573 	}
1574 
1575 	/* ...and flush everything in the log out to disk. */
1576 	spin_lock(&journal->j_list_lock);
1577 	while (!err && journal->j_checkpoint_transactions != NULL) {
1578 		spin_unlock(&journal->j_list_lock);
1579 		mutex_lock(&journal->j_checkpoint_mutex);
1580 		err = jbd2_log_do_checkpoint(journal);
1581 		mutex_unlock(&journal->j_checkpoint_mutex);
1582 		spin_lock(&journal->j_list_lock);
1583 	}
1584 	spin_unlock(&journal->j_list_lock);
1585 
1586 	if (is_journal_aborted(journal))
1587 		return -EIO;
1588 
1589 	jbd2_cleanup_journal_tail(journal);
1590 
1591 	/* Finally, mark the journal as really needing no recovery.
1592 	 * This sets s_start==0 in the underlying superblock, which is
1593 	 * the magic code for a fully-recovered superblock.  Any future
1594 	 * commits of data to the journal will restore the current
1595 	 * s_start value. */
1596 	write_lock(&journal->j_state_lock);
1597 	old_tail = journal->j_tail;
1598 	journal->j_tail = 0;
1599 	write_unlock(&journal->j_state_lock);
1600 	jbd2_journal_update_superblock(journal, 1);
1601 	write_lock(&journal->j_state_lock);
1602 	journal->j_tail = old_tail;
1603 
1604 	J_ASSERT(!journal->j_running_transaction);
1605 	J_ASSERT(!journal->j_committing_transaction);
1606 	J_ASSERT(!journal->j_checkpoint_transactions);
1607 	J_ASSERT(journal->j_head == journal->j_tail);
1608 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1609 	write_unlock(&journal->j_state_lock);
1610 	return 0;
1611 }
1612 
1613 /**
1614  * int jbd2_journal_wipe() - Wipe journal contents
1615  * @journal: Journal to act on.
1616  * @write: flag (see below)
1617  *
1618  * Wipe out all of the contents of a journal, safely.  This will produce
1619  * a warning if the journal contains any valid recovery information.
1620  * Must be called between journal_init_*() and jbd2_journal_load().
1621  *
1622  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1623  * we merely suppress recovery.
1624  */
1625 
1626 int jbd2_journal_wipe(journal_t *journal, int write)
1627 {
1628 	int err = 0;
1629 
1630 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1631 
1632 	err = load_superblock(journal);
1633 	if (err)
1634 		return err;
1635 
1636 	if (!journal->j_tail)
1637 		goto no_recovery;
1638 
1639 	printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1640 		write ? "Clearing" : "Ignoring");
1641 
1642 	err = jbd2_journal_skip_recovery(journal);
1643 	if (write)
1644 		jbd2_journal_update_superblock(journal, 1);
1645 
1646  no_recovery:
1647 	return err;
1648 }
1649 
1650 /*
1651  * Journal abort has very specific semantics, which we describe
1652  * for journal abort.
1653  *
1654  * Two internal functions, which provide abort to the jbd layer
1655  * itself are here.
1656  */
1657 
1658 /*
1659  * Quick version for internal journal use (doesn't lock the journal).
1660  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1661  * and don't attempt to make any other journal updates.
1662  */
1663 void __jbd2_journal_abort_hard(journal_t *journal)
1664 {
1665 	transaction_t *transaction;
1666 
1667 	if (journal->j_flags & JBD2_ABORT)
1668 		return;
1669 
1670 	printk(KERN_ERR "Aborting journal on device %s.\n",
1671 	       journal->j_devname);
1672 
1673 	write_lock(&journal->j_state_lock);
1674 	journal->j_flags |= JBD2_ABORT;
1675 	transaction = journal->j_running_transaction;
1676 	if (transaction)
1677 		__jbd2_log_start_commit(journal, transaction->t_tid);
1678 	write_unlock(&journal->j_state_lock);
1679 }
1680 
1681 /* Soft abort: record the abort error status in the journal superblock,
1682  * but don't do any other IO. */
1683 static void __journal_abort_soft (journal_t *journal, int errno)
1684 {
1685 	if (journal->j_flags & JBD2_ABORT)
1686 		return;
1687 
1688 	if (!journal->j_errno)
1689 		journal->j_errno = errno;
1690 
1691 	__jbd2_journal_abort_hard(journal);
1692 
1693 	if (errno)
1694 		jbd2_journal_update_superblock(journal, 1);
1695 }
1696 
1697 /**
1698  * void jbd2_journal_abort () - Shutdown the journal immediately.
1699  * @journal: the journal to shutdown.
1700  * @errno:   an error number to record in the journal indicating
1701  *           the reason for the shutdown.
1702  *
1703  * Perform a complete, immediate shutdown of the ENTIRE
1704  * journal (not of a single transaction).  This operation cannot be
1705  * undone without closing and reopening the journal.
1706  *
1707  * The jbd2_journal_abort function is intended to support higher level error
1708  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1709  * mode.
1710  *
1711  * Journal abort has very specific semantics.  Any existing dirty,
1712  * unjournaled buffers in the main filesystem will still be written to
1713  * disk by bdflush, but the journaling mechanism will be suspended
1714  * immediately and no further transaction commits will be honoured.
1715  *
1716  * Any dirty, journaled buffers will be written back to disk without
1717  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1718  * filesystem, but we _do_ attempt to leave as much data as possible
1719  * behind for fsck to use for cleanup.
1720  *
1721  * Any attempt to get a new transaction handle on a journal which is in
1722  * ABORT state will just result in an -EROFS error return.  A
1723  * jbd2_journal_stop on an existing handle will return -EIO if we have
1724  * entered abort state during the update.
1725  *
1726  * Recursive transactions are not disturbed by journal abort until the
1727  * final jbd2_journal_stop, which will receive the -EIO error.
1728  *
1729  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1730  * which will be recorded (if possible) in the journal superblock.  This
1731  * allows a client to record failure conditions in the middle of a
1732  * transaction without having to complete the transaction to record the
1733  * failure to disk.  ext3_error, for example, now uses this
1734  * functionality.
1735  *
1736  * Errors which originate from within the journaling layer will NOT
1737  * supply an errno; a null errno implies that absolutely no further
1738  * writes are done to the journal (unless there are any already in
1739  * progress).
1740  *
1741  */
1742 
1743 void jbd2_journal_abort(journal_t *journal, int errno)
1744 {
1745 	__journal_abort_soft(journal, errno);
1746 }
1747 
1748 /**
1749  * int jbd2_journal_errno () - returns the journal's error state.
1750  * @journal: journal to examine.
1751  *
1752  * This is the errno number set with jbd2_journal_abort(), the last
1753  * time the journal was mounted - if the journal was stopped
1754  * without calling abort this will be 0.
1755  *
1756  * If the journal has been aborted on this mount time -EROFS will
1757  * be returned.
1758  */
1759 int jbd2_journal_errno(journal_t *journal)
1760 {
1761 	int err;
1762 
1763 	read_lock(&journal->j_state_lock);
1764 	if (journal->j_flags & JBD2_ABORT)
1765 		err = -EROFS;
1766 	else
1767 		err = journal->j_errno;
1768 	read_unlock(&journal->j_state_lock);
1769 	return err;
1770 }
1771 
1772 /**
1773  * int jbd2_journal_clear_err () - clears the journal's error state
1774  * @journal: journal to act on.
1775  *
1776  * An error must be cleared or acked to take a FS out of readonly
1777  * mode.
1778  */
1779 int jbd2_journal_clear_err(journal_t *journal)
1780 {
1781 	int err = 0;
1782 
1783 	write_lock(&journal->j_state_lock);
1784 	if (journal->j_flags & JBD2_ABORT)
1785 		err = -EROFS;
1786 	else
1787 		journal->j_errno = 0;
1788 	write_unlock(&journal->j_state_lock);
1789 	return err;
1790 }
1791 
1792 /**
1793  * void jbd2_journal_ack_err() - Ack journal err.
1794  * @journal: journal to act on.
1795  *
1796  * An error must be cleared or acked to take a FS out of readonly
1797  * mode.
1798  */
1799 void jbd2_journal_ack_err(journal_t *journal)
1800 {
1801 	write_lock(&journal->j_state_lock);
1802 	if (journal->j_errno)
1803 		journal->j_flags |= JBD2_ACK_ERR;
1804 	write_unlock(&journal->j_state_lock);
1805 }
1806 
1807 int jbd2_journal_blocks_per_page(struct inode *inode)
1808 {
1809 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1810 }
1811 
1812 /*
1813  * helper functions to deal with 32 or 64bit block numbers.
1814  */
1815 size_t journal_tag_bytes(journal_t *journal)
1816 {
1817 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1818 		return JBD2_TAG_SIZE64;
1819 	else
1820 		return JBD2_TAG_SIZE32;
1821 }
1822 
1823 /*
1824  * JBD memory management
1825  *
1826  * These functions are used to allocate block-sized chunks of memory
1827  * used for making copies of buffer_head data.  Very often it will be
1828  * page-sized chunks of data, but sometimes it will be in
1829  * sub-page-size chunks.  (For example, 16k pages on Power systems
1830  * with a 4k block file system.)  For blocks smaller than a page, we
1831  * use a SLAB allocator.  There are slab caches for each block size,
1832  * which are allocated at mount time, if necessary, and we only free
1833  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
1834  * this reason we don't need to a mutex to protect access to
1835  * jbd2_slab[] allocating or releasing memory; only in
1836  * jbd2_journal_create_slab().
1837  */
1838 #define JBD2_MAX_SLABS 8
1839 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
1840 
1841 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
1842 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
1843 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
1844 };
1845 
1846 
1847 static void jbd2_journal_destroy_slabs(void)
1848 {
1849 	int i;
1850 
1851 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
1852 		if (jbd2_slab[i])
1853 			kmem_cache_destroy(jbd2_slab[i]);
1854 		jbd2_slab[i] = NULL;
1855 	}
1856 }
1857 
1858 static int jbd2_journal_create_slab(size_t size)
1859 {
1860 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
1861 	int i = order_base_2(size) - 10;
1862 	size_t slab_size;
1863 
1864 	if (size == PAGE_SIZE)
1865 		return 0;
1866 
1867 	if (i >= JBD2_MAX_SLABS)
1868 		return -EINVAL;
1869 
1870 	if (unlikely(i < 0))
1871 		i = 0;
1872 	mutex_lock(&jbd2_slab_create_mutex);
1873 	if (jbd2_slab[i]) {
1874 		mutex_unlock(&jbd2_slab_create_mutex);
1875 		return 0;	/* Already created */
1876 	}
1877 
1878 	slab_size = 1 << (i+10);
1879 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
1880 					 slab_size, 0, NULL);
1881 	mutex_unlock(&jbd2_slab_create_mutex);
1882 	if (!jbd2_slab[i]) {
1883 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
1884 		return -ENOMEM;
1885 	}
1886 	return 0;
1887 }
1888 
1889 static struct kmem_cache *get_slab(size_t size)
1890 {
1891 	int i = order_base_2(size) - 10;
1892 
1893 	BUG_ON(i >= JBD2_MAX_SLABS);
1894 	if (unlikely(i < 0))
1895 		i = 0;
1896 	BUG_ON(jbd2_slab[i] == NULL);
1897 	return jbd2_slab[i];
1898 }
1899 
1900 void *jbd2_alloc(size_t size, gfp_t flags)
1901 {
1902 	void *ptr;
1903 
1904 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
1905 
1906 	flags |= __GFP_REPEAT;
1907 	if (size == PAGE_SIZE)
1908 		ptr = (void *)__get_free_pages(flags, 0);
1909 	else if (size > PAGE_SIZE) {
1910 		int order = get_order(size);
1911 
1912 		if (order < 3)
1913 			ptr = (void *)__get_free_pages(flags, order);
1914 		else
1915 			ptr = vmalloc(size);
1916 	} else
1917 		ptr = kmem_cache_alloc(get_slab(size), flags);
1918 
1919 	/* Check alignment; SLUB has gotten this wrong in the past,
1920 	 * and this can lead to user data corruption! */
1921 	BUG_ON(((unsigned long) ptr) & (size-1));
1922 
1923 	return ptr;
1924 }
1925 
1926 void jbd2_free(void *ptr, size_t size)
1927 {
1928 	if (size == PAGE_SIZE) {
1929 		free_pages((unsigned long)ptr, 0);
1930 		return;
1931 	}
1932 	if (size > PAGE_SIZE) {
1933 		int order = get_order(size);
1934 
1935 		if (order < 3)
1936 			free_pages((unsigned long)ptr, order);
1937 		else
1938 			vfree(ptr);
1939 		return;
1940 	}
1941 	kmem_cache_free(get_slab(size), ptr);
1942 };
1943 
1944 /*
1945  * Journal_head storage management
1946  */
1947 static struct kmem_cache *jbd2_journal_head_cache;
1948 #ifdef CONFIG_JBD2_DEBUG
1949 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1950 #endif
1951 
1952 static int journal_init_jbd2_journal_head_cache(void)
1953 {
1954 	int retval;
1955 
1956 	J_ASSERT(jbd2_journal_head_cache == NULL);
1957 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1958 				sizeof(struct journal_head),
1959 				0,		/* offset */
1960 				SLAB_TEMPORARY,	/* flags */
1961 				NULL);		/* ctor */
1962 	retval = 0;
1963 	if (!jbd2_journal_head_cache) {
1964 		retval = -ENOMEM;
1965 		printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1966 	}
1967 	return retval;
1968 }
1969 
1970 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1971 {
1972 	if (jbd2_journal_head_cache) {
1973 		kmem_cache_destroy(jbd2_journal_head_cache);
1974 		jbd2_journal_head_cache = NULL;
1975 	}
1976 }
1977 
1978 /*
1979  * journal_head splicing and dicing
1980  */
1981 static struct journal_head *journal_alloc_journal_head(void)
1982 {
1983 	struct journal_head *ret;
1984 
1985 #ifdef CONFIG_JBD2_DEBUG
1986 	atomic_inc(&nr_journal_heads);
1987 #endif
1988 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1989 	if (!ret) {
1990 		jbd_debug(1, "out of memory for journal_head\n");
1991 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
1992 		while (!ret) {
1993 			yield();
1994 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1995 		}
1996 	}
1997 	return ret;
1998 }
1999 
2000 static void journal_free_journal_head(struct journal_head *jh)
2001 {
2002 #ifdef CONFIG_JBD2_DEBUG
2003 	atomic_dec(&nr_journal_heads);
2004 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2005 #endif
2006 	kmem_cache_free(jbd2_journal_head_cache, jh);
2007 }
2008 
2009 /*
2010  * A journal_head is attached to a buffer_head whenever JBD has an
2011  * interest in the buffer.
2012  *
2013  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2014  * is set.  This bit is tested in core kernel code where we need to take
2015  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2016  * there.
2017  *
2018  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2019  *
2020  * When a buffer has its BH_JBD bit set it is immune from being released by
2021  * core kernel code, mainly via ->b_count.
2022  *
2023  * A journal_head may be detached from its buffer_head when the journal_head's
2024  * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
2025  * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
2026  * journal_head can be dropped if needed.
2027  *
2028  * Various places in the kernel want to attach a journal_head to a buffer_head
2029  * _before_ attaching the journal_head to a transaction.  To protect the
2030  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2031  * journal_head's b_jcount refcount by one.  The caller must call
2032  * jbd2_journal_put_journal_head() to undo this.
2033  *
2034  * So the typical usage would be:
2035  *
2036  *	(Attach a journal_head if needed.  Increments b_jcount)
2037  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2038  *	...
2039  *	jh->b_transaction = xxx;
2040  *	jbd2_journal_put_journal_head(jh);
2041  *
2042  * Now, the journal_head's b_jcount is zero, but it is safe from being released
2043  * because it has a non-zero b_transaction.
2044  */
2045 
2046 /*
2047  * Give a buffer_head a journal_head.
2048  *
2049  * Doesn't need the journal lock.
2050  * May sleep.
2051  */
2052 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2053 {
2054 	struct journal_head *jh;
2055 	struct journal_head *new_jh = NULL;
2056 
2057 repeat:
2058 	if (!buffer_jbd(bh)) {
2059 		new_jh = journal_alloc_journal_head();
2060 		memset(new_jh, 0, sizeof(*new_jh));
2061 	}
2062 
2063 	jbd_lock_bh_journal_head(bh);
2064 	if (buffer_jbd(bh)) {
2065 		jh = bh2jh(bh);
2066 	} else {
2067 		J_ASSERT_BH(bh,
2068 			(atomic_read(&bh->b_count) > 0) ||
2069 			(bh->b_page && bh->b_page->mapping));
2070 
2071 		if (!new_jh) {
2072 			jbd_unlock_bh_journal_head(bh);
2073 			goto repeat;
2074 		}
2075 
2076 		jh = new_jh;
2077 		new_jh = NULL;		/* We consumed it */
2078 		set_buffer_jbd(bh);
2079 		bh->b_private = jh;
2080 		jh->b_bh = bh;
2081 		get_bh(bh);
2082 		BUFFER_TRACE(bh, "added journal_head");
2083 	}
2084 	jh->b_jcount++;
2085 	jbd_unlock_bh_journal_head(bh);
2086 	if (new_jh)
2087 		journal_free_journal_head(new_jh);
2088 	return bh->b_private;
2089 }
2090 
2091 /*
2092  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2093  * having a journal_head, return NULL
2094  */
2095 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2096 {
2097 	struct journal_head *jh = NULL;
2098 
2099 	jbd_lock_bh_journal_head(bh);
2100 	if (buffer_jbd(bh)) {
2101 		jh = bh2jh(bh);
2102 		jh->b_jcount++;
2103 	}
2104 	jbd_unlock_bh_journal_head(bh);
2105 	return jh;
2106 }
2107 
2108 static void __journal_remove_journal_head(struct buffer_head *bh)
2109 {
2110 	struct journal_head *jh = bh2jh(bh);
2111 
2112 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2113 
2114 	get_bh(bh);
2115 	if (jh->b_jcount == 0) {
2116 		if (jh->b_transaction == NULL &&
2117 				jh->b_next_transaction == NULL &&
2118 				jh->b_cp_transaction == NULL) {
2119 			J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2120 			J_ASSERT_BH(bh, buffer_jbd(bh));
2121 			J_ASSERT_BH(bh, jh2bh(jh) == bh);
2122 			BUFFER_TRACE(bh, "remove journal_head");
2123 			if (jh->b_frozen_data) {
2124 				printk(KERN_WARNING "%s: freeing "
2125 						"b_frozen_data\n",
2126 						__func__);
2127 				jbd2_free(jh->b_frozen_data, bh->b_size);
2128 			}
2129 			if (jh->b_committed_data) {
2130 				printk(KERN_WARNING "%s: freeing "
2131 						"b_committed_data\n",
2132 						__func__);
2133 				jbd2_free(jh->b_committed_data, bh->b_size);
2134 			}
2135 			bh->b_private = NULL;
2136 			jh->b_bh = NULL;	/* debug, really */
2137 			clear_buffer_jbd(bh);
2138 			__brelse(bh);
2139 			journal_free_journal_head(jh);
2140 		} else {
2141 			BUFFER_TRACE(bh, "journal_head was locked");
2142 		}
2143 	}
2144 }
2145 
2146 /*
2147  * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2148  * and has a zero b_jcount then remove and release its journal_head.   If we did
2149  * see that the buffer is not used by any transaction we also "logically"
2150  * decrement ->b_count.
2151  *
2152  * We in fact take an additional increment on ->b_count as a convenience,
2153  * because the caller usually wants to do additional things with the bh
2154  * after calling here.
2155  * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2156  * time.  Once the caller has run __brelse(), the buffer is eligible for
2157  * reaping by try_to_free_buffers().
2158  */
2159 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2160 {
2161 	jbd_lock_bh_journal_head(bh);
2162 	__journal_remove_journal_head(bh);
2163 	jbd_unlock_bh_journal_head(bh);
2164 }
2165 
2166 /*
2167  * Drop a reference on the passed journal_head.  If it fell to zero then try to
2168  * release the journal_head from the buffer_head.
2169  */
2170 void jbd2_journal_put_journal_head(struct journal_head *jh)
2171 {
2172 	struct buffer_head *bh = jh2bh(jh);
2173 
2174 	jbd_lock_bh_journal_head(bh);
2175 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2176 	--jh->b_jcount;
2177 	if (!jh->b_jcount && !jh->b_transaction) {
2178 		__journal_remove_journal_head(bh);
2179 		__brelse(bh);
2180 	}
2181 	jbd_unlock_bh_journal_head(bh);
2182 }
2183 
2184 /*
2185  * Initialize jbd inode head
2186  */
2187 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2188 {
2189 	jinode->i_transaction = NULL;
2190 	jinode->i_next_transaction = NULL;
2191 	jinode->i_vfs_inode = inode;
2192 	jinode->i_flags = 0;
2193 	INIT_LIST_HEAD(&jinode->i_list);
2194 }
2195 
2196 /*
2197  * Function to be called before we start removing inode from memory (i.e.,
2198  * clear_inode() is a fine place to be called from). It removes inode from
2199  * transaction's lists.
2200  */
2201 void jbd2_journal_release_jbd_inode(journal_t *journal,
2202 				    struct jbd2_inode *jinode)
2203 {
2204 	if (!journal)
2205 		return;
2206 restart:
2207 	spin_lock(&journal->j_list_lock);
2208 	/* Is commit writing out inode - we have to wait */
2209 	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2210 		wait_queue_head_t *wq;
2211 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2212 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2213 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2214 		spin_unlock(&journal->j_list_lock);
2215 		schedule();
2216 		finish_wait(wq, &wait.wait);
2217 		goto restart;
2218 	}
2219 
2220 	if (jinode->i_transaction) {
2221 		list_del(&jinode->i_list);
2222 		jinode->i_transaction = NULL;
2223 	}
2224 	spin_unlock(&journal->j_list_lock);
2225 }
2226 
2227 /*
2228  * debugfs tunables
2229  */
2230 #ifdef CONFIG_JBD2_DEBUG
2231 u8 jbd2_journal_enable_debug __read_mostly;
2232 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2233 
2234 #define JBD2_DEBUG_NAME "jbd2-debug"
2235 
2236 static struct dentry *jbd2_debugfs_dir;
2237 static struct dentry *jbd2_debug;
2238 
2239 static void __init jbd2_create_debugfs_entry(void)
2240 {
2241 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2242 	if (jbd2_debugfs_dir)
2243 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2244 					       S_IRUGO | S_IWUSR,
2245 					       jbd2_debugfs_dir,
2246 					       &jbd2_journal_enable_debug);
2247 }
2248 
2249 static void __exit jbd2_remove_debugfs_entry(void)
2250 {
2251 	debugfs_remove(jbd2_debug);
2252 	debugfs_remove(jbd2_debugfs_dir);
2253 }
2254 
2255 #else
2256 
2257 static void __init jbd2_create_debugfs_entry(void)
2258 {
2259 }
2260 
2261 static void __exit jbd2_remove_debugfs_entry(void)
2262 {
2263 }
2264 
2265 #endif
2266 
2267 #ifdef CONFIG_PROC_FS
2268 
2269 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2270 
2271 static void __init jbd2_create_jbd_stats_proc_entry(void)
2272 {
2273 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2274 }
2275 
2276 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2277 {
2278 	if (proc_jbd2_stats)
2279 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2280 }
2281 
2282 #else
2283 
2284 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2285 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2286 
2287 #endif
2288 
2289 struct kmem_cache *jbd2_handle_cache;
2290 
2291 static int __init journal_init_handle_cache(void)
2292 {
2293 	jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2294 				sizeof(handle_t),
2295 				0,		/* offset */
2296 				SLAB_TEMPORARY,	/* flags */
2297 				NULL);		/* ctor */
2298 	if (jbd2_handle_cache == NULL) {
2299 		printk(KERN_EMERG "JBD: failed to create handle cache\n");
2300 		return -ENOMEM;
2301 	}
2302 	return 0;
2303 }
2304 
2305 static void jbd2_journal_destroy_handle_cache(void)
2306 {
2307 	if (jbd2_handle_cache)
2308 		kmem_cache_destroy(jbd2_handle_cache);
2309 }
2310 
2311 /*
2312  * Module startup and shutdown
2313  */
2314 
2315 static int __init journal_init_caches(void)
2316 {
2317 	int ret;
2318 
2319 	ret = jbd2_journal_init_revoke_caches();
2320 	if (ret == 0)
2321 		ret = journal_init_jbd2_journal_head_cache();
2322 	if (ret == 0)
2323 		ret = journal_init_handle_cache();
2324 	return ret;
2325 }
2326 
2327 static void jbd2_journal_destroy_caches(void)
2328 {
2329 	jbd2_journal_destroy_revoke_caches();
2330 	jbd2_journal_destroy_jbd2_journal_head_cache();
2331 	jbd2_journal_destroy_handle_cache();
2332 	jbd2_journal_destroy_slabs();
2333 }
2334 
2335 static int __init journal_init(void)
2336 {
2337 	int ret;
2338 
2339 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2340 
2341 	ret = journal_init_caches();
2342 	if (ret == 0) {
2343 		jbd2_create_debugfs_entry();
2344 		jbd2_create_jbd_stats_proc_entry();
2345 	} else {
2346 		jbd2_journal_destroy_caches();
2347 	}
2348 	return ret;
2349 }
2350 
2351 static void __exit journal_exit(void)
2352 {
2353 #ifdef CONFIG_JBD2_DEBUG
2354 	int n = atomic_read(&nr_journal_heads);
2355 	if (n)
2356 		printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2357 #endif
2358 	jbd2_remove_debugfs_entry();
2359 	jbd2_remove_jbd_stats_proc_entry();
2360 	jbd2_journal_destroy_caches();
2361 }
2362 
2363 /*
2364  * jbd2_dev_to_name is a utility function used by the jbd2 and ext4
2365  * tracing infrastructure to map a dev_t to a device name.
2366  *
2367  * The caller should use rcu_read_lock() in order to make sure the
2368  * device name stays valid until its done with it.  We use
2369  * rcu_read_lock() as well to make sure we're safe in case the caller
2370  * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2371  * nested.
2372  */
2373 struct devname_cache {
2374 	struct rcu_head	rcu;
2375 	dev_t		device;
2376 	char		devname[BDEVNAME_SIZE];
2377 };
2378 #define CACHE_SIZE_BITS 6
2379 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2380 static DEFINE_SPINLOCK(devname_cache_lock);
2381 
2382 static void free_devcache(struct rcu_head *rcu)
2383 {
2384 	kfree(rcu);
2385 }
2386 
2387 const char *jbd2_dev_to_name(dev_t device)
2388 {
2389 	int	i = hash_32(device, CACHE_SIZE_BITS);
2390 	char	*ret;
2391 	struct block_device *bd;
2392 	static struct devname_cache *new_dev;
2393 
2394 	rcu_read_lock();
2395 	if (devcache[i] && devcache[i]->device == device) {
2396 		ret = devcache[i]->devname;
2397 		rcu_read_unlock();
2398 		return ret;
2399 	}
2400 	rcu_read_unlock();
2401 
2402 	new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2403 	if (!new_dev)
2404 		return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2405 	spin_lock(&devname_cache_lock);
2406 	if (devcache[i]) {
2407 		if (devcache[i]->device == device) {
2408 			kfree(new_dev);
2409 			ret = devcache[i]->devname;
2410 			spin_unlock(&devname_cache_lock);
2411 			return ret;
2412 		}
2413 		call_rcu(&devcache[i]->rcu, free_devcache);
2414 	}
2415 	devcache[i] = new_dev;
2416 	devcache[i]->device = device;
2417 	bd = bdget(device);
2418 	if (bd) {
2419 		bdevname(bd, devcache[i]->devname);
2420 		bdput(bd);
2421 	} else
2422 		__bdevname(device, devcache[i]->devname);
2423 	ret = devcache[i]->devname;
2424 	spin_unlock(&devname_cache_lock);
2425 	return ret;
2426 }
2427 EXPORT_SYMBOL(jbd2_dev_to_name);
2428 
2429 MODULE_LICENSE("GPL");
2430 module_init(journal_init);
2431 module_exit(journal_exit);
2432 
2433