1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/debugfs.h> 39 #include <linux/seq_file.h> 40 #include <linux/math64.h> 41 #include <linux/hash.h> 42 #include <linux/log2.h> 43 #include <linux/vmalloc.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bitops.h> 46 #include <linux/ratelimit.h> 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/jbd2.h> 50 51 #include <asm/uaccess.h> 52 #include <asm/page.h> 53 54 EXPORT_SYMBOL(jbd2_journal_extend); 55 EXPORT_SYMBOL(jbd2_journal_stop); 56 EXPORT_SYMBOL(jbd2_journal_lock_updates); 57 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 58 EXPORT_SYMBOL(jbd2_journal_get_write_access); 59 EXPORT_SYMBOL(jbd2_journal_get_create_access); 60 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 61 EXPORT_SYMBOL(jbd2_journal_set_triggers); 62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 63 EXPORT_SYMBOL(jbd2_journal_forget); 64 #if 0 65 EXPORT_SYMBOL(journal_sync_buffer); 66 #endif 67 EXPORT_SYMBOL(jbd2_journal_flush); 68 EXPORT_SYMBOL(jbd2_journal_revoke); 69 70 EXPORT_SYMBOL(jbd2_journal_init_dev); 71 EXPORT_SYMBOL(jbd2_journal_init_inode); 72 EXPORT_SYMBOL(jbd2_journal_check_used_features); 73 EXPORT_SYMBOL(jbd2_journal_check_available_features); 74 EXPORT_SYMBOL(jbd2_journal_set_features); 75 EXPORT_SYMBOL(jbd2_journal_load); 76 EXPORT_SYMBOL(jbd2_journal_destroy); 77 EXPORT_SYMBOL(jbd2_journal_abort); 78 EXPORT_SYMBOL(jbd2_journal_errno); 79 EXPORT_SYMBOL(jbd2_journal_ack_err); 80 EXPORT_SYMBOL(jbd2_journal_clear_err); 81 EXPORT_SYMBOL(jbd2_log_wait_commit); 82 EXPORT_SYMBOL(jbd2_log_start_commit); 83 EXPORT_SYMBOL(jbd2_journal_start_commit); 84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 85 EXPORT_SYMBOL(jbd2_journal_wipe); 86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 87 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 89 EXPORT_SYMBOL(jbd2_journal_force_commit); 90 EXPORT_SYMBOL(jbd2_journal_file_inode); 91 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 92 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 93 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 94 EXPORT_SYMBOL(jbd2_inode_cache); 95 96 static void __journal_abort_soft (journal_t *journal, int errno); 97 static int jbd2_journal_create_slab(size_t slab_size); 98 99 /* Checksumming functions */ 100 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 101 { 102 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 103 return 1; 104 105 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 106 } 107 108 static __u32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 109 { 110 __u32 csum, old_csum; 111 112 old_csum = sb->s_checksum; 113 sb->s_checksum = 0; 114 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 115 sb->s_checksum = old_csum; 116 117 return cpu_to_be32(csum); 118 } 119 120 int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb) 121 { 122 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 123 return 1; 124 125 return sb->s_checksum == jbd2_superblock_csum(j, sb); 126 } 127 128 void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb) 129 { 130 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 131 return; 132 133 sb->s_checksum = jbd2_superblock_csum(j, sb); 134 } 135 136 /* 137 * Helper function used to manage commit timeouts 138 */ 139 140 static void commit_timeout(unsigned long __data) 141 { 142 struct task_struct * p = (struct task_struct *) __data; 143 144 wake_up_process(p); 145 } 146 147 /* 148 * kjournald2: The main thread function used to manage a logging device 149 * journal. 150 * 151 * This kernel thread is responsible for two things: 152 * 153 * 1) COMMIT: Every so often we need to commit the current state of the 154 * filesystem to disk. The journal thread is responsible for writing 155 * all of the metadata buffers to disk. 156 * 157 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 158 * of the data in that part of the log has been rewritten elsewhere on 159 * the disk. Flushing these old buffers to reclaim space in the log is 160 * known as checkpointing, and this thread is responsible for that job. 161 */ 162 163 static int kjournald2(void *arg) 164 { 165 journal_t *journal = arg; 166 transaction_t *transaction; 167 168 /* 169 * Set up an interval timer which can be used to trigger a commit wakeup 170 * after the commit interval expires 171 */ 172 setup_timer(&journal->j_commit_timer, commit_timeout, 173 (unsigned long)current); 174 175 set_freezable(); 176 177 /* Record that the journal thread is running */ 178 journal->j_task = current; 179 wake_up(&journal->j_wait_done_commit); 180 181 /* 182 * And now, wait forever for commit wakeup events. 183 */ 184 write_lock(&journal->j_state_lock); 185 186 loop: 187 if (journal->j_flags & JBD2_UNMOUNT) 188 goto end_loop; 189 190 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 191 journal->j_commit_sequence, journal->j_commit_request); 192 193 if (journal->j_commit_sequence != journal->j_commit_request) { 194 jbd_debug(1, "OK, requests differ\n"); 195 write_unlock(&journal->j_state_lock); 196 del_timer_sync(&journal->j_commit_timer); 197 jbd2_journal_commit_transaction(journal); 198 write_lock(&journal->j_state_lock); 199 goto loop; 200 } 201 202 wake_up(&journal->j_wait_done_commit); 203 if (freezing(current)) { 204 /* 205 * The simpler the better. Flushing journal isn't a 206 * good idea, because that depends on threads that may 207 * be already stopped. 208 */ 209 jbd_debug(1, "Now suspending kjournald2\n"); 210 write_unlock(&journal->j_state_lock); 211 try_to_freeze(); 212 write_lock(&journal->j_state_lock); 213 } else { 214 /* 215 * We assume on resume that commits are already there, 216 * so we don't sleep 217 */ 218 DEFINE_WAIT(wait); 219 int should_sleep = 1; 220 221 prepare_to_wait(&journal->j_wait_commit, &wait, 222 TASK_INTERRUPTIBLE); 223 if (journal->j_commit_sequence != journal->j_commit_request) 224 should_sleep = 0; 225 transaction = journal->j_running_transaction; 226 if (transaction && time_after_eq(jiffies, 227 transaction->t_expires)) 228 should_sleep = 0; 229 if (journal->j_flags & JBD2_UNMOUNT) 230 should_sleep = 0; 231 if (should_sleep) { 232 write_unlock(&journal->j_state_lock); 233 schedule(); 234 write_lock(&journal->j_state_lock); 235 } 236 finish_wait(&journal->j_wait_commit, &wait); 237 } 238 239 jbd_debug(1, "kjournald2 wakes\n"); 240 241 /* 242 * Were we woken up by a commit wakeup event? 243 */ 244 transaction = journal->j_running_transaction; 245 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 246 journal->j_commit_request = transaction->t_tid; 247 jbd_debug(1, "woke because of timeout\n"); 248 } 249 goto loop; 250 251 end_loop: 252 write_unlock(&journal->j_state_lock); 253 del_timer_sync(&journal->j_commit_timer); 254 journal->j_task = NULL; 255 wake_up(&journal->j_wait_done_commit); 256 jbd_debug(1, "Journal thread exiting.\n"); 257 return 0; 258 } 259 260 static int jbd2_journal_start_thread(journal_t *journal) 261 { 262 struct task_struct *t; 263 264 t = kthread_run(kjournald2, journal, "jbd2/%s", 265 journal->j_devname); 266 if (IS_ERR(t)) 267 return PTR_ERR(t); 268 269 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 270 return 0; 271 } 272 273 static void journal_kill_thread(journal_t *journal) 274 { 275 write_lock(&journal->j_state_lock); 276 journal->j_flags |= JBD2_UNMOUNT; 277 278 while (journal->j_task) { 279 wake_up(&journal->j_wait_commit); 280 write_unlock(&journal->j_state_lock); 281 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 282 write_lock(&journal->j_state_lock); 283 } 284 write_unlock(&journal->j_state_lock); 285 } 286 287 /* 288 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 289 * 290 * Writes a metadata buffer to a given disk block. The actual IO is not 291 * performed but a new buffer_head is constructed which labels the data 292 * to be written with the correct destination disk block. 293 * 294 * Any magic-number escaping which needs to be done will cause a 295 * copy-out here. If the buffer happens to start with the 296 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 297 * magic number is only written to the log for descripter blocks. In 298 * this case, we copy the data and replace the first word with 0, and we 299 * return a result code which indicates that this buffer needs to be 300 * marked as an escaped buffer in the corresponding log descriptor 301 * block. The missing word can then be restored when the block is read 302 * during recovery. 303 * 304 * If the source buffer has already been modified by a new transaction 305 * since we took the last commit snapshot, we use the frozen copy of 306 * that data for IO. If we end up using the existing buffer_head's data 307 * for the write, then we *have* to lock the buffer to prevent anyone 308 * else from using and possibly modifying it while the IO is in 309 * progress. 310 * 311 * The function returns a pointer to the buffer_heads to be used for IO. 312 * 313 * We assume that the journal has already been locked in this function. 314 * 315 * Return value: 316 * <0: Error 317 * >=0: Finished OK 318 * 319 * On success: 320 * Bit 0 set == escape performed on the data 321 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 322 */ 323 324 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 325 struct journal_head *jh_in, 326 struct journal_head **jh_out, 327 unsigned long long blocknr) 328 { 329 int need_copy_out = 0; 330 int done_copy_out = 0; 331 int do_escape = 0; 332 char *mapped_data; 333 struct buffer_head *new_bh; 334 struct journal_head *new_jh; 335 struct page *new_page; 336 unsigned int new_offset; 337 struct buffer_head *bh_in = jh2bh(jh_in); 338 journal_t *journal = transaction->t_journal; 339 340 /* 341 * The buffer really shouldn't be locked: only the current committing 342 * transaction is allowed to write it, so nobody else is allowed 343 * to do any IO. 344 * 345 * akpm: except if we're journalling data, and write() output is 346 * also part of a shared mapping, and another thread has 347 * decided to launch a writepage() against this buffer. 348 */ 349 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 350 351 retry_alloc: 352 new_bh = alloc_buffer_head(GFP_NOFS); 353 if (!new_bh) { 354 /* 355 * Failure is not an option, but __GFP_NOFAIL is going 356 * away; so we retry ourselves here. 357 */ 358 congestion_wait(BLK_RW_ASYNC, HZ/50); 359 goto retry_alloc; 360 } 361 362 /* keep subsequent assertions sane */ 363 new_bh->b_state = 0; 364 init_buffer(new_bh, NULL, NULL); 365 atomic_set(&new_bh->b_count, 1); 366 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 367 368 /* 369 * If a new transaction has already done a buffer copy-out, then 370 * we use that version of the data for the commit. 371 */ 372 jbd_lock_bh_state(bh_in); 373 repeat: 374 if (jh_in->b_frozen_data) { 375 done_copy_out = 1; 376 new_page = virt_to_page(jh_in->b_frozen_data); 377 new_offset = offset_in_page(jh_in->b_frozen_data); 378 } else { 379 new_page = jh2bh(jh_in)->b_page; 380 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 381 } 382 383 mapped_data = kmap_atomic(new_page); 384 /* 385 * Fire data frozen trigger if data already wasn't frozen. Do this 386 * before checking for escaping, as the trigger may modify the magic 387 * offset. If a copy-out happens afterwards, it will have the correct 388 * data in the buffer. 389 */ 390 if (!done_copy_out) 391 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 392 jh_in->b_triggers); 393 394 /* 395 * Check for escaping 396 */ 397 if (*((__be32 *)(mapped_data + new_offset)) == 398 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 399 need_copy_out = 1; 400 do_escape = 1; 401 } 402 kunmap_atomic(mapped_data); 403 404 /* 405 * Do we need to do a data copy? 406 */ 407 if (need_copy_out && !done_copy_out) { 408 char *tmp; 409 410 jbd_unlock_bh_state(bh_in); 411 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 412 if (!tmp) { 413 jbd2_journal_put_journal_head(new_jh); 414 return -ENOMEM; 415 } 416 jbd_lock_bh_state(bh_in); 417 if (jh_in->b_frozen_data) { 418 jbd2_free(tmp, bh_in->b_size); 419 goto repeat; 420 } 421 422 jh_in->b_frozen_data = tmp; 423 mapped_data = kmap_atomic(new_page); 424 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 425 kunmap_atomic(mapped_data); 426 427 new_page = virt_to_page(tmp); 428 new_offset = offset_in_page(tmp); 429 done_copy_out = 1; 430 431 /* 432 * This isn't strictly necessary, as we're using frozen 433 * data for the escaping, but it keeps consistency with 434 * b_frozen_data usage. 435 */ 436 jh_in->b_frozen_triggers = jh_in->b_triggers; 437 } 438 439 /* 440 * Did we need to do an escaping? Now we've done all the 441 * copying, we can finally do so. 442 */ 443 if (do_escape) { 444 mapped_data = kmap_atomic(new_page); 445 *((unsigned int *)(mapped_data + new_offset)) = 0; 446 kunmap_atomic(mapped_data); 447 } 448 449 set_bh_page(new_bh, new_page, new_offset); 450 new_jh->b_transaction = NULL; 451 new_bh->b_size = jh2bh(jh_in)->b_size; 452 new_bh->b_bdev = transaction->t_journal->j_dev; 453 new_bh->b_blocknr = blocknr; 454 set_buffer_mapped(new_bh); 455 set_buffer_dirty(new_bh); 456 457 *jh_out = new_jh; 458 459 /* 460 * The to-be-written buffer needs to get moved to the io queue, 461 * and the original buffer whose contents we are shadowing or 462 * copying is moved to the transaction's shadow queue. 463 */ 464 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 465 spin_lock(&journal->j_list_lock); 466 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 467 spin_unlock(&journal->j_list_lock); 468 jbd_unlock_bh_state(bh_in); 469 470 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 471 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 472 473 return do_escape | (done_copy_out << 1); 474 } 475 476 /* 477 * Allocation code for the journal file. Manage the space left in the 478 * journal, so that we can begin checkpointing when appropriate. 479 */ 480 481 /* 482 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 483 * 484 * Called with the journal already locked. 485 * 486 * Called under j_state_lock 487 */ 488 489 int __jbd2_log_space_left(journal_t *journal) 490 { 491 int left = journal->j_free; 492 493 /* assert_spin_locked(&journal->j_state_lock); */ 494 495 /* 496 * Be pessimistic here about the number of those free blocks which 497 * might be required for log descriptor control blocks. 498 */ 499 500 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 501 502 left -= MIN_LOG_RESERVED_BLOCKS; 503 504 if (left <= 0) 505 return 0; 506 left -= (left >> 3); 507 return left; 508 } 509 510 /* 511 * Called with j_state_lock locked for writing. 512 * Returns true if a transaction commit was started. 513 */ 514 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 515 { 516 /* Return if the txn has already requested to be committed */ 517 if (journal->j_commit_request == target) 518 return 0; 519 520 /* 521 * The only transaction we can possibly wait upon is the 522 * currently running transaction (if it exists). Otherwise, 523 * the target tid must be an old one. 524 */ 525 if (journal->j_running_transaction && 526 journal->j_running_transaction->t_tid == target) { 527 /* 528 * We want a new commit: OK, mark the request and wakeup the 529 * commit thread. We do _not_ do the commit ourselves. 530 */ 531 532 journal->j_commit_request = target; 533 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 534 journal->j_commit_request, 535 journal->j_commit_sequence); 536 journal->j_running_transaction->t_requested = jiffies; 537 wake_up(&journal->j_wait_commit); 538 return 1; 539 } else if (!tid_geq(journal->j_commit_request, target)) 540 /* This should never happen, but if it does, preserve 541 the evidence before kjournald goes into a loop and 542 increments j_commit_sequence beyond all recognition. */ 543 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 544 journal->j_commit_request, 545 journal->j_commit_sequence, 546 target, journal->j_running_transaction ? 547 journal->j_running_transaction->t_tid : 0); 548 return 0; 549 } 550 551 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 552 { 553 int ret; 554 555 write_lock(&journal->j_state_lock); 556 ret = __jbd2_log_start_commit(journal, tid); 557 write_unlock(&journal->j_state_lock); 558 return ret; 559 } 560 561 /* 562 * Force and wait upon a commit if the calling process is not within 563 * transaction. This is used for forcing out undo-protected data which contains 564 * bitmaps, when the fs is running out of space. 565 * 566 * We can only force the running transaction if we don't have an active handle; 567 * otherwise, we will deadlock. 568 * 569 * Returns true if a transaction was started. 570 */ 571 int jbd2_journal_force_commit_nested(journal_t *journal) 572 { 573 transaction_t *transaction = NULL; 574 tid_t tid; 575 int need_to_start = 0; 576 577 read_lock(&journal->j_state_lock); 578 if (journal->j_running_transaction && !current->journal_info) { 579 transaction = journal->j_running_transaction; 580 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 581 need_to_start = 1; 582 } else if (journal->j_committing_transaction) 583 transaction = journal->j_committing_transaction; 584 585 if (!transaction) { 586 read_unlock(&journal->j_state_lock); 587 return 0; /* Nothing to retry */ 588 } 589 590 tid = transaction->t_tid; 591 read_unlock(&journal->j_state_lock); 592 if (need_to_start) 593 jbd2_log_start_commit(journal, tid); 594 jbd2_log_wait_commit(journal, tid); 595 return 1; 596 } 597 598 /* 599 * Start a commit of the current running transaction (if any). Returns true 600 * if a transaction is going to be committed (or is currently already 601 * committing), and fills its tid in at *ptid 602 */ 603 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 604 { 605 int ret = 0; 606 607 write_lock(&journal->j_state_lock); 608 if (journal->j_running_transaction) { 609 tid_t tid = journal->j_running_transaction->t_tid; 610 611 __jbd2_log_start_commit(journal, tid); 612 /* There's a running transaction and we've just made sure 613 * it's commit has been scheduled. */ 614 if (ptid) 615 *ptid = tid; 616 ret = 1; 617 } else if (journal->j_committing_transaction) { 618 /* 619 * If commit has been started, then we have to wait for 620 * completion of that transaction. 621 */ 622 if (ptid) 623 *ptid = journal->j_committing_transaction->t_tid; 624 ret = 1; 625 } 626 write_unlock(&journal->j_state_lock); 627 return ret; 628 } 629 630 /* 631 * Return 1 if a given transaction has not yet sent barrier request 632 * connected with a transaction commit. If 0 is returned, transaction 633 * may or may not have sent the barrier. Used to avoid sending barrier 634 * twice in common cases. 635 */ 636 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 637 { 638 int ret = 0; 639 transaction_t *commit_trans; 640 641 if (!(journal->j_flags & JBD2_BARRIER)) 642 return 0; 643 read_lock(&journal->j_state_lock); 644 /* Transaction already committed? */ 645 if (tid_geq(journal->j_commit_sequence, tid)) 646 goto out; 647 commit_trans = journal->j_committing_transaction; 648 if (!commit_trans || commit_trans->t_tid != tid) { 649 ret = 1; 650 goto out; 651 } 652 /* 653 * Transaction is being committed and we already proceeded to 654 * submitting a flush to fs partition? 655 */ 656 if (journal->j_fs_dev != journal->j_dev) { 657 if (!commit_trans->t_need_data_flush || 658 commit_trans->t_state >= T_COMMIT_DFLUSH) 659 goto out; 660 } else { 661 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 662 goto out; 663 } 664 ret = 1; 665 out: 666 read_unlock(&journal->j_state_lock); 667 return ret; 668 } 669 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 670 671 /* 672 * Wait for a specified commit to complete. 673 * The caller may not hold the journal lock. 674 */ 675 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 676 { 677 int err = 0; 678 679 read_lock(&journal->j_state_lock); 680 #ifdef CONFIG_JBD2_DEBUG 681 if (!tid_geq(journal->j_commit_request, tid)) { 682 printk(KERN_EMERG 683 "%s: error: j_commit_request=%d, tid=%d\n", 684 __func__, journal->j_commit_request, tid); 685 } 686 #endif 687 while (tid_gt(tid, journal->j_commit_sequence)) { 688 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 689 tid, journal->j_commit_sequence); 690 wake_up(&journal->j_wait_commit); 691 read_unlock(&journal->j_state_lock); 692 wait_event(journal->j_wait_done_commit, 693 !tid_gt(tid, journal->j_commit_sequence)); 694 read_lock(&journal->j_state_lock); 695 } 696 read_unlock(&journal->j_state_lock); 697 698 if (unlikely(is_journal_aborted(journal))) { 699 printk(KERN_EMERG "journal commit I/O error\n"); 700 err = -EIO; 701 } 702 return err; 703 } 704 705 /* 706 * Log buffer allocation routines: 707 */ 708 709 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 710 { 711 unsigned long blocknr; 712 713 write_lock(&journal->j_state_lock); 714 J_ASSERT(journal->j_free > 1); 715 716 blocknr = journal->j_head; 717 journal->j_head++; 718 journal->j_free--; 719 if (journal->j_head == journal->j_last) 720 journal->j_head = journal->j_first; 721 write_unlock(&journal->j_state_lock); 722 return jbd2_journal_bmap(journal, blocknr, retp); 723 } 724 725 /* 726 * Conversion of logical to physical block numbers for the journal 727 * 728 * On external journals the journal blocks are identity-mapped, so 729 * this is a no-op. If needed, we can use j_blk_offset - everything is 730 * ready. 731 */ 732 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 733 unsigned long long *retp) 734 { 735 int err = 0; 736 unsigned long long ret; 737 738 if (journal->j_inode) { 739 ret = bmap(journal->j_inode, blocknr); 740 if (ret) 741 *retp = ret; 742 else { 743 printk(KERN_ALERT "%s: journal block not found " 744 "at offset %lu on %s\n", 745 __func__, blocknr, journal->j_devname); 746 err = -EIO; 747 __journal_abort_soft(journal, err); 748 } 749 } else { 750 *retp = blocknr; /* +journal->j_blk_offset */ 751 } 752 return err; 753 } 754 755 /* 756 * We play buffer_head aliasing tricks to write data/metadata blocks to 757 * the journal without copying their contents, but for journal 758 * descriptor blocks we do need to generate bona fide buffers. 759 * 760 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 761 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 762 * But we don't bother doing that, so there will be coherency problems with 763 * mmaps of blockdevs which hold live JBD-controlled filesystems. 764 */ 765 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 766 { 767 struct buffer_head *bh; 768 unsigned long long blocknr; 769 int err; 770 771 err = jbd2_journal_next_log_block(journal, &blocknr); 772 773 if (err) 774 return NULL; 775 776 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 777 if (!bh) 778 return NULL; 779 lock_buffer(bh); 780 memset(bh->b_data, 0, journal->j_blocksize); 781 set_buffer_uptodate(bh); 782 unlock_buffer(bh); 783 BUFFER_TRACE(bh, "return this buffer"); 784 return jbd2_journal_add_journal_head(bh); 785 } 786 787 /* 788 * Return tid of the oldest transaction in the journal and block in the journal 789 * where the transaction starts. 790 * 791 * If the journal is now empty, return which will be the next transaction ID 792 * we will write and where will that transaction start. 793 * 794 * The return value is 0 if journal tail cannot be pushed any further, 1 if 795 * it can. 796 */ 797 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 798 unsigned long *block) 799 { 800 transaction_t *transaction; 801 int ret; 802 803 read_lock(&journal->j_state_lock); 804 spin_lock(&journal->j_list_lock); 805 transaction = journal->j_checkpoint_transactions; 806 if (transaction) { 807 *tid = transaction->t_tid; 808 *block = transaction->t_log_start; 809 } else if ((transaction = journal->j_committing_transaction) != NULL) { 810 *tid = transaction->t_tid; 811 *block = transaction->t_log_start; 812 } else if ((transaction = journal->j_running_transaction) != NULL) { 813 *tid = transaction->t_tid; 814 *block = journal->j_head; 815 } else { 816 *tid = journal->j_transaction_sequence; 817 *block = journal->j_head; 818 } 819 ret = tid_gt(*tid, journal->j_tail_sequence); 820 spin_unlock(&journal->j_list_lock); 821 read_unlock(&journal->j_state_lock); 822 823 return ret; 824 } 825 826 /* 827 * Update information in journal structure and in on disk journal superblock 828 * about log tail. This function does not check whether information passed in 829 * really pushes log tail further. It's responsibility of the caller to make 830 * sure provided log tail information is valid (e.g. by holding 831 * j_checkpoint_mutex all the time between computing log tail and calling this 832 * function as is the case with jbd2_cleanup_journal_tail()). 833 * 834 * Requires j_checkpoint_mutex 835 */ 836 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 837 { 838 unsigned long freed; 839 840 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 841 842 /* 843 * We cannot afford for write to remain in drive's caches since as 844 * soon as we update j_tail, next transaction can start reusing journal 845 * space and if we lose sb update during power failure we'd replay 846 * old transaction with possibly newly overwritten data. 847 */ 848 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA); 849 write_lock(&journal->j_state_lock); 850 freed = block - journal->j_tail; 851 if (block < journal->j_tail) 852 freed += journal->j_last - journal->j_first; 853 854 trace_jbd2_update_log_tail(journal, tid, block, freed); 855 jbd_debug(1, 856 "Cleaning journal tail from %d to %d (offset %lu), " 857 "freeing %lu\n", 858 journal->j_tail_sequence, tid, block, freed); 859 860 journal->j_free += freed; 861 journal->j_tail_sequence = tid; 862 journal->j_tail = block; 863 write_unlock(&journal->j_state_lock); 864 } 865 866 /* 867 * This is a variaon of __jbd2_update_log_tail which checks for validity of 868 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 869 * with other threads updating log tail. 870 */ 871 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 872 { 873 mutex_lock(&journal->j_checkpoint_mutex); 874 if (tid_gt(tid, journal->j_tail_sequence)) 875 __jbd2_update_log_tail(journal, tid, block); 876 mutex_unlock(&journal->j_checkpoint_mutex); 877 } 878 879 struct jbd2_stats_proc_session { 880 journal_t *journal; 881 struct transaction_stats_s *stats; 882 int start; 883 int max; 884 }; 885 886 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 887 { 888 return *pos ? NULL : SEQ_START_TOKEN; 889 } 890 891 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 892 { 893 return NULL; 894 } 895 896 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 897 { 898 struct jbd2_stats_proc_session *s = seq->private; 899 900 if (v != SEQ_START_TOKEN) 901 return 0; 902 seq_printf(seq, "%lu transactions (%lu requested), " 903 "each up to %u blocks\n", 904 s->stats->ts_tid, s->stats->ts_requested, 905 s->journal->j_max_transaction_buffers); 906 if (s->stats->ts_tid == 0) 907 return 0; 908 seq_printf(seq, "average: \n %ums waiting for transaction\n", 909 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 910 seq_printf(seq, " %ums request delay\n", 911 (s->stats->ts_requested == 0) ? 0 : 912 jiffies_to_msecs(s->stats->run.rs_request_delay / 913 s->stats->ts_requested)); 914 seq_printf(seq, " %ums running transaction\n", 915 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 916 seq_printf(seq, " %ums transaction was being locked\n", 917 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 918 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 919 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 920 seq_printf(seq, " %ums logging transaction\n", 921 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 922 seq_printf(seq, " %lluus average transaction commit time\n", 923 div_u64(s->journal->j_average_commit_time, 1000)); 924 seq_printf(seq, " %lu handles per transaction\n", 925 s->stats->run.rs_handle_count / s->stats->ts_tid); 926 seq_printf(seq, " %lu blocks per transaction\n", 927 s->stats->run.rs_blocks / s->stats->ts_tid); 928 seq_printf(seq, " %lu logged blocks per transaction\n", 929 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 930 return 0; 931 } 932 933 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 934 { 935 } 936 937 static const struct seq_operations jbd2_seq_info_ops = { 938 .start = jbd2_seq_info_start, 939 .next = jbd2_seq_info_next, 940 .stop = jbd2_seq_info_stop, 941 .show = jbd2_seq_info_show, 942 }; 943 944 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 945 { 946 journal_t *journal = PDE(inode)->data; 947 struct jbd2_stats_proc_session *s; 948 int rc, size; 949 950 s = kmalloc(sizeof(*s), GFP_KERNEL); 951 if (s == NULL) 952 return -ENOMEM; 953 size = sizeof(struct transaction_stats_s); 954 s->stats = kmalloc(size, GFP_KERNEL); 955 if (s->stats == NULL) { 956 kfree(s); 957 return -ENOMEM; 958 } 959 spin_lock(&journal->j_history_lock); 960 memcpy(s->stats, &journal->j_stats, size); 961 s->journal = journal; 962 spin_unlock(&journal->j_history_lock); 963 964 rc = seq_open(file, &jbd2_seq_info_ops); 965 if (rc == 0) { 966 struct seq_file *m = file->private_data; 967 m->private = s; 968 } else { 969 kfree(s->stats); 970 kfree(s); 971 } 972 return rc; 973 974 } 975 976 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 977 { 978 struct seq_file *seq = file->private_data; 979 struct jbd2_stats_proc_session *s = seq->private; 980 kfree(s->stats); 981 kfree(s); 982 return seq_release(inode, file); 983 } 984 985 static const struct file_operations jbd2_seq_info_fops = { 986 .owner = THIS_MODULE, 987 .open = jbd2_seq_info_open, 988 .read = seq_read, 989 .llseek = seq_lseek, 990 .release = jbd2_seq_info_release, 991 }; 992 993 static struct proc_dir_entry *proc_jbd2_stats; 994 995 static void jbd2_stats_proc_init(journal_t *journal) 996 { 997 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 998 if (journal->j_proc_entry) { 999 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1000 &jbd2_seq_info_fops, journal); 1001 } 1002 } 1003 1004 static void jbd2_stats_proc_exit(journal_t *journal) 1005 { 1006 remove_proc_entry("info", journal->j_proc_entry); 1007 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1008 } 1009 1010 /* 1011 * Management for journal control blocks: functions to create and 1012 * destroy journal_t structures, and to initialise and read existing 1013 * journal blocks from disk. */ 1014 1015 /* First: create and setup a journal_t object in memory. We initialise 1016 * very few fields yet: that has to wait until we have created the 1017 * journal structures from from scratch, or loaded them from disk. */ 1018 1019 static journal_t * journal_init_common (void) 1020 { 1021 journal_t *journal; 1022 int err; 1023 1024 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1025 if (!journal) 1026 return NULL; 1027 1028 init_waitqueue_head(&journal->j_wait_transaction_locked); 1029 init_waitqueue_head(&journal->j_wait_logspace); 1030 init_waitqueue_head(&journal->j_wait_done_commit); 1031 init_waitqueue_head(&journal->j_wait_checkpoint); 1032 init_waitqueue_head(&journal->j_wait_commit); 1033 init_waitqueue_head(&journal->j_wait_updates); 1034 mutex_init(&journal->j_barrier); 1035 mutex_init(&journal->j_checkpoint_mutex); 1036 spin_lock_init(&journal->j_revoke_lock); 1037 spin_lock_init(&journal->j_list_lock); 1038 rwlock_init(&journal->j_state_lock); 1039 1040 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1041 journal->j_min_batch_time = 0; 1042 journal->j_max_batch_time = 15000; /* 15ms */ 1043 1044 /* The journal is marked for error until we succeed with recovery! */ 1045 journal->j_flags = JBD2_ABORT; 1046 1047 /* Set up a default-sized revoke table for the new mount. */ 1048 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1049 if (err) { 1050 kfree(journal); 1051 return NULL; 1052 } 1053 1054 spin_lock_init(&journal->j_history_lock); 1055 1056 return journal; 1057 } 1058 1059 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1060 * 1061 * Create a journal structure assigned some fixed set of disk blocks to 1062 * the journal. We don't actually touch those disk blocks yet, but we 1063 * need to set up all of the mapping information to tell the journaling 1064 * system where the journal blocks are. 1065 * 1066 */ 1067 1068 /** 1069 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1070 * @bdev: Block device on which to create the journal 1071 * @fs_dev: Device which hold journalled filesystem for this journal. 1072 * @start: Block nr Start of journal. 1073 * @len: Length of the journal in blocks. 1074 * @blocksize: blocksize of journalling device 1075 * 1076 * Returns: a newly created journal_t * 1077 * 1078 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1079 * range of blocks on an arbitrary block device. 1080 * 1081 */ 1082 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 1083 struct block_device *fs_dev, 1084 unsigned long long start, int len, int blocksize) 1085 { 1086 journal_t *journal = journal_init_common(); 1087 struct buffer_head *bh; 1088 char *p; 1089 int n; 1090 1091 if (!journal) 1092 return NULL; 1093 1094 /* journal descriptor can store up to n blocks -bzzz */ 1095 journal->j_blocksize = blocksize; 1096 journal->j_dev = bdev; 1097 journal->j_fs_dev = fs_dev; 1098 journal->j_blk_offset = start; 1099 journal->j_maxlen = len; 1100 bdevname(journal->j_dev, journal->j_devname); 1101 p = journal->j_devname; 1102 while ((p = strchr(p, '/'))) 1103 *p = '!'; 1104 jbd2_stats_proc_init(journal); 1105 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1106 journal->j_wbufsize = n; 1107 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1108 if (!journal->j_wbuf) { 1109 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1110 __func__); 1111 goto out_err; 1112 } 1113 1114 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 1115 if (!bh) { 1116 printk(KERN_ERR 1117 "%s: Cannot get buffer for journal superblock\n", 1118 __func__); 1119 goto out_err; 1120 } 1121 journal->j_sb_buffer = bh; 1122 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1123 1124 return journal; 1125 out_err: 1126 kfree(journal->j_wbuf); 1127 jbd2_stats_proc_exit(journal); 1128 kfree(journal); 1129 return NULL; 1130 } 1131 1132 /** 1133 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1134 * @inode: An inode to create the journal in 1135 * 1136 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1137 * the journal. The inode must exist already, must support bmap() and 1138 * must have all data blocks preallocated. 1139 */ 1140 journal_t * jbd2_journal_init_inode (struct inode *inode) 1141 { 1142 struct buffer_head *bh; 1143 journal_t *journal = journal_init_common(); 1144 char *p; 1145 int err; 1146 int n; 1147 unsigned long long blocknr; 1148 1149 if (!journal) 1150 return NULL; 1151 1152 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 1153 journal->j_inode = inode; 1154 bdevname(journal->j_dev, journal->j_devname); 1155 p = journal->j_devname; 1156 while ((p = strchr(p, '/'))) 1157 *p = '!'; 1158 p = journal->j_devname + strlen(journal->j_devname); 1159 sprintf(p, "-%lu", journal->j_inode->i_ino); 1160 jbd_debug(1, 1161 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 1162 journal, inode->i_sb->s_id, inode->i_ino, 1163 (long long) inode->i_size, 1164 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1165 1166 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 1167 journal->j_blocksize = inode->i_sb->s_blocksize; 1168 jbd2_stats_proc_init(journal); 1169 1170 /* journal descriptor can store up to n blocks -bzzz */ 1171 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1172 journal->j_wbufsize = n; 1173 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1174 if (!journal->j_wbuf) { 1175 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1176 __func__); 1177 goto out_err; 1178 } 1179 1180 err = jbd2_journal_bmap(journal, 0, &blocknr); 1181 /* If that failed, give up */ 1182 if (err) { 1183 printk(KERN_ERR "%s: Cannot locate journal superblock\n", 1184 __func__); 1185 goto out_err; 1186 } 1187 1188 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1189 if (!bh) { 1190 printk(KERN_ERR 1191 "%s: Cannot get buffer for journal superblock\n", 1192 __func__); 1193 goto out_err; 1194 } 1195 journal->j_sb_buffer = bh; 1196 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1197 1198 return journal; 1199 out_err: 1200 kfree(journal->j_wbuf); 1201 jbd2_stats_proc_exit(journal); 1202 kfree(journal); 1203 return NULL; 1204 } 1205 1206 /* 1207 * If the journal init or create aborts, we need to mark the journal 1208 * superblock as being NULL to prevent the journal destroy from writing 1209 * back a bogus superblock. 1210 */ 1211 static void journal_fail_superblock (journal_t *journal) 1212 { 1213 struct buffer_head *bh = journal->j_sb_buffer; 1214 brelse(bh); 1215 journal->j_sb_buffer = NULL; 1216 } 1217 1218 /* 1219 * Given a journal_t structure, initialise the various fields for 1220 * startup of a new journaling session. We use this both when creating 1221 * a journal, and after recovering an old journal to reset it for 1222 * subsequent use. 1223 */ 1224 1225 static int journal_reset(journal_t *journal) 1226 { 1227 journal_superblock_t *sb = journal->j_superblock; 1228 unsigned long long first, last; 1229 1230 first = be32_to_cpu(sb->s_first); 1231 last = be32_to_cpu(sb->s_maxlen); 1232 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1233 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1234 first, last); 1235 journal_fail_superblock(journal); 1236 return -EINVAL; 1237 } 1238 1239 journal->j_first = first; 1240 journal->j_last = last; 1241 1242 journal->j_head = first; 1243 journal->j_tail = first; 1244 journal->j_free = last - first; 1245 1246 journal->j_tail_sequence = journal->j_transaction_sequence; 1247 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1248 journal->j_commit_request = journal->j_commit_sequence; 1249 1250 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1251 1252 /* 1253 * As a special case, if the on-disk copy is already marked as needing 1254 * no recovery (s_start == 0), then we can safely defer the superblock 1255 * update until the next commit by setting JBD2_FLUSHED. This avoids 1256 * attempting a write to a potential-readonly device. 1257 */ 1258 if (sb->s_start == 0) { 1259 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1260 "(start %ld, seq %d, errno %d)\n", 1261 journal->j_tail, journal->j_tail_sequence, 1262 journal->j_errno); 1263 journal->j_flags |= JBD2_FLUSHED; 1264 } else { 1265 /* Lock here to make assertions happy... */ 1266 mutex_lock(&journal->j_checkpoint_mutex); 1267 /* 1268 * Update log tail information. We use WRITE_FUA since new 1269 * transaction will start reusing journal space and so we 1270 * must make sure information about current log tail is on 1271 * disk before that. 1272 */ 1273 jbd2_journal_update_sb_log_tail(journal, 1274 journal->j_tail_sequence, 1275 journal->j_tail, 1276 WRITE_FUA); 1277 mutex_unlock(&journal->j_checkpoint_mutex); 1278 } 1279 return jbd2_journal_start_thread(journal); 1280 } 1281 1282 static void jbd2_write_superblock(journal_t *journal, int write_op) 1283 { 1284 struct buffer_head *bh = journal->j_sb_buffer; 1285 int ret; 1286 1287 trace_jbd2_write_superblock(journal, write_op); 1288 if (!(journal->j_flags & JBD2_BARRIER)) 1289 write_op &= ~(REQ_FUA | REQ_FLUSH); 1290 lock_buffer(bh); 1291 if (buffer_write_io_error(bh)) { 1292 /* 1293 * Oh, dear. A previous attempt to write the journal 1294 * superblock failed. This could happen because the 1295 * USB device was yanked out. Or it could happen to 1296 * be a transient write error and maybe the block will 1297 * be remapped. Nothing we can do but to retry the 1298 * write and hope for the best. 1299 */ 1300 printk(KERN_ERR "JBD2: previous I/O error detected " 1301 "for journal superblock update for %s.\n", 1302 journal->j_devname); 1303 clear_buffer_write_io_error(bh); 1304 set_buffer_uptodate(bh); 1305 } 1306 get_bh(bh); 1307 bh->b_end_io = end_buffer_write_sync; 1308 ret = submit_bh(write_op, bh); 1309 wait_on_buffer(bh); 1310 if (buffer_write_io_error(bh)) { 1311 clear_buffer_write_io_error(bh); 1312 set_buffer_uptodate(bh); 1313 ret = -EIO; 1314 } 1315 if (ret) { 1316 printk(KERN_ERR "JBD2: Error %d detected when updating " 1317 "journal superblock for %s.\n", ret, 1318 journal->j_devname); 1319 } 1320 } 1321 1322 /** 1323 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1324 * @journal: The journal to update. 1325 * @tail_tid: TID of the new transaction at the tail of the log 1326 * @tail_block: The first block of the transaction at the tail of the log 1327 * @write_op: With which operation should we write the journal sb 1328 * 1329 * Update a journal's superblock information about log tail and write it to 1330 * disk, waiting for the IO to complete. 1331 */ 1332 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1333 unsigned long tail_block, int write_op) 1334 { 1335 journal_superblock_t *sb = journal->j_superblock; 1336 1337 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1338 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1339 tail_block, tail_tid); 1340 1341 sb->s_sequence = cpu_to_be32(tail_tid); 1342 sb->s_start = cpu_to_be32(tail_block); 1343 1344 jbd2_write_superblock(journal, write_op); 1345 1346 /* Log is no longer empty */ 1347 write_lock(&journal->j_state_lock); 1348 WARN_ON(!sb->s_sequence); 1349 journal->j_flags &= ~JBD2_FLUSHED; 1350 write_unlock(&journal->j_state_lock); 1351 } 1352 1353 /** 1354 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1355 * @journal: The journal to update. 1356 * 1357 * Update a journal's dynamic superblock fields to show that journal is empty. 1358 * Write updated superblock to disk waiting for IO to complete. 1359 */ 1360 static void jbd2_mark_journal_empty(journal_t *journal) 1361 { 1362 journal_superblock_t *sb = journal->j_superblock; 1363 1364 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1365 read_lock(&journal->j_state_lock); 1366 /* Is it already empty? */ 1367 if (sb->s_start == 0) { 1368 read_unlock(&journal->j_state_lock); 1369 return; 1370 } 1371 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1372 journal->j_tail_sequence); 1373 1374 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1375 sb->s_start = cpu_to_be32(0); 1376 read_unlock(&journal->j_state_lock); 1377 1378 jbd2_write_superblock(journal, WRITE_FUA); 1379 1380 /* Log is no longer empty */ 1381 write_lock(&journal->j_state_lock); 1382 journal->j_flags |= JBD2_FLUSHED; 1383 write_unlock(&journal->j_state_lock); 1384 } 1385 1386 1387 /** 1388 * jbd2_journal_update_sb_errno() - Update error in the journal. 1389 * @journal: The journal to update. 1390 * 1391 * Update a journal's errno. Write updated superblock to disk waiting for IO 1392 * to complete. 1393 */ 1394 void jbd2_journal_update_sb_errno(journal_t *journal) 1395 { 1396 journal_superblock_t *sb = journal->j_superblock; 1397 1398 read_lock(&journal->j_state_lock); 1399 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", 1400 journal->j_errno); 1401 sb->s_errno = cpu_to_be32(journal->j_errno); 1402 jbd2_superblock_csum_set(journal, sb); 1403 read_unlock(&journal->j_state_lock); 1404 1405 jbd2_write_superblock(journal, WRITE_SYNC); 1406 } 1407 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1408 1409 /* 1410 * Read the superblock for a given journal, performing initial 1411 * validation of the format. 1412 */ 1413 static int journal_get_superblock(journal_t *journal) 1414 { 1415 struct buffer_head *bh; 1416 journal_superblock_t *sb; 1417 int err = -EIO; 1418 1419 bh = journal->j_sb_buffer; 1420 1421 J_ASSERT(bh != NULL); 1422 if (!buffer_uptodate(bh)) { 1423 ll_rw_block(READ, 1, &bh); 1424 wait_on_buffer(bh); 1425 if (!buffer_uptodate(bh)) { 1426 printk(KERN_ERR 1427 "JBD2: IO error reading journal superblock\n"); 1428 goto out; 1429 } 1430 } 1431 1432 if (buffer_verified(bh)) 1433 return 0; 1434 1435 sb = journal->j_superblock; 1436 1437 err = -EINVAL; 1438 1439 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1440 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1441 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1442 goto out; 1443 } 1444 1445 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1446 case JBD2_SUPERBLOCK_V1: 1447 journal->j_format_version = 1; 1448 break; 1449 case JBD2_SUPERBLOCK_V2: 1450 journal->j_format_version = 2; 1451 break; 1452 default: 1453 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1454 goto out; 1455 } 1456 1457 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1458 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1459 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1460 printk(KERN_WARNING "JBD2: journal file too short\n"); 1461 goto out; 1462 } 1463 1464 if (be32_to_cpu(sb->s_first) == 0 || 1465 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1466 printk(KERN_WARNING 1467 "JBD2: Invalid start block of journal: %u\n", 1468 be32_to_cpu(sb->s_first)); 1469 goto out; 1470 } 1471 1472 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) && 1473 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1474 /* Can't have checksum v1 and v2 on at the same time! */ 1475 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 " 1476 "at the same time!\n"); 1477 goto out; 1478 } 1479 1480 if (!jbd2_verify_csum_type(journal, sb)) { 1481 printk(KERN_ERR "JBD: Unknown checksum type\n"); 1482 goto out; 1483 } 1484 1485 /* Load the checksum driver */ 1486 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1487 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1488 if (IS_ERR(journal->j_chksum_driver)) { 1489 printk(KERN_ERR "JBD: Cannot load crc32c driver.\n"); 1490 err = PTR_ERR(journal->j_chksum_driver); 1491 journal->j_chksum_driver = NULL; 1492 goto out; 1493 } 1494 } 1495 1496 /* Check superblock checksum */ 1497 if (!jbd2_superblock_csum_verify(journal, sb)) { 1498 printk(KERN_ERR "JBD: journal checksum error\n"); 1499 goto out; 1500 } 1501 1502 /* Precompute checksum seed for all metadata */ 1503 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 1504 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1505 sizeof(sb->s_uuid)); 1506 1507 set_buffer_verified(bh); 1508 1509 return 0; 1510 1511 out: 1512 journal_fail_superblock(journal); 1513 return err; 1514 } 1515 1516 /* 1517 * Load the on-disk journal superblock and read the key fields into the 1518 * journal_t. 1519 */ 1520 1521 static int load_superblock(journal_t *journal) 1522 { 1523 int err; 1524 journal_superblock_t *sb; 1525 1526 err = journal_get_superblock(journal); 1527 if (err) 1528 return err; 1529 1530 sb = journal->j_superblock; 1531 1532 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1533 journal->j_tail = be32_to_cpu(sb->s_start); 1534 journal->j_first = be32_to_cpu(sb->s_first); 1535 journal->j_last = be32_to_cpu(sb->s_maxlen); 1536 journal->j_errno = be32_to_cpu(sb->s_errno); 1537 1538 return 0; 1539 } 1540 1541 1542 /** 1543 * int jbd2_journal_load() - Read journal from disk. 1544 * @journal: Journal to act on. 1545 * 1546 * Given a journal_t structure which tells us which disk blocks contain 1547 * a journal, read the journal from disk to initialise the in-memory 1548 * structures. 1549 */ 1550 int jbd2_journal_load(journal_t *journal) 1551 { 1552 int err; 1553 journal_superblock_t *sb; 1554 1555 err = load_superblock(journal); 1556 if (err) 1557 return err; 1558 1559 sb = journal->j_superblock; 1560 /* If this is a V2 superblock, then we have to check the 1561 * features flags on it. */ 1562 1563 if (journal->j_format_version >= 2) { 1564 if ((sb->s_feature_ro_compat & 1565 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1566 (sb->s_feature_incompat & 1567 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1568 printk(KERN_WARNING 1569 "JBD2: Unrecognised features on journal\n"); 1570 return -EINVAL; 1571 } 1572 } 1573 1574 /* 1575 * Create a slab for this blocksize 1576 */ 1577 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1578 if (err) 1579 return err; 1580 1581 /* Let the recovery code check whether it needs to recover any 1582 * data from the journal. */ 1583 if (jbd2_journal_recover(journal)) 1584 goto recovery_error; 1585 1586 if (journal->j_failed_commit) { 1587 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1588 "is corrupt.\n", journal->j_failed_commit, 1589 journal->j_devname); 1590 return -EIO; 1591 } 1592 1593 /* OK, we've finished with the dynamic journal bits: 1594 * reinitialise the dynamic contents of the superblock in memory 1595 * and reset them on disk. */ 1596 if (journal_reset(journal)) 1597 goto recovery_error; 1598 1599 journal->j_flags &= ~JBD2_ABORT; 1600 journal->j_flags |= JBD2_LOADED; 1601 return 0; 1602 1603 recovery_error: 1604 printk(KERN_WARNING "JBD2: recovery failed\n"); 1605 return -EIO; 1606 } 1607 1608 /** 1609 * void jbd2_journal_destroy() - Release a journal_t structure. 1610 * @journal: Journal to act on. 1611 * 1612 * Release a journal_t structure once it is no longer in use by the 1613 * journaled object. 1614 * Return <0 if we couldn't clean up the journal. 1615 */ 1616 int jbd2_journal_destroy(journal_t *journal) 1617 { 1618 int err = 0; 1619 1620 /* Wait for the commit thread to wake up and die. */ 1621 journal_kill_thread(journal); 1622 1623 /* Force a final log commit */ 1624 if (journal->j_running_transaction) 1625 jbd2_journal_commit_transaction(journal); 1626 1627 /* Force any old transactions to disk */ 1628 1629 /* Totally anal locking here... */ 1630 spin_lock(&journal->j_list_lock); 1631 while (journal->j_checkpoint_transactions != NULL) { 1632 spin_unlock(&journal->j_list_lock); 1633 mutex_lock(&journal->j_checkpoint_mutex); 1634 jbd2_log_do_checkpoint(journal); 1635 mutex_unlock(&journal->j_checkpoint_mutex); 1636 spin_lock(&journal->j_list_lock); 1637 } 1638 1639 J_ASSERT(journal->j_running_transaction == NULL); 1640 J_ASSERT(journal->j_committing_transaction == NULL); 1641 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1642 spin_unlock(&journal->j_list_lock); 1643 1644 if (journal->j_sb_buffer) { 1645 if (!is_journal_aborted(journal)) { 1646 mutex_lock(&journal->j_checkpoint_mutex); 1647 jbd2_mark_journal_empty(journal); 1648 mutex_unlock(&journal->j_checkpoint_mutex); 1649 } else 1650 err = -EIO; 1651 brelse(journal->j_sb_buffer); 1652 } 1653 1654 if (journal->j_proc_entry) 1655 jbd2_stats_proc_exit(journal); 1656 if (journal->j_inode) 1657 iput(journal->j_inode); 1658 if (journal->j_revoke) 1659 jbd2_journal_destroy_revoke(journal); 1660 if (journal->j_chksum_driver) 1661 crypto_free_shash(journal->j_chksum_driver); 1662 kfree(journal->j_wbuf); 1663 kfree(journal); 1664 1665 return err; 1666 } 1667 1668 1669 /** 1670 *int jbd2_journal_check_used_features () - Check if features specified are used. 1671 * @journal: Journal to check. 1672 * @compat: bitmask of compatible features 1673 * @ro: bitmask of features that force read-only mount 1674 * @incompat: bitmask of incompatible features 1675 * 1676 * Check whether the journal uses all of a given set of 1677 * features. Return true (non-zero) if it does. 1678 **/ 1679 1680 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1681 unsigned long ro, unsigned long incompat) 1682 { 1683 journal_superblock_t *sb; 1684 1685 if (!compat && !ro && !incompat) 1686 return 1; 1687 /* Load journal superblock if it is not loaded yet. */ 1688 if (journal->j_format_version == 0 && 1689 journal_get_superblock(journal) != 0) 1690 return 0; 1691 if (journal->j_format_version == 1) 1692 return 0; 1693 1694 sb = journal->j_superblock; 1695 1696 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1697 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1698 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1699 return 1; 1700 1701 return 0; 1702 } 1703 1704 /** 1705 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1706 * @journal: Journal to check. 1707 * @compat: bitmask of compatible features 1708 * @ro: bitmask of features that force read-only mount 1709 * @incompat: bitmask of incompatible features 1710 * 1711 * Check whether the journaling code supports the use of 1712 * all of a given set of features on this journal. Return true 1713 * (non-zero) if it can. */ 1714 1715 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1716 unsigned long ro, unsigned long incompat) 1717 { 1718 if (!compat && !ro && !incompat) 1719 return 1; 1720 1721 /* We can support any known requested features iff the 1722 * superblock is in version 2. Otherwise we fail to support any 1723 * extended sb features. */ 1724 1725 if (journal->j_format_version != 2) 1726 return 0; 1727 1728 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1729 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1730 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1731 return 1; 1732 1733 return 0; 1734 } 1735 1736 /** 1737 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1738 * @journal: Journal to act on. 1739 * @compat: bitmask of compatible features 1740 * @ro: bitmask of features that force read-only mount 1741 * @incompat: bitmask of incompatible features 1742 * 1743 * Mark a given journal feature as present on the 1744 * superblock. Returns true if the requested features could be set. 1745 * 1746 */ 1747 1748 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1749 unsigned long ro, unsigned long incompat) 1750 { 1751 #define INCOMPAT_FEATURE_ON(f) \ 1752 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1753 #define COMPAT_FEATURE_ON(f) \ 1754 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1755 journal_superblock_t *sb; 1756 1757 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1758 return 1; 1759 1760 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1761 return 0; 1762 1763 /* Asking for checksumming v2 and v1? Only give them v2. */ 1764 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 && 1765 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1766 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1767 1768 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1769 compat, ro, incompat); 1770 1771 sb = journal->j_superblock; 1772 1773 /* If enabling v2 checksums, update superblock */ 1774 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1775 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1776 sb->s_feature_compat &= 1777 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1778 1779 /* Load the checksum driver */ 1780 if (journal->j_chksum_driver == NULL) { 1781 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 1782 0, 0); 1783 if (IS_ERR(journal->j_chksum_driver)) { 1784 printk(KERN_ERR "JBD: Cannot load crc32c " 1785 "driver.\n"); 1786 journal->j_chksum_driver = NULL; 1787 return 0; 1788 } 1789 } 1790 1791 /* Precompute checksum seed for all metadata */ 1792 if (JBD2_HAS_INCOMPAT_FEATURE(journal, 1793 JBD2_FEATURE_INCOMPAT_CSUM_V2)) 1794 journal->j_csum_seed = jbd2_chksum(journal, ~0, 1795 sb->s_uuid, 1796 sizeof(sb->s_uuid)); 1797 } 1798 1799 /* If enabling v1 checksums, downgrade superblock */ 1800 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1801 sb->s_feature_incompat &= 1802 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2); 1803 1804 sb->s_feature_compat |= cpu_to_be32(compat); 1805 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1806 sb->s_feature_incompat |= cpu_to_be32(incompat); 1807 1808 return 1; 1809 #undef COMPAT_FEATURE_ON 1810 #undef INCOMPAT_FEATURE_ON 1811 } 1812 1813 /* 1814 * jbd2_journal_clear_features () - Clear a given journal feature in the 1815 * superblock 1816 * @journal: Journal to act on. 1817 * @compat: bitmask of compatible features 1818 * @ro: bitmask of features that force read-only mount 1819 * @incompat: bitmask of incompatible features 1820 * 1821 * Clear a given journal feature as present on the 1822 * superblock. 1823 */ 1824 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1825 unsigned long ro, unsigned long incompat) 1826 { 1827 journal_superblock_t *sb; 1828 1829 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1830 compat, ro, incompat); 1831 1832 sb = journal->j_superblock; 1833 1834 sb->s_feature_compat &= ~cpu_to_be32(compat); 1835 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1836 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1837 } 1838 EXPORT_SYMBOL(jbd2_journal_clear_features); 1839 1840 /** 1841 * int jbd2_journal_flush () - Flush journal 1842 * @journal: Journal to act on. 1843 * 1844 * Flush all data for a given journal to disk and empty the journal. 1845 * Filesystems can use this when remounting readonly to ensure that 1846 * recovery does not need to happen on remount. 1847 */ 1848 1849 int jbd2_journal_flush(journal_t *journal) 1850 { 1851 int err = 0; 1852 transaction_t *transaction = NULL; 1853 1854 write_lock(&journal->j_state_lock); 1855 1856 /* Force everything buffered to the log... */ 1857 if (journal->j_running_transaction) { 1858 transaction = journal->j_running_transaction; 1859 __jbd2_log_start_commit(journal, transaction->t_tid); 1860 } else if (journal->j_committing_transaction) 1861 transaction = journal->j_committing_transaction; 1862 1863 /* Wait for the log commit to complete... */ 1864 if (transaction) { 1865 tid_t tid = transaction->t_tid; 1866 1867 write_unlock(&journal->j_state_lock); 1868 jbd2_log_wait_commit(journal, tid); 1869 } else { 1870 write_unlock(&journal->j_state_lock); 1871 } 1872 1873 /* ...and flush everything in the log out to disk. */ 1874 spin_lock(&journal->j_list_lock); 1875 while (!err && journal->j_checkpoint_transactions != NULL) { 1876 spin_unlock(&journal->j_list_lock); 1877 mutex_lock(&journal->j_checkpoint_mutex); 1878 err = jbd2_log_do_checkpoint(journal); 1879 mutex_unlock(&journal->j_checkpoint_mutex); 1880 spin_lock(&journal->j_list_lock); 1881 } 1882 spin_unlock(&journal->j_list_lock); 1883 1884 if (is_journal_aborted(journal)) 1885 return -EIO; 1886 1887 mutex_lock(&journal->j_checkpoint_mutex); 1888 jbd2_cleanup_journal_tail(journal); 1889 1890 /* Finally, mark the journal as really needing no recovery. 1891 * This sets s_start==0 in the underlying superblock, which is 1892 * the magic code for a fully-recovered superblock. Any future 1893 * commits of data to the journal will restore the current 1894 * s_start value. */ 1895 jbd2_mark_journal_empty(journal); 1896 mutex_unlock(&journal->j_checkpoint_mutex); 1897 write_lock(&journal->j_state_lock); 1898 J_ASSERT(!journal->j_running_transaction); 1899 J_ASSERT(!journal->j_committing_transaction); 1900 J_ASSERT(!journal->j_checkpoint_transactions); 1901 J_ASSERT(journal->j_head == journal->j_tail); 1902 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1903 write_unlock(&journal->j_state_lock); 1904 return 0; 1905 } 1906 1907 /** 1908 * int jbd2_journal_wipe() - Wipe journal contents 1909 * @journal: Journal to act on. 1910 * @write: flag (see below) 1911 * 1912 * Wipe out all of the contents of a journal, safely. This will produce 1913 * a warning if the journal contains any valid recovery information. 1914 * Must be called between journal_init_*() and jbd2_journal_load(). 1915 * 1916 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1917 * we merely suppress recovery. 1918 */ 1919 1920 int jbd2_journal_wipe(journal_t *journal, int write) 1921 { 1922 int err = 0; 1923 1924 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1925 1926 err = load_superblock(journal); 1927 if (err) 1928 return err; 1929 1930 if (!journal->j_tail) 1931 goto no_recovery; 1932 1933 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 1934 write ? "Clearing" : "Ignoring"); 1935 1936 err = jbd2_journal_skip_recovery(journal); 1937 if (write) { 1938 /* Lock to make assertions happy... */ 1939 mutex_lock(&journal->j_checkpoint_mutex); 1940 jbd2_mark_journal_empty(journal); 1941 mutex_unlock(&journal->j_checkpoint_mutex); 1942 } 1943 1944 no_recovery: 1945 return err; 1946 } 1947 1948 /* 1949 * Journal abort has very specific semantics, which we describe 1950 * for journal abort. 1951 * 1952 * Two internal functions, which provide abort to the jbd layer 1953 * itself are here. 1954 */ 1955 1956 /* 1957 * Quick version for internal journal use (doesn't lock the journal). 1958 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1959 * and don't attempt to make any other journal updates. 1960 */ 1961 void __jbd2_journal_abort_hard(journal_t *journal) 1962 { 1963 transaction_t *transaction; 1964 1965 if (journal->j_flags & JBD2_ABORT) 1966 return; 1967 1968 printk(KERN_ERR "Aborting journal on device %s.\n", 1969 journal->j_devname); 1970 1971 write_lock(&journal->j_state_lock); 1972 journal->j_flags |= JBD2_ABORT; 1973 transaction = journal->j_running_transaction; 1974 if (transaction) 1975 __jbd2_log_start_commit(journal, transaction->t_tid); 1976 write_unlock(&journal->j_state_lock); 1977 } 1978 1979 /* Soft abort: record the abort error status in the journal superblock, 1980 * but don't do any other IO. */ 1981 static void __journal_abort_soft (journal_t *journal, int errno) 1982 { 1983 if (journal->j_flags & JBD2_ABORT) 1984 return; 1985 1986 if (!journal->j_errno) 1987 journal->j_errno = errno; 1988 1989 __jbd2_journal_abort_hard(journal); 1990 1991 if (errno) 1992 jbd2_journal_update_sb_errno(journal); 1993 } 1994 1995 /** 1996 * void jbd2_journal_abort () - Shutdown the journal immediately. 1997 * @journal: the journal to shutdown. 1998 * @errno: an error number to record in the journal indicating 1999 * the reason for the shutdown. 2000 * 2001 * Perform a complete, immediate shutdown of the ENTIRE 2002 * journal (not of a single transaction). This operation cannot be 2003 * undone without closing and reopening the journal. 2004 * 2005 * The jbd2_journal_abort function is intended to support higher level error 2006 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2007 * mode. 2008 * 2009 * Journal abort has very specific semantics. Any existing dirty, 2010 * unjournaled buffers in the main filesystem will still be written to 2011 * disk by bdflush, but the journaling mechanism will be suspended 2012 * immediately and no further transaction commits will be honoured. 2013 * 2014 * Any dirty, journaled buffers will be written back to disk without 2015 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2016 * filesystem, but we _do_ attempt to leave as much data as possible 2017 * behind for fsck to use for cleanup. 2018 * 2019 * Any attempt to get a new transaction handle on a journal which is in 2020 * ABORT state will just result in an -EROFS error return. A 2021 * jbd2_journal_stop on an existing handle will return -EIO if we have 2022 * entered abort state during the update. 2023 * 2024 * Recursive transactions are not disturbed by journal abort until the 2025 * final jbd2_journal_stop, which will receive the -EIO error. 2026 * 2027 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2028 * which will be recorded (if possible) in the journal superblock. This 2029 * allows a client to record failure conditions in the middle of a 2030 * transaction without having to complete the transaction to record the 2031 * failure to disk. ext3_error, for example, now uses this 2032 * functionality. 2033 * 2034 * Errors which originate from within the journaling layer will NOT 2035 * supply an errno; a null errno implies that absolutely no further 2036 * writes are done to the journal (unless there are any already in 2037 * progress). 2038 * 2039 */ 2040 2041 void jbd2_journal_abort(journal_t *journal, int errno) 2042 { 2043 __journal_abort_soft(journal, errno); 2044 } 2045 2046 /** 2047 * int jbd2_journal_errno () - returns the journal's error state. 2048 * @journal: journal to examine. 2049 * 2050 * This is the errno number set with jbd2_journal_abort(), the last 2051 * time the journal was mounted - if the journal was stopped 2052 * without calling abort this will be 0. 2053 * 2054 * If the journal has been aborted on this mount time -EROFS will 2055 * be returned. 2056 */ 2057 int jbd2_journal_errno(journal_t *journal) 2058 { 2059 int err; 2060 2061 read_lock(&journal->j_state_lock); 2062 if (journal->j_flags & JBD2_ABORT) 2063 err = -EROFS; 2064 else 2065 err = journal->j_errno; 2066 read_unlock(&journal->j_state_lock); 2067 return err; 2068 } 2069 2070 /** 2071 * int jbd2_journal_clear_err () - clears the journal's error state 2072 * @journal: journal to act on. 2073 * 2074 * An error must be cleared or acked to take a FS out of readonly 2075 * mode. 2076 */ 2077 int jbd2_journal_clear_err(journal_t *journal) 2078 { 2079 int err = 0; 2080 2081 write_lock(&journal->j_state_lock); 2082 if (journal->j_flags & JBD2_ABORT) 2083 err = -EROFS; 2084 else 2085 journal->j_errno = 0; 2086 write_unlock(&journal->j_state_lock); 2087 return err; 2088 } 2089 2090 /** 2091 * void jbd2_journal_ack_err() - Ack journal err. 2092 * @journal: journal to act on. 2093 * 2094 * An error must be cleared or acked to take a FS out of readonly 2095 * mode. 2096 */ 2097 void jbd2_journal_ack_err(journal_t *journal) 2098 { 2099 write_lock(&journal->j_state_lock); 2100 if (journal->j_errno) 2101 journal->j_flags |= JBD2_ACK_ERR; 2102 write_unlock(&journal->j_state_lock); 2103 } 2104 2105 int jbd2_journal_blocks_per_page(struct inode *inode) 2106 { 2107 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2108 } 2109 2110 /* 2111 * helper functions to deal with 32 or 64bit block numbers. 2112 */ 2113 size_t journal_tag_bytes(journal_t *journal) 2114 { 2115 journal_block_tag_t tag; 2116 size_t x = 0; 2117 2118 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 2119 x += sizeof(tag.t_checksum); 2120 2121 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 2122 return x + JBD2_TAG_SIZE64; 2123 else 2124 return x + JBD2_TAG_SIZE32; 2125 } 2126 2127 /* 2128 * JBD memory management 2129 * 2130 * These functions are used to allocate block-sized chunks of memory 2131 * used for making copies of buffer_head data. Very often it will be 2132 * page-sized chunks of data, but sometimes it will be in 2133 * sub-page-size chunks. (For example, 16k pages on Power systems 2134 * with a 4k block file system.) For blocks smaller than a page, we 2135 * use a SLAB allocator. There are slab caches for each block size, 2136 * which are allocated at mount time, if necessary, and we only free 2137 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2138 * this reason we don't need to a mutex to protect access to 2139 * jbd2_slab[] allocating or releasing memory; only in 2140 * jbd2_journal_create_slab(). 2141 */ 2142 #define JBD2_MAX_SLABS 8 2143 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2144 2145 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2146 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2147 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2148 }; 2149 2150 2151 static void jbd2_journal_destroy_slabs(void) 2152 { 2153 int i; 2154 2155 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2156 if (jbd2_slab[i]) 2157 kmem_cache_destroy(jbd2_slab[i]); 2158 jbd2_slab[i] = NULL; 2159 } 2160 } 2161 2162 static int jbd2_journal_create_slab(size_t size) 2163 { 2164 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2165 int i = order_base_2(size) - 10; 2166 size_t slab_size; 2167 2168 if (size == PAGE_SIZE) 2169 return 0; 2170 2171 if (i >= JBD2_MAX_SLABS) 2172 return -EINVAL; 2173 2174 if (unlikely(i < 0)) 2175 i = 0; 2176 mutex_lock(&jbd2_slab_create_mutex); 2177 if (jbd2_slab[i]) { 2178 mutex_unlock(&jbd2_slab_create_mutex); 2179 return 0; /* Already created */ 2180 } 2181 2182 slab_size = 1 << (i+10); 2183 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2184 slab_size, 0, NULL); 2185 mutex_unlock(&jbd2_slab_create_mutex); 2186 if (!jbd2_slab[i]) { 2187 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2188 return -ENOMEM; 2189 } 2190 return 0; 2191 } 2192 2193 static struct kmem_cache *get_slab(size_t size) 2194 { 2195 int i = order_base_2(size) - 10; 2196 2197 BUG_ON(i >= JBD2_MAX_SLABS); 2198 if (unlikely(i < 0)) 2199 i = 0; 2200 BUG_ON(jbd2_slab[i] == NULL); 2201 return jbd2_slab[i]; 2202 } 2203 2204 void *jbd2_alloc(size_t size, gfp_t flags) 2205 { 2206 void *ptr; 2207 2208 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2209 2210 flags |= __GFP_REPEAT; 2211 if (size == PAGE_SIZE) 2212 ptr = (void *)__get_free_pages(flags, 0); 2213 else if (size > PAGE_SIZE) { 2214 int order = get_order(size); 2215 2216 if (order < 3) 2217 ptr = (void *)__get_free_pages(flags, order); 2218 else 2219 ptr = vmalloc(size); 2220 } else 2221 ptr = kmem_cache_alloc(get_slab(size), flags); 2222 2223 /* Check alignment; SLUB has gotten this wrong in the past, 2224 * and this can lead to user data corruption! */ 2225 BUG_ON(((unsigned long) ptr) & (size-1)); 2226 2227 return ptr; 2228 } 2229 2230 void jbd2_free(void *ptr, size_t size) 2231 { 2232 if (size == PAGE_SIZE) { 2233 free_pages((unsigned long)ptr, 0); 2234 return; 2235 } 2236 if (size > PAGE_SIZE) { 2237 int order = get_order(size); 2238 2239 if (order < 3) 2240 free_pages((unsigned long)ptr, order); 2241 else 2242 vfree(ptr); 2243 return; 2244 } 2245 kmem_cache_free(get_slab(size), ptr); 2246 }; 2247 2248 /* 2249 * Journal_head storage management 2250 */ 2251 static struct kmem_cache *jbd2_journal_head_cache; 2252 #ifdef CONFIG_JBD2_DEBUG 2253 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2254 #endif 2255 2256 static int jbd2_journal_init_journal_head_cache(void) 2257 { 2258 int retval; 2259 2260 J_ASSERT(jbd2_journal_head_cache == NULL); 2261 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2262 sizeof(struct journal_head), 2263 0, /* offset */ 2264 SLAB_TEMPORARY, /* flags */ 2265 NULL); /* ctor */ 2266 retval = 0; 2267 if (!jbd2_journal_head_cache) { 2268 retval = -ENOMEM; 2269 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2270 } 2271 return retval; 2272 } 2273 2274 static void jbd2_journal_destroy_journal_head_cache(void) 2275 { 2276 if (jbd2_journal_head_cache) { 2277 kmem_cache_destroy(jbd2_journal_head_cache); 2278 jbd2_journal_head_cache = NULL; 2279 } 2280 } 2281 2282 /* 2283 * journal_head splicing and dicing 2284 */ 2285 static struct journal_head *journal_alloc_journal_head(void) 2286 { 2287 struct journal_head *ret; 2288 2289 #ifdef CONFIG_JBD2_DEBUG 2290 atomic_inc(&nr_journal_heads); 2291 #endif 2292 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2293 if (!ret) { 2294 jbd_debug(1, "out of memory for journal_head\n"); 2295 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2296 while (!ret) { 2297 yield(); 2298 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2299 } 2300 } 2301 return ret; 2302 } 2303 2304 static void journal_free_journal_head(struct journal_head *jh) 2305 { 2306 #ifdef CONFIG_JBD2_DEBUG 2307 atomic_dec(&nr_journal_heads); 2308 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2309 #endif 2310 kmem_cache_free(jbd2_journal_head_cache, jh); 2311 } 2312 2313 /* 2314 * A journal_head is attached to a buffer_head whenever JBD has an 2315 * interest in the buffer. 2316 * 2317 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2318 * is set. This bit is tested in core kernel code where we need to take 2319 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2320 * there. 2321 * 2322 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2323 * 2324 * When a buffer has its BH_JBD bit set it is immune from being released by 2325 * core kernel code, mainly via ->b_count. 2326 * 2327 * A journal_head is detached from its buffer_head when the journal_head's 2328 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2329 * transaction (b_cp_transaction) hold their references to b_jcount. 2330 * 2331 * Various places in the kernel want to attach a journal_head to a buffer_head 2332 * _before_ attaching the journal_head to a transaction. To protect the 2333 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2334 * journal_head's b_jcount refcount by one. The caller must call 2335 * jbd2_journal_put_journal_head() to undo this. 2336 * 2337 * So the typical usage would be: 2338 * 2339 * (Attach a journal_head if needed. Increments b_jcount) 2340 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2341 * ... 2342 * (Get another reference for transaction) 2343 * jbd2_journal_grab_journal_head(bh); 2344 * jh->b_transaction = xxx; 2345 * (Put original reference) 2346 * jbd2_journal_put_journal_head(jh); 2347 */ 2348 2349 /* 2350 * Give a buffer_head a journal_head. 2351 * 2352 * May sleep. 2353 */ 2354 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2355 { 2356 struct journal_head *jh; 2357 struct journal_head *new_jh = NULL; 2358 2359 repeat: 2360 if (!buffer_jbd(bh)) { 2361 new_jh = journal_alloc_journal_head(); 2362 memset(new_jh, 0, sizeof(*new_jh)); 2363 } 2364 2365 jbd_lock_bh_journal_head(bh); 2366 if (buffer_jbd(bh)) { 2367 jh = bh2jh(bh); 2368 } else { 2369 J_ASSERT_BH(bh, 2370 (atomic_read(&bh->b_count) > 0) || 2371 (bh->b_page && bh->b_page->mapping)); 2372 2373 if (!new_jh) { 2374 jbd_unlock_bh_journal_head(bh); 2375 goto repeat; 2376 } 2377 2378 jh = new_jh; 2379 new_jh = NULL; /* We consumed it */ 2380 set_buffer_jbd(bh); 2381 bh->b_private = jh; 2382 jh->b_bh = bh; 2383 get_bh(bh); 2384 BUFFER_TRACE(bh, "added journal_head"); 2385 } 2386 jh->b_jcount++; 2387 jbd_unlock_bh_journal_head(bh); 2388 if (new_jh) 2389 journal_free_journal_head(new_jh); 2390 return bh->b_private; 2391 } 2392 2393 /* 2394 * Grab a ref against this buffer_head's journal_head. If it ended up not 2395 * having a journal_head, return NULL 2396 */ 2397 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2398 { 2399 struct journal_head *jh = NULL; 2400 2401 jbd_lock_bh_journal_head(bh); 2402 if (buffer_jbd(bh)) { 2403 jh = bh2jh(bh); 2404 jh->b_jcount++; 2405 } 2406 jbd_unlock_bh_journal_head(bh); 2407 return jh; 2408 } 2409 2410 static void __journal_remove_journal_head(struct buffer_head *bh) 2411 { 2412 struct journal_head *jh = bh2jh(bh); 2413 2414 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2415 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2416 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2417 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2418 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2419 J_ASSERT_BH(bh, buffer_jbd(bh)); 2420 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2421 BUFFER_TRACE(bh, "remove journal_head"); 2422 if (jh->b_frozen_data) { 2423 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2424 jbd2_free(jh->b_frozen_data, bh->b_size); 2425 } 2426 if (jh->b_committed_data) { 2427 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2428 jbd2_free(jh->b_committed_data, bh->b_size); 2429 } 2430 bh->b_private = NULL; 2431 jh->b_bh = NULL; /* debug, really */ 2432 clear_buffer_jbd(bh); 2433 journal_free_journal_head(jh); 2434 } 2435 2436 /* 2437 * Drop a reference on the passed journal_head. If it fell to zero then 2438 * release the journal_head from the buffer_head. 2439 */ 2440 void jbd2_journal_put_journal_head(struct journal_head *jh) 2441 { 2442 struct buffer_head *bh = jh2bh(jh); 2443 2444 jbd_lock_bh_journal_head(bh); 2445 J_ASSERT_JH(jh, jh->b_jcount > 0); 2446 --jh->b_jcount; 2447 if (!jh->b_jcount) { 2448 __journal_remove_journal_head(bh); 2449 jbd_unlock_bh_journal_head(bh); 2450 __brelse(bh); 2451 } else 2452 jbd_unlock_bh_journal_head(bh); 2453 } 2454 2455 /* 2456 * Initialize jbd inode head 2457 */ 2458 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2459 { 2460 jinode->i_transaction = NULL; 2461 jinode->i_next_transaction = NULL; 2462 jinode->i_vfs_inode = inode; 2463 jinode->i_flags = 0; 2464 INIT_LIST_HEAD(&jinode->i_list); 2465 } 2466 2467 /* 2468 * Function to be called before we start removing inode from memory (i.e., 2469 * clear_inode() is a fine place to be called from). It removes inode from 2470 * transaction's lists. 2471 */ 2472 void jbd2_journal_release_jbd_inode(journal_t *journal, 2473 struct jbd2_inode *jinode) 2474 { 2475 if (!journal) 2476 return; 2477 restart: 2478 spin_lock(&journal->j_list_lock); 2479 /* Is commit writing out inode - we have to wait */ 2480 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) { 2481 wait_queue_head_t *wq; 2482 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2483 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2484 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2485 spin_unlock(&journal->j_list_lock); 2486 schedule(); 2487 finish_wait(wq, &wait.wait); 2488 goto restart; 2489 } 2490 2491 if (jinode->i_transaction) { 2492 list_del(&jinode->i_list); 2493 jinode->i_transaction = NULL; 2494 } 2495 spin_unlock(&journal->j_list_lock); 2496 } 2497 2498 /* 2499 * debugfs tunables 2500 */ 2501 #ifdef CONFIG_JBD2_DEBUG 2502 u8 jbd2_journal_enable_debug __read_mostly; 2503 EXPORT_SYMBOL(jbd2_journal_enable_debug); 2504 2505 #define JBD2_DEBUG_NAME "jbd2-debug" 2506 2507 static struct dentry *jbd2_debugfs_dir; 2508 static struct dentry *jbd2_debug; 2509 2510 static void __init jbd2_create_debugfs_entry(void) 2511 { 2512 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL); 2513 if (jbd2_debugfs_dir) 2514 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, 2515 S_IRUGO | S_IWUSR, 2516 jbd2_debugfs_dir, 2517 &jbd2_journal_enable_debug); 2518 } 2519 2520 static void __exit jbd2_remove_debugfs_entry(void) 2521 { 2522 debugfs_remove(jbd2_debug); 2523 debugfs_remove(jbd2_debugfs_dir); 2524 } 2525 2526 #else 2527 2528 static void __init jbd2_create_debugfs_entry(void) 2529 { 2530 } 2531 2532 static void __exit jbd2_remove_debugfs_entry(void) 2533 { 2534 } 2535 2536 #endif 2537 2538 #ifdef CONFIG_PROC_FS 2539 2540 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2541 2542 static void __init jbd2_create_jbd_stats_proc_entry(void) 2543 { 2544 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2545 } 2546 2547 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2548 { 2549 if (proc_jbd2_stats) 2550 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2551 } 2552 2553 #else 2554 2555 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2556 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2557 2558 #endif 2559 2560 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2561 2562 static int __init jbd2_journal_init_handle_cache(void) 2563 { 2564 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2565 if (jbd2_handle_cache == NULL) { 2566 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2567 return -ENOMEM; 2568 } 2569 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2570 if (jbd2_inode_cache == NULL) { 2571 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2572 kmem_cache_destroy(jbd2_handle_cache); 2573 return -ENOMEM; 2574 } 2575 return 0; 2576 } 2577 2578 static void jbd2_journal_destroy_handle_cache(void) 2579 { 2580 if (jbd2_handle_cache) 2581 kmem_cache_destroy(jbd2_handle_cache); 2582 if (jbd2_inode_cache) 2583 kmem_cache_destroy(jbd2_inode_cache); 2584 2585 } 2586 2587 /* 2588 * Module startup and shutdown 2589 */ 2590 2591 static int __init journal_init_caches(void) 2592 { 2593 int ret; 2594 2595 ret = jbd2_journal_init_revoke_caches(); 2596 if (ret == 0) 2597 ret = jbd2_journal_init_journal_head_cache(); 2598 if (ret == 0) 2599 ret = jbd2_journal_init_handle_cache(); 2600 if (ret == 0) 2601 ret = jbd2_journal_init_transaction_cache(); 2602 return ret; 2603 } 2604 2605 static void jbd2_journal_destroy_caches(void) 2606 { 2607 jbd2_journal_destroy_revoke_caches(); 2608 jbd2_journal_destroy_journal_head_cache(); 2609 jbd2_journal_destroy_handle_cache(); 2610 jbd2_journal_destroy_transaction_cache(); 2611 jbd2_journal_destroy_slabs(); 2612 } 2613 2614 static int __init journal_init(void) 2615 { 2616 int ret; 2617 2618 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2619 2620 ret = journal_init_caches(); 2621 if (ret == 0) { 2622 jbd2_create_debugfs_entry(); 2623 jbd2_create_jbd_stats_proc_entry(); 2624 } else { 2625 jbd2_journal_destroy_caches(); 2626 } 2627 return ret; 2628 } 2629 2630 static void __exit journal_exit(void) 2631 { 2632 #ifdef CONFIG_JBD2_DEBUG 2633 int n = atomic_read(&nr_journal_heads); 2634 if (n) 2635 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n); 2636 #endif 2637 jbd2_remove_debugfs_entry(); 2638 jbd2_remove_jbd_stats_proc_entry(); 2639 jbd2_journal_destroy_caches(); 2640 } 2641 2642 MODULE_LICENSE("GPL"); 2643 module_init(journal_init); 2644 module_exit(journal_exit); 2645 2646