xref: /openbmc/linux/fs/jbd2/journal.c (revision 01b5adcebb977bc61b64167adce6d8260c9da33c)
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24 
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50 
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53 
54 EXPORT_SYMBOL(jbd2_journal_extend);
55 EXPORT_SYMBOL(jbd2_journal_stop);
56 EXPORT_SYMBOL(jbd2_journal_lock_updates);
57 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
58 EXPORT_SYMBOL(jbd2_journal_get_write_access);
59 EXPORT_SYMBOL(jbd2_journal_get_create_access);
60 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
61 EXPORT_SYMBOL(jbd2_journal_set_triggers);
62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
63 EXPORT_SYMBOL(jbd2_journal_release_buffer);
64 EXPORT_SYMBOL(jbd2_journal_forget);
65 #if 0
66 EXPORT_SYMBOL(journal_sync_buffer);
67 #endif
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70 
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_log_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
86 EXPORT_SYMBOL(jbd2_journal_wipe);
87 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
88 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
89 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
90 EXPORT_SYMBOL(jbd2_journal_force_commit);
91 EXPORT_SYMBOL(jbd2_journal_file_inode);
92 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
95 EXPORT_SYMBOL(jbd2_inode_cache);
96 
97 static void __journal_abort_soft (journal_t *journal, int errno);
98 static int jbd2_journal_create_slab(size_t slab_size);
99 
100 /* Checksumming functions */
101 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
102 {
103 	if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
104 		return 1;
105 
106 	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
107 }
108 
109 /*
110  * Helper function used to manage commit timeouts
111  */
112 
113 static void commit_timeout(unsigned long __data)
114 {
115 	struct task_struct * p = (struct task_struct *) __data;
116 
117 	wake_up_process(p);
118 }
119 
120 /*
121  * kjournald2: The main thread function used to manage a logging device
122  * journal.
123  *
124  * This kernel thread is responsible for two things:
125  *
126  * 1) COMMIT:  Every so often we need to commit the current state of the
127  *    filesystem to disk.  The journal thread is responsible for writing
128  *    all of the metadata buffers to disk.
129  *
130  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
131  *    of the data in that part of the log has been rewritten elsewhere on
132  *    the disk.  Flushing these old buffers to reclaim space in the log is
133  *    known as checkpointing, and this thread is responsible for that job.
134  */
135 
136 static int kjournald2(void *arg)
137 {
138 	journal_t *journal = arg;
139 	transaction_t *transaction;
140 
141 	/*
142 	 * Set up an interval timer which can be used to trigger a commit wakeup
143 	 * after the commit interval expires
144 	 */
145 	setup_timer(&journal->j_commit_timer, commit_timeout,
146 			(unsigned long)current);
147 
148 	set_freezable();
149 
150 	/* Record that the journal thread is running */
151 	journal->j_task = current;
152 	wake_up(&journal->j_wait_done_commit);
153 
154 	/*
155 	 * And now, wait forever for commit wakeup events.
156 	 */
157 	write_lock(&journal->j_state_lock);
158 
159 loop:
160 	if (journal->j_flags & JBD2_UNMOUNT)
161 		goto end_loop;
162 
163 	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
164 		journal->j_commit_sequence, journal->j_commit_request);
165 
166 	if (journal->j_commit_sequence != journal->j_commit_request) {
167 		jbd_debug(1, "OK, requests differ\n");
168 		write_unlock(&journal->j_state_lock);
169 		del_timer_sync(&journal->j_commit_timer);
170 		jbd2_journal_commit_transaction(journal);
171 		write_lock(&journal->j_state_lock);
172 		goto loop;
173 	}
174 
175 	wake_up(&journal->j_wait_done_commit);
176 	if (freezing(current)) {
177 		/*
178 		 * The simpler the better. Flushing journal isn't a
179 		 * good idea, because that depends on threads that may
180 		 * be already stopped.
181 		 */
182 		jbd_debug(1, "Now suspending kjournald2\n");
183 		write_unlock(&journal->j_state_lock);
184 		try_to_freeze();
185 		write_lock(&journal->j_state_lock);
186 	} else {
187 		/*
188 		 * We assume on resume that commits are already there,
189 		 * so we don't sleep
190 		 */
191 		DEFINE_WAIT(wait);
192 		int should_sleep = 1;
193 
194 		prepare_to_wait(&journal->j_wait_commit, &wait,
195 				TASK_INTERRUPTIBLE);
196 		if (journal->j_commit_sequence != journal->j_commit_request)
197 			should_sleep = 0;
198 		transaction = journal->j_running_transaction;
199 		if (transaction && time_after_eq(jiffies,
200 						transaction->t_expires))
201 			should_sleep = 0;
202 		if (journal->j_flags & JBD2_UNMOUNT)
203 			should_sleep = 0;
204 		if (should_sleep) {
205 			write_unlock(&journal->j_state_lock);
206 			schedule();
207 			write_lock(&journal->j_state_lock);
208 		}
209 		finish_wait(&journal->j_wait_commit, &wait);
210 	}
211 
212 	jbd_debug(1, "kjournald2 wakes\n");
213 
214 	/*
215 	 * Were we woken up by a commit wakeup event?
216 	 */
217 	transaction = journal->j_running_transaction;
218 	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
219 		journal->j_commit_request = transaction->t_tid;
220 		jbd_debug(1, "woke because of timeout\n");
221 	}
222 	goto loop;
223 
224 end_loop:
225 	write_unlock(&journal->j_state_lock);
226 	del_timer_sync(&journal->j_commit_timer);
227 	journal->j_task = NULL;
228 	wake_up(&journal->j_wait_done_commit);
229 	jbd_debug(1, "Journal thread exiting.\n");
230 	return 0;
231 }
232 
233 static int jbd2_journal_start_thread(journal_t *journal)
234 {
235 	struct task_struct *t;
236 
237 	t = kthread_run(kjournald2, journal, "jbd2/%s",
238 			journal->j_devname);
239 	if (IS_ERR(t))
240 		return PTR_ERR(t);
241 
242 	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
243 	return 0;
244 }
245 
246 static void journal_kill_thread(journal_t *journal)
247 {
248 	write_lock(&journal->j_state_lock);
249 	journal->j_flags |= JBD2_UNMOUNT;
250 
251 	while (journal->j_task) {
252 		wake_up(&journal->j_wait_commit);
253 		write_unlock(&journal->j_state_lock);
254 		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
255 		write_lock(&journal->j_state_lock);
256 	}
257 	write_unlock(&journal->j_state_lock);
258 }
259 
260 /*
261  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
262  *
263  * Writes a metadata buffer to a given disk block.  The actual IO is not
264  * performed but a new buffer_head is constructed which labels the data
265  * to be written with the correct destination disk block.
266  *
267  * Any magic-number escaping which needs to be done will cause a
268  * copy-out here.  If the buffer happens to start with the
269  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
270  * magic number is only written to the log for descripter blocks.  In
271  * this case, we copy the data and replace the first word with 0, and we
272  * return a result code which indicates that this buffer needs to be
273  * marked as an escaped buffer in the corresponding log descriptor
274  * block.  The missing word can then be restored when the block is read
275  * during recovery.
276  *
277  * If the source buffer has already been modified by a new transaction
278  * since we took the last commit snapshot, we use the frozen copy of
279  * that data for IO.  If we end up using the existing buffer_head's data
280  * for the write, then we *have* to lock the buffer to prevent anyone
281  * else from using and possibly modifying it while the IO is in
282  * progress.
283  *
284  * The function returns a pointer to the buffer_heads to be used for IO.
285  *
286  * We assume that the journal has already been locked in this function.
287  *
288  * Return value:
289  *  <0: Error
290  * >=0: Finished OK
291  *
292  * On success:
293  * Bit 0 set == escape performed on the data
294  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
295  */
296 
297 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
298 				  struct journal_head  *jh_in,
299 				  struct journal_head **jh_out,
300 				  unsigned long long blocknr)
301 {
302 	int need_copy_out = 0;
303 	int done_copy_out = 0;
304 	int do_escape = 0;
305 	char *mapped_data;
306 	struct buffer_head *new_bh;
307 	struct journal_head *new_jh;
308 	struct page *new_page;
309 	unsigned int new_offset;
310 	struct buffer_head *bh_in = jh2bh(jh_in);
311 	journal_t *journal = transaction->t_journal;
312 
313 	/*
314 	 * The buffer really shouldn't be locked: only the current committing
315 	 * transaction is allowed to write it, so nobody else is allowed
316 	 * to do any IO.
317 	 *
318 	 * akpm: except if we're journalling data, and write() output is
319 	 * also part of a shared mapping, and another thread has
320 	 * decided to launch a writepage() against this buffer.
321 	 */
322 	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
323 
324 retry_alloc:
325 	new_bh = alloc_buffer_head(GFP_NOFS);
326 	if (!new_bh) {
327 		/*
328 		 * Failure is not an option, but __GFP_NOFAIL is going
329 		 * away; so we retry ourselves here.
330 		 */
331 		congestion_wait(BLK_RW_ASYNC, HZ/50);
332 		goto retry_alloc;
333 	}
334 
335 	/* keep subsequent assertions sane */
336 	new_bh->b_state = 0;
337 	init_buffer(new_bh, NULL, NULL);
338 	atomic_set(&new_bh->b_count, 1);
339 	new_jh = jbd2_journal_add_journal_head(new_bh);	/* This sleeps */
340 
341 	/*
342 	 * If a new transaction has already done a buffer copy-out, then
343 	 * we use that version of the data for the commit.
344 	 */
345 	jbd_lock_bh_state(bh_in);
346 repeat:
347 	if (jh_in->b_frozen_data) {
348 		done_copy_out = 1;
349 		new_page = virt_to_page(jh_in->b_frozen_data);
350 		new_offset = offset_in_page(jh_in->b_frozen_data);
351 	} else {
352 		new_page = jh2bh(jh_in)->b_page;
353 		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
354 	}
355 
356 	mapped_data = kmap_atomic(new_page);
357 	/*
358 	 * Fire data frozen trigger if data already wasn't frozen.  Do this
359 	 * before checking for escaping, as the trigger may modify the magic
360 	 * offset.  If a copy-out happens afterwards, it will have the correct
361 	 * data in the buffer.
362 	 */
363 	if (!done_copy_out)
364 		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
365 					   jh_in->b_triggers);
366 
367 	/*
368 	 * Check for escaping
369 	 */
370 	if (*((__be32 *)(mapped_data + new_offset)) ==
371 				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
372 		need_copy_out = 1;
373 		do_escape = 1;
374 	}
375 	kunmap_atomic(mapped_data);
376 
377 	/*
378 	 * Do we need to do a data copy?
379 	 */
380 	if (need_copy_out && !done_copy_out) {
381 		char *tmp;
382 
383 		jbd_unlock_bh_state(bh_in);
384 		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
385 		if (!tmp) {
386 			jbd2_journal_put_journal_head(new_jh);
387 			return -ENOMEM;
388 		}
389 		jbd_lock_bh_state(bh_in);
390 		if (jh_in->b_frozen_data) {
391 			jbd2_free(tmp, bh_in->b_size);
392 			goto repeat;
393 		}
394 
395 		jh_in->b_frozen_data = tmp;
396 		mapped_data = kmap_atomic(new_page);
397 		memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
398 		kunmap_atomic(mapped_data);
399 
400 		new_page = virt_to_page(tmp);
401 		new_offset = offset_in_page(tmp);
402 		done_copy_out = 1;
403 
404 		/*
405 		 * This isn't strictly necessary, as we're using frozen
406 		 * data for the escaping, but it keeps consistency with
407 		 * b_frozen_data usage.
408 		 */
409 		jh_in->b_frozen_triggers = jh_in->b_triggers;
410 	}
411 
412 	/*
413 	 * Did we need to do an escaping?  Now we've done all the
414 	 * copying, we can finally do so.
415 	 */
416 	if (do_escape) {
417 		mapped_data = kmap_atomic(new_page);
418 		*((unsigned int *)(mapped_data + new_offset)) = 0;
419 		kunmap_atomic(mapped_data);
420 	}
421 
422 	set_bh_page(new_bh, new_page, new_offset);
423 	new_jh->b_transaction = NULL;
424 	new_bh->b_size = jh2bh(jh_in)->b_size;
425 	new_bh->b_bdev = transaction->t_journal->j_dev;
426 	new_bh->b_blocknr = blocknr;
427 	set_buffer_mapped(new_bh);
428 	set_buffer_dirty(new_bh);
429 
430 	*jh_out = new_jh;
431 
432 	/*
433 	 * The to-be-written buffer needs to get moved to the io queue,
434 	 * and the original buffer whose contents we are shadowing or
435 	 * copying is moved to the transaction's shadow queue.
436 	 */
437 	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
438 	spin_lock(&journal->j_list_lock);
439 	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
440 	spin_unlock(&journal->j_list_lock);
441 	jbd_unlock_bh_state(bh_in);
442 
443 	JBUFFER_TRACE(new_jh, "file as BJ_IO");
444 	jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
445 
446 	return do_escape | (done_copy_out << 1);
447 }
448 
449 /*
450  * Allocation code for the journal file.  Manage the space left in the
451  * journal, so that we can begin checkpointing when appropriate.
452  */
453 
454 /*
455  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
456  *
457  * Called with the journal already locked.
458  *
459  * Called under j_state_lock
460  */
461 
462 int __jbd2_log_space_left(journal_t *journal)
463 {
464 	int left = journal->j_free;
465 
466 	/* assert_spin_locked(&journal->j_state_lock); */
467 
468 	/*
469 	 * Be pessimistic here about the number of those free blocks which
470 	 * might be required for log descriptor control blocks.
471 	 */
472 
473 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
474 
475 	left -= MIN_LOG_RESERVED_BLOCKS;
476 
477 	if (left <= 0)
478 		return 0;
479 	left -= (left >> 3);
480 	return left;
481 }
482 
483 /*
484  * Called with j_state_lock locked for writing.
485  * Returns true if a transaction commit was started.
486  */
487 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
488 {
489 	/*
490 	 * The only transaction we can possibly wait upon is the
491 	 * currently running transaction (if it exists).  Otherwise,
492 	 * the target tid must be an old one.
493 	 */
494 	if (journal->j_running_transaction &&
495 	    journal->j_running_transaction->t_tid == target) {
496 		/*
497 		 * We want a new commit: OK, mark the request and wakeup the
498 		 * commit thread.  We do _not_ do the commit ourselves.
499 		 */
500 
501 		journal->j_commit_request = target;
502 		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
503 			  journal->j_commit_request,
504 			  journal->j_commit_sequence);
505 		wake_up(&journal->j_wait_commit);
506 		return 1;
507 	} else if (!tid_geq(journal->j_commit_request, target))
508 		/* This should never happen, but if it does, preserve
509 		   the evidence before kjournald goes into a loop and
510 		   increments j_commit_sequence beyond all recognition. */
511 		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
512 			  journal->j_commit_request,
513 			  journal->j_commit_sequence,
514 			  target, journal->j_running_transaction ?
515 			  journal->j_running_transaction->t_tid : 0);
516 	return 0;
517 }
518 
519 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
520 {
521 	int ret;
522 
523 	write_lock(&journal->j_state_lock);
524 	ret = __jbd2_log_start_commit(journal, tid);
525 	write_unlock(&journal->j_state_lock);
526 	return ret;
527 }
528 
529 /*
530  * Force and wait upon a commit if the calling process is not within
531  * transaction.  This is used for forcing out undo-protected data which contains
532  * bitmaps, when the fs is running out of space.
533  *
534  * We can only force the running transaction if we don't have an active handle;
535  * otherwise, we will deadlock.
536  *
537  * Returns true if a transaction was started.
538  */
539 int jbd2_journal_force_commit_nested(journal_t *journal)
540 {
541 	transaction_t *transaction = NULL;
542 	tid_t tid;
543 	int need_to_start = 0;
544 
545 	read_lock(&journal->j_state_lock);
546 	if (journal->j_running_transaction && !current->journal_info) {
547 		transaction = journal->j_running_transaction;
548 		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
549 			need_to_start = 1;
550 	} else if (journal->j_committing_transaction)
551 		transaction = journal->j_committing_transaction;
552 
553 	if (!transaction) {
554 		read_unlock(&journal->j_state_lock);
555 		return 0;	/* Nothing to retry */
556 	}
557 
558 	tid = transaction->t_tid;
559 	read_unlock(&journal->j_state_lock);
560 	if (need_to_start)
561 		jbd2_log_start_commit(journal, tid);
562 	jbd2_log_wait_commit(journal, tid);
563 	return 1;
564 }
565 
566 /*
567  * Start a commit of the current running transaction (if any).  Returns true
568  * if a transaction is going to be committed (or is currently already
569  * committing), and fills its tid in at *ptid
570  */
571 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
572 {
573 	int ret = 0;
574 
575 	write_lock(&journal->j_state_lock);
576 	if (journal->j_running_transaction) {
577 		tid_t tid = journal->j_running_transaction->t_tid;
578 
579 		__jbd2_log_start_commit(journal, tid);
580 		/* There's a running transaction and we've just made sure
581 		 * it's commit has been scheduled. */
582 		if (ptid)
583 			*ptid = tid;
584 		ret = 1;
585 	} else if (journal->j_committing_transaction) {
586 		/*
587 		 * If ext3_write_super() recently started a commit, then we
588 		 * have to wait for completion of that transaction
589 		 */
590 		if (ptid)
591 			*ptid = journal->j_committing_transaction->t_tid;
592 		ret = 1;
593 	}
594 	write_unlock(&journal->j_state_lock);
595 	return ret;
596 }
597 
598 /*
599  * Return 1 if a given transaction has not yet sent barrier request
600  * connected with a transaction commit. If 0 is returned, transaction
601  * may or may not have sent the barrier. Used to avoid sending barrier
602  * twice in common cases.
603  */
604 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
605 {
606 	int ret = 0;
607 	transaction_t *commit_trans;
608 
609 	if (!(journal->j_flags & JBD2_BARRIER))
610 		return 0;
611 	read_lock(&journal->j_state_lock);
612 	/* Transaction already committed? */
613 	if (tid_geq(journal->j_commit_sequence, tid))
614 		goto out;
615 	commit_trans = journal->j_committing_transaction;
616 	if (!commit_trans || commit_trans->t_tid != tid) {
617 		ret = 1;
618 		goto out;
619 	}
620 	/*
621 	 * Transaction is being committed and we already proceeded to
622 	 * submitting a flush to fs partition?
623 	 */
624 	if (journal->j_fs_dev != journal->j_dev) {
625 		if (!commit_trans->t_need_data_flush ||
626 		    commit_trans->t_state >= T_COMMIT_DFLUSH)
627 			goto out;
628 	} else {
629 		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
630 			goto out;
631 	}
632 	ret = 1;
633 out:
634 	read_unlock(&journal->j_state_lock);
635 	return ret;
636 }
637 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
638 
639 /*
640  * Wait for a specified commit to complete.
641  * The caller may not hold the journal lock.
642  */
643 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
644 {
645 	int err = 0;
646 
647 	read_lock(&journal->j_state_lock);
648 #ifdef CONFIG_JBD2_DEBUG
649 	if (!tid_geq(journal->j_commit_request, tid)) {
650 		printk(KERN_EMERG
651 		       "%s: error: j_commit_request=%d, tid=%d\n",
652 		       __func__, journal->j_commit_request, tid);
653 	}
654 #endif
655 	while (tid_gt(tid, journal->j_commit_sequence)) {
656 		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
657 				  tid, journal->j_commit_sequence);
658 		wake_up(&journal->j_wait_commit);
659 		read_unlock(&journal->j_state_lock);
660 		wait_event(journal->j_wait_done_commit,
661 				!tid_gt(tid, journal->j_commit_sequence));
662 		read_lock(&journal->j_state_lock);
663 	}
664 	read_unlock(&journal->j_state_lock);
665 
666 	if (unlikely(is_journal_aborted(journal))) {
667 		printk(KERN_EMERG "journal commit I/O error\n");
668 		err = -EIO;
669 	}
670 	return err;
671 }
672 
673 /*
674  * Log buffer allocation routines:
675  */
676 
677 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
678 {
679 	unsigned long blocknr;
680 
681 	write_lock(&journal->j_state_lock);
682 	J_ASSERT(journal->j_free > 1);
683 
684 	blocknr = journal->j_head;
685 	journal->j_head++;
686 	journal->j_free--;
687 	if (journal->j_head == journal->j_last)
688 		journal->j_head = journal->j_first;
689 	write_unlock(&journal->j_state_lock);
690 	return jbd2_journal_bmap(journal, blocknr, retp);
691 }
692 
693 /*
694  * Conversion of logical to physical block numbers for the journal
695  *
696  * On external journals the journal blocks are identity-mapped, so
697  * this is a no-op.  If needed, we can use j_blk_offset - everything is
698  * ready.
699  */
700 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
701 		 unsigned long long *retp)
702 {
703 	int err = 0;
704 	unsigned long long ret;
705 
706 	if (journal->j_inode) {
707 		ret = bmap(journal->j_inode, blocknr);
708 		if (ret)
709 			*retp = ret;
710 		else {
711 			printk(KERN_ALERT "%s: journal block not found "
712 					"at offset %lu on %s\n",
713 			       __func__, blocknr, journal->j_devname);
714 			err = -EIO;
715 			__journal_abort_soft(journal, err);
716 		}
717 	} else {
718 		*retp = blocknr; /* +journal->j_blk_offset */
719 	}
720 	return err;
721 }
722 
723 /*
724  * We play buffer_head aliasing tricks to write data/metadata blocks to
725  * the journal without copying their contents, but for journal
726  * descriptor blocks we do need to generate bona fide buffers.
727  *
728  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
729  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
730  * But we don't bother doing that, so there will be coherency problems with
731  * mmaps of blockdevs which hold live JBD-controlled filesystems.
732  */
733 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
734 {
735 	struct buffer_head *bh;
736 	unsigned long long blocknr;
737 	int err;
738 
739 	err = jbd2_journal_next_log_block(journal, &blocknr);
740 
741 	if (err)
742 		return NULL;
743 
744 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
745 	if (!bh)
746 		return NULL;
747 	lock_buffer(bh);
748 	memset(bh->b_data, 0, journal->j_blocksize);
749 	set_buffer_uptodate(bh);
750 	unlock_buffer(bh);
751 	BUFFER_TRACE(bh, "return this buffer");
752 	return jbd2_journal_add_journal_head(bh);
753 }
754 
755 /*
756  * Return tid of the oldest transaction in the journal and block in the journal
757  * where the transaction starts.
758  *
759  * If the journal is now empty, return which will be the next transaction ID
760  * we will write and where will that transaction start.
761  *
762  * The return value is 0 if journal tail cannot be pushed any further, 1 if
763  * it can.
764  */
765 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
766 			      unsigned long *block)
767 {
768 	transaction_t *transaction;
769 	int ret;
770 
771 	read_lock(&journal->j_state_lock);
772 	spin_lock(&journal->j_list_lock);
773 	transaction = journal->j_checkpoint_transactions;
774 	if (transaction) {
775 		*tid = transaction->t_tid;
776 		*block = transaction->t_log_start;
777 	} else if ((transaction = journal->j_committing_transaction) != NULL) {
778 		*tid = transaction->t_tid;
779 		*block = transaction->t_log_start;
780 	} else if ((transaction = journal->j_running_transaction) != NULL) {
781 		*tid = transaction->t_tid;
782 		*block = journal->j_head;
783 	} else {
784 		*tid = journal->j_transaction_sequence;
785 		*block = journal->j_head;
786 	}
787 	ret = tid_gt(*tid, journal->j_tail_sequence);
788 	spin_unlock(&journal->j_list_lock);
789 	read_unlock(&journal->j_state_lock);
790 
791 	return ret;
792 }
793 
794 /*
795  * Update information in journal structure and in on disk journal superblock
796  * about log tail. This function does not check whether information passed in
797  * really pushes log tail further. It's responsibility of the caller to make
798  * sure provided log tail information is valid (e.g. by holding
799  * j_checkpoint_mutex all the time between computing log tail and calling this
800  * function as is the case with jbd2_cleanup_journal_tail()).
801  *
802  * Requires j_checkpoint_mutex
803  */
804 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
805 {
806 	unsigned long freed;
807 
808 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
809 
810 	/*
811 	 * We cannot afford for write to remain in drive's caches since as
812 	 * soon as we update j_tail, next transaction can start reusing journal
813 	 * space and if we lose sb update during power failure we'd replay
814 	 * old transaction with possibly newly overwritten data.
815 	 */
816 	jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
817 	write_lock(&journal->j_state_lock);
818 	freed = block - journal->j_tail;
819 	if (block < journal->j_tail)
820 		freed += journal->j_last - journal->j_first;
821 
822 	trace_jbd2_update_log_tail(journal, tid, block, freed);
823 	jbd_debug(1,
824 		  "Cleaning journal tail from %d to %d (offset %lu), "
825 		  "freeing %lu\n",
826 		  journal->j_tail_sequence, tid, block, freed);
827 
828 	journal->j_free += freed;
829 	journal->j_tail_sequence = tid;
830 	journal->j_tail = block;
831 	write_unlock(&journal->j_state_lock);
832 }
833 
834 /*
835  * This is a variaon of __jbd2_update_log_tail which checks for validity of
836  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
837  * with other threads updating log tail.
838  */
839 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
840 {
841 	mutex_lock(&journal->j_checkpoint_mutex);
842 	if (tid_gt(tid, journal->j_tail_sequence))
843 		__jbd2_update_log_tail(journal, tid, block);
844 	mutex_unlock(&journal->j_checkpoint_mutex);
845 }
846 
847 struct jbd2_stats_proc_session {
848 	journal_t *journal;
849 	struct transaction_stats_s *stats;
850 	int start;
851 	int max;
852 };
853 
854 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
855 {
856 	return *pos ? NULL : SEQ_START_TOKEN;
857 }
858 
859 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
860 {
861 	return NULL;
862 }
863 
864 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
865 {
866 	struct jbd2_stats_proc_session *s = seq->private;
867 
868 	if (v != SEQ_START_TOKEN)
869 		return 0;
870 	seq_printf(seq, "%lu transaction, each up to %u blocks\n",
871 			s->stats->ts_tid,
872 			s->journal->j_max_transaction_buffers);
873 	if (s->stats->ts_tid == 0)
874 		return 0;
875 	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
876 	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
877 	seq_printf(seq, "  %ums running transaction\n",
878 	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
879 	seq_printf(seq, "  %ums transaction was being locked\n",
880 	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
881 	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
882 	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
883 	seq_printf(seq, "  %ums logging transaction\n",
884 	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
885 	seq_printf(seq, "  %lluus average transaction commit time\n",
886 		   div_u64(s->journal->j_average_commit_time, 1000));
887 	seq_printf(seq, "  %lu handles per transaction\n",
888 	    s->stats->run.rs_handle_count / s->stats->ts_tid);
889 	seq_printf(seq, "  %lu blocks per transaction\n",
890 	    s->stats->run.rs_blocks / s->stats->ts_tid);
891 	seq_printf(seq, "  %lu logged blocks per transaction\n",
892 	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
893 	return 0;
894 }
895 
896 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
897 {
898 }
899 
900 static const struct seq_operations jbd2_seq_info_ops = {
901 	.start  = jbd2_seq_info_start,
902 	.next   = jbd2_seq_info_next,
903 	.stop   = jbd2_seq_info_stop,
904 	.show   = jbd2_seq_info_show,
905 };
906 
907 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
908 {
909 	journal_t *journal = PDE(inode)->data;
910 	struct jbd2_stats_proc_session *s;
911 	int rc, size;
912 
913 	s = kmalloc(sizeof(*s), GFP_KERNEL);
914 	if (s == NULL)
915 		return -ENOMEM;
916 	size = sizeof(struct transaction_stats_s);
917 	s->stats = kmalloc(size, GFP_KERNEL);
918 	if (s->stats == NULL) {
919 		kfree(s);
920 		return -ENOMEM;
921 	}
922 	spin_lock(&journal->j_history_lock);
923 	memcpy(s->stats, &journal->j_stats, size);
924 	s->journal = journal;
925 	spin_unlock(&journal->j_history_lock);
926 
927 	rc = seq_open(file, &jbd2_seq_info_ops);
928 	if (rc == 0) {
929 		struct seq_file *m = file->private_data;
930 		m->private = s;
931 	} else {
932 		kfree(s->stats);
933 		kfree(s);
934 	}
935 	return rc;
936 
937 }
938 
939 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
940 {
941 	struct seq_file *seq = file->private_data;
942 	struct jbd2_stats_proc_session *s = seq->private;
943 	kfree(s->stats);
944 	kfree(s);
945 	return seq_release(inode, file);
946 }
947 
948 static const struct file_operations jbd2_seq_info_fops = {
949 	.owner		= THIS_MODULE,
950 	.open           = jbd2_seq_info_open,
951 	.read           = seq_read,
952 	.llseek         = seq_lseek,
953 	.release        = jbd2_seq_info_release,
954 };
955 
956 static struct proc_dir_entry *proc_jbd2_stats;
957 
958 static void jbd2_stats_proc_init(journal_t *journal)
959 {
960 	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
961 	if (journal->j_proc_entry) {
962 		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
963 				 &jbd2_seq_info_fops, journal);
964 	}
965 }
966 
967 static void jbd2_stats_proc_exit(journal_t *journal)
968 {
969 	remove_proc_entry("info", journal->j_proc_entry);
970 	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
971 }
972 
973 /*
974  * Management for journal control blocks: functions to create and
975  * destroy journal_t structures, and to initialise and read existing
976  * journal blocks from disk.  */
977 
978 /* First: create and setup a journal_t object in memory.  We initialise
979  * very few fields yet: that has to wait until we have created the
980  * journal structures from from scratch, or loaded them from disk. */
981 
982 static journal_t * journal_init_common (void)
983 {
984 	journal_t *journal;
985 	int err;
986 
987 	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
988 	if (!journal)
989 		return NULL;
990 
991 	init_waitqueue_head(&journal->j_wait_transaction_locked);
992 	init_waitqueue_head(&journal->j_wait_logspace);
993 	init_waitqueue_head(&journal->j_wait_done_commit);
994 	init_waitqueue_head(&journal->j_wait_checkpoint);
995 	init_waitqueue_head(&journal->j_wait_commit);
996 	init_waitqueue_head(&journal->j_wait_updates);
997 	mutex_init(&journal->j_barrier);
998 	mutex_init(&journal->j_checkpoint_mutex);
999 	spin_lock_init(&journal->j_revoke_lock);
1000 	spin_lock_init(&journal->j_list_lock);
1001 	rwlock_init(&journal->j_state_lock);
1002 
1003 	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1004 	journal->j_min_batch_time = 0;
1005 	journal->j_max_batch_time = 15000; /* 15ms */
1006 
1007 	/* The journal is marked for error until we succeed with recovery! */
1008 	journal->j_flags = JBD2_ABORT;
1009 
1010 	/* Set up a default-sized revoke table for the new mount. */
1011 	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1012 	if (err) {
1013 		kfree(journal);
1014 		return NULL;
1015 	}
1016 
1017 	spin_lock_init(&journal->j_history_lock);
1018 
1019 	return journal;
1020 }
1021 
1022 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1023  *
1024  * Create a journal structure assigned some fixed set of disk blocks to
1025  * the journal.  We don't actually touch those disk blocks yet, but we
1026  * need to set up all of the mapping information to tell the journaling
1027  * system where the journal blocks are.
1028  *
1029  */
1030 
1031 /**
1032  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1033  *  @bdev: Block device on which to create the journal
1034  *  @fs_dev: Device which hold journalled filesystem for this journal.
1035  *  @start: Block nr Start of journal.
1036  *  @len:  Length of the journal in blocks.
1037  *  @blocksize: blocksize of journalling device
1038  *
1039  *  Returns: a newly created journal_t *
1040  *
1041  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1042  *  range of blocks on an arbitrary block device.
1043  *
1044  */
1045 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1046 			struct block_device *fs_dev,
1047 			unsigned long long start, int len, int blocksize)
1048 {
1049 	journal_t *journal = journal_init_common();
1050 	struct buffer_head *bh;
1051 	char *p;
1052 	int n;
1053 
1054 	if (!journal)
1055 		return NULL;
1056 
1057 	/* journal descriptor can store up to n blocks -bzzz */
1058 	journal->j_blocksize = blocksize;
1059 	journal->j_dev = bdev;
1060 	journal->j_fs_dev = fs_dev;
1061 	journal->j_blk_offset = start;
1062 	journal->j_maxlen = len;
1063 	bdevname(journal->j_dev, journal->j_devname);
1064 	p = journal->j_devname;
1065 	while ((p = strchr(p, '/')))
1066 		*p = '!';
1067 	jbd2_stats_proc_init(journal);
1068 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1069 	journal->j_wbufsize = n;
1070 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1071 	if (!journal->j_wbuf) {
1072 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1073 			__func__);
1074 		goto out_err;
1075 	}
1076 
1077 	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1078 	if (!bh) {
1079 		printk(KERN_ERR
1080 		       "%s: Cannot get buffer for journal superblock\n",
1081 		       __func__);
1082 		goto out_err;
1083 	}
1084 	journal->j_sb_buffer = bh;
1085 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1086 
1087 	return journal;
1088 out_err:
1089 	kfree(journal->j_wbuf);
1090 	jbd2_stats_proc_exit(journal);
1091 	kfree(journal);
1092 	return NULL;
1093 }
1094 
1095 /**
1096  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1097  *  @inode: An inode to create the journal in
1098  *
1099  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1100  * the journal.  The inode must exist already, must support bmap() and
1101  * must have all data blocks preallocated.
1102  */
1103 journal_t * jbd2_journal_init_inode (struct inode *inode)
1104 {
1105 	struct buffer_head *bh;
1106 	journal_t *journal = journal_init_common();
1107 	char *p;
1108 	int err;
1109 	int n;
1110 	unsigned long long blocknr;
1111 
1112 	if (!journal)
1113 		return NULL;
1114 
1115 	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1116 	journal->j_inode = inode;
1117 	bdevname(journal->j_dev, journal->j_devname);
1118 	p = journal->j_devname;
1119 	while ((p = strchr(p, '/')))
1120 		*p = '!';
1121 	p = journal->j_devname + strlen(journal->j_devname);
1122 	sprintf(p, "-%lu", journal->j_inode->i_ino);
1123 	jbd_debug(1,
1124 		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1125 		  journal, inode->i_sb->s_id, inode->i_ino,
1126 		  (long long) inode->i_size,
1127 		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1128 
1129 	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1130 	journal->j_blocksize = inode->i_sb->s_blocksize;
1131 	jbd2_stats_proc_init(journal);
1132 
1133 	/* journal descriptor can store up to n blocks -bzzz */
1134 	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1135 	journal->j_wbufsize = n;
1136 	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1137 	if (!journal->j_wbuf) {
1138 		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1139 			__func__);
1140 		goto out_err;
1141 	}
1142 
1143 	err = jbd2_journal_bmap(journal, 0, &blocknr);
1144 	/* If that failed, give up */
1145 	if (err) {
1146 		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1147 		       __func__);
1148 		goto out_err;
1149 	}
1150 
1151 	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1152 	if (!bh) {
1153 		printk(KERN_ERR
1154 		       "%s: Cannot get buffer for journal superblock\n",
1155 		       __func__);
1156 		goto out_err;
1157 	}
1158 	journal->j_sb_buffer = bh;
1159 	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1160 
1161 	return journal;
1162 out_err:
1163 	kfree(journal->j_wbuf);
1164 	jbd2_stats_proc_exit(journal);
1165 	kfree(journal);
1166 	return NULL;
1167 }
1168 
1169 /*
1170  * If the journal init or create aborts, we need to mark the journal
1171  * superblock as being NULL to prevent the journal destroy from writing
1172  * back a bogus superblock.
1173  */
1174 static void journal_fail_superblock (journal_t *journal)
1175 {
1176 	struct buffer_head *bh = journal->j_sb_buffer;
1177 	brelse(bh);
1178 	journal->j_sb_buffer = NULL;
1179 }
1180 
1181 /*
1182  * Given a journal_t structure, initialise the various fields for
1183  * startup of a new journaling session.  We use this both when creating
1184  * a journal, and after recovering an old journal to reset it for
1185  * subsequent use.
1186  */
1187 
1188 static int journal_reset(journal_t *journal)
1189 {
1190 	journal_superblock_t *sb = journal->j_superblock;
1191 	unsigned long long first, last;
1192 
1193 	first = be32_to_cpu(sb->s_first);
1194 	last = be32_to_cpu(sb->s_maxlen);
1195 	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1196 		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1197 		       first, last);
1198 		journal_fail_superblock(journal);
1199 		return -EINVAL;
1200 	}
1201 
1202 	journal->j_first = first;
1203 	journal->j_last = last;
1204 
1205 	journal->j_head = first;
1206 	journal->j_tail = first;
1207 	journal->j_free = last - first;
1208 
1209 	journal->j_tail_sequence = journal->j_transaction_sequence;
1210 	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1211 	journal->j_commit_request = journal->j_commit_sequence;
1212 
1213 	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1214 
1215 	/*
1216 	 * As a special case, if the on-disk copy is already marked as needing
1217 	 * no recovery (s_start == 0), then we can safely defer the superblock
1218 	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1219 	 * attempting a write to a potential-readonly device.
1220 	 */
1221 	if (sb->s_start == 0) {
1222 		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1223 			"(start %ld, seq %d, errno %d)\n",
1224 			journal->j_tail, journal->j_tail_sequence,
1225 			journal->j_errno);
1226 		journal->j_flags |= JBD2_FLUSHED;
1227 	} else {
1228 		/* Lock here to make assertions happy... */
1229 		mutex_lock(&journal->j_checkpoint_mutex);
1230 		/*
1231 		 * Update log tail information. We use WRITE_FUA since new
1232 		 * transaction will start reusing journal space and so we
1233 		 * must make sure information about current log tail is on
1234 		 * disk before that.
1235 		 */
1236 		jbd2_journal_update_sb_log_tail(journal,
1237 						journal->j_tail_sequence,
1238 						journal->j_tail,
1239 						WRITE_FUA);
1240 		mutex_unlock(&journal->j_checkpoint_mutex);
1241 	}
1242 	return jbd2_journal_start_thread(journal);
1243 }
1244 
1245 static void jbd2_write_superblock(journal_t *journal, int write_op)
1246 {
1247 	struct buffer_head *bh = journal->j_sb_buffer;
1248 	int ret;
1249 
1250 	trace_jbd2_write_superblock(journal, write_op);
1251 	if (!(journal->j_flags & JBD2_BARRIER))
1252 		write_op &= ~(REQ_FUA | REQ_FLUSH);
1253 	lock_buffer(bh);
1254 	if (buffer_write_io_error(bh)) {
1255 		/*
1256 		 * Oh, dear.  A previous attempt to write the journal
1257 		 * superblock failed.  This could happen because the
1258 		 * USB device was yanked out.  Or it could happen to
1259 		 * be a transient write error and maybe the block will
1260 		 * be remapped.  Nothing we can do but to retry the
1261 		 * write and hope for the best.
1262 		 */
1263 		printk(KERN_ERR "JBD2: previous I/O error detected "
1264 		       "for journal superblock update for %s.\n",
1265 		       journal->j_devname);
1266 		clear_buffer_write_io_error(bh);
1267 		set_buffer_uptodate(bh);
1268 	}
1269 	get_bh(bh);
1270 	bh->b_end_io = end_buffer_write_sync;
1271 	ret = submit_bh(write_op, bh);
1272 	wait_on_buffer(bh);
1273 	if (buffer_write_io_error(bh)) {
1274 		clear_buffer_write_io_error(bh);
1275 		set_buffer_uptodate(bh);
1276 		ret = -EIO;
1277 	}
1278 	if (ret) {
1279 		printk(KERN_ERR "JBD2: Error %d detected when updating "
1280 		       "journal superblock for %s.\n", ret,
1281 		       journal->j_devname);
1282 	}
1283 }
1284 
1285 /**
1286  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1287  * @journal: The journal to update.
1288  * @tail_tid: TID of the new transaction at the tail of the log
1289  * @tail_block: The first block of the transaction at the tail of the log
1290  * @write_op: With which operation should we write the journal sb
1291  *
1292  * Update a journal's superblock information about log tail and write it to
1293  * disk, waiting for the IO to complete.
1294  */
1295 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1296 				     unsigned long tail_block, int write_op)
1297 {
1298 	journal_superblock_t *sb = journal->j_superblock;
1299 
1300 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1301 	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1302 		  tail_block, tail_tid);
1303 
1304 	sb->s_sequence = cpu_to_be32(tail_tid);
1305 	sb->s_start    = cpu_to_be32(tail_block);
1306 
1307 	jbd2_write_superblock(journal, write_op);
1308 
1309 	/* Log is no longer empty */
1310 	write_lock(&journal->j_state_lock);
1311 	WARN_ON(!sb->s_sequence);
1312 	journal->j_flags &= ~JBD2_FLUSHED;
1313 	write_unlock(&journal->j_state_lock);
1314 }
1315 
1316 /**
1317  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1318  * @journal: The journal to update.
1319  *
1320  * Update a journal's dynamic superblock fields to show that journal is empty.
1321  * Write updated superblock to disk waiting for IO to complete.
1322  */
1323 static void jbd2_mark_journal_empty(journal_t *journal)
1324 {
1325 	journal_superblock_t *sb = journal->j_superblock;
1326 
1327 	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1328 	read_lock(&journal->j_state_lock);
1329 	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1330 		  journal->j_tail_sequence);
1331 
1332 	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1333 	sb->s_start    = cpu_to_be32(0);
1334 	read_unlock(&journal->j_state_lock);
1335 
1336 	jbd2_write_superblock(journal, WRITE_FUA);
1337 
1338 	/* Log is no longer empty */
1339 	write_lock(&journal->j_state_lock);
1340 	journal->j_flags |= JBD2_FLUSHED;
1341 	write_unlock(&journal->j_state_lock);
1342 }
1343 
1344 
1345 /**
1346  * jbd2_journal_update_sb_errno() - Update error in the journal.
1347  * @journal: The journal to update.
1348  *
1349  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1350  * to complete.
1351  */
1352 static void jbd2_journal_update_sb_errno(journal_t *journal)
1353 {
1354 	journal_superblock_t *sb = journal->j_superblock;
1355 
1356 	read_lock(&journal->j_state_lock);
1357 	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1358 		  journal->j_errno);
1359 	sb->s_errno    = cpu_to_be32(journal->j_errno);
1360 	read_unlock(&journal->j_state_lock);
1361 
1362 	jbd2_write_superblock(journal, WRITE_SYNC);
1363 }
1364 
1365 /*
1366  * Read the superblock for a given journal, performing initial
1367  * validation of the format.
1368  */
1369 static int journal_get_superblock(journal_t *journal)
1370 {
1371 	struct buffer_head *bh;
1372 	journal_superblock_t *sb;
1373 	int err = -EIO;
1374 
1375 	bh = journal->j_sb_buffer;
1376 
1377 	J_ASSERT(bh != NULL);
1378 	if (!buffer_uptodate(bh)) {
1379 		ll_rw_block(READ, 1, &bh);
1380 		wait_on_buffer(bh);
1381 		if (!buffer_uptodate(bh)) {
1382 			printk(KERN_ERR
1383 				"JBD2: IO error reading journal superblock\n");
1384 			goto out;
1385 		}
1386 	}
1387 
1388 	if (buffer_verified(bh))
1389 		return 0;
1390 
1391 	sb = journal->j_superblock;
1392 
1393 	err = -EINVAL;
1394 
1395 	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1396 	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1397 		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1398 		goto out;
1399 	}
1400 
1401 	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1402 	case JBD2_SUPERBLOCK_V1:
1403 		journal->j_format_version = 1;
1404 		break;
1405 	case JBD2_SUPERBLOCK_V2:
1406 		journal->j_format_version = 2;
1407 		break;
1408 	default:
1409 		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1410 		goto out;
1411 	}
1412 
1413 	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1414 		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1415 	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1416 		printk(KERN_WARNING "JBD2: journal file too short\n");
1417 		goto out;
1418 	}
1419 
1420 	if (be32_to_cpu(sb->s_first) == 0 ||
1421 	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1422 		printk(KERN_WARNING
1423 			"JBD2: Invalid start block of journal: %u\n",
1424 			be32_to_cpu(sb->s_first));
1425 		goto out;
1426 	}
1427 
1428 	if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1429 	    JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1430 		/* Can't have checksum v1 and v2 on at the same time! */
1431 		printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1432 		       "at the same time!\n");
1433 		goto out;
1434 	}
1435 
1436 	if (!jbd2_verify_csum_type(journal, sb)) {
1437 		printk(KERN_ERR "JBD: Unknown checksum type\n");
1438 		goto out;
1439 	}
1440 
1441 	/* Load the checksum driver */
1442 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1443 		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1444 		if (IS_ERR(journal->j_chksum_driver)) {
1445 			printk(KERN_ERR "JBD: Cannot load crc32c driver.\n");
1446 			err = PTR_ERR(journal->j_chksum_driver);
1447 			journal->j_chksum_driver = NULL;
1448 			goto out;
1449 		}
1450 	}
1451 
1452 	set_buffer_verified(bh);
1453 
1454 	return 0;
1455 
1456 out:
1457 	journal_fail_superblock(journal);
1458 	return err;
1459 }
1460 
1461 /*
1462  * Load the on-disk journal superblock and read the key fields into the
1463  * journal_t.
1464  */
1465 
1466 static int load_superblock(journal_t *journal)
1467 {
1468 	int err;
1469 	journal_superblock_t *sb;
1470 
1471 	err = journal_get_superblock(journal);
1472 	if (err)
1473 		return err;
1474 
1475 	sb = journal->j_superblock;
1476 
1477 	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1478 	journal->j_tail = be32_to_cpu(sb->s_start);
1479 	journal->j_first = be32_to_cpu(sb->s_first);
1480 	journal->j_last = be32_to_cpu(sb->s_maxlen);
1481 	journal->j_errno = be32_to_cpu(sb->s_errno);
1482 
1483 	return 0;
1484 }
1485 
1486 
1487 /**
1488  * int jbd2_journal_load() - Read journal from disk.
1489  * @journal: Journal to act on.
1490  *
1491  * Given a journal_t structure which tells us which disk blocks contain
1492  * a journal, read the journal from disk to initialise the in-memory
1493  * structures.
1494  */
1495 int jbd2_journal_load(journal_t *journal)
1496 {
1497 	int err;
1498 	journal_superblock_t *sb;
1499 
1500 	err = load_superblock(journal);
1501 	if (err)
1502 		return err;
1503 
1504 	sb = journal->j_superblock;
1505 	/* If this is a V2 superblock, then we have to check the
1506 	 * features flags on it. */
1507 
1508 	if (journal->j_format_version >= 2) {
1509 		if ((sb->s_feature_ro_compat &
1510 		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1511 		    (sb->s_feature_incompat &
1512 		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1513 			printk(KERN_WARNING
1514 				"JBD2: Unrecognised features on journal\n");
1515 			return -EINVAL;
1516 		}
1517 	}
1518 
1519 	/*
1520 	 * Create a slab for this blocksize
1521 	 */
1522 	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1523 	if (err)
1524 		return err;
1525 
1526 	/* Let the recovery code check whether it needs to recover any
1527 	 * data from the journal. */
1528 	if (jbd2_journal_recover(journal))
1529 		goto recovery_error;
1530 
1531 	if (journal->j_failed_commit) {
1532 		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1533 		       "is corrupt.\n", journal->j_failed_commit,
1534 		       journal->j_devname);
1535 		return -EIO;
1536 	}
1537 
1538 	/* OK, we've finished with the dynamic journal bits:
1539 	 * reinitialise the dynamic contents of the superblock in memory
1540 	 * and reset them on disk. */
1541 	if (journal_reset(journal))
1542 		goto recovery_error;
1543 
1544 	journal->j_flags &= ~JBD2_ABORT;
1545 	journal->j_flags |= JBD2_LOADED;
1546 	return 0;
1547 
1548 recovery_error:
1549 	printk(KERN_WARNING "JBD2: recovery failed\n");
1550 	return -EIO;
1551 }
1552 
1553 /**
1554  * void jbd2_journal_destroy() - Release a journal_t structure.
1555  * @journal: Journal to act on.
1556  *
1557  * Release a journal_t structure once it is no longer in use by the
1558  * journaled object.
1559  * Return <0 if we couldn't clean up the journal.
1560  */
1561 int jbd2_journal_destroy(journal_t *journal)
1562 {
1563 	int err = 0;
1564 
1565 	/* Wait for the commit thread to wake up and die. */
1566 	journal_kill_thread(journal);
1567 
1568 	/* Force a final log commit */
1569 	if (journal->j_running_transaction)
1570 		jbd2_journal_commit_transaction(journal);
1571 
1572 	/* Force any old transactions to disk */
1573 
1574 	/* Totally anal locking here... */
1575 	spin_lock(&journal->j_list_lock);
1576 	while (journal->j_checkpoint_transactions != NULL) {
1577 		spin_unlock(&journal->j_list_lock);
1578 		mutex_lock(&journal->j_checkpoint_mutex);
1579 		jbd2_log_do_checkpoint(journal);
1580 		mutex_unlock(&journal->j_checkpoint_mutex);
1581 		spin_lock(&journal->j_list_lock);
1582 	}
1583 
1584 	J_ASSERT(journal->j_running_transaction == NULL);
1585 	J_ASSERT(journal->j_committing_transaction == NULL);
1586 	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1587 	spin_unlock(&journal->j_list_lock);
1588 
1589 	if (journal->j_sb_buffer) {
1590 		if (!is_journal_aborted(journal)) {
1591 			mutex_lock(&journal->j_checkpoint_mutex);
1592 			jbd2_mark_journal_empty(journal);
1593 			mutex_unlock(&journal->j_checkpoint_mutex);
1594 		} else
1595 			err = -EIO;
1596 		brelse(journal->j_sb_buffer);
1597 	}
1598 
1599 	if (journal->j_proc_entry)
1600 		jbd2_stats_proc_exit(journal);
1601 	if (journal->j_inode)
1602 		iput(journal->j_inode);
1603 	if (journal->j_revoke)
1604 		jbd2_journal_destroy_revoke(journal);
1605 	if (journal->j_chksum_driver)
1606 		crypto_free_shash(journal->j_chksum_driver);
1607 	kfree(journal->j_wbuf);
1608 	kfree(journal);
1609 
1610 	return err;
1611 }
1612 
1613 
1614 /**
1615  *int jbd2_journal_check_used_features () - Check if features specified are used.
1616  * @journal: Journal to check.
1617  * @compat: bitmask of compatible features
1618  * @ro: bitmask of features that force read-only mount
1619  * @incompat: bitmask of incompatible features
1620  *
1621  * Check whether the journal uses all of a given set of
1622  * features.  Return true (non-zero) if it does.
1623  **/
1624 
1625 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1626 				 unsigned long ro, unsigned long incompat)
1627 {
1628 	journal_superblock_t *sb;
1629 
1630 	if (!compat && !ro && !incompat)
1631 		return 1;
1632 	/* Load journal superblock if it is not loaded yet. */
1633 	if (journal->j_format_version == 0 &&
1634 	    journal_get_superblock(journal) != 0)
1635 		return 0;
1636 	if (journal->j_format_version == 1)
1637 		return 0;
1638 
1639 	sb = journal->j_superblock;
1640 
1641 	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1642 	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1643 	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1644 		return 1;
1645 
1646 	return 0;
1647 }
1648 
1649 /**
1650  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1651  * @journal: Journal to check.
1652  * @compat: bitmask of compatible features
1653  * @ro: bitmask of features that force read-only mount
1654  * @incompat: bitmask of incompatible features
1655  *
1656  * Check whether the journaling code supports the use of
1657  * all of a given set of features on this journal.  Return true
1658  * (non-zero) if it can. */
1659 
1660 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1661 				      unsigned long ro, unsigned long incompat)
1662 {
1663 	if (!compat && !ro && !incompat)
1664 		return 1;
1665 
1666 	/* We can support any known requested features iff the
1667 	 * superblock is in version 2.  Otherwise we fail to support any
1668 	 * extended sb features. */
1669 
1670 	if (journal->j_format_version != 2)
1671 		return 0;
1672 
1673 	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1674 	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1675 	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1676 		return 1;
1677 
1678 	return 0;
1679 }
1680 
1681 /**
1682  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1683  * @journal: Journal to act on.
1684  * @compat: bitmask of compatible features
1685  * @ro: bitmask of features that force read-only mount
1686  * @incompat: bitmask of incompatible features
1687  *
1688  * Mark a given journal feature as present on the
1689  * superblock.  Returns true if the requested features could be set.
1690  *
1691  */
1692 
1693 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1694 			  unsigned long ro, unsigned long incompat)
1695 {
1696 #define INCOMPAT_FEATURE_ON(f) \
1697 		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1698 #define COMPAT_FEATURE_ON(f) \
1699 		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1700 	journal_superblock_t *sb;
1701 
1702 	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1703 		return 1;
1704 
1705 	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1706 		return 0;
1707 
1708 	/* Asking for checksumming v2 and v1?  Only give them v2. */
1709 	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1710 	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1711 		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1712 
1713 	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1714 		  compat, ro, incompat);
1715 
1716 	sb = journal->j_superblock;
1717 
1718 	/* If enabling v2 checksums, update superblock */
1719 	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1720 		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1721 		sb->s_feature_compat &=
1722 			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1723 
1724 		/* Load the checksum driver */
1725 		if (journal->j_chksum_driver == NULL) {
1726 			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1727 								      0, 0);
1728 			if (IS_ERR(journal->j_chksum_driver)) {
1729 				printk(KERN_ERR "JBD: Cannot load crc32c "
1730 				       "driver.\n");
1731 				journal->j_chksum_driver = NULL;
1732 				return 0;
1733 			}
1734 		}
1735 	}
1736 
1737 	/* If enabling v1 checksums, downgrade superblock */
1738 	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1739 		sb->s_feature_incompat &=
1740 			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1741 
1742 	sb->s_feature_compat    |= cpu_to_be32(compat);
1743 	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1744 	sb->s_feature_incompat  |= cpu_to_be32(incompat);
1745 
1746 	return 1;
1747 #undef COMPAT_FEATURE_ON
1748 #undef INCOMPAT_FEATURE_ON
1749 }
1750 
1751 /*
1752  * jbd2_journal_clear_features () - Clear a given journal feature in the
1753  * 				    superblock
1754  * @journal: Journal to act on.
1755  * @compat: bitmask of compatible features
1756  * @ro: bitmask of features that force read-only mount
1757  * @incompat: bitmask of incompatible features
1758  *
1759  * Clear a given journal feature as present on the
1760  * superblock.
1761  */
1762 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1763 				unsigned long ro, unsigned long incompat)
1764 {
1765 	journal_superblock_t *sb;
1766 
1767 	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1768 		  compat, ro, incompat);
1769 
1770 	sb = journal->j_superblock;
1771 
1772 	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1773 	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1774 	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1775 }
1776 EXPORT_SYMBOL(jbd2_journal_clear_features);
1777 
1778 /**
1779  * int jbd2_journal_flush () - Flush journal
1780  * @journal: Journal to act on.
1781  *
1782  * Flush all data for a given journal to disk and empty the journal.
1783  * Filesystems can use this when remounting readonly to ensure that
1784  * recovery does not need to happen on remount.
1785  */
1786 
1787 int jbd2_journal_flush(journal_t *journal)
1788 {
1789 	int err = 0;
1790 	transaction_t *transaction = NULL;
1791 
1792 	write_lock(&journal->j_state_lock);
1793 
1794 	/* Force everything buffered to the log... */
1795 	if (journal->j_running_transaction) {
1796 		transaction = journal->j_running_transaction;
1797 		__jbd2_log_start_commit(journal, transaction->t_tid);
1798 	} else if (journal->j_committing_transaction)
1799 		transaction = journal->j_committing_transaction;
1800 
1801 	/* Wait for the log commit to complete... */
1802 	if (transaction) {
1803 		tid_t tid = transaction->t_tid;
1804 
1805 		write_unlock(&journal->j_state_lock);
1806 		jbd2_log_wait_commit(journal, tid);
1807 	} else {
1808 		write_unlock(&journal->j_state_lock);
1809 	}
1810 
1811 	/* ...and flush everything in the log out to disk. */
1812 	spin_lock(&journal->j_list_lock);
1813 	while (!err && journal->j_checkpoint_transactions != NULL) {
1814 		spin_unlock(&journal->j_list_lock);
1815 		mutex_lock(&journal->j_checkpoint_mutex);
1816 		err = jbd2_log_do_checkpoint(journal);
1817 		mutex_unlock(&journal->j_checkpoint_mutex);
1818 		spin_lock(&journal->j_list_lock);
1819 	}
1820 	spin_unlock(&journal->j_list_lock);
1821 
1822 	if (is_journal_aborted(journal))
1823 		return -EIO;
1824 
1825 	mutex_lock(&journal->j_checkpoint_mutex);
1826 	jbd2_cleanup_journal_tail(journal);
1827 
1828 	/* Finally, mark the journal as really needing no recovery.
1829 	 * This sets s_start==0 in the underlying superblock, which is
1830 	 * the magic code for a fully-recovered superblock.  Any future
1831 	 * commits of data to the journal will restore the current
1832 	 * s_start value. */
1833 	jbd2_mark_journal_empty(journal);
1834 	mutex_unlock(&journal->j_checkpoint_mutex);
1835 	write_lock(&journal->j_state_lock);
1836 	J_ASSERT(!journal->j_running_transaction);
1837 	J_ASSERT(!journal->j_committing_transaction);
1838 	J_ASSERT(!journal->j_checkpoint_transactions);
1839 	J_ASSERT(journal->j_head == journal->j_tail);
1840 	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1841 	write_unlock(&journal->j_state_lock);
1842 	return 0;
1843 }
1844 
1845 /**
1846  * int jbd2_journal_wipe() - Wipe journal contents
1847  * @journal: Journal to act on.
1848  * @write: flag (see below)
1849  *
1850  * Wipe out all of the contents of a journal, safely.  This will produce
1851  * a warning if the journal contains any valid recovery information.
1852  * Must be called between journal_init_*() and jbd2_journal_load().
1853  *
1854  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1855  * we merely suppress recovery.
1856  */
1857 
1858 int jbd2_journal_wipe(journal_t *journal, int write)
1859 {
1860 	int err = 0;
1861 
1862 	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1863 
1864 	err = load_superblock(journal);
1865 	if (err)
1866 		return err;
1867 
1868 	if (!journal->j_tail)
1869 		goto no_recovery;
1870 
1871 	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1872 		write ? "Clearing" : "Ignoring");
1873 
1874 	err = jbd2_journal_skip_recovery(journal);
1875 	if (write) {
1876 		/* Lock to make assertions happy... */
1877 		mutex_lock(&journal->j_checkpoint_mutex);
1878 		jbd2_mark_journal_empty(journal);
1879 		mutex_unlock(&journal->j_checkpoint_mutex);
1880 	}
1881 
1882  no_recovery:
1883 	return err;
1884 }
1885 
1886 /*
1887  * Journal abort has very specific semantics, which we describe
1888  * for journal abort.
1889  *
1890  * Two internal functions, which provide abort to the jbd layer
1891  * itself are here.
1892  */
1893 
1894 /*
1895  * Quick version for internal journal use (doesn't lock the journal).
1896  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1897  * and don't attempt to make any other journal updates.
1898  */
1899 void __jbd2_journal_abort_hard(journal_t *journal)
1900 {
1901 	transaction_t *transaction;
1902 
1903 	if (journal->j_flags & JBD2_ABORT)
1904 		return;
1905 
1906 	printk(KERN_ERR "Aborting journal on device %s.\n",
1907 	       journal->j_devname);
1908 
1909 	write_lock(&journal->j_state_lock);
1910 	journal->j_flags |= JBD2_ABORT;
1911 	transaction = journal->j_running_transaction;
1912 	if (transaction)
1913 		__jbd2_log_start_commit(journal, transaction->t_tid);
1914 	write_unlock(&journal->j_state_lock);
1915 }
1916 
1917 /* Soft abort: record the abort error status in the journal superblock,
1918  * but don't do any other IO. */
1919 static void __journal_abort_soft (journal_t *journal, int errno)
1920 {
1921 	if (journal->j_flags & JBD2_ABORT)
1922 		return;
1923 
1924 	if (!journal->j_errno)
1925 		journal->j_errno = errno;
1926 
1927 	__jbd2_journal_abort_hard(journal);
1928 
1929 	if (errno)
1930 		jbd2_journal_update_sb_errno(journal);
1931 }
1932 
1933 /**
1934  * void jbd2_journal_abort () - Shutdown the journal immediately.
1935  * @journal: the journal to shutdown.
1936  * @errno:   an error number to record in the journal indicating
1937  *           the reason for the shutdown.
1938  *
1939  * Perform a complete, immediate shutdown of the ENTIRE
1940  * journal (not of a single transaction).  This operation cannot be
1941  * undone without closing and reopening the journal.
1942  *
1943  * The jbd2_journal_abort function is intended to support higher level error
1944  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1945  * mode.
1946  *
1947  * Journal abort has very specific semantics.  Any existing dirty,
1948  * unjournaled buffers in the main filesystem will still be written to
1949  * disk by bdflush, but the journaling mechanism will be suspended
1950  * immediately and no further transaction commits will be honoured.
1951  *
1952  * Any dirty, journaled buffers will be written back to disk without
1953  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1954  * filesystem, but we _do_ attempt to leave as much data as possible
1955  * behind for fsck to use for cleanup.
1956  *
1957  * Any attempt to get a new transaction handle on a journal which is in
1958  * ABORT state will just result in an -EROFS error return.  A
1959  * jbd2_journal_stop on an existing handle will return -EIO if we have
1960  * entered abort state during the update.
1961  *
1962  * Recursive transactions are not disturbed by journal abort until the
1963  * final jbd2_journal_stop, which will receive the -EIO error.
1964  *
1965  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1966  * which will be recorded (if possible) in the journal superblock.  This
1967  * allows a client to record failure conditions in the middle of a
1968  * transaction without having to complete the transaction to record the
1969  * failure to disk.  ext3_error, for example, now uses this
1970  * functionality.
1971  *
1972  * Errors which originate from within the journaling layer will NOT
1973  * supply an errno; a null errno implies that absolutely no further
1974  * writes are done to the journal (unless there are any already in
1975  * progress).
1976  *
1977  */
1978 
1979 void jbd2_journal_abort(journal_t *journal, int errno)
1980 {
1981 	__journal_abort_soft(journal, errno);
1982 }
1983 
1984 /**
1985  * int jbd2_journal_errno () - returns the journal's error state.
1986  * @journal: journal to examine.
1987  *
1988  * This is the errno number set with jbd2_journal_abort(), the last
1989  * time the journal was mounted - if the journal was stopped
1990  * without calling abort this will be 0.
1991  *
1992  * If the journal has been aborted on this mount time -EROFS will
1993  * be returned.
1994  */
1995 int jbd2_journal_errno(journal_t *journal)
1996 {
1997 	int err;
1998 
1999 	read_lock(&journal->j_state_lock);
2000 	if (journal->j_flags & JBD2_ABORT)
2001 		err = -EROFS;
2002 	else
2003 		err = journal->j_errno;
2004 	read_unlock(&journal->j_state_lock);
2005 	return err;
2006 }
2007 
2008 /**
2009  * int jbd2_journal_clear_err () - clears the journal's error state
2010  * @journal: journal to act on.
2011  *
2012  * An error must be cleared or acked to take a FS out of readonly
2013  * mode.
2014  */
2015 int jbd2_journal_clear_err(journal_t *journal)
2016 {
2017 	int err = 0;
2018 
2019 	write_lock(&journal->j_state_lock);
2020 	if (journal->j_flags & JBD2_ABORT)
2021 		err = -EROFS;
2022 	else
2023 		journal->j_errno = 0;
2024 	write_unlock(&journal->j_state_lock);
2025 	return err;
2026 }
2027 
2028 /**
2029  * void jbd2_journal_ack_err() - Ack journal err.
2030  * @journal: journal to act on.
2031  *
2032  * An error must be cleared or acked to take a FS out of readonly
2033  * mode.
2034  */
2035 void jbd2_journal_ack_err(journal_t *journal)
2036 {
2037 	write_lock(&journal->j_state_lock);
2038 	if (journal->j_errno)
2039 		journal->j_flags |= JBD2_ACK_ERR;
2040 	write_unlock(&journal->j_state_lock);
2041 }
2042 
2043 int jbd2_journal_blocks_per_page(struct inode *inode)
2044 {
2045 	return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2046 }
2047 
2048 /*
2049  * helper functions to deal with 32 or 64bit block numbers.
2050  */
2051 size_t journal_tag_bytes(journal_t *journal)
2052 {
2053 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2054 		return JBD2_TAG_SIZE64;
2055 	else
2056 		return JBD2_TAG_SIZE32;
2057 }
2058 
2059 /*
2060  * JBD memory management
2061  *
2062  * These functions are used to allocate block-sized chunks of memory
2063  * used for making copies of buffer_head data.  Very often it will be
2064  * page-sized chunks of data, but sometimes it will be in
2065  * sub-page-size chunks.  (For example, 16k pages on Power systems
2066  * with a 4k block file system.)  For blocks smaller than a page, we
2067  * use a SLAB allocator.  There are slab caches for each block size,
2068  * which are allocated at mount time, if necessary, and we only free
2069  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2070  * this reason we don't need to a mutex to protect access to
2071  * jbd2_slab[] allocating or releasing memory; only in
2072  * jbd2_journal_create_slab().
2073  */
2074 #define JBD2_MAX_SLABS 8
2075 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2076 
2077 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2078 	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2079 	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2080 };
2081 
2082 
2083 static void jbd2_journal_destroy_slabs(void)
2084 {
2085 	int i;
2086 
2087 	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2088 		if (jbd2_slab[i])
2089 			kmem_cache_destroy(jbd2_slab[i]);
2090 		jbd2_slab[i] = NULL;
2091 	}
2092 }
2093 
2094 static int jbd2_journal_create_slab(size_t size)
2095 {
2096 	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2097 	int i = order_base_2(size) - 10;
2098 	size_t slab_size;
2099 
2100 	if (size == PAGE_SIZE)
2101 		return 0;
2102 
2103 	if (i >= JBD2_MAX_SLABS)
2104 		return -EINVAL;
2105 
2106 	if (unlikely(i < 0))
2107 		i = 0;
2108 	mutex_lock(&jbd2_slab_create_mutex);
2109 	if (jbd2_slab[i]) {
2110 		mutex_unlock(&jbd2_slab_create_mutex);
2111 		return 0;	/* Already created */
2112 	}
2113 
2114 	slab_size = 1 << (i+10);
2115 	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2116 					 slab_size, 0, NULL);
2117 	mutex_unlock(&jbd2_slab_create_mutex);
2118 	if (!jbd2_slab[i]) {
2119 		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2120 		return -ENOMEM;
2121 	}
2122 	return 0;
2123 }
2124 
2125 static struct kmem_cache *get_slab(size_t size)
2126 {
2127 	int i = order_base_2(size) - 10;
2128 
2129 	BUG_ON(i >= JBD2_MAX_SLABS);
2130 	if (unlikely(i < 0))
2131 		i = 0;
2132 	BUG_ON(jbd2_slab[i] == NULL);
2133 	return jbd2_slab[i];
2134 }
2135 
2136 void *jbd2_alloc(size_t size, gfp_t flags)
2137 {
2138 	void *ptr;
2139 
2140 	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2141 
2142 	flags |= __GFP_REPEAT;
2143 	if (size == PAGE_SIZE)
2144 		ptr = (void *)__get_free_pages(flags, 0);
2145 	else if (size > PAGE_SIZE) {
2146 		int order = get_order(size);
2147 
2148 		if (order < 3)
2149 			ptr = (void *)__get_free_pages(flags, order);
2150 		else
2151 			ptr = vmalloc(size);
2152 	} else
2153 		ptr = kmem_cache_alloc(get_slab(size), flags);
2154 
2155 	/* Check alignment; SLUB has gotten this wrong in the past,
2156 	 * and this can lead to user data corruption! */
2157 	BUG_ON(((unsigned long) ptr) & (size-1));
2158 
2159 	return ptr;
2160 }
2161 
2162 void jbd2_free(void *ptr, size_t size)
2163 {
2164 	if (size == PAGE_SIZE) {
2165 		free_pages((unsigned long)ptr, 0);
2166 		return;
2167 	}
2168 	if (size > PAGE_SIZE) {
2169 		int order = get_order(size);
2170 
2171 		if (order < 3)
2172 			free_pages((unsigned long)ptr, order);
2173 		else
2174 			vfree(ptr);
2175 		return;
2176 	}
2177 	kmem_cache_free(get_slab(size), ptr);
2178 };
2179 
2180 /*
2181  * Journal_head storage management
2182  */
2183 static struct kmem_cache *jbd2_journal_head_cache;
2184 #ifdef CONFIG_JBD2_DEBUG
2185 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2186 #endif
2187 
2188 static int jbd2_journal_init_journal_head_cache(void)
2189 {
2190 	int retval;
2191 
2192 	J_ASSERT(jbd2_journal_head_cache == NULL);
2193 	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2194 				sizeof(struct journal_head),
2195 				0,		/* offset */
2196 				SLAB_TEMPORARY,	/* flags */
2197 				NULL);		/* ctor */
2198 	retval = 0;
2199 	if (!jbd2_journal_head_cache) {
2200 		retval = -ENOMEM;
2201 		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2202 	}
2203 	return retval;
2204 }
2205 
2206 static void jbd2_journal_destroy_journal_head_cache(void)
2207 {
2208 	if (jbd2_journal_head_cache) {
2209 		kmem_cache_destroy(jbd2_journal_head_cache);
2210 		jbd2_journal_head_cache = NULL;
2211 	}
2212 }
2213 
2214 /*
2215  * journal_head splicing and dicing
2216  */
2217 static struct journal_head *journal_alloc_journal_head(void)
2218 {
2219 	struct journal_head *ret;
2220 
2221 #ifdef CONFIG_JBD2_DEBUG
2222 	atomic_inc(&nr_journal_heads);
2223 #endif
2224 	ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2225 	if (!ret) {
2226 		jbd_debug(1, "out of memory for journal_head\n");
2227 		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2228 		while (!ret) {
2229 			yield();
2230 			ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2231 		}
2232 	}
2233 	return ret;
2234 }
2235 
2236 static void journal_free_journal_head(struct journal_head *jh)
2237 {
2238 #ifdef CONFIG_JBD2_DEBUG
2239 	atomic_dec(&nr_journal_heads);
2240 	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2241 #endif
2242 	kmem_cache_free(jbd2_journal_head_cache, jh);
2243 }
2244 
2245 /*
2246  * A journal_head is attached to a buffer_head whenever JBD has an
2247  * interest in the buffer.
2248  *
2249  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2250  * is set.  This bit is tested in core kernel code where we need to take
2251  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2252  * there.
2253  *
2254  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2255  *
2256  * When a buffer has its BH_JBD bit set it is immune from being released by
2257  * core kernel code, mainly via ->b_count.
2258  *
2259  * A journal_head is detached from its buffer_head when the journal_head's
2260  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2261  * transaction (b_cp_transaction) hold their references to b_jcount.
2262  *
2263  * Various places in the kernel want to attach a journal_head to a buffer_head
2264  * _before_ attaching the journal_head to a transaction.  To protect the
2265  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2266  * journal_head's b_jcount refcount by one.  The caller must call
2267  * jbd2_journal_put_journal_head() to undo this.
2268  *
2269  * So the typical usage would be:
2270  *
2271  *	(Attach a journal_head if needed.  Increments b_jcount)
2272  *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2273  *	...
2274  *      (Get another reference for transaction)
2275  *	jbd2_journal_grab_journal_head(bh);
2276  *	jh->b_transaction = xxx;
2277  *	(Put original reference)
2278  *	jbd2_journal_put_journal_head(jh);
2279  */
2280 
2281 /*
2282  * Give a buffer_head a journal_head.
2283  *
2284  * May sleep.
2285  */
2286 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2287 {
2288 	struct journal_head *jh;
2289 	struct journal_head *new_jh = NULL;
2290 
2291 repeat:
2292 	if (!buffer_jbd(bh)) {
2293 		new_jh = journal_alloc_journal_head();
2294 		memset(new_jh, 0, sizeof(*new_jh));
2295 	}
2296 
2297 	jbd_lock_bh_journal_head(bh);
2298 	if (buffer_jbd(bh)) {
2299 		jh = bh2jh(bh);
2300 	} else {
2301 		J_ASSERT_BH(bh,
2302 			(atomic_read(&bh->b_count) > 0) ||
2303 			(bh->b_page && bh->b_page->mapping));
2304 
2305 		if (!new_jh) {
2306 			jbd_unlock_bh_journal_head(bh);
2307 			goto repeat;
2308 		}
2309 
2310 		jh = new_jh;
2311 		new_jh = NULL;		/* We consumed it */
2312 		set_buffer_jbd(bh);
2313 		bh->b_private = jh;
2314 		jh->b_bh = bh;
2315 		get_bh(bh);
2316 		BUFFER_TRACE(bh, "added journal_head");
2317 	}
2318 	jh->b_jcount++;
2319 	jbd_unlock_bh_journal_head(bh);
2320 	if (new_jh)
2321 		journal_free_journal_head(new_jh);
2322 	return bh->b_private;
2323 }
2324 
2325 /*
2326  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2327  * having a journal_head, return NULL
2328  */
2329 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2330 {
2331 	struct journal_head *jh = NULL;
2332 
2333 	jbd_lock_bh_journal_head(bh);
2334 	if (buffer_jbd(bh)) {
2335 		jh = bh2jh(bh);
2336 		jh->b_jcount++;
2337 	}
2338 	jbd_unlock_bh_journal_head(bh);
2339 	return jh;
2340 }
2341 
2342 static void __journal_remove_journal_head(struct buffer_head *bh)
2343 {
2344 	struct journal_head *jh = bh2jh(bh);
2345 
2346 	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2347 	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2348 	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2349 	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2350 	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2351 	J_ASSERT_BH(bh, buffer_jbd(bh));
2352 	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2353 	BUFFER_TRACE(bh, "remove journal_head");
2354 	if (jh->b_frozen_data) {
2355 		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2356 		jbd2_free(jh->b_frozen_data, bh->b_size);
2357 	}
2358 	if (jh->b_committed_data) {
2359 		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2360 		jbd2_free(jh->b_committed_data, bh->b_size);
2361 	}
2362 	bh->b_private = NULL;
2363 	jh->b_bh = NULL;	/* debug, really */
2364 	clear_buffer_jbd(bh);
2365 	journal_free_journal_head(jh);
2366 }
2367 
2368 /*
2369  * Drop a reference on the passed journal_head.  If it fell to zero then
2370  * release the journal_head from the buffer_head.
2371  */
2372 void jbd2_journal_put_journal_head(struct journal_head *jh)
2373 {
2374 	struct buffer_head *bh = jh2bh(jh);
2375 
2376 	jbd_lock_bh_journal_head(bh);
2377 	J_ASSERT_JH(jh, jh->b_jcount > 0);
2378 	--jh->b_jcount;
2379 	if (!jh->b_jcount) {
2380 		__journal_remove_journal_head(bh);
2381 		jbd_unlock_bh_journal_head(bh);
2382 		__brelse(bh);
2383 	} else
2384 		jbd_unlock_bh_journal_head(bh);
2385 }
2386 
2387 /*
2388  * Initialize jbd inode head
2389  */
2390 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2391 {
2392 	jinode->i_transaction = NULL;
2393 	jinode->i_next_transaction = NULL;
2394 	jinode->i_vfs_inode = inode;
2395 	jinode->i_flags = 0;
2396 	INIT_LIST_HEAD(&jinode->i_list);
2397 }
2398 
2399 /*
2400  * Function to be called before we start removing inode from memory (i.e.,
2401  * clear_inode() is a fine place to be called from). It removes inode from
2402  * transaction's lists.
2403  */
2404 void jbd2_journal_release_jbd_inode(journal_t *journal,
2405 				    struct jbd2_inode *jinode)
2406 {
2407 	if (!journal)
2408 		return;
2409 restart:
2410 	spin_lock(&journal->j_list_lock);
2411 	/* Is commit writing out inode - we have to wait */
2412 	if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2413 		wait_queue_head_t *wq;
2414 		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2415 		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2416 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2417 		spin_unlock(&journal->j_list_lock);
2418 		schedule();
2419 		finish_wait(wq, &wait.wait);
2420 		goto restart;
2421 	}
2422 
2423 	if (jinode->i_transaction) {
2424 		list_del(&jinode->i_list);
2425 		jinode->i_transaction = NULL;
2426 	}
2427 	spin_unlock(&journal->j_list_lock);
2428 }
2429 
2430 /*
2431  * debugfs tunables
2432  */
2433 #ifdef CONFIG_JBD2_DEBUG
2434 u8 jbd2_journal_enable_debug __read_mostly;
2435 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2436 
2437 #define JBD2_DEBUG_NAME "jbd2-debug"
2438 
2439 static struct dentry *jbd2_debugfs_dir;
2440 static struct dentry *jbd2_debug;
2441 
2442 static void __init jbd2_create_debugfs_entry(void)
2443 {
2444 	jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2445 	if (jbd2_debugfs_dir)
2446 		jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2447 					       S_IRUGO | S_IWUSR,
2448 					       jbd2_debugfs_dir,
2449 					       &jbd2_journal_enable_debug);
2450 }
2451 
2452 static void __exit jbd2_remove_debugfs_entry(void)
2453 {
2454 	debugfs_remove(jbd2_debug);
2455 	debugfs_remove(jbd2_debugfs_dir);
2456 }
2457 
2458 #else
2459 
2460 static void __init jbd2_create_debugfs_entry(void)
2461 {
2462 }
2463 
2464 static void __exit jbd2_remove_debugfs_entry(void)
2465 {
2466 }
2467 
2468 #endif
2469 
2470 #ifdef CONFIG_PROC_FS
2471 
2472 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2473 
2474 static void __init jbd2_create_jbd_stats_proc_entry(void)
2475 {
2476 	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2477 }
2478 
2479 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2480 {
2481 	if (proc_jbd2_stats)
2482 		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2483 }
2484 
2485 #else
2486 
2487 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2488 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2489 
2490 #endif
2491 
2492 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2493 
2494 static int __init jbd2_journal_init_handle_cache(void)
2495 {
2496 	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2497 	if (jbd2_handle_cache == NULL) {
2498 		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2499 		return -ENOMEM;
2500 	}
2501 	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2502 	if (jbd2_inode_cache == NULL) {
2503 		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2504 		kmem_cache_destroy(jbd2_handle_cache);
2505 		return -ENOMEM;
2506 	}
2507 	return 0;
2508 }
2509 
2510 static void jbd2_journal_destroy_handle_cache(void)
2511 {
2512 	if (jbd2_handle_cache)
2513 		kmem_cache_destroy(jbd2_handle_cache);
2514 	if (jbd2_inode_cache)
2515 		kmem_cache_destroy(jbd2_inode_cache);
2516 
2517 }
2518 
2519 /*
2520  * Module startup and shutdown
2521  */
2522 
2523 static int __init journal_init_caches(void)
2524 {
2525 	int ret;
2526 
2527 	ret = jbd2_journal_init_revoke_caches();
2528 	if (ret == 0)
2529 		ret = jbd2_journal_init_journal_head_cache();
2530 	if (ret == 0)
2531 		ret = jbd2_journal_init_handle_cache();
2532 	if (ret == 0)
2533 		ret = jbd2_journal_init_transaction_cache();
2534 	return ret;
2535 }
2536 
2537 static void jbd2_journal_destroy_caches(void)
2538 {
2539 	jbd2_journal_destroy_revoke_caches();
2540 	jbd2_journal_destroy_journal_head_cache();
2541 	jbd2_journal_destroy_handle_cache();
2542 	jbd2_journal_destroy_transaction_cache();
2543 	jbd2_journal_destroy_slabs();
2544 }
2545 
2546 static int __init journal_init(void)
2547 {
2548 	int ret;
2549 
2550 	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2551 
2552 	ret = journal_init_caches();
2553 	if (ret == 0) {
2554 		jbd2_create_debugfs_entry();
2555 		jbd2_create_jbd_stats_proc_entry();
2556 	} else {
2557 		jbd2_journal_destroy_caches();
2558 	}
2559 	return ret;
2560 }
2561 
2562 static void __exit journal_exit(void)
2563 {
2564 #ifdef CONFIG_JBD2_DEBUG
2565 	int n = atomic_read(&nr_journal_heads);
2566 	if (n)
2567 		printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2568 #endif
2569 	jbd2_remove_debugfs_entry();
2570 	jbd2_remove_jbd_stats_proc_entry();
2571 	jbd2_journal_destroy_caches();
2572 }
2573 
2574 MODULE_LICENSE("GPL");
2575 module_init(journal_init);
2576 module_exit(journal_exit);
2577 
2578