1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 ushort jbd2_journal_enable_debug __read_mostly; 53 EXPORT_SYMBOL(jbd2_journal_enable_debug); 54 55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 57 #endif 58 59 EXPORT_SYMBOL(jbd2_journal_extend); 60 EXPORT_SYMBOL(jbd2_journal_stop); 61 EXPORT_SYMBOL(jbd2_journal_lock_updates); 62 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 63 EXPORT_SYMBOL(jbd2_journal_get_write_access); 64 EXPORT_SYMBOL(jbd2_journal_get_create_access); 65 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 66 EXPORT_SYMBOL(jbd2_journal_set_triggers); 67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 68 EXPORT_SYMBOL(jbd2_journal_forget); 69 EXPORT_SYMBOL(jbd2_journal_flush); 70 EXPORT_SYMBOL(jbd2_journal_revoke); 71 72 EXPORT_SYMBOL(jbd2_journal_init_dev); 73 EXPORT_SYMBOL(jbd2_journal_init_inode); 74 EXPORT_SYMBOL(jbd2_journal_check_used_features); 75 EXPORT_SYMBOL(jbd2_journal_check_available_features); 76 EXPORT_SYMBOL(jbd2_journal_set_features); 77 EXPORT_SYMBOL(jbd2_journal_load); 78 EXPORT_SYMBOL(jbd2_journal_destroy); 79 EXPORT_SYMBOL(jbd2_journal_abort); 80 EXPORT_SYMBOL(jbd2_journal_errno); 81 EXPORT_SYMBOL(jbd2_journal_ack_err); 82 EXPORT_SYMBOL(jbd2_journal_clear_err); 83 EXPORT_SYMBOL(jbd2_log_wait_commit); 84 EXPORT_SYMBOL(jbd2_log_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_start_commit); 86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 87 EXPORT_SYMBOL(jbd2_journal_wipe); 88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 89 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 91 EXPORT_SYMBOL(jbd2_journal_force_commit); 92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers); 95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers); 96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 99 EXPORT_SYMBOL(jbd2_inode_cache); 100 101 static int jbd2_journal_create_slab(size_t slab_size); 102 103 #ifdef CONFIG_JBD2_DEBUG 104 void __jbd2_debug(int level, const char *file, const char *func, 105 unsigned int line, const char *fmt, ...) 106 { 107 struct va_format vaf; 108 va_list args; 109 110 if (level > jbd2_journal_enable_debug) 111 return; 112 va_start(args, fmt); 113 vaf.fmt = fmt; 114 vaf.va = &args; 115 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 116 va_end(args); 117 } 118 EXPORT_SYMBOL(__jbd2_debug); 119 #endif 120 121 /* Checksumming functions */ 122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 123 { 124 if (!jbd2_journal_has_csum_v2or3_feature(j)) 125 return 1; 126 127 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 128 } 129 130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 131 { 132 __u32 csum; 133 __be32 old_csum; 134 135 old_csum = sb->s_checksum; 136 sb->s_checksum = 0; 137 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 138 sb->s_checksum = old_csum; 139 140 return cpu_to_be32(csum); 141 } 142 143 /* 144 * Helper function used to manage commit timeouts 145 */ 146 147 static void commit_timeout(struct timer_list *t) 148 { 149 journal_t *journal = from_timer(journal, t, j_commit_timer); 150 151 wake_up_process(journal->j_task); 152 } 153 154 /* 155 * kjournald2: The main thread function used to manage a logging device 156 * journal. 157 * 158 * This kernel thread is responsible for two things: 159 * 160 * 1) COMMIT: Every so often we need to commit the current state of the 161 * filesystem to disk. The journal thread is responsible for writing 162 * all of the metadata buffers to disk. If a fast commit is ongoing 163 * journal thread waits until it's done and then continues from 164 * there on. 165 * 166 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 167 * of the data in that part of the log has been rewritten elsewhere on 168 * the disk. Flushing these old buffers to reclaim space in the log is 169 * known as checkpointing, and this thread is responsible for that job. 170 */ 171 172 static int kjournald2(void *arg) 173 { 174 journal_t *journal = arg; 175 transaction_t *transaction; 176 177 /* 178 * Set up an interval timer which can be used to trigger a commit wakeup 179 * after the commit interval expires 180 */ 181 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 182 183 set_freezable(); 184 185 /* Record that the journal thread is running */ 186 journal->j_task = current; 187 wake_up(&journal->j_wait_done_commit); 188 189 /* 190 * Make sure that no allocations from this kernel thread will ever 191 * recurse to the fs layer because we are responsible for the 192 * transaction commit and any fs involvement might get stuck waiting for 193 * the trasn. commit. 194 */ 195 memalloc_nofs_save(); 196 197 /* 198 * And now, wait forever for commit wakeup events. 199 */ 200 write_lock(&journal->j_state_lock); 201 202 loop: 203 if (journal->j_flags & JBD2_UNMOUNT) 204 goto end_loop; 205 206 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n", 207 journal->j_commit_sequence, journal->j_commit_request); 208 209 if (journal->j_commit_sequence != journal->j_commit_request) { 210 jbd_debug(1, "OK, requests differ\n"); 211 write_unlock(&journal->j_state_lock); 212 del_timer_sync(&journal->j_commit_timer); 213 jbd2_journal_commit_transaction(journal); 214 write_lock(&journal->j_state_lock); 215 goto loop; 216 } 217 218 wake_up(&journal->j_wait_done_commit); 219 if (freezing(current)) { 220 /* 221 * The simpler the better. Flushing journal isn't a 222 * good idea, because that depends on threads that may 223 * be already stopped. 224 */ 225 jbd_debug(1, "Now suspending kjournald2\n"); 226 write_unlock(&journal->j_state_lock); 227 try_to_freeze(); 228 write_lock(&journal->j_state_lock); 229 } else { 230 /* 231 * We assume on resume that commits are already there, 232 * so we don't sleep 233 */ 234 DEFINE_WAIT(wait); 235 int should_sleep = 1; 236 237 prepare_to_wait(&journal->j_wait_commit, &wait, 238 TASK_INTERRUPTIBLE); 239 if (journal->j_commit_sequence != journal->j_commit_request) 240 should_sleep = 0; 241 transaction = journal->j_running_transaction; 242 if (transaction && time_after_eq(jiffies, 243 transaction->t_expires)) 244 should_sleep = 0; 245 if (journal->j_flags & JBD2_UNMOUNT) 246 should_sleep = 0; 247 if (should_sleep) { 248 write_unlock(&journal->j_state_lock); 249 schedule(); 250 write_lock(&journal->j_state_lock); 251 } 252 finish_wait(&journal->j_wait_commit, &wait); 253 } 254 255 jbd_debug(1, "kjournald2 wakes\n"); 256 257 /* 258 * Were we woken up by a commit wakeup event? 259 */ 260 transaction = journal->j_running_transaction; 261 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 262 journal->j_commit_request = transaction->t_tid; 263 jbd_debug(1, "woke because of timeout\n"); 264 } 265 goto loop; 266 267 end_loop: 268 del_timer_sync(&journal->j_commit_timer); 269 journal->j_task = NULL; 270 wake_up(&journal->j_wait_done_commit); 271 jbd_debug(1, "Journal thread exiting.\n"); 272 write_unlock(&journal->j_state_lock); 273 return 0; 274 } 275 276 static int jbd2_journal_start_thread(journal_t *journal) 277 { 278 struct task_struct *t; 279 280 t = kthread_run(kjournald2, journal, "jbd2/%s", 281 journal->j_devname); 282 if (IS_ERR(t)) 283 return PTR_ERR(t); 284 285 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 286 return 0; 287 } 288 289 static void journal_kill_thread(journal_t *journal) 290 { 291 write_lock(&journal->j_state_lock); 292 journal->j_flags |= JBD2_UNMOUNT; 293 294 while (journal->j_task) { 295 write_unlock(&journal->j_state_lock); 296 wake_up(&journal->j_wait_commit); 297 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 298 write_lock(&journal->j_state_lock); 299 } 300 write_unlock(&journal->j_state_lock); 301 } 302 303 /* 304 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 305 * 306 * Writes a metadata buffer to a given disk block. The actual IO is not 307 * performed but a new buffer_head is constructed which labels the data 308 * to be written with the correct destination disk block. 309 * 310 * Any magic-number escaping which needs to be done will cause a 311 * copy-out here. If the buffer happens to start with the 312 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 313 * magic number is only written to the log for descripter blocks. In 314 * this case, we copy the data and replace the first word with 0, and we 315 * return a result code which indicates that this buffer needs to be 316 * marked as an escaped buffer in the corresponding log descriptor 317 * block. The missing word can then be restored when the block is read 318 * during recovery. 319 * 320 * If the source buffer has already been modified by a new transaction 321 * since we took the last commit snapshot, we use the frozen copy of 322 * that data for IO. If we end up using the existing buffer_head's data 323 * for the write, then we have to make sure nobody modifies it while the 324 * IO is in progress. do_get_write_access() handles this. 325 * 326 * The function returns a pointer to the buffer_head to be used for IO. 327 * 328 * 329 * Return value: 330 * <0: Error 331 * >=0: Finished OK 332 * 333 * On success: 334 * Bit 0 set == escape performed on the data 335 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 336 */ 337 338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 339 struct journal_head *jh_in, 340 struct buffer_head **bh_out, 341 sector_t blocknr) 342 { 343 int need_copy_out = 0; 344 int done_copy_out = 0; 345 int do_escape = 0; 346 char *mapped_data; 347 struct buffer_head *new_bh; 348 struct page *new_page; 349 unsigned int new_offset; 350 struct buffer_head *bh_in = jh2bh(jh_in); 351 journal_t *journal = transaction->t_journal; 352 353 /* 354 * The buffer really shouldn't be locked: only the current committing 355 * transaction is allowed to write it, so nobody else is allowed 356 * to do any IO. 357 * 358 * akpm: except if we're journalling data, and write() output is 359 * also part of a shared mapping, and another thread has 360 * decided to launch a writepage() against this buffer. 361 */ 362 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 363 364 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 365 366 /* keep subsequent assertions sane */ 367 atomic_set(&new_bh->b_count, 1); 368 369 spin_lock(&jh_in->b_state_lock); 370 repeat: 371 /* 372 * If a new transaction has already done a buffer copy-out, then 373 * we use that version of the data for the commit. 374 */ 375 if (jh_in->b_frozen_data) { 376 done_copy_out = 1; 377 new_page = virt_to_page(jh_in->b_frozen_data); 378 new_offset = offset_in_page(jh_in->b_frozen_data); 379 } else { 380 new_page = jh2bh(jh_in)->b_page; 381 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 382 } 383 384 mapped_data = kmap_atomic(new_page); 385 /* 386 * Fire data frozen trigger if data already wasn't frozen. Do this 387 * before checking for escaping, as the trigger may modify the magic 388 * offset. If a copy-out happens afterwards, it will have the correct 389 * data in the buffer. 390 */ 391 if (!done_copy_out) 392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 393 jh_in->b_triggers); 394 395 /* 396 * Check for escaping 397 */ 398 if (*((__be32 *)(mapped_data + new_offset)) == 399 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 400 need_copy_out = 1; 401 do_escape = 1; 402 } 403 kunmap_atomic(mapped_data); 404 405 /* 406 * Do we need to do a data copy? 407 */ 408 if (need_copy_out && !done_copy_out) { 409 char *tmp; 410 411 spin_unlock(&jh_in->b_state_lock); 412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 413 if (!tmp) { 414 brelse(new_bh); 415 return -ENOMEM; 416 } 417 spin_lock(&jh_in->b_state_lock); 418 if (jh_in->b_frozen_data) { 419 jbd2_free(tmp, bh_in->b_size); 420 goto repeat; 421 } 422 423 jh_in->b_frozen_data = tmp; 424 mapped_data = kmap_atomic(new_page); 425 memcpy(tmp, mapped_data + new_offset, bh_in->b_size); 426 kunmap_atomic(mapped_data); 427 428 new_page = virt_to_page(tmp); 429 new_offset = offset_in_page(tmp); 430 done_copy_out = 1; 431 432 /* 433 * This isn't strictly necessary, as we're using frozen 434 * data for the escaping, but it keeps consistency with 435 * b_frozen_data usage. 436 */ 437 jh_in->b_frozen_triggers = jh_in->b_triggers; 438 } 439 440 /* 441 * Did we need to do an escaping? Now we've done all the 442 * copying, we can finally do so. 443 */ 444 if (do_escape) { 445 mapped_data = kmap_atomic(new_page); 446 *((unsigned int *)(mapped_data + new_offset)) = 0; 447 kunmap_atomic(mapped_data); 448 } 449 450 set_bh_page(new_bh, new_page, new_offset); 451 new_bh->b_size = bh_in->b_size; 452 new_bh->b_bdev = journal->j_dev; 453 new_bh->b_blocknr = blocknr; 454 new_bh->b_private = bh_in; 455 set_buffer_mapped(new_bh); 456 set_buffer_dirty(new_bh); 457 458 *bh_out = new_bh; 459 460 /* 461 * The to-be-written buffer needs to get moved to the io queue, 462 * and the original buffer whose contents we are shadowing or 463 * copying is moved to the transaction's shadow queue. 464 */ 465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 466 spin_lock(&journal->j_list_lock); 467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 468 spin_unlock(&journal->j_list_lock); 469 set_buffer_shadow(bh_in); 470 spin_unlock(&jh_in->b_state_lock); 471 472 return do_escape | (done_copy_out << 1); 473 } 474 475 /* 476 * Allocation code for the journal file. Manage the space left in the 477 * journal, so that we can begin checkpointing when appropriate. 478 */ 479 480 /* 481 * Called with j_state_lock locked for writing. 482 * Returns true if a transaction commit was started. 483 */ 484 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 485 { 486 /* Return if the txn has already requested to be committed */ 487 if (journal->j_commit_request == target) 488 return 0; 489 490 /* 491 * The only transaction we can possibly wait upon is the 492 * currently running transaction (if it exists). Otherwise, 493 * the target tid must be an old one. 494 */ 495 if (journal->j_running_transaction && 496 journal->j_running_transaction->t_tid == target) { 497 /* 498 * We want a new commit: OK, mark the request and wakeup the 499 * commit thread. We do _not_ do the commit ourselves. 500 */ 501 502 journal->j_commit_request = target; 503 jbd_debug(1, "JBD2: requesting commit %u/%u\n", 504 journal->j_commit_request, 505 journal->j_commit_sequence); 506 journal->j_running_transaction->t_requested = jiffies; 507 wake_up(&journal->j_wait_commit); 508 return 1; 509 } else if (!tid_geq(journal->j_commit_request, target)) 510 /* This should never happen, but if it does, preserve 511 the evidence before kjournald goes into a loop and 512 increments j_commit_sequence beyond all recognition. */ 513 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 514 journal->j_commit_request, 515 journal->j_commit_sequence, 516 target, journal->j_running_transaction ? 517 journal->j_running_transaction->t_tid : 0); 518 return 0; 519 } 520 521 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 522 { 523 int ret; 524 525 write_lock(&journal->j_state_lock); 526 ret = __jbd2_log_start_commit(journal, tid); 527 write_unlock(&journal->j_state_lock); 528 return ret; 529 } 530 531 /* 532 * Force and wait any uncommitted transactions. We can only force the running 533 * transaction if we don't have an active handle, otherwise, we will deadlock. 534 * Returns: <0 in case of error, 535 * 0 if nothing to commit, 536 * 1 if transaction was successfully committed. 537 */ 538 static int __jbd2_journal_force_commit(journal_t *journal) 539 { 540 transaction_t *transaction = NULL; 541 tid_t tid; 542 int need_to_start = 0, ret = 0; 543 544 read_lock(&journal->j_state_lock); 545 if (journal->j_running_transaction && !current->journal_info) { 546 transaction = journal->j_running_transaction; 547 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 548 need_to_start = 1; 549 } else if (journal->j_committing_transaction) 550 transaction = journal->j_committing_transaction; 551 552 if (!transaction) { 553 /* Nothing to commit */ 554 read_unlock(&journal->j_state_lock); 555 return 0; 556 } 557 tid = transaction->t_tid; 558 read_unlock(&journal->j_state_lock); 559 if (need_to_start) 560 jbd2_log_start_commit(journal, tid); 561 ret = jbd2_log_wait_commit(journal, tid); 562 if (!ret) 563 ret = 1; 564 565 return ret; 566 } 567 568 /** 569 * Force and wait upon a commit if the calling process is not within 570 * transaction. This is used for forcing out undo-protected data which contains 571 * bitmaps, when the fs is running out of space. 572 * 573 * @journal: journal to force 574 * Returns true if progress was made. 575 */ 576 int jbd2_journal_force_commit_nested(journal_t *journal) 577 { 578 int ret; 579 580 ret = __jbd2_journal_force_commit(journal); 581 return ret > 0; 582 } 583 584 /** 585 * int journal_force_commit() - force any uncommitted transactions 586 * @journal: journal to force 587 * 588 * Caller want unconditional commit. We can only force the running transaction 589 * if we don't have an active handle, otherwise, we will deadlock. 590 */ 591 int jbd2_journal_force_commit(journal_t *journal) 592 { 593 int ret; 594 595 J_ASSERT(!current->journal_info); 596 ret = __jbd2_journal_force_commit(journal); 597 if (ret > 0) 598 ret = 0; 599 return ret; 600 } 601 602 /* 603 * Start a commit of the current running transaction (if any). Returns true 604 * if a transaction is going to be committed (or is currently already 605 * committing), and fills its tid in at *ptid 606 */ 607 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 608 { 609 int ret = 0; 610 611 write_lock(&journal->j_state_lock); 612 if (journal->j_running_transaction) { 613 tid_t tid = journal->j_running_transaction->t_tid; 614 615 __jbd2_log_start_commit(journal, tid); 616 /* There's a running transaction and we've just made sure 617 * it's commit has been scheduled. */ 618 if (ptid) 619 *ptid = tid; 620 ret = 1; 621 } else if (journal->j_committing_transaction) { 622 /* 623 * If commit has been started, then we have to wait for 624 * completion of that transaction. 625 */ 626 if (ptid) 627 *ptid = journal->j_committing_transaction->t_tid; 628 ret = 1; 629 } 630 write_unlock(&journal->j_state_lock); 631 return ret; 632 } 633 634 /* 635 * Return 1 if a given transaction has not yet sent barrier request 636 * connected with a transaction commit. If 0 is returned, transaction 637 * may or may not have sent the barrier. Used to avoid sending barrier 638 * twice in common cases. 639 */ 640 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 641 { 642 int ret = 0; 643 transaction_t *commit_trans; 644 645 if (!(journal->j_flags & JBD2_BARRIER)) 646 return 0; 647 read_lock(&journal->j_state_lock); 648 /* Transaction already committed? */ 649 if (tid_geq(journal->j_commit_sequence, tid)) 650 goto out; 651 commit_trans = journal->j_committing_transaction; 652 if (!commit_trans || commit_trans->t_tid != tid) { 653 ret = 1; 654 goto out; 655 } 656 /* 657 * Transaction is being committed and we already proceeded to 658 * submitting a flush to fs partition? 659 */ 660 if (journal->j_fs_dev != journal->j_dev) { 661 if (!commit_trans->t_need_data_flush || 662 commit_trans->t_state >= T_COMMIT_DFLUSH) 663 goto out; 664 } else { 665 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 666 goto out; 667 } 668 ret = 1; 669 out: 670 read_unlock(&journal->j_state_lock); 671 return ret; 672 } 673 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 674 675 /* 676 * Wait for a specified commit to complete. 677 * The caller may not hold the journal lock. 678 */ 679 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 680 { 681 int err = 0; 682 683 read_lock(&journal->j_state_lock); 684 #ifdef CONFIG_PROVE_LOCKING 685 /* 686 * Some callers make sure transaction is already committing and in that 687 * case we cannot block on open handles anymore. So don't warn in that 688 * case. 689 */ 690 if (tid_gt(tid, journal->j_commit_sequence) && 691 (!journal->j_committing_transaction || 692 journal->j_committing_transaction->t_tid != tid)) { 693 read_unlock(&journal->j_state_lock); 694 jbd2_might_wait_for_commit(journal); 695 read_lock(&journal->j_state_lock); 696 } 697 #endif 698 #ifdef CONFIG_JBD2_DEBUG 699 if (!tid_geq(journal->j_commit_request, tid)) { 700 printk(KERN_ERR 701 "%s: error: j_commit_request=%u, tid=%u\n", 702 __func__, journal->j_commit_request, tid); 703 } 704 #endif 705 while (tid_gt(tid, journal->j_commit_sequence)) { 706 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 707 tid, journal->j_commit_sequence); 708 read_unlock(&journal->j_state_lock); 709 wake_up(&journal->j_wait_commit); 710 wait_event(journal->j_wait_done_commit, 711 !tid_gt(tid, journal->j_commit_sequence)); 712 read_lock(&journal->j_state_lock); 713 } 714 read_unlock(&journal->j_state_lock); 715 716 if (unlikely(is_journal_aborted(journal))) 717 err = -EIO; 718 return err; 719 } 720 721 /* 722 * Start a fast commit. If there's an ongoing fast or full commit wait for 723 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY 724 * if a fast commit is not needed, either because there's an already a commit 725 * going on or this tid has already been committed. Returns -EINVAL if no jbd2 726 * commit has yet been performed. 727 */ 728 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid) 729 { 730 /* 731 * Fast commits only allowed if at least one full commit has 732 * been processed. 733 */ 734 if (!journal->j_stats.ts_tid) 735 return -EINVAL; 736 737 if (tid <= journal->j_commit_sequence) 738 return -EALREADY; 739 740 write_lock(&journal->j_state_lock); 741 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 742 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) { 743 DEFINE_WAIT(wait); 744 745 prepare_to_wait(&journal->j_fc_wait, &wait, 746 TASK_UNINTERRUPTIBLE); 747 write_unlock(&journal->j_state_lock); 748 schedule(); 749 finish_wait(&journal->j_fc_wait, &wait); 750 return -EALREADY; 751 } 752 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING; 753 write_unlock(&journal->j_state_lock); 754 755 return 0; 756 } 757 EXPORT_SYMBOL(jbd2_fc_begin_commit); 758 759 /* 760 * Stop a fast commit. If fallback is set, this function starts commit of 761 * TID tid before any other fast commit can start. 762 */ 763 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback) 764 { 765 if (journal->j_fc_cleanup_callback) 766 journal->j_fc_cleanup_callback(journal, 0); 767 write_lock(&journal->j_state_lock); 768 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 769 if (fallback) 770 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 771 write_unlock(&journal->j_state_lock); 772 wake_up(&journal->j_fc_wait); 773 if (fallback) 774 return jbd2_complete_transaction(journal, tid); 775 return 0; 776 } 777 778 int jbd2_fc_end_commit(journal_t *journal) 779 { 780 return __jbd2_fc_end_commit(journal, 0, false); 781 } 782 EXPORT_SYMBOL(jbd2_fc_end_commit); 783 784 int jbd2_fc_end_commit_fallback(journal_t *journal) 785 { 786 tid_t tid; 787 788 read_lock(&journal->j_state_lock); 789 tid = journal->j_running_transaction ? 790 journal->j_running_transaction->t_tid : 0; 791 read_unlock(&journal->j_state_lock); 792 return __jbd2_fc_end_commit(journal, tid, true); 793 } 794 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback); 795 796 /* Return 1 when transaction with given tid has already committed. */ 797 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 798 { 799 int ret = 1; 800 801 read_lock(&journal->j_state_lock); 802 if (journal->j_running_transaction && 803 journal->j_running_transaction->t_tid == tid) 804 ret = 0; 805 if (journal->j_committing_transaction && 806 journal->j_committing_transaction->t_tid == tid) 807 ret = 0; 808 read_unlock(&journal->j_state_lock); 809 return ret; 810 } 811 EXPORT_SYMBOL(jbd2_transaction_committed); 812 813 /* 814 * When this function returns the transaction corresponding to tid 815 * will be completed. If the transaction has currently running, start 816 * committing that transaction before waiting for it to complete. If 817 * the transaction id is stale, it is by definition already completed, 818 * so just return SUCCESS. 819 */ 820 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 821 { 822 int need_to_wait = 1; 823 824 read_lock(&journal->j_state_lock); 825 if (journal->j_running_transaction && 826 journal->j_running_transaction->t_tid == tid) { 827 if (journal->j_commit_request != tid) { 828 /* transaction not yet started, so request it */ 829 read_unlock(&journal->j_state_lock); 830 jbd2_log_start_commit(journal, tid); 831 goto wait_commit; 832 } 833 } else if (!(journal->j_committing_transaction && 834 journal->j_committing_transaction->t_tid == tid)) 835 need_to_wait = 0; 836 read_unlock(&journal->j_state_lock); 837 if (!need_to_wait) 838 return 0; 839 wait_commit: 840 return jbd2_log_wait_commit(journal, tid); 841 } 842 EXPORT_SYMBOL(jbd2_complete_transaction); 843 844 /* 845 * Log buffer allocation routines: 846 */ 847 848 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 849 { 850 unsigned long blocknr; 851 852 write_lock(&journal->j_state_lock); 853 J_ASSERT(journal->j_free > 1); 854 855 blocknr = journal->j_head; 856 journal->j_head++; 857 journal->j_free--; 858 if (journal->j_head == journal->j_last) 859 journal->j_head = journal->j_first; 860 write_unlock(&journal->j_state_lock); 861 return jbd2_journal_bmap(journal, blocknr, retp); 862 } 863 864 /* Map one fast commit buffer for use by the file system */ 865 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out) 866 { 867 unsigned long long pblock; 868 unsigned long blocknr; 869 int ret = 0; 870 struct buffer_head *bh; 871 int fc_off; 872 873 *bh_out = NULL; 874 875 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) { 876 fc_off = journal->j_fc_off; 877 blocknr = journal->j_fc_first + fc_off; 878 journal->j_fc_off++; 879 } else { 880 ret = -EINVAL; 881 } 882 883 if (ret) 884 return ret; 885 886 ret = jbd2_journal_bmap(journal, blocknr, &pblock); 887 if (ret) 888 return ret; 889 890 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize); 891 if (!bh) 892 return -ENOMEM; 893 894 895 journal->j_fc_wbuf[fc_off] = bh; 896 897 *bh_out = bh; 898 899 return 0; 900 } 901 EXPORT_SYMBOL(jbd2_fc_get_buf); 902 903 /* 904 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 905 * for completion. 906 */ 907 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks) 908 { 909 struct buffer_head *bh; 910 int i, j_fc_off; 911 912 j_fc_off = journal->j_fc_off; 913 914 /* 915 * Wait in reverse order to minimize chances of us being woken up before 916 * all IOs have completed 917 */ 918 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) { 919 bh = journal->j_fc_wbuf[i]; 920 wait_on_buffer(bh); 921 put_bh(bh); 922 journal->j_fc_wbuf[i] = NULL; 923 if (unlikely(!buffer_uptodate(bh))) 924 return -EIO; 925 } 926 927 return 0; 928 } 929 EXPORT_SYMBOL(jbd2_fc_wait_bufs); 930 931 /* 932 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 933 * for completion. 934 */ 935 int jbd2_fc_release_bufs(journal_t *journal) 936 { 937 struct buffer_head *bh; 938 int i, j_fc_off; 939 940 j_fc_off = journal->j_fc_off; 941 942 /* 943 * Wait in reverse order to minimize chances of us being woken up before 944 * all IOs have completed 945 */ 946 for (i = j_fc_off - 1; i >= 0; i--) { 947 bh = journal->j_fc_wbuf[i]; 948 if (!bh) 949 break; 950 put_bh(bh); 951 journal->j_fc_wbuf[i] = NULL; 952 } 953 954 return 0; 955 } 956 EXPORT_SYMBOL(jbd2_fc_release_bufs); 957 958 /* 959 * Conversion of logical to physical block numbers for the journal 960 * 961 * On external journals the journal blocks are identity-mapped, so 962 * this is a no-op. If needed, we can use j_blk_offset - everything is 963 * ready. 964 */ 965 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 966 unsigned long long *retp) 967 { 968 int err = 0; 969 unsigned long long ret; 970 sector_t block = 0; 971 972 if (journal->j_inode) { 973 block = blocknr; 974 ret = bmap(journal->j_inode, &block); 975 976 if (ret || !block) { 977 printk(KERN_ALERT "%s: journal block not found " 978 "at offset %lu on %s\n", 979 __func__, blocknr, journal->j_devname); 980 err = -EIO; 981 jbd2_journal_abort(journal, err); 982 } else { 983 *retp = block; 984 } 985 986 } else { 987 *retp = blocknr; /* +journal->j_blk_offset */ 988 } 989 return err; 990 } 991 992 /* 993 * We play buffer_head aliasing tricks to write data/metadata blocks to 994 * the journal without copying their contents, but for journal 995 * descriptor blocks we do need to generate bona fide buffers. 996 * 997 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 998 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 999 * But we don't bother doing that, so there will be coherency problems with 1000 * mmaps of blockdevs which hold live JBD-controlled filesystems. 1001 */ 1002 struct buffer_head * 1003 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 1004 { 1005 journal_t *journal = transaction->t_journal; 1006 struct buffer_head *bh; 1007 unsigned long long blocknr; 1008 journal_header_t *header; 1009 int err; 1010 1011 err = jbd2_journal_next_log_block(journal, &blocknr); 1012 1013 if (err) 1014 return NULL; 1015 1016 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1017 if (!bh) 1018 return NULL; 1019 atomic_dec(&transaction->t_outstanding_credits); 1020 lock_buffer(bh); 1021 memset(bh->b_data, 0, journal->j_blocksize); 1022 header = (journal_header_t *)bh->b_data; 1023 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 1024 header->h_blocktype = cpu_to_be32(type); 1025 header->h_sequence = cpu_to_be32(transaction->t_tid); 1026 set_buffer_uptodate(bh); 1027 unlock_buffer(bh); 1028 BUFFER_TRACE(bh, "return this buffer"); 1029 return bh; 1030 } 1031 1032 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 1033 { 1034 struct jbd2_journal_block_tail *tail; 1035 __u32 csum; 1036 1037 if (!jbd2_journal_has_csum_v2or3(j)) 1038 return; 1039 1040 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 1041 sizeof(struct jbd2_journal_block_tail)); 1042 tail->t_checksum = 0; 1043 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 1044 tail->t_checksum = cpu_to_be32(csum); 1045 } 1046 1047 /* 1048 * Return tid of the oldest transaction in the journal and block in the journal 1049 * where the transaction starts. 1050 * 1051 * If the journal is now empty, return which will be the next transaction ID 1052 * we will write and where will that transaction start. 1053 * 1054 * The return value is 0 if journal tail cannot be pushed any further, 1 if 1055 * it can. 1056 */ 1057 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 1058 unsigned long *block) 1059 { 1060 transaction_t *transaction; 1061 int ret; 1062 1063 read_lock(&journal->j_state_lock); 1064 spin_lock(&journal->j_list_lock); 1065 transaction = journal->j_checkpoint_transactions; 1066 if (transaction) { 1067 *tid = transaction->t_tid; 1068 *block = transaction->t_log_start; 1069 } else if ((transaction = journal->j_committing_transaction) != NULL) { 1070 *tid = transaction->t_tid; 1071 *block = transaction->t_log_start; 1072 } else if ((transaction = journal->j_running_transaction) != NULL) { 1073 *tid = transaction->t_tid; 1074 *block = journal->j_head; 1075 } else { 1076 *tid = journal->j_transaction_sequence; 1077 *block = journal->j_head; 1078 } 1079 ret = tid_gt(*tid, journal->j_tail_sequence); 1080 spin_unlock(&journal->j_list_lock); 1081 read_unlock(&journal->j_state_lock); 1082 1083 return ret; 1084 } 1085 1086 /* 1087 * Update information in journal structure and in on disk journal superblock 1088 * about log tail. This function does not check whether information passed in 1089 * really pushes log tail further. It's responsibility of the caller to make 1090 * sure provided log tail information is valid (e.g. by holding 1091 * j_checkpoint_mutex all the time between computing log tail and calling this 1092 * function as is the case with jbd2_cleanup_journal_tail()). 1093 * 1094 * Requires j_checkpoint_mutex 1095 */ 1096 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1097 { 1098 unsigned long freed; 1099 int ret; 1100 1101 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1102 1103 /* 1104 * We cannot afford for write to remain in drive's caches since as 1105 * soon as we update j_tail, next transaction can start reusing journal 1106 * space and if we lose sb update during power failure we'd replay 1107 * old transaction with possibly newly overwritten data. 1108 */ 1109 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, 1110 REQ_SYNC | REQ_FUA); 1111 if (ret) 1112 goto out; 1113 1114 write_lock(&journal->j_state_lock); 1115 freed = block - journal->j_tail; 1116 if (block < journal->j_tail) 1117 freed += journal->j_last - journal->j_first; 1118 1119 trace_jbd2_update_log_tail(journal, tid, block, freed); 1120 jbd_debug(1, 1121 "Cleaning journal tail from %u to %u (offset %lu), " 1122 "freeing %lu\n", 1123 journal->j_tail_sequence, tid, block, freed); 1124 1125 journal->j_free += freed; 1126 journal->j_tail_sequence = tid; 1127 journal->j_tail = block; 1128 write_unlock(&journal->j_state_lock); 1129 1130 out: 1131 return ret; 1132 } 1133 1134 /* 1135 * This is a variation of __jbd2_update_log_tail which checks for validity of 1136 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 1137 * with other threads updating log tail. 1138 */ 1139 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1140 { 1141 mutex_lock_io(&journal->j_checkpoint_mutex); 1142 if (tid_gt(tid, journal->j_tail_sequence)) 1143 __jbd2_update_log_tail(journal, tid, block); 1144 mutex_unlock(&journal->j_checkpoint_mutex); 1145 } 1146 1147 struct jbd2_stats_proc_session { 1148 journal_t *journal; 1149 struct transaction_stats_s *stats; 1150 int start; 1151 int max; 1152 }; 1153 1154 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 1155 { 1156 return *pos ? NULL : SEQ_START_TOKEN; 1157 } 1158 1159 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 1160 { 1161 (*pos)++; 1162 return NULL; 1163 } 1164 1165 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 1166 { 1167 struct jbd2_stats_proc_session *s = seq->private; 1168 1169 if (v != SEQ_START_TOKEN) 1170 return 0; 1171 seq_printf(seq, "%lu transactions (%lu requested), " 1172 "each up to %u blocks\n", 1173 s->stats->ts_tid, s->stats->ts_requested, 1174 s->journal->j_max_transaction_buffers); 1175 if (s->stats->ts_tid == 0) 1176 return 0; 1177 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1178 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1179 seq_printf(seq, " %ums request delay\n", 1180 (s->stats->ts_requested == 0) ? 0 : 1181 jiffies_to_msecs(s->stats->run.rs_request_delay / 1182 s->stats->ts_requested)); 1183 seq_printf(seq, " %ums running transaction\n", 1184 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1185 seq_printf(seq, " %ums transaction was being locked\n", 1186 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1187 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1188 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1189 seq_printf(seq, " %ums logging transaction\n", 1190 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1191 seq_printf(seq, " %lluus average transaction commit time\n", 1192 div_u64(s->journal->j_average_commit_time, 1000)); 1193 seq_printf(seq, " %lu handles per transaction\n", 1194 s->stats->run.rs_handle_count / s->stats->ts_tid); 1195 seq_printf(seq, " %lu blocks per transaction\n", 1196 s->stats->run.rs_blocks / s->stats->ts_tid); 1197 seq_printf(seq, " %lu logged blocks per transaction\n", 1198 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1199 return 0; 1200 } 1201 1202 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1203 { 1204 } 1205 1206 static const struct seq_operations jbd2_seq_info_ops = { 1207 .start = jbd2_seq_info_start, 1208 .next = jbd2_seq_info_next, 1209 .stop = jbd2_seq_info_stop, 1210 .show = jbd2_seq_info_show, 1211 }; 1212 1213 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1214 { 1215 journal_t *journal = PDE_DATA(inode); 1216 struct jbd2_stats_proc_session *s; 1217 int rc, size; 1218 1219 s = kmalloc(sizeof(*s), GFP_KERNEL); 1220 if (s == NULL) 1221 return -ENOMEM; 1222 size = sizeof(struct transaction_stats_s); 1223 s->stats = kmalloc(size, GFP_KERNEL); 1224 if (s->stats == NULL) { 1225 kfree(s); 1226 return -ENOMEM; 1227 } 1228 spin_lock(&journal->j_history_lock); 1229 memcpy(s->stats, &journal->j_stats, size); 1230 s->journal = journal; 1231 spin_unlock(&journal->j_history_lock); 1232 1233 rc = seq_open(file, &jbd2_seq_info_ops); 1234 if (rc == 0) { 1235 struct seq_file *m = file->private_data; 1236 m->private = s; 1237 } else { 1238 kfree(s->stats); 1239 kfree(s); 1240 } 1241 return rc; 1242 1243 } 1244 1245 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1246 { 1247 struct seq_file *seq = file->private_data; 1248 struct jbd2_stats_proc_session *s = seq->private; 1249 kfree(s->stats); 1250 kfree(s); 1251 return seq_release(inode, file); 1252 } 1253 1254 static const struct proc_ops jbd2_info_proc_ops = { 1255 .proc_open = jbd2_seq_info_open, 1256 .proc_read = seq_read, 1257 .proc_lseek = seq_lseek, 1258 .proc_release = jbd2_seq_info_release, 1259 }; 1260 1261 static struct proc_dir_entry *proc_jbd2_stats; 1262 1263 static void jbd2_stats_proc_init(journal_t *journal) 1264 { 1265 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1266 if (journal->j_proc_entry) { 1267 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1268 &jbd2_info_proc_ops, journal); 1269 } 1270 } 1271 1272 static void jbd2_stats_proc_exit(journal_t *journal) 1273 { 1274 remove_proc_entry("info", journal->j_proc_entry); 1275 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1276 } 1277 1278 /* Minimum size of descriptor tag */ 1279 static int jbd2_min_tag_size(void) 1280 { 1281 /* 1282 * Tag with 32-bit block numbers does not use last four bytes of the 1283 * structure 1284 */ 1285 return sizeof(journal_block_tag_t) - 4; 1286 } 1287 1288 /* 1289 * Management for journal control blocks: functions to create and 1290 * destroy journal_t structures, and to initialise and read existing 1291 * journal blocks from disk. */ 1292 1293 /* First: create and setup a journal_t object in memory. We initialise 1294 * very few fields yet: that has to wait until we have created the 1295 * journal structures from from scratch, or loaded them from disk. */ 1296 1297 static journal_t *journal_init_common(struct block_device *bdev, 1298 struct block_device *fs_dev, 1299 unsigned long long start, int len, int blocksize) 1300 { 1301 static struct lock_class_key jbd2_trans_commit_key; 1302 journal_t *journal; 1303 int err; 1304 struct buffer_head *bh; 1305 int n; 1306 1307 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1308 if (!journal) 1309 return NULL; 1310 1311 init_waitqueue_head(&journal->j_wait_transaction_locked); 1312 init_waitqueue_head(&journal->j_wait_done_commit); 1313 init_waitqueue_head(&journal->j_wait_commit); 1314 init_waitqueue_head(&journal->j_wait_updates); 1315 init_waitqueue_head(&journal->j_wait_reserved); 1316 init_waitqueue_head(&journal->j_fc_wait); 1317 mutex_init(&journal->j_abort_mutex); 1318 mutex_init(&journal->j_barrier); 1319 mutex_init(&journal->j_checkpoint_mutex); 1320 spin_lock_init(&journal->j_revoke_lock); 1321 spin_lock_init(&journal->j_list_lock); 1322 rwlock_init(&journal->j_state_lock); 1323 1324 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1325 journal->j_min_batch_time = 0; 1326 journal->j_max_batch_time = 15000; /* 15ms */ 1327 atomic_set(&journal->j_reserved_credits, 0); 1328 1329 /* The journal is marked for error until we succeed with recovery! */ 1330 journal->j_flags = JBD2_ABORT; 1331 1332 /* Set up a default-sized revoke table for the new mount. */ 1333 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1334 if (err) 1335 goto err_cleanup; 1336 1337 spin_lock_init(&journal->j_history_lock); 1338 1339 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1340 &jbd2_trans_commit_key, 0); 1341 1342 /* journal descriptor can store up to n blocks -bzzz */ 1343 journal->j_blocksize = blocksize; 1344 journal->j_dev = bdev; 1345 journal->j_fs_dev = fs_dev; 1346 journal->j_blk_offset = start; 1347 journal->j_total_len = len; 1348 /* We need enough buffers to write out full descriptor block. */ 1349 n = journal->j_blocksize / jbd2_min_tag_size(); 1350 journal->j_wbufsize = n; 1351 journal->j_fc_wbuf = NULL; 1352 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1353 GFP_KERNEL); 1354 if (!journal->j_wbuf) 1355 goto err_cleanup; 1356 1357 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize); 1358 if (!bh) { 1359 pr_err("%s: Cannot get buffer for journal superblock\n", 1360 __func__); 1361 goto err_cleanup; 1362 } 1363 journal->j_sb_buffer = bh; 1364 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1365 1366 return journal; 1367 1368 err_cleanup: 1369 kfree(journal->j_wbuf); 1370 jbd2_journal_destroy_revoke(journal); 1371 kfree(journal); 1372 return NULL; 1373 } 1374 1375 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1376 * 1377 * Create a journal structure assigned some fixed set of disk blocks to 1378 * the journal. We don't actually touch those disk blocks yet, but we 1379 * need to set up all of the mapping information to tell the journaling 1380 * system where the journal blocks are. 1381 * 1382 */ 1383 1384 /** 1385 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1386 * @bdev: Block device on which to create the journal 1387 * @fs_dev: Device which hold journalled filesystem for this journal. 1388 * @start: Block nr Start of journal. 1389 * @len: Length of the journal in blocks. 1390 * @blocksize: blocksize of journalling device 1391 * 1392 * Returns: a newly created journal_t * 1393 * 1394 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1395 * range of blocks on an arbitrary block device. 1396 * 1397 */ 1398 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1399 struct block_device *fs_dev, 1400 unsigned long long start, int len, int blocksize) 1401 { 1402 journal_t *journal; 1403 1404 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1405 if (!journal) 1406 return NULL; 1407 1408 bdevname(journal->j_dev, journal->j_devname); 1409 strreplace(journal->j_devname, '/', '!'); 1410 jbd2_stats_proc_init(journal); 1411 1412 return journal; 1413 } 1414 1415 /** 1416 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1417 * @inode: An inode to create the journal in 1418 * 1419 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1420 * the journal. The inode must exist already, must support bmap() and 1421 * must have all data blocks preallocated. 1422 */ 1423 journal_t *jbd2_journal_init_inode(struct inode *inode) 1424 { 1425 journal_t *journal; 1426 sector_t blocknr; 1427 char *p; 1428 int err = 0; 1429 1430 blocknr = 0; 1431 err = bmap(inode, &blocknr); 1432 1433 if (err || !blocknr) { 1434 pr_err("%s: Cannot locate journal superblock\n", 1435 __func__); 1436 return NULL; 1437 } 1438 1439 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1440 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1441 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1442 1443 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1444 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1445 inode->i_sb->s_blocksize); 1446 if (!journal) 1447 return NULL; 1448 1449 journal->j_inode = inode; 1450 bdevname(journal->j_dev, journal->j_devname); 1451 p = strreplace(journal->j_devname, '/', '!'); 1452 sprintf(p, "-%lu", journal->j_inode->i_ino); 1453 jbd2_stats_proc_init(journal); 1454 1455 return journal; 1456 } 1457 1458 /* 1459 * If the journal init or create aborts, we need to mark the journal 1460 * superblock as being NULL to prevent the journal destroy from writing 1461 * back a bogus superblock. 1462 */ 1463 static void journal_fail_superblock(journal_t *journal) 1464 { 1465 struct buffer_head *bh = journal->j_sb_buffer; 1466 brelse(bh); 1467 journal->j_sb_buffer = NULL; 1468 } 1469 1470 /* 1471 * Given a journal_t structure, initialise the various fields for 1472 * startup of a new journaling session. We use this both when creating 1473 * a journal, and after recovering an old journal to reset it for 1474 * subsequent use. 1475 */ 1476 1477 static int journal_reset(journal_t *journal) 1478 { 1479 journal_superblock_t *sb = journal->j_superblock; 1480 unsigned long long first, last; 1481 1482 first = be32_to_cpu(sb->s_first); 1483 last = be32_to_cpu(sb->s_maxlen); 1484 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1485 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1486 first, last); 1487 journal_fail_superblock(journal); 1488 return -EINVAL; 1489 } 1490 1491 journal->j_first = first; 1492 journal->j_last = last; 1493 1494 journal->j_head = journal->j_first; 1495 journal->j_tail = journal->j_first; 1496 journal->j_free = journal->j_last - journal->j_first; 1497 1498 journal->j_tail_sequence = journal->j_transaction_sequence; 1499 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1500 journal->j_commit_request = journal->j_commit_sequence; 1501 1502 journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal); 1503 1504 /* 1505 * Now that journal recovery is done, turn fast commits off here. This 1506 * way, if fast commit was enabled before the crash but if now FS has 1507 * disabled it, we don't enable fast commits. 1508 */ 1509 jbd2_clear_feature_fast_commit(journal); 1510 1511 /* 1512 * As a special case, if the on-disk copy is already marked as needing 1513 * no recovery (s_start == 0), then we can safely defer the superblock 1514 * update until the next commit by setting JBD2_FLUSHED. This avoids 1515 * attempting a write to a potential-readonly device. 1516 */ 1517 if (sb->s_start == 0) { 1518 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1519 "(start %ld, seq %u, errno %d)\n", 1520 journal->j_tail, journal->j_tail_sequence, 1521 journal->j_errno); 1522 journal->j_flags |= JBD2_FLUSHED; 1523 } else { 1524 /* Lock here to make assertions happy... */ 1525 mutex_lock_io(&journal->j_checkpoint_mutex); 1526 /* 1527 * Update log tail information. We use REQ_FUA since new 1528 * transaction will start reusing journal space and so we 1529 * must make sure information about current log tail is on 1530 * disk before that. 1531 */ 1532 jbd2_journal_update_sb_log_tail(journal, 1533 journal->j_tail_sequence, 1534 journal->j_tail, 1535 REQ_SYNC | REQ_FUA); 1536 mutex_unlock(&journal->j_checkpoint_mutex); 1537 } 1538 return jbd2_journal_start_thread(journal); 1539 } 1540 1541 /* 1542 * This function expects that the caller will have locked the journal 1543 * buffer head, and will return with it unlocked 1544 */ 1545 static int jbd2_write_superblock(journal_t *journal, int write_flags) 1546 { 1547 struct buffer_head *bh = journal->j_sb_buffer; 1548 journal_superblock_t *sb = journal->j_superblock; 1549 int ret; 1550 1551 /* Buffer got discarded which means block device got invalidated */ 1552 if (!buffer_mapped(bh)) { 1553 unlock_buffer(bh); 1554 return -EIO; 1555 } 1556 1557 trace_jbd2_write_superblock(journal, write_flags); 1558 if (!(journal->j_flags & JBD2_BARRIER)) 1559 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1560 if (buffer_write_io_error(bh)) { 1561 /* 1562 * Oh, dear. A previous attempt to write the journal 1563 * superblock failed. This could happen because the 1564 * USB device was yanked out. Or it could happen to 1565 * be a transient write error and maybe the block will 1566 * be remapped. Nothing we can do but to retry the 1567 * write and hope for the best. 1568 */ 1569 printk(KERN_ERR "JBD2: previous I/O error detected " 1570 "for journal superblock update for %s.\n", 1571 journal->j_devname); 1572 clear_buffer_write_io_error(bh); 1573 set_buffer_uptodate(bh); 1574 } 1575 if (jbd2_journal_has_csum_v2or3(journal)) 1576 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1577 get_bh(bh); 1578 bh->b_end_io = end_buffer_write_sync; 1579 ret = submit_bh(REQ_OP_WRITE, write_flags, bh); 1580 wait_on_buffer(bh); 1581 if (buffer_write_io_error(bh)) { 1582 clear_buffer_write_io_error(bh); 1583 set_buffer_uptodate(bh); 1584 ret = -EIO; 1585 } 1586 if (ret) { 1587 printk(KERN_ERR "JBD2: Error %d detected when updating " 1588 "journal superblock for %s.\n", ret, 1589 journal->j_devname); 1590 if (!is_journal_aborted(journal)) 1591 jbd2_journal_abort(journal, ret); 1592 } 1593 1594 return ret; 1595 } 1596 1597 /** 1598 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1599 * @journal: The journal to update. 1600 * @tail_tid: TID of the new transaction at the tail of the log 1601 * @tail_block: The first block of the transaction at the tail of the log 1602 * @write_op: With which operation should we write the journal sb 1603 * 1604 * Update a journal's superblock information about log tail and write it to 1605 * disk, waiting for the IO to complete. 1606 */ 1607 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1608 unsigned long tail_block, int write_op) 1609 { 1610 journal_superblock_t *sb = journal->j_superblock; 1611 int ret; 1612 1613 if (is_journal_aborted(journal)) 1614 return -EIO; 1615 1616 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1617 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1618 tail_block, tail_tid); 1619 1620 lock_buffer(journal->j_sb_buffer); 1621 sb->s_sequence = cpu_to_be32(tail_tid); 1622 sb->s_start = cpu_to_be32(tail_block); 1623 1624 ret = jbd2_write_superblock(journal, write_op); 1625 if (ret) 1626 goto out; 1627 1628 /* Log is no longer empty */ 1629 write_lock(&journal->j_state_lock); 1630 WARN_ON(!sb->s_sequence); 1631 journal->j_flags &= ~JBD2_FLUSHED; 1632 write_unlock(&journal->j_state_lock); 1633 1634 out: 1635 return ret; 1636 } 1637 1638 /** 1639 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1640 * @journal: The journal to update. 1641 * @write_op: With which operation should we write the journal sb 1642 * 1643 * Update a journal's dynamic superblock fields to show that journal is empty. 1644 * Write updated superblock to disk waiting for IO to complete. 1645 */ 1646 static void jbd2_mark_journal_empty(journal_t *journal, int write_op) 1647 { 1648 journal_superblock_t *sb = journal->j_superblock; 1649 bool had_fast_commit = false; 1650 1651 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1652 lock_buffer(journal->j_sb_buffer); 1653 if (sb->s_start == 0) { /* Is it already empty? */ 1654 unlock_buffer(journal->j_sb_buffer); 1655 return; 1656 } 1657 1658 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1659 journal->j_tail_sequence); 1660 1661 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1662 sb->s_start = cpu_to_be32(0); 1663 if (jbd2_has_feature_fast_commit(journal)) { 1664 /* 1665 * When journal is clean, no need to commit fast commit flag and 1666 * make file system incompatible with older kernels. 1667 */ 1668 jbd2_clear_feature_fast_commit(journal); 1669 had_fast_commit = true; 1670 } 1671 1672 jbd2_write_superblock(journal, write_op); 1673 1674 if (had_fast_commit) 1675 jbd2_set_feature_fast_commit(journal); 1676 1677 /* Log is no longer empty */ 1678 write_lock(&journal->j_state_lock); 1679 journal->j_flags |= JBD2_FLUSHED; 1680 write_unlock(&journal->j_state_lock); 1681 } 1682 1683 1684 /** 1685 * jbd2_journal_update_sb_errno() - Update error in the journal. 1686 * @journal: The journal to update. 1687 * 1688 * Update a journal's errno. Write updated superblock to disk waiting for IO 1689 * to complete. 1690 */ 1691 void jbd2_journal_update_sb_errno(journal_t *journal) 1692 { 1693 journal_superblock_t *sb = journal->j_superblock; 1694 int errcode; 1695 1696 lock_buffer(journal->j_sb_buffer); 1697 errcode = journal->j_errno; 1698 if (errcode == -ESHUTDOWN) 1699 errcode = 0; 1700 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 1701 sb->s_errno = cpu_to_be32(errcode); 1702 1703 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA); 1704 } 1705 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 1706 1707 static int journal_revoke_records_per_block(journal_t *journal) 1708 { 1709 int record_size; 1710 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1711 1712 if (jbd2_has_feature_64bit(journal)) 1713 record_size = 8; 1714 else 1715 record_size = 4; 1716 1717 if (jbd2_journal_has_csum_v2or3(journal)) 1718 space -= sizeof(struct jbd2_journal_block_tail); 1719 return space / record_size; 1720 } 1721 1722 /* 1723 * Read the superblock for a given journal, performing initial 1724 * validation of the format. 1725 */ 1726 static int journal_get_superblock(journal_t *journal) 1727 { 1728 struct buffer_head *bh; 1729 journal_superblock_t *sb; 1730 int err = -EIO; 1731 1732 bh = journal->j_sb_buffer; 1733 1734 J_ASSERT(bh != NULL); 1735 if (!buffer_uptodate(bh)) { 1736 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1737 wait_on_buffer(bh); 1738 if (!buffer_uptodate(bh)) { 1739 printk(KERN_ERR 1740 "JBD2: IO error reading journal superblock\n"); 1741 goto out; 1742 } 1743 } 1744 1745 if (buffer_verified(bh)) 1746 return 0; 1747 1748 sb = journal->j_superblock; 1749 1750 err = -EINVAL; 1751 1752 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1753 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1754 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1755 goto out; 1756 } 1757 1758 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1759 case JBD2_SUPERBLOCK_V1: 1760 journal->j_format_version = 1; 1761 break; 1762 case JBD2_SUPERBLOCK_V2: 1763 journal->j_format_version = 2; 1764 break; 1765 default: 1766 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1767 goto out; 1768 } 1769 1770 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len) 1771 journal->j_total_len = be32_to_cpu(sb->s_maxlen); 1772 else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) { 1773 printk(KERN_WARNING "JBD2: journal file too short\n"); 1774 goto out; 1775 } 1776 1777 if (be32_to_cpu(sb->s_first) == 0 || 1778 be32_to_cpu(sb->s_first) >= journal->j_total_len) { 1779 printk(KERN_WARNING 1780 "JBD2: Invalid start block of journal: %u\n", 1781 be32_to_cpu(sb->s_first)); 1782 goto out; 1783 } 1784 1785 if (jbd2_has_feature_csum2(journal) && 1786 jbd2_has_feature_csum3(journal)) { 1787 /* Can't have checksum v2 and v3 at the same time! */ 1788 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1789 "at the same time!\n"); 1790 goto out; 1791 } 1792 1793 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1794 jbd2_has_feature_checksum(journal)) { 1795 /* Can't have checksum v1 and v2 on at the same time! */ 1796 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1797 "at the same time!\n"); 1798 goto out; 1799 } 1800 1801 if (!jbd2_verify_csum_type(journal, sb)) { 1802 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1803 goto out; 1804 } 1805 1806 /* Load the checksum driver */ 1807 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1808 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1809 if (IS_ERR(journal->j_chksum_driver)) { 1810 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1811 err = PTR_ERR(journal->j_chksum_driver); 1812 journal->j_chksum_driver = NULL; 1813 goto out; 1814 } 1815 } 1816 1817 if (jbd2_journal_has_csum_v2or3(journal)) { 1818 /* Check superblock checksum */ 1819 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1820 printk(KERN_ERR "JBD2: journal checksum error\n"); 1821 err = -EFSBADCRC; 1822 goto out; 1823 } 1824 1825 /* Precompute checksum seed for all metadata */ 1826 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1827 sizeof(sb->s_uuid)); 1828 } 1829 1830 journal->j_revoke_records_per_block = 1831 journal_revoke_records_per_block(journal); 1832 set_buffer_verified(bh); 1833 1834 return 0; 1835 1836 out: 1837 journal_fail_superblock(journal); 1838 return err; 1839 } 1840 1841 /* 1842 * Load the on-disk journal superblock and read the key fields into the 1843 * journal_t. 1844 */ 1845 1846 static int load_superblock(journal_t *journal) 1847 { 1848 int err; 1849 journal_superblock_t *sb; 1850 int num_fc_blocks; 1851 1852 err = journal_get_superblock(journal); 1853 if (err) 1854 return err; 1855 1856 sb = journal->j_superblock; 1857 1858 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1859 journal->j_tail = be32_to_cpu(sb->s_start); 1860 journal->j_first = be32_to_cpu(sb->s_first); 1861 journal->j_errno = be32_to_cpu(sb->s_errno); 1862 journal->j_last = be32_to_cpu(sb->s_maxlen); 1863 1864 if (jbd2_has_feature_fast_commit(journal)) { 1865 journal->j_fc_last = be32_to_cpu(sb->s_maxlen); 1866 num_fc_blocks = be32_to_cpu(sb->s_num_fc_blks); 1867 if (!num_fc_blocks) 1868 num_fc_blocks = JBD2_MIN_FC_BLOCKS; 1869 if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS) 1870 journal->j_last = journal->j_fc_last - num_fc_blocks; 1871 journal->j_fc_first = journal->j_last + 1; 1872 journal->j_fc_off = 0; 1873 } 1874 1875 return 0; 1876 } 1877 1878 1879 /** 1880 * int jbd2_journal_load() - Read journal from disk. 1881 * @journal: Journal to act on. 1882 * 1883 * Given a journal_t structure which tells us which disk blocks contain 1884 * a journal, read the journal from disk to initialise the in-memory 1885 * structures. 1886 */ 1887 int jbd2_journal_load(journal_t *journal) 1888 { 1889 int err; 1890 journal_superblock_t *sb; 1891 1892 err = load_superblock(journal); 1893 if (err) 1894 return err; 1895 1896 sb = journal->j_superblock; 1897 /* If this is a V2 superblock, then we have to check the 1898 * features flags on it. */ 1899 1900 if (journal->j_format_version >= 2) { 1901 if ((sb->s_feature_ro_compat & 1902 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1903 (sb->s_feature_incompat & 1904 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1905 printk(KERN_WARNING 1906 "JBD2: Unrecognised features on journal\n"); 1907 return -EINVAL; 1908 } 1909 } 1910 1911 /* 1912 * Create a slab for this blocksize 1913 */ 1914 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1915 if (err) 1916 return err; 1917 1918 /* Let the recovery code check whether it needs to recover any 1919 * data from the journal. */ 1920 if (jbd2_journal_recover(journal)) 1921 goto recovery_error; 1922 1923 if (journal->j_failed_commit) { 1924 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1925 "is corrupt.\n", journal->j_failed_commit, 1926 journal->j_devname); 1927 return -EFSCORRUPTED; 1928 } 1929 /* 1930 * clear JBD2_ABORT flag initialized in journal_init_common 1931 * here to update log tail information with the newest seq. 1932 */ 1933 journal->j_flags &= ~JBD2_ABORT; 1934 1935 /* OK, we've finished with the dynamic journal bits: 1936 * reinitialise the dynamic contents of the superblock in memory 1937 * and reset them on disk. */ 1938 if (journal_reset(journal)) 1939 goto recovery_error; 1940 1941 journal->j_flags |= JBD2_LOADED; 1942 return 0; 1943 1944 recovery_error: 1945 printk(KERN_WARNING "JBD2: recovery failed\n"); 1946 return -EIO; 1947 } 1948 1949 /** 1950 * void jbd2_journal_destroy() - Release a journal_t structure. 1951 * @journal: Journal to act on. 1952 * 1953 * Release a journal_t structure once it is no longer in use by the 1954 * journaled object. 1955 * Return <0 if we couldn't clean up the journal. 1956 */ 1957 int jbd2_journal_destroy(journal_t *journal) 1958 { 1959 int err = 0; 1960 1961 /* Wait for the commit thread to wake up and die. */ 1962 journal_kill_thread(journal); 1963 1964 /* Force a final log commit */ 1965 if (journal->j_running_transaction) 1966 jbd2_journal_commit_transaction(journal); 1967 1968 /* Force any old transactions to disk */ 1969 1970 /* Totally anal locking here... */ 1971 spin_lock(&journal->j_list_lock); 1972 while (journal->j_checkpoint_transactions != NULL) { 1973 spin_unlock(&journal->j_list_lock); 1974 mutex_lock_io(&journal->j_checkpoint_mutex); 1975 err = jbd2_log_do_checkpoint(journal); 1976 mutex_unlock(&journal->j_checkpoint_mutex); 1977 /* 1978 * If checkpointing failed, just free the buffers to avoid 1979 * looping forever 1980 */ 1981 if (err) { 1982 jbd2_journal_destroy_checkpoint(journal); 1983 spin_lock(&journal->j_list_lock); 1984 break; 1985 } 1986 spin_lock(&journal->j_list_lock); 1987 } 1988 1989 J_ASSERT(journal->j_running_transaction == NULL); 1990 J_ASSERT(journal->j_committing_transaction == NULL); 1991 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1992 spin_unlock(&journal->j_list_lock); 1993 1994 if (journal->j_sb_buffer) { 1995 if (!is_journal_aborted(journal)) { 1996 mutex_lock_io(&journal->j_checkpoint_mutex); 1997 1998 write_lock(&journal->j_state_lock); 1999 journal->j_tail_sequence = 2000 ++journal->j_transaction_sequence; 2001 write_unlock(&journal->j_state_lock); 2002 2003 jbd2_mark_journal_empty(journal, 2004 REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2005 mutex_unlock(&journal->j_checkpoint_mutex); 2006 } else 2007 err = -EIO; 2008 brelse(journal->j_sb_buffer); 2009 } 2010 2011 if (journal->j_proc_entry) 2012 jbd2_stats_proc_exit(journal); 2013 iput(journal->j_inode); 2014 if (journal->j_revoke) 2015 jbd2_journal_destroy_revoke(journal); 2016 if (journal->j_chksum_driver) 2017 crypto_free_shash(journal->j_chksum_driver); 2018 kfree(journal->j_fc_wbuf); 2019 kfree(journal->j_wbuf); 2020 kfree(journal); 2021 2022 return err; 2023 } 2024 2025 2026 /** 2027 *int jbd2_journal_check_used_features() - Check if features specified are used. 2028 * @journal: Journal to check. 2029 * @compat: bitmask of compatible features 2030 * @ro: bitmask of features that force read-only mount 2031 * @incompat: bitmask of incompatible features 2032 * 2033 * Check whether the journal uses all of a given set of 2034 * features. Return true (non-zero) if it does. 2035 **/ 2036 2037 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat, 2038 unsigned long ro, unsigned long incompat) 2039 { 2040 journal_superblock_t *sb; 2041 2042 if (!compat && !ro && !incompat) 2043 return 1; 2044 /* Load journal superblock if it is not loaded yet. */ 2045 if (journal->j_format_version == 0 && 2046 journal_get_superblock(journal) != 0) 2047 return 0; 2048 if (journal->j_format_version == 1) 2049 return 0; 2050 2051 sb = journal->j_superblock; 2052 2053 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 2054 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 2055 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 2056 return 1; 2057 2058 return 0; 2059 } 2060 2061 /** 2062 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 2063 * @journal: Journal to check. 2064 * @compat: bitmask of compatible features 2065 * @ro: bitmask of features that force read-only mount 2066 * @incompat: bitmask of incompatible features 2067 * 2068 * Check whether the journaling code supports the use of 2069 * all of a given set of features on this journal. Return true 2070 * (non-zero) if it can. */ 2071 2072 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat, 2073 unsigned long ro, unsigned long incompat) 2074 { 2075 if (!compat && !ro && !incompat) 2076 return 1; 2077 2078 /* We can support any known requested features iff the 2079 * superblock is in version 2. Otherwise we fail to support any 2080 * extended sb features. */ 2081 2082 if (journal->j_format_version != 2) 2083 return 0; 2084 2085 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 2086 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 2087 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 2088 return 1; 2089 2090 return 0; 2091 } 2092 2093 static int 2094 jbd2_journal_initialize_fast_commit(journal_t *journal) 2095 { 2096 journal_superblock_t *sb = journal->j_superblock; 2097 unsigned long long num_fc_blks; 2098 2099 num_fc_blks = be32_to_cpu(sb->s_num_fc_blks); 2100 if (num_fc_blks == 0) 2101 num_fc_blks = JBD2_MIN_FC_BLOCKS; 2102 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS) 2103 return -ENOSPC; 2104 2105 /* Are we called twice? */ 2106 WARN_ON(journal->j_fc_wbuf != NULL); 2107 journal->j_fc_wbuf = kmalloc_array(num_fc_blks, 2108 sizeof(struct buffer_head *), GFP_KERNEL); 2109 if (!journal->j_fc_wbuf) 2110 return -ENOMEM; 2111 2112 journal->j_fc_wbufsize = num_fc_blks; 2113 journal->j_fc_last = journal->j_last; 2114 journal->j_last = journal->j_fc_last - num_fc_blks; 2115 journal->j_fc_first = journal->j_last + 1; 2116 journal->j_fc_off = 0; 2117 journal->j_free = journal->j_last - journal->j_first; 2118 journal->j_max_transaction_buffers = 2119 jbd2_journal_get_max_txn_bufs(journal); 2120 2121 return 0; 2122 } 2123 2124 /** 2125 * int jbd2_journal_set_features() - Mark a given journal feature in the superblock 2126 * @journal: Journal to act on. 2127 * @compat: bitmask of compatible features 2128 * @ro: bitmask of features that force read-only mount 2129 * @incompat: bitmask of incompatible features 2130 * 2131 * Mark a given journal feature as present on the 2132 * superblock. Returns true if the requested features could be set. 2133 * 2134 */ 2135 2136 int jbd2_journal_set_features(journal_t *journal, unsigned long compat, 2137 unsigned long ro, unsigned long incompat) 2138 { 2139 #define INCOMPAT_FEATURE_ON(f) \ 2140 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 2141 #define COMPAT_FEATURE_ON(f) \ 2142 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 2143 journal_superblock_t *sb; 2144 2145 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 2146 return 1; 2147 2148 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 2149 return 0; 2150 2151 /* If enabling v2 checksums, turn on v3 instead */ 2152 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 2153 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 2154 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 2155 } 2156 2157 /* Asking for checksumming v3 and v1? Only give them v3. */ 2158 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 2159 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 2160 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 2161 2162 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 2163 compat, ro, incompat); 2164 2165 sb = journal->j_superblock; 2166 2167 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) { 2168 if (jbd2_journal_initialize_fast_commit(journal)) { 2169 pr_err("JBD2: Cannot enable fast commits.\n"); 2170 return 0; 2171 } 2172 } 2173 2174 /* Load the checksum driver if necessary */ 2175 if ((journal->j_chksum_driver == NULL) && 2176 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2177 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 2178 if (IS_ERR(journal->j_chksum_driver)) { 2179 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 2180 journal->j_chksum_driver = NULL; 2181 return 0; 2182 } 2183 /* Precompute checksum seed for all metadata */ 2184 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 2185 sizeof(sb->s_uuid)); 2186 } 2187 2188 lock_buffer(journal->j_sb_buffer); 2189 2190 /* If enabling v3 checksums, update superblock */ 2191 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2192 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 2193 sb->s_feature_compat &= 2194 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 2195 } 2196 2197 /* If enabling v1 checksums, downgrade superblock */ 2198 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 2199 sb->s_feature_incompat &= 2200 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 2201 JBD2_FEATURE_INCOMPAT_CSUM_V3); 2202 2203 sb->s_feature_compat |= cpu_to_be32(compat); 2204 sb->s_feature_ro_compat |= cpu_to_be32(ro); 2205 sb->s_feature_incompat |= cpu_to_be32(incompat); 2206 unlock_buffer(journal->j_sb_buffer); 2207 journal->j_revoke_records_per_block = 2208 journal_revoke_records_per_block(journal); 2209 2210 return 1; 2211 #undef COMPAT_FEATURE_ON 2212 #undef INCOMPAT_FEATURE_ON 2213 } 2214 2215 /* 2216 * jbd2_journal_clear_features () - Clear a given journal feature in the 2217 * superblock 2218 * @journal: Journal to act on. 2219 * @compat: bitmask of compatible features 2220 * @ro: bitmask of features that force read-only mount 2221 * @incompat: bitmask of incompatible features 2222 * 2223 * Clear a given journal feature as present on the 2224 * superblock. 2225 */ 2226 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 2227 unsigned long ro, unsigned long incompat) 2228 { 2229 journal_superblock_t *sb; 2230 2231 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 2232 compat, ro, incompat); 2233 2234 sb = journal->j_superblock; 2235 2236 sb->s_feature_compat &= ~cpu_to_be32(compat); 2237 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 2238 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 2239 journal->j_revoke_records_per_block = 2240 journal_revoke_records_per_block(journal); 2241 } 2242 EXPORT_SYMBOL(jbd2_journal_clear_features); 2243 2244 /** 2245 * int jbd2_journal_flush () - Flush journal 2246 * @journal: Journal to act on. 2247 * 2248 * Flush all data for a given journal to disk and empty the journal. 2249 * Filesystems can use this when remounting readonly to ensure that 2250 * recovery does not need to happen on remount. 2251 */ 2252 2253 int jbd2_journal_flush(journal_t *journal) 2254 { 2255 int err = 0; 2256 transaction_t *transaction = NULL; 2257 2258 write_lock(&journal->j_state_lock); 2259 2260 /* Force everything buffered to the log... */ 2261 if (journal->j_running_transaction) { 2262 transaction = journal->j_running_transaction; 2263 __jbd2_log_start_commit(journal, transaction->t_tid); 2264 } else if (journal->j_committing_transaction) 2265 transaction = journal->j_committing_transaction; 2266 2267 /* Wait for the log commit to complete... */ 2268 if (transaction) { 2269 tid_t tid = transaction->t_tid; 2270 2271 write_unlock(&journal->j_state_lock); 2272 jbd2_log_wait_commit(journal, tid); 2273 } else { 2274 write_unlock(&journal->j_state_lock); 2275 } 2276 2277 /* ...and flush everything in the log out to disk. */ 2278 spin_lock(&journal->j_list_lock); 2279 while (!err && journal->j_checkpoint_transactions != NULL) { 2280 spin_unlock(&journal->j_list_lock); 2281 mutex_lock_io(&journal->j_checkpoint_mutex); 2282 err = jbd2_log_do_checkpoint(journal); 2283 mutex_unlock(&journal->j_checkpoint_mutex); 2284 spin_lock(&journal->j_list_lock); 2285 } 2286 spin_unlock(&journal->j_list_lock); 2287 2288 if (is_journal_aborted(journal)) 2289 return -EIO; 2290 2291 mutex_lock_io(&journal->j_checkpoint_mutex); 2292 if (!err) { 2293 err = jbd2_cleanup_journal_tail(journal); 2294 if (err < 0) { 2295 mutex_unlock(&journal->j_checkpoint_mutex); 2296 goto out; 2297 } 2298 err = 0; 2299 } 2300 2301 /* Finally, mark the journal as really needing no recovery. 2302 * This sets s_start==0 in the underlying superblock, which is 2303 * the magic code for a fully-recovered superblock. Any future 2304 * commits of data to the journal will restore the current 2305 * s_start value. */ 2306 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2307 mutex_unlock(&journal->j_checkpoint_mutex); 2308 write_lock(&journal->j_state_lock); 2309 J_ASSERT(!journal->j_running_transaction); 2310 J_ASSERT(!journal->j_committing_transaction); 2311 J_ASSERT(!journal->j_checkpoint_transactions); 2312 J_ASSERT(journal->j_head == journal->j_tail); 2313 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2314 write_unlock(&journal->j_state_lock); 2315 out: 2316 return err; 2317 } 2318 2319 /** 2320 * int jbd2_journal_wipe() - Wipe journal contents 2321 * @journal: Journal to act on. 2322 * @write: flag (see below) 2323 * 2324 * Wipe out all of the contents of a journal, safely. This will produce 2325 * a warning if the journal contains any valid recovery information. 2326 * Must be called between journal_init_*() and jbd2_journal_load(). 2327 * 2328 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2329 * we merely suppress recovery. 2330 */ 2331 2332 int jbd2_journal_wipe(journal_t *journal, int write) 2333 { 2334 int err = 0; 2335 2336 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2337 2338 err = load_superblock(journal); 2339 if (err) 2340 return err; 2341 2342 if (!journal->j_tail) 2343 goto no_recovery; 2344 2345 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2346 write ? "Clearing" : "Ignoring"); 2347 2348 err = jbd2_journal_skip_recovery(journal); 2349 if (write) { 2350 /* Lock to make assertions happy... */ 2351 mutex_lock_io(&journal->j_checkpoint_mutex); 2352 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA); 2353 mutex_unlock(&journal->j_checkpoint_mutex); 2354 } 2355 2356 no_recovery: 2357 return err; 2358 } 2359 2360 /** 2361 * void jbd2_journal_abort () - Shutdown the journal immediately. 2362 * @journal: the journal to shutdown. 2363 * @errno: an error number to record in the journal indicating 2364 * the reason for the shutdown. 2365 * 2366 * Perform a complete, immediate shutdown of the ENTIRE 2367 * journal (not of a single transaction). This operation cannot be 2368 * undone without closing and reopening the journal. 2369 * 2370 * The jbd2_journal_abort function is intended to support higher level error 2371 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2372 * mode. 2373 * 2374 * Journal abort has very specific semantics. Any existing dirty, 2375 * unjournaled buffers in the main filesystem will still be written to 2376 * disk by bdflush, but the journaling mechanism will be suspended 2377 * immediately and no further transaction commits will be honoured. 2378 * 2379 * Any dirty, journaled buffers will be written back to disk without 2380 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2381 * filesystem, but we _do_ attempt to leave as much data as possible 2382 * behind for fsck to use for cleanup. 2383 * 2384 * Any attempt to get a new transaction handle on a journal which is in 2385 * ABORT state will just result in an -EROFS error return. A 2386 * jbd2_journal_stop on an existing handle will return -EIO if we have 2387 * entered abort state during the update. 2388 * 2389 * Recursive transactions are not disturbed by journal abort until the 2390 * final jbd2_journal_stop, which will receive the -EIO error. 2391 * 2392 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2393 * which will be recorded (if possible) in the journal superblock. This 2394 * allows a client to record failure conditions in the middle of a 2395 * transaction without having to complete the transaction to record the 2396 * failure to disk. ext3_error, for example, now uses this 2397 * functionality. 2398 * 2399 */ 2400 2401 void jbd2_journal_abort(journal_t *journal, int errno) 2402 { 2403 transaction_t *transaction; 2404 2405 /* 2406 * Lock the aborting procedure until everything is done, this avoid 2407 * races between filesystem's error handling flow (e.g. ext4_abort()), 2408 * ensure panic after the error info is written into journal's 2409 * superblock. 2410 */ 2411 mutex_lock(&journal->j_abort_mutex); 2412 /* 2413 * ESHUTDOWN always takes precedence because a file system check 2414 * caused by any other journal abort error is not required after 2415 * a shutdown triggered. 2416 */ 2417 write_lock(&journal->j_state_lock); 2418 if (journal->j_flags & JBD2_ABORT) { 2419 int old_errno = journal->j_errno; 2420 2421 write_unlock(&journal->j_state_lock); 2422 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2423 journal->j_errno = errno; 2424 jbd2_journal_update_sb_errno(journal); 2425 } 2426 mutex_unlock(&journal->j_abort_mutex); 2427 return; 2428 } 2429 2430 /* 2431 * Mark the abort as occurred and start current running transaction 2432 * to release all journaled buffer. 2433 */ 2434 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2435 2436 journal->j_flags |= JBD2_ABORT; 2437 journal->j_errno = errno; 2438 transaction = journal->j_running_transaction; 2439 if (transaction) 2440 __jbd2_log_start_commit(journal, transaction->t_tid); 2441 write_unlock(&journal->j_state_lock); 2442 2443 /* 2444 * Record errno to the journal super block, so that fsck and jbd2 2445 * layer could realise that a filesystem check is needed. 2446 */ 2447 jbd2_journal_update_sb_errno(journal); 2448 mutex_unlock(&journal->j_abort_mutex); 2449 } 2450 2451 /** 2452 * int jbd2_journal_errno () - returns the journal's error state. 2453 * @journal: journal to examine. 2454 * 2455 * This is the errno number set with jbd2_journal_abort(), the last 2456 * time the journal was mounted - if the journal was stopped 2457 * without calling abort this will be 0. 2458 * 2459 * If the journal has been aborted on this mount time -EROFS will 2460 * be returned. 2461 */ 2462 int jbd2_journal_errno(journal_t *journal) 2463 { 2464 int err; 2465 2466 read_lock(&journal->j_state_lock); 2467 if (journal->j_flags & JBD2_ABORT) 2468 err = -EROFS; 2469 else 2470 err = journal->j_errno; 2471 read_unlock(&journal->j_state_lock); 2472 return err; 2473 } 2474 2475 /** 2476 * int jbd2_journal_clear_err () - clears the journal's error state 2477 * @journal: journal to act on. 2478 * 2479 * An error must be cleared or acked to take a FS out of readonly 2480 * mode. 2481 */ 2482 int jbd2_journal_clear_err(journal_t *journal) 2483 { 2484 int err = 0; 2485 2486 write_lock(&journal->j_state_lock); 2487 if (journal->j_flags & JBD2_ABORT) 2488 err = -EROFS; 2489 else 2490 journal->j_errno = 0; 2491 write_unlock(&journal->j_state_lock); 2492 return err; 2493 } 2494 2495 /** 2496 * void jbd2_journal_ack_err() - Ack journal err. 2497 * @journal: journal to act on. 2498 * 2499 * An error must be cleared or acked to take a FS out of readonly 2500 * mode. 2501 */ 2502 void jbd2_journal_ack_err(journal_t *journal) 2503 { 2504 write_lock(&journal->j_state_lock); 2505 if (journal->j_errno) 2506 journal->j_flags |= JBD2_ACK_ERR; 2507 write_unlock(&journal->j_state_lock); 2508 } 2509 2510 int jbd2_journal_blocks_per_page(struct inode *inode) 2511 { 2512 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2513 } 2514 2515 /* 2516 * helper functions to deal with 32 or 64bit block numbers. 2517 */ 2518 size_t journal_tag_bytes(journal_t *journal) 2519 { 2520 size_t sz; 2521 2522 if (jbd2_has_feature_csum3(journal)) 2523 return sizeof(journal_block_tag3_t); 2524 2525 sz = sizeof(journal_block_tag_t); 2526 2527 if (jbd2_has_feature_csum2(journal)) 2528 sz += sizeof(__u16); 2529 2530 if (jbd2_has_feature_64bit(journal)) 2531 return sz; 2532 else 2533 return sz - sizeof(__u32); 2534 } 2535 2536 /* 2537 * JBD memory management 2538 * 2539 * These functions are used to allocate block-sized chunks of memory 2540 * used for making copies of buffer_head data. Very often it will be 2541 * page-sized chunks of data, but sometimes it will be in 2542 * sub-page-size chunks. (For example, 16k pages on Power systems 2543 * with a 4k block file system.) For blocks smaller than a page, we 2544 * use a SLAB allocator. There are slab caches for each block size, 2545 * which are allocated at mount time, if necessary, and we only free 2546 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2547 * this reason we don't need to a mutex to protect access to 2548 * jbd2_slab[] allocating or releasing memory; only in 2549 * jbd2_journal_create_slab(). 2550 */ 2551 #define JBD2_MAX_SLABS 8 2552 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2553 2554 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2555 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2556 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2557 }; 2558 2559 2560 static void jbd2_journal_destroy_slabs(void) 2561 { 2562 int i; 2563 2564 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2565 kmem_cache_destroy(jbd2_slab[i]); 2566 jbd2_slab[i] = NULL; 2567 } 2568 } 2569 2570 static int jbd2_journal_create_slab(size_t size) 2571 { 2572 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2573 int i = order_base_2(size) - 10; 2574 size_t slab_size; 2575 2576 if (size == PAGE_SIZE) 2577 return 0; 2578 2579 if (i >= JBD2_MAX_SLABS) 2580 return -EINVAL; 2581 2582 if (unlikely(i < 0)) 2583 i = 0; 2584 mutex_lock(&jbd2_slab_create_mutex); 2585 if (jbd2_slab[i]) { 2586 mutex_unlock(&jbd2_slab_create_mutex); 2587 return 0; /* Already created */ 2588 } 2589 2590 slab_size = 1 << (i+10); 2591 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2592 slab_size, 0, NULL); 2593 mutex_unlock(&jbd2_slab_create_mutex); 2594 if (!jbd2_slab[i]) { 2595 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2596 return -ENOMEM; 2597 } 2598 return 0; 2599 } 2600 2601 static struct kmem_cache *get_slab(size_t size) 2602 { 2603 int i = order_base_2(size) - 10; 2604 2605 BUG_ON(i >= JBD2_MAX_SLABS); 2606 if (unlikely(i < 0)) 2607 i = 0; 2608 BUG_ON(jbd2_slab[i] == NULL); 2609 return jbd2_slab[i]; 2610 } 2611 2612 void *jbd2_alloc(size_t size, gfp_t flags) 2613 { 2614 void *ptr; 2615 2616 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2617 2618 if (size < PAGE_SIZE) 2619 ptr = kmem_cache_alloc(get_slab(size), flags); 2620 else 2621 ptr = (void *)__get_free_pages(flags, get_order(size)); 2622 2623 /* Check alignment; SLUB has gotten this wrong in the past, 2624 * and this can lead to user data corruption! */ 2625 BUG_ON(((unsigned long) ptr) & (size-1)); 2626 2627 return ptr; 2628 } 2629 2630 void jbd2_free(void *ptr, size_t size) 2631 { 2632 if (size < PAGE_SIZE) 2633 kmem_cache_free(get_slab(size), ptr); 2634 else 2635 free_pages((unsigned long)ptr, get_order(size)); 2636 }; 2637 2638 /* 2639 * Journal_head storage management 2640 */ 2641 static struct kmem_cache *jbd2_journal_head_cache; 2642 #ifdef CONFIG_JBD2_DEBUG 2643 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2644 #endif 2645 2646 static int __init jbd2_journal_init_journal_head_cache(void) 2647 { 2648 J_ASSERT(!jbd2_journal_head_cache); 2649 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2650 sizeof(struct journal_head), 2651 0, /* offset */ 2652 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2653 NULL); /* ctor */ 2654 if (!jbd2_journal_head_cache) { 2655 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2656 return -ENOMEM; 2657 } 2658 return 0; 2659 } 2660 2661 static void jbd2_journal_destroy_journal_head_cache(void) 2662 { 2663 kmem_cache_destroy(jbd2_journal_head_cache); 2664 jbd2_journal_head_cache = NULL; 2665 } 2666 2667 /* 2668 * journal_head splicing and dicing 2669 */ 2670 static struct journal_head *journal_alloc_journal_head(void) 2671 { 2672 struct journal_head *ret; 2673 2674 #ifdef CONFIG_JBD2_DEBUG 2675 atomic_inc(&nr_journal_heads); 2676 #endif 2677 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2678 if (!ret) { 2679 jbd_debug(1, "out of memory for journal_head\n"); 2680 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2681 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2682 GFP_NOFS | __GFP_NOFAIL); 2683 } 2684 if (ret) 2685 spin_lock_init(&ret->b_state_lock); 2686 return ret; 2687 } 2688 2689 static void journal_free_journal_head(struct journal_head *jh) 2690 { 2691 #ifdef CONFIG_JBD2_DEBUG 2692 atomic_dec(&nr_journal_heads); 2693 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2694 #endif 2695 kmem_cache_free(jbd2_journal_head_cache, jh); 2696 } 2697 2698 /* 2699 * A journal_head is attached to a buffer_head whenever JBD has an 2700 * interest in the buffer. 2701 * 2702 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2703 * is set. This bit is tested in core kernel code where we need to take 2704 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2705 * there. 2706 * 2707 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2708 * 2709 * When a buffer has its BH_JBD bit set it is immune from being released by 2710 * core kernel code, mainly via ->b_count. 2711 * 2712 * A journal_head is detached from its buffer_head when the journal_head's 2713 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2714 * transaction (b_cp_transaction) hold their references to b_jcount. 2715 * 2716 * Various places in the kernel want to attach a journal_head to a buffer_head 2717 * _before_ attaching the journal_head to a transaction. To protect the 2718 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2719 * journal_head's b_jcount refcount by one. The caller must call 2720 * jbd2_journal_put_journal_head() to undo this. 2721 * 2722 * So the typical usage would be: 2723 * 2724 * (Attach a journal_head if needed. Increments b_jcount) 2725 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2726 * ... 2727 * (Get another reference for transaction) 2728 * jbd2_journal_grab_journal_head(bh); 2729 * jh->b_transaction = xxx; 2730 * (Put original reference) 2731 * jbd2_journal_put_journal_head(jh); 2732 */ 2733 2734 /* 2735 * Give a buffer_head a journal_head. 2736 * 2737 * May sleep. 2738 */ 2739 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2740 { 2741 struct journal_head *jh; 2742 struct journal_head *new_jh = NULL; 2743 2744 repeat: 2745 if (!buffer_jbd(bh)) 2746 new_jh = journal_alloc_journal_head(); 2747 2748 jbd_lock_bh_journal_head(bh); 2749 if (buffer_jbd(bh)) { 2750 jh = bh2jh(bh); 2751 } else { 2752 J_ASSERT_BH(bh, 2753 (atomic_read(&bh->b_count) > 0) || 2754 (bh->b_page && bh->b_page->mapping)); 2755 2756 if (!new_jh) { 2757 jbd_unlock_bh_journal_head(bh); 2758 goto repeat; 2759 } 2760 2761 jh = new_jh; 2762 new_jh = NULL; /* We consumed it */ 2763 set_buffer_jbd(bh); 2764 bh->b_private = jh; 2765 jh->b_bh = bh; 2766 get_bh(bh); 2767 BUFFER_TRACE(bh, "added journal_head"); 2768 } 2769 jh->b_jcount++; 2770 jbd_unlock_bh_journal_head(bh); 2771 if (new_jh) 2772 journal_free_journal_head(new_jh); 2773 return bh->b_private; 2774 } 2775 2776 /* 2777 * Grab a ref against this buffer_head's journal_head. If it ended up not 2778 * having a journal_head, return NULL 2779 */ 2780 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2781 { 2782 struct journal_head *jh = NULL; 2783 2784 jbd_lock_bh_journal_head(bh); 2785 if (buffer_jbd(bh)) { 2786 jh = bh2jh(bh); 2787 jh->b_jcount++; 2788 } 2789 jbd_unlock_bh_journal_head(bh); 2790 return jh; 2791 } 2792 2793 static void __journal_remove_journal_head(struct buffer_head *bh) 2794 { 2795 struct journal_head *jh = bh2jh(bh); 2796 2797 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2798 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2799 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2800 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2801 J_ASSERT_BH(bh, buffer_jbd(bh)); 2802 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2803 BUFFER_TRACE(bh, "remove journal_head"); 2804 2805 /* Unlink before dropping the lock */ 2806 bh->b_private = NULL; 2807 jh->b_bh = NULL; /* debug, really */ 2808 clear_buffer_jbd(bh); 2809 } 2810 2811 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 2812 { 2813 if (jh->b_frozen_data) { 2814 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2815 jbd2_free(jh->b_frozen_data, b_size); 2816 } 2817 if (jh->b_committed_data) { 2818 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2819 jbd2_free(jh->b_committed_data, b_size); 2820 } 2821 journal_free_journal_head(jh); 2822 } 2823 2824 /* 2825 * Drop a reference on the passed journal_head. If it fell to zero then 2826 * release the journal_head from the buffer_head. 2827 */ 2828 void jbd2_journal_put_journal_head(struct journal_head *jh) 2829 { 2830 struct buffer_head *bh = jh2bh(jh); 2831 2832 jbd_lock_bh_journal_head(bh); 2833 J_ASSERT_JH(jh, jh->b_jcount > 0); 2834 --jh->b_jcount; 2835 if (!jh->b_jcount) { 2836 __journal_remove_journal_head(bh); 2837 jbd_unlock_bh_journal_head(bh); 2838 journal_release_journal_head(jh, bh->b_size); 2839 __brelse(bh); 2840 } else { 2841 jbd_unlock_bh_journal_head(bh); 2842 } 2843 } 2844 2845 /* 2846 * Initialize jbd inode head 2847 */ 2848 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2849 { 2850 jinode->i_transaction = NULL; 2851 jinode->i_next_transaction = NULL; 2852 jinode->i_vfs_inode = inode; 2853 jinode->i_flags = 0; 2854 jinode->i_dirty_start = 0; 2855 jinode->i_dirty_end = 0; 2856 INIT_LIST_HEAD(&jinode->i_list); 2857 } 2858 2859 /* 2860 * Function to be called before we start removing inode from memory (i.e., 2861 * clear_inode() is a fine place to be called from). It removes inode from 2862 * transaction's lists. 2863 */ 2864 void jbd2_journal_release_jbd_inode(journal_t *journal, 2865 struct jbd2_inode *jinode) 2866 { 2867 if (!journal) 2868 return; 2869 restart: 2870 spin_lock(&journal->j_list_lock); 2871 /* Is commit writing out inode - we have to wait */ 2872 if (jinode->i_flags & JI_COMMIT_RUNNING) { 2873 wait_queue_head_t *wq; 2874 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2875 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2876 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2877 spin_unlock(&journal->j_list_lock); 2878 schedule(); 2879 finish_wait(wq, &wait.wq_entry); 2880 goto restart; 2881 } 2882 2883 if (jinode->i_transaction) { 2884 list_del(&jinode->i_list); 2885 jinode->i_transaction = NULL; 2886 } 2887 spin_unlock(&journal->j_list_lock); 2888 } 2889 2890 2891 #ifdef CONFIG_PROC_FS 2892 2893 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2894 2895 static void __init jbd2_create_jbd_stats_proc_entry(void) 2896 { 2897 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2898 } 2899 2900 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2901 { 2902 if (proc_jbd2_stats) 2903 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2904 } 2905 2906 #else 2907 2908 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2909 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2910 2911 #endif 2912 2913 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2914 2915 static int __init jbd2_journal_init_inode_cache(void) 2916 { 2917 J_ASSERT(!jbd2_inode_cache); 2918 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2919 if (!jbd2_inode_cache) { 2920 pr_emerg("JBD2: failed to create inode cache\n"); 2921 return -ENOMEM; 2922 } 2923 return 0; 2924 } 2925 2926 static int __init jbd2_journal_init_handle_cache(void) 2927 { 2928 J_ASSERT(!jbd2_handle_cache); 2929 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2930 if (!jbd2_handle_cache) { 2931 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2932 return -ENOMEM; 2933 } 2934 return 0; 2935 } 2936 2937 static void jbd2_journal_destroy_inode_cache(void) 2938 { 2939 kmem_cache_destroy(jbd2_inode_cache); 2940 jbd2_inode_cache = NULL; 2941 } 2942 2943 static void jbd2_journal_destroy_handle_cache(void) 2944 { 2945 kmem_cache_destroy(jbd2_handle_cache); 2946 jbd2_handle_cache = NULL; 2947 } 2948 2949 /* 2950 * Module startup and shutdown 2951 */ 2952 2953 static int __init journal_init_caches(void) 2954 { 2955 int ret; 2956 2957 ret = jbd2_journal_init_revoke_record_cache(); 2958 if (ret == 0) 2959 ret = jbd2_journal_init_revoke_table_cache(); 2960 if (ret == 0) 2961 ret = jbd2_journal_init_journal_head_cache(); 2962 if (ret == 0) 2963 ret = jbd2_journal_init_handle_cache(); 2964 if (ret == 0) 2965 ret = jbd2_journal_init_inode_cache(); 2966 if (ret == 0) 2967 ret = jbd2_journal_init_transaction_cache(); 2968 return ret; 2969 } 2970 2971 static void jbd2_journal_destroy_caches(void) 2972 { 2973 jbd2_journal_destroy_revoke_record_cache(); 2974 jbd2_journal_destroy_revoke_table_cache(); 2975 jbd2_journal_destroy_journal_head_cache(); 2976 jbd2_journal_destroy_handle_cache(); 2977 jbd2_journal_destroy_inode_cache(); 2978 jbd2_journal_destroy_transaction_cache(); 2979 jbd2_journal_destroy_slabs(); 2980 } 2981 2982 static int __init journal_init(void) 2983 { 2984 int ret; 2985 2986 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2987 2988 ret = journal_init_caches(); 2989 if (ret == 0) { 2990 jbd2_create_jbd_stats_proc_entry(); 2991 } else { 2992 jbd2_journal_destroy_caches(); 2993 } 2994 return ret; 2995 } 2996 2997 static void __exit journal_exit(void) 2998 { 2999 #ifdef CONFIG_JBD2_DEBUG 3000 int n = atomic_read(&nr_journal_heads); 3001 if (n) 3002 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 3003 #endif 3004 jbd2_remove_jbd_stats_proc_entry(); 3005 jbd2_journal_destroy_caches(); 3006 } 3007 3008 MODULE_LICENSE("GPL"); 3009 module_init(journal_init); 3010 module_exit(journal_exit); 3011 3012