xref: /openbmc/linux/fs/jbd2/journal.c (revision 9fff24aa2c5c504aadead1ff9599e813604c2e53)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50 
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 
54 EXPORT_SYMBOL(jbd2_journal_extend);
55 EXPORT_SYMBOL(jbd2_journal_stop);
56 EXPORT_SYMBOL(jbd2_journal_lock_updates);
57 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
58 EXPORT_SYMBOL(jbd2_journal_get_write_access);
59 EXPORT_SYMBOL(jbd2_journal_get_create_access);
60 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
61 EXPORT_SYMBOL(jbd2_journal_set_triggers);
62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
63 EXPORT_SYMBOL(jbd2_journal_forget);
64 #if 0
65 EXPORT_SYMBOL(journal_sync_buffer);
66 #endif
67 EXPORT_SYMBOL(jbd2_journal_flush);
68 EXPORT_SYMBOL(jbd2_journal_revoke);
69 
70 EXPORT_SYMBOL(jbd2_journal_init_dev);
71 EXPORT_SYMBOL(jbd2_journal_init_inode);
72 EXPORT_SYMBOL(jbd2_journal_check_used_features);
73 EXPORT_SYMBOL(jbd2_journal_check_available_features);
74 EXPORT_SYMBOL(jbd2_journal_set_features);
75 EXPORT_SYMBOL(jbd2_journal_load);
76 EXPORT_SYMBOL(jbd2_journal_destroy);
77 EXPORT_SYMBOL(jbd2_journal_abort);
78 EXPORT_SYMBOL(jbd2_journal_errno);
79 EXPORT_SYMBOL(jbd2_journal_ack_err);
80 EXPORT_SYMBOL(jbd2_journal_clear_err);
81 EXPORT_SYMBOL(jbd2_log_wait_commit);
82 EXPORT_SYMBOL(jbd2_log_start_commit);
83 EXPORT_SYMBOL(jbd2_journal_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
85 EXPORT_SYMBOL(jbd2_journal_wipe);
86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
87 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
89 EXPORT_SYMBOL(jbd2_journal_force_commit);
90 EXPORT_SYMBOL(jbd2_journal_file_inode);
91 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
92 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
94 EXPORT_SYMBOL(jbd2_inode_cache);
95 
96 static void __journal_abort_soft (journal_t *journal, int errno);
97 static int jbd2_journal_create_slab(size_t slab_size);
98 
99 /* Checksumming functions */
100 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
101 {
102 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
103 		return 1;
104 
105 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
106 }
107 
108 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
109 {
110 	__u32 csum, old_csum;
111 
112 	old_csum = sb->s_checksum;
113 	sb->s_checksum = 0;
114 	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
115 	sb->s_checksum = old_csum;
116 
117 	return cpu_to_be32(csum);
118 }
119 
120 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
121 {
122 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
123 		return 1;
124 
125 	return sb->s_checksum == jbd2_superblock_csum(j, sb);
126 }
127 
128 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
129 {
130 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
131 		return;
132 
133 	sb->s_checksum = jbd2_superblock_csum(j, sb);
134 }
135 
136 /*
137  * Helper function used to manage commit timeouts
138  */
139 
140 static void commit_timeout(unsigned long __data)
141 {
142 	struct task_struct * p = (struct task_struct *) __data;
143 
144 	wake_up_process(p);
145 }
146 
147 /*
148  * kjournald2: The main thread function used to manage a logging device
149  * journal.
150  *
151  * This kernel thread is responsible for two things:
152  *
153  * 1) COMMIT:  Every so often we need to commit the current state of the
154  *    filesystem to disk.  The journal thread is responsible for writing
155  *    all of the metadata buffers to disk.
156  *
157  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
158  *    of the data in that part of the log has been rewritten elsewhere on
159  *    the disk.  Flushing these old buffers to reclaim space in the log is
160  *    known as checkpointing, and this thread is responsible for that job.
161  */
162 
163 static int kjournald2(void *arg)
164 {
165 	journal_t *journal = arg;
166 	transaction_t *transaction;
167 
168 	/*
169 	 * Set up an interval timer which can be used to trigger a commit wakeup
170 	 * after the commit interval expires
171 	 */
172 	setup_timer(&journal->j_commit_timer, commit_timeout,
173 			(unsigned long)current);
174 
175 	set_freezable();
176 
177 	/* Record that the journal thread is running */
178 	journal->j_task = current;
179 	wake_up(&journal->j_wait_done_commit);
180 
181 	/*
182 	 * And now, wait forever for commit wakeup events.
183 	 */
184 	write_lock(&journal->j_state_lock);
185 
186 loop:
187 	if (journal->j_flags & JBD2_UNMOUNT)
188 		goto end_loop;
189 
190 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
191 		journal->j_commit_sequence, journal->j_commit_request);
192 
193 	if (journal->j_commit_sequence != journal->j_commit_request) {
194 		jbd_debug(1, "OK, requests differ\n");
195 		write_unlock(&journal->j_state_lock);
196 		del_timer_sync(&journal->j_commit_timer);
197 		jbd2_journal_commit_transaction(journal);
198 		write_lock(&journal->j_state_lock);
199 		goto loop;
200 	}
201 
202 	wake_up(&journal->j_wait_done_commit);
203 	if (freezing(current)) {
204 		/*
205 		 * The simpler the better. Flushing journal isn't a
206 		 * good idea, because that depends on threads that may
207 		 * be already stopped.
208 		 */
209 		jbd_debug(1, "Now suspending kjournald2\n");
210 		write_unlock(&journal->j_state_lock);
211 		try_to_freeze();
212 		write_lock(&journal->j_state_lock);
213 	} else {
214 		/*
215 		 * We assume on resume that commits are already there,
216 		 * so we don't sleep
217 		 */
218 		DEFINE_WAIT(wait);
219 		int should_sleep = 1;
220 
221 		prepare_to_wait(&journal->j_wait_commit, &wait,
222 				TASK_INTERRUPTIBLE);
223 		if (journal->j_commit_sequence != journal->j_commit_request)
224 			should_sleep = 0;
225 		transaction = journal->j_running_transaction;
226 		if (transaction && time_after_eq(jiffies,
227 						transaction->t_expires))
228 			should_sleep = 0;
229 		if (journal->j_flags & JBD2_UNMOUNT)
230 			should_sleep = 0;
231 		if (should_sleep) {
232 			write_unlock(&journal->j_state_lock);
233 			schedule();
234 			write_lock(&journal->j_state_lock);
235 		}
236 		finish_wait(&journal->j_wait_commit, &wait);
237 	}
238 
239 	jbd_debug(1, "kjournald2 wakes\n");
240 
241 	/*
242 	 * Were we woken up by a commit wakeup event?
243 	 */
244 	transaction = journal->j_running_transaction;
245 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
246 		journal->j_commit_request = transaction->t_tid;
247 		jbd_debug(1, "woke because of timeout\n");
248 	}
249 	goto loop;
250 
251 end_loop:
252 	write_unlock(&journal->j_state_lock);
253 	del_timer_sync(&journal->j_commit_timer);
254 	journal->j_task = NULL;
255 	wake_up(&journal->j_wait_done_commit);
256 	jbd_debug(1, "Journal thread exiting.\n");
257 	return 0;
258 }
259 
260 static int jbd2_journal_start_thread(journal_t *journal)
261 {
262 	struct task_struct *t;
263 
264 	t = kthread_run(kjournald2, journal, "jbd2/%s",
265 			journal->j_devname);
266 	if (IS_ERR(t))
267 		return PTR_ERR(t);
268 
269 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
270 	return 0;
271 }
272 
273 static void journal_kill_thread(journal_t *journal)
274 {
275 	write_lock(&journal->j_state_lock);
276 	journal->j_flags |= JBD2_UNMOUNT;
277 
278 	while (journal->j_task) {
279 		wake_up(&journal->j_wait_commit);
280 		write_unlock(&journal->j_state_lock);
281 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
282 		write_lock(&journal->j_state_lock);
283 	}
284 	write_unlock(&journal->j_state_lock);
285 }
286 
287 /*
288  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
289  *
290  * Writes a metadata buffer to a given disk block.  The actual IO is not
291  * performed but a new buffer_head is constructed which labels the data
292  * to be written with the correct destination disk block.
293  *
294  * Any magic-number escaping which needs to be done will cause a
295  * copy-out here.  If the buffer happens to start with the
296  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
297  * magic number is only written to the log for descripter blocks.  In
298  * this case, we copy the data and replace the first word with 0, and we
299  * return a result code which indicates that this buffer needs to be
300  * marked as an escaped buffer in the corresponding log descriptor
301  * block.  The missing word can then be restored when the block is read
302  * during recovery.
303  *
304  * If the source buffer has already been modified by a new transaction
305  * since we took the last commit snapshot, we use the frozen copy of
306  * that data for IO.  If we end up using the existing buffer_head's data
307  * for the write, then we *have* to lock the buffer to prevent anyone
308  * else from using and possibly modifying it while the IO is in
309  * progress.
310  *
311  * The function returns a pointer to the buffer_heads to be used for IO.
312  *
313  * We assume that the journal has already been locked in this function.
314  *
315  * Return value:
316  *  <0: Error
317  * >=0: Finished OK
318  *
319  * On success:
320  * Bit 0 set == escape performed on the data
321  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
322  */
323 
324 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
325 				  struct journal_head  *jh_in,
326 				  struct journal_head **jh_out,
327 				  unsigned long long blocknr)
328 {
329 	int need_copy_out = 0;
330 	int done_copy_out = 0;
331 	int do_escape = 0;
332 	char *mapped_data;
333 	struct buffer_head *new_bh;
334 	struct journal_head *new_jh;
335 	struct page *new_page;
336 	unsigned int new_offset;
337 	struct buffer_head *bh_in = jh2bh(jh_in);
338 	journal_t *journal = transaction->t_journal;
339 
340 	/*
341 	 * The buffer really shouldn't be locked: only the current committing
342 	 * transaction is allowed to write it, so nobody else is allowed
343 	 * to do any IO.
344 	 *
345 	 * akpm: except if we're journalling data, and write() output is
346 	 * also part of a shared mapping, and another thread has
347 	 * decided to launch a writepage() against this buffer.
348 	 */
349 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
350 
351 retry_alloc:
352 	new_bh = alloc_buffer_head(GFP_NOFS);
353 	if (!new_bh) {
354 		/*
355 		 * Failure is not an option, but __GFP_NOFAIL is going
356 		 * away; so we retry ourselves here.
357 		 */
358 		congestion_wait(BLK_RW_ASYNC, HZ/50);
359 		goto retry_alloc;
360 	}
361 
362 	/* keep subsequent assertions sane */
363 	new_bh->b_state = 0;
364 	init_buffer(new_bh, NULL, NULL);
365 	atomic_set(&new_bh->b_count, 1);
366 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
367 
368 	/*
369 	 * If a new transaction has already done a buffer copy-out, then
370 	 * we use that version of the data for the commit.
371 	 */
372 	jbd_lock_bh_state(bh_in);
373 repeat:
374 	if (jh_in->b_frozen_data) {
375 		done_copy_out = 1;
376 		new_page = virt_to_page(jh_in->b_frozen_data);
377 		new_offset = offset_in_page(jh_in->b_frozen_data);
378 	} else {
379 		new_page = jh2bh(jh_in)->b_page;
380 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
381 	}
382 
383 	mapped_data = kmap_atomic(new_page);
384 	/*
385 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
386 	 * before checking for escaping, as the trigger may modify the magic
387 	 * offset.  If a copy-out happens afterwards, it will have the correct
388 	 * data in the buffer.
389 	 */
390 	if (!done_copy_out)
391 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
392 					   jh_in->b_triggers);
393 
394 	/*
395 	 * Check for escaping
396 	 */
397 	if (*((__be32 *)(mapped_data + new_offset)) ==
398 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
399 		need_copy_out = 1;
400 		do_escape = 1;
401 	}
402 	kunmap_atomic(mapped_data);
403 
404 	/*
405 	 * Do we need to do a data copy?
406 	 */
407 	if (need_copy_out && !done_copy_out) {
408 		char *tmp;
409 
410 		jbd_unlock_bh_state(bh_in);
411 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
412 		if (!tmp) {
413 			jbd2_journal_put_journal_head(new_jh);
414 			return -ENOMEM;
415 		}
416 		jbd_lock_bh_state(bh_in);
417 		if (jh_in->b_frozen_data) {
418 			jbd2_free(tmp, bh_in->b_size);
419 			goto repeat;
420 		}
421 
422 		jh_in->b_frozen_data = tmp;
423 		mapped_data = kmap_atomic(new_page);
424 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
425 		kunmap_atomic(mapped_data);
426 
427 		new_page = virt_to_page(tmp);
428 		new_offset = offset_in_page(tmp);
429 		done_copy_out = 1;
430 
431 		/*
432 		 * This isn't strictly necessary, as we're using frozen
433 		 * data for the escaping, but it keeps consistency with
434 		 * b_frozen_data usage.
435 		 */
436 		jh_in->b_frozen_triggers = jh_in->b_triggers;
437 	}
438 
439 	/*
440 	 * Did we need to do an escaping?  Now we've done all the
441 	 * copying, we can finally do so.
442 	 */
443 	if (do_escape) {
444 		mapped_data = kmap_atomic(new_page);
445 		*((unsigned int *)(mapped_data + new_offset)) = 0;
446 		kunmap_atomic(mapped_data);
447 	}
448 
449 	set_bh_page(new_bh, new_page, new_offset);
450 	new_jh->b_transaction = NULL;
451 	new_bh->b_size = jh2bh(jh_in)->b_size;
452 	new_bh->b_bdev = transaction->t_journal->j_dev;
453 	new_bh->b_blocknr = blocknr;
454 	set_buffer_mapped(new_bh);
455 	set_buffer_dirty(new_bh);
456 
457 	*jh_out = new_jh;
458 
459 	/*
460 	 * The to-be-written buffer needs to get moved to the io queue,
461 	 * and the original buffer whose contents we are shadowing or
462 	 * copying is moved to the transaction's shadow queue.
463 	 */
464 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
465 	spin_lock(&journal->j_list_lock);
466 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
467 	spin_unlock(&journal->j_list_lock);
468 	jbd_unlock_bh_state(bh_in);
469 
470 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
471 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
472 
473 	return do_escape | (done_copy_out << 1);
474 }
475 
476 /*
477  * Allocation code for the journal file.  Manage the space left in the
478  * journal, so that we can begin checkpointing when appropriate.
479  */
480 
481 /*
482  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
483  *
484  * Called with the journal already locked.
485  *
486  * Called under j_state_lock
487  */
488 
489 int __jbd2_log_space_left(journal_t *journal)
490 {
491 	int left = journal->j_free;
492 
493 	/* assert_spin_locked(&journal->j_state_lock); */
494 
495 	/*
496 	 * Be pessimistic here about the number of those free blocks which
497 	 * might be required for log descriptor control blocks.
498 	 */
499 
500 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
501 
502 	left -= MIN_LOG_RESERVED_BLOCKS;
503 
504 	if (left <= 0)
505 		return 0;
506 	left -= (left >> 3);
507 	return left;
508 }
509 
510 /*
511  * Called with j_state_lock locked for writing.
512  * Returns true if a transaction commit was started.
513  */
514 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
515 {
516 	/* Return if the txn has already requested to be committed */
517 	if (journal->j_commit_request == target)
518 		return 0;
519 
520 	/*
521 	 * The only transaction we can possibly wait upon is the
522 	 * currently running transaction (if it exists).  Otherwise,
523 	 * the target tid must be an old one.
524 	 */
525 	if (journal->j_running_transaction &&
526 	    journal->j_running_transaction->t_tid == target) {
527 		/*
528 		 * We want a new commit: OK, mark the request and wakeup the
529 		 * commit thread.  We do _not_ do the commit ourselves.
530 		 */
531 
532 		journal->j_commit_request = target;
533 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
534 			  journal->j_commit_request,
535 			  journal->j_commit_sequence);
536 		journal->j_running_transaction->t_requested = jiffies;
537 		wake_up(&journal->j_wait_commit);
538 		return 1;
539 	} else if (!tid_geq(journal->j_commit_request, target))
540 		/* This should never happen, but if it does, preserve
541 		   the evidence before kjournald goes into a loop and
542 		   increments j_commit_sequence beyond all recognition. */
543 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
544 			  journal->j_commit_request,
545 			  journal->j_commit_sequence,
546 			  target, journal->j_running_transaction ?
547 			  journal->j_running_transaction->t_tid : 0);
548 	return 0;
549 }
550 
551 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
552 {
553 	int ret;
554 
555 	write_lock(&journal->j_state_lock);
556 	ret = __jbd2_log_start_commit(journal, tid);
557 	write_unlock(&journal->j_state_lock);
558 	return ret;
559 }
560 
561 /*
562  * Force and wait upon a commit if the calling process is not within
563  * transaction.  This is used for forcing out undo-protected data which contains
564  * bitmaps, when the fs is running out of space.
565  *
566  * We can only force the running transaction if we don't have an active handle;
567  * otherwise, we will deadlock.
568  *
569  * Returns true if a transaction was started.
570  */
571 int jbd2_journal_force_commit_nested(journal_t *journal)
572 {
573 	transaction_t *transaction = NULL;
574 	tid_t tid;
575 	int need_to_start = 0;
576 
577 	read_lock(&journal->j_state_lock);
578 	if (journal->j_running_transaction && !current->journal_info) {
579 		transaction = journal->j_running_transaction;
580 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
581 			need_to_start = 1;
582 	} else if (journal->j_committing_transaction)
583 		transaction = journal->j_committing_transaction;
584 
585 	if (!transaction) {
586 		read_unlock(&journal->j_state_lock);
587 		return 0;	/* Nothing to retry */
588 	}
589 
590 	tid = transaction->t_tid;
591 	read_unlock(&journal->j_state_lock);
592 	if (need_to_start)
593 		jbd2_log_start_commit(journal, tid);
594 	jbd2_log_wait_commit(journal, tid);
595 	return 1;
596 }
597 
598 /*
599  * Start a commit of the current running transaction (if any).  Returns true
600  * if a transaction is going to be committed (or is currently already
601  * committing), and fills its tid in at *ptid
602  */
603 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
604 {
605 	int ret = 0;
606 
607 	write_lock(&journal->j_state_lock);
608 	if (journal->j_running_transaction) {
609 		tid_t tid = journal->j_running_transaction->t_tid;
610 
611 		__jbd2_log_start_commit(journal, tid);
612 		/* There's a running transaction and we've just made sure
613 		 * it's commit has been scheduled. */
614 		if (ptid)
615 			*ptid = tid;
616 		ret = 1;
617 	} else if (journal->j_committing_transaction) {
618 		/*
619 		 * If commit has been started, then we have to wait for
620 		 * completion of that transaction.
621 		 */
622 		if (ptid)
623 			*ptid = journal->j_committing_transaction->t_tid;
624 		ret = 1;
625 	}
626 	write_unlock(&journal->j_state_lock);
627 	return ret;
628 }
629 
630 /*
631  * Return 1 if a given transaction has not yet sent barrier request
632  * connected with a transaction commit. If 0 is returned, transaction
633  * may or may not have sent the barrier. Used to avoid sending barrier
634  * twice in common cases.
635  */
636 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
637 {
638 	int ret = 0;
639 	transaction_t *commit_trans;
640 
641 	if (!(journal->j_flags & JBD2_BARRIER))
642 		return 0;
643 	read_lock(&journal->j_state_lock);
644 	/* Transaction already committed? */
645 	if (tid_geq(journal->j_commit_sequence, tid))
646 		goto out;
647 	commit_trans = journal->j_committing_transaction;
648 	if (!commit_trans || commit_trans->t_tid != tid) {
649 		ret = 1;
650 		goto out;
651 	}
652 	/*
653 	 * Transaction is being committed and we already proceeded to
654 	 * submitting a flush to fs partition?
655 	 */
656 	if (journal->j_fs_dev != journal->j_dev) {
657 		if (!commit_trans->t_need_data_flush ||
658 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
659 			goto out;
660 	} else {
661 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
662 			goto out;
663 	}
664 	ret = 1;
665 out:
666 	read_unlock(&journal->j_state_lock);
667 	return ret;
668 }
669 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
670 
671 /*
672  * Wait for a specified commit to complete.
673  * The caller may not hold the journal lock.
674  */
675 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
676 {
677 	int err = 0;
678 
679 	read_lock(&journal->j_state_lock);
680 #ifdef CONFIG_JBD2_DEBUG
681 	if (!tid_geq(journal->j_commit_request, tid)) {
682 		printk(KERN_EMERG
683 		       "%s: error: j_commit_request=%d, tid=%d\n",
684 		       __func__, journal->j_commit_request, tid);
685 	}
686 #endif
687 	while (tid_gt(tid, journal->j_commit_sequence)) {
688 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
689 				  tid, journal->j_commit_sequence);
690 		wake_up(&journal->j_wait_commit);
691 		read_unlock(&journal->j_state_lock);
692 		wait_event(journal->j_wait_done_commit,
693 				!tid_gt(tid, journal->j_commit_sequence));
694 		read_lock(&journal->j_state_lock);
695 	}
696 	read_unlock(&journal->j_state_lock);
697 
698 	if (unlikely(is_journal_aborted(journal))) {
699 		printk(KERN_EMERG "journal commit I/O error\n");
700 		err = -EIO;
701 	}
702 	return err;
703 }
704 
705 /*
706  * Log buffer allocation routines:
707  */
708 
709 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
710 {
711 	unsigned long blocknr;
712 
713 	write_lock(&journal->j_state_lock);
714 	J_ASSERT(journal->j_free > 1);
715 
716 	blocknr = journal->j_head;
717 	journal->j_head++;
718 	journal->j_free--;
719 	if (journal->j_head == journal->j_last)
720 		journal->j_head = journal->j_first;
721 	write_unlock(&journal->j_state_lock);
722 	return jbd2_journal_bmap(journal, blocknr, retp);
723 }
724 
725 /*
726  * Conversion of logical to physical block numbers for the journal
727  *
728  * On external journals the journal blocks are identity-mapped, so
729  * this is a no-op.  If needed, we can use j_blk_offset - everything is
730  * ready.
731  */
732 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
733 		 unsigned long long *retp)
734 {
735 	int err = 0;
736 	unsigned long long ret;
737 
738 	if (journal->j_inode) {
739 		ret = bmap(journal->j_inode, blocknr);
740 		if (ret)
741 			*retp = ret;
742 		else {
743 			printk(KERN_ALERT "%s: journal block not found "
744 					"at offset %lu on %s\n",
745 			       __func__, blocknr, journal->j_devname);
746 			err = -EIO;
747 			__journal_abort_soft(journal, err);
748 		}
749 	} else {
750 		*retp = blocknr; /* +journal->j_blk_offset */
751 	}
752 	return err;
753 }
754 
755 /*
756  * We play buffer_head aliasing tricks to write data/metadata blocks to
757  * the journal without copying their contents, but for journal
758  * descriptor blocks we do need to generate bona fide buffers.
759  *
760  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
761  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
762  * But we don't bother doing that, so there will be coherency problems with
763  * mmaps of blockdevs which hold live JBD-controlled filesystems.
764  */
765 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
766 {
767 	struct buffer_head *bh;
768 	unsigned long long blocknr;
769 	int err;
770 
771 	err = jbd2_journal_next_log_block(journal, &blocknr);
772 
773 	if (err)
774 		return NULL;
775 
776 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
777 	if (!bh)
778 		return NULL;
779 	lock_buffer(bh);
780 	memset(bh->b_data, 0, journal->j_blocksize);
781 	set_buffer_uptodate(bh);
782 	unlock_buffer(bh);
783 	BUFFER_TRACE(bh, "return this buffer");
784 	return jbd2_journal_add_journal_head(bh);
785 }
786 
787 /*
788  * Return tid of the oldest transaction in the journal and block in the journal
789  * where the transaction starts.
790  *
791  * If the journal is now empty, return which will be the next transaction ID
792  * we will write and where will that transaction start.
793  *
794  * The return value is 0 if journal tail cannot be pushed any further, 1 if
795  * it can.
796  */
797 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
798 			      unsigned long *block)
799 {
800 	transaction_t *transaction;
801 	int ret;
802 
803 	read_lock(&journal->j_state_lock);
804 	spin_lock(&journal->j_list_lock);
805 	transaction = journal->j_checkpoint_transactions;
806 	if (transaction) {
807 		*tid = transaction->t_tid;
808 		*block = transaction->t_log_start;
809 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
810 		*tid = transaction->t_tid;
811 		*block = transaction->t_log_start;
812 	} else if ((transaction = journal->j_running_transaction) != NULL) {
813 		*tid = transaction->t_tid;
814 		*block = journal->j_head;
815 	} else {
816 		*tid = journal->j_transaction_sequence;
817 		*block = journal->j_head;
818 	}
819 	ret = tid_gt(*tid, journal->j_tail_sequence);
820 	spin_unlock(&journal->j_list_lock);
821 	read_unlock(&journal->j_state_lock);
822 
823 	return ret;
824 }
825 
826 /*
827  * Update information in journal structure and in on disk journal superblock
828  * about log tail. This function does not check whether information passed in
829  * really pushes log tail further. It's responsibility of the caller to make
830  * sure provided log tail information is valid (e.g. by holding
831  * j_checkpoint_mutex all the time between computing log tail and calling this
832  * function as is the case with jbd2_cleanup_journal_tail()).
833  *
834  * Requires j_checkpoint_mutex
835  */
836 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
837 {
838 	unsigned long freed;
839 
840 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
841 
842 	/*
843 	 * We cannot afford for write to remain in drive's caches since as
844 	 * soon as we update j_tail, next transaction can start reusing journal
845 	 * space and if we lose sb update during power failure we'd replay
846 	 * old transaction with possibly newly overwritten data.
847 	 */
848 	jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
849 	write_lock(&journal->j_state_lock);
850 	freed = block - journal->j_tail;
851 	if (block < journal->j_tail)
852 		freed += journal->j_last - journal->j_first;
853 
854 	trace_jbd2_update_log_tail(journal, tid, block, freed);
855 	jbd_debug(1,
856 		  "Cleaning journal tail from %d to %d (offset %lu), "
857 		  "freeing %lu\n",
858 		  journal->j_tail_sequence, tid, block, freed);
859 
860 	journal->j_free += freed;
861 	journal->j_tail_sequence = tid;
862 	journal->j_tail = block;
863 	write_unlock(&journal->j_state_lock);
864 }
865 
866 /*
867  * This is a variaon of __jbd2_update_log_tail which checks for validity of
868  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
869  * with other threads updating log tail.
870  */
871 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
872 {
873 	mutex_lock(&journal->j_checkpoint_mutex);
874 	if (tid_gt(tid, journal->j_tail_sequence))
875 		__jbd2_update_log_tail(journal, tid, block);
876 	mutex_unlock(&journal->j_checkpoint_mutex);
877 }
878 
879 struct jbd2_stats_proc_session {
880 	journal_t *journal;
881 	struct transaction_stats_s *stats;
882 	int start;
883 	int max;
884 };
885 
886 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
887 {
888 	return *pos ? NULL : SEQ_START_TOKEN;
889 }
890 
891 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
892 {
893 	return NULL;
894 }
895 
896 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
897 {
898 	struct jbd2_stats_proc_session *s = seq->private;
899 
900 	if (v != SEQ_START_TOKEN)
901 		return 0;
902 	seq_printf(seq, "%lu transactions (%lu requested), "
903 		   "each up to %u blocks\n",
904 		   s->stats->ts_tid, s->stats->ts_requested,
905 		   s->journal->j_max_transaction_buffers);
906 	if (s->stats->ts_tid == 0)
907 		return 0;
908 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
909 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
910 	seq_printf(seq, "  %ums request delay\n",
911 	    (s->stats->ts_requested == 0) ? 0 :
912 	    jiffies_to_msecs(s->stats->run.rs_request_delay /
913 			     s->stats->ts_requested));
914 	seq_printf(seq, "  %ums running transaction\n",
915 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
916 	seq_printf(seq, "  %ums transaction was being locked\n",
917 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
918 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
919 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
920 	seq_printf(seq, "  %ums logging transaction\n",
921 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
922 	seq_printf(seq, "  %lluus average transaction commit time\n",
923 		   div_u64(s->journal->j_average_commit_time, 1000));
924 	seq_printf(seq, "  %lu handles per transaction\n",
925 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
926 	seq_printf(seq, "  %lu blocks per transaction\n",
927 	    s->stats->run.rs_blocks / s->stats->ts_tid);
928 	seq_printf(seq, "  %lu logged blocks per transaction\n",
929 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
930 	return 0;
931 }
932 
933 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
934 {
935 }
936 
937 static const struct seq_operations jbd2_seq_info_ops = {
938 	.start  = jbd2_seq_info_start,
939 	.next   = jbd2_seq_info_next,
940 	.stop   = jbd2_seq_info_stop,
941 	.show   = jbd2_seq_info_show,
942 };
943 
944 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
945 {
946 	journal_t *journal = PDE(inode)->data;
947 	struct jbd2_stats_proc_session *s;
948 	int rc, size;
949 
950 	s = kmalloc(sizeof(*s), GFP_KERNEL);
951 	if (s == NULL)
952 		return -ENOMEM;
953 	size = sizeof(struct transaction_stats_s);
954 	s->stats = kmalloc(size, GFP_KERNEL);
955 	if (s->stats == NULL) {
956 		kfree(s);
957 		return -ENOMEM;
958 	}
959 	spin_lock(&journal->j_history_lock);
960 	memcpy(s->stats, &journal->j_stats, size);
961 	s->journal = journal;
962 	spin_unlock(&journal->j_history_lock);
963 
964 	rc = seq_open(file, &jbd2_seq_info_ops);
965 	if (rc == 0) {
966 		struct seq_file *m = file->private_data;
967 		m->private = s;
968 	} else {
969 		kfree(s->stats);
970 		kfree(s);
971 	}
972 	return rc;
973 
974 }
975 
976 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
977 {
978 	struct seq_file *seq = file->private_data;
979 	struct jbd2_stats_proc_session *s = seq->private;
980 	kfree(s->stats);
981 	kfree(s);
982 	return seq_release(inode, file);
983 }
984 
985 static const struct file_operations jbd2_seq_info_fops = {
986 	.owner		= THIS_MODULE,
987 	.open           = jbd2_seq_info_open,
988 	.read           = seq_read,
989 	.llseek         = seq_lseek,
990 	.release        = jbd2_seq_info_release,
991 };
992 
993 static struct proc_dir_entry *proc_jbd2_stats;
994 
995 static void jbd2_stats_proc_init(journal_t *journal)
996 {
997 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
998 	if (journal->j_proc_entry) {
999 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1000 				 &jbd2_seq_info_fops, journal);
1001 	}
1002 }
1003 
1004 static void jbd2_stats_proc_exit(journal_t *journal)
1005 {
1006 	remove_proc_entry("info", journal->j_proc_entry);
1007 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1008 }
1009 
1010 /*
1011  * Management for journal control blocks: functions to create and
1012  * destroy journal_t structures, and to initialise and read existing
1013  * journal blocks from disk.  */
1014 
1015 /* First: create and setup a journal_t object in memory.  We initialise
1016  * very few fields yet: that has to wait until we have created the
1017  * journal structures from from scratch, or loaded them from disk. */
1018 
1019 static journal_t * journal_init_common (void)
1020 {
1021 	journal_t *journal;
1022 	int err;
1023 
1024 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1025 	if (!journal)
1026 		return NULL;
1027 
1028 	init_waitqueue_head(&journal->j_wait_transaction_locked);
1029 	init_waitqueue_head(&journal->j_wait_logspace);
1030 	init_waitqueue_head(&journal->j_wait_done_commit);
1031 	init_waitqueue_head(&journal->j_wait_checkpoint);
1032 	init_waitqueue_head(&journal->j_wait_commit);
1033 	init_waitqueue_head(&journal->j_wait_updates);
1034 	mutex_init(&journal->j_barrier);
1035 	mutex_init(&journal->j_checkpoint_mutex);
1036 	spin_lock_init(&journal->j_revoke_lock);
1037 	spin_lock_init(&journal->j_list_lock);
1038 	rwlock_init(&journal->j_state_lock);
1039 
1040 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1041 	journal->j_min_batch_time = 0;
1042 	journal->j_max_batch_time = 15000; /* 15ms */
1043 
1044 	/* The journal is marked for error until we succeed with recovery! */
1045 	journal->j_flags = JBD2_ABORT;
1046 
1047 	/* Set up a default-sized revoke table for the new mount. */
1048 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1049 	if (err) {
1050 		kfree(journal);
1051 		return NULL;
1052 	}
1053 
1054 	spin_lock_init(&journal->j_history_lock);
1055 
1056 	return journal;
1057 }
1058 
1059 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1060  *
1061  * Create a journal structure assigned some fixed set of disk blocks to
1062  * the journal.  We don't actually touch those disk blocks yet, but we
1063  * need to set up all of the mapping information to tell the journaling
1064  * system where the journal blocks are.
1065  *
1066  */
1067 
1068 /**
1069  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1070  *  @bdev: Block device on which to create the journal
1071  *  @fs_dev: Device which hold journalled filesystem for this journal.
1072  *  @start: Block nr Start of journal.
1073  *  @len:  Length of the journal in blocks.
1074  *  @blocksize: blocksize of journalling device
1075  *
1076  *  Returns: a newly created journal_t *
1077  *
1078  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1079  *  range of blocks on an arbitrary block device.
1080  *
1081  */
1082 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1083 			struct block_device *fs_dev,
1084 			unsigned long long start, int len, int blocksize)
1085 {
1086 	journal_t *journal = journal_init_common();
1087 	struct buffer_head *bh;
1088 	char *p;
1089 	int n;
1090 
1091 	if (!journal)
1092 		return NULL;
1093 
1094 	/* journal descriptor can store up to n blocks -bzzz */
1095 	journal->j_blocksize = blocksize;
1096 	journal->j_dev = bdev;
1097 	journal->j_fs_dev = fs_dev;
1098 	journal->j_blk_offset = start;
1099 	journal->j_maxlen = len;
1100 	bdevname(journal->j_dev, journal->j_devname);
1101 	p = journal->j_devname;
1102 	while ((p = strchr(p, '/')))
1103 		*p = '!';
1104 	jbd2_stats_proc_init(journal);
1105 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1106 	journal->j_wbufsize = n;
1107 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1108 	if (!journal->j_wbuf) {
1109 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1110 			__func__);
1111 		goto out_err;
1112 	}
1113 
1114 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1115 	if (!bh) {
1116 		printk(KERN_ERR
1117 		       "%s: Cannot get buffer for journal superblock\n",
1118 		       __func__);
1119 		goto out_err;
1120 	}
1121 	journal->j_sb_buffer = bh;
1122 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1123 
1124 	return journal;
1125 out_err:
1126 	kfree(journal->j_wbuf);
1127 	jbd2_stats_proc_exit(journal);
1128 	kfree(journal);
1129 	return NULL;
1130 }
1131 
1132 /**
1133  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1134  *  @inode: An inode to create the journal in
1135  *
1136  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1137  * the journal.  The inode must exist already, must support bmap() and
1138  * must have all data blocks preallocated.
1139  */
1140 journal_t * jbd2_journal_init_inode (struct inode *inode)
1141 {
1142 	struct buffer_head *bh;
1143 	journal_t *journal = journal_init_common();
1144 	char *p;
1145 	int err;
1146 	int n;
1147 	unsigned long long blocknr;
1148 
1149 	if (!journal)
1150 		return NULL;
1151 
1152 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1153 	journal->j_inode = inode;
1154 	bdevname(journal->j_dev, journal->j_devname);
1155 	p = journal->j_devname;
1156 	while ((p = strchr(p, '/')))
1157 		*p = '!';
1158 	p = journal->j_devname + strlen(journal->j_devname);
1159 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1160 	jbd_debug(1,
1161 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1162 		  journal, inode->i_sb->s_id, inode->i_ino,
1163 		  (long long) inode->i_size,
1164 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1165 
1166 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1167 	journal->j_blocksize = inode->i_sb->s_blocksize;
1168 	jbd2_stats_proc_init(journal);
1169 
1170 	/* journal descriptor can store up to n blocks -bzzz */
1171 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1172 	journal->j_wbufsize = n;
1173 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1174 	if (!journal->j_wbuf) {
1175 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1176 			__func__);
1177 		goto out_err;
1178 	}
1179 
1180 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1181 	/* If that failed, give up */
1182 	if (err) {
1183 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1184 		       __func__);
1185 		goto out_err;
1186 	}
1187 
1188 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1189 	if (!bh) {
1190 		printk(KERN_ERR
1191 		       "%s: Cannot get buffer for journal superblock\n",
1192 		       __func__);
1193 		goto out_err;
1194 	}
1195 	journal->j_sb_buffer = bh;
1196 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1197 
1198 	return journal;
1199 out_err:
1200 	kfree(journal->j_wbuf);
1201 	jbd2_stats_proc_exit(journal);
1202 	kfree(journal);
1203 	return NULL;
1204 }
1205 
1206 /*
1207  * If the journal init or create aborts, we need to mark the journal
1208  * superblock as being NULL to prevent the journal destroy from writing
1209  * back a bogus superblock.
1210  */
1211 static void journal_fail_superblock (journal_t *journal)
1212 {
1213 	struct buffer_head *bh = journal->j_sb_buffer;
1214 	brelse(bh);
1215 	journal->j_sb_buffer = NULL;
1216 }
1217 
1218 /*
1219  * Given a journal_t structure, initialise the various fields for
1220  * startup of a new journaling session.  We use this both when creating
1221  * a journal, and after recovering an old journal to reset it for
1222  * subsequent use.
1223  */
1224 
1225 static int journal_reset(journal_t *journal)
1226 {
1227 	journal_superblock_t *sb = journal->j_superblock;
1228 	unsigned long long first, last;
1229 
1230 	first = be32_to_cpu(sb->s_first);
1231 	last = be32_to_cpu(sb->s_maxlen);
1232 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1233 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1234 		       first, last);
1235 		journal_fail_superblock(journal);
1236 		return -EINVAL;
1237 	}
1238 
1239 	journal->j_first = first;
1240 	journal->j_last = last;
1241 
1242 	journal->j_head = first;
1243 	journal->j_tail = first;
1244 	journal->j_free = last - first;
1245 
1246 	journal->j_tail_sequence = journal->j_transaction_sequence;
1247 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1248 	journal->j_commit_request = journal->j_commit_sequence;
1249 
1250 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1251 
1252 	/*
1253 	 * As a special case, if the on-disk copy is already marked as needing
1254 	 * no recovery (s_start == 0), then we can safely defer the superblock
1255 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1256 	 * attempting a write to a potential-readonly device.
1257 	 */
1258 	if (sb->s_start == 0) {
1259 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1260 			"(start %ld, seq %d, errno %d)\n",
1261 			journal->j_tail, journal->j_tail_sequence,
1262 			journal->j_errno);
1263 		journal->j_flags |= JBD2_FLUSHED;
1264 	} else {
1265 		/* Lock here to make assertions happy... */
1266 		mutex_lock(&journal->j_checkpoint_mutex);
1267 		/*
1268 		 * Update log tail information. We use WRITE_FUA since new
1269 		 * transaction will start reusing journal space and so we
1270 		 * must make sure information about current log tail is on
1271 		 * disk before that.
1272 		 */
1273 		jbd2_journal_update_sb_log_tail(journal,
1274 						journal->j_tail_sequence,
1275 						journal->j_tail,
1276 						WRITE_FUA);
1277 		mutex_unlock(&journal->j_checkpoint_mutex);
1278 	}
1279 	return jbd2_journal_start_thread(journal);
1280 }
1281 
1282 static void jbd2_write_superblock(journal_t *journal, int write_op)
1283 {
1284 	struct buffer_head *bh = journal->j_sb_buffer;
1285 	int ret;
1286 
1287 	trace_jbd2_write_superblock(journal, write_op);
1288 	if (!(journal->j_flags & JBD2_BARRIER))
1289 		write_op &= ~(REQ_FUA | REQ_FLUSH);
1290 	lock_buffer(bh);
1291 	if (buffer_write_io_error(bh)) {
1292 		/*
1293 		 * Oh, dear.  A previous attempt to write the journal
1294 		 * superblock failed.  This could happen because the
1295 		 * USB device was yanked out.  Or it could happen to
1296 		 * be a transient write error and maybe the block will
1297 		 * be remapped.  Nothing we can do but to retry the
1298 		 * write and hope for the best.
1299 		 */
1300 		printk(KERN_ERR "JBD2: previous I/O error detected "
1301 		       "for journal superblock update for %s.\n",
1302 		       journal->j_devname);
1303 		clear_buffer_write_io_error(bh);
1304 		set_buffer_uptodate(bh);
1305 	}
1306 	get_bh(bh);
1307 	bh->b_end_io = end_buffer_write_sync;
1308 	ret = submit_bh(write_op, bh);
1309 	wait_on_buffer(bh);
1310 	if (buffer_write_io_error(bh)) {
1311 		clear_buffer_write_io_error(bh);
1312 		set_buffer_uptodate(bh);
1313 		ret = -EIO;
1314 	}
1315 	if (ret) {
1316 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1317 		       "journal superblock for %s.\n", ret,
1318 		       journal->j_devname);
1319 	}
1320 }
1321 
1322 /**
1323  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1324  * @journal: The journal to update.
1325  * @tail_tid: TID of the new transaction at the tail of the log
1326  * @tail_block: The first block of the transaction at the tail of the log
1327  * @write_op: With which operation should we write the journal sb
1328  *
1329  * Update a journal's superblock information about log tail and write it to
1330  * disk, waiting for the IO to complete.
1331  */
1332 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1333 				     unsigned long tail_block, int write_op)
1334 {
1335 	journal_superblock_t *sb = journal->j_superblock;
1336 
1337 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1338 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1339 		  tail_block, tail_tid);
1340 
1341 	sb->s_sequence = cpu_to_be32(tail_tid);
1342 	sb->s_start    = cpu_to_be32(tail_block);
1343 
1344 	jbd2_write_superblock(journal, write_op);
1345 
1346 	/* Log is no longer empty */
1347 	write_lock(&journal->j_state_lock);
1348 	WARN_ON(!sb->s_sequence);
1349 	journal->j_flags &= ~JBD2_FLUSHED;
1350 	write_unlock(&journal->j_state_lock);
1351 }
1352 
1353 /**
1354  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1355  * @journal: The journal to update.
1356  *
1357  * Update a journal's dynamic superblock fields to show that journal is empty.
1358  * Write updated superblock to disk waiting for IO to complete.
1359  */
1360 static void jbd2_mark_journal_empty(journal_t *journal)
1361 {
1362 	journal_superblock_t *sb = journal->j_superblock;
1363 
1364 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1365 	read_lock(&journal->j_state_lock);
1366 	/* Is it already empty? */
1367 	if (sb->s_start == 0) {
1368 		read_unlock(&journal->j_state_lock);
1369 		return;
1370 	}
1371 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1372 		  journal->j_tail_sequence);
1373 
1374 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1375 	sb->s_start    = cpu_to_be32(0);
1376 	read_unlock(&journal->j_state_lock);
1377 
1378 	jbd2_write_superblock(journal, WRITE_FUA);
1379 
1380 	/* Log is no longer empty */
1381 	write_lock(&journal->j_state_lock);
1382 	journal->j_flags |= JBD2_FLUSHED;
1383 	write_unlock(&journal->j_state_lock);
1384 }
1385 
1386 
1387 /**
1388  * jbd2_journal_update_sb_errno() - Update error in the journal.
1389  * @journal: The journal to update.
1390  *
1391  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1392  * to complete.
1393  */
1394 void jbd2_journal_update_sb_errno(journal_t *journal)
1395 {
1396 	journal_superblock_t *sb = journal->j_superblock;
1397 
1398 	read_lock(&journal->j_state_lock);
1399 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1400 		  journal->j_errno);
1401 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1402 	jbd2_superblock_csum_set(journal, sb);
1403 	read_unlock(&journal->j_state_lock);
1404 
1405 	jbd2_write_superblock(journal, WRITE_SYNC);
1406 }
1407 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1408 
1409 /*
1410  * Read the superblock for a given journal, performing initial
1411  * validation of the format.
1412  */
1413 static int journal_get_superblock(journal_t *journal)
1414 {
1415 	struct buffer_head *bh;
1416 	journal_superblock_t *sb;
1417 	int err = -EIO;
1418 
1419 	bh = journal->j_sb_buffer;
1420 
1421 	J_ASSERT(bh != NULL);
1422 	if (!buffer_uptodate(bh)) {
1423 		ll_rw_block(READ, 1, &bh);
1424 		wait_on_buffer(bh);
1425 		if (!buffer_uptodate(bh)) {
1426 			printk(KERN_ERR
1427 				"JBD2: IO error reading journal superblock\n");
1428 			goto out;
1429 		}
1430 	}
1431 
1432 	if (buffer_verified(bh))
1433 		return 0;
1434 
1435 	sb = journal->j_superblock;
1436 
1437 	err = -EINVAL;
1438 
1439 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1440 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1441 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1442 		goto out;
1443 	}
1444 
1445 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1446 	case JBD2_SUPERBLOCK_V1:
1447 		journal->j_format_version = 1;
1448 		break;
1449 	case JBD2_SUPERBLOCK_V2:
1450 		journal->j_format_version = 2;
1451 		break;
1452 	default:
1453 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1454 		goto out;
1455 	}
1456 
1457 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1458 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1459 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1460 		printk(KERN_WARNING "JBD2: journal file too short\n");
1461 		goto out;
1462 	}
1463 
1464 	if (be32_to_cpu(sb->s_first) == 0 ||
1465 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1466 		printk(KERN_WARNING
1467 			"JBD2: Invalid start block of journal: %u\n",
1468 			be32_to_cpu(sb->s_first));
1469 		goto out;
1470 	}
1471 
1472 	if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1473 	    JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1474 		/* Can't have checksum v1 and v2 on at the same time! */
1475 		printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1476 		       "at the same time!\n");
1477 		goto out;
1478 	}
1479 
1480 	if (!jbd2_verify_csum_type(journal, sb)) {
1481 		printk(KERN_ERR "JBD: Unknown checksum type\n");
1482 		goto out;
1483 	}
1484 
1485 	/* Load the checksum driver */
1486 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1487 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1488 		if (IS_ERR(journal->j_chksum_driver)) {
1489 			printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1490 			err = PTR_ERR(journal->j_chksum_driver);
1491 			journal->j_chksum_driver = NULL;
1492 			goto out;
1493 		}
1494 	}
1495 
1496 	/* Check superblock checksum */
1497 	if (!jbd2_superblock_csum_verify(journal, sb)) {
1498 		printk(KERN_ERR "JBD: journal checksum error\n");
1499 		goto out;
1500 	}
1501 
1502 	/* Precompute checksum seed for all metadata */
1503 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
1504 		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1505 						   sizeof(sb->s_uuid));
1506 
1507 	set_buffer_verified(bh);
1508 
1509 	return 0;
1510 
1511 out:
1512 	journal_fail_superblock(journal);
1513 	return err;
1514 }
1515 
1516 /*
1517  * Load the on-disk journal superblock and read the key fields into the
1518  * journal_t.
1519  */
1520 
1521 static int load_superblock(journal_t *journal)
1522 {
1523 	int err;
1524 	journal_superblock_t *sb;
1525 
1526 	err = journal_get_superblock(journal);
1527 	if (err)
1528 		return err;
1529 
1530 	sb = journal->j_superblock;
1531 
1532 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1533 	journal->j_tail = be32_to_cpu(sb->s_start);
1534 	journal->j_first = be32_to_cpu(sb->s_first);
1535 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1536 	journal->j_errno = be32_to_cpu(sb->s_errno);
1537 
1538 	return 0;
1539 }
1540 
1541 
1542 /**
1543  * int jbd2_journal_load() - Read journal from disk.
1544  * @journal: Journal to act on.
1545  *
1546  * Given a journal_t structure which tells us which disk blocks contain
1547  * a journal, read the journal from disk to initialise the in-memory
1548  * structures.
1549  */
1550 int jbd2_journal_load(journal_t *journal)
1551 {
1552 	int err;
1553 	journal_superblock_t *sb;
1554 
1555 	err = load_superblock(journal);
1556 	if (err)
1557 		return err;
1558 
1559 	sb = journal->j_superblock;
1560 	/* If this is a V2 superblock, then we have to check the
1561 	 * features flags on it. */
1562 
1563 	if (journal->j_format_version >= 2) {
1564 		if ((sb->s_feature_ro_compat &
1565 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1566 		    (sb->s_feature_incompat &
1567 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1568 			printk(KERN_WARNING
1569 				"JBD2: Unrecognised features on journal\n");
1570 			return -EINVAL;
1571 		}
1572 	}
1573 
1574 	/*
1575 	 * Create a slab for this blocksize
1576 	 */
1577 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1578 	if (err)
1579 		return err;
1580 
1581 	/* Let the recovery code check whether it needs to recover any
1582 	 * data from the journal. */
1583 	if (jbd2_journal_recover(journal))
1584 		goto recovery_error;
1585 
1586 	if (journal->j_failed_commit) {
1587 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1588 		       "is corrupt.\n", journal->j_failed_commit,
1589 		       journal->j_devname);
1590 		return -EIO;
1591 	}
1592 
1593 	/* OK, we've finished with the dynamic journal bits:
1594 	 * reinitialise the dynamic contents of the superblock in memory
1595 	 * and reset them on disk. */
1596 	if (journal_reset(journal))
1597 		goto recovery_error;
1598 
1599 	journal->j_flags &= ~JBD2_ABORT;
1600 	journal->j_flags |= JBD2_LOADED;
1601 	return 0;
1602 
1603 recovery_error:
1604 	printk(KERN_WARNING "JBD2: recovery failed\n");
1605 	return -EIO;
1606 }
1607 
1608 /**
1609  * void jbd2_journal_destroy() - Release a journal_t structure.
1610  * @journal: Journal to act on.
1611  *
1612  * Release a journal_t structure once it is no longer in use by the
1613  * journaled object.
1614  * Return <0 if we couldn't clean up the journal.
1615  */
1616 int jbd2_journal_destroy(journal_t *journal)
1617 {
1618 	int err = 0;
1619 
1620 	/* Wait for the commit thread to wake up and die. */
1621 	journal_kill_thread(journal);
1622 
1623 	/* Force a final log commit */
1624 	if (journal->j_running_transaction)
1625 		jbd2_journal_commit_transaction(journal);
1626 
1627 	/* Force any old transactions to disk */
1628 
1629 	/* Totally anal locking here... */
1630 	spin_lock(&journal->j_list_lock);
1631 	while (journal->j_checkpoint_transactions != NULL) {
1632 		spin_unlock(&journal->j_list_lock);
1633 		mutex_lock(&journal->j_checkpoint_mutex);
1634 		jbd2_log_do_checkpoint(journal);
1635 		mutex_unlock(&journal->j_checkpoint_mutex);
1636 		spin_lock(&journal->j_list_lock);
1637 	}
1638 
1639 	J_ASSERT(journal->j_running_transaction == NULL);
1640 	J_ASSERT(journal->j_committing_transaction == NULL);
1641 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1642 	spin_unlock(&journal->j_list_lock);
1643 
1644 	if (journal->j_sb_buffer) {
1645 		if (!is_journal_aborted(journal)) {
1646 			mutex_lock(&journal->j_checkpoint_mutex);
1647 			jbd2_mark_journal_empty(journal);
1648 			mutex_unlock(&journal->j_checkpoint_mutex);
1649 		} else
1650 			err = -EIO;
1651 		brelse(journal->j_sb_buffer);
1652 	}
1653 
1654 	if (journal->j_proc_entry)
1655 		jbd2_stats_proc_exit(journal);
1656 	if (journal->j_inode)
1657 		iput(journal->j_inode);
1658 	if (journal->j_revoke)
1659 		jbd2_journal_destroy_revoke(journal);
1660 	if (journal->j_chksum_driver)
1661 		crypto_free_shash(journal->j_chksum_driver);
1662 	kfree(journal->j_wbuf);
1663 	kfree(journal);
1664 
1665 	return err;
1666 }
1667 
1668 
1669 /**
1670  *int jbd2_journal_check_used_features () - Check if features specified are used.
1671  * @journal: Journal to check.
1672  * @compat: bitmask of compatible features
1673  * @ro: bitmask of features that force read-only mount
1674  * @incompat: bitmask of incompatible features
1675  *
1676  * Check whether the journal uses all of a given set of
1677  * features.  Return true (non-zero) if it does.
1678  **/
1679 
1680 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1681 				 unsigned long ro, unsigned long incompat)
1682 {
1683 	journal_superblock_t *sb;
1684 
1685 	if (!compat && !ro && !incompat)
1686 		return 1;
1687 	/* Load journal superblock if it is not loaded yet. */
1688 	if (journal->j_format_version == 0 &&
1689 	    journal_get_superblock(journal) != 0)
1690 		return 0;
1691 	if (journal->j_format_version == 1)
1692 		return 0;
1693 
1694 	sb = journal->j_superblock;
1695 
1696 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1697 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1698 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1699 		return 1;
1700 
1701 	return 0;
1702 }
1703 
1704 /**
1705  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1706  * @journal: Journal to check.
1707  * @compat: bitmask of compatible features
1708  * @ro: bitmask of features that force read-only mount
1709  * @incompat: bitmask of incompatible features
1710  *
1711  * Check whether the journaling code supports the use of
1712  * all of a given set of features on this journal.  Return true
1713  * (non-zero) if it can. */
1714 
1715 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1716 				      unsigned long ro, unsigned long incompat)
1717 {
1718 	if (!compat && !ro && !incompat)
1719 		return 1;
1720 
1721 	/* We can support any known requested features iff the
1722 	 * superblock is in version 2.  Otherwise we fail to support any
1723 	 * extended sb features. */
1724 
1725 	if (journal->j_format_version != 2)
1726 		return 0;
1727 
1728 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1729 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1730 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1731 		return 1;
1732 
1733 	return 0;
1734 }
1735 
1736 /**
1737  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1738  * @journal: Journal to act on.
1739  * @compat: bitmask of compatible features
1740  * @ro: bitmask of features that force read-only mount
1741  * @incompat: bitmask of incompatible features
1742  *
1743  * Mark a given journal feature as present on the
1744  * superblock.  Returns true if the requested features could be set.
1745  *
1746  */
1747 
1748 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1749 			  unsigned long ro, unsigned long incompat)
1750 {
1751 #define INCOMPAT_FEATURE_ON(f) \
1752 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1753 #define COMPAT_FEATURE_ON(f) \
1754 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1755 	journal_superblock_t *sb;
1756 
1757 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1758 		return 1;
1759 
1760 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1761 		return 0;
1762 
1763 	/* Asking for checksumming v2 and v1?  Only give them v2. */
1764 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1765 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1766 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1767 
1768 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1769 		  compat, ro, incompat);
1770 
1771 	sb = journal->j_superblock;
1772 
1773 	/* If enabling v2 checksums, update superblock */
1774 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1775 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1776 		sb->s_feature_compat &=
1777 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1778 
1779 		/* Load the checksum driver */
1780 		if (journal->j_chksum_driver == NULL) {
1781 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1782 								      0, 0);
1783 			if (IS_ERR(journal->j_chksum_driver)) {
1784 				printk(KERN_ERR "JBD: Cannot load crc32c "
1785 				       "driver.\n");
1786 				journal->j_chksum_driver = NULL;
1787 				return 0;
1788 			}
1789 		}
1790 
1791 		/* Precompute checksum seed for all metadata */
1792 		if (JBD2_HAS_INCOMPAT_FEATURE(journal,
1793 					      JBD2_FEATURE_INCOMPAT_CSUM_V2))
1794 			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1795 							   sb->s_uuid,
1796 							   sizeof(sb->s_uuid));
1797 	}
1798 
1799 	/* If enabling v1 checksums, downgrade superblock */
1800 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1801 		sb->s_feature_incompat &=
1802 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1803 
1804 	sb->s_feature_compat    |= cpu_to_be32(compat);
1805 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1806 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1807 
1808 	return 1;
1809 #undef COMPAT_FEATURE_ON
1810 #undef INCOMPAT_FEATURE_ON
1811 }
1812 
1813 /*
1814  * jbd2_journal_clear_features () - Clear a given journal feature in the
1815  * 				    superblock
1816  * @journal: Journal to act on.
1817  * @compat: bitmask of compatible features
1818  * @ro: bitmask of features that force read-only mount
1819  * @incompat: bitmask of incompatible features
1820  *
1821  * Clear a given journal feature as present on the
1822  * superblock.
1823  */
1824 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1825 				unsigned long ro, unsigned long incompat)
1826 {
1827 	journal_superblock_t *sb;
1828 
1829 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1830 		  compat, ro, incompat);
1831 
1832 	sb = journal->j_superblock;
1833 
1834 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1835 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1836 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1837 }
1838 EXPORT_SYMBOL(jbd2_journal_clear_features);
1839 
1840 /**
1841  * int jbd2_journal_flush () - Flush journal
1842  * @journal: Journal to act on.
1843  *
1844  * Flush all data for a given journal to disk and empty the journal.
1845  * Filesystems can use this when remounting readonly to ensure that
1846  * recovery does not need to happen on remount.
1847  */
1848 
1849 int jbd2_journal_flush(journal_t *journal)
1850 {
1851 	int err = 0;
1852 	transaction_t *transaction = NULL;
1853 
1854 	write_lock(&journal->j_state_lock);
1855 
1856 	/* Force everything buffered to the log... */
1857 	if (journal->j_running_transaction) {
1858 		transaction = journal->j_running_transaction;
1859 		__jbd2_log_start_commit(journal, transaction->t_tid);
1860 	} else if (journal->j_committing_transaction)
1861 		transaction = journal->j_committing_transaction;
1862 
1863 	/* Wait for the log commit to complete... */
1864 	if (transaction) {
1865 		tid_t tid = transaction->t_tid;
1866 
1867 		write_unlock(&journal->j_state_lock);
1868 		jbd2_log_wait_commit(journal, tid);
1869 	} else {
1870 		write_unlock(&journal->j_state_lock);
1871 	}
1872 
1873 	/* ...and flush everything in the log out to disk. */
1874 	spin_lock(&journal->j_list_lock);
1875 	while (!err && journal->j_checkpoint_transactions != NULL) {
1876 		spin_unlock(&journal->j_list_lock);
1877 		mutex_lock(&journal->j_checkpoint_mutex);
1878 		err = jbd2_log_do_checkpoint(journal);
1879 		mutex_unlock(&journal->j_checkpoint_mutex);
1880 		spin_lock(&journal->j_list_lock);
1881 	}
1882 	spin_unlock(&journal->j_list_lock);
1883 
1884 	if (is_journal_aborted(journal))
1885 		return -EIO;
1886 
1887 	mutex_lock(&journal->j_checkpoint_mutex);
1888 	jbd2_cleanup_journal_tail(journal);
1889 
1890 	/* Finally, mark the journal as really needing no recovery.
1891 	 * This sets s_start==0 in the underlying superblock, which is
1892 	 * the magic code for a fully-recovered superblock.  Any future
1893 	 * commits of data to the journal will restore the current
1894 	 * s_start value. */
1895 	jbd2_mark_journal_empty(journal);
1896 	mutex_unlock(&journal->j_checkpoint_mutex);
1897 	write_lock(&journal->j_state_lock);
1898 	J_ASSERT(!journal->j_running_transaction);
1899 	J_ASSERT(!journal->j_committing_transaction);
1900 	J_ASSERT(!journal->j_checkpoint_transactions);
1901 	J_ASSERT(journal->j_head == journal->j_tail);
1902 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1903 	write_unlock(&journal->j_state_lock);
1904 	return 0;
1905 }
1906 
1907 /**
1908  * int jbd2_journal_wipe() - Wipe journal contents
1909  * @journal: Journal to act on.
1910  * @write: flag (see below)
1911  *
1912  * Wipe out all of the contents of a journal, safely.  This will produce
1913  * a warning if the journal contains any valid recovery information.
1914  * Must be called between journal_init_*() and jbd2_journal_load().
1915  *
1916  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1917  * we merely suppress recovery.
1918  */
1919 
1920 int jbd2_journal_wipe(journal_t *journal, int write)
1921 {
1922 	int err = 0;
1923 
1924 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1925 
1926 	err = load_superblock(journal);
1927 	if (err)
1928 		return err;
1929 
1930 	if (!journal->j_tail)
1931 		goto no_recovery;
1932 
1933 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1934 		write ? "Clearing" : "Ignoring");
1935 
1936 	err = jbd2_journal_skip_recovery(journal);
1937 	if (write) {
1938 		/* Lock to make assertions happy... */
1939 		mutex_lock(&journal->j_checkpoint_mutex);
1940 		jbd2_mark_journal_empty(journal);
1941 		mutex_unlock(&journal->j_checkpoint_mutex);
1942 	}
1943 
1944  no_recovery:
1945 	return err;
1946 }
1947 
1948 /*
1949  * Journal abort has very specific semantics, which we describe
1950  * for journal abort.
1951  *
1952  * Two internal functions, which provide abort to the jbd layer
1953  * itself are here.
1954  */
1955 
1956 /*
1957  * Quick version for internal journal use (doesn't lock the journal).
1958  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1959  * and don't attempt to make any other journal updates.
1960  */
1961 void __jbd2_journal_abort_hard(journal_t *journal)
1962 {
1963 	transaction_t *transaction;
1964 
1965 	if (journal->j_flags & JBD2_ABORT)
1966 		return;
1967 
1968 	printk(KERN_ERR "Aborting journal on device %s.\n",
1969 	       journal->j_devname);
1970 
1971 	write_lock(&journal->j_state_lock);
1972 	journal->j_flags |= JBD2_ABORT;
1973 	transaction = journal->j_running_transaction;
1974 	if (transaction)
1975 		__jbd2_log_start_commit(journal, transaction->t_tid);
1976 	write_unlock(&journal->j_state_lock);
1977 }
1978 
1979 /* Soft abort: record the abort error status in the journal superblock,
1980  * but don't do any other IO. */
1981 static void __journal_abort_soft (journal_t *journal, int errno)
1982 {
1983 	if (journal->j_flags & JBD2_ABORT)
1984 		return;
1985 
1986 	if (!journal->j_errno)
1987 		journal->j_errno = errno;
1988 
1989 	__jbd2_journal_abort_hard(journal);
1990 
1991 	if (errno)
1992 		jbd2_journal_update_sb_errno(journal);
1993 }
1994 
1995 /**
1996  * void jbd2_journal_abort () - Shutdown the journal immediately.
1997  * @journal: the journal to shutdown.
1998  * @errno:   an error number to record in the journal indicating
1999  *           the reason for the shutdown.
2000  *
2001  * Perform a complete, immediate shutdown of the ENTIRE
2002  * journal (not of a single transaction).  This operation cannot be
2003  * undone without closing and reopening the journal.
2004  *
2005  * The jbd2_journal_abort function is intended to support higher level error
2006  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2007  * mode.
2008  *
2009  * Journal abort has very specific semantics.  Any existing dirty,
2010  * unjournaled buffers in the main filesystem will still be written to
2011  * disk by bdflush, but the journaling mechanism will be suspended
2012  * immediately and no further transaction commits will be honoured.
2013  *
2014  * Any dirty, journaled buffers will be written back to disk without
2015  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2016  * filesystem, but we _do_ attempt to leave as much data as possible
2017  * behind for fsck to use for cleanup.
2018  *
2019  * Any attempt to get a new transaction handle on a journal which is in
2020  * ABORT state will just result in an -EROFS error return.  A
2021  * jbd2_journal_stop on an existing handle will return -EIO if we have
2022  * entered abort state during the update.
2023  *
2024  * Recursive transactions are not disturbed by journal abort until the
2025  * final jbd2_journal_stop, which will receive the -EIO error.
2026  *
2027  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2028  * which will be recorded (if possible) in the journal superblock.  This
2029  * allows a client to record failure conditions in the middle of a
2030  * transaction without having to complete the transaction to record the
2031  * failure to disk.  ext3_error, for example, now uses this
2032  * functionality.
2033  *
2034  * Errors which originate from within the journaling layer will NOT
2035  * supply an errno; a null errno implies that absolutely no further
2036  * writes are done to the journal (unless there are any already in
2037  * progress).
2038  *
2039  */
2040 
2041 void jbd2_journal_abort(journal_t *journal, int errno)
2042 {
2043 	__journal_abort_soft(journal, errno);
2044 }
2045 
2046 /**
2047  * int jbd2_journal_errno () - returns the journal's error state.
2048  * @journal: journal to examine.
2049  *
2050  * This is the errno number set with jbd2_journal_abort(), the last
2051  * time the journal was mounted - if the journal was stopped
2052  * without calling abort this will be 0.
2053  *
2054  * If the journal has been aborted on this mount time -EROFS will
2055  * be returned.
2056  */
2057 int jbd2_journal_errno(journal_t *journal)
2058 {
2059 	int err;
2060 
2061 	read_lock(&journal->j_state_lock);
2062 	if (journal->j_flags & JBD2_ABORT)
2063 		err = -EROFS;
2064 	else
2065 		err = journal->j_errno;
2066 	read_unlock(&journal->j_state_lock);
2067 	return err;
2068 }
2069 
2070 /**
2071  * int jbd2_journal_clear_err () - clears the journal's error state
2072  * @journal: journal to act on.
2073  *
2074  * An error must be cleared or acked to take a FS out of readonly
2075  * mode.
2076  */
2077 int jbd2_journal_clear_err(journal_t *journal)
2078 {
2079 	int err = 0;
2080 
2081 	write_lock(&journal->j_state_lock);
2082 	if (journal->j_flags & JBD2_ABORT)
2083 		err = -EROFS;
2084 	else
2085 		journal->j_errno = 0;
2086 	write_unlock(&journal->j_state_lock);
2087 	return err;
2088 }
2089 
2090 /**
2091  * void jbd2_journal_ack_err() - Ack journal err.
2092  * @journal: journal to act on.
2093  *
2094  * An error must be cleared or acked to take a FS out of readonly
2095  * mode.
2096  */
2097 void jbd2_journal_ack_err(journal_t *journal)
2098 {
2099 	write_lock(&journal->j_state_lock);
2100 	if (journal->j_errno)
2101 		journal->j_flags |= JBD2_ACK_ERR;
2102 	write_unlock(&journal->j_state_lock);
2103 }
2104 
2105 int jbd2_journal_blocks_per_page(struct inode *inode)
2106 {
2107 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2108 }
2109 
2110 /*
2111  * helper functions to deal with 32 or 64bit block numbers.
2112  */
2113 size_t journal_tag_bytes(journal_t *journal)
2114 {
2115 	journal_block_tag_t tag;
2116 	size_t x = 0;
2117 
2118 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
2119 		x += sizeof(tag.t_checksum);
2120 
2121 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2122 		return x + JBD2_TAG_SIZE64;
2123 	else
2124 		return x + JBD2_TAG_SIZE32;
2125 }
2126 
2127 /*
2128  * JBD memory management
2129  *
2130  * These functions are used to allocate block-sized chunks of memory
2131  * used for making copies of buffer_head data.  Very often it will be
2132  * page-sized chunks of data, but sometimes it will be in
2133  * sub-page-size chunks.  (For example, 16k pages on Power systems
2134  * with a 4k block file system.)  For blocks smaller than a page, we
2135  * use a SLAB allocator.  There are slab caches for each block size,
2136  * which are allocated at mount time, if necessary, and we only free
2137  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2138  * this reason we don't need to a mutex to protect access to
2139  * jbd2_slab[] allocating or releasing memory; only in
2140  * jbd2_journal_create_slab().
2141  */
2142 #define JBD2_MAX_SLABS 8
2143 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2144 
2145 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2146 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2147 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2148 };
2149 
2150 
2151 static void jbd2_journal_destroy_slabs(void)
2152 {
2153 	int i;
2154 
2155 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2156 		if (jbd2_slab[i])
2157 			kmem_cache_destroy(jbd2_slab[i]);
2158 		jbd2_slab[i] = NULL;
2159 	}
2160 }
2161 
2162 static int jbd2_journal_create_slab(size_t size)
2163 {
2164 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2165 	int i = order_base_2(size) - 10;
2166 	size_t slab_size;
2167 
2168 	if (size == PAGE_SIZE)
2169 		return 0;
2170 
2171 	if (i >= JBD2_MAX_SLABS)
2172 		return -EINVAL;
2173 
2174 	if (unlikely(i < 0))
2175 		i = 0;
2176 	mutex_lock(&jbd2_slab_create_mutex);
2177 	if (jbd2_slab[i]) {
2178 		mutex_unlock(&jbd2_slab_create_mutex);
2179 		return 0;	/* Already created */
2180 	}
2181 
2182 	slab_size = 1 << (i+10);
2183 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2184 					 slab_size, 0, NULL);
2185 	mutex_unlock(&jbd2_slab_create_mutex);
2186 	if (!jbd2_slab[i]) {
2187 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2188 		return -ENOMEM;
2189 	}
2190 	return 0;
2191 }
2192 
2193 static struct kmem_cache *get_slab(size_t size)
2194 {
2195 	int i = order_base_2(size) - 10;
2196 
2197 	BUG_ON(i >= JBD2_MAX_SLABS);
2198 	if (unlikely(i < 0))
2199 		i = 0;
2200 	BUG_ON(jbd2_slab[i] == NULL);
2201 	return jbd2_slab[i];
2202 }
2203 
2204 void *jbd2_alloc(size_t size, gfp_t flags)
2205 {
2206 	void *ptr;
2207 
2208 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2209 
2210 	flags |= __GFP_REPEAT;
2211 	if (size == PAGE_SIZE)
2212 		ptr = (void *)__get_free_pages(flags, 0);
2213 	else if (size > PAGE_SIZE) {
2214 		int order = get_order(size);
2215 
2216 		if (order < 3)
2217 			ptr = (void *)__get_free_pages(flags, order);
2218 		else
2219 			ptr = vmalloc(size);
2220 	} else
2221 		ptr = kmem_cache_alloc(get_slab(size), flags);
2222 
2223 	/* Check alignment; SLUB has gotten this wrong in the past,
2224 	 * and this can lead to user data corruption! */
2225 	BUG_ON(((unsigned long) ptr) & (size-1));
2226 
2227 	return ptr;
2228 }
2229 
2230 void jbd2_free(void *ptr, size_t size)
2231 {
2232 	if (size == PAGE_SIZE) {
2233 		free_pages((unsigned long)ptr, 0);
2234 		return;
2235 	}
2236 	if (size > PAGE_SIZE) {
2237 		int order = get_order(size);
2238 
2239 		if (order < 3)
2240 			free_pages((unsigned long)ptr, order);
2241 		else
2242 			vfree(ptr);
2243 		return;
2244 	}
2245 	kmem_cache_free(get_slab(size), ptr);
2246 };
2247 
2248 /*
2249  * Journal_head storage management
2250  */
2251 static struct kmem_cache *jbd2_journal_head_cache;
2252 #ifdef CONFIG_JBD2_DEBUG
2253 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2254 #endif
2255 
2256 static int jbd2_journal_init_journal_head_cache(void)
2257 {
2258 	int retval;
2259 
2260 	J_ASSERT(jbd2_journal_head_cache == NULL);
2261 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2262 				sizeof(struct journal_head),
2263 				0,		/* offset */
2264 				SLAB_TEMPORARY,	/* flags */
2265 				NULL);		/* ctor */
2266 	retval = 0;
2267 	if (!jbd2_journal_head_cache) {
2268 		retval = -ENOMEM;
2269 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2270 	}
2271 	return retval;
2272 }
2273 
2274 static void jbd2_journal_destroy_journal_head_cache(void)
2275 {
2276 	if (jbd2_journal_head_cache) {
2277 		kmem_cache_destroy(jbd2_journal_head_cache);
2278 		jbd2_journal_head_cache = NULL;
2279 	}
2280 }
2281 
2282 /*
2283  * journal_head splicing and dicing
2284  */
2285 static struct journal_head *journal_alloc_journal_head(void)
2286 {
2287 	struct journal_head *ret;
2288 
2289 #ifdef CONFIG_JBD2_DEBUG
2290 	atomic_inc(&nr_journal_heads);
2291 #endif
2292 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2293 	if (!ret) {
2294 		jbd_debug(1, "out of memory for journal_head\n");
2295 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2296 		while (!ret) {
2297 			yield();
2298 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2299 		}
2300 	}
2301 	return ret;
2302 }
2303 
2304 static void journal_free_journal_head(struct journal_head *jh)
2305 {
2306 #ifdef CONFIG_JBD2_DEBUG
2307 	atomic_dec(&nr_journal_heads);
2308 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2309 #endif
2310 	kmem_cache_free(jbd2_journal_head_cache, jh);
2311 }
2312 
2313 /*
2314  * A journal_head is attached to a buffer_head whenever JBD has an
2315  * interest in the buffer.
2316  *
2317  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2318  * is set.  This bit is tested in core kernel code where we need to take
2319  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2320  * there.
2321  *
2322  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2323  *
2324  * When a buffer has its BH_JBD bit set it is immune from being released by
2325  * core kernel code, mainly via ->b_count.
2326  *
2327  * A journal_head is detached from its buffer_head when the journal_head's
2328  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2329  * transaction (b_cp_transaction) hold their references to b_jcount.
2330  *
2331  * Various places in the kernel want to attach a journal_head to a buffer_head
2332  * _before_ attaching the journal_head to a transaction.  To protect the
2333  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2334  * journal_head's b_jcount refcount by one.  The caller must call
2335  * jbd2_journal_put_journal_head() to undo this.
2336  *
2337  * So the typical usage would be:
2338  *
2339  *	(Attach a journal_head if needed.  Increments b_jcount)
2340  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2341  *	...
2342  *      (Get another reference for transaction)
2343  *	jbd2_journal_grab_journal_head(bh);
2344  *	jh->b_transaction = xxx;
2345  *	(Put original reference)
2346  *	jbd2_journal_put_journal_head(jh);
2347  */
2348 
2349 /*
2350  * Give a buffer_head a journal_head.
2351  *
2352  * May sleep.
2353  */
2354 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2355 {
2356 	struct journal_head *jh;
2357 	struct journal_head *new_jh = NULL;
2358 
2359 repeat:
2360 	if (!buffer_jbd(bh)) {
2361 		new_jh = journal_alloc_journal_head();
2362 		memset(new_jh, 0, sizeof(*new_jh));
2363 	}
2364 
2365 	jbd_lock_bh_journal_head(bh);
2366 	if (buffer_jbd(bh)) {
2367 		jh = bh2jh(bh);
2368 	} else {
2369 		J_ASSERT_BH(bh,
2370 			(atomic_read(&bh->b_count) > 0) ||
2371 			(bh->b_page && bh->b_page->mapping));
2372 
2373 		if (!new_jh) {
2374 			jbd_unlock_bh_journal_head(bh);
2375 			goto repeat;
2376 		}
2377 
2378 		jh = new_jh;
2379 		new_jh = NULL;		/* We consumed it */
2380 		set_buffer_jbd(bh);
2381 		bh->b_private = jh;
2382 		jh->b_bh = bh;
2383 		get_bh(bh);
2384 		BUFFER_TRACE(bh, "added journal_head");
2385 	}
2386 	jh->b_jcount++;
2387 	jbd_unlock_bh_journal_head(bh);
2388 	if (new_jh)
2389 		journal_free_journal_head(new_jh);
2390 	return bh->b_private;
2391 }
2392 
2393 /*
2394  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2395  * having a journal_head, return NULL
2396  */
2397 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2398 {
2399 	struct journal_head *jh = NULL;
2400 
2401 	jbd_lock_bh_journal_head(bh);
2402 	if (buffer_jbd(bh)) {
2403 		jh = bh2jh(bh);
2404 		jh->b_jcount++;
2405 	}
2406 	jbd_unlock_bh_journal_head(bh);
2407 	return jh;
2408 }
2409 
2410 static void __journal_remove_journal_head(struct buffer_head *bh)
2411 {
2412 	struct journal_head *jh = bh2jh(bh);
2413 
2414 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2415 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2416 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2417 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2418 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2419 	J_ASSERT_BH(bh, buffer_jbd(bh));
2420 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2421 	BUFFER_TRACE(bh, "remove journal_head");
2422 	if (jh->b_frozen_data) {
2423 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2424 		jbd2_free(jh->b_frozen_data, bh->b_size);
2425 	}
2426 	if (jh->b_committed_data) {
2427 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2428 		jbd2_free(jh->b_committed_data, bh->b_size);
2429 	}
2430 	bh->b_private = NULL;
2431 	jh->b_bh = NULL;	/* debug, really */
2432 	clear_buffer_jbd(bh);
2433 	journal_free_journal_head(jh);
2434 }
2435 
2436 /*
2437  * Drop a reference on the passed journal_head.  If it fell to zero then
2438  * release the journal_head from the buffer_head.
2439  */
2440 void jbd2_journal_put_journal_head(struct journal_head *jh)
2441 {
2442 	struct buffer_head *bh = jh2bh(jh);
2443 
2444 	jbd_lock_bh_journal_head(bh);
2445 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2446 	--jh->b_jcount;
2447 	if (!jh->b_jcount) {
2448 		__journal_remove_journal_head(bh);
2449 		jbd_unlock_bh_journal_head(bh);
2450 		__brelse(bh);
2451 	} else
2452 		jbd_unlock_bh_journal_head(bh);
2453 }
2454 
2455 /*
2456  * Initialize jbd inode head
2457  */
2458 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2459 {
2460 	jinode->i_transaction = NULL;
2461 	jinode->i_next_transaction = NULL;
2462 	jinode->i_vfs_inode = inode;
2463 	jinode->i_flags = 0;
2464 	INIT_LIST_HEAD(&jinode->i_list);
2465 }
2466 
2467 /*
2468  * Function to be called before we start removing inode from memory (i.e.,
2469  * clear_inode() is a fine place to be called from). It removes inode from
2470  * transaction's lists.
2471  */
2472 void jbd2_journal_release_jbd_inode(journal_t *journal,
2473 				    struct jbd2_inode *jinode)
2474 {
2475 	if (!journal)
2476 		return;
2477 restart:
2478 	spin_lock(&journal->j_list_lock);
2479 	/* Is commit writing out inode - we have to wait */
2480 	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2481 		wait_queue_head_t *wq;
2482 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2483 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2484 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2485 		spin_unlock(&journal->j_list_lock);
2486 		schedule();
2487 		finish_wait(wq, &wait.wait);
2488 		goto restart;
2489 	}
2490 
2491 	if (jinode->i_transaction) {
2492 		list_del(&jinode->i_list);
2493 		jinode->i_transaction = NULL;
2494 	}
2495 	spin_unlock(&journal->j_list_lock);
2496 }
2497 
2498 /*
2499  * debugfs tunables
2500  */
2501 #ifdef CONFIG_JBD2_DEBUG
2502 u8 jbd2_journal_enable_debug __read_mostly;
2503 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2504 
2505 #define JBD2_DEBUG_NAME "jbd2-debug"
2506 
2507 static struct dentry *jbd2_debugfs_dir;
2508 static struct dentry *jbd2_debug;
2509 
2510 static void __init jbd2_create_debugfs_entry(void)
2511 {
2512 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2513 	if (jbd2_debugfs_dir)
2514 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2515 					       S_IRUGO | S_IWUSR,
2516 					       jbd2_debugfs_dir,
2517 					       &jbd2_journal_enable_debug);
2518 }
2519 
2520 static void __exit jbd2_remove_debugfs_entry(void)
2521 {
2522 	debugfs_remove(jbd2_debug);
2523 	debugfs_remove(jbd2_debugfs_dir);
2524 }
2525 
2526 #else
2527 
2528 static void __init jbd2_create_debugfs_entry(void)
2529 {
2530 }
2531 
2532 static void __exit jbd2_remove_debugfs_entry(void)
2533 {
2534 }
2535 
2536 #endif
2537 
2538 #ifdef CONFIG_PROC_FS
2539 
2540 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2541 
2542 static void __init jbd2_create_jbd_stats_proc_entry(void)
2543 {
2544 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2545 }
2546 
2547 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2548 {
2549 	if (proc_jbd2_stats)
2550 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2551 }
2552 
2553 #else
2554 
2555 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2556 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2557 
2558 #endif
2559 
2560 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2561 
2562 static int __init jbd2_journal_init_handle_cache(void)
2563 {
2564 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2565 	if (jbd2_handle_cache == NULL) {
2566 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2567 		return -ENOMEM;
2568 	}
2569 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2570 	if (jbd2_inode_cache == NULL) {
2571 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2572 		kmem_cache_destroy(jbd2_handle_cache);
2573 		return -ENOMEM;
2574 	}
2575 	return 0;
2576 }
2577 
2578 static void jbd2_journal_destroy_handle_cache(void)
2579 {
2580 	if (jbd2_handle_cache)
2581 		kmem_cache_destroy(jbd2_handle_cache);
2582 	if (jbd2_inode_cache)
2583 		kmem_cache_destroy(jbd2_inode_cache);
2584 
2585 }
2586 
2587 /*
2588  * Module startup and shutdown
2589  */
2590 
2591 static int __init journal_init_caches(void)
2592 {
2593 	int ret;
2594 
2595 	ret = jbd2_journal_init_revoke_caches();
2596 	if (ret == 0)
2597 		ret = jbd2_journal_init_journal_head_cache();
2598 	if (ret == 0)
2599 		ret = jbd2_journal_init_handle_cache();
2600 	if (ret == 0)
2601 		ret = jbd2_journal_init_transaction_cache();
2602 	return ret;
2603 }
2604 
2605 static void jbd2_journal_destroy_caches(void)
2606 {
2607 	jbd2_journal_destroy_revoke_caches();
2608 	jbd2_journal_destroy_journal_head_cache();
2609 	jbd2_journal_destroy_handle_cache();
2610 	jbd2_journal_destroy_transaction_cache();
2611 	jbd2_journal_destroy_slabs();
2612 }
2613 
2614 static int __init journal_init(void)
2615 {
2616 	int ret;
2617 
2618 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2619 
2620 	ret = journal_init_caches();
2621 	if (ret == 0) {
2622 		jbd2_create_debugfs_entry();
2623 		jbd2_create_jbd_stats_proc_entry();
2624 	} else {
2625 		jbd2_journal_destroy_caches();
2626 	}
2627 	return ret;
2628 }
2629 
2630 static void __exit journal_exit(void)
2631 {
2632 #ifdef CONFIG_JBD2_DEBUG
2633 	int n = atomic_read(&nr_journal_heads);
2634 	if (n)
2635 		printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2636 #endif
2637 	jbd2_remove_debugfs_entry();
2638 	jbd2_remove_jbd_stats_proc_entry();
2639 	jbd2_journal_destroy_caches();
2640 }
2641 
2642 MODULE_LICENSE("GPL");
2643 module_init(journal_init);
2644 module_exit(journal_exit);
2645 
2646