1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 /* 27 * Structure allocated for each folio when block size < folio size 28 * to track sub-folio uptodate status and I/O completions. 29 */ 30 struct iomap_page { 31 atomic_t read_bytes_pending; 32 atomic_t write_bytes_pending; 33 spinlock_t uptodate_lock; 34 unsigned long uptodate[]; 35 }; 36 37 static inline struct iomap_page *to_iomap_page(struct folio *folio) 38 { 39 if (folio_test_private(folio)) 40 return folio_get_private(folio); 41 return NULL; 42 } 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static struct iomap_page * 47 iomap_page_create(struct inode *inode, struct folio *folio) 48 { 49 struct iomap_page *iop = to_iomap_page(folio); 50 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 51 52 if (iop || nr_blocks <= 1) 53 return iop; 54 55 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)), 56 GFP_NOFS | __GFP_NOFAIL); 57 spin_lock_init(&iop->uptodate_lock); 58 if (folio_test_uptodate(folio)) 59 bitmap_fill(iop->uptodate, nr_blocks); 60 folio_attach_private(folio, iop); 61 return iop; 62 } 63 64 static void iomap_page_release(struct folio *folio) 65 { 66 struct iomap_page *iop = folio_detach_private(folio); 67 struct inode *inode = folio->mapping->host; 68 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 69 70 if (!iop) 71 return; 72 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending)); 73 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending)); 74 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) != 75 folio_test_uptodate(folio)); 76 kfree(iop); 77 } 78 79 /* 80 * Calculate the range inside the folio that we actually need to read. 81 */ 82 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 83 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 84 { 85 struct iomap_page *iop = to_iomap_page(folio); 86 loff_t orig_pos = *pos; 87 loff_t isize = i_size_read(inode); 88 unsigned block_bits = inode->i_blkbits; 89 unsigned block_size = (1 << block_bits); 90 size_t poff = offset_in_folio(folio, *pos); 91 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 92 unsigned first = poff >> block_bits; 93 unsigned last = (poff + plen - 1) >> block_bits; 94 95 /* 96 * If the block size is smaller than the page size, we need to check the 97 * per-block uptodate status and adjust the offset and length if needed 98 * to avoid reading in already uptodate ranges. 99 */ 100 if (iop) { 101 unsigned int i; 102 103 /* move forward for each leading block marked uptodate */ 104 for (i = first; i <= last; i++) { 105 if (!test_bit(i, iop->uptodate)) 106 break; 107 *pos += block_size; 108 poff += block_size; 109 plen -= block_size; 110 first++; 111 } 112 113 /* truncate len if we find any trailing uptodate block(s) */ 114 for ( ; i <= last; i++) { 115 if (test_bit(i, iop->uptodate)) { 116 plen -= (last - i + 1) * block_size; 117 last = i - 1; 118 break; 119 } 120 } 121 } 122 123 /* 124 * If the extent spans the block that contains the i_size, we need to 125 * handle both halves separately so that we properly zero data in the 126 * page cache for blocks that are entirely outside of i_size. 127 */ 128 if (orig_pos <= isize && orig_pos + length > isize) { 129 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 130 131 if (first <= end && last > end) 132 plen -= (last - end) * block_size; 133 } 134 135 *offp = poff; 136 *lenp = plen; 137 } 138 139 static void iomap_iop_set_range_uptodate(struct folio *folio, 140 struct iomap_page *iop, size_t off, size_t len) 141 { 142 struct inode *inode = folio->mapping->host; 143 unsigned first = off >> inode->i_blkbits; 144 unsigned last = (off + len - 1) >> inode->i_blkbits; 145 unsigned long flags; 146 147 spin_lock_irqsave(&iop->uptodate_lock, flags); 148 bitmap_set(iop->uptodate, first, last - first + 1); 149 if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio))) 150 folio_mark_uptodate(folio); 151 spin_unlock_irqrestore(&iop->uptodate_lock, flags); 152 } 153 154 static void iomap_set_range_uptodate(struct folio *folio, 155 struct iomap_page *iop, size_t off, size_t len) 156 { 157 if (iop) 158 iomap_iop_set_range_uptodate(folio, iop, off, len); 159 else 160 folio_mark_uptodate(folio); 161 } 162 163 static void iomap_finish_folio_read(struct folio *folio, size_t offset, 164 size_t len, int error) 165 { 166 struct iomap_page *iop = to_iomap_page(folio); 167 168 if (unlikely(error)) { 169 folio_clear_uptodate(folio); 170 folio_set_error(folio); 171 } else { 172 iomap_set_range_uptodate(folio, iop, offset, len); 173 } 174 175 if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending)) 176 folio_unlock(folio); 177 } 178 179 static void iomap_read_end_io(struct bio *bio) 180 { 181 int error = blk_status_to_errno(bio->bi_status); 182 struct folio_iter fi; 183 184 bio_for_each_folio_all(fi, bio) 185 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 186 bio_put(bio); 187 } 188 189 struct iomap_readpage_ctx { 190 struct folio *cur_folio; 191 bool cur_folio_in_bio; 192 struct bio *bio; 193 struct readahead_control *rac; 194 }; 195 196 /** 197 * iomap_read_inline_data - copy inline data into the page cache 198 * @iter: iteration structure 199 * @folio: folio to copy to 200 * 201 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 202 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 203 * Returns zero for success to complete the read, or the usual negative errno. 204 */ 205 static int iomap_read_inline_data(const struct iomap_iter *iter, 206 struct folio *folio) 207 { 208 struct iomap_page *iop; 209 const struct iomap *iomap = iomap_iter_srcmap(iter); 210 size_t size = i_size_read(iter->inode) - iomap->offset; 211 size_t poff = offset_in_page(iomap->offset); 212 size_t offset = offset_in_folio(folio, iomap->offset); 213 void *addr; 214 215 if (folio_test_uptodate(folio)) 216 return 0; 217 218 if (WARN_ON_ONCE(size > PAGE_SIZE - poff)) 219 return -EIO; 220 if (WARN_ON_ONCE(size > PAGE_SIZE - 221 offset_in_page(iomap->inline_data))) 222 return -EIO; 223 if (WARN_ON_ONCE(size > iomap->length)) 224 return -EIO; 225 if (offset > 0) 226 iop = iomap_page_create(iter->inode, folio); 227 else 228 iop = to_iomap_page(folio); 229 230 addr = kmap_local_folio(folio, offset); 231 memcpy(addr, iomap->inline_data, size); 232 memset(addr + size, 0, PAGE_SIZE - poff - size); 233 kunmap_local(addr); 234 iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff); 235 return 0; 236 } 237 238 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 239 loff_t pos) 240 { 241 const struct iomap *srcmap = iomap_iter_srcmap(iter); 242 243 return srcmap->type != IOMAP_MAPPED || 244 (srcmap->flags & IOMAP_F_NEW) || 245 pos >= i_size_read(iter->inode); 246 } 247 248 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 249 struct iomap_readpage_ctx *ctx, loff_t offset) 250 { 251 const struct iomap *iomap = &iter->iomap; 252 loff_t pos = iter->pos + offset; 253 loff_t length = iomap_length(iter) - offset; 254 struct folio *folio = ctx->cur_folio; 255 struct iomap_page *iop; 256 loff_t orig_pos = pos; 257 size_t poff, plen; 258 sector_t sector; 259 260 if (iomap->type == IOMAP_INLINE) 261 return iomap_read_inline_data(iter, folio); 262 263 /* zero post-eof blocks as the page may be mapped */ 264 iop = iomap_page_create(iter->inode, folio); 265 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 266 if (plen == 0) 267 goto done; 268 269 if (iomap_block_needs_zeroing(iter, pos)) { 270 folio_zero_range(folio, poff, plen); 271 iomap_set_range_uptodate(folio, iop, poff, plen); 272 goto done; 273 } 274 275 ctx->cur_folio_in_bio = true; 276 if (iop) 277 atomic_add(plen, &iop->read_bytes_pending); 278 279 sector = iomap_sector(iomap, pos); 280 if (!ctx->bio || 281 bio_end_sector(ctx->bio) != sector || 282 !bio_add_folio(ctx->bio, folio, plen, poff)) { 283 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 284 gfp_t orig_gfp = gfp; 285 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 286 287 if (ctx->bio) 288 submit_bio(ctx->bio); 289 290 if (ctx->rac) /* same as readahead_gfp_mask */ 291 gfp |= __GFP_NORETRY | __GFP_NOWARN; 292 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 293 REQ_OP_READ, gfp); 294 /* 295 * If the bio_alloc fails, try it again for a single page to 296 * avoid having to deal with partial page reads. This emulates 297 * what do_mpage_read_folio does. 298 */ 299 if (!ctx->bio) { 300 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 301 orig_gfp); 302 } 303 if (ctx->rac) 304 ctx->bio->bi_opf |= REQ_RAHEAD; 305 ctx->bio->bi_iter.bi_sector = sector; 306 ctx->bio->bi_end_io = iomap_read_end_io; 307 bio_add_folio(ctx->bio, folio, plen, poff); 308 } 309 310 done: 311 /* 312 * Move the caller beyond our range so that it keeps making progress. 313 * For that, we have to include any leading non-uptodate ranges, but 314 * we can skip trailing ones as they will be handled in the next 315 * iteration. 316 */ 317 return pos - orig_pos + plen; 318 } 319 320 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 321 { 322 struct iomap_iter iter = { 323 .inode = folio->mapping->host, 324 .pos = folio_pos(folio), 325 .len = folio_size(folio), 326 }; 327 struct iomap_readpage_ctx ctx = { 328 .cur_folio = folio, 329 }; 330 int ret; 331 332 trace_iomap_readpage(iter.inode, 1); 333 334 while ((ret = iomap_iter(&iter, ops)) > 0) 335 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 336 337 if (ret < 0) 338 folio_set_error(folio); 339 340 if (ctx.bio) { 341 submit_bio(ctx.bio); 342 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 343 } else { 344 WARN_ON_ONCE(ctx.cur_folio_in_bio); 345 folio_unlock(folio); 346 } 347 348 /* 349 * Just like mpage_readahead and block_read_full_folio, we always 350 * return 0 and just set the folio error flag on errors. This 351 * should be cleaned up throughout the stack eventually. 352 */ 353 return 0; 354 } 355 EXPORT_SYMBOL_GPL(iomap_read_folio); 356 357 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 358 struct iomap_readpage_ctx *ctx) 359 { 360 loff_t length = iomap_length(iter); 361 loff_t done, ret; 362 363 for (done = 0; done < length; done += ret) { 364 if (ctx->cur_folio && 365 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 366 if (!ctx->cur_folio_in_bio) 367 folio_unlock(ctx->cur_folio); 368 ctx->cur_folio = NULL; 369 } 370 if (!ctx->cur_folio) { 371 ctx->cur_folio = readahead_folio(ctx->rac); 372 ctx->cur_folio_in_bio = false; 373 } 374 ret = iomap_readpage_iter(iter, ctx, done); 375 if (ret <= 0) 376 return ret; 377 } 378 379 return done; 380 } 381 382 /** 383 * iomap_readahead - Attempt to read pages from a file. 384 * @rac: Describes the pages to be read. 385 * @ops: The operations vector for the filesystem. 386 * 387 * This function is for filesystems to call to implement their readahead 388 * address_space operation. 389 * 390 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 391 * blocks from disc), and may wait for it. The caller may be trying to 392 * access a different page, and so sleeping excessively should be avoided. 393 * It may allocate memory, but should avoid costly allocations. This 394 * function is called with memalloc_nofs set, so allocations will not cause 395 * the filesystem to be reentered. 396 */ 397 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 398 { 399 struct iomap_iter iter = { 400 .inode = rac->mapping->host, 401 .pos = readahead_pos(rac), 402 .len = readahead_length(rac), 403 }; 404 struct iomap_readpage_ctx ctx = { 405 .rac = rac, 406 }; 407 408 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 409 410 while (iomap_iter(&iter, ops) > 0) 411 iter.processed = iomap_readahead_iter(&iter, &ctx); 412 413 if (ctx.bio) 414 submit_bio(ctx.bio); 415 if (ctx.cur_folio) { 416 if (!ctx.cur_folio_in_bio) 417 folio_unlock(ctx.cur_folio); 418 } 419 } 420 EXPORT_SYMBOL_GPL(iomap_readahead); 421 422 /* 423 * iomap_is_partially_uptodate checks whether blocks within a folio are 424 * uptodate or not. 425 * 426 * Returns true if all blocks which correspond to the specified part 427 * of the folio are uptodate. 428 */ 429 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 430 { 431 struct iomap_page *iop = to_iomap_page(folio); 432 struct inode *inode = folio->mapping->host; 433 unsigned first, last, i; 434 435 if (!iop) 436 return false; 437 438 /* Caller's range may extend past the end of this folio */ 439 count = min(folio_size(folio) - from, count); 440 441 /* First and last blocks in range within folio */ 442 first = from >> inode->i_blkbits; 443 last = (from + count - 1) >> inode->i_blkbits; 444 445 for (i = first; i <= last; i++) 446 if (!test_bit(i, iop->uptodate)) 447 return false; 448 return true; 449 } 450 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 451 452 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 453 { 454 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 455 folio_size(folio)); 456 457 /* 458 * mm accommodates an old ext3 case where clean folios might 459 * not have had the dirty bit cleared. Thus, it can send actual 460 * dirty folios to ->release_folio() via shrink_active_list(); 461 * skip those here. 462 */ 463 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 464 return false; 465 iomap_page_release(folio); 466 return true; 467 } 468 EXPORT_SYMBOL_GPL(iomap_release_folio); 469 470 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 471 { 472 trace_iomap_invalidate_folio(folio->mapping->host, 473 folio_pos(folio) + offset, len); 474 475 /* 476 * If we're invalidating the entire folio, clear the dirty state 477 * from it and release it to avoid unnecessary buildup of the LRU. 478 */ 479 if (offset == 0 && len == folio_size(folio)) { 480 WARN_ON_ONCE(folio_test_writeback(folio)); 481 folio_cancel_dirty(folio); 482 iomap_page_release(folio); 483 } else if (folio_test_large(folio)) { 484 /* Must release the iop so the page can be split */ 485 WARN_ON_ONCE(!folio_test_uptodate(folio) && 486 folio_test_dirty(folio)); 487 iomap_page_release(folio); 488 } 489 } 490 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 491 492 #ifdef CONFIG_MIGRATION 493 int 494 iomap_migrate_page(struct address_space *mapping, struct page *newpage, 495 struct page *page, enum migrate_mode mode) 496 { 497 struct folio *folio = page_folio(page); 498 struct folio *newfolio = page_folio(newpage); 499 int ret; 500 501 ret = folio_migrate_mapping(mapping, newfolio, folio, 0); 502 if (ret != MIGRATEPAGE_SUCCESS) 503 return ret; 504 505 if (folio_test_private(folio)) 506 folio_attach_private(newfolio, folio_detach_private(folio)); 507 508 if (mode != MIGRATE_SYNC_NO_COPY) 509 folio_migrate_copy(newfolio, folio); 510 else 511 folio_migrate_flags(newfolio, folio); 512 return MIGRATEPAGE_SUCCESS; 513 } 514 EXPORT_SYMBOL_GPL(iomap_migrate_page); 515 #endif /* CONFIG_MIGRATION */ 516 517 static void 518 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 519 { 520 loff_t i_size = i_size_read(inode); 521 522 /* 523 * Only truncate newly allocated pages beyoned EOF, even if the 524 * write started inside the existing inode size. 525 */ 526 if (pos + len > i_size) 527 truncate_pagecache_range(inode, max(pos, i_size), 528 pos + len - 1); 529 } 530 531 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 532 size_t poff, size_t plen, const struct iomap *iomap) 533 { 534 struct bio_vec bvec; 535 struct bio bio; 536 537 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 538 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 539 bio_add_folio(&bio, folio, plen, poff); 540 return submit_bio_wait(&bio); 541 } 542 543 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 544 size_t len, struct folio *folio) 545 { 546 const struct iomap *srcmap = iomap_iter_srcmap(iter); 547 struct iomap_page *iop = iomap_page_create(iter->inode, folio); 548 loff_t block_size = i_blocksize(iter->inode); 549 loff_t block_start = round_down(pos, block_size); 550 loff_t block_end = round_up(pos + len, block_size); 551 size_t from = offset_in_folio(folio, pos), to = from + len; 552 size_t poff, plen; 553 554 if (folio_test_uptodate(folio)) 555 return 0; 556 folio_clear_error(folio); 557 558 do { 559 iomap_adjust_read_range(iter->inode, folio, &block_start, 560 block_end - block_start, &poff, &plen); 561 if (plen == 0) 562 break; 563 564 if (!(iter->flags & IOMAP_UNSHARE) && 565 (from <= poff || from >= poff + plen) && 566 (to <= poff || to >= poff + plen)) 567 continue; 568 569 if (iomap_block_needs_zeroing(iter, block_start)) { 570 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 571 return -EIO; 572 folio_zero_segments(folio, poff, from, to, poff + plen); 573 } else { 574 int status = iomap_read_folio_sync(block_start, folio, 575 poff, plen, srcmap); 576 if (status) 577 return status; 578 } 579 iomap_set_range_uptodate(folio, iop, poff, plen); 580 } while ((block_start += plen) < block_end); 581 582 return 0; 583 } 584 585 static int iomap_write_begin_inline(const struct iomap_iter *iter, 586 struct folio *folio) 587 { 588 /* needs more work for the tailpacking case; disable for now */ 589 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 590 return -EIO; 591 return iomap_read_inline_data(iter, folio); 592 } 593 594 static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 595 size_t len, struct folio **foliop) 596 { 597 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 598 const struct iomap *srcmap = iomap_iter_srcmap(iter); 599 struct folio *folio; 600 unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS; 601 int status = 0; 602 603 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 604 if (srcmap != &iter->iomap) 605 BUG_ON(pos + len > srcmap->offset + srcmap->length); 606 607 if (fatal_signal_pending(current)) 608 return -EINTR; 609 610 if (!mapping_large_folio_support(iter->inode->i_mapping)) 611 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 612 613 if (page_ops && page_ops->page_prepare) { 614 status = page_ops->page_prepare(iter->inode, pos, len); 615 if (status) 616 return status; 617 } 618 619 folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 620 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 621 if (!folio) { 622 status = -ENOMEM; 623 goto out_no_page; 624 } 625 if (pos + len > folio_pos(folio) + folio_size(folio)) 626 len = folio_pos(folio) + folio_size(folio) - pos; 627 628 if (srcmap->type == IOMAP_INLINE) 629 status = iomap_write_begin_inline(iter, folio); 630 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 631 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 632 else 633 status = __iomap_write_begin(iter, pos, len, folio); 634 635 if (unlikely(status)) 636 goto out_unlock; 637 638 *foliop = folio; 639 return 0; 640 641 out_unlock: 642 folio_unlock(folio); 643 folio_put(folio); 644 iomap_write_failed(iter->inode, pos, len); 645 646 out_no_page: 647 if (page_ops && page_ops->page_done) 648 page_ops->page_done(iter->inode, pos, 0, NULL); 649 return status; 650 } 651 652 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 653 size_t copied, struct folio *folio) 654 { 655 struct iomap_page *iop = to_iomap_page(folio); 656 flush_dcache_folio(folio); 657 658 /* 659 * The blocks that were entirely written will now be uptodate, so we 660 * don't have to worry about a read_folio reading them and overwriting a 661 * partial write. However, if we've encountered a short write and only 662 * partially written into a block, it will not be marked uptodate, so a 663 * read_folio might come in and destroy our partial write. 664 * 665 * Do the simplest thing and just treat any short write to a 666 * non-uptodate page as a zero-length write, and force the caller to 667 * redo the whole thing. 668 */ 669 if (unlikely(copied < len && !folio_test_uptodate(folio))) 670 return 0; 671 iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len); 672 filemap_dirty_folio(inode->i_mapping, folio); 673 return copied; 674 } 675 676 static size_t iomap_write_end_inline(const struct iomap_iter *iter, 677 struct folio *folio, loff_t pos, size_t copied) 678 { 679 const struct iomap *iomap = &iter->iomap; 680 void *addr; 681 682 WARN_ON_ONCE(!folio_test_uptodate(folio)); 683 BUG_ON(!iomap_inline_data_valid(iomap)); 684 685 flush_dcache_folio(folio); 686 addr = kmap_local_folio(folio, pos); 687 memcpy(iomap_inline_data(iomap, pos), addr, copied); 688 kunmap_local(addr); 689 690 mark_inode_dirty(iter->inode); 691 return copied; 692 } 693 694 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 695 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 696 size_t copied, struct folio *folio) 697 { 698 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 699 const struct iomap *srcmap = iomap_iter_srcmap(iter); 700 loff_t old_size = iter->inode->i_size; 701 size_t ret; 702 703 if (srcmap->type == IOMAP_INLINE) { 704 ret = iomap_write_end_inline(iter, folio, pos, copied); 705 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 706 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len, 707 copied, &folio->page, NULL); 708 } else { 709 ret = __iomap_write_end(iter->inode, pos, len, copied, folio); 710 } 711 712 /* 713 * Update the in-memory inode size after copying the data into the page 714 * cache. It's up to the file system to write the updated size to disk, 715 * preferably after I/O completion so that no stale data is exposed. 716 */ 717 if (pos + ret > old_size) { 718 i_size_write(iter->inode, pos + ret); 719 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 720 } 721 folio_unlock(folio); 722 723 if (old_size < pos) 724 pagecache_isize_extended(iter->inode, old_size, pos); 725 if (page_ops && page_ops->page_done) 726 page_ops->page_done(iter->inode, pos, ret, &folio->page); 727 folio_put(folio); 728 729 if (ret < len) 730 iomap_write_failed(iter->inode, pos + ret, len - ret); 731 return ret; 732 } 733 734 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 735 { 736 loff_t length = iomap_length(iter); 737 loff_t pos = iter->pos; 738 ssize_t written = 0; 739 long status = 0; 740 741 do { 742 struct folio *folio; 743 struct page *page; 744 unsigned long offset; /* Offset into pagecache page */ 745 unsigned long bytes; /* Bytes to write to page */ 746 size_t copied; /* Bytes copied from user */ 747 748 offset = offset_in_page(pos); 749 bytes = min_t(unsigned long, PAGE_SIZE - offset, 750 iov_iter_count(i)); 751 again: 752 if (bytes > length) 753 bytes = length; 754 755 /* 756 * Bring in the user page that we'll copy from _first_. 757 * Otherwise there's a nasty deadlock on copying from the 758 * same page as we're writing to, without it being marked 759 * up-to-date. 760 */ 761 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 762 status = -EFAULT; 763 break; 764 } 765 766 status = iomap_write_begin(iter, pos, bytes, &folio); 767 if (unlikely(status)) 768 break; 769 770 page = folio_file_page(folio, pos >> PAGE_SHIFT); 771 if (mapping_writably_mapped(iter->inode->i_mapping)) 772 flush_dcache_page(page); 773 774 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 775 776 status = iomap_write_end(iter, pos, bytes, copied, folio); 777 778 if (unlikely(copied != status)) 779 iov_iter_revert(i, copied - status); 780 781 cond_resched(); 782 if (unlikely(status == 0)) { 783 /* 784 * A short copy made iomap_write_end() reject the 785 * thing entirely. Might be memory poisoning 786 * halfway through, might be a race with munmap, 787 * might be severe memory pressure. 788 */ 789 if (copied) 790 bytes = copied; 791 goto again; 792 } 793 pos += status; 794 written += status; 795 length -= status; 796 797 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 798 } while (iov_iter_count(i) && length); 799 800 return written ? written : status; 801 } 802 803 ssize_t 804 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 805 const struct iomap_ops *ops) 806 { 807 struct iomap_iter iter = { 808 .inode = iocb->ki_filp->f_mapping->host, 809 .pos = iocb->ki_pos, 810 .len = iov_iter_count(i), 811 .flags = IOMAP_WRITE, 812 }; 813 int ret; 814 815 while ((ret = iomap_iter(&iter, ops)) > 0) 816 iter.processed = iomap_write_iter(&iter, i); 817 if (iter.pos == iocb->ki_pos) 818 return ret; 819 return iter.pos - iocb->ki_pos; 820 } 821 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 822 823 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 824 { 825 struct iomap *iomap = &iter->iomap; 826 const struct iomap *srcmap = iomap_iter_srcmap(iter); 827 loff_t pos = iter->pos; 828 loff_t length = iomap_length(iter); 829 long status = 0; 830 loff_t written = 0; 831 832 /* don't bother with blocks that are not shared to start with */ 833 if (!(iomap->flags & IOMAP_F_SHARED)) 834 return length; 835 /* don't bother with holes or unwritten extents */ 836 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 837 return length; 838 839 do { 840 unsigned long offset = offset_in_page(pos); 841 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); 842 struct folio *folio; 843 844 status = iomap_write_begin(iter, pos, bytes, &folio); 845 if (unlikely(status)) 846 return status; 847 848 status = iomap_write_end(iter, pos, bytes, bytes, folio); 849 if (WARN_ON_ONCE(status == 0)) 850 return -EIO; 851 852 cond_resched(); 853 854 pos += status; 855 written += status; 856 length -= status; 857 858 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 859 } while (length); 860 861 return written; 862 } 863 864 int 865 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 866 const struct iomap_ops *ops) 867 { 868 struct iomap_iter iter = { 869 .inode = inode, 870 .pos = pos, 871 .len = len, 872 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 873 }; 874 int ret; 875 876 while ((ret = iomap_iter(&iter, ops)) > 0) 877 iter.processed = iomap_unshare_iter(&iter); 878 return ret; 879 } 880 EXPORT_SYMBOL_GPL(iomap_file_unshare); 881 882 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 883 { 884 const struct iomap *srcmap = iomap_iter_srcmap(iter); 885 loff_t pos = iter->pos; 886 loff_t length = iomap_length(iter); 887 loff_t written = 0; 888 889 /* already zeroed? we're done. */ 890 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 891 return length; 892 893 do { 894 struct folio *folio; 895 int status; 896 size_t offset; 897 size_t bytes = min_t(u64, SIZE_MAX, length); 898 899 status = iomap_write_begin(iter, pos, bytes, &folio); 900 if (status) 901 return status; 902 903 offset = offset_in_folio(folio, pos); 904 if (bytes > folio_size(folio) - offset) 905 bytes = folio_size(folio) - offset; 906 907 folio_zero_range(folio, offset, bytes); 908 folio_mark_accessed(folio); 909 910 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 911 if (WARN_ON_ONCE(bytes == 0)) 912 return -EIO; 913 914 pos += bytes; 915 length -= bytes; 916 written += bytes; 917 if (did_zero) 918 *did_zero = true; 919 } while (length > 0); 920 921 return written; 922 } 923 924 int 925 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 926 const struct iomap_ops *ops) 927 { 928 struct iomap_iter iter = { 929 .inode = inode, 930 .pos = pos, 931 .len = len, 932 .flags = IOMAP_ZERO, 933 }; 934 int ret; 935 936 while ((ret = iomap_iter(&iter, ops)) > 0) 937 iter.processed = iomap_zero_iter(&iter, did_zero); 938 return ret; 939 } 940 EXPORT_SYMBOL_GPL(iomap_zero_range); 941 942 int 943 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 944 const struct iomap_ops *ops) 945 { 946 unsigned int blocksize = i_blocksize(inode); 947 unsigned int off = pos & (blocksize - 1); 948 949 /* Block boundary? Nothing to do */ 950 if (!off) 951 return 0; 952 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 953 } 954 EXPORT_SYMBOL_GPL(iomap_truncate_page); 955 956 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 957 struct folio *folio) 958 { 959 loff_t length = iomap_length(iter); 960 int ret; 961 962 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 963 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 964 &iter->iomap); 965 if (ret) 966 return ret; 967 block_commit_write(&folio->page, 0, length); 968 } else { 969 WARN_ON_ONCE(!folio_test_uptodate(folio)); 970 folio_mark_dirty(folio); 971 } 972 973 return length; 974 } 975 976 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 977 { 978 struct iomap_iter iter = { 979 .inode = file_inode(vmf->vma->vm_file), 980 .flags = IOMAP_WRITE | IOMAP_FAULT, 981 }; 982 struct folio *folio = page_folio(vmf->page); 983 ssize_t ret; 984 985 folio_lock(folio); 986 ret = folio_mkwrite_check_truncate(folio, iter.inode); 987 if (ret < 0) 988 goto out_unlock; 989 iter.pos = folio_pos(folio); 990 iter.len = ret; 991 while ((ret = iomap_iter(&iter, ops)) > 0) 992 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 993 994 if (ret < 0) 995 goto out_unlock; 996 folio_wait_stable(folio); 997 return VM_FAULT_LOCKED; 998 out_unlock: 999 folio_unlock(folio); 1000 return block_page_mkwrite_return(ret); 1001 } 1002 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1003 1004 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1005 size_t len, int error) 1006 { 1007 struct iomap_page *iop = to_iomap_page(folio); 1008 1009 if (error) { 1010 folio_set_error(folio); 1011 mapping_set_error(inode->i_mapping, error); 1012 } 1013 1014 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop); 1015 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0); 1016 1017 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending)) 1018 folio_end_writeback(folio); 1019 } 1020 1021 /* 1022 * We're now finished for good with this ioend structure. Update the page 1023 * state, release holds on bios, and finally free up memory. Do not use the 1024 * ioend after this. 1025 */ 1026 static u32 1027 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1028 { 1029 struct inode *inode = ioend->io_inode; 1030 struct bio *bio = &ioend->io_inline_bio; 1031 struct bio *last = ioend->io_bio, *next; 1032 u64 start = bio->bi_iter.bi_sector; 1033 loff_t offset = ioend->io_offset; 1034 bool quiet = bio_flagged(bio, BIO_QUIET); 1035 u32 folio_count = 0; 1036 1037 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1038 struct folio_iter fi; 1039 1040 /* 1041 * For the last bio, bi_private points to the ioend, so we 1042 * need to explicitly end the iteration here. 1043 */ 1044 if (bio == last) 1045 next = NULL; 1046 else 1047 next = bio->bi_private; 1048 1049 /* walk all folios in bio, ending page IO on them */ 1050 bio_for_each_folio_all(fi, bio) { 1051 iomap_finish_folio_write(inode, fi.folio, fi.length, 1052 error); 1053 folio_count++; 1054 } 1055 bio_put(bio); 1056 } 1057 /* The ioend has been freed by bio_put() */ 1058 1059 if (unlikely(error && !quiet)) { 1060 printk_ratelimited(KERN_ERR 1061 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1062 inode->i_sb->s_id, inode->i_ino, offset, start); 1063 } 1064 return folio_count; 1065 } 1066 1067 /* 1068 * Ioend completion routine for merged bios. This can only be called from task 1069 * contexts as merged ioends can be of unbound length. Hence we have to break up 1070 * the writeback completions into manageable chunks to avoid long scheduler 1071 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1072 * good batch processing throughput without creating adverse scheduler latency 1073 * conditions. 1074 */ 1075 void 1076 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1077 { 1078 struct list_head tmp; 1079 u32 completions; 1080 1081 might_sleep(); 1082 1083 list_replace_init(&ioend->io_list, &tmp); 1084 completions = iomap_finish_ioend(ioend, error); 1085 1086 while (!list_empty(&tmp)) { 1087 if (completions > IOEND_BATCH_SIZE * 8) { 1088 cond_resched(); 1089 completions = 0; 1090 } 1091 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1092 list_del_init(&ioend->io_list); 1093 completions += iomap_finish_ioend(ioend, error); 1094 } 1095 } 1096 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1097 1098 /* 1099 * We can merge two adjacent ioends if they have the same set of work to do. 1100 */ 1101 static bool 1102 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1103 { 1104 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1105 return false; 1106 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1107 (next->io_flags & IOMAP_F_SHARED)) 1108 return false; 1109 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1110 (next->io_type == IOMAP_UNWRITTEN)) 1111 return false; 1112 if (ioend->io_offset + ioend->io_size != next->io_offset) 1113 return false; 1114 /* 1115 * Do not merge physically discontiguous ioends. The filesystem 1116 * completion functions will have to iterate the physical 1117 * discontiguities even if we merge the ioends at a logical level, so 1118 * we don't gain anything by merging physical discontiguities here. 1119 * 1120 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1121 * submission so does not point to the start sector of the bio at 1122 * completion. 1123 */ 1124 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1125 return false; 1126 return true; 1127 } 1128 1129 void 1130 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1131 { 1132 struct iomap_ioend *next; 1133 1134 INIT_LIST_HEAD(&ioend->io_list); 1135 1136 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1137 io_list))) { 1138 if (!iomap_ioend_can_merge(ioend, next)) 1139 break; 1140 list_move_tail(&next->io_list, &ioend->io_list); 1141 ioend->io_size += next->io_size; 1142 } 1143 } 1144 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1145 1146 static int 1147 iomap_ioend_compare(void *priv, const struct list_head *a, 1148 const struct list_head *b) 1149 { 1150 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1151 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1152 1153 if (ia->io_offset < ib->io_offset) 1154 return -1; 1155 if (ia->io_offset > ib->io_offset) 1156 return 1; 1157 return 0; 1158 } 1159 1160 void 1161 iomap_sort_ioends(struct list_head *ioend_list) 1162 { 1163 list_sort(NULL, ioend_list, iomap_ioend_compare); 1164 } 1165 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1166 1167 static void iomap_writepage_end_bio(struct bio *bio) 1168 { 1169 struct iomap_ioend *ioend = bio->bi_private; 1170 1171 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1172 } 1173 1174 /* 1175 * Submit the final bio for an ioend. 1176 * 1177 * If @error is non-zero, it means that we have a situation where some part of 1178 * the submission process has failed after we've marked pages for writeback 1179 * and unlocked them. In this situation, we need to fail the bio instead of 1180 * submitting it. This typically only happens on a filesystem shutdown. 1181 */ 1182 static int 1183 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1184 int error) 1185 { 1186 ioend->io_bio->bi_private = ioend; 1187 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1188 1189 if (wpc->ops->prepare_ioend) 1190 error = wpc->ops->prepare_ioend(ioend, error); 1191 if (error) { 1192 /* 1193 * If we're failing the IO now, just mark the ioend with an 1194 * error and finish it. This will run IO completion immediately 1195 * as there is only one reference to the ioend at this point in 1196 * time. 1197 */ 1198 ioend->io_bio->bi_status = errno_to_blk_status(error); 1199 bio_endio(ioend->io_bio); 1200 return error; 1201 } 1202 1203 submit_bio(ioend->io_bio); 1204 return 0; 1205 } 1206 1207 static struct iomap_ioend * 1208 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1209 loff_t offset, sector_t sector, struct writeback_control *wbc) 1210 { 1211 struct iomap_ioend *ioend; 1212 struct bio *bio; 1213 1214 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1215 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1216 GFP_NOFS, &iomap_ioend_bioset); 1217 bio->bi_iter.bi_sector = sector; 1218 wbc_init_bio(wbc, bio); 1219 1220 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1221 INIT_LIST_HEAD(&ioend->io_list); 1222 ioend->io_type = wpc->iomap.type; 1223 ioend->io_flags = wpc->iomap.flags; 1224 ioend->io_inode = inode; 1225 ioend->io_size = 0; 1226 ioend->io_folios = 0; 1227 ioend->io_offset = offset; 1228 ioend->io_bio = bio; 1229 ioend->io_sector = sector; 1230 return ioend; 1231 } 1232 1233 /* 1234 * Allocate a new bio, and chain the old bio to the new one. 1235 * 1236 * Note that we have to perform the chaining in this unintuitive order 1237 * so that the bi_private linkage is set up in the right direction for the 1238 * traversal in iomap_finish_ioend(). 1239 */ 1240 static struct bio * 1241 iomap_chain_bio(struct bio *prev) 1242 { 1243 struct bio *new; 1244 1245 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS); 1246 bio_clone_blkg_association(new, prev); 1247 new->bi_iter.bi_sector = bio_end_sector(prev); 1248 1249 bio_chain(prev, new); 1250 bio_get(prev); /* for iomap_finish_ioend */ 1251 submit_bio(prev); 1252 return new; 1253 } 1254 1255 static bool 1256 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1257 sector_t sector) 1258 { 1259 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1260 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1261 return false; 1262 if (wpc->iomap.type != wpc->ioend->io_type) 1263 return false; 1264 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1265 return false; 1266 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1267 return false; 1268 /* 1269 * Limit ioend bio chain lengths to minimise IO completion latency. This 1270 * also prevents long tight loops ending page writeback on all the 1271 * folios in the ioend. 1272 */ 1273 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE) 1274 return false; 1275 return true; 1276 } 1277 1278 /* 1279 * Test to see if we have an existing ioend structure that we could append to 1280 * first; otherwise finish off the current ioend and start another. 1281 */ 1282 static void 1283 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio, 1284 struct iomap_page *iop, struct iomap_writepage_ctx *wpc, 1285 struct writeback_control *wbc, struct list_head *iolist) 1286 { 1287 sector_t sector = iomap_sector(&wpc->iomap, pos); 1288 unsigned len = i_blocksize(inode); 1289 size_t poff = offset_in_folio(folio, pos); 1290 1291 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) { 1292 if (wpc->ioend) 1293 list_add(&wpc->ioend->io_list, iolist); 1294 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc); 1295 } 1296 1297 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) { 1298 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio); 1299 bio_add_folio(wpc->ioend->io_bio, folio, len, poff); 1300 } 1301 1302 if (iop) 1303 atomic_add(len, &iop->write_bytes_pending); 1304 wpc->ioend->io_size += len; 1305 wbc_account_cgroup_owner(wbc, &folio->page, len); 1306 } 1307 1308 /* 1309 * We implement an immediate ioend submission policy here to avoid needing to 1310 * chain multiple ioends and hence nest mempool allocations which can violate 1311 * the forward progress guarantees we need to provide. The current ioend we're 1312 * adding blocks to is cached in the writepage context, and if the new block 1313 * doesn't append to the cached ioend, it will create a new ioend and cache that 1314 * instead. 1315 * 1316 * If a new ioend is created and cached, the old ioend is returned and queued 1317 * locally for submission once the entire page is processed or an error has been 1318 * detected. While ioends are submitted immediately after they are completed, 1319 * batching optimisations are provided by higher level block plugging. 1320 * 1321 * At the end of a writeback pass, there will be a cached ioend remaining on the 1322 * writepage context that the caller will need to submit. 1323 */ 1324 static int 1325 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1326 struct writeback_control *wbc, struct inode *inode, 1327 struct folio *folio, u64 end_pos) 1328 { 1329 struct iomap_page *iop = iomap_page_create(inode, folio); 1330 struct iomap_ioend *ioend, *next; 1331 unsigned len = i_blocksize(inode); 1332 unsigned nblocks = i_blocks_per_folio(inode, folio); 1333 u64 pos = folio_pos(folio); 1334 int error = 0, count = 0, i; 1335 LIST_HEAD(submit_list); 1336 1337 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0); 1338 1339 /* 1340 * Walk through the folio to find areas to write back. If we 1341 * run off the end of the current map or find the current map 1342 * invalid, grab a new one. 1343 */ 1344 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) { 1345 if (iop && !test_bit(i, iop->uptodate)) 1346 continue; 1347 1348 error = wpc->ops->map_blocks(wpc, inode, pos); 1349 if (error) 1350 break; 1351 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1352 continue; 1353 if (wpc->iomap.type == IOMAP_HOLE) 1354 continue; 1355 iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc, 1356 &submit_list); 1357 count++; 1358 } 1359 if (count) 1360 wpc->ioend->io_folios++; 1361 1362 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1363 WARN_ON_ONCE(!folio_test_locked(folio)); 1364 WARN_ON_ONCE(folio_test_writeback(folio)); 1365 WARN_ON_ONCE(folio_test_dirty(folio)); 1366 1367 /* 1368 * We cannot cancel the ioend directly here on error. We may have 1369 * already set other pages under writeback and hence we have to run I/O 1370 * completion to mark the error state of the pages under writeback 1371 * appropriately. 1372 */ 1373 if (unlikely(error)) { 1374 /* 1375 * Let the filesystem know what portion of the current page 1376 * failed to map. If the page hasn't been added to ioend, it 1377 * won't be affected by I/O completion and we must unlock it 1378 * now. 1379 */ 1380 if (wpc->ops->discard_folio) 1381 wpc->ops->discard_folio(folio, pos); 1382 if (!count) { 1383 folio_unlock(folio); 1384 goto done; 1385 } 1386 } 1387 1388 folio_start_writeback(folio); 1389 folio_unlock(folio); 1390 1391 /* 1392 * Preserve the original error if there was one; catch 1393 * submission errors here and propagate into subsequent ioend 1394 * submissions. 1395 */ 1396 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1397 int error2; 1398 1399 list_del_init(&ioend->io_list); 1400 error2 = iomap_submit_ioend(wpc, ioend, error); 1401 if (error2 && !error) 1402 error = error2; 1403 } 1404 1405 /* 1406 * We can end up here with no error and nothing to write only if we race 1407 * with a partial page truncate on a sub-page block sized filesystem. 1408 */ 1409 if (!count) 1410 folio_end_writeback(folio); 1411 done: 1412 mapping_set_error(folio->mapping, error); 1413 return error; 1414 } 1415 1416 /* 1417 * Write out a dirty page. 1418 * 1419 * For delalloc space on the page, we need to allocate space and flush it. 1420 * For unwritten space on the page, we need to start the conversion to 1421 * regular allocated space. 1422 */ 1423 static int 1424 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data) 1425 { 1426 struct folio *folio = page_folio(page); 1427 struct iomap_writepage_ctx *wpc = data; 1428 struct inode *inode = folio->mapping->host; 1429 u64 end_pos, isize; 1430 1431 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio)); 1432 1433 /* 1434 * Refuse to write the folio out if we're called from reclaim context. 1435 * 1436 * This avoids stack overflows when called from deeply used stacks in 1437 * random callers for direct reclaim or memcg reclaim. We explicitly 1438 * allow reclaim from kswapd as the stack usage there is relatively low. 1439 * 1440 * This should never happen except in the case of a VM regression so 1441 * warn about it. 1442 */ 1443 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1444 PF_MEMALLOC)) 1445 goto redirty; 1446 1447 /* 1448 * Is this folio beyond the end of the file? 1449 * 1450 * The folio index is less than the end_index, adjust the end_pos 1451 * to the highest offset that this folio should represent. 1452 * ----------------------------------------------------- 1453 * | file mapping | <EOF> | 1454 * ----------------------------------------------------- 1455 * | Page ... | Page N-2 | Page N-1 | Page N | | 1456 * ^--------------------------------^----------|-------- 1457 * | desired writeback range | see else | 1458 * ---------------------------------^------------------| 1459 */ 1460 isize = i_size_read(inode); 1461 end_pos = folio_pos(folio) + folio_size(folio); 1462 if (end_pos > isize) { 1463 /* 1464 * Check whether the page to write out is beyond or straddles 1465 * i_size or not. 1466 * ------------------------------------------------------- 1467 * | file mapping | <EOF> | 1468 * ------------------------------------------------------- 1469 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1470 * ^--------------------------------^-----------|--------- 1471 * | | Straddles | 1472 * ---------------------------------^-----------|--------| 1473 */ 1474 size_t poff = offset_in_folio(folio, isize); 1475 pgoff_t end_index = isize >> PAGE_SHIFT; 1476 1477 /* 1478 * Skip the page if it's fully outside i_size, e.g. due to a 1479 * truncate operation that's in progress. We must redirty the 1480 * page so that reclaim stops reclaiming it. Otherwise 1481 * iomap_release_folio() is called on it and gets confused. 1482 * 1483 * Note that the end_index is unsigned long. If the given 1484 * offset is greater than 16TB on a 32-bit system then if we 1485 * checked if the page is fully outside i_size with 1486 * "if (page->index >= end_index + 1)", "end_index + 1" would 1487 * overflow and evaluate to 0. Hence this page would be 1488 * redirtied and written out repeatedly, which would result in 1489 * an infinite loop; the user program performing this operation 1490 * would hang. Instead, we can detect this situation by 1491 * checking if the page is totally beyond i_size or if its 1492 * offset is just equal to the EOF. 1493 */ 1494 if (folio->index > end_index || 1495 (folio->index == end_index && poff == 0)) 1496 goto redirty; 1497 1498 /* 1499 * The page straddles i_size. It must be zeroed out on each 1500 * and every writepage invocation because it may be mmapped. 1501 * "A file is mapped in multiples of the page size. For a file 1502 * that is not a multiple of the page size, the remaining 1503 * memory is zeroed when mapped, and writes to that region are 1504 * not written out to the file." 1505 */ 1506 folio_zero_segment(folio, poff, folio_size(folio)); 1507 end_pos = isize; 1508 } 1509 1510 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos); 1511 1512 redirty: 1513 folio_redirty_for_writepage(wbc, folio); 1514 folio_unlock(folio); 1515 return 0; 1516 } 1517 1518 int 1519 iomap_writepage(struct page *page, struct writeback_control *wbc, 1520 struct iomap_writepage_ctx *wpc, 1521 const struct iomap_writeback_ops *ops) 1522 { 1523 int ret; 1524 1525 wpc->ops = ops; 1526 ret = iomap_do_writepage(page, wbc, wpc); 1527 if (!wpc->ioend) 1528 return ret; 1529 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1530 } 1531 EXPORT_SYMBOL_GPL(iomap_writepage); 1532 1533 int 1534 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1535 struct iomap_writepage_ctx *wpc, 1536 const struct iomap_writeback_ops *ops) 1537 { 1538 int ret; 1539 1540 wpc->ops = ops; 1541 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1542 if (!wpc->ioend) 1543 return ret; 1544 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1545 } 1546 EXPORT_SYMBOL_GPL(iomap_writepages); 1547 1548 static int __init iomap_init(void) 1549 { 1550 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1551 offsetof(struct iomap_ioend, io_inline_bio), 1552 BIOSET_NEED_BVECS); 1553 } 1554 fs_initcall(iomap_init); 1555