xref: /openbmc/linux/fs/jbd2/journal.c (revision ab714aff4f744f52f0beae93ed441f2f5585eb7a)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
49 
50 #include <asm/uaccess.h>
51 #include <asm/page.h>
52 
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug);
56 
57 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59 #endif
60 
61 EXPORT_SYMBOL(jbd2_journal_extend);
62 EXPORT_SYMBOL(jbd2_journal_stop);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70 EXPORT_SYMBOL(jbd2_journal_forget);
71 #if 0
72 EXPORT_SYMBOL(journal_sync_buffer);
73 #endif
74 EXPORT_SYMBOL(jbd2_journal_flush);
75 EXPORT_SYMBOL(jbd2_journal_revoke);
76 
77 EXPORT_SYMBOL(jbd2_journal_init_dev);
78 EXPORT_SYMBOL(jbd2_journal_init_inode);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features);
81 EXPORT_SYMBOL(jbd2_journal_set_features);
82 EXPORT_SYMBOL(jbd2_journal_load);
83 EXPORT_SYMBOL(jbd2_journal_destroy);
84 EXPORT_SYMBOL(jbd2_journal_abort);
85 EXPORT_SYMBOL(jbd2_journal_errno);
86 EXPORT_SYMBOL(jbd2_journal_ack_err);
87 EXPORT_SYMBOL(jbd2_journal_clear_err);
88 EXPORT_SYMBOL(jbd2_log_wait_commit);
89 EXPORT_SYMBOL(jbd2_log_start_commit);
90 EXPORT_SYMBOL(jbd2_journal_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92 EXPORT_SYMBOL(jbd2_journal_wipe);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96 EXPORT_SYMBOL(jbd2_journal_force_commit);
97 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
102 EXPORT_SYMBOL(jbd2_inode_cache);
103 
104 static void __journal_abort_soft (journal_t *journal, int errno);
105 static int jbd2_journal_create_slab(size_t slab_size);
106 
107 #ifdef CONFIG_JBD2_DEBUG
108 void __jbd2_debug(int level, const char *file, const char *func,
109 		  unsigned int line, const char *fmt, ...)
110 {
111 	struct va_format vaf;
112 	va_list args;
113 
114 	if (level > jbd2_journal_enable_debug)
115 		return;
116 	va_start(args, fmt);
117 	vaf.fmt = fmt;
118 	vaf.va = &args;
119 	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
120 	va_end(args);
121 }
122 EXPORT_SYMBOL(__jbd2_debug);
123 #endif
124 
125 /* Checksumming functions */
126 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127 {
128 	if (!jbd2_journal_has_csum_v2or3_feature(j))
129 		return 1;
130 
131 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
132 }
133 
134 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135 {
136 	__u32 csum;
137 	__be32 old_csum;
138 
139 	old_csum = sb->s_checksum;
140 	sb->s_checksum = 0;
141 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
142 	sb->s_checksum = old_csum;
143 
144 	return cpu_to_be32(csum);
145 }
146 
147 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
148 {
149 	if (!jbd2_journal_has_csum_v2or3(j))
150 		return 1;
151 
152 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
153 }
154 
155 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
156 {
157 	if (!jbd2_journal_has_csum_v2or3(j))
158 		return;
159 
160 	sb->s_checksum = jbd2_superblock_csum(j, sb);
161 }
162 
163 /*
164  * Helper function used to manage commit timeouts
165  */
166 
167 static void commit_timeout(unsigned long __data)
168 {
169 	struct task_struct * p = (struct task_struct *) __data;
170 
171 	wake_up_process(p);
172 }
173 
174 /*
175  * kjournald2: The main thread function used to manage a logging device
176  * journal.
177  *
178  * This kernel thread is responsible for two things:
179  *
180  * 1) COMMIT:  Every so often we need to commit the current state of the
181  *    filesystem to disk.  The journal thread is responsible for writing
182  *    all of the metadata buffers to disk.
183  *
184  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185  *    of the data in that part of the log has been rewritten elsewhere on
186  *    the disk.  Flushing these old buffers to reclaim space in the log is
187  *    known as checkpointing, and this thread is responsible for that job.
188  */
189 
190 static int kjournald2(void *arg)
191 {
192 	journal_t *journal = arg;
193 	transaction_t *transaction;
194 
195 	/*
196 	 * Set up an interval timer which can be used to trigger a commit wakeup
197 	 * after the commit interval expires
198 	 */
199 	setup_timer(&journal->j_commit_timer, commit_timeout,
200 			(unsigned long)current);
201 
202 	set_freezable();
203 
204 	/* Record that the journal thread is running */
205 	journal->j_task = current;
206 	wake_up(&journal->j_wait_done_commit);
207 
208 	/*
209 	 * And now, wait forever for commit wakeup events.
210 	 */
211 	write_lock(&journal->j_state_lock);
212 
213 loop:
214 	if (journal->j_flags & JBD2_UNMOUNT)
215 		goto end_loop;
216 
217 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
218 		journal->j_commit_sequence, journal->j_commit_request);
219 
220 	if (journal->j_commit_sequence != journal->j_commit_request) {
221 		jbd_debug(1, "OK, requests differ\n");
222 		write_unlock(&journal->j_state_lock);
223 		del_timer_sync(&journal->j_commit_timer);
224 		jbd2_journal_commit_transaction(journal);
225 		write_lock(&journal->j_state_lock);
226 		goto loop;
227 	}
228 
229 	wake_up(&journal->j_wait_done_commit);
230 	if (freezing(current)) {
231 		/*
232 		 * The simpler the better. Flushing journal isn't a
233 		 * good idea, because that depends on threads that may
234 		 * be already stopped.
235 		 */
236 		jbd_debug(1, "Now suspending kjournald2\n");
237 		write_unlock(&journal->j_state_lock);
238 		try_to_freeze();
239 		write_lock(&journal->j_state_lock);
240 	} else {
241 		/*
242 		 * We assume on resume that commits are already there,
243 		 * so we don't sleep
244 		 */
245 		DEFINE_WAIT(wait);
246 		int should_sleep = 1;
247 
248 		prepare_to_wait(&journal->j_wait_commit, &wait,
249 				TASK_INTERRUPTIBLE);
250 		if (journal->j_commit_sequence != journal->j_commit_request)
251 			should_sleep = 0;
252 		transaction = journal->j_running_transaction;
253 		if (transaction && time_after_eq(jiffies,
254 						transaction->t_expires))
255 			should_sleep = 0;
256 		if (journal->j_flags & JBD2_UNMOUNT)
257 			should_sleep = 0;
258 		if (should_sleep) {
259 			write_unlock(&journal->j_state_lock);
260 			schedule();
261 			write_lock(&journal->j_state_lock);
262 		}
263 		finish_wait(&journal->j_wait_commit, &wait);
264 	}
265 
266 	jbd_debug(1, "kjournald2 wakes\n");
267 
268 	/*
269 	 * Were we woken up by a commit wakeup event?
270 	 */
271 	transaction = journal->j_running_transaction;
272 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
273 		journal->j_commit_request = transaction->t_tid;
274 		jbd_debug(1, "woke because of timeout\n");
275 	}
276 	goto loop;
277 
278 end_loop:
279 	write_unlock(&journal->j_state_lock);
280 	del_timer_sync(&journal->j_commit_timer);
281 	journal->j_task = NULL;
282 	wake_up(&journal->j_wait_done_commit);
283 	jbd_debug(1, "Journal thread exiting.\n");
284 	return 0;
285 }
286 
287 static int jbd2_journal_start_thread(journal_t *journal)
288 {
289 	struct task_struct *t;
290 
291 	t = kthread_run(kjournald2, journal, "jbd2/%s",
292 			journal->j_devname);
293 	if (IS_ERR(t))
294 		return PTR_ERR(t);
295 
296 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
297 	return 0;
298 }
299 
300 static void journal_kill_thread(journal_t *journal)
301 {
302 	write_lock(&journal->j_state_lock);
303 	journal->j_flags |= JBD2_UNMOUNT;
304 
305 	while (journal->j_task) {
306 		write_unlock(&journal->j_state_lock);
307 		wake_up(&journal->j_wait_commit);
308 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
309 		write_lock(&journal->j_state_lock);
310 	}
311 	write_unlock(&journal->j_state_lock);
312 }
313 
314 /*
315  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
316  *
317  * Writes a metadata buffer to a given disk block.  The actual IO is not
318  * performed but a new buffer_head is constructed which labels the data
319  * to be written with the correct destination disk block.
320  *
321  * Any magic-number escaping which needs to be done will cause a
322  * copy-out here.  If the buffer happens to start with the
323  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
324  * magic number is only written to the log for descripter blocks.  In
325  * this case, we copy the data and replace the first word with 0, and we
326  * return a result code which indicates that this buffer needs to be
327  * marked as an escaped buffer in the corresponding log descriptor
328  * block.  The missing word can then be restored when the block is read
329  * during recovery.
330  *
331  * If the source buffer has already been modified by a new transaction
332  * since we took the last commit snapshot, we use the frozen copy of
333  * that data for IO. If we end up using the existing buffer_head's data
334  * for the write, then we have to make sure nobody modifies it while the
335  * IO is in progress. do_get_write_access() handles this.
336  *
337  * The function returns a pointer to the buffer_head to be used for IO.
338  *
339  *
340  * Return value:
341  *  <0: Error
342  * >=0: Finished OK
343  *
344  * On success:
345  * Bit 0 set == escape performed on the data
346  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
347  */
348 
349 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
350 				  struct journal_head  *jh_in,
351 				  struct buffer_head **bh_out,
352 				  sector_t blocknr)
353 {
354 	int need_copy_out = 0;
355 	int done_copy_out = 0;
356 	int do_escape = 0;
357 	char *mapped_data;
358 	struct buffer_head *new_bh;
359 	struct page *new_page;
360 	unsigned int new_offset;
361 	struct buffer_head *bh_in = jh2bh(jh_in);
362 	journal_t *journal = transaction->t_journal;
363 
364 	/*
365 	 * The buffer really shouldn't be locked: only the current committing
366 	 * transaction is allowed to write it, so nobody else is allowed
367 	 * to do any IO.
368 	 *
369 	 * akpm: except if we're journalling data, and write() output is
370 	 * also part of a shared mapping, and another thread has
371 	 * decided to launch a writepage() against this buffer.
372 	 */
373 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
374 
375 	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
376 
377 	/* keep subsequent assertions sane */
378 	atomic_set(&new_bh->b_count, 1);
379 
380 	jbd_lock_bh_state(bh_in);
381 repeat:
382 	/*
383 	 * If a new transaction has already done a buffer copy-out, then
384 	 * we use that version of the data for the commit.
385 	 */
386 	if (jh_in->b_frozen_data) {
387 		done_copy_out = 1;
388 		new_page = virt_to_page(jh_in->b_frozen_data);
389 		new_offset = offset_in_page(jh_in->b_frozen_data);
390 	} else {
391 		new_page = jh2bh(jh_in)->b_page;
392 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
393 	}
394 
395 	mapped_data = kmap_atomic(new_page);
396 	/*
397 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
398 	 * before checking for escaping, as the trigger may modify the magic
399 	 * offset.  If a copy-out happens afterwards, it will have the correct
400 	 * data in the buffer.
401 	 */
402 	if (!done_copy_out)
403 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
404 					   jh_in->b_triggers);
405 
406 	/*
407 	 * Check for escaping
408 	 */
409 	if (*((__be32 *)(mapped_data + new_offset)) ==
410 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
411 		need_copy_out = 1;
412 		do_escape = 1;
413 	}
414 	kunmap_atomic(mapped_data);
415 
416 	/*
417 	 * Do we need to do a data copy?
418 	 */
419 	if (need_copy_out && !done_copy_out) {
420 		char *tmp;
421 
422 		jbd_unlock_bh_state(bh_in);
423 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
424 		if (!tmp) {
425 			brelse(new_bh);
426 			return -ENOMEM;
427 		}
428 		jbd_lock_bh_state(bh_in);
429 		if (jh_in->b_frozen_data) {
430 			jbd2_free(tmp, bh_in->b_size);
431 			goto repeat;
432 		}
433 
434 		jh_in->b_frozen_data = tmp;
435 		mapped_data = kmap_atomic(new_page);
436 		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
437 		kunmap_atomic(mapped_data);
438 
439 		new_page = virt_to_page(tmp);
440 		new_offset = offset_in_page(tmp);
441 		done_copy_out = 1;
442 
443 		/*
444 		 * This isn't strictly necessary, as we're using frozen
445 		 * data for the escaping, but it keeps consistency with
446 		 * b_frozen_data usage.
447 		 */
448 		jh_in->b_frozen_triggers = jh_in->b_triggers;
449 	}
450 
451 	/*
452 	 * Did we need to do an escaping?  Now we've done all the
453 	 * copying, we can finally do so.
454 	 */
455 	if (do_escape) {
456 		mapped_data = kmap_atomic(new_page);
457 		*((unsigned int *)(mapped_data + new_offset)) = 0;
458 		kunmap_atomic(mapped_data);
459 	}
460 
461 	set_bh_page(new_bh, new_page, new_offset);
462 	new_bh->b_size = bh_in->b_size;
463 	new_bh->b_bdev = journal->j_dev;
464 	new_bh->b_blocknr = blocknr;
465 	new_bh->b_private = bh_in;
466 	set_buffer_mapped(new_bh);
467 	set_buffer_dirty(new_bh);
468 
469 	*bh_out = new_bh;
470 
471 	/*
472 	 * The to-be-written buffer needs to get moved to the io queue,
473 	 * and the original buffer whose contents we are shadowing or
474 	 * copying is moved to the transaction's shadow queue.
475 	 */
476 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
477 	spin_lock(&journal->j_list_lock);
478 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
479 	spin_unlock(&journal->j_list_lock);
480 	set_buffer_shadow(bh_in);
481 	jbd_unlock_bh_state(bh_in);
482 
483 	return do_escape | (done_copy_out << 1);
484 }
485 
486 /*
487  * Allocation code for the journal file.  Manage the space left in the
488  * journal, so that we can begin checkpointing when appropriate.
489  */
490 
491 /*
492  * Called with j_state_lock locked for writing.
493  * Returns true if a transaction commit was started.
494  */
495 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
496 {
497 	/* Return if the txn has already requested to be committed */
498 	if (journal->j_commit_request == target)
499 		return 0;
500 
501 	/*
502 	 * The only transaction we can possibly wait upon is the
503 	 * currently running transaction (if it exists).  Otherwise,
504 	 * the target tid must be an old one.
505 	 */
506 	if (journal->j_running_transaction &&
507 	    journal->j_running_transaction->t_tid == target) {
508 		/*
509 		 * We want a new commit: OK, mark the request and wakeup the
510 		 * commit thread.  We do _not_ do the commit ourselves.
511 		 */
512 
513 		journal->j_commit_request = target;
514 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
515 			  journal->j_commit_request,
516 			  journal->j_commit_sequence);
517 		journal->j_running_transaction->t_requested = jiffies;
518 		wake_up(&journal->j_wait_commit);
519 		return 1;
520 	} else if (!tid_geq(journal->j_commit_request, target))
521 		/* This should never happen, but if it does, preserve
522 		   the evidence before kjournald goes into a loop and
523 		   increments j_commit_sequence beyond all recognition. */
524 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
525 			  journal->j_commit_request,
526 			  journal->j_commit_sequence,
527 			  target, journal->j_running_transaction ?
528 			  journal->j_running_transaction->t_tid : 0);
529 	return 0;
530 }
531 
532 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
533 {
534 	int ret;
535 
536 	write_lock(&journal->j_state_lock);
537 	ret = __jbd2_log_start_commit(journal, tid);
538 	write_unlock(&journal->j_state_lock);
539 	return ret;
540 }
541 
542 /*
543  * Force and wait any uncommitted transactions.  We can only force the running
544  * transaction if we don't have an active handle, otherwise, we will deadlock.
545  * Returns: <0 in case of error,
546  *           0 if nothing to commit,
547  *           1 if transaction was successfully committed.
548  */
549 static int __jbd2_journal_force_commit(journal_t *journal)
550 {
551 	transaction_t *transaction = NULL;
552 	tid_t tid;
553 	int need_to_start = 0, ret = 0;
554 
555 	read_lock(&journal->j_state_lock);
556 	if (journal->j_running_transaction && !current->journal_info) {
557 		transaction = journal->j_running_transaction;
558 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
559 			need_to_start = 1;
560 	} else if (journal->j_committing_transaction)
561 		transaction = journal->j_committing_transaction;
562 
563 	if (!transaction) {
564 		/* Nothing to commit */
565 		read_unlock(&journal->j_state_lock);
566 		return 0;
567 	}
568 	tid = transaction->t_tid;
569 	read_unlock(&journal->j_state_lock);
570 	if (need_to_start)
571 		jbd2_log_start_commit(journal, tid);
572 	ret = jbd2_log_wait_commit(journal, tid);
573 	if (!ret)
574 		ret = 1;
575 
576 	return ret;
577 }
578 
579 /**
580  * Force and wait upon a commit if the calling process is not within
581  * transaction.  This is used for forcing out undo-protected data which contains
582  * bitmaps, when the fs is running out of space.
583  *
584  * @journal: journal to force
585  * Returns true if progress was made.
586  */
587 int jbd2_journal_force_commit_nested(journal_t *journal)
588 {
589 	int ret;
590 
591 	ret = __jbd2_journal_force_commit(journal);
592 	return ret > 0;
593 }
594 
595 /**
596  * int journal_force_commit() - force any uncommitted transactions
597  * @journal: journal to force
598  *
599  * Caller want unconditional commit. We can only force the running transaction
600  * if we don't have an active handle, otherwise, we will deadlock.
601  */
602 int jbd2_journal_force_commit(journal_t *journal)
603 {
604 	int ret;
605 
606 	J_ASSERT(!current->journal_info);
607 	ret = __jbd2_journal_force_commit(journal);
608 	if (ret > 0)
609 		ret = 0;
610 	return ret;
611 }
612 
613 /*
614  * Start a commit of the current running transaction (if any).  Returns true
615  * if a transaction is going to be committed (or is currently already
616  * committing), and fills its tid in at *ptid
617  */
618 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
619 {
620 	int ret = 0;
621 
622 	write_lock(&journal->j_state_lock);
623 	if (journal->j_running_transaction) {
624 		tid_t tid = journal->j_running_transaction->t_tid;
625 
626 		__jbd2_log_start_commit(journal, tid);
627 		/* There's a running transaction and we've just made sure
628 		 * it's commit has been scheduled. */
629 		if (ptid)
630 			*ptid = tid;
631 		ret = 1;
632 	} else if (journal->j_committing_transaction) {
633 		/*
634 		 * If commit has been started, then we have to wait for
635 		 * completion of that transaction.
636 		 */
637 		if (ptid)
638 			*ptid = journal->j_committing_transaction->t_tid;
639 		ret = 1;
640 	}
641 	write_unlock(&journal->j_state_lock);
642 	return ret;
643 }
644 
645 /*
646  * Return 1 if a given transaction has not yet sent barrier request
647  * connected with a transaction commit. If 0 is returned, transaction
648  * may or may not have sent the barrier. Used to avoid sending barrier
649  * twice in common cases.
650  */
651 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
652 {
653 	int ret = 0;
654 	transaction_t *commit_trans;
655 
656 	if (!(journal->j_flags & JBD2_BARRIER))
657 		return 0;
658 	read_lock(&journal->j_state_lock);
659 	/* Transaction already committed? */
660 	if (tid_geq(journal->j_commit_sequence, tid))
661 		goto out;
662 	commit_trans = journal->j_committing_transaction;
663 	if (!commit_trans || commit_trans->t_tid != tid) {
664 		ret = 1;
665 		goto out;
666 	}
667 	/*
668 	 * Transaction is being committed and we already proceeded to
669 	 * submitting a flush to fs partition?
670 	 */
671 	if (journal->j_fs_dev != journal->j_dev) {
672 		if (!commit_trans->t_need_data_flush ||
673 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
674 			goto out;
675 	} else {
676 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
677 			goto out;
678 	}
679 	ret = 1;
680 out:
681 	read_unlock(&journal->j_state_lock);
682 	return ret;
683 }
684 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
685 
686 /*
687  * Wait for a specified commit to complete.
688  * The caller may not hold the journal lock.
689  */
690 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
691 {
692 	int err = 0;
693 
694 	read_lock(&journal->j_state_lock);
695 #ifdef CONFIG_JBD2_DEBUG
696 	if (!tid_geq(journal->j_commit_request, tid)) {
697 		printk(KERN_ERR
698 		       "%s: error: j_commit_request=%d, tid=%d\n",
699 		       __func__, journal->j_commit_request, tid);
700 	}
701 #endif
702 	while (tid_gt(tid, journal->j_commit_sequence)) {
703 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
704 				  tid, journal->j_commit_sequence);
705 		read_unlock(&journal->j_state_lock);
706 		wake_up(&journal->j_wait_commit);
707 		wait_event(journal->j_wait_done_commit,
708 				!tid_gt(tid, journal->j_commit_sequence));
709 		read_lock(&journal->j_state_lock);
710 	}
711 	read_unlock(&journal->j_state_lock);
712 
713 	if (unlikely(is_journal_aborted(journal)))
714 		err = -EIO;
715 	return err;
716 }
717 
718 /*
719  * When this function returns the transaction corresponding to tid
720  * will be completed.  If the transaction has currently running, start
721  * committing that transaction before waiting for it to complete.  If
722  * the transaction id is stale, it is by definition already completed,
723  * so just return SUCCESS.
724  */
725 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
726 {
727 	int	need_to_wait = 1;
728 
729 	read_lock(&journal->j_state_lock);
730 	if (journal->j_running_transaction &&
731 	    journal->j_running_transaction->t_tid == tid) {
732 		if (journal->j_commit_request != tid) {
733 			/* transaction not yet started, so request it */
734 			read_unlock(&journal->j_state_lock);
735 			jbd2_log_start_commit(journal, tid);
736 			goto wait_commit;
737 		}
738 	} else if (!(journal->j_committing_transaction &&
739 		     journal->j_committing_transaction->t_tid == tid))
740 		need_to_wait = 0;
741 	read_unlock(&journal->j_state_lock);
742 	if (!need_to_wait)
743 		return 0;
744 wait_commit:
745 	return jbd2_log_wait_commit(journal, tid);
746 }
747 EXPORT_SYMBOL(jbd2_complete_transaction);
748 
749 /*
750  * Log buffer allocation routines:
751  */
752 
753 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
754 {
755 	unsigned long blocknr;
756 
757 	write_lock(&journal->j_state_lock);
758 	J_ASSERT(journal->j_free > 1);
759 
760 	blocknr = journal->j_head;
761 	journal->j_head++;
762 	journal->j_free--;
763 	if (journal->j_head == journal->j_last)
764 		journal->j_head = journal->j_first;
765 	write_unlock(&journal->j_state_lock);
766 	return jbd2_journal_bmap(journal, blocknr, retp);
767 }
768 
769 /*
770  * Conversion of logical to physical block numbers for the journal
771  *
772  * On external journals the journal blocks are identity-mapped, so
773  * this is a no-op.  If needed, we can use j_blk_offset - everything is
774  * ready.
775  */
776 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
777 		 unsigned long long *retp)
778 {
779 	int err = 0;
780 	unsigned long long ret;
781 
782 	if (journal->j_inode) {
783 		ret = bmap(journal->j_inode, blocknr);
784 		if (ret)
785 			*retp = ret;
786 		else {
787 			printk(KERN_ALERT "%s: journal block not found "
788 					"at offset %lu on %s\n",
789 			       __func__, blocknr, journal->j_devname);
790 			err = -EIO;
791 			__journal_abort_soft(journal, err);
792 		}
793 	} else {
794 		*retp = blocknr; /* +journal->j_blk_offset */
795 	}
796 	return err;
797 }
798 
799 /*
800  * We play buffer_head aliasing tricks to write data/metadata blocks to
801  * the journal without copying their contents, but for journal
802  * descriptor blocks we do need to generate bona fide buffers.
803  *
804  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
805  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
806  * But we don't bother doing that, so there will be coherency problems with
807  * mmaps of blockdevs which hold live JBD-controlled filesystems.
808  */
809 struct buffer_head *
810 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
811 {
812 	journal_t *journal = transaction->t_journal;
813 	struct buffer_head *bh;
814 	unsigned long long blocknr;
815 	journal_header_t *header;
816 	int err;
817 
818 	err = jbd2_journal_next_log_block(journal, &blocknr);
819 
820 	if (err)
821 		return NULL;
822 
823 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
824 	if (!bh)
825 		return NULL;
826 	lock_buffer(bh);
827 	memset(bh->b_data, 0, journal->j_blocksize);
828 	header = (journal_header_t *)bh->b_data;
829 	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
830 	header->h_blocktype = cpu_to_be32(type);
831 	header->h_sequence = cpu_to_be32(transaction->t_tid);
832 	set_buffer_uptodate(bh);
833 	unlock_buffer(bh);
834 	BUFFER_TRACE(bh, "return this buffer");
835 	return bh;
836 }
837 
838 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
839 {
840 	struct jbd2_journal_block_tail *tail;
841 	__u32 csum;
842 
843 	if (!jbd2_journal_has_csum_v2or3(j))
844 		return;
845 
846 	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
847 			sizeof(struct jbd2_journal_block_tail));
848 	tail->t_checksum = 0;
849 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
850 	tail->t_checksum = cpu_to_be32(csum);
851 }
852 
853 /*
854  * Return tid of the oldest transaction in the journal and block in the journal
855  * where the transaction starts.
856  *
857  * If the journal is now empty, return which will be the next transaction ID
858  * we will write and where will that transaction start.
859  *
860  * The return value is 0 if journal tail cannot be pushed any further, 1 if
861  * it can.
862  */
863 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
864 			      unsigned long *block)
865 {
866 	transaction_t *transaction;
867 	int ret;
868 
869 	read_lock(&journal->j_state_lock);
870 	spin_lock(&journal->j_list_lock);
871 	transaction = journal->j_checkpoint_transactions;
872 	if (transaction) {
873 		*tid = transaction->t_tid;
874 		*block = transaction->t_log_start;
875 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
876 		*tid = transaction->t_tid;
877 		*block = transaction->t_log_start;
878 	} else if ((transaction = journal->j_running_transaction) != NULL) {
879 		*tid = transaction->t_tid;
880 		*block = journal->j_head;
881 	} else {
882 		*tid = journal->j_transaction_sequence;
883 		*block = journal->j_head;
884 	}
885 	ret = tid_gt(*tid, journal->j_tail_sequence);
886 	spin_unlock(&journal->j_list_lock);
887 	read_unlock(&journal->j_state_lock);
888 
889 	return ret;
890 }
891 
892 /*
893  * Update information in journal structure and in on disk journal superblock
894  * about log tail. This function does not check whether information passed in
895  * really pushes log tail further. It's responsibility of the caller to make
896  * sure provided log tail information is valid (e.g. by holding
897  * j_checkpoint_mutex all the time between computing log tail and calling this
898  * function as is the case with jbd2_cleanup_journal_tail()).
899  *
900  * Requires j_checkpoint_mutex
901  */
902 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
903 {
904 	unsigned long freed;
905 	int ret;
906 
907 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
908 
909 	/*
910 	 * We cannot afford for write to remain in drive's caches since as
911 	 * soon as we update j_tail, next transaction can start reusing journal
912 	 * space and if we lose sb update during power failure we'd replay
913 	 * old transaction with possibly newly overwritten data.
914 	 */
915 	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
916 	if (ret)
917 		goto out;
918 
919 	write_lock(&journal->j_state_lock);
920 	freed = block - journal->j_tail;
921 	if (block < journal->j_tail)
922 		freed += journal->j_last - journal->j_first;
923 
924 	trace_jbd2_update_log_tail(journal, tid, block, freed);
925 	jbd_debug(1,
926 		  "Cleaning journal tail from %d to %d (offset %lu), "
927 		  "freeing %lu\n",
928 		  journal->j_tail_sequence, tid, block, freed);
929 
930 	journal->j_free += freed;
931 	journal->j_tail_sequence = tid;
932 	journal->j_tail = block;
933 	write_unlock(&journal->j_state_lock);
934 
935 out:
936 	return ret;
937 }
938 
939 /*
940  * This is a variaon of __jbd2_update_log_tail which checks for validity of
941  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
942  * with other threads updating log tail.
943  */
944 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
945 {
946 	mutex_lock(&journal->j_checkpoint_mutex);
947 	if (tid_gt(tid, journal->j_tail_sequence))
948 		__jbd2_update_log_tail(journal, tid, block);
949 	mutex_unlock(&journal->j_checkpoint_mutex);
950 }
951 
952 struct jbd2_stats_proc_session {
953 	journal_t *journal;
954 	struct transaction_stats_s *stats;
955 	int start;
956 	int max;
957 };
958 
959 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
960 {
961 	return *pos ? NULL : SEQ_START_TOKEN;
962 }
963 
964 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
965 {
966 	return NULL;
967 }
968 
969 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
970 {
971 	struct jbd2_stats_proc_session *s = seq->private;
972 
973 	if (v != SEQ_START_TOKEN)
974 		return 0;
975 	seq_printf(seq, "%lu transactions (%lu requested), "
976 		   "each up to %u blocks\n",
977 		   s->stats->ts_tid, s->stats->ts_requested,
978 		   s->journal->j_max_transaction_buffers);
979 	if (s->stats->ts_tid == 0)
980 		return 0;
981 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
982 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
983 	seq_printf(seq, "  %ums request delay\n",
984 	    (s->stats->ts_requested == 0) ? 0 :
985 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
986 			     s->stats->ts_requested));
987 	seq_printf(seq, "  %ums running transaction\n",
988 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
989 	seq_printf(seq, "  %ums transaction was being locked\n",
990 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
991 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
992 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
993 	seq_printf(seq, "  %ums logging transaction\n",
994 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
995 	seq_printf(seq, "  %lluus average transaction commit time\n",
996 		   div_u64(s->journal->j_average_commit_time, 1000));
997 	seq_printf(seq, "  %lu handles per transaction\n",
998 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
999 	seq_printf(seq, "  %lu blocks per transaction\n",
1000 	    s->stats->run.rs_blocks / s->stats->ts_tid);
1001 	seq_printf(seq, "  %lu logged blocks per transaction\n",
1002 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1003 	return 0;
1004 }
1005 
1006 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1007 {
1008 }
1009 
1010 static const struct seq_operations jbd2_seq_info_ops = {
1011 	.start  = jbd2_seq_info_start,
1012 	.next   = jbd2_seq_info_next,
1013 	.stop   = jbd2_seq_info_stop,
1014 	.show   = jbd2_seq_info_show,
1015 };
1016 
1017 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1018 {
1019 	journal_t *journal = PDE_DATA(inode);
1020 	struct jbd2_stats_proc_session *s;
1021 	int rc, size;
1022 
1023 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1024 	if (s == NULL)
1025 		return -ENOMEM;
1026 	size = sizeof(struct transaction_stats_s);
1027 	s->stats = kmalloc(size, GFP_KERNEL);
1028 	if (s->stats == NULL) {
1029 		kfree(s);
1030 		return -ENOMEM;
1031 	}
1032 	spin_lock(&journal->j_history_lock);
1033 	memcpy(s->stats, &journal->j_stats, size);
1034 	s->journal = journal;
1035 	spin_unlock(&journal->j_history_lock);
1036 
1037 	rc = seq_open(file, &jbd2_seq_info_ops);
1038 	if (rc == 0) {
1039 		struct seq_file *m = file->private_data;
1040 		m->private = s;
1041 	} else {
1042 		kfree(s->stats);
1043 		kfree(s);
1044 	}
1045 	return rc;
1046 
1047 }
1048 
1049 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1050 {
1051 	struct seq_file *seq = file->private_data;
1052 	struct jbd2_stats_proc_session *s = seq->private;
1053 	kfree(s->stats);
1054 	kfree(s);
1055 	return seq_release(inode, file);
1056 }
1057 
1058 static const struct file_operations jbd2_seq_info_fops = {
1059 	.owner		= THIS_MODULE,
1060 	.open           = jbd2_seq_info_open,
1061 	.read           = seq_read,
1062 	.llseek         = seq_lseek,
1063 	.release        = jbd2_seq_info_release,
1064 };
1065 
1066 static struct proc_dir_entry *proc_jbd2_stats;
1067 
1068 static void jbd2_stats_proc_init(journal_t *journal)
1069 {
1070 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1071 	if (journal->j_proc_entry) {
1072 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1073 				 &jbd2_seq_info_fops, journal);
1074 	}
1075 }
1076 
1077 static void jbd2_stats_proc_exit(journal_t *journal)
1078 {
1079 	remove_proc_entry("info", journal->j_proc_entry);
1080 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1081 }
1082 
1083 /*
1084  * Management for journal control blocks: functions to create and
1085  * destroy journal_t structures, and to initialise and read existing
1086  * journal blocks from disk.  */
1087 
1088 /* First: create and setup a journal_t object in memory.  We initialise
1089  * very few fields yet: that has to wait until we have created the
1090  * journal structures from from scratch, or loaded them from disk. */
1091 
1092 static journal_t * journal_init_common (void)
1093 {
1094 	static struct lock_class_key jbd2_trans_commit_key;
1095 	journal_t *journal;
1096 	int err;
1097 
1098 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1099 	if (!journal)
1100 		return NULL;
1101 
1102 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1103 	init_waitqueue_head(&journal->j_wait_done_commit);
1104 	init_waitqueue_head(&journal->j_wait_commit);
1105 	init_waitqueue_head(&journal->j_wait_updates);
1106 	init_waitqueue_head(&journal->j_wait_reserved);
1107 	mutex_init(&journal->j_barrier);
1108 	mutex_init(&journal->j_checkpoint_mutex);
1109 	spin_lock_init(&journal->j_revoke_lock);
1110 	spin_lock_init(&journal->j_list_lock);
1111 	rwlock_init(&journal->j_state_lock);
1112 
1113 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1114 	journal->j_min_batch_time = 0;
1115 	journal->j_max_batch_time = 15000; /* 15ms */
1116 	atomic_set(&journal->j_reserved_credits, 0);
1117 
1118 	/* The journal is marked for error until we succeed with recovery! */
1119 	journal->j_flags = JBD2_ABORT;
1120 
1121 	/* Set up a default-sized revoke table for the new mount. */
1122 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1123 	if (err) {
1124 		kfree(journal);
1125 		return NULL;
1126 	}
1127 
1128 	spin_lock_init(&journal->j_history_lock);
1129 
1130 	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1131 			 &jbd2_trans_commit_key, 0);
1132 
1133 	return journal;
1134 }
1135 
1136 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1137  *
1138  * Create a journal structure assigned some fixed set of disk blocks to
1139  * the journal.  We don't actually touch those disk blocks yet, but we
1140  * need to set up all of the mapping information to tell the journaling
1141  * system where the journal blocks are.
1142  *
1143  */
1144 
1145 /**
1146  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1147  *  @bdev: Block device on which to create the journal
1148  *  @fs_dev: Device which hold journalled filesystem for this journal.
1149  *  @start: Block nr Start of journal.
1150  *  @len:  Length of the journal in blocks.
1151  *  @blocksize: blocksize of journalling device
1152  *
1153  *  Returns: a newly created journal_t *
1154  *
1155  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1156  *  range of blocks on an arbitrary block device.
1157  *
1158  */
1159 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1160 			struct block_device *fs_dev,
1161 			unsigned long long start, int len, int blocksize)
1162 {
1163 	journal_t *journal = journal_init_common();
1164 	struct buffer_head *bh;
1165 	int n;
1166 
1167 	if (!journal)
1168 		return NULL;
1169 
1170 	/* journal descriptor can store up to n blocks -bzzz */
1171 	journal->j_blocksize = blocksize;
1172 	journal->j_dev = bdev;
1173 	journal->j_fs_dev = fs_dev;
1174 	journal->j_blk_offset = start;
1175 	journal->j_maxlen = len;
1176 	bdevname(journal->j_dev, journal->j_devname);
1177 	strreplace(journal->j_devname, '/', '!');
1178 	jbd2_stats_proc_init(journal);
1179 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1180 	journal->j_wbufsize = n;
1181 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1182 	if (!journal->j_wbuf) {
1183 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1184 			__func__);
1185 		goto out_err;
1186 	}
1187 
1188 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1189 	if (!bh) {
1190 		printk(KERN_ERR
1191 		       "%s: Cannot get buffer for journal superblock\n",
1192 		       __func__);
1193 		goto out_err;
1194 	}
1195 	journal->j_sb_buffer = bh;
1196 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1197 
1198 	return journal;
1199 out_err:
1200 	kfree(journal->j_wbuf);
1201 	jbd2_stats_proc_exit(journal);
1202 	kfree(journal);
1203 	return NULL;
1204 }
1205 
1206 /**
1207  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1208  *  @inode: An inode to create the journal in
1209  *
1210  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1211  * the journal.  The inode must exist already, must support bmap() and
1212  * must have all data blocks preallocated.
1213  */
1214 journal_t * jbd2_journal_init_inode (struct inode *inode)
1215 {
1216 	struct buffer_head *bh;
1217 	journal_t *journal = journal_init_common();
1218 	char *p;
1219 	int err;
1220 	int n;
1221 	unsigned long long blocknr;
1222 
1223 	if (!journal)
1224 		return NULL;
1225 
1226 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1227 	journal->j_inode = inode;
1228 	bdevname(journal->j_dev, journal->j_devname);
1229 	p = strreplace(journal->j_devname, '/', '!');
1230 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1231 	jbd_debug(1,
1232 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1233 		  journal, inode->i_sb->s_id, inode->i_ino,
1234 		  (long long) inode->i_size,
1235 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1236 
1237 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1238 	journal->j_blocksize = inode->i_sb->s_blocksize;
1239 	jbd2_stats_proc_init(journal);
1240 
1241 	/* journal descriptor can store up to n blocks -bzzz */
1242 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1243 	journal->j_wbufsize = n;
1244 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1245 	if (!journal->j_wbuf) {
1246 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1247 			__func__);
1248 		goto out_err;
1249 	}
1250 
1251 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1252 	/* If that failed, give up */
1253 	if (err) {
1254 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1255 		       __func__);
1256 		goto out_err;
1257 	}
1258 
1259 	bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1260 	if (!bh) {
1261 		printk(KERN_ERR
1262 		       "%s: Cannot get buffer for journal superblock\n",
1263 		       __func__);
1264 		goto out_err;
1265 	}
1266 	journal->j_sb_buffer = bh;
1267 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1268 
1269 	return journal;
1270 out_err:
1271 	kfree(journal->j_wbuf);
1272 	jbd2_stats_proc_exit(journal);
1273 	kfree(journal);
1274 	return NULL;
1275 }
1276 
1277 /*
1278  * If the journal init or create aborts, we need to mark the journal
1279  * superblock as being NULL to prevent the journal destroy from writing
1280  * back a bogus superblock.
1281  */
1282 static void journal_fail_superblock (journal_t *journal)
1283 {
1284 	struct buffer_head *bh = journal->j_sb_buffer;
1285 	brelse(bh);
1286 	journal->j_sb_buffer = NULL;
1287 }
1288 
1289 /*
1290  * Given a journal_t structure, initialise the various fields for
1291  * startup of a new journaling session.  We use this both when creating
1292  * a journal, and after recovering an old journal to reset it for
1293  * subsequent use.
1294  */
1295 
1296 static int journal_reset(journal_t *journal)
1297 {
1298 	journal_superblock_t *sb = journal->j_superblock;
1299 	unsigned long long first, last;
1300 
1301 	first = be32_to_cpu(sb->s_first);
1302 	last = be32_to_cpu(sb->s_maxlen);
1303 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1304 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1305 		       first, last);
1306 		journal_fail_superblock(journal);
1307 		return -EINVAL;
1308 	}
1309 
1310 	journal->j_first = first;
1311 	journal->j_last = last;
1312 
1313 	journal->j_head = first;
1314 	journal->j_tail = first;
1315 	journal->j_free = last - first;
1316 
1317 	journal->j_tail_sequence = journal->j_transaction_sequence;
1318 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1319 	journal->j_commit_request = journal->j_commit_sequence;
1320 
1321 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1322 
1323 	/*
1324 	 * As a special case, if the on-disk copy is already marked as needing
1325 	 * no recovery (s_start == 0), then we can safely defer the superblock
1326 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1327 	 * attempting a write to a potential-readonly device.
1328 	 */
1329 	if (sb->s_start == 0) {
1330 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1331 			"(start %ld, seq %d, errno %d)\n",
1332 			journal->j_tail, journal->j_tail_sequence,
1333 			journal->j_errno);
1334 		journal->j_flags |= JBD2_FLUSHED;
1335 	} else {
1336 		/* Lock here to make assertions happy... */
1337 		mutex_lock(&journal->j_checkpoint_mutex);
1338 		/*
1339 		 * Update log tail information. We use WRITE_FUA since new
1340 		 * transaction will start reusing journal space and so we
1341 		 * must make sure information about current log tail is on
1342 		 * disk before that.
1343 		 */
1344 		jbd2_journal_update_sb_log_tail(journal,
1345 						journal->j_tail_sequence,
1346 						journal->j_tail,
1347 						WRITE_FUA);
1348 		mutex_unlock(&journal->j_checkpoint_mutex);
1349 	}
1350 	return jbd2_journal_start_thread(journal);
1351 }
1352 
1353 static int jbd2_write_superblock(journal_t *journal, int write_op)
1354 {
1355 	struct buffer_head *bh = journal->j_sb_buffer;
1356 	journal_superblock_t *sb = journal->j_superblock;
1357 	int ret;
1358 
1359 	trace_jbd2_write_superblock(journal, write_op);
1360 	if (!(journal->j_flags & JBD2_BARRIER))
1361 		write_op &= ~(REQ_FUA | REQ_FLUSH);
1362 	lock_buffer(bh);
1363 	if (buffer_write_io_error(bh)) {
1364 		/*
1365 		 * Oh, dear.  A previous attempt to write the journal
1366 		 * superblock failed.  This could happen because the
1367 		 * USB device was yanked out.  Or it could happen to
1368 		 * be a transient write error and maybe the block will
1369 		 * be remapped.  Nothing we can do but to retry the
1370 		 * write and hope for the best.
1371 		 */
1372 		printk(KERN_ERR "JBD2: previous I/O error detected "
1373 		       "for journal superblock update for %s.\n",
1374 		       journal->j_devname);
1375 		clear_buffer_write_io_error(bh);
1376 		set_buffer_uptodate(bh);
1377 	}
1378 	jbd2_superblock_csum_set(journal, sb);
1379 	get_bh(bh);
1380 	bh->b_end_io = end_buffer_write_sync;
1381 	ret = submit_bh(write_op, bh);
1382 	wait_on_buffer(bh);
1383 	if (buffer_write_io_error(bh)) {
1384 		clear_buffer_write_io_error(bh);
1385 		set_buffer_uptodate(bh);
1386 		ret = -EIO;
1387 	}
1388 	if (ret) {
1389 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1390 		       "journal superblock for %s.\n", ret,
1391 		       journal->j_devname);
1392 		jbd2_journal_abort(journal, ret);
1393 	}
1394 
1395 	return ret;
1396 }
1397 
1398 /**
1399  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1400  * @journal: The journal to update.
1401  * @tail_tid: TID of the new transaction at the tail of the log
1402  * @tail_block: The first block of the transaction at the tail of the log
1403  * @write_op: With which operation should we write the journal sb
1404  *
1405  * Update a journal's superblock information about log tail and write it to
1406  * disk, waiting for the IO to complete.
1407  */
1408 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1409 				     unsigned long tail_block, int write_op)
1410 {
1411 	journal_superblock_t *sb = journal->j_superblock;
1412 	int ret;
1413 
1414 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1415 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1416 		  tail_block, tail_tid);
1417 
1418 	sb->s_sequence = cpu_to_be32(tail_tid);
1419 	sb->s_start    = cpu_to_be32(tail_block);
1420 
1421 	ret = jbd2_write_superblock(journal, write_op);
1422 	if (ret)
1423 		goto out;
1424 
1425 	/* Log is no longer empty */
1426 	write_lock(&journal->j_state_lock);
1427 	WARN_ON(!sb->s_sequence);
1428 	journal->j_flags &= ~JBD2_FLUSHED;
1429 	write_unlock(&journal->j_state_lock);
1430 
1431 out:
1432 	return ret;
1433 }
1434 
1435 /**
1436  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1437  * @journal: The journal to update.
1438  * @write_op: With which operation should we write the journal sb
1439  *
1440  * Update a journal's dynamic superblock fields to show that journal is empty.
1441  * Write updated superblock to disk waiting for IO to complete.
1442  */
1443 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1444 {
1445 	journal_superblock_t *sb = journal->j_superblock;
1446 
1447 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1448 	read_lock(&journal->j_state_lock);
1449 	/* Is it already empty? */
1450 	if (sb->s_start == 0) {
1451 		read_unlock(&journal->j_state_lock);
1452 		return;
1453 	}
1454 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1455 		  journal->j_tail_sequence);
1456 
1457 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1458 	sb->s_start    = cpu_to_be32(0);
1459 	read_unlock(&journal->j_state_lock);
1460 
1461 	jbd2_write_superblock(journal, write_op);
1462 
1463 	/* Log is no longer empty */
1464 	write_lock(&journal->j_state_lock);
1465 	journal->j_flags |= JBD2_FLUSHED;
1466 	write_unlock(&journal->j_state_lock);
1467 }
1468 
1469 
1470 /**
1471  * jbd2_journal_update_sb_errno() - Update error in the journal.
1472  * @journal: The journal to update.
1473  *
1474  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1475  * to complete.
1476  */
1477 void jbd2_journal_update_sb_errno(journal_t *journal)
1478 {
1479 	journal_superblock_t *sb = journal->j_superblock;
1480 
1481 	read_lock(&journal->j_state_lock);
1482 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1483 		  journal->j_errno);
1484 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1485 	read_unlock(&journal->j_state_lock);
1486 
1487 	jbd2_write_superblock(journal, WRITE_FUA);
1488 }
1489 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1490 
1491 /*
1492  * Read the superblock for a given journal, performing initial
1493  * validation of the format.
1494  */
1495 static int journal_get_superblock(journal_t *journal)
1496 {
1497 	struct buffer_head *bh;
1498 	journal_superblock_t *sb;
1499 	int err = -EIO;
1500 
1501 	bh = journal->j_sb_buffer;
1502 
1503 	J_ASSERT(bh != NULL);
1504 	if (!buffer_uptodate(bh)) {
1505 		ll_rw_block(READ, 1, &bh);
1506 		wait_on_buffer(bh);
1507 		if (!buffer_uptodate(bh)) {
1508 			printk(KERN_ERR
1509 				"JBD2: IO error reading journal superblock\n");
1510 			goto out;
1511 		}
1512 	}
1513 
1514 	if (buffer_verified(bh))
1515 		return 0;
1516 
1517 	sb = journal->j_superblock;
1518 
1519 	err = -EINVAL;
1520 
1521 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1522 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1523 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1524 		goto out;
1525 	}
1526 
1527 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1528 	case JBD2_SUPERBLOCK_V1:
1529 		journal->j_format_version = 1;
1530 		break;
1531 	case JBD2_SUPERBLOCK_V2:
1532 		journal->j_format_version = 2;
1533 		break;
1534 	default:
1535 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1536 		goto out;
1537 	}
1538 
1539 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1540 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1541 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1542 		printk(KERN_WARNING "JBD2: journal file too short\n");
1543 		goto out;
1544 	}
1545 
1546 	if (be32_to_cpu(sb->s_first) == 0 ||
1547 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1548 		printk(KERN_WARNING
1549 			"JBD2: Invalid start block of journal: %u\n",
1550 			be32_to_cpu(sb->s_first));
1551 		goto out;
1552 	}
1553 
1554 	if (jbd2_has_feature_csum2(journal) &&
1555 	    jbd2_has_feature_csum3(journal)) {
1556 		/* Can't have checksum v2 and v3 at the same time! */
1557 		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1558 		       "at the same time!\n");
1559 		goto out;
1560 	}
1561 
1562 	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1563 	    jbd2_has_feature_checksum(journal)) {
1564 		/* Can't have checksum v1 and v2 on at the same time! */
1565 		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1566 		       "at the same time!\n");
1567 		goto out;
1568 	}
1569 
1570 	if (!jbd2_verify_csum_type(journal, sb)) {
1571 		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1572 		goto out;
1573 	}
1574 
1575 	/* Load the checksum driver */
1576 	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1577 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1578 		if (IS_ERR(journal->j_chksum_driver)) {
1579 			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1580 			err = PTR_ERR(journal->j_chksum_driver);
1581 			journal->j_chksum_driver = NULL;
1582 			goto out;
1583 		}
1584 	}
1585 
1586 	/* Check superblock checksum */
1587 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1588 		printk(KERN_ERR "JBD2: journal checksum error\n");
1589 		err = -EFSBADCRC;
1590 		goto out;
1591 	}
1592 
1593 	/* Precompute checksum seed for all metadata */
1594 	if (jbd2_journal_has_csum_v2or3(journal))
1595 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1596 						   sizeof(sb->s_uuid));
1597 
1598 	set_buffer_verified(bh);
1599 
1600 	return 0;
1601 
1602 out:
1603 	journal_fail_superblock(journal);
1604 	return err;
1605 }
1606 
1607 /*
1608  * Load the on-disk journal superblock and read the key fields into the
1609  * journal_t.
1610  */
1611 
1612 static int load_superblock(journal_t *journal)
1613 {
1614 	int err;
1615 	journal_superblock_t *sb;
1616 
1617 	err = journal_get_superblock(journal);
1618 	if (err)
1619 		return err;
1620 
1621 	sb = journal->j_superblock;
1622 
1623 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1624 	journal->j_tail = be32_to_cpu(sb->s_start);
1625 	journal->j_first = be32_to_cpu(sb->s_first);
1626 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1627 	journal->j_errno = be32_to_cpu(sb->s_errno);
1628 
1629 	return 0;
1630 }
1631 
1632 
1633 /**
1634  * int jbd2_journal_load() - Read journal from disk.
1635  * @journal: Journal to act on.
1636  *
1637  * Given a journal_t structure which tells us which disk blocks contain
1638  * a journal, read the journal from disk to initialise the in-memory
1639  * structures.
1640  */
1641 int jbd2_journal_load(journal_t *journal)
1642 {
1643 	int err;
1644 	journal_superblock_t *sb;
1645 
1646 	err = load_superblock(journal);
1647 	if (err)
1648 		return err;
1649 
1650 	sb = journal->j_superblock;
1651 	/* If this is a V2 superblock, then we have to check the
1652 	 * features flags on it. */
1653 
1654 	if (journal->j_format_version >= 2) {
1655 		if ((sb->s_feature_ro_compat &
1656 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1657 		    (sb->s_feature_incompat &
1658 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1659 			printk(KERN_WARNING
1660 				"JBD2: Unrecognised features on journal\n");
1661 			return -EINVAL;
1662 		}
1663 	}
1664 
1665 	/*
1666 	 * Create a slab for this blocksize
1667 	 */
1668 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1669 	if (err)
1670 		return err;
1671 
1672 	/* Let the recovery code check whether it needs to recover any
1673 	 * data from the journal. */
1674 	if (jbd2_journal_recover(journal))
1675 		goto recovery_error;
1676 
1677 	if (journal->j_failed_commit) {
1678 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1679 		       "is corrupt.\n", journal->j_failed_commit,
1680 		       journal->j_devname);
1681 		return -EFSCORRUPTED;
1682 	}
1683 
1684 	/* OK, we've finished with the dynamic journal bits:
1685 	 * reinitialise the dynamic contents of the superblock in memory
1686 	 * and reset them on disk. */
1687 	if (journal_reset(journal))
1688 		goto recovery_error;
1689 
1690 	journal->j_flags &= ~JBD2_ABORT;
1691 	journal->j_flags |= JBD2_LOADED;
1692 	return 0;
1693 
1694 recovery_error:
1695 	printk(KERN_WARNING "JBD2: recovery failed\n");
1696 	return -EIO;
1697 }
1698 
1699 /**
1700  * void jbd2_journal_destroy() - Release a journal_t structure.
1701  * @journal: Journal to act on.
1702  *
1703  * Release a journal_t structure once it is no longer in use by the
1704  * journaled object.
1705  * Return <0 if we couldn't clean up the journal.
1706  */
1707 int jbd2_journal_destroy(journal_t *journal)
1708 {
1709 	int err = 0;
1710 
1711 	/* Wait for the commit thread to wake up and die. */
1712 	journal_kill_thread(journal);
1713 
1714 	/* Force a final log commit */
1715 	if (journal->j_running_transaction)
1716 		jbd2_journal_commit_transaction(journal);
1717 
1718 	/* Force any old transactions to disk */
1719 
1720 	/* Totally anal locking here... */
1721 	spin_lock(&journal->j_list_lock);
1722 	while (journal->j_checkpoint_transactions != NULL) {
1723 		spin_unlock(&journal->j_list_lock);
1724 		mutex_lock(&journal->j_checkpoint_mutex);
1725 		err = jbd2_log_do_checkpoint(journal);
1726 		mutex_unlock(&journal->j_checkpoint_mutex);
1727 		/*
1728 		 * If checkpointing failed, just free the buffers to avoid
1729 		 * looping forever
1730 		 */
1731 		if (err) {
1732 			jbd2_journal_destroy_checkpoint(journal);
1733 			spin_lock(&journal->j_list_lock);
1734 			break;
1735 		}
1736 		spin_lock(&journal->j_list_lock);
1737 	}
1738 
1739 	J_ASSERT(journal->j_running_transaction == NULL);
1740 	J_ASSERT(journal->j_committing_transaction == NULL);
1741 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1742 	spin_unlock(&journal->j_list_lock);
1743 
1744 	if (journal->j_sb_buffer) {
1745 		if (!is_journal_aborted(journal)) {
1746 			mutex_lock(&journal->j_checkpoint_mutex);
1747 
1748 			write_lock(&journal->j_state_lock);
1749 			journal->j_tail_sequence =
1750 				++journal->j_transaction_sequence;
1751 			write_unlock(&journal->j_state_lock);
1752 
1753 			jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1754 			mutex_unlock(&journal->j_checkpoint_mutex);
1755 		} else
1756 			err = -EIO;
1757 		brelse(journal->j_sb_buffer);
1758 	}
1759 
1760 	if (journal->j_proc_entry)
1761 		jbd2_stats_proc_exit(journal);
1762 	iput(journal->j_inode);
1763 	if (journal->j_revoke)
1764 		jbd2_journal_destroy_revoke(journal);
1765 	if (journal->j_chksum_driver)
1766 		crypto_free_shash(journal->j_chksum_driver);
1767 	kfree(journal->j_wbuf);
1768 	kfree(journal);
1769 
1770 	return err;
1771 }
1772 
1773 
1774 /**
1775  *int jbd2_journal_check_used_features () - Check if features specified are used.
1776  * @journal: Journal to check.
1777  * @compat: bitmask of compatible features
1778  * @ro: bitmask of features that force read-only mount
1779  * @incompat: bitmask of incompatible features
1780  *
1781  * Check whether the journal uses all of a given set of
1782  * features.  Return true (non-zero) if it does.
1783  **/
1784 
1785 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1786 				 unsigned long ro, unsigned long incompat)
1787 {
1788 	journal_superblock_t *sb;
1789 
1790 	if (!compat && !ro && !incompat)
1791 		return 1;
1792 	/* Load journal superblock if it is not loaded yet. */
1793 	if (journal->j_format_version == 0 &&
1794 	    journal_get_superblock(journal) != 0)
1795 		return 0;
1796 	if (journal->j_format_version == 1)
1797 		return 0;
1798 
1799 	sb = journal->j_superblock;
1800 
1801 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1802 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1803 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1804 		return 1;
1805 
1806 	return 0;
1807 }
1808 
1809 /**
1810  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1811  * @journal: Journal to check.
1812  * @compat: bitmask of compatible features
1813  * @ro: bitmask of features that force read-only mount
1814  * @incompat: bitmask of incompatible features
1815  *
1816  * Check whether the journaling code supports the use of
1817  * all of a given set of features on this journal.  Return true
1818  * (non-zero) if it can. */
1819 
1820 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1821 				      unsigned long ro, unsigned long incompat)
1822 {
1823 	if (!compat && !ro && !incompat)
1824 		return 1;
1825 
1826 	/* We can support any known requested features iff the
1827 	 * superblock is in version 2.  Otherwise we fail to support any
1828 	 * extended sb features. */
1829 
1830 	if (journal->j_format_version != 2)
1831 		return 0;
1832 
1833 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1834 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1835 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1836 		return 1;
1837 
1838 	return 0;
1839 }
1840 
1841 /**
1842  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1843  * @journal: Journal to act on.
1844  * @compat: bitmask of compatible features
1845  * @ro: bitmask of features that force read-only mount
1846  * @incompat: bitmask of incompatible features
1847  *
1848  * Mark a given journal feature as present on the
1849  * superblock.  Returns true if the requested features could be set.
1850  *
1851  */
1852 
1853 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1854 			  unsigned long ro, unsigned long incompat)
1855 {
1856 #define INCOMPAT_FEATURE_ON(f) \
1857 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1858 #define COMPAT_FEATURE_ON(f) \
1859 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1860 	journal_superblock_t *sb;
1861 
1862 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1863 		return 1;
1864 
1865 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1866 		return 0;
1867 
1868 	/* If enabling v2 checksums, turn on v3 instead */
1869 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1870 		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1871 		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1872 	}
1873 
1874 	/* Asking for checksumming v3 and v1?  Only give them v3. */
1875 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1876 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1877 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1878 
1879 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1880 		  compat, ro, incompat);
1881 
1882 	sb = journal->j_superblock;
1883 
1884 	/* If enabling v3 checksums, update superblock */
1885 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1886 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1887 		sb->s_feature_compat &=
1888 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1889 
1890 		/* Load the checksum driver */
1891 		if (journal->j_chksum_driver == NULL) {
1892 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1893 								      0, 0);
1894 			if (IS_ERR(journal->j_chksum_driver)) {
1895 				printk(KERN_ERR "JBD2: Cannot load crc32c "
1896 				       "driver.\n");
1897 				journal->j_chksum_driver = NULL;
1898 				return 0;
1899 			}
1900 
1901 			/* Precompute checksum seed for all metadata */
1902 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1903 							   sb->s_uuid,
1904 							   sizeof(sb->s_uuid));
1905 		}
1906 	}
1907 
1908 	/* If enabling v1 checksums, downgrade superblock */
1909 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1910 		sb->s_feature_incompat &=
1911 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1912 				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1913 
1914 	sb->s_feature_compat    |= cpu_to_be32(compat);
1915 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1916 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1917 
1918 	return 1;
1919 #undef COMPAT_FEATURE_ON
1920 #undef INCOMPAT_FEATURE_ON
1921 }
1922 
1923 /*
1924  * jbd2_journal_clear_features () - Clear a given journal feature in the
1925  * 				    superblock
1926  * @journal: Journal to act on.
1927  * @compat: bitmask of compatible features
1928  * @ro: bitmask of features that force read-only mount
1929  * @incompat: bitmask of incompatible features
1930  *
1931  * Clear a given journal feature as present on the
1932  * superblock.
1933  */
1934 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1935 				unsigned long ro, unsigned long incompat)
1936 {
1937 	journal_superblock_t *sb;
1938 
1939 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1940 		  compat, ro, incompat);
1941 
1942 	sb = journal->j_superblock;
1943 
1944 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1945 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1946 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1947 }
1948 EXPORT_SYMBOL(jbd2_journal_clear_features);
1949 
1950 /**
1951  * int jbd2_journal_flush () - Flush journal
1952  * @journal: Journal to act on.
1953  *
1954  * Flush all data for a given journal to disk and empty the journal.
1955  * Filesystems can use this when remounting readonly to ensure that
1956  * recovery does not need to happen on remount.
1957  */
1958 
1959 int jbd2_journal_flush(journal_t *journal)
1960 {
1961 	int err = 0;
1962 	transaction_t *transaction = NULL;
1963 
1964 	write_lock(&journal->j_state_lock);
1965 
1966 	/* Force everything buffered to the log... */
1967 	if (journal->j_running_transaction) {
1968 		transaction = journal->j_running_transaction;
1969 		__jbd2_log_start_commit(journal, transaction->t_tid);
1970 	} else if (journal->j_committing_transaction)
1971 		transaction = journal->j_committing_transaction;
1972 
1973 	/* Wait for the log commit to complete... */
1974 	if (transaction) {
1975 		tid_t tid = transaction->t_tid;
1976 
1977 		write_unlock(&journal->j_state_lock);
1978 		jbd2_log_wait_commit(journal, tid);
1979 	} else {
1980 		write_unlock(&journal->j_state_lock);
1981 	}
1982 
1983 	/* ...and flush everything in the log out to disk. */
1984 	spin_lock(&journal->j_list_lock);
1985 	while (!err && journal->j_checkpoint_transactions != NULL) {
1986 		spin_unlock(&journal->j_list_lock);
1987 		mutex_lock(&journal->j_checkpoint_mutex);
1988 		err = jbd2_log_do_checkpoint(journal);
1989 		mutex_unlock(&journal->j_checkpoint_mutex);
1990 		spin_lock(&journal->j_list_lock);
1991 	}
1992 	spin_unlock(&journal->j_list_lock);
1993 
1994 	if (is_journal_aborted(journal))
1995 		return -EIO;
1996 
1997 	mutex_lock(&journal->j_checkpoint_mutex);
1998 	if (!err) {
1999 		err = jbd2_cleanup_journal_tail(journal);
2000 		if (err < 0) {
2001 			mutex_unlock(&journal->j_checkpoint_mutex);
2002 			goto out;
2003 		}
2004 		err = 0;
2005 	}
2006 
2007 	/* Finally, mark the journal as really needing no recovery.
2008 	 * This sets s_start==0 in the underlying superblock, which is
2009 	 * the magic code for a fully-recovered superblock.  Any future
2010 	 * commits of data to the journal will restore the current
2011 	 * s_start value. */
2012 	jbd2_mark_journal_empty(journal, WRITE_FUA);
2013 	mutex_unlock(&journal->j_checkpoint_mutex);
2014 	write_lock(&journal->j_state_lock);
2015 	J_ASSERT(!journal->j_running_transaction);
2016 	J_ASSERT(!journal->j_committing_transaction);
2017 	J_ASSERT(!journal->j_checkpoint_transactions);
2018 	J_ASSERT(journal->j_head == journal->j_tail);
2019 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2020 	write_unlock(&journal->j_state_lock);
2021 out:
2022 	return err;
2023 }
2024 
2025 /**
2026  * int jbd2_journal_wipe() - Wipe journal contents
2027  * @journal: Journal to act on.
2028  * @write: flag (see below)
2029  *
2030  * Wipe out all of the contents of a journal, safely.  This will produce
2031  * a warning if the journal contains any valid recovery information.
2032  * Must be called between journal_init_*() and jbd2_journal_load().
2033  *
2034  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2035  * we merely suppress recovery.
2036  */
2037 
2038 int jbd2_journal_wipe(journal_t *journal, int write)
2039 {
2040 	int err = 0;
2041 
2042 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2043 
2044 	err = load_superblock(journal);
2045 	if (err)
2046 		return err;
2047 
2048 	if (!journal->j_tail)
2049 		goto no_recovery;
2050 
2051 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2052 		write ? "Clearing" : "Ignoring");
2053 
2054 	err = jbd2_journal_skip_recovery(journal);
2055 	if (write) {
2056 		/* Lock to make assertions happy... */
2057 		mutex_lock(&journal->j_checkpoint_mutex);
2058 		jbd2_mark_journal_empty(journal, WRITE_FUA);
2059 		mutex_unlock(&journal->j_checkpoint_mutex);
2060 	}
2061 
2062  no_recovery:
2063 	return err;
2064 }
2065 
2066 /*
2067  * Journal abort has very specific semantics, which we describe
2068  * for journal abort.
2069  *
2070  * Two internal functions, which provide abort to the jbd layer
2071  * itself are here.
2072  */
2073 
2074 /*
2075  * Quick version for internal journal use (doesn't lock the journal).
2076  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2077  * and don't attempt to make any other journal updates.
2078  */
2079 void __jbd2_journal_abort_hard(journal_t *journal)
2080 {
2081 	transaction_t *transaction;
2082 
2083 	if (journal->j_flags & JBD2_ABORT)
2084 		return;
2085 
2086 	printk(KERN_ERR "Aborting journal on device %s.\n",
2087 	       journal->j_devname);
2088 
2089 	write_lock(&journal->j_state_lock);
2090 	journal->j_flags |= JBD2_ABORT;
2091 	transaction = journal->j_running_transaction;
2092 	if (transaction)
2093 		__jbd2_log_start_commit(journal, transaction->t_tid);
2094 	write_unlock(&journal->j_state_lock);
2095 }
2096 
2097 /* Soft abort: record the abort error status in the journal superblock,
2098  * but don't do any other IO. */
2099 static void __journal_abort_soft (journal_t *journal, int errno)
2100 {
2101 	if (journal->j_flags & JBD2_ABORT)
2102 		return;
2103 
2104 	if (!journal->j_errno)
2105 		journal->j_errno = errno;
2106 
2107 	__jbd2_journal_abort_hard(journal);
2108 
2109 	if (errno) {
2110 		jbd2_journal_update_sb_errno(journal);
2111 		write_lock(&journal->j_state_lock);
2112 		journal->j_flags |= JBD2_REC_ERR;
2113 		write_unlock(&journal->j_state_lock);
2114 	}
2115 }
2116 
2117 /**
2118  * void jbd2_journal_abort () - Shutdown the journal immediately.
2119  * @journal: the journal to shutdown.
2120  * @errno:   an error number to record in the journal indicating
2121  *           the reason for the shutdown.
2122  *
2123  * Perform a complete, immediate shutdown of the ENTIRE
2124  * journal (not of a single transaction).  This operation cannot be
2125  * undone without closing and reopening the journal.
2126  *
2127  * The jbd2_journal_abort function is intended to support higher level error
2128  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2129  * mode.
2130  *
2131  * Journal abort has very specific semantics.  Any existing dirty,
2132  * unjournaled buffers in the main filesystem will still be written to
2133  * disk by bdflush, but the journaling mechanism will be suspended
2134  * immediately and no further transaction commits will be honoured.
2135  *
2136  * Any dirty, journaled buffers will be written back to disk without
2137  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2138  * filesystem, but we _do_ attempt to leave as much data as possible
2139  * behind for fsck to use for cleanup.
2140  *
2141  * Any attempt to get a new transaction handle on a journal which is in
2142  * ABORT state will just result in an -EROFS error return.  A
2143  * jbd2_journal_stop on an existing handle will return -EIO if we have
2144  * entered abort state during the update.
2145  *
2146  * Recursive transactions are not disturbed by journal abort until the
2147  * final jbd2_journal_stop, which will receive the -EIO error.
2148  *
2149  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2150  * which will be recorded (if possible) in the journal superblock.  This
2151  * allows a client to record failure conditions in the middle of a
2152  * transaction without having to complete the transaction to record the
2153  * failure to disk.  ext3_error, for example, now uses this
2154  * functionality.
2155  *
2156  * Errors which originate from within the journaling layer will NOT
2157  * supply an errno; a null errno implies that absolutely no further
2158  * writes are done to the journal (unless there are any already in
2159  * progress).
2160  *
2161  */
2162 
2163 void jbd2_journal_abort(journal_t *journal, int errno)
2164 {
2165 	__journal_abort_soft(journal, errno);
2166 }
2167 
2168 /**
2169  * int jbd2_journal_errno () - returns the journal's error state.
2170  * @journal: journal to examine.
2171  *
2172  * This is the errno number set with jbd2_journal_abort(), the last
2173  * time the journal was mounted - if the journal was stopped
2174  * without calling abort this will be 0.
2175  *
2176  * If the journal has been aborted on this mount time -EROFS will
2177  * be returned.
2178  */
2179 int jbd2_journal_errno(journal_t *journal)
2180 {
2181 	int err;
2182 
2183 	read_lock(&journal->j_state_lock);
2184 	if (journal->j_flags & JBD2_ABORT)
2185 		err = -EROFS;
2186 	else
2187 		err = journal->j_errno;
2188 	read_unlock(&journal->j_state_lock);
2189 	return err;
2190 }
2191 
2192 /**
2193  * int jbd2_journal_clear_err () - clears the journal's error state
2194  * @journal: journal to act on.
2195  *
2196  * An error must be cleared or acked to take a FS out of readonly
2197  * mode.
2198  */
2199 int jbd2_journal_clear_err(journal_t *journal)
2200 {
2201 	int err = 0;
2202 
2203 	write_lock(&journal->j_state_lock);
2204 	if (journal->j_flags & JBD2_ABORT)
2205 		err = -EROFS;
2206 	else
2207 		journal->j_errno = 0;
2208 	write_unlock(&journal->j_state_lock);
2209 	return err;
2210 }
2211 
2212 /**
2213  * void jbd2_journal_ack_err() - Ack journal err.
2214  * @journal: journal to act on.
2215  *
2216  * An error must be cleared or acked to take a FS out of readonly
2217  * mode.
2218  */
2219 void jbd2_journal_ack_err(journal_t *journal)
2220 {
2221 	write_lock(&journal->j_state_lock);
2222 	if (journal->j_errno)
2223 		journal->j_flags |= JBD2_ACK_ERR;
2224 	write_unlock(&journal->j_state_lock);
2225 }
2226 
2227 int jbd2_journal_blocks_per_page(struct inode *inode)
2228 {
2229 	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2230 }
2231 
2232 /*
2233  * helper functions to deal with 32 or 64bit block numbers.
2234  */
2235 size_t journal_tag_bytes(journal_t *journal)
2236 {
2237 	size_t sz;
2238 
2239 	if (jbd2_has_feature_csum3(journal))
2240 		return sizeof(journal_block_tag3_t);
2241 
2242 	sz = sizeof(journal_block_tag_t);
2243 
2244 	if (jbd2_has_feature_csum2(journal))
2245 		sz += sizeof(__u16);
2246 
2247 	if (jbd2_has_feature_64bit(journal))
2248 		return sz;
2249 	else
2250 		return sz - sizeof(__u32);
2251 }
2252 
2253 /*
2254  * JBD memory management
2255  *
2256  * These functions are used to allocate block-sized chunks of memory
2257  * used for making copies of buffer_head data.  Very often it will be
2258  * page-sized chunks of data, but sometimes it will be in
2259  * sub-page-size chunks.  (For example, 16k pages on Power systems
2260  * with a 4k block file system.)  For blocks smaller than a page, we
2261  * use a SLAB allocator.  There are slab caches for each block size,
2262  * which are allocated at mount time, if necessary, and we only free
2263  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2264  * this reason we don't need to a mutex to protect access to
2265  * jbd2_slab[] allocating or releasing memory; only in
2266  * jbd2_journal_create_slab().
2267  */
2268 #define JBD2_MAX_SLABS 8
2269 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2270 
2271 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2272 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2273 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2274 };
2275 
2276 
2277 static void jbd2_journal_destroy_slabs(void)
2278 {
2279 	int i;
2280 
2281 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2282 		if (jbd2_slab[i])
2283 			kmem_cache_destroy(jbd2_slab[i]);
2284 		jbd2_slab[i] = NULL;
2285 	}
2286 }
2287 
2288 static int jbd2_journal_create_slab(size_t size)
2289 {
2290 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2291 	int i = order_base_2(size) - 10;
2292 	size_t slab_size;
2293 
2294 	if (size == PAGE_SIZE)
2295 		return 0;
2296 
2297 	if (i >= JBD2_MAX_SLABS)
2298 		return -EINVAL;
2299 
2300 	if (unlikely(i < 0))
2301 		i = 0;
2302 	mutex_lock(&jbd2_slab_create_mutex);
2303 	if (jbd2_slab[i]) {
2304 		mutex_unlock(&jbd2_slab_create_mutex);
2305 		return 0;	/* Already created */
2306 	}
2307 
2308 	slab_size = 1 << (i+10);
2309 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2310 					 slab_size, 0, NULL);
2311 	mutex_unlock(&jbd2_slab_create_mutex);
2312 	if (!jbd2_slab[i]) {
2313 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2314 		return -ENOMEM;
2315 	}
2316 	return 0;
2317 }
2318 
2319 static struct kmem_cache *get_slab(size_t size)
2320 {
2321 	int i = order_base_2(size) - 10;
2322 
2323 	BUG_ON(i >= JBD2_MAX_SLABS);
2324 	if (unlikely(i < 0))
2325 		i = 0;
2326 	BUG_ON(jbd2_slab[i] == NULL);
2327 	return jbd2_slab[i];
2328 }
2329 
2330 void *jbd2_alloc(size_t size, gfp_t flags)
2331 {
2332 	void *ptr;
2333 
2334 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2335 
2336 	flags |= __GFP_REPEAT;
2337 	if (size == PAGE_SIZE)
2338 		ptr = (void *)__get_free_pages(flags, 0);
2339 	else if (size > PAGE_SIZE) {
2340 		int order = get_order(size);
2341 
2342 		if (order < 3)
2343 			ptr = (void *)__get_free_pages(flags, order);
2344 		else
2345 			ptr = vmalloc(size);
2346 	} else
2347 		ptr = kmem_cache_alloc(get_slab(size), flags);
2348 
2349 	/* Check alignment; SLUB has gotten this wrong in the past,
2350 	 * and this can lead to user data corruption! */
2351 	BUG_ON(((unsigned long) ptr) & (size-1));
2352 
2353 	return ptr;
2354 }
2355 
2356 void jbd2_free(void *ptr, size_t size)
2357 {
2358 	if (size == PAGE_SIZE) {
2359 		free_pages((unsigned long)ptr, 0);
2360 		return;
2361 	}
2362 	if (size > PAGE_SIZE) {
2363 		int order = get_order(size);
2364 
2365 		if (order < 3)
2366 			free_pages((unsigned long)ptr, order);
2367 		else
2368 			vfree(ptr);
2369 		return;
2370 	}
2371 	kmem_cache_free(get_slab(size), ptr);
2372 };
2373 
2374 /*
2375  * Journal_head storage management
2376  */
2377 static struct kmem_cache *jbd2_journal_head_cache;
2378 #ifdef CONFIG_JBD2_DEBUG
2379 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2380 #endif
2381 
2382 static int jbd2_journal_init_journal_head_cache(void)
2383 {
2384 	int retval;
2385 
2386 	J_ASSERT(jbd2_journal_head_cache == NULL);
2387 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2388 				sizeof(struct journal_head),
2389 				0,		/* offset */
2390 				SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2391 				NULL);		/* ctor */
2392 	retval = 0;
2393 	if (!jbd2_journal_head_cache) {
2394 		retval = -ENOMEM;
2395 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2396 	}
2397 	return retval;
2398 }
2399 
2400 static void jbd2_journal_destroy_journal_head_cache(void)
2401 {
2402 	if (jbd2_journal_head_cache) {
2403 		kmem_cache_destroy(jbd2_journal_head_cache);
2404 		jbd2_journal_head_cache = NULL;
2405 	}
2406 }
2407 
2408 /*
2409  * journal_head splicing and dicing
2410  */
2411 static struct journal_head *journal_alloc_journal_head(void)
2412 {
2413 	struct journal_head *ret;
2414 
2415 #ifdef CONFIG_JBD2_DEBUG
2416 	atomic_inc(&nr_journal_heads);
2417 #endif
2418 	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2419 	if (!ret) {
2420 		jbd_debug(1, "out of memory for journal_head\n");
2421 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2422 		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2423 				GFP_NOFS | __GFP_NOFAIL);
2424 	}
2425 	return ret;
2426 }
2427 
2428 static void journal_free_journal_head(struct journal_head *jh)
2429 {
2430 #ifdef CONFIG_JBD2_DEBUG
2431 	atomic_dec(&nr_journal_heads);
2432 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2433 #endif
2434 	kmem_cache_free(jbd2_journal_head_cache, jh);
2435 }
2436 
2437 /*
2438  * A journal_head is attached to a buffer_head whenever JBD has an
2439  * interest in the buffer.
2440  *
2441  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2442  * is set.  This bit is tested in core kernel code where we need to take
2443  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2444  * there.
2445  *
2446  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2447  *
2448  * When a buffer has its BH_JBD bit set it is immune from being released by
2449  * core kernel code, mainly via ->b_count.
2450  *
2451  * A journal_head is detached from its buffer_head when the journal_head's
2452  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2453  * transaction (b_cp_transaction) hold their references to b_jcount.
2454  *
2455  * Various places in the kernel want to attach a journal_head to a buffer_head
2456  * _before_ attaching the journal_head to a transaction.  To protect the
2457  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2458  * journal_head's b_jcount refcount by one.  The caller must call
2459  * jbd2_journal_put_journal_head() to undo this.
2460  *
2461  * So the typical usage would be:
2462  *
2463  *	(Attach a journal_head if needed.  Increments b_jcount)
2464  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2465  *	...
2466  *      (Get another reference for transaction)
2467  *	jbd2_journal_grab_journal_head(bh);
2468  *	jh->b_transaction = xxx;
2469  *	(Put original reference)
2470  *	jbd2_journal_put_journal_head(jh);
2471  */
2472 
2473 /*
2474  * Give a buffer_head a journal_head.
2475  *
2476  * May sleep.
2477  */
2478 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2479 {
2480 	struct journal_head *jh;
2481 	struct journal_head *new_jh = NULL;
2482 
2483 repeat:
2484 	if (!buffer_jbd(bh))
2485 		new_jh = journal_alloc_journal_head();
2486 
2487 	jbd_lock_bh_journal_head(bh);
2488 	if (buffer_jbd(bh)) {
2489 		jh = bh2jh(bh);
2490 	} else {
2491 		J_ASSERT_BH(bh,
2492 			(atomic_read(&bh->b_count) > 0) ||
2493 			(bh->b_page && bh->b_page->mapping));
2494 
2495 		if (!new_jh) {
2496 			jbd_unlock_bh_journal_head(bh);
2497 			goto repeat;
2498 		}
2499 
2500 		jh = new_jh;
2501 		new_jh = NULL;		/* We consumed it */
2502 		set_buffer_jbd(bh);
2503 		bh->b_private = jh;
2504 		jh->b_bh = bh;
2505 		get_bh(bh);
2506 		BUFFER_TRACE(bh, "added journal_head");
2507 	}
2508 	jh->b_jcount++;
2509 	jbd_unlock_bh_journal_head(bh);
2510 	if (new_jh)
2511 		journal_free_journal_head(new_jh);
2512 	return bh->b_private;
2513 }
2514 
2515 /*
2516  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2517  * having a journal_head, return NULL
2518  */
2519 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2520 {
2521 	struct journal_head *jh = NULL;
2522 
2523 	jbd_lock_bh_journal_head(bh);
2524 	if (buffer_jbd(bh)) {
2525 		jh = bh2jh(bh);
2526 		jh->b_jcount++;
2527 	}
2528 	jbd_unlock_bh_journal_head(bh);
2529 	return jh;
2530 }
2531 
2532 static void __journal_remove_journal_head(struct buffer_head *bh)
2533 {
2534 	struct journal_head *jh = bh2jh(bh);
2535 
2536 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2537 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2538 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2539 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2540 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2541 	J_ASSERT_BH(bh, buffer_jbd(bh));
2542 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2543 	BUFFER_TRACE(bh, "remove journal_head");
2544 	if (jh->b_frozen_data) {
2545 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2546 		jbd2_free(jh->b_frozen_data, bh->b_size);
2547 	}
2548 	if (jh->b_committed_data) {
2549 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2550 		jbd2_free(jh->b_committed_data, bh->b_size);
2551 	}
2552 	bh->b_private = NULL;
2553 	jh->b_bh = NULL;	/* debug, really */
2554 	clear_buffer_jbd(bh);
2555 	journal_free_journal_head(jh);
2556 }
2557 
2558 /*
2559  * Drop a reference on the passed journal_head.  If it fell to zero then
2560  * release the journal_head from the buffer_head.
2561  */
2562 void jbd2_journal_put_journal_head(struct journal_head *jh)
2563 {
2564 	struct buffer_head *bh = jh2bh(jh);
2565 
2566 	jbd_lock_bh_journal_head(bh);
2567 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2568 	--jh->b_jcount;
2569 	if (!jh->b_jcount) {
2570 		__journal_remove_journal_head(bh);
2571 		jbd_unlock_bh_journal_head(bh);
2572 		__brelse(bh);
2573 	} else
2574 		jbd_unlock_bh_journal_head(bh);
2575 }
2576 
2577 /*
2578  * Initialize jbd inode head
2579  */
2580 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2581 {
2582 	jinode->i_transaction = NULL;
2583 	jinode->i_next_transaction = NULL;
2584 	jinode->i_vfs_inode = inode;
2585 	jinode->i_flags = 0;
2586 	INIT_LIST_HEAD(&jinode->i_list);
2587 }
2588 
2589 /*
2590  * Function to be called before we start removing inode from memory (i.e.,
2591  * clear_inode() is a fine place to be called from). It removes inode from
2592  * transaction's lists.
2593  */
2594 void jbd2_journal_release_jbd_inode(journal_t *journal,
2595 				    struct jbd2_inode *jinode)
2596 {
2597 	if (!journal)
2598 		return;
2599 restart:
2600 	spin_lock(&journal->j_list_lock);
2601 	/* Is commit writing out inode - we have to wait */
2602 	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2603 		wait_queue_head_t *wq;
2604 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2605 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2606 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2607 		spin_unlock(&journal->j_list_lock);
2608 		schedule();
2609 		finish_wait(wq, &wait.wait);
2610 		goto restart;
2611 	}
2612 
2613 	if (jinode->i_transaction) {
2614 		list_del(&jinode->i_list);
2615 		jinode->i_transaction = NULL;
2616 	}
2617 	spin_unlock(&journal->j_list_lock);
2618 }
2619 
2620 
2621 #ifdef CONFIG_PROC_FS
2622 
2623 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2624 
2625 static void __init jbd2_create_jbd_stats_proc_entry(void)
2626 {
2627 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2628 }
2629 
2630 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2631 {
2632 	if (proc_jbd2_stats)
2633 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2634 }
2635 
2636 #else
2637 
2638 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2639 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2640 
2641 #endif
2642 
2643 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2644 
2645 static int __init jbd2_journal_init_handle_cache(void)
2646 {
2647 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2648 	if (jbd2_handle_cache == NULL) {
2649 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2650 		return -ENOMEM;
2651 	}
2652 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2653 	if (jbd2_inode_cache == NULL) {
2654 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2655 		kmem_cache_destroy(jbd2_handle_cache);
2656 		return -ENOMEM;
2657 	}
2658 	return 0;
2659 }
2660 
2661 static void jbd2_journal_destroy_handle_cache(void)
2662 {
2663 	if (jbd2_handle_cache)
2664 		kmem_cache_destroy(jbd2_handle_cache);
2665 	if (jbd2_inode_cache)
2666 		kmem_cache_destroy(jbd2_inode_cache);
2667 
2668 }
2669 
2670 /*
2671  * Module startup and shutdown
2672  */
2673 
2674 static int __init journal_init_caches(void)
2675 {
2676 	int ret;
2677 
2678 	ret = jbd2_journal_init_revoke_caches();
2679 	if (ret == 0)
2680 		ret = jbd2_journal_init_journal_head_cache();
2681 	if (ret == 0)
2682 		ret = jbd2_journal_init_handle_cache();
2683 	if (ret == 0)
2684 		ret = jbd2_journal_init_transaction_cache();
2685 	return ret;
2686 }
2687 
2688 static void jbd2_journal_destroy_caches(void)
2689 {
2690 	jbd2_journal_destroy_revoke_caches();
2691 	jbd2_journal_destroy_journal_head_cache();
2692 	jbd2_journal_destroy_handle_cache();
2693 	jbd2_journal_destroy_transaction_cache();
2694 	jbd2_journal_destroy_slabs();
2695 }
2696 
2697 static int __init journal_init(void)
2698 {
2699 	int ret;
2700 
2701 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2702 
2703 	ret = journal_init_caches();
2704 	if (ret == 0) {
2705 		jbd2_create_jbd_stats_proc_entry();
2706 	} else {
2707 		jbd2_journal_destroy_caches();
2708 	}
2709 	return ret;
2710 }
2711 
2712 static void __exit journal_exit(void)
2713 {
2714 #ifdef CONFIG_JBD2_DEBUG
2715 	int n = atomic_read(&nr_journal_heads);
2716 	if (n)
2717 		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2718 #endif
2719 	jbd2_remove_jbd_stats_proc_entry();
2720 	jbd2_journal_destroy_caches();
2721 }
2722 
2723 MODULE_LICENSE("GPL");
2724 module_init(journal_init);
2725 module_exit(journal_exit);
2726 
2727