1 /* 2 * linux/fs/jbd2/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25 #include <linux/module.h> 26 #include <linux/time.h> 27 #include <linux/fs.h> 28 #include <linux/jbd2.h> 29 #include <linux/errno.h> 30 #include <linux/slab.h> 31 #include <linux/init.h> 32 #include <linux/mm.h> 33 #include <linux/freezer.h> 34 #include <linux/pagemap.h> 35 #include <linux/kthread.h> 36 #include <linux/poison.h> 37 #include <linux/proc_fs.h> 38 #include <linux/debugfs.h> 39 #include <linux/seq_file.h> 40 #include <linux/math64.h> 41 #include <linux/hash.h> 42 #include <linux/log2.h> 43 #include <linux/vmalloc.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bitops.h> 46 #include <linux/ratelimit.h> 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/jbd2.h> 50 51 #include <asm/uaccess.h> 52 #include <asm/page.h> 53 54 EXPORT_SYMBOL(jbd2_journal_extend); 55 EXPORT_SYMBOL(jbd2_journal_stop); 56 EXPORT_SYMBOL(jbd2_journal_lock_updates); 57 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 58 EXPORT_SYMBOL(jbd2_journal_get_write_access); 59 EXPORT_SYMBOL(jbd2_journal_get_create_access); 60 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 61 EXPORT_SYMBOL(jbd2_journal_set_triggers); 62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 63 EXPORT_SYMBOL(jbd2_journal_release_buffer); 64 EXPORT_SYMBOL(jbd2_journal_forget); 65 #if 0 66 EXPORT_SYMBOL(journal_sync_buffer); 67 #endif 68 EXPORT_SYMBOL(jbd2_journal_flush); 69 EXPORT_SYMBOL(jbd2_journal_revoke); 70 71 EXPORT_SYMBOL(jbd2_journal_init_dev); 72 EXPORT_SYMBOL(jbd2_journal_init_inode); 73 EXPORT_SYMBOL(jbd2_journal_check_used_features); 74 EXPORT_SYMBOL(jbd2_journal_check_available_features); 75 EXPORT_SYMBOL(jbd2_journal_set_features); 76 EXPORT_SYMBOL(jbd2_journal_load); 77 EXPORT_SYMBOL(jbd2_journal_destroy); 78 EXPORT_SYMBOL(jbd2_journal_abort); 79 EXPORT_SYMBOL(jbd2_journal_errno); 80 EXPORT_SYMBOL(jbd2_journal_ack_err); 81 EXPORT_SYMBOL(jbd2_journal_clear_err); 82 EXPORT_SYMBOL(jbd2_log_wait_commit); 83 EXPORT_SYMBOL(jbd2_log_start_commit); 84 EXPORT_SYMBOL(jbd2_journal_start_commit); 85 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 86 EXPORT_SYMBOL(jbd2_journal_wipe); 87 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 88 EXPORT_SYMBOL(jbd2_journal_invalidatepage); 89 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 90 EXPORT_SYMBOL(jbd2_journal_force_commit); 91 EXPORT_SYMBOL(jbd2_journal_file_inode); 92 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 93 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 94 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 95 EXPORT_SYMBOL(jbd2_inode_cache); 96 97 static void __journal_abort_soft (journal_t *journal, int errno); 98 static int jbd2_journal_create_slab(size_t slab_size); 99 100 /* Checksumming functions */ 101 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb) 102 { 103 if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2)) 104 return 1; 105 106 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM; 107 } 108 109 /* 110 * Helper function used to manage commit timeouts 111 */ 112 113 static void commit_timeout(unsigned long __data) 114 { 115 struct task_struct * p = (struct task_struct *) __data; 116 117 wake_up_process(p); 118 } 119 120 /* 121 * kjournald2: The main thread function used to manage a logging device 122 * journal. 123 * 124 * This kernel thread is responsible for two things: 125 * 126 * 1) COMMIT: Every so often we need to commit the current state of the 127 * filesystem to disk. The journal thread is responsible for writing 128 * all of the metadata buffers to disk. 129 * 130 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 131 * of the data in that part of the log has been rewritten elsewhere on 132 * the disk. Flushing these old buffers to reclaim space in the log is 133 * known as checkpointing, and this thread is responsible for that job. 134 */ 135 136 static int kjournald2(void *arg) 137 { 138 journal_t *journal = arg; 139 transaction_t *transaction; 140 141 /* 142 * Set up an interval timer which can be used to trigger a commit wakeup 143 * after the commit interval expires 144 */ 145 setup_timer(&journal->j_commit_timer, commit_timeout, 146 (unsigned long)current); 147 148 set_freezable(); 149 150 /* Record that the journal thread is running */ 151 journal->j_task = current; 152 wake_up(&journal->j_wait_done_commit); 153 154 /* 155 * And now, wait forever for commit wakeup events. 156 */ 157 write_lock(&journal->j_state_lock); 158 159 loop: 160 if (journal->j_flags & JBD2_UNMOUNT) 161 goto end_loop; 162 163 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 164 journal->j_commit_sequence, journal->j_commit_request); 165 166 if (journal->j_commit_sequence != journal->j_commit_request) { 167 jbd_debug(1, "OK, requests differ\n"); 168 write_unlock(&journal->j_state_lock); 169 del_timer_sync(&journal->j_commit_timer); 170 jbd2_journal_commit_transaction(journal); 171 write_lock(&journal->j_state_lock); 172 goto loop; 173 } 174 175 wake_up(&journal->j_wait_done_commit); 176 if (freezing(current)) { 177 /* 178 * The simpler the better. Flushing journal isn't a 179 * good idea, because that depends on threads that may 180 * be already stopped. 181 */ 182 jbd_debug(1, "Now suspending kjournald2\n"); 183 write_unlock(&journal->j_state_lock); 184 try_to_freeze(); 185 write_lock(&journal->j_state_lock); 186 } else { 187 /* 188 * We assume on resume that commits are already there, 189 * so we don't sleep 190 */ 191 DEFINE_WAIT(wait); 192 int should_sleep = 1; 193 194 prepare_to_wait(&journal->j_wait_commit, &wait, 195 TASK_INTERRUPTIBLE); 196 if (journal->j_commit_sequence != journal->j_commit_request) 197 should_sleep = 0; 198 transaction = journal->j_running_transaction; 199 if (transaction && time_after_eq(jiffies, 200 transaction->t_expires)) 201 should_sleep = 0; 202 if (journal->j_flags & JBD2_UNMOUNT) 203 should_sleep = 0; 204 if (should_sleep) { 205 write_unlock(&journal->j_state_lock); 206 schedule(); 207 write_lock(&journal->j_state_lock); 208 } 209 finish_wait(&journal->j_wait_commit, &wait); 210 } 211 212 jbd_debug(1, "kjournald2 wakes\n"); 213 214 /* 215 * Were we woken up by a commit wakeup event? 216 */ 217 transaction = journal->j_running_transaction; 218 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 219 journal->j_commit_request = transaction->t_tid; 220 jbd_debug(1, "woke because of timeout\n"); 221 } 222 goto loop; 223 224 end_loop: 225 write_unlock(&journal->j_state_lock); 226 del_timer_sync(&journal->j_commit_timer); 227 journal->j_task = NULL; 228 wake_up(&journal->j_wait_done_commit); 229 jbd_debug(1, "Journal thread exiting.\n"); 230 return 0; 231 } 232 233 static int jbd2_journal_start_thread(journal_t *journal) 234 { 235 struct task_struct *t; 236 237 t = kthread_run(kjournald2, journal, "jbd2/%s", 238 journal->j_devname); 239 if (IS_ERR(t)) 240 return PTR_ERR(t); 241 242 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 243 return 0; 244 } 245 246 static void journal_kill_thread(journal_t *journal) 247 { 248 write_lock(&journal->j_state_lock); 249 journal->j_flags |= JBD2_UNMOUNT; 250 251 while (journal->j_task) { 252 wake_up(&journal->j_wait_commit); 253 write_unlock(&journal->j_state_lock); 254 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 255 write_lock(&journal->j_state_lock); 256 } 257 write_unlock(&journal->j_state_lock); 258 } 259 260 /* 261 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 262 * 263 * Writes a metadata buffer to a given disk block. The actual IO is not 264 * performed but a new buffer_head is constructed which labels the data 265 * to be written with the correct destination disk block. 266 * 267 * Any magic-number escaping which needs to be done will cause a 268 * copy-out here. If the buffer happens to start with the 269 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 270 * magic number is only written to the log for descripter blocks. In 271 * this case, we copy the data and replace the first word with 0, and we 272 * return a result code which indicates that this buffer needs to be 273 * marked as an escaped buffer in the corresponding log descriptor 274 * block. The missing word can then be restored when the block is read 275 * during recovery. 276 * 277 * If the source buffer has already been modified by a new transaction 278 * since we took the last commit snapshot, we use the frozen copy of 279 * that data for IO. If we end up using the existing buffer_head's data 280 * for the write, then we *have* to lock the buffer to prevent anyone 281 * else from using and possibly modifying it while the IO is in 282 * progress. 283 * 284 * The function returns a pointer to the buffer_heads to be used for IO. 285 * 286 * We assume that the journal has already been locked in this function. 287 * 288 * Return value: 289 * <0: Error 290 * >=0: Finished OK 291 * 292 * On success: 293 * Bit 0 set == escape performed on the data 294 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 295 */ 296 297 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 298 struct journal_head *jh_in, 299 struct journal_head **jh_out, 300 unsigned long long blocknr) 301 { 302 int need_copy_out = 0; 303 int done_copy_out = 0; 304 int do_escape = 0; 305 char *mapped_data; 306 struct buffer_head *new_bh; 307 struct journal_head *new_jh; 308 struct page *new_page; 309 unsigned int new_offset; 310 struct buffer_head *bh_in = jh2bh(jh_in); 311 journal_t *journal = transaction->t_journal; 312 313 /* 314 * The buffer really shouldn't be locked: only the current committing 315 * transaction is allowed to write it, so nobody else is allowed 316 * to do any IO. 317 * 318 * akpm: except if we're journalling data, and write() output is 319 * also part of a shared mapping, and another thread has 320 * decided to launch a writepage() against this buffer. 321 */ 322 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 323 324 retry_alloc: 325 new_bh = alloc_buffer_head(GFP_NOFS); 326 if (!new_bh) { 327 /* 328 * Failure is not an option, but __GFP_NOFAIL is going 329 * away; so we retry ourselves here. 330 */ 331 congestion_wait(BLK_RW_ASYNC, HZ/50); 332 goto retry_alloc; 333 } 334 335 /* keep subsequent assertions sane */ 336 new_bh->b_state = 0; 337 init_buffer(new_bh, NULL, NULL); 338 atomic_set(&new_bh->b_count, 1); 339 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */ 340 341 /* 342 * If a new transaction has already done a buffer copy-out, then 343 * we use that version of the data for the commit. 344 */ 345 jbd_lock_bh_state(bh_in); 346 repeat: 347 if (jh_in->b_frozen_data) { 348 done_copy_out = 1; 349 new_page = virt_to_page(jh_in->b_frozen_data); 350 new_offset = offset_in_page(jh_in->b_frozen_data); 351 } else { 352 new_page = jh2bh(jh_in)->b_page; 353 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 354 } 355 356 mapped_data = kmap_atomic(new_page); 357 /* 358 * Fire data frozen trigger if data already wasn't frozen. Do this 359 * before checking for escaping, as the trigger may modify the magic 360 * offset. If a copy-out happens afterwards, it will have the correct 361 * data in the buffer. 362 */ 363 if (!done_copy_out) 364 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset, 365 jh_in->b_triggers); 366 367 /* 368 * Check for escaping 369 */ 370 if (*((__be32 *)(mapped_data + new_offset)) == 371 cpu_to_be32(JBD2_MAGIC_NUMBER)) { 372 need_copy_out = 1; 373 do_escape = 1; 374 } 375 kunmap_atomic(mapped_data); 376 377 /* 378 * Do we need to do a data copy? 379 */ 380 if (need_copy_out && !done_copy_out) { 381 char *tmp; 382 383 jbd_unlock_bh_state(bh_in); 384 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 385 if (!tmp) { 386 jbd2_journal_put_journal_head(new_jh); 387 return -ENOMEM; 388 } 389 jbd_lock_bh_state(bh_in); 390 if (jh_in->b_frozen_data) { 391 jbd2_free(tmp, bh_in->b_size); 392 goto repeat; 393 } 394 395 jh_in->b_frozen_data = tmp; 396 mapped_data = kmap_atomic(new_page); 397 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 398 kunmap_atomic(mapped_data); 399 400 new_page = virt_to_page(tmp); 401 new_offset = offset_in_page(tmp); 402 done_copy_out = 1; 403 404 /* 405 * This isn't strictly necessary, as we're using frozen 406 * data for the escaping, but it keeps consistency with 407 * b_frozen_data usage. 408 */ 409 jh_in->b_frozen_triggers = jh_in->b_triggers; 410 } 411 412 /* 413 * Did we need to do an escaping? Now we've done all the 414 * copying, we can finally do so. 415 */ 416 if (do_escape) { 417 mapped_data = kmap_atomic(new_page); 418 *((unsigned int *)(mapped_data + new_offset)) = 0; 419 kunmap_atomic(mapped_data); 420 } 421 422 set_bh_page(new_bh, new_page, new_offset); 423 new_jh->b_transaction = NULL; 424 new_bh->b_size = jh2bh(jh_in)->b_size; 425 new_bh->b_bdev = transaction->t_journal->j_dev; 426 new_bh->b_blocknr = blocknr; 427 set_buffer_mapped(new_bh); 428 set_buffer_dirty(new_bh); 429 430 *jh_out = new_jh; 431 432 /* 433 * The to-be-written buffer needs to get moved to the io queue, 434 * and the original buffer whose contents we are shadowing or 435 * copying is moved to the transaction's shadow queue. 436 */ 437 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 438 spin_lock(&journal->j_list_lock); 439 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 440 spin_unlock(&journal->j_list_lock); 441 jbd_unlock_bh_state(bh_in); 442 443 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 444 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO); 445 446 return do_escape | (done_copy_out << 1); 447 } 448 449 /* 450 * Allocation code for the journal file. Manage the space left in the 451 * journal, so that we can begin checkpointing when appropriate. 452 */ 453 454 /* 455 * __jbd2_log_space_left: Return the number of free blocks left in the journal. 456 * 457 * Called with the journal already locked. 458 * 459 * Called under j_state_lock 460 */ 461 462 int __jbd2_log_space_left(journal_t *journal) 463 { 464 int left = journal->j_free; 465 466 /* assert_spin_locked(&journal->j_state_lock); */ 467 468 /* 469 * Be pessimistic here about the number of those free blocks which 470 * might be required for log descriptor control blocks. 471 */ 472 473 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 474 475 left -= MIN_LOG_RESERVED_BLOCKS; 476 477 if (left <= 0) 478 return 0; 479 left -= (left >> 3); 480 return left; 481 } 482 483 /* 484 * Called with j_state_lock locked for writing. 485 * Returns true if a transaction commit was started. 486 */ 487 int __jbd2_log_start_commit(journal_t *journal, tid_t target) 488 { 489 /* 490 * The only transaction we can possibly wait upon is the 491 * currently running transaction (if it exists). Otherwise, 492 * the target tid must be an old one. 493 */ 494 if (journal->j_running_transaction && 495 journal->j_running_transaction->t_tid == target) { 496 /* 497 * We want a new commit: OK, mark the request and wakeup the 498 * commit thread. We do _not_ do the commit ourselves. 499 */ 500 501 journal->j_commit_request = target; 502 jbd_debug(1, "JBD2: requesting commit %d/%d\n", 503 journal->j_commit_request, 504 journal->j_commit_sequence); 505 wake_up(&journal->j_wait_commit); 506 return 1; 507 } else if (!tid_geq(journal->j_commit_request, target)) 508 /* This should never happen, but if it does, preserve 509 the evidence before kjournald goes into a loop and 510 increments j_commit_sequence beyond all recognition. */ 511 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 512 journal->j_commit_request, 513 journal->j_commit_sequence, 514 target, journal->j_running_transaction ? 515 journal->j_running_transaction->t_tid : 0); 516 return 0; 517 } 518 519 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 520 { 521 int ret; 522 523 write_lock(&journal->j_state_lock); 524 ret = __jbd2_log_start_commit(journal, tid); 525 write_unlock(&journal->j_state_lock); 526 return ret; 527 } 528 529 /* 530 * Force and wait upon a commit if the calling process is not within 531 * transaction. This is used for forcing out undo-protected data which contains 532 * bitmaps, when the fs is running out of space. 533 * 534 * We can only force the running transaction if we don't have an active handle; 535 * otherwise, we will deadlock. 536 * 537 * Returns true if a transaction was started. 538 */ 539 int jbd2_journal_force_commit_nested(journal_t *journal) 540 { 541 transaction_t *transaction = NULL; 542 tid_t tid; 543 int need_to_start = 0; 544 545 read_lock(&journal->j_state_lock); 546 if (journal->j_running_transaction && !current->journal_info) { 547 transaction = journal->j_running_transaction; 548 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 549 need_to_start = 1; 550 } else if (journal->j_committing_transaction) 551 transaction = journal->j_committing_transaction; 552 553 if (!transaction) { 554 read_unlock(&journal->j_state_lock); 555 return 0; /* Nothing to retry */ 556 } 557 558 tid = transaction->t_tid; 559 read_unlock(&journal->j_state_lock); 560 if (need_to_start) 561 jbd2_log_start_commit(journal, tid); 562 jbd2_log_wait_commit(journal, tid); 563 return 1; 564 } 565 566 /* 567 * Start a commit of the current running transaction (if any). Returns true 568 * if a transaction is going to be committed (or is currently already 569 * committing), and fills its tid in at *ptid 570 */ 571 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 572 { 573 int ret = 0; 574 575 write_lock(&journal->j_state_lock); 576 if (journal->j_running_transaction) { 577 tid_t tid = journal->j_running_transaction->t_tid; 578 579 __jbd2_log_start_commit(journal, tid); 580 /* There's a running transaction and we've just made sure 581 * it's commit has been scheduled. */ 582 if (ptid) 583 *ptid = tid; 584 ret = 1; 585 } else if (journal->j_committing_transaction) { 586 /* 587 * If ext3_write_super() recently started a commit, then we 588 * have to wait for completion of that transaction 589 */ 590 if (ptid) 591 *ptid = journal->j_committing_transaction->t_tid; 592 ret = 1; 593 } 594 write_unlock(&journal->j_state_lock); 595 return ret; 596 } 597 598 /* 599 * Return 1 if a given transaction has not yet sent barrier request 600 * connected with a transaction commit. If 0 is returned, transaction 601 * may or may not have sent the barrier. Used to avoid sending barrier 602 * twice in common cases. 603 */ 604 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 605 { 606 int ret = 0; 607 transaction_t *commit_trans; 608 609 if (!(journal->j_flags & JBD2_BARRIER)) 610 return 0; 611 read_lock(&journal->j_state_lock); 612 /* Transaction already committed? */ 613 if (tid_geq(journal->j_commit_sequence, tid)) 614 goto out; 615 commit_trans = journal->j_committing_transaction; 616 if (!commit_trans || commit_trans->t_tid != tid) { 617 ret = 1; 618 goto out; 619 } 620 /* 621 * Transaction is being committed and we already proceeded to 622 * submitting a flush to fs partition? 623 */ 624 if (journal->j_fs_dev != journal->j_dev) { 625 if (!commit_trans->t_need_data_flush || 626 commit_trans->t_state >= T_COMMIT_DFLUSH) 627 goto out; 628 } else { 629 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 630 goto out; 631 } 632 ret = 1; 633 out: 634 read_unlock(&journal->j_state_lock); 635 return ret; 636 } 637 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 638 639 /* 640 * Wait for a specified commit to complete. 641 * The caller may not hold the journal lock. 642 */ 643 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 644 { 645 int err = 0; 646 647 read_lock(&journal->j_state_lock); 648 #ifdef CONFIG_JBD2_DEBUG 649 if (!tid_geq(journal->j_commit_request, tid)) { 650 printk(KERN_EMERG 651 "%s: error: j_commit_request=%d, tid=%d\n", 652 __func__, journal->j_commit_request, tid); 653 } 654 #endif 655 while (tid_gt(tid, journal->j_commit_sequence)) { 656 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n", 657 tid, journal->j_commit_sequence); 658 wake_up(&journal->j_wait_commit); 659 read_unlock(&journal->j_state_lock); 660 wait_event(journal->j_wait_done_commit, 661 !tid_gt(tid, journal->j_commit_sequence)); 662 read_lock(&journal->j_state_lock); 663 } 664 read_unlock(&journal->j_state_lock); 665 666 if (unlikely(is_journal_aborted(journal))) { 667 printk(KERN_EMERG "journal commit I/O error\n"); 668 err = -EIO; 669 } 670 return err; 671 } 672 673 /* 674 * Log buffer allocation routines: 675 */ 676 677 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 678 { 679 unsigned long blocknr; 680 681 write_lock(&journal->j_state_lock); 682 J_ASSERT(journal->j_free > 1); 683 684 blocknr = journal->j_head; 685 journal->j_head++; 686 journal->j_free--; 687 if (journal->j_head == journal->j_last) 688 journal->j_head = journal->j_first; 689 write_unlock(&journal->j_state_lock); 690 return jbd2_journal_bmap(journal, blocknr, retp); 691 } 692 693 /* 694 * Conversion of logical to physical block numbers for the journal 695 * 696 * On external journals the journal blocks are identity-mapped, so 697 * this is a no-op. If needed, we can use j_blk_offset - everything is 698 * ready. 699 */ 700 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 701 unsigned long long *retp) 702 { 703 int err = 0; 704 unsigned long long ret; 705 706 if (journal->j_inode) { 707 ret = bmap(journal->j_inode, blocknr); 708 if (ret) 709 *retp = ret; 710 else { 711 printk(KERN_ALERT "%s: journal block not found " 712 "at offset %lu on %s\n", 713 __func__, blocknr, journal->j_devname); 714 err = -EIO; 715 __journal_abort_soft(journal, err); 716 } 717 } else { 718 *retp = blocknr; /* +journal->j_blk_offset */ 719 } 720 return err; 721 } 722 723 /* 724 * We play buffer_head aliasing tricks to write data/metadata blocks to 725 * the journal without copying their contents, but for journal 726 * descriptor blocks we do need to generate bona fide buffers. 727 * 728 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 729 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 730 * But we don't bother doing that, so there will be coherency problems with 731 * mmaps of blockdevs which hold live JBD-controlled filesystems. 732 */ 733 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal) 734 { 735 struct buffer_head *bh; 736 unsigned long long blocknr; 737 int err; 738 739 err = jbd2_journal_next_log_block(journal, &blocknr); 740 741 if (err) 742 return NULL; 743 744 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 745 if (!bh) 746 return NULL; 747 lock_buffer(bh); 748 memset(bh->b_data, 0, journal->j_blocksize); 749 set_buffer_uptodate(bh); 750 unlock_buffer(bh); 751 BUFFER_TRACE(bh, "return this buffer"); 752 return jbd2_journal_add_journal_head(bh); 753 } 754 755 /* 756 * Return tid of the oldest transaction in the journal and block in the journal 757 * where the transaction starts. 758 * 759 * If the journal is now empty, return which will be the next transaction ID 760 * we will write and where will that transaction start. 761 * 762 * The return value is 0 if journal tail cannot be pushed any further, 1 if 763 * it can. 764 */ 765 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 766 unsigned long *block) 767 { 768 transaction_t *transaction; 769 int ret; 770 771 read_lock(&journal->j_state_lock); 772 spin_lock(&journal->j_list_lock); 773 transaction = journal->j_checkpoint_transactions; 774 if (transaction) { 775 *tid = transaction->t_tid; 776 *block = transaction->t_log_start; 777 } else if ((transaction = journal->j_committing_transaction) != NULL) { 778 *tid = transaction->t_tid; 779 *block = transaction->t_log_start; 780 } else if ((transaction = journal->j_running_transaction) != NULL) { 781 *tid = transaction->t_tid; 782 *block = journal->j_head; 783 } else { 784 *tid = journal->j_transaction_sequence; 785 *block = journal->j_head; 786 } 787 ret = tid_gt(*tid, journal->j_tail_sequence); 788 spin_unlock(&journal->j_list_lock); 789 read_unlock(&journal->j_state_lock); 790 791 return ret; 792 } 793 794 /* 795 * Update information in journal structure and in on disk journal superblock 796 * about log tail. This function does not check whether information passed in 797 * really pushes log tail further. It's responsibility of the caller to make 798 * sure provided log tail information is valid (e.g. by holding 799 * j_checkpoint_mutex all the time between computing log tail and calling this 800 * function as is the case with jbd2_cleanup_journal_tail()). 801 * 802 * Requires j_checkpoint_mutex 803 */ 804 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 805 { 806 unsigned long freed; 807 808 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 809 810 /* 811 * We cannot afford for write to remain in drive's caches since as 812 * soon as we update j_tail, next transaction can start reusing journal 813 * space and if we lose sb update during power failure we'd replay 814 * old transaction with possibly newly overwritten data. 815 */ 816 jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA); 817 write_lock(&journal->j_state_lock); 818 freed = block - journal->j_tail; 819 if (block < journal->j_tail) 820 freed += journal->j_last - journal->j_first; 821 822 trace_jbd2_update_log_tail(journal, tid, block, freed); 823 jbd_debug(1, 824 "Cleaning journal tail from %d to %d (offset %lu), " 825 "freeing %lu\n", 826 journal->j_tail_sequence, tid, block, freed); 827 828 journal->j_free += freed; 829 journal->j_tail_sequence = tid; 830 journal->j_tail = block; 831 write_unlock(&journal->j_state_lock); 832 } 833 834 /* 835 * This is a variaon of __jbd2_update_log_tail which checks for validity of 836 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 837 * with other threads updating log tail. 838 */ 839 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 840 { 841 mutex_lock(&journal->j_checkpoint_mutex); 842 if (tid_gt(tid, journal->j_tail_sequence)) 843 __jbd2_update_log_tail(journal, tid, block); 844 mutex_unlock(&journal->j_checkpoint_mutex); 845 } 846 847 struct jbd2_stats_proc_session { 848 journal_t *journal; 849 struct transaction_stats_s *stats; 850 int start; 851 int max; 852 }; 853 854 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 855 { 856 return *pos ? NULL : SEQ_START_TOKEN; 857 } 858 859 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 860 { 861 return NULL; 862 } 863 864 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 865 { 866 struct jbd2_stats_proc_session *s = seq->private; 867 868 if (v != SEQ_START_TOKEN) 869 return 0; 870 seq_printf(seq, "%lu transaction, each up to %u blocks\n", 871 s->stats->ts_tid, 872 s->journal->j_max_transaction_buffers); 873 if (s->stats->ts_tid == 0) 874 return 0; 875 seq_printf(seq, "average: \n %ums waiting for transaction\n", 876 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 877 seq_printf(seq, " %ums running transaction\n", 878 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 879 seq_printf(seq, " %ums transaction was being locked\n", 880 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 881 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 882 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 883 seq_printf(seq, " %ums logging transaction\n", 884 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 885 seq_printf(seq, " %lluus average transaction commit time\n", 886 div_u64(s->journal->j_average_commit_time, 1000)); 887 seq_printf(seq, " %lu handles per transaction\n", 888 s->stats->run.rs_handle_count / s->stats->ts_tid); 889 seq_printf(seq, " %lu blocks per transaction\n", 890 s->stats->run.rs_blocks / s->stats->ts_tid); 891 seq_printf(seq, " %lu logged blocks per transaction\n", 892 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 893 return 0; 894 } 895 896 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 897 { 898 } 899 900 static const struct seq_operations jbd2_seq_info_ops = { 901 .start = jbd2_seq_info_start, 902 .next = jbd2_seq_info_next, 903 .stop = jbd2_seq_info_stop, 904 .show = jbd2_seq_info_show, 905 }; 906 907 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 908 { 909 journal_t *journal = PDE(inode)->data; 910 struct jbd2_stats_proc_session *s; 911 int rc, size; 912 913 s = kmalloc(sizeof(*s), GFP_KERNEL); 914 if (s == NULL) 915 return -ENOMEM; 916 size = sizeof(struct transaction_stats_s); 917 s->stats = kmalloc(size, GFP_KERNEL); 918 if (s->stats == NULL) { 919 kfree(s); 920 return -ENOMEM; 921 } 922 spin_lock(&journal->j_history_lock); 923 memcpy(s->stats, &journal->j_stats, size); 924 s->journal = journal; 925 spin_unlock(&journal->j_history_lock); 926 927 rc = seq_open(file, &jbd2_seq_info_ops); 928 if (rc == 0) { 929 struct seq_file *m = file->private_data; 930 m->private = s; 931 } else { 932 kfree(s->stats); 933 kfree(s); 934 } 935 return rc; 936 937 } 938 939 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 940 { 941 struct seq_file *seq = file->private_data; 942 struct jbd2_stats_proc_session *s = seq->private; 943 kfree(s->stats); 944 kfree(s); 945 return seq_release(inode, file); 946 } 947 948 static const struct file_operations jbd2_seq_info_fops = { 949 .owner = THIS_MODULE, 950 .open = jbd2_seq_info_open, 951 .read = seq_read, 952 .llseek = seq_lseek, 953 .release = jbd2_seq_info_release, 954 }; 955 956 static struct proc_dir_entry *proc_jbd2_stats; 957 958 static void jbd2_stats_proc_init(journal_t *journal) 959 { 960 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 961 if (journal->j_proc_entry) { 962 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 963 &jbd2_seq_info_fops, journal); 964 } 965 } 966 967 static void jbd2_stats_proc_exit(journal_t *journal) 968 { 969 remove_proc_entry("info", journal->j_proc_entry); 970 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 971 } 972 973 /* 974 * Management for journal control blocks: functions to create and 975 * destroy journal_t structures, and to initialise and read existing 976 * journal blocks from disk. */ 977 978 /* First: create and setup a journal_t object in memory. We initialise 979 * very few fields yet: that has to wait until we have created the 980 * journal structures from from scratch, or loaded them from disk. */ 981 982 static journal_t * journal_init_common (void) 983 { 984 journal_t *journal; 985 int err; 986 987 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 988 if (!journal) 989 return NULL; 990 991 init_waitqueue_head(&journal->j_wait_transaction_locked); 992 init_waitqueue_head(&journal->j_wait_logspace); 993 init_waitqueue_head(&journal->j_wait_done_commit); 994 init_waitqueue_head(&journal->j_wait_checkpoint); 995 init_waitqueue_head(&journal->j_wait_commit); 996 init_waitqueue_head(&journal->j_wait_updates); 997 mutex_init(&journal->j_barrier); 998 mutex_init(&journal->j_checkpoint_mutex); 999 spin_lock_init(&journal->j_revoke_lock); 1000 spin_lock_init(&journal->j_list_lock); 1001 rwlock_init(&journal->j_state_lock); 1002 1003 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1004 journal->j_min_batch_time = 0; 1005 journal->j_max_batch_time = 15000; /* 15ms */ 1006 1007 /* The journal is marked for error until we succeed with recovery! */ 1008 journal->j_flags = JBD2_ABORT; 1009 1010 /* Set up a default-sized revoke table for the new mount. */ 1011 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1012 if (err) { 1013 kfree(journal); 1014 return NULL; 1015 } 1016 1017 spin_lock_init(&journal->j_history_lock); 1018 1019 return journal; 1020 } 1021 1022 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1023 * 1024 * Create a journal structure assigned some fixed set of disk blocks to 1025 * the journal. We don't actually touch those disk blocks yet, but we 1026 * need to set up all of the mapping information to tell the journaling 1027 * system where the journal blocks are. 1028 * 1029 */ 1030 1031 /** 1032 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1033 * @bdev: Block device on which to create the journal 1034 * @fs_dev: Device which hold journalled filesystem for this journal. 1035 * @start: Block nr Start of journal. 1036 * @len: Length of the journal in blocks. 1037 * @blocksize: blocksize of journalling device 1038 * 1039 * Returns: a newly created journal_t * 1040 * 1041 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1042 * range of blocks on an arbitrary block device. 1043 * 1044 */ 1045 journal_t * jbd2_journal_init_dev(struct block_device *bdev, 1046 struct block_device *fs_dev, 1047 unsigned long long start, int len, int blocksize) 1048 { 1049 journal_t *journal = journal_init_common(); 1050 struct buffer_head *bh; 1051 char *p; 1052 int n; 1053 1054 if (!journal) 1055 return NULL; 1056 1057 /* journal descriptor can store up to n blocks -bzzz */ 1058 journal->j_blocksize = blocksize; 1059 journal->j_dev = bdev; 1060 journal->j_fs_dev = fs_dev; 1061 journal->j_blk_offset = start; 1062 journal->j_maxlen = len; 1063 bdevname(journal->j_dev, journal->j_devname); 1064 p = journal->j_devname; 1065 while ((p = strchr(p, '/'))) 1066 *p = '!'; 1067 jbd2_stats_proc_init(journal); 1068 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1069 journal->j_wbufsize = n; 1070 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1071 if (!journal->j_wbuf) { 1072 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1073 __func__); 1074 goto out_err; 1075 } 1076 1077 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 1078 if (!bh) { 1079 printk(KERN_ERR 1080 "%s: Cannot get buffer for journal superblock\n", 1081 __func__); 1082 goto out_err; 1083 } 1084 journal->j_sb_buffer = bh; 1085 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1086 1087 return journal; 1088 out_err: 1089 kfree(journal->j_wbuf); 1090 jbd2_stats_proc_exit(journal); 1091 kfree(journal); 1092 return NULL; 1093 } 1094 1095 /** 1096 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1097 * @inode: An inode to create the journal in 1098 * 1099 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1100 * the journal. The inode must exist already, must support bmap() and 1101 * must have all data blocks preallocated. 1102 */ 1103 journal_t * jbd2_journal_init_inode (struct inode *inode) 1104 { 1105 struct buffer_head *bh; 1106 journal_t *journal = journal_init_common(); 1107 char *p; 1108 int err; 1109 int n; 1110 unsigned long long blocknr; 1111 1112 if (!journal) 1113 return NULL; 1114 1115 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 1116 journal->j_inode = inode; 1117 bdevname(journal->j_dev, journal->j_devname); 1118 p = journal->j_devname; 1119 while ((p = strchr(p, '/'))) 1120 *p = '!'; 1121 p = journal->j_devname + strlen(journal->j_devname); 1122 sprintf(p, "-%lu", journal->j_inode->i_ino); 1123 jbd_debug(1, 1124 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 1125 journal, inode->i_sb->s_id, inode->i_ino, 1126 (long long) inode->i_size, 1127 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1128 1129 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 1130 journal->j_blocksize = inode->i_sb->s_blocksize; 1131 jbd2_stats_proc_init(journal); 1132 1133 /* journal descriptor can store up to n blocks -bzzz */ 1134 n = journal->j_blocksize / sizeof(journal_block_tag_t); 1135 journal->j_wbufsize = n; 1136 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 1137 if (!journal->j_wbuf) { 1138 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 1139 __func__); 1140 goto out_err; 1141 } 1142 1143 err = jbd2_journal_bmap(journal, 0, &blocknr); 1144 /* If that failed, give up */ 1145 if (err) { 1146 printk(KERN_ERR "%s: Cannot locate journal superblock\n", 1147 __func__); 1148 goto out_err; 1149 } 1150 1151 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 1152 if (!bh) { 1153 printk(KERN_ERR 1154 "%s: Cannot get buffer for journal superblock\n", 1155 __func__); 1156 goto out_err; 1157 } 1158 journal->j_sb_buffer = bh; 1159 journal->j_superblock = (journal_superblock_t *)bh->b_data; 1160 1161 return journal; 1162 out_err: 1163 kfree(journal->j_wbuf); 1164 jbd2_stats_proc_exit(journal); 1165 kfree(journal); 1166 return NULL; 1167 } 1168 1169 /* 1170 * If the journal init or create aborts, we need to mark the journal 1171 * superblock as being NULL to prevent the journal destroy from writing 1172 * back a bogus superblock. 1173 */ 1174 static void journal_fail_superblock (journal_t *journal) 1175 { 1176 struct buffer_head *bh = journal->j_sb_buffer; 1177 brelse(bh); 1178 journal->j_sb_buffer = NULL; 1179 } 1180 1181 /* 1182 * Given a journal_t structure, initialise the various fields for 1183 * startup of a new journaling session. We use this both when creating 1184 * a journal, and after recovering an old journal to reset it for 1185 * subsequent use. 1186 */ 1187 1188 static int journal_reset(journal_t *journal) 1189 { 1190 journal_superblock_t *sb = journal->j_superblock; 1191 unsigned long long first, last; 1192 1193 first = be32_to_cpu(sb->s_first); 1194 last = be32_to_cpu(sb->s_maxlen); 1195 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1196 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1197 first, last); 1198 journal_fail_superblock(journal); 1199 return -EINVAL; 1200 } 1201 1202 journal->j_first = first; 1203 journal->j_last = last; 1204 1205 journal->j_head = first; 1206 journal->j_tail = first; 1207 journal->j_free = last - first; 1208 1209 journal->j_tail_sequence = journal->j_transaction_sequence; 1210 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1211 journal->j_commit_request = journal->j_commit_sequence; 1212 1213 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 1214 1215 /* 1216 * As a special case, if the on-disk copy is already marked as needing 1217 * no recovery (s_start == 0), then we can safely defer the superblock 1218 * update until the next commit by setting JBD2_FLUSHED. This avoids 1219 * attempting a write to a potential-readonly device. 1220 */ 1221 if (sb->s_start == 0) { 1222 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb " 1223 "(start %ld, seq %d, errno %d)\n", 1224 journal->j_tail, journal->j_tail_sequence, 1225 journal->j_errno); 1226 journal->j_flags |= JBD2_FLUSHED; 1227 } else { 1228 /* Lock here to make assertions happy... */ 1229 mutex_lock(&journal->j_checkpoint_mutex); 1230 /* 1231 * Update log tail information. We use WRITE_FUA since new 1232 * transaction will start reusing journal space and so we 1233 * must make sure information about current log tail is on 1234 * disk before that. 1235 */ 1236 jbd2_journal_update_sb_log_tail(journal, 1237 journal->j_tail_sequence, 1238 journal->j_tail, 1239 WRITE_FUA); 1240 mutex_unlock(&journal->j_checkpoint_mutex); 1241 } 1242 return jbd2_journal_start_thread(journal); 1243 } 1244 1245 static void jbd2_write_superblock(journal_t *journal, int write_op) 1246 { 1247 struct buffer_head *bh = journal->j_sb_buffer; 1248 int ret; 1249 1250 trace_jbd2_write_superblock(journal, write_op); 1251 if (!(journal->j_flags & JBD2_BARRIER)) 1252 write_op &= ~(REQ_FUA | REQ_FLUSH); 1253 lock_buffer(bh); 1254 if (buffer_write_io_error(bh)) { 1255 /* 1256 * Oh, dear. A previous attempt to write the journal 1257 * superblock failed. This could happen because the 1258 * USB device was yanked out. Or it could happen to 1259 * be a transient write error and maybe the block will 1260 * be remapped. Nothing we can do but to retry the 1261 * write and hope for the best. 1262 */ 1263 printk(KERN_ERR "JBD2: previous I/O error detected " 1264 "for journal superblock update for %s.\n", 1265 journal->j_devname); 1266 clear_buffer_write_io_error(bh); 1267 set_buffer_uptodate(bh); 1268 } 1269 get_bh(bh); 1270 bh->b_end_io = end_buffer_write_sync; 1271 ret = submit_bh(write_op, bh); 1272 wait_on_buffer(bh); 1273 if (buffer_write_io_error(bh)) { 1274 clear_buffer_write_io_error(bh); 1275 set_buffer_uptodate(bh); 1276 ret = -EIO; 1277 } 1278 if (ret) { 1279 printk(KERN_ERR "JBD2: Error %d detected when updating " 1280 "journal superblock for %s.\n", ret, 1281 journal->j_devname); 1282 } 1283 } 1284 1285 /** 1286 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1287 * @journal: The journal to update. 1288 * @tail_tid: TID of the new transaction at the tail of the log 1289 * @tail_block: The first block of the transaction at the tail of the log 1290 * @write_op: With which operation should we write the journal sb 1291 * 1292 * Update a journal's superblock information about log tail and write it to 1293 * disk, waiting for the IO to complete. 1294 */ 1295 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1296 unsigned long tail_block, int write_op) 1297 { 1298 journal_superblock_t *sb = journal->j_superblock; 1299 1300 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1301 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1302 tail_block, tail_tid); 1303 1304 sb->s_sequence = cpu_to_be32(tail_tid); 1305 sb->s_start = cpu_to_be32(tail_block); 1306 1307 jbd2_write_superblock(journal, write_op); 1308 1309 /* Log is no longer empty */ 1310 write_lock(&journal->j_state_lock); 1311 WARN_ON(!sb->s_sequence); 1312 journal->j_flags &= ~JBD2_FLUSHED; 1313 write_unlock(&journal->j_state_lock); 1314 } 1315 1316 /** 1317 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1318 * @journal: The journal to update. 1319 * 1320 * Update a journal's dynamic superblock fields to show that journal is empty. 1321 * Write updated superblock to disk waiting for IO to complete. 1322 */ 1323 static void jbd2_mark_journal_empty(journal_t *journal) 1324 { 1325 journal_superblock_t *sb = journal->j_superblock; 1326 1327 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1328 read_lock(&journal->j_state_lock); 1329 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n", 1330 journal->j_tail_sequence); 1331 1332 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1333 sb->s_start = cpu_to_be32(0); 1334 read_unlock(&journal->j_state_lock); 1335 1336 jbd2_write_superblock(journal, WRITE_FUA); 1337 1338 /* Log is no longer empty */ 1339 write_lock(&journal->j_state_lock); 1340 journal->j_flags |= JBD2_FLUSHED; 1341 write_unlock(&journal->j_state_lock); 1342 } 1343 1344 1345 /** 1346 * jbd2_journal_update_sb_errno() - Update error in the journal. 1347 * @journal: The journal to update. 1348 * 1349 * Update a journal's errno. Write updated superblock to disk waiting for IO 1350 * to complete. 1351 */ 1352 static void jbd2_journal_update_sb_errno(journal_t *journal) 1353 { 1354 journal_superblock_t *sb = journal->j_superblock; 1355 1356 read_lock(&journal->j_state_lock); 1357 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", 1358 journal->j_errno); 1359 sb->s_errno = cpu_to_be32(journal->j_errno); 1360 read_unlock(&journal->j_state_lock); 1361 1362 jbd2_write_superblock(journal, WRITE_SYNC); 1363 } 1364 1365 /* 1366 * Read the superblock for a given journal, performing initial 1367 * validation of the format. 1368 */ 1369 static int journal_get_superblock(journal_t *journal) 1370 { 1371 struct buffer_head *bh; 1372 journal_superblock_t *sb; 1373 int err = -EIO; 1374 1375 bh = journal->j_sb_buffer; 1376 1377 J_ASSERT(bh != NULL); 1378 if (!buffer_uptodate(bh)) { 1379 ll_rw_block(READ, 1, &bh); 1380 wait_on_buffer(bh); 1381 if (!buffer_uptodate(bh)) { 1382 printk(KERN_ERR 1383 "JBD2: IO error reading journal superblock\n"); 1384 goto out; 1385 } 1386 } 1387 1388 if (buffer_verified(bh)) 1389 return 0; 1390 1391 sb = journal->j_superblock; 1392 1393 err = -EINVAL; 1394 1395 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1396 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1397 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1398 goto out; 1399 } 1400 1401 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1402 case JBD2_SUPERBLOCK_V1: 1403 journal->j_format_version = 1; 1404 break; 1405 case JBD2_SUPERBLOCK_V2: 1406 journal->j_format_version = 2; 1407 break; 1408 default: 1409 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1410 goto out; 1411 } 1412 1413 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1414 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1415 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1416 printk(KERN_WARNING "JBD2: journal file too short\n"); 1417 goto out; 1418 } 1419 1420 if (be32_to_cpu(sb->s_first) == 0 || 1421 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1422 printk(KERN_WARNING 1423 "JBD2: Invalid start block of journal: %u\n", 1424 be32_to_cpu(sb->s_first)); 1425 goto out; 1426 } 1427 1428 if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) && 1429 JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1430 /* Can't have checksum v1 and v2 on at the same time! */ 1431 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 " 1432 "at the same time!\n"); 1433 goto out; 1434 } 1435 1436 if (!jbd2_verify_csum_type(journal, sb)) { 1437 printk(KERN_ERR "JBD: Unknown checksum type\n"); 1438 goto out; 1439 } 1440 1441 /* Load the checksum driver */ 1442 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1443 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1444 if (IS_ERR(journal->j_chksum_driver)) { 1445 printk(KERN_ERR "JBD: Cannot load crc32c driver.\n"); 1446 err = PTR_ERR(journal->j_chksum_driver); 1447 journal->j_chksum_driver = NULL; 1448 goto out; 1449 } 1450 } 1451 1452 set_buffer_verified(bh); 1453 1454 return 0; 1455 1456 out: 1457 journal_fail_superblock(journal); 1458 return err; 1459 } 1460 1461 /* 1462 * Load the on-disk journal superblock and read the key fields into the 1463 * journal_t. 1464 */ 1465 1466 static int load_superblock(journal_t *journal) 1467 { 1468 int err; 1469 journal_superblock_t *sb; 1470 1471 err = journal_get_superblock(journal); 1472 if (err) 1473 return err; 1474 1475 sb = journal->j_superblock; 1476 1477 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1478 journal->j_tail = be32_to_cpu(sb->s_start); 1479 journal->j_first = be32_to_cpu(sb->s_first); 1480 journal->j_last = be32_to_cpu(sb->s_maxlen); 1481 journal->j_errno = be32_to_cpu(sb->s_errno); 1482 1483 return 0; 1484 } 1485 1486 1487 /** 1488 * int jbd2_journal_load() - Read journal from disk. 1489 * @journal: Journal to act on. 1490 * 1491 * Given a journal_t structure which tells us which disk blocks contain 1492 * a journal, read the journal from disk to initialise the in-memory 1493 * structures. 1494 */ 1495 int jbd2_journal_load(journal_t *journal) 1496 { 1497 int err; 1498 journal_superblock_t *sb; 1499 1500 err = load_superblock(journal); 1501 if (err) 1502 return err; 1503 1504 sb = journal->j_superblock; 1505 /* If this is a V2 superblock, then we have to check the 1506 * features flags on it. */ 1507 1508 if (journal->j_format_version >= 2) { 1509 if ((sb->s_feature_ro_compat & 1510 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1511 (sb->s_feature_incompat & 1512 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1513 printk(KERN_WARNING 1514 "JBD2: Unrecognised features on journal\n"); 1515 return -EINVAL; 1516 } 1517 } 1518 1519 /* 1520 * Create a slab for this blocksize 1521 */ 1522 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 1523 if (err) 1524 return err; 1525 1526 /* Let the recovery code check whether it needs to recover any 1527 * data from the journal. */ 1528 if (jbd2_journal_recover(journal)) 1529 goto recovery_error; 1530 1531 if (journal->j_failed_commit) { 1532 printk(KERN_ERR "JBD2: journal transaction %u on %s " 1533 "is corrupt.\n", journal->j_failed_commit, 1534 journal->j_devname); 1535 return -EIO; 1536 } 1537 1538 /* OK, we've finished with the dynamic journal bits: 1539 * reinitialise the dynamic contents of the superblock in memory 1540 * and reset them on disk. */ 1541 if (journal_reset(journal)) 1542 goto recovery_error; 1543 1544 journal->j_flags &= ~JBD2_ABORT; 1545 journal->j_flags |= JBD2_LOADED; 1546 return 0; 1547 1548 recovery_error: 1549 printk(KERN_WARNING "JBD2: recovery failed\n"); 1550 return -EIO; 1551 } 1552 1553 /** 1554 * void jbd2_journal_destroy() - Release a journal_t structure. 1555 * @journal: Journal to act on. 1556 * 1557 * Release a journal_t structure once it is no longer in use by the 1558 * journaled object. 1559 * Return <0 if we couldn't clean up the journal. 1560 */ 1561 int jbd2_journal_destroy(journal_t *journal) 1562 { 1563 int err = 0; 1564 1565 /* Wait for the commit thread to wake up and die. */ 1566 journal_kill_thread(journal); 1567 1568 /* Force a final log commit */ 1569 if (journal->j_running_transaction) 1570 jbd2_journal_commit_transaction(journal); 1571 1572 /* Force any old transactions to disk */ 1573 1574 /* Totally anal locking here... */ 1575 spin_lock(&journal->j_list_lock); 1576 while (journal->j_checkpoint_transactions != NULL) { 1577 spin_unlock(&journal->j_list_lock); 1578 mutex_lock(&journal->j_checkpoint_mutex); 1579 jbd2_log_do_checkpoint(journal); 1580 mutex_unlock(&journal->j_checkpoint_mutex); 1581 spin_lock(&journal->j_list_lock); 1582 } 1583 1584 J_ASSERT(journal->j_running_transaction == NULL); 1585 J_ASSERT(journal->j_committing_transaction == NULL); 1586 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1587 spin_unlock(&journal->j_list_lock); 1588 1589 if (journal->j_sb_buffer) { 1590 if (!is_journal_aborted(journal)) { 1591 mutex_lock(&journal->j_checkpoint_mutex); 1592 jbd2_mark_journal_empty(journal); 1593 mutex_unlock(&journal->j_checkpoint_mutex); 1594 } else 1595 err = -EIO; 1596 brelse(journal->j_sb_buffer); 1597 } 1598 1599 if (journal->j_proc_entry) 1600 jbd2_stats_proc_exit(journal); 1601 if (journal->j_inode) 1602 iput(journal->j_inode); 1603 if (journal->j_revoke) 1604 jbd2_journal_destroy_revoke(journal); 1605 if (journal->j_chksum_driver) 1606 crypto_free_shash(journal->j_chksum_driver); 1607 kfree(journal->j_wbuf); 1608 kfree(journal); 1609 1610 return err; 1611 } 1612 1613 1614 /** 1615 *int jbd2_journal_check_used_features () - Check if features specified are used. 1616 * @journal: Journal to check. 1617 * @compat: bitmask of compatible features 1618 * @ro: bitmask of features that force read-only mount 1619 * @incompat: bitmask of incompatible features 1620 * 1621 * Check whether the journal uses all of a given set of 1622 * features. Return true (non-zero) if it does. 1623 **/ 1624 1625 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat, 1626 unsigned long ro, unsigned long incompat) 1627 { 1628 journal_superblock_t *sb; 1629 1630 if (!compat && !ro && !incompat) 1631 return 1; 1632 /* Load journal superblock if it is not loaded yet. */ 1633 if (journal->j_format_version == 0 && 1634 journal_get_superblock(journal) != 0) 1635 return 0; 1636 if (journal->j_format_version == 1) 1637 return 0; 1638 1639 sb = journal->j_superblock; 1640 1641 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1642 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1643 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1644 return 1; 1645 1646 return 0; 1647 } 1648 1649 /** 1650 * int jbd2_journal_check_available_features() - Check feature set in journalling layer 1651 * @journal: Journal to check. 1652 * @compat: bitmask of compatible features 1653 * @ro: bitmask of features that force read-only mount 1654 * @incompat: bitmask of incompatible features 1655 * 1656 * Check whether the journaling code supports the use of 1657 * all of a given set of features on this journal. Return true 1658 * (non-zero) if it can. */ 1659 1660 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat, 1661 unsigned long ro, unsigned long incompat) 1662 { 1663 if (!compat && !ro && !incompat) 1664 return 1; 1665 1666 /* We can support any known requested features iff the 1667 * superblock is in version 2. Otherwise we fail to support any 1668 * extended sb features. */ 1669 1670 if (journal->j_format_version != 2) 1671 return 0; 1672 1673 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 1674 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 1675 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 1676 return 1; 1677 1678 return 0; 1679 } 1680 1681 /** 1682 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock 1683 * @journal: Journal to act on. 1684 * @compat: bitmask of compatible features 1685 * @ro: bitmask of features that force read-only mount 1686 * @incompat: bitmask of incompatible features 1687 * 1688 * Mark a given journal feature as present on the 1689 * superblock. Returns true if the requested features could be set. 1690 * 1691 */ 1692 1693 int jbd2_journal_set_features (journal_t *journal, unsigned long compat, 1694 unsigned long ro, unsigned long incompat) 1695 { 1696 #define INCOMPAT_FEATURE_ON(f) \ 1697 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 1698 #define COMPAT_FEATURE_ON(f) \ 1699 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 1700 journal_superblock_t *sb; 1701 1702 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 1703 return 1; 1704 1705 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 1706 return 0; 1707 1708 /* Asking for checksumming v2 and v1? Only give them v2. */ 1709 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 && 1710 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 1711 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 1712 1713 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1714 compat, ro, incompat); 1715 1716 sb = journal->j_superblock; 1717 1718 /* If enabling v2 checksums, update superblock */ 1719 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) { 1720 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 1721 sb->s_feature_compat &= 1722 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 1723 1724 /* Load the checksum driver */ 1725 if (journal->j_chksum_driver == NULL) { 1726 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 1727 0, 0); 1728 if (IS_ERR(journal->j_chksum_driver)) { 1729 printk(KERN_ERR "JBD: Cannot load crc32c " 1730 "driver.\n"); 1731 journal->j_chksum_driver = NULL; 1732 return 0; 1733 } 1734 } 1735 } 1736 1737 /* If enabling v1 checksums, downgrade superblock */ 1738 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 1739 sb->s_feature_incompat &= 1740 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2); 1741 1742 sb->s_feature_compat |= cpu_to_be32(compat); 1743 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1744 sb->s_feature_incompat |= cpu_to_be32(incompat); 1745 1746 return 1; 1747 #undef COMPAT_FEATURE_ON 1748 #undef INCOMPAT_FEATURE_ON 1749 } 1750 1751 /* 1752 * jbd2_journal_clear_features () - Clear a given journal feature in the 1753 * superblock 1754 * @journal: Journal to act on. 1755 * @compat: bitmask of compatible features 1756 * @ro: bitmask of features that force read-only mount 1757 * @incompat: bitmask of incompatible features 1758 * 1759 * Clear a given journal feature as present on the 1760 * superblock. 1761 */ 1762 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 1763 unsigned long ro, unsigned long incompat) 1764 { 1765 journal_superblock_t *sb; 1766 1767 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 1768 compat, ro, incompat); 1769 1770 sb = journal->j_superblock; 1771 1772 sb->s_feature_compat &= ~cpu_to_be32(compat); 1773 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 1774 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 1775 } 1776 EXPORT_SYMBOL(jbd2_journal_clear_features); 1777 1778 /** 1779 * int jbd2_journal_flush () - Flush journal 1780 * @journal: Journal to act on. 1781 * 1782 * Flush all data for a given journal to disk and empty the journal. 1783 * Filesystems can use this when remounting readonly to ensure that 1784 * recovery does not need to happen on remount. 1785 */ 1786 1787 int jbd2_journal_flush(journal_t *journal) 1788 { 1789 int err = 0; 1790 transaction_t *transaction = NULL; 1791 1792 write_lock(&journal->j_state_lock); 1793 1794 /* Force everything buffered to the log... */ 1795 if (journal->j_running_transaction) { 1796 transaction = journal->j_running_transaction; 1797 __jbd2_log_start_commit(journal, transaction->t_tid); 1798 } else if (journal->j_committing_transaction) 1799 transaction = journal->j_committing_transaction; 1800 1801 /* Wait for the log commit to complete... */ 1802 if (transaction) { 1803 tid_t tid = transaction->t_tid; 1804 1805 write_unlock(&journal->j_state_lock); 1806 jbd2_log_wait_commit(journal, tid); 1807 } else { 1808 write_unlock(&journal->j_state_lock); 1809 } 1810 1811 /* ...and flush everything in the log out to disk. */ 1812 spin_lock(&journal->j_list_lock); 1813 while (!err && journal->j_checkpoint_transactions != NULL) { 1814 spin_unlock(&journal->j_list_lock); 1815 mutex_lock(&journal->j_checkpoint_mutex); 1816 err = jbd2_log_do_checkpoint(journal); 1817 mutex_unlock(&journal->j_checkpoint_mutex); 1818 spin_lock(&journal->j_list_lock); 1819 } 1820 spin_unlock(&journal->j_list_lock); 1821 1822 if (is_journal_aborted(journal)) 1823 return -EIO; 1824 1825 mutex_lock(&journal->j_checkpoint_mutex); 1826 jbd2_cleanup_journal_tail(journal); 1827 1828 /* Finally, mark the journal as really needing no recovery. 1829 * This sets s_start==0 in the underlying superblock, which is 1830 * the magic code for a fully-recovered superblock. Any future 1831 * commits of data to the journal will restore the current 1832 * s_start value. */ 1833 jbd2_mark_journal_empty(journal); 1834 mutex_unlock(&journal->j_checkpoint_mutex); 1835 write_lock(&journal->j_state_lock); 1836 J_ASSERT(!journal->j_running_transaction); 1837 J_ASSERT(!journal->j_committing_transaction); 1838 J_ASSERT(!journal->j_checkpoint_transactions); 1839 J_ASSERT(journal->j_head == journal->j_tail); 1840 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1841 write_unlock(&journal->j_state_lock); 1842 return 0; 1843 } 1844 1845 /** 1846 * int jbd2_journal_wipe() - Wipe journal contents 1847 * @journal: Journal to act on. 1848 * @write: flag (see below) 1849 * 1850 * Wipe out all of the contents of a journal, safely. This will produce 1851 * a warning if the journal contains any valid recovery information. 1852 * Must be called between journal_init_*() and jbd2_journal_load(). 1853 * 1854 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1855 * we merely suppress recovery. 1856 */ 1857 1858 int jbd2_journal_wipe(journal_t *journal, int write) 1859 { 1860 int err = 0; 1861 1862 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 1863 1864 err = load_superblock(journal); 1865 if (err) 1866 return err; 1867 1868 if (!journal->j_tail) 1869 goto no_recovery; 1870 1871 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 1872 write ? "Clearing" : "Ignoring"); 1873 1874 err = jbd2_journal_skip_recovery(journal); 1875 if (write) { 1876 /* Lock to make assertions happy... */ 1877 mutex_lock(&journal->j_checkpoint_mutex); 1878 jbd2_mark_journal_empty(journal); 1879 mutex_unlock(&journal->j_checkpoint_mutex); 1880 } 1881 1882 no_recovery: 1883 return err; 1884 } 1885 1886 /* 1887 * Journal abort has very specific semantics, which we describe 1888 * for journal abort. 1889 * 1890 * Two internal functions, which provide abort to the jbd layer 1891 * itself are here. 1892 */ 1893 1894 /* 1895 * Quick version for internal journal use (doesn't lock the journal). 1896 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1897 * and don't attempt to make any other journal updates. 1898 */ 1899 void __jbd2_journal_abort_hard(journal_t *journal) 1900 { 1901 transaction_t *transaction; 1902 1903 if (journal->j_flags & JBD2_ABORT) 1904 return; 1905 1906 printk(KERN_ERR "Aborting journal on device %s.\n", 1907 journal->j_devname); 1908 1909 write_lock(&journal->j_state_lock); 1910 journal->j_flags |= JBD2_ABORT; 1911 transaction = journal->j_running_transaction; 1912 if (transaction) 1913 __jbd2_log_start_commit(journal, transaction->t_tid); 1914 write_unlock(&journal->j_state_lock); 1915 } 1916 1917 /* Soft abort: record the abort error status in the journal superblock, 1918 * but don't do any other IO. */ 1919 static void __journal_abort_soft (journal_t *journal, int errno) 1920 { 1921 if (journal->j_flags & JBD2_ABORT) 1922 return; 1923 1924 if (!journal->j_errno) 1925 journal->j_errno = errno; 1926 1927 __jbd2_journal_abort_hard(journal); 1928 1929 if (errno) 1930 jbd2_journal_update_sb_errno(journal); 1931 } 1932 1933 /** 1934 * void jbd2_journal_abort () - Shutdown the journal immediately. 1935 * @journal: the journal to shutdown. 1936 * @errno: an error number to record in the journal indicating 1937 * the reason for the shutdown. 1938 * 1939 * Perform a complete, immediate shutdown of the ENTIRE 1940 * journal (not of a single transaction). This operation cannot be 1941 * undone without closing and reopening the journal. 1942 * 1943 * The jbd2_journal_abort function is intended to support higher level error 1944 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1945 * mode. 1946 * 1947 * Journal abort has very specific semantics. Any existing dirty, 1948 * unjournaled buffers in the main filesystem will still be written to 1949 * disk by bdflush, but the journaling mechanism will be suspended 1950 * immediately and no further transaction commits will be honoured. 1951 * 1952 * Any dirty, journaled buffers will be written back to disk without 1953 * hitting the journal. Atomicity cannot be guaranteed on an aborted 1954 * filesystem, but we _do_ attempt to leave as much data as possible 1955 * behind for fsck to use for cleanup. 1956 * 1957 * Any attempt to get a new transaction handle on a journal which is in 1958 * ABORT state will just result in an -EROFS error return. A 1959 * jbd2_journal_stop on an existing handle will return -EIO if we have 1960 * entered abort state during the update. 1961 * 1962 * Recursive transactions are not disturbed by journal abort until the 1963 * final jbd2_journal_stop, which will receive the -EIO error. 1964 * 1965 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 1966 * which will be recorded (if possible) in the journal superblock. This 1967 * allows a client to record failure conditions in the middle of a 1968 * transaction without having to complete the transaction to record the 1969 * failure to disk. ext3_error, for example, now uses this 1970 * functionality. 1971 * 1972 * Errors which originate from within the journaling layer will NOT 1973 * supply an errno; a null errno implies that absolutely no further 1974 * writes are done to the journal (unless there are any already in 1975 * progress). 1976 * 1977 */ 1978 1979 void jbd2_journal_abort(journal_t *journal, int errno) 1980 { 1981 __journal_abort_soft(journal, errno); 1982 } 1983 1984 /** 1985 * int jbd2_journal_errno () - returns the journal's error state. 1986 * @journal: journal to examine. 1987 * 1988 * This is the errno number set with jbd2_journal_abort(), the last 1989 * time the journal was mounted - if the journal was stopped 1990 * without calling abort this will be 0. 1991 * 1992 * If the journal has been aborted on this mount time -EROFS will 1993 * be returned. 1994 */ 1995 int jbd2_journal_errno(journal_t *journal) 1996 { 1997 int err; 1998 1999 read_lock(&journal->j_state_lock); 2000 if (journal->j_flags & JBD2_ABORT) 2001 err = -EROFS; 2002 else 2003 err = journal->j_errno; 2004 read_unlock(&journal->j_state_lock); 2005 return err; 2006 } 2007 2008 /** 2009 * int jbd2_journal_clear_err () - clears the journal's error state 2010 * @journal: journal to act on. 2011 * 2012 * An error must be cleared or acked to take a FS out of readonly 2013 * mode. 2014 */ 2015 int jbd2_journal_clear_err(journal_t *journal) 2016 { 2017 int err = 0; 2018 2019 write_lock(&journal->j_state_lock); 2020 if (journal->j_flags & JBD2_ABORT) 2021 err = -EROFS; 2022 else 2023 journal->j_errno = 0; 2024 write_unlock(&journal->j_state_lock); 2025 return err; 2026 } 2027 2028 /** 2029 * void jbd2_journal_ack_err() - Ack journal err. 2030 * @journal: journal to act on. 2031 * 2032 * An error must be cleared or acked to take a FS out of readonly 2033 * mode. 2034 */ 2035 void jbd2_journal_ack_err(journal_t *journal) 2036 { 2037 write_lock(&journal->j_state_lock); 2038 if (journal->j_errno) 2039 journal->j_flags |= JBD2_ACK_ERR; 2040 write_unlock(&journal->j_state_lock); 2041 } 2042 2043 int jbd2_journal_blocks_per_page(struct inode *inode) 2044 { 2045 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 2046 } 2047 2048 /* 2049 * helper functions to deal with 32 or 64bit block numbers. 2050 */ 2051 size_t journal_tag_bytes(journal_t *journal) 2052 { 2053 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) 2054 return JBD2_TAG_SIZE64; 2055 else 2056 return JBD2_TAG_SIZE32; 2057 } 2058 2059 /* 2060 * JBD memory management 2061 * 2062 * These functions are used to allocate block-sized chunks of memory 2063 * used for making copies of buffer_head data. Very often it will be 2064 * page-sized chunks of data, but sometimes it will be in 2065 * sub-page-size chunks. (For example, 16k pages on Power systems 2066 * with a 4k block file system.) For blocks smaller than a page, we 2067 * use a SLAB allocator. There are slab caches for each block size, 2068 * which are allocated at mount time, if necessary, and we only free 2069 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2070 * this reason we don't need to a mutex to protect access to 2071 * jbd2_slab[] allocating or releasing memory; only in 2072 * jbd2_journal_create_slab(). 2073 */ 2074 #define JBD2_MAX_SLABS 8 2075 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2076 2077 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2078 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2079 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2080 }; 2081 2082 2083 static void jbd2_journal_destroy_slabs(void) 2084 { 2085 int i; 2086 2087 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2088 if (jbd2_slab[i]) 2089 kmem_cache_destroy(jbd2_slab[i]); 2090 jbd2_slab[i] = NULL; 2091 } 2092 } 2093 2094 static int jbd2_journal_create_slab(size_t size) 2095 { 2096 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2097 int i = order_base_2(size) - 10; 2098 size_t slab_size; 2099 2100 if (size == PAGE_SIZE) 2101 return 0; 2102 2103 if (i >= JBD2_MAX_SLABS) 2104 return -EINVAL; 2105 2106 if (unlikely(i < 0)) 2107 i = 0; 2108 mutex_lock(&jbd2_slab_create_mutex); 2109 if (jbd2_slab[i]) { 2110 mutex_unlock(&jbd2_slab_create_mutex); 2111 return 0; /* Already created */ 2112 } 2113 2114 slab_size = 1 << (i+10); 2115 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2116 slab_size, 0, NULL); 2117 mutex_unlock(&jbd2_slab_create_mutex); 2118 if (!jbd2_slab[i]) { 2119 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2120 return -ENOMEM; 2121 } 2122 return 0; 2123 } 2124 2125 static struct kmem_cache *get_slab(size_t size) 2126 { 2127 int i = order_base_2(size) - 10; 2128 2129 BUG_ON(i >= JBD2_MAX_SLABS); 2130 if (unlikely(i < 0)) 2131 i = 0; 2132 BUG_ON(jbd2_slab[i] == NULL); 2133 return jbd2_slab[i]; 2134 } 2135 2136 void *jbd2_alloc(size_t size, gfp_t flags) 2137 { 2138 void *ptr; 2139 2140 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2141 2142 flags |= __GFP_REPEAT; 2143 if (size == PAGE_SIZE) 2144 ptr = (void *)__get_free_pages(flags, 0); 2145 else if (size > PAGE_SIZE) { 2146 int order = get_order(size); 2147 2148 if (order < 3) 2149 ptr = (void *)__get_free_pages(flags, order); 2150 else 2151 ptr = vmalloc(size); 2152 } else 2153 ptr = kmem_cache_alloc(get_slab(size), flags); 2154 2155 /* Check alignment; SLUB has gotten this wrong in the past, 2156 * and this can lead to user data corruption! */ 2157 BUG_ON(((unsigned long) ptr) & (size-1)); 2158 2159 return ptr; 2160 } 2161 2162 void jbd2_free(void *ptr, size_t size) 2163 { 2164 if (size == PAGE_SIZE) { 2165 free_pages((unsigned long)ptr, 0); 2166 return; 2167 } 2168 if (size > PAGE_SIZE) { 2169 int order = get_order(size); 2170 2171 if (order < 3) 2172 free_pages((unsigned long)ptr, order); 2173 else 2174 vfree(ptr); 2175 return; 2176 } 2177 kmem_cache_free(get_slab(size), ptr); 2178 }; 2179 2180 /* 2181 * Journal_head storage management 2182 */ 2183 static struct kmem_cache *jbd2_journal_head_cache; 2184 #ifdef CONFIG_JBD2_DEBUG 2185 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2186 #endif 2187 2188 static int jbd2_journal_init_journal_head_cache(void) 2189 { 2190 int retval; 2191 2192 J_ASSERT(jbd2_journal_head_cache == NULL); 2193 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2194 sizeof(struct journal_head), 2195 0, /* offset */ 2196 SLAB_TEMPORARY, /* flags */ 2197 NULL); /* ctor */ 2198 retval = 0; 2199 if (!jbd2_journal_head_cache) { 2200 retval = -ENOMEM; 2201 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2202 } 2203 return retval; 2204 } 2205 2206 static void jbd2_journal_destroy_journal_head_cache(void) 2207 { 2208 if (jbd2_journal_head_cache) { 2209 kmem_cache_destroy(jbd2_journal_head_cache); 2210 jbd2_journal_head_cache = NULL; 2211 } 2212 } 2213 2214 /* 2215 * journal_head splicing and dicing 2216 */ 2217 static struct journal_head *journal_alloc_journal_head(void) 2218 { 2219 struct journal_head *ret; 2220 2221 #ifdef CONFIG_JBD2_DEBUG 2222 atomic_inc(&nr_journal_heads); 2223 #endif 2224 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2225 if (!ret) { 2226 jbd_debug(1, "out of memory for journal_head\n"); 2227 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2228 while (!ret) { 2229 yield(); 2230 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS); 2231 } 2232 } 2233 return ret; 2234 } 2235 2236 static void journal_free_journal_head(struct journal_head *jh) 2237 { 2238 #ifdef CONFIG_JBD2_DEBUG 2239 atomic_dec(&nr_journal_heads); 2240 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2241 #endif 2242 kmem_cache_free(jbd2_journal_head_cache, jh); 2243 } 2244 2245 /* 2246 * A journal_head is attached to a buffer_head whenever JBD has an 2247 * interest in the buffer. 2248 * 2249 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2250 * is set. This bit is tested in core kernel code where we need to take 2251 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2252 * there. 2253 * 2254 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2255 * 2256 * When a buffer has its BH_JBD bit set it is immune from being released by 2257 * core kernel code, mainly via ->b_count. 2258 * 2259 * A journal_head is detached from its buffer_head when the journal_head's 2260 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2261 * transaction (b_cp_transaction) hold their references to b_jcount. 2262 * 2263 * Various places in the kernel want to attach a journal_head to a buffer_head 2264 * _before_ attaching the journal_head to a transaction. To protect the 2265 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2266 * journal_head's b_jcount refcount by one. The caller must call 2267 * jbd2_journal_put_journal_head() to undo this. 2268 * 2269 * So the typical usage would be: 2270 * 2271 * (Attach a journal_head if needed. Increments b_jcount) 2272 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2273 * ... 2274 * (Get another reference for transaction) 2275 * jbd2_journal_grab_journal_head(bh); 2276 * jh->b_transaction = xxx; 2277 * (Put original reference) 2278 * jbd2_journal_put_journal_head(jh); 2279 */ 2280 2281 /* 2282 * Give a buffer_head a journal_head. 2283 * 2284 * May sleep. 2285 */ 2286 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2287 { 2288 struct journal_head *jh; 2289 struct journal_head *new_jh = NULL; 2290 2291 repeat: 2292 if (!buffer_jbd(bh)) { 2293 new_jh = journal_alloc_journal_head(); 2294 memset(new_jh, 0, sizeof(*new_jh)); 2295 } 2296 2297 jbd_lock_bh_journal_head(bh); 2298 if (buffer_jbd(bh)) { 2299 jh = bh2jh(bh); 2300 } else { 2301 J_ASSERT_BH(bh, 2302 (atomic_read(&bh->b_count) > 0) || 2303 (bh->b_page && bh->b_page->mapping)); 2304 2305 if (!new_jh) { 2306 jbd_unlock_bh_journal_head(bh); 2307 goto repeat; 2308 } 2309 2310 jh = new_jh; 2311 new_jh = NULL; /* We consumed it */ 2312 set_buffer_jbd(bh); 2313 bh->b_private = jh; 2314 jh->b_bh = bh; 2315 get_bh(bh); 2316 BUFFER_TRACE(bh, "added journal_head"); 2317 } 2318 jh->b_jcount++; 2319 jbd_unlock_bh_journal_head(bh); 2320 if (new_jh) 2321 journal_free_journal_head(new_jh); 2322 return bh->b_private; 2323 } 2324 2325 /* 2326 * Grab a ref against this buffer_head's journal_head. If it ended up not 2327 * having a journal_head, return NULL 2328 */ 2329 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2330 { 2331 struct journal_head *jh = NULL; 2332 2333 jbd_lock_bh_journal_head(bh); 2334 if (buffer_jbd(bh)) { 2335 jh = bh2jh(bh); 2336 jh->b_jcount++; 2337 } 2338 jbd_unlock_bh_journal_head(bh); 2339 return jh; 2340 } 2341 2342 static void __journal_remove_journal_head(struct buffer_head *bh) 2343 { 2344 struct journal_head *jh = bh2jh(bh); 2345 2346 J_ASSERT_JH(jh, jh->b_jcount >= 0); 2347 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2348 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2349 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2350 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2351 J_ASSERT_BH(bh, buffer_jbd(bh)); 2352 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2353 BUFFER_TRACE(bh, "remove journal_head"); 2354 if (jh->b_frozen_data) { 2355 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 2356 jbd2_free(jh->b_frozen_data, bh->b_size); 2357 } 2358 if (jh->b_committed_data) { 2359 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 2360 jbd2_free(jh->b_committed_data, bh->b_size); 2361 } 2362 bh->b_private = NULL; 2363 jh->b_bh = NULL; /* debug, really */ 2364 clear_buffer_jbd(bh); 2365 journal_free_journal_head(jh); 2366 } 2367 2368 /* 2369 * Drop a reference on the passed journal_head. If it fell to zero then 2370 * release the journal_head from the buffer_head. 2371 */ 2372 void jbd2_journal_put_journal_head(struct journal_head *jh) 2373 { 2374 struct buffer_head *bh = jh2bh(jh); 2375 2376 jbd_lock_bh_journal_head(bh); 2377 J_ASSERT_JH(jh, jh->b_jcount > 0); 2378 --jh->b_jcount; 2379 if (!jh->b_jcount) { 2380 __journal_remove_journal_head(bh); 2381 jbd_unlock_bh_journal_head(bh); 2382 __brelse(bh); 2383 } else 2384 jbd_unlock_bh_journal_head(bh); 2385 } 2386 2387 /* 2388 * Initialize jbd inode head 2389 */ 2390 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 2391 { 2392 jinode->i_transaction = NULL; 2393 jinode->i_next_transaction = NULL; 2394 jinode->i_vfs_inode = inode; 2395 jinode->i_flags = 0; 2396 INIT_LIST_HEAD(&jinode->i_list); 2397 } 2398 2399 /* 2400 * Function to be called before we start removing inode from memory (i.e., 2401 * clear_inode() is a fine place to be called from). It removes inode from 2402 * transaction's lists. 2403 */ 2404 void jbd2_journal_release_jbd_inode(journal_t *journal, 2405 struct jbd2_inode *jinode) 2406 { 2407 if (!journal) 2408 return; 2409 restart: 2410 spin_lock(&journal->j_list_lock); 2411 /* Is commit writing out inode - we have to wait */ 2412 if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) { 2413 wait_queue_head_t *wq; 2414 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 2415 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 2416 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 2417 spin_unlock(&journal->j_list_lock); 2418 schedule(); 2419 finish_wait(wq, &wait.wait); 2420 goto restart; 2421 } 2422 2423 if (jinode->i_transaction) { 2424 list_del(&jinode->i_list); 2425 jinode->i_transaction = NULL; 2426 } 2427 spin_unlock(&journal->j_list_lock); 2428 } 2429 2430 /* 2431 * debugfs tunables 2432 */ 2433 #ifdef CONFIG_JBD2_DEBUG 2434 u8 jbd2_journal_enable_debug __read_mostly; 2435 EXPORT_SYMBOL(jbd2_journal_enable_debug); 2436 2437 #define JBD2_DEBUG_NAME "jbd2-debug" 2438 2439 static struct dentry *jbd2_debugfs_dir; 2440 static struct dentry *jbd2_debug; 2441 2442 static void __init jbd2_create_debugfs_entry(void) 2443 { 2444 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL); 2445 if (jbd2_debugfs_dir) 2446 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME, 2447 S_IRUGO | S_IWUSR, 2448 jbd2_debugfs_dir, 2449 &jbd2_journal_enable_debug); 2450 } 2451 2452 static void __exit jbd2_remove_debugfs_entry(void) 2453 { 2454 debugfs_remove(jbd2_debug); 2455 debugfs_remove(jbd2_debugfs_dir); 2456 } 2457 2458 #else 2459 2460 static void __init jbd2_create_debugfs_entry(void) 2461 { 2462 } 2463 2464 static void __exit jbd2_remove_debugfs_entry(void) 2465 { 2466 } 2467 2468 #endif 2469 2470 #ifdef CONFIG_PROC_FS 2471 2472 #define JBD2_STATS_PROC_NAME "fs/jbd2" 2473 2474 static void __init jbd2_create_jbd_stats_proc_entry(void) 2475 { 2476 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 2477 } 2478 2479 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 2480 { 2481 if (proc_jbd2_stats) 2482 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 2483 } 2484 2485 #else 2486 2487 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 2488 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 2489 2490 #endif 2491 2492 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 2493 2494 static int __init jbd2_journal_init_handle_cache(void) 2495 { 2496 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 2497 if (jbd2_handle_cache == NULL) { 2498 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 2499 return -ENOMEM; 2500 } 2501 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 2502 if (jbd2_inode_cache == NULL) { 2503 printk(KERN_EMERG "JBD2: failed to create inode cache\n"); 2504 kmem_cache_destroy(jbd2_handle_cache); 2505 return -ENOMEM; 2506 } 2507 return 0; 2508 } 2509 2510 static void jbd2_journal_destroy_handle_cache(void) 2511 { 2512 if (jbd2_handle_cache) 2513 kmem_cache_destroy(jbd2_handle_cache); 2514 if (jbd2_inode_cache) 2515 kmem_cache_destroy(jbd2_inode_cache); 2516 2517 } 2518 2519 /* 2520 * Module startup and shutdown 2521 */ 2522 2523 static int __init journal_init_caches(void) 2524 { 2525 int ret; 2526 2527 ret = jbd2_journal_init_revoke_caches(); 2528 if (ret == 0) 2529 ret = jbd2_journal_init_journal_head_cache(); 2530 if (ret == 0) 2531 ret = jbd2_journal_init_handle_cache(); 2532 if (ret == 0) 2533 ret = jbd2_journal_init_transaction_cache(); 2534 return ret; 2535 } 2536 2537 static void jbd2_journal_destroy_caches(void) 2538 { 2539 jbd2_journal_destroy_revoke_caches(); 2540 jbd2_journal_destroy_journal_head_cache(); 2541 jbd2_journal_destroy_handle_cache(); 2542 jbd2_journal_destroy_transaction_cache(); 2543 jbd2_journal_destroy_slabs(); 2544 } 2545 2546 static int __init journal_init(void) 2547 { 2548 int ret; 2549 2550 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2551 2552 ret = journal_init_caches(); 2553 if (ret == 0) { 2554 jbd2_create_debugfs_entry(); 2555 jbd2_create_jbd_stats_proc_entry(); 2556 } else { 2557 jbd2_journal_destroy_caches(); 2558 } 2559 return ret; 2560 } 2561 2562 static void __exit journal_exit(void) 2563 { 2564 #ifdef CONFIG_JBD2_DEBUG 2565 int n = atomic_read(&nr_journal_heads); 2566 if (n) 2567 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n); 2568 #endif 2569 jbd2_remove_debugfs_entry(); 2570 jbd2_remove_jbd_stats_proc_entry(); 2571 jbd2_journal_destroy_caches(); 2572 } 2573 2574 MODULE_LICENSE("GPL"); 2575 module_init(journal_init); 2576 module_exit(journal_exit); 2577 2578