xref: /openbmc/linux/fs/iomap/buffered-io.c (revision 4c3575787e988f2a7d1e1b402e5a2fdbafce86c2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (C) 2016-2019 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21 
22 #include "../internal.h"
23 
24 #define IOEND_BATCH_SIZE	4096
25 
26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length);
27 /*
28  * Structure allocated for each folio to track per-block uptodate, dirty state
29  * and I/O completions.
30  */
31 struct iomap_folio_state {
32 	atomic_t		read_bytes_pending;
33 	atomic_t		write_bytes_pending;
34 	spinlock_t		state_lock;
35 
36 	/*
37 	 * Each block has two bits in this bitmap:
38 	 * Bits [0..blocks_per_folio) has the uptodate status.
39 	 * Bits [b_p_f...(2*b_p_f))   has the dirty status.
40 	 */
41 	unsigned long		state[];
42 };
43 
44 static struct bio_set iomap_ioend_bioset;
45 
46 static inline bool ifs_is_fully_uptodate(struct folio *folio,
47 		struct iomap_folio_state *ifs)
48 {
49 	struct inode *inode = folio->mapping->host;
50 
51 	return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
52 }
53 
54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
55 		unsigned int block)
56 {
57 	return test_bit(block, ifs->state);
58 }
59 
60 static void ifs_set_range_uptodate(struct folio *folio,
61 		struct iomap_folio_state *ifs, size_t off, size_t len)
62 {
63 	struct inode *inode = folio->mapping->host;
64 	unsigned int first_blk = off >> inode->i_blkbits;
65 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
66 	unsigned int nr_blks = last_blk - first_blk + 1;
67 	unsigned long flags;
68 
69 	spin_lock_irqsave(&ifs->state_lock, flags);
70 	bitmap_set(ifs->state, first_blk, nr_blks);
71 	if (ifs_is_fully_uptodate(folio, ifs))
72 		folio_mark_uptodate(folio);
73 	spin_unlock_irqrestore(&ifs->state_lock, flags);
74 }
75 
76 static void iomap_set_range_uptodate(struct folio *folio, size_t off,
77 		size_t len)
78 {
79 	struct iomap_folio_state *ifs = folio->private;
80 
81 	if (ifs)
82 		ifs_set_range_uptodate(folio, ifs, off, len);
83 	else
84 		folio_mark_uptodate(folio);
85 }
86 
87 static inline bool ifs_block_is_dirty(struct folio *folio,
88 		struct iomap_folio_state *ifs, int block)
89 {
90 	struct inode *inode = folio->mapping->host;
91 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
92 
93 	return test_bit(block + blks_per_folio, ifs->state);
94 }
95 
96 static void ifs_clear_range_dirty(struct folio *folio,
97 		struct iomap_folio_state *ifs, size_t off, size_t len)
98 {
99 	struct inode *inode = folio->mapping->host;
100 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
101 	unsigned int first_blk = (off >> inode->i_blkbits);
102 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
103 	unsigned int nr_blks = last_blk - first_blk + 1;
104 	unsigned long flags;
105 
106 	spin_lock_irqsave(&ifs->state_lock, flags);
107 	bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
108 	spin_unlock_irqrestore(&ifs->state_lock, flags);
109 }
110 
111 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
112 {
113 	struct iomap_folio_state *ifs = folio->private;
114 
115 	if (ifs)
116 		ifs_clear_range_dirty(folio, ifs, off, len);
117 }
118 
119 static void ifs_set_range_dirty(struct folio *folio,
120 		struct iomap_folio_state *ifs, size_t off, size_t len)
121 {
122 	struct inode *inode = folio->mapping->host;
123 	unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
124 	unsigned int first_blk = (off >> inode->i_blkbits);
125 	unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
126 	unsigned int nr_blks = last_blk - first_blk + 1;
127 	unsigned long flags;
128 
129 	spin_lock_irqsave(&ifs->state_lock, flags);
130 	bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
131 	spin_unlock_irqrestore(&ifs->state_lock, flags);
132 }
133 
134 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
135 {
136 	struct iomap_folio_state *ifs = folio->private;
137 
138 	if (ifs)
139 		ifs_set_range_dirty(folio, ifs, off, len);
140 }
141 
142 static struct iomap_folio_state *ifs_alloc(struct inode *inode,
143 		struct folio *folio, unsigned int flags)
144 {
145 	struct iomap_folio_state *ifs = folio->private;
146 	unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
147 	gfp_t gfp;
148 
149 	if (ifs || nr_blocks <= 1)
150 		return ifs;
151 
152 	if (flags & IOMAP_NOWAIT)
153 		gfp = GFP_NOWAIT;
154 	else
155 		gfp = GFP_NOFS | __GFP_NOFAIL;
156 
157 	/*
158 	 * ifs->state tracks two sets of state flags when the
159 	 * filesystem block size is smaller than the folio size.
160 	 * The first state tracks per-block uptodate and the
161 	 * second tracks per-block dirty state.
162 	 */
163 	ifs = kzalloc(struct_size(ifs, state,
164 		      BITS_TO_LONGS(2 * nr_blocks)), gfp);
165 	if (!ifs)
166 		return ifs;
167 
168 	spin_lock_init(&ifs->state_lock);
169 	if (folio_test_uptodate(folio))
170 		bitmap_set(ifs->state, 0, nr_blocks);
171 	if (folio_test_dirty(folio))
172 		bitmap_set(ifs->state, nr_blocks, nr_blocks);
173 	folio_attach_private(folio, ifs);
174 
175 	return ifs;
176 }
177 
178 static void ifs_free(struct folio *folio)
179 {
180 	struct iomap_folio_state *ifs = folio_detach_private(folio);
181 
182 	if (!ifs)
183 		return;
184 	WARN_ON_ONCE(atomic_read(&ifs->read_bytes_pending));
185 	WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
186 	WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
187 			folio_test_uptodate(folio));
188 	kfree(ifs);
189 }
190 
191 /*
192  * Calculate the range inside the folio that we actually need to read.
193  */
194 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
195 		loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
196 {
197 	struct iomap_folio_state *ifs = folio->private;
198 	loff_t orig_pos = *pos;
199 	loff_t isize = i_size_read(inode);
200 	unsigned block_bits = inode->i_blkbits;
201 	unsigned block_size = (1 << block_bits);
202 	size_t poff = offset_in_folio(folio, *pos);
203 	size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
204 	size_t orig_plen = plen;
205 	unsigned first = poff >> block_bits;
206 	unsigned last = (poff + plen - 1) >> block_bits;
207 
208 	/*
209 	 * If the block size is smaller than the page size, we need to check the
210 	 * per-block uptodate status and adjust the offset and length if needed
211 	 * to avoid reading in already uptodate ranges.
212 	 */
213 	if (ifs) {
214 		unsigned int i;
215 
216 		/* move forward for each leading block marked uptodate */
217 		for (i = first; i <= last; i++) {
218 			if (!ifs_block_is_uptodate(ifs, i))
219 				break;
220 			*pos += block_size;
221 			poff += block_size;
222 			plen -= block_size;
223 			first++;
224 		}
225 
226 		/* truncate len if we find any trailing uptodate block(s) */
227 		for ( ; i <= last; i++) {
228 			if (ifs_block_is_uptodate(ifs, i)) {
229 				plen -= (last - i + 1) * block_size;
230 				last = i - 1;
231 				break;
232 			}
233 		}
234 	}
235 
236 	/*
237 	 * If the extent spans the block that contains the i_size, we need to
238 	 * handle both halves separately so that we properly zero data in the
239 	 * page cache for blocks that are entirely outside of i_size.
240 	 */
241 	if (orig_pos <= isize && orig_pos + orig_plen > isize) {
242 		unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
243 
244 		if (first <= end && last > end)
245 			plen -= (last - end) * block_size;
246 	}
247 
248 	*offp = poff;
249 	*lenp = plen;
250 }
251 
252 static void iomap_finish_folio_read(struct folio *folio, size_t offset,
253 		size_t len, int error)
254 {
255 	struct iomap_folio_state *ifs = folio->private;
256 
257 	if (unlikely(error)) {
258 		folio_clear_uptodate(folio);
259 		folio_set_error(folio);
260 	} else {
261 		iomap_set_range_uptodate(folio, offset, len);
262 	}
263 
264 	if (!ifs || atomic_sub_and_test(len, &ifs->read_bytes_pending))
265 		folio_unlock(folio);
266 }
267 
268 static void iomap_read_end_io(struct bio *bio)
269 {
270 	int error = blk_status_to_errno(bio->bi_status);
271 	struct folio_iter fi;
272 
273 	bio_for_each_folio_all(fi, bio)
274 		iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
275 	bio_put(bio);
276 }
277 
278 struct iomap_readpage_ctx {
279 	struct folio		*cur_folio;
280 	bool			cur_folio_in_bio;
281 	struct bio		*bio;
282 	struct readahead_control *rac;
283 };
284 
285 /**
286  * iomap_read_inline_data - copy inline data into the page cache
287  * @iter: iteration structure
288  * @folio: folio to copy to
289  *
290  * Copy the inline data in @iter into @folio and zero out the rest of the folio.
291  * Only a single IOMAP_INLINE extent is allowed at the end of each file.
292  * Returns zero for success to complete the read, or the usual negative errno.
293  */
294 static int iomap_read_inline_data(const struct iomap_iter *iter,
295 		struct folio *folio)
296 {
297 	const struct iomap *iomap = iomap_iter_srcmap(iter);
298 	size_t size = i_size_read(iter->inode) - iomap->offset;
299 	size_t poff = offset_in_page(iomap->offset);
300 	size_t offset = offset_in_folio(folio, iomap->offset);
301 	void *addr;
302 
303 	if (folio_test_uptodate(folio))
304 		return 0;
305 
306 	if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
307 		return -EIO;
308 	if (WARN_ON_ONCE(size > PAGE_SIZE -
309 			 offset_in_page(iomap->inline_data)))
310 		return -EIO;
311 	if (WARN_ON_ONCE(size > iomap->length))
312 		return -EIO;
313 	if (offset > 0)
314 		ifs_alloc(iter->inode, folio, iter->flags);
315 
316 	addr = kmap_local_folio(folio, offset);
317 	memcpy(addr, iomap->inline_data, size);
318 	memset(addr + size, 0, PAGE_SIZE - poff - size);
319 	kunmap_local(addr);
320 	iomap_set_range_uptodate(folio, offset, PAGE_SIZE - poff);
321 	return 0;
322 }
323 
324 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
325 		loff_t pos)
326 {
327 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
328 
329 	return srcmap->type != IOMAP_MAPPED ||
330 		(srcmap->flags & IOMAP_F_NEW) ||
331 		pos >= i_size_read(iter->inode);
332 }
333 
334 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
335 		struct iomap_readpage_ctx *ctx, loff_t offset)
336 {
337 	const struct iomap *iomap = &iter->iomap;
338 	loff_t pos = iter->pos + offset;
339 	loff_t length = iomap_length(iter) - offset;
340 	struct folio *folio = ctx->cur_folio;
341 	struct iomap_folio_state *ifs;
342 	loff_t orig_pos = pos;
343 	size_t poff, plen;
344 	sector_t sector;
345 
346 	if (iomap->type == IOMAP_INLINE)
347 		return iomap_read_inline_data(iter, folio);
348 
349 	/* zero post-eof blocks as the page may be mapped */
350 	ifs = ifs_alloc(iter->inode, folio, iter->flags);
351 	iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
352 	if (plen == 0)
353 		goto done;
354 
355 	if (iomap_block_needs_zeroing(iter, pos)) {
356 		folio_zero_range(folio, poff, plen);
357 		iomap_set_range_uptodate(folio, poff, plen);
358 		goto done;
359 	}
360 
361 	ctx->cur_folio_in_bio = true;
362 	if (ifs)
363 		atomic_add(plen, &ifs->read_bytes_pending);
364 
365 	sector = iomap_sector(iomap, pos);
366 	if (!ctx->bio ||
367 	    bio_end_sector(ctx->bio) != sector ||
368 	    !bio_add_folio(ctx->bio, folio, plen, poff)) {
369 		gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
370 		gfp_t orig_gfp = gfp;
371 		unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
372 
373 		if (ctx->bio)
374 			submit_bio(ctx->bio);
375 
376 		if (ctx->rac) /* same as readahead_gfp_mask */
377 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
378 		ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
379 				     REQ_OP_READ, gfp);
380 		/*
381 		 * If the bio_alloc fails, try it again for a single page to
382 		 * avoid having to deal with partial page reads.  This emulates
383 		 * what do_mpage_read_folio does.
384 		 */
385 		if (!ctx->bio) {
386 			ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
387 					     orig_gfp);
388 		}
389 		if (ctx->rac)
390 			ctx->bio->bi_opf |= REQ_RAHEAD;
391 		ctx->bio->bi_iter.bi_sector = sector;
392 		ctx->bio->bi_end_io = iomap_read_end_io;
393 		bio_add_folio_nofail(ctx->bio, folio, plen, poff);
394 	}
395 
396 done:
397 	/*
398 	 * Move the caller beyond our range so that it keeps making progress.
399 	 * For that, we have to include any leading non-uptodate ranges, but
400 	 * we can skip trailing ones as they will be handled in the next
401 	 * iteration.
402 	 */
403 	return pos - orig_pos + plen;
404 }
405 
406 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
407 {
408 	struct iomap_iter iter = {
409 		.inode		= folio->mapping->host,
410 		.pos		= folio_pos(folio),
411 		.len		= folio_size(folio),
412 	};
413 	struct iomap_readpage_ctx ctx = {
414 		.cur_folio	= folio,
415 	};
416 	int ret;
417 
418 	trace_iomap_readpage(iter.inode, 1);
419 
420 	while ((ret = iomap_iter(&iter, ops)) > 0)
421 		iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
422 
423 	if (ret < 0)
424 		folio_set_error(folio);
425 
426 	if (ctx.bio) {
427 		submit_bio(ctx.bio);
428 		WARN_ON_ONCE(!ctx.cur_folio_in_bio);
429 	} else {
430 		WARN_ON_ONCE(ctx.cur_folio_in_bio);
431 		folio_unlock(folio);
432 	}
433 
434 	/*
435 	 * Just like mpage_readahead and block_read_full_folio, we always
436 	 * return 0 and just set the folio error flag on errors.  This
437 	 * should be cleaned up throughout the stack eventually.
438 	 */
439 	return 0;
440 }
441 EXPORT_SYMBOL_GPL(iomap_read_folio);
442 
443 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
444 		struct iomap_readpage_ctx *ctx)
445 {
446 	loff_t length = iomap_length(iter);
447 	loff_t done, ret;
448 
449 	for (done = 0; done < length; done += ret) {
450 		if (ctx->cur_folio &&
451 		    offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
452 			if (!ctx->cur_folio_in_bio)
453 				folio_unlock(ctx->cur_folio);
454 			ctx->cur_folio = NULL;
455 		}
456 		if (!ctx->cur_folio) {
457 			ctx->cur_folio = readahead_folio(ctx->rac);
458 			ctx->cur_folio_in_bio = false;
459 		}
460 		ret = iomap_readpage_iter(iter, ctx, done);
461 		if (ret <= 0)
462 			return ret;
463 	}
464 
465 	return done;
466 }
467 
468 /**
469  * iomap_readahead - Attempt to read pages from a file.
470  * @rac: Describes the pages to be read.
471  * @ops: The operations vector for the filesystem.
472  *
473  * This function is for filesystems to call to implement their readahead
474  * address_space operation.
475  *
476  * Context: The @ops callbacks may submit I/O (eg to read the addresses of
477  * blocks from disc), and may wait for it.  The caller may be trying to
478  * access a different page, and so sleeping excessively should be avoided.
479  * It may allocate memory, but should avoid costly allocations.  This
480  * function is called with memalloc_nofs set, so allocations will not cause
481  * the filesystem to be reentered.
482  */
483 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
484 {
485 	struct iomap_iter iter = {
486 		.inode	= rac->mapping->host,
487 		.pos	= readahead_pos(rac),
488 		.len	= readahead_length(rac),
489 	};
490 	struct iomap_readpage_ctx ctx = {
491 		.rac	= rac,
492 	};
493 
494 	trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
495 
496 	while (iomap_iter(&iter, ops) > 0)
497 		iter.processed = iomap_readahead_iter(&iter, &ctx);
498 
499 	if (ctx.bio)
500 		submit_bio(ctx.bio);
501 	if (ctx.cur_folio) {
502 		if (!ctx.cur_folio_in_bio)
503 			folio_unlock(ctx.cur_folio);
504 	}
505 }
506 EXPORT_SYMBOL_GPL(iomap_readahead);
507 
508 /*
509  * iomap_is_partially_uptodate checks whether blocks within a folio are
510  * uptodate or not.
511  *
512  * Returns true if all blocks which correspond to the specified part
513  * of the folio are uptodate.
514  */
515 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
516 {
517 	struct iomap_folio_state *ifs = folio->private;
518 	struct inode *inode = folio->mapping->host;
519 	unsigned first, last, i;
520 
521 	if (!ifs)
522 		return false;
523 
524 	/* Caller's range may extend past the end of this folio */
525 	count = min(folio_size(folio) - from, count);
526 
527 	/* First and last blocks in range within folio */
528 	first = from >> inode->i_blkbits;
529 	last = (from + count - 1) >> inode->i_blkbits;
530 
531 	for (i = first; i <= last; i++)
532 		if (!ifs_block_is_uptodate(ifs, i))
533 			return false;
534 	return true;
535 }
536 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
537 
538 /**
539  * iomap_get_folio - get a folio reference for writing
540  * @iter: iteration structure
541  * @pos: start offset of write
542  * @len: Suggested size of folio to create.
543  *
544  * Returns a locked reference to the folio at @pos, or an error pointer if the
545  * folio could not be obtained.
546  */
547 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
548 {
549 	fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
550 
551 	if (iter->flags & IOMAP_NOWAIT)
552 		fgp |= FGP_NOWAIT;
553 	fgp |= fgf_set_order(len);
554 
555 	return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
556 			fgp, mapping_gfp_mask(iter->inode->i_mapping));
557 }
558 EXPORT_SYMBOL_GPL(iomap_get_folio);
559 
560 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
561 {
562 	trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
563 			folio_size(folio));
564 
565 	/*
566 	 * If the folio is dirty, we refuse to release our metadata because
567 	 * it may be partially dirty.  Once we track per-block dirty state,
568 	 * we can release the metadata if every block is dirty.
569 	 */
570 	if (folio_test_dirty(folio))
571 		return false;
572 	ifs_free(folio);
573 	return true;
574 }
575 EXPORT_SYMBOL_GPL(iomap_release_folio);
576 
577 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
578 {
579 	trace_iomap_invalidate_folio(folio->mapping->host,
580 					folio_pos(folio) + offset, len);
581 
582 	/*
583 	 * If we're invalidating the entire folio, clear the dirty state
584 	 * from it and release it to avoid unnecessary buildup of the LRU.
585 	 */
586 	if (offset == 0 && len == folio_size(folio)) {
587 		WARN_ON_ONCE(folio_test_writeback(folio));
588 		folio_cancel_dirty(folio);
589 		ifs_free(folio);
590 	}
591 }
592 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
593 
594 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
595 {
596 	struct inode *inode = mapping->host;
597 	size_t len = folio_size(folio);
598 
599 	ifs_alloc(inode, folio, 0);
600 	iomap_set_range_dirty(folio, 0, len);
601 	return filemap_dirty_folio(mapping, folio);
602 }
603 EXPORT_SYMBOL_GPL(iomap_dirty_folio);
604 
605 static void
606 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
607 {
608 	loff_t i_size = i_size_read(inode);
609 
610 	/*
611 	 * Only truncate newly allocated pages beyoned EOF, even if the
612 	 * write started inside the existing inode size.
613 	 */
614 	if (pos + len > i_size)
615 		truncate_pagecache_range(inode, max(pos, i_size),
616 					 pos + len - 1);
617 }
618 
619 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
620 		size_t poff, size_t plen, const struct iomap *iomap)
621 {
622 	struct bio_vec bvec;
623 	struct bio bio;
624 
625 	bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
626 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
627 	bio_add_folio_nofail(&bio, folio, plen, poff);
628 	return submit_bio_wait(&bio);
629 }
630 
631 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
632 		size_t len, struct folio *folio)
633 {
634 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
635 	struct iomap_folio_state *ifs;
636 	loff_t block_size = i_blocksize(iter->inode);
637 	loff_t block_start = round_down(pos, block_size);
638 	loff_t block_end = round_up(pos + len, block_size);
639 	unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
640 	size_t from = offset_in_folio(folio, pos), to = from + len;
641 	size_t poff, plen;
642 
643 	/*
644 	 * If the write or zeroing completely overlaps the current folio, then
645 	 * entire folio will be dirtied so there is no need for
646 	 * per-block state tracking structures to be attached to this folio.
647 	 * For the unshare case, we must read in the ondisk contents because we
648 	 * are not changing pagecache contents.
649 	 */
650 	if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
651 	    pos + len >= folio_pos(folio) + folio_size(folio))
652 		return 0;
653 
654 	ifs = ifs_alloc(iter->inode, folio, iter->flags);
655 	if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
656 		return -EAGAIN;
657 
658 	if (folio_test_uptodate(folio))
659 		return 0;
660 	folio_clear_error(folio);
661 
662 	do {
663 		iomap_adjust_read_range(iter->inode, folio, &block_start,
664 				block_end - block_start, &poff, &plen);
665 		if (plen == 0)
666 			break;
667 
668 		if (!(iter->flags & IOMAP_UNSHARE) &&
669 		    (from <= poff || from >= poff + plen) &&
670 		    (to <= poff || to >= poff + plen))
671 			continue;
672 
673 		if (iomap_block_needs_zeroing(iter, block_start)) {
674 			if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
675 				return -EIO;
676 			folio_zero_segments(folio, poff, from, to, poff + plen);
677 		} else {
678 			int status;
679 
680 			if (iter->flags & IOMAP_NOWAIT)
681 				return -EAGAIN;
682 
683 			status = iomap_read_folio_sync(block_start, folio,
684 					poff, plen, srcmap);
685 			if (status)
686 				return status;
687 		}
688 		iomap_set_range_uptodate(folio, poff, plen);
689 	} while ((block_start += plen) < block_end);
690 
691 	return 0;
692 }
693 
694 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
695 		size_t len)
696 {
697 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
698 
699 	if (folio_ops && folio_ops->get_folio)
700 		return folio_ops->get_folio(iter, pos, len);
701 	else
702 		return iomap_get_folio(iter, pos, len);
703 }
704 
705 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
706 		struct folio *folio)
707 {
708 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
709 
710 	if (folio_ops && folio_ops->put_folio) {
711 		folio_ops->put_folio(iter->inode, pos, ret, folio);
712 	} else {
713 		folio_unlock(folio);
714 		folio_put(folio);
715 	}
716 }
717 
718 static int iomap_write_begin_inline(const struct iomap_iter *iter,
719 		struct folio *folio)
720 {
721 	/* needs more work for the tailpacking case; disable for now */
722 	if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
723 		return -EIO;
724 	return iomap_read_inline_data(iter, folio);
725 }
726 
727 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
728 		size_t len, struct folio **foliop)
729 {
730 	const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
731 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
732 	struct folio *folio;
733 	int status = 0;
734 
735 	BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
736 	if (srcmap != &iter->iomap)
737 		BUG_ON(pos + len > srcmap->offset + srcmap->length);
738 
739 	if (fatal_signal_pending(current))
740 		return -EINTR;
741 
742 	if (!mapping_large_folio_support(iter->inode->i_mapping))
743 		len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
744 
745 	folio = __iomap_get_folio(iter, pos, len);
746 	if (IS_ERR(folio))
747 		return PTR_ERR(folio);
748 
749 	/*
750 	 * Now we have a locked folio, before we do anything with it we need to
751 	 * check that the iomap we have cached is not stale. The inode extent
752 	 * mapping can change due to concurrent IO in flight (e.g.
753 	 * IOMAP_UNWRITTEN state can change and memory reclaim could have
754 	 * reclaimed a previously partially written page at this index after IO
755 	 * completion before this write reaches this file offset) and hence we
756 	 * could do the wrong thing here (zero a page range incorrectly or fail
757 	 * to zero) and corrupt data.
758 	 */
759 	if (folio_ops && folio_ops->iomap_valid) {
760 		bool iomap_valid = folio_ops->iomap_valid(iter->inode,
761 							 &iter->iomap);
762 		if (!iomap_valid) {
763 			iter->iomap.flags |= IOMAP_F_STALE;
764 			status = 0;
765 			goto out_unlock;
766 		}
767 	}
768 
769 	if (pos + len > folio_pos(folio) + folio_size(folio))
770 		len = folio_pos(folio) + folio_size(folio) - pos;
771 
772 	if (srcmap->type == IOMAP_INLINE)
773 		status = iomap_write_begin_inline(iter, folio);
774 	else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
775 		status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
776 	else
777 		status = __iomap_write_begin(iter, pos, len, folio);
778 
779 	if (unlikely(status))
780 		goto out_unlock;
781 
782 	*foliop = folio;
783 	return 0;
784 
785 out_unlock:
786 	__iomap_put_folio(iter, pos, 0, folio);
787 	iomap_write_failed(iter->inode, pos, len);
788 
789 	return status;
790 }
791 
792 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
793 		size_t copied, struct folio *folio)
794 {
795 	flush_dcache_folio(folio);
796 
797 	/*
798 	 * The blocks that were entirely written will now be uptodate, so we
799 	 * don't have to worry about a read_folio reading them and overwriting a
800 	 * partial write.  However, if we've encountered a short write and only
801 	 * partially written into a block, it will not be marked uptodate, so a
802 	 * read_folio might come in and destroy our partial write.
803 	 *
804 	 * Do the simplest thing and just treat any short write to a
805 	 * non-uptodate page as a zero-length write, and force the caller to
806 	 * redo the whole thing.
807 	 */
808 	if (unlikely(copied < len && !folio_test_uptodate(folio)))
809 		return 0;
810 	iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
811 	iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
812 	filemap_dirty_folio(inode->i_mapping, folio);
813 	return copied;
814 }
815 
816 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
817 		struct folio *folio, loff_t pos, size_t copied)
818 {
819 	const struct iomap *iomap = &iter->iomap;
820 	void *addr;
821 
822 	WARN_ON_ONCE(!folio_test_uptodate(folio));
823 	BUG_ON(!iomap_inline_data_valid(iomap));
824 
825 	flush_dcache_folio(folio);
826 	addr = kmap_local_folio(folio, pos);
827 	memcpy(iomap_inline_data(iomap, pos), addr, copied);
828 	kunmap_local(addr);
829 
830 	mark_inode_dirty(iter->inode);
831 	return copied;
832 }
833 
834 /* Returns the number of bytes copied.  May be 0.  Cannot be an errno. */
835 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
836 		size_t copied, struct folio *folio)
837 {
838 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
839 	loff_t old_size = iter->inode->i_size;
840 	size_t ret;
841 
842 	if (srcmap->type == IOMAP_INLINE) {
843 		ret = iomap_write_end_inline(iter, folio, pos, copied);
844 	} else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
845 		ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
846 				copied, &folio->page, NULL);
847 	} else {
848 		ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
849 	}
850 
851 	/*
852 	 * Update the in-memory inode size after copying the data into the page
853 	 * cache.  It's up to the file system to write the updated size to disk,
854 	 * preferably after I/O completion so that no stale data is exposed.
855 	 */
856 	if (pos + ret > old_size) {
857 		i_size_write(iter->inode, pos + ret);
858 		iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
859 	}
860 	__iomap_put_folio(iter, pos, ret, folio);
861 
862 	if (old_size < pos)
863 		pagecache_isize_extended(iter->inode, old_size, pos);
864 	if (ret < len)
865 		iomap_write_failed(iter->inode, pos + ret, len - ret);
866 	return ret;
867 }
868 
869 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
870 {
871 	loff_t length = iomap_length(iter);
872 	loff_t pos = iter->pos;
873 	ssize_t written = 0;
874 	long status = 0;
875 	struct address_space *mapping = iter->inode->i_mapping;
876 	size_t chunk = mapping_max_folio_size(mapping);
877 	unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
878 
879 	do {
880 		struct folio *folio;
881 		size_t offset;		/* Offset into folio */
882 		size_t bytes;		/* Bytes to write to folio */
883 		size_t copied;		/* Bytes copied from user */
884 
885 		bytes = iov_iter_count(i);
886 retry:
887 		offset = pos & (chunk - 1);
888 		bytes = min(chunk - offset, bytes);
889 		status = balance_dirty_pages_ratelimited_flags(mapping,
890 							       bdp_flags);
891 		if (unlikely(status))
892 			break;
893 
894 		if (bytes > length)
895 			bytes = length;
896 
897 		/*
898 		 * Bring in the user page that we'll copy from _first_.
899 		 * Otherwise there's a nasty deadlock on copying from the
900 		 * same page as we're writing to, without it being marked
901 		 * up-to-date.
902 		 *
903 		 * For async buffered writes the assumption is that the user
904 		 * page has already been faulted in. This can be optimized by
905 		 * faulting the user page.
906 		 */
907 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
908 			status = -EFAULT;
909 			break;
910 		}
911 
912 		status = iomap_write_begin(iter, pos, bytes, &folio);
913 		if (unlikely(status))
914 			break;
915 		if (iter->iomap.flags & IOMAP_F_STALE)
916 			break;
917 
918 		offset = offset_in_folio(folio, pos);
919 		if (bytes > folio_size(folio) - offset)
920 			bytes = folio_size(folio) - offset;
921 
922 		if (mapping_writably_mapped(mapping))
923 			flush_dcache_folio(folio);
924 
925 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
926 		status = iomap_write_end(iter, pos, bytes, copied, folio);
927 
928 		if (unlikely(copied != status))
929 			iov_iter_revert(i, copied - status);
930 
931 		cond_resched();
932 		if (unlikely(status == 0)) {
933 			/*
934 			 * A short copy made iomap_write_end() reject the
935 			 * thing entirely.  Might be memory poisoning
936 			 * halfway through, might be a race with munmap,
937 			 * might be severe memory pressure.
938 			 */
939 			if (chunk > PAGE_SIZE)
940 				chunk /= 2;
941 			if (copied) {
942 				bytes = copied;
943 				goto retry;
944 			}
945 		} else {
946 			pos += status;
947 			written += status;
948 			length -= status;
949 		}
950 	} while (iov_iter_count(i) && length);
951 
952 	if (status == -EAGAIN) {
953 		iov_iter_revert(i, written);
954 		return -EAGAIN;
955 	}
956 	return written ? written : status;
957 }
958 
959 ssize_t
960 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
961 		const struct iomap_ops *ops)
962 {
963 	struct iomap_iter iter = {
964 		.inode		= iocb->ki_filp->f_mapping->host,
965 		.pos		= iocb->ki_pos,
966 		.len		= iov_iter_count(i),
967 		.flags		= IOMAP_WRITE,
968 	};
969 	ssize_t ret;
970 
971 	if (iocb->ki_flags & IOCB_NOWAIT)
972 		iter.flags |= IOMAP_NOWAIT;
973 
974 	while ((ret = iomap_iter(&iter, ops)) > 0)
975 		iter.processed = iomap_write_iter(&iter, i);
976 
977 	if (unlikely(iter.pos == iocb->ki_pos))
978 		return ret;
979 	ret = iter.pos - iocb->ki_pos;
980 	iocb->ki_pos = iter.pos;
981 	return ret;
982 }
983 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
984 
985 static int iomap_write_delalloc_ifs_punch(struct inode *inode,
986 		struct folio *folio, loff_t start_byte, loff_t end_byte,
987 		iomap_punch_t punch)
988 {
989 	unsigned int first_blk, last_blk, i;
990 	loff_t last_byte;
991 	u8 blkbits = inode->i_blkbits;
992 	struct iomap_folio_state *ifs;
993 	int ret = 0;
994 
995 	/*
996 	 * When we have per-block dirty tracking, there can be
997 	 * blocks within a folio which are marked uptodate
998 	 * but not dirty. In that case it is necessary to punch
999 	 * out such blocks to avoid leaking any delalloc blocks.
1000 	 */
1001 	ifs = folio->private;
1002 	if (!ifs)
1003 		return ret;
1004 
1005 	last_byte = min_t(loff_t, end_byte - 1,
1006 			folio_pos(folio) + folio_size(folio) - 1);
1007 	first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1008 	last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1009 	for (i = first_blk; i <= last_blk; i++) {
1010 		if (!ifs_block_is_dirty(folio, ifs, i)) {
1011 			ret = punch(inode, folio_pos(folio) + (i << blkbits),
1012 				    1 << blkbits);
1013 			if (ret)
1014 				return ret;
1015 		}
1016 	}
1017 
1018 	return ret;
1019 }
1020 
1021 
1022 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1023 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1024 		iomap_punch_t punch)
1025 {
1026 	int ret = 0;
1027 
1028 	if (!folio_test_dirty(folio))
1029 		return ret;
1030 
1031 	/* if dirty, punch up to offset */
1032 	if (start_byte > *punch_start_byte) {
1033 		ret = punch(inode, *punch_start_byte,
1034 				start_byte - *punch_start_byte);
1035 		if (ret)
1036 			return ret;
1037 	}
1038 
1039 	/* Punch non-dirty blocks within folio */
1040 	ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte,
1041 			end_byte, punch);
1042 	if (ret)
1043 		return ret;
1044 
1045 	/*
1046 	 * Make sure the next punch start is correctly bound to
1047 	 * the end of this data range, not the end of the folio.
1048 	 */
1049 	*punch_start_byte = min_t(loff_t, end_byte,
1050 				folio_pos(folio) + folio_size(folio));
1051 
1052 	return ret;
1053 }
1054 
1055 /*
1056  * Scan the data range passed to us for dirty page cache folios. If we find a
1057  * dirty folio, punch out the preceding range and update the offset from which
1058  * the next punch will start from.
1059  *
1060  * We can punch out storage reservations under clean pages because they either
1061  * contain data that has been written back - in which case the delalloc punch
1062  * over that range is a no-op - or they have been read faults in which case they
1063  * contain zeroes and we can remove the delalloc backing range and any new
1064  * writes to those pages will do the normal hole filling operation...
1065  *
1066  * This makes the logic simple: we only need to keep the delalloc extents only
1067  * over the dirty ranges of the page cache.
1068  *
1069  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1070  * simplify range iterations.
1071  */
1072 static int iomap_write_delalloc_scan(struct inode *inode,
1073 		loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1074 		iomap_punch_t punch)
1075 {
1076 	while (start_byte < end_byte) {
1077 		struct folio	*folio;
1078 		int ret;
1079 
1080 		/* grab locked page */
1081 		folio = filemap_lock_folio(inode->i_mapping,
1082 				start_byte >> PAGE_SHIFT);
1083 		if (IS_ERR(folio)) {
1084 			start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1085 					PAGE_SIZE;
1086 			continue;
1087 		}
1088 
1089 		ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1090 						 start_byte, end_byte, punch);
1091 		if (ret) {
1092 			folio_unlock(folio);
1093 			folio_put(folio);
1094 			return ret;
1095 		}
1096 
1097 		/* move offset to start of next folio in range */
1098 		start_byte = folio_next_index(folio) << PAGE_SHIFT;
1099 		folio_unlock(folio);
1100 		folio_put(folio);
1101 	}
1102 	return 0;
1103 }
1104 
1105 /*
1106  * Punch out all the delalloc blocks in the range given except for those that
1107  * have dirty data still pending in the page cache - those are going to be
1108  * written and so must still retain the delalloc backing for writeback.
1109  *
1110  * As we are scanning the page cache for data, we don't need to reimplement the
1111  * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1112  * start and end of data ranges correctly even for sub-folio block sizes. This
1113  * byte range based iteration is especially convenient because it means we
1114  * don't have to care about variable size folios, nor where the start or end of
1115  * the data range lies within a folio, if they lie within the same folio or even
1116  * if there are multiple discontiguous data ranges within the folio.
1117  *
1118  * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1119  * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1120  * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1121  * date. A write page fault can then mark it dirty. If we then fail a write()
1122  * beyond EOF into that up to date cached range, we allocate a delalloc block
1123  * beyond EOF and then have to punch it out. Because the range is up to date,
1124  * mapping_seek_hole_data() will return it, and we will skip the punch because
1125  * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1126  * beyond EOF in this case as writeback will never write back and covert that
1127  * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1128  * resulting in always punching out the range from the EOF to the end of the
1129  * range the iomap spans.
1130  *
1131  * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1132  * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1133  * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1134  * returns the end of the data range (data_end). Using closed intervals would
1135  * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1136  * the code to subtle off-by-one bugs....
1137  */
1138 static int iomap_write_delalloc_release(struct inode *inode,
1139 		loff_t start_byte, loff_t end_byte, iomap_punch_t punch)
1140 {
1141 	loff_t punch_start_byte = start_byte;
1142 	loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1143 	int error = 0;
1144 
1145 	/*
1146 	 * Lock the mapping to avoid races with page faults re-instantiating
1147 	 * folios and dirtying them via ->page_mkwrite whilst we walk the
1148 	 * cache and perform delalloc extent removal. Failing to do this can
1149 	 * leave dirty pages with no space reservation in the cache.
1150 	 */
1151 	filemap_invalidate_lock(inode->i_mapping);
1152 	while (start_byte < scan_end_byte) {
1153 		loff_t		data_end;
1154 
1155 		start_byte = mapping_seek_hole_data(inode->i_mapping,
1156 				start_byte, scan_end_byte, SEEK_DATA);
1157 		/*
1158 		 * If there is no more data to scan, all that is left is to
1159 		 * punch out the remaining range.
1160 		 */
1161 		if (start_byte == -ENXIO || start_byte == scan_end_byte)
1162 			break;
1163 		if (start_byte < 0) {
1164 			error = start_byte;
1165 			goto out_unlock;
1166 		}
1167 		WARN_ON_ONCE(start_byte < punch_start_byte);
1168 		WARN_ON_ONCE(start_byte > scan_end_byte);
1169 
1170 		/*
1171 		 * We find the end of this contiguous cached data range by
1172 		 * seeking from start_byte to the beginning of the next hole.
1173 		 */
1174 		data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1175 				scan_end_byte, SEEK_HOLE);
1176 		if (data_end < 0) {
1177 			error = data_end;
1178 			goto out_unlock;
1179 		}
1180 
1181 		/*
1182 		 * If we race with post-direct I/O invalidation of the page cache,
1183 		 * there might be no data left at start_byte.
1184 		 */
1185 		if (data_end == start_byte)
1186 			continue;
1187 
1188 		WARN_ON_ONCE(data_end < start_byte);
1189 		WARN_ON_ONCE(data_end > scan_end_byte);
1190 
1191 		error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1192 				start_byte, data_end, punch);
1193 		if (error)
1194 			goto out_unlock;
1195 
1196 		/* The next data search starts at the end of this one. */
1197 		start_byte = data_end;
1198 	}
1199 
1200 	if (punch_start_byte < end_byte)
1201 		error = punch(inode, punch_start_byte,
1202 				end_byte - punch_start_byte);
1203 out_unlock:
1204 	filemap_invalidate_unlock(inode->i_mapping);
1205 	return error;
1206 }
1207 
1208 /*
1209  * When a short write occurs, the filesystem may need to remove reserved space
1210  * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1211  * filesystems that use delayed allocation, we need to punch out delalloc
1212  * extents from the range that are not dirty in the page cache. As the write can
1213  * race with page faults, there can be dirty pages over the delalloc extent
1214  * outside the range of a short write but still within the delalloc extent
1215  * allocated for this iomap.
1216  *
1217  * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1218  * simplify range iterations.
1219  *
1220  * The punch() callback *must* only punch delalloc extents in the range passed
1221  * to it. It must skip over all other types of extents in the range and leave
1222  * them completely unchanged. It must do this punch atomically with respect to
1223  * other extent modifications.
1224  *
1225  * The punch() callback may be called with a folio locked to prevent writeback
1226  * extent allocation racing at the edge of the range we are currently punching.
1227  * The locked folio may or may not cover the range being punched, so it is not
1228  * safe for the punch() callback to lock folios itself.
1229  *
1230  * Lock order is:
1231  *
1232  * inode->i_rwsem (shared or exclusive)
1233  *   inode->i_mapping->invalidate_lock (exclusive)
1234  *     folio_lock()
1235  *       ->punch
1236  *         internal filesystem allocation lock
1237  */
1238 int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1239 		struct iomap *iomap, loff_t pos, loff_t length,
1240 		ssize_t written, iomap_punch_t punch)
1241 {
1242 	loff_t			start_byte;
1243 	loff_t			end_byte;
1244 	unsigned int		blocksize = i_blocksize(inode);
1245 
1246 	if (iomap->type != IOMAP_DELALLOC)
1247 		return 0;
1248 
1249 	/* If we didn't reserve the blocks, we're not allowed to punch them. */
1250 	if (!(iomap->flags & IOMAP_F_NEW))
1251 		return 0;
1252 
1253 	/*
1254 	 * start_byte refers to the first unused block after a short write. If
1255 	 * nothing was written, round offset down to point at the first block in
1256 	 * the range.
1257 	 */
1258 	if (unlikely(!written))
1259 		start_byte = round_down(pos, blocksize);
1260 	else
1261 		start_byte = round_up(pos + written, blocksize);
1262 	end_byte = round_up(pos + length, blocksize);
1263 
1264 	/* Nothing to do if we've written the entire delalloc extent */
1265 	if (start_byte >= end_byte)
1266 		return 0;
1267 
1268 	return iomap_write_delalloc_release(inode, start_byte, end_byte,
1269 					punch);
1270 }
1271 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1272 
1273 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1274 {
1275 	struct iomap *iomap = &iter->iomap;
1276 	loff_t pos = iter->pos;
1277 	loff_t length = iomap_length(iter);
1278 	loff_t written = 0;
1279 
1280 	if (!iomap_want_unshare_iter(iter))
1281 		return length;
1282 
1283 	do {
1284 		struct folio *folio;
1285 		int status;
1286 		size_t offset;
1287 		size_t bytes = min_t(u64, SIZE_MAX, length);
1288 
1289 		status = iomap_write_begin(iter, pos, bytes, &folio);
1290 		if (unlikely(status))
1291 			return status;
1292 		if (iomap->flags & IOMAP_F_STALE)
1293 			break;
1294 
1295 		offset = offset_in_folio(folio, pos);
1296 		if (bytes > folio_size(folio) - offset)
1297 			bytes = folio_size(folio) - offset;
1298 
1299 		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1300 		if (WARN_ON_ONCE(bytes == 0))
1301 			return -EIO;
1302 
1303 		cond_resched();
1304 
1305 		pos += bytes;
1306 		written += bytes;
1307 		length -= bytes;
1308 
1309 		balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1310 	} while (length > 0);
1311 
1312 	return written;
1313 }
1314 
1315 int
1316 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1317 		const struct iomap_ops *ops)
1318 {
1319 	struct iomap_iter iter = {
1320 		.inode		= inode,
1321 		.pos		= pos,
1322 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE,
1323 	};
1324 	loff_t size = i_size_read(inode);
1325 	int ret;
1326 
1327 	if (pos < 0 || pos >= size)
1328 		return 0;
1329 
1330 	iter.len = min(len, size - pos);
1331 	while ((ret = iomap_iter(&iter, ops)) > 0)
1332 		iter.processed = iomap_unshare_iter(&iter);
1333 	return ret;
1334 }
1335 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1336 
1337 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1338 {
1339 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1340 	loff_t pos = iter->pos;
1341 	loff_t length = iomap_length(iter);
1342 	loff_t written = 0;
1343 
1344 	/* already zeroed?  we're done. */
1345 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1346 		return length;
1347 
1348 	do {
1349 		struct folio *folio;
1350 		int status;
1351 		size_t offset;
1352 		size_t bytes = min_t(u64, SIZE_MAX, length);
1353 
1354 		status = iomap_write_begin(iter, pos, bytes, &folio);
1355 		if (status)
1356 			return status;
1357 		if (iter->iomap.flags & IOMAP_F_STALE)
1358 			break;
1359 
1360 		offset = offset_in_folio(folio, pos);
1361 		if (bytes > folio_size(folio) - offset)
1362 			bytes = folio_size(folio) - offset;
1363 
1364 		folio_zero_range(folio, offset, bytes);
1365 		folio_mark_accessed(folio);
1366 
1367 		bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1368 		if (WARN_ON_ONCE(bytes == 0))
1369 			return -EIO;
1370 
1371 		pos += bytes;
1372 		length -= bytes;
1373 		written += bytes;
1374 	} while (length > 0);
1375 
1376 	if (did_zero)
1377 		*did_zero = true;
1378 	return written;
1379 }
1380 
1381 int
1382 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1383 		const struct iomap_ops *ops)
1384 {
1385 	struct iomap_iter iter = {
1386 		.inode		= inode,
1387 		.pos		= pos,
1388 		.len		= len,
1389 		.flags		= IOMAP_ZERO,
1390 	};
1391 	int ret;
1392 
1393 	while ((ret = iomap_iter(&iter, ops)) > 0)
1394 		iter.processed = iomap_zero_iter(&iter, did_zero);
1395 	return ret;
1396 }
1397 EXPORT_SYMBOL_GPL(iomap_zero_range);
1398 
1399 int
1400 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1401 		const struct iomap_ops *ops)
1402 {
1403 	unsigned int blocksize = i_blocksize(inode);
1404 	unsigned int off = pos & (blocksize - 1);
1405 
1406 	/* Block boundary? Nothing to do */
1407 	if (!off)
1408 		return 0;
1409 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1410 }
1411 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1412 
1413 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1414 		struct folio *folio)
1415 {
1416 	loff_t length = iomap_length(iter);
1417 	int ret;
1418 
1419 	if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1420 		ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1421 					      &iter->iomap);
1422 		if (ret)
1423 			return ret;
1424 		block_commit_write(&folio->page, 0, length);
1425 	} else {
1426 		WARN_ON_ONCE(!folio_test_uptodate(folio));
1427 		folio_mark_dirty(folio);
1428 	}
1429 
1430 	return length;
1431 }
1432 
1433 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1434 {
1435 	struct iomap_iter iter = {
1436 		.inode		= file_inode(vmf->vma->vm_file),
1437 		.flags		= IOMAP_WRITE | IOMAP_FAULT,
1438 	};
1439 	struct folio *folio = page_folio(vmf->page);
1440 	ssize_t ret;
1441 
1442 	folio_lock(folio);
1443 	ret = folio_mkwrite_check_truncate(folio, iter.inode);
1444 	if (ret < 0)
1445 		goto out_unlock;
1446 	iter.pos = folio_pos(folio);
1447 	iter.len = ret;
1448 	while ((ret = iomap_iter(&iter, ops)) > 0)
1449 		iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1450 
1451 	if (ret < 0)
1452 		goto out_unlock;
1453 	folio_wait_stable(folio);
1454 	return VM_FAULT_LOCKED;
1455 out_unlock:
1456 	folio_unlock(folio);
1457 	return vmf_fs_error(ret);
1458 }
1459 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1460 
1461 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1462 		size_t len, int error)
1463 {
1464 	struct iomap_folio_state *ifs = folio->private;
1465 
1466 	if (error) {
1467 		folio_set_error(folio);
1468 		mapping_set_error(inode->i_mapping, error);
1469 	}
1470 
1471 	WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1472 	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1473 
1474 	if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1475 		folio_end_writeback(folio);
1476 }
1477 
1478 /*
1479  * We're now finished for good with this ioend structure.  Update the page
1480  * state, release holds on bios, and finally free up memory.  Do not use the
1481  * ioend after this.
1482  */
1483 static u32
1484 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1485 {
1486 	struct inode *inode = ioend->io_inode;
1487 	struct bio *bio = &ioend->io_inline_bio;
1488 	struct bio *last = ioend->io_bio, *next;
1489 	u64 start = bio->bi_iter.bi_sector;
1490 	loff_t offset = ioend->io_offset;
1491 	bool quiet = bio_flagged(bio, BIO_QUIET);
1492 	u32 folio_count = 0;
1493 
1494 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
1495 		struct folio_iter fi;
1496 
1497 		/*
1498 		 * For the last bio, bi_private points to the ioend, so we
1499 		 * need to explicitly end the iteration here.
1500 		 */
1501 		if (bio == last)
1502 			next = NULL;
1503 		else
1504 			next = bio->bi_private;
1505 
1506 		/* walk all folios in bio, ending page IO on them */
1507 		bio_for_each_folio_all(fi, bio) {
1508 			iomap_finish_folio_write(inode, fi.folio, fi.length,
1509 					error);
1510 			folio_count++;
1511 		}
1512 		bio_put(bio);
1513 	}
1514 	/* The ioend has been freed by bio_put() */
1515 
1516 	if (unlikely(error && !quiet)) {
1517 		printk_ratelimited(KERN_ERR
1518 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1519 			inode->i_sb->s_id, inode->i_ino, offset, start);
1520 	}
1521 	return folio_count;
1522 }
1523 
1524 /*
1525  * Ioend completion routine for merged bios. This can only be called from task
1526  * contexts as merged ioends can be of unbound length. Hence we have to break up
1527  * the writeback completions into manageable chunks to avoid long scheduler
1528  * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1529  * good batch processing throughput without creating adverse scheduler latency
1530  * conditions.
1531  */
1532 void
1533 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1534 {
1535 	struct list_head tmp;
1536 	u32 completions;
1537 
1538 	might_sleep();
1539 
1540 	list_replace_init(&ioend->io_list, &tmp);
1541 	completions = iomap_finish_ioend(ioend, error);
1542 
1543 	while (!list_empty(&tmp)) {
1544 		if (completions > IOEND_BATCH_SIZE * 8) {
1545 			cond_resched();
1546 			completions = 0;
1547 		}
1548 		ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1549 		list_del_init(&ioend->io_list);
1550 		completions += iomap_finish_ioend(ioend, error);
1551 	}
1552 }
1553 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1554 
1555 /*
1556  * We can merge two adjacent ioends if they have the same set of work to do.
1557  */
1558 static bool
1559 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1560 {
1561 	if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1562 		return false;
1563 	if ((ioend->io_flags & IOMAP_F_SHARED) ^
1564 	    (next->io_flags & IOMAP_F_SHARED))
1565 		return false;
1566 	if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1567 	    (next->io_type == IOMAP_UNWRITTEN))
1568 		return false;
1569 	if (ioend->io_offset + ioend->io_size != next->io_offset)
1570 		return false;
1571 	/*
1572 	 * Do not merge physically discontiguous ioends. The filesystem
1573 	 * completion functions will have to iterate the physical
1574 	 * discontiguities even if we merge the ioends at a logical level, so
1575 	 * we don't gain anything by merging physical discontiguities here.
1576 	 *
1577 	 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1578 	 * submission so does not point to the start sector of the bio at
1579 	 * completion.
1580 	 */
1581 	if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1582 		return false;
1583 	return true;
1584 }
1585 
1586 void
1587 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1588 {
1589 	struct iomap_ioend *next;
1590 
1591 	INIT_LIST_HEAD(&ioend->io_list);
1592 
1593 	while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1594 			io_list))) {
1595 		if (!iomap_ioend_can_merge(ioend, next))
1596 			break;
1597 		list_move_tail(&next->io_list, &ioend->io_list);
1598 		ioend->io_size += next->io_size;
1599 	}
1600 }
1601 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1602 
1603 static int
1604 iomap_ioend_compare(void *priv, const struct list_head *a,
1605 		const struct list_head *b)
1606 {
1607 	struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1608 	struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1609 
1610 	if (ia->io_offset < ib->io_offset)
1611 		return -1;
1612 	if (ia->io_offset > ib->io_offset)
1613 		return 1;
1614 	return 0;
1615 }
1616 
1617 void
1618 iomap_sort_ioends(struct list_head *ioend_list)
1619 {
1620 	list_sort(NULL, ioend_list, iomap_ioend_compare);
1621 }
1622 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1623 
1624 static void iomap_writepage_end_bio(struct bio *bio)
1625 {
1626 	struct iomap_ioend *ioend = bio->bi_private;
1627 
1628 	iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1629 }
1630 
1631 /*
1632  * Submit the final bio for an ioend.
1633  *
1634  * If @error is non-zero, it means that we have a situation where some part of
1635  * the submission process has failed after we've marked pages for writeback
1636  * and unlocked them.  In this situation, we need to fail the bio instead of
1637  * submitting it.  This typically only happens on a filesystem shutdown.
1638  */
1639 static int
1640 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1641 		int error)
1642 {
1643 	ioend->io_bio->bi_private = ioend;
1644 	ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1645 
1646 	if (wpc->ops->prepare_ioend)
1647 		error = wpc->ops->prepare_ioend(ioend, error);
1648 	if (error) {
1649 		/*
1650 		 * If we're failing the IO now, just mark the ioend with an
1651 		 * error and finish it.  This will run IO completion immediately
1652 		 * as there is only one reference to the ioend at this point in
1653 		 * time.
1654 		 */
1655 		ioend->io_bio->bi_status = errno_to_blk_status(error);
1656 		bio_endio(ioend->io_bio);
1657 		return error;
1658 	}
1659 
1660 	submit_bio(ioend->io_bio);
1661 	return 0;
1662 }
1663 
1664 static struct iomap_ioend *
1665 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1666 		loff_t offset, sector_t sector, struct writeback_control *wbc)
1667 {
1668 	struct iomap_ioend *ioend;
1669 	struct bio *bio;
1670 
1671 	bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1672 			       REQ_OP_WRITE | wbc_to_write_flags(wbc),
1673 			       GFP_NOFS, &iomap_ioend_bioset);
1674 	bio->bi_iter.bi_sector = sector;
1675 	wbc_init_bio(wbc, bio);
1676 
1677 	ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1678 	INIT_LIST_HEAD(&ioend->io_list);
1679 	ioend->io_type = wpc->iomap.type;
1680 	ioend->io_flags = wpc->iomap.flags;
1681 	ioend->io_inode = inode;
1682 	ioend->io_size = 0;
1683 	ioend->io_folios = 0;
1684 	ioend->io_offset = offset;
1685 	ioend->io_bio = bio;
1686 	ioend->io_sector = sector;
1687 	return ioend;
1688 }
1689 
1690 /*
1691  * Allocate a new bio, and chain the old bio to the new one.
1692  *
1693  * Note that we have to perform the chaining in this unintuitive order
1694  * so that the bi_private linkage is set up in the right direction for the
1695  * traversal in iomap_finish_ioend().
1696  */
1697 static struct bio *
1698 iomap_chain_bio(struct bio *prev)
1699 {
1700 	struct bio *new;
1701 
1702 	new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
1703 	bio_clone_blkg_association(new, prev);
1704 	new->bi_iter.bi_sector = bio_end_sector(prev);
1705 
1706 	bio_chain(prev, new);
1707 	bio_get(prev);		/* for iomap_finish_ioend */
1708 	submit_bio(prev);
1709 	return new;
1710 }
1711 
1712 static bool
1713 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1714 		sector_t sector)
1715 {
1716 	if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1717 	    (wpc->ioend->io_flags & IOMAP_F_SHARED))
1718 		return false;
1719 	if (wpc->iomap.type != wpc->ioend->io_type)
1720 		return false;
1721 	if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1722 		return false;
1723 	if (sector != bio_end_sector(wpc->ioend->io_bio))
1724 		return false;
1725 	/*
1726 	 * Limit ioend bio chain lengths to minimise IO completion latency. This
1727 	 * also prevents long tight loops ending page writeback on all the
1728 	 * folios in the ioend.
1729 	 */
1730 	if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1731 		return false;
1732 	return true;
1733 }
1734 
1735 /*
1736  * Test to see if we have an existing ioend structure that we could append to
1737  * first; otherwise finish off the current ioend and start another.
1738  */
1739 static void
1740 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1741 		struct iomap_folio_state *ifs, struct iomap_writepage_ctx *wpc,
1742 		struct writeback_control *wbc, struct list_head *iolist)
1743 {
1744 	sector_t sector = iomap_sector(&wpc->iomap, pos);
1745 	unsigned len = i_blocksize(inode);
1746 	size_t poff = offset_in_folio(folio, pos);
1747 
1748 	if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1749 		if (wpc->ioend)
1750 			list_add(&wpc->ioend->io_list, iolist);
1751 		wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1752 	}
1753 
1754 	if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1755 		wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1756 		bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff);
1757 	}
1758 
1759 	if (ifs)
1760 		atomic_add(len, &ifs->write_bytes_pending);
1761 	wpc->ioend->io_size += len;
1762 	wbc_account_cgroup_owner(wbc, &folio->page, len);
1763 }
1764 
1765 /*
1766  * We implement an immediate ioend submission policy here to avoid needing to
1767  * chain multiple ioends and hence nest mempool allocations which can violate
1768  * the forward progress guarantees we need to provide. The current ioend we're
1769  * adding blocks to is cached in the writepage context, and if the new block
1770  * doesn't append to the cached ioend, it will create a new ioend and cache that
1771  * instead.
1772  *
1773  * If a new ioend is created and cached, the old ioend is returned and queued
1774  * locally for submission once the entire page is processed or an error has been
1775  * detected.  While ioends are submitted immediately after they are completed,
1776  * batching optimisations are provided by higher level block plugging.
1777  *
1778  * At the end of a writeback pass, there will be a cached ioend remaining on the
1779  * writepage context that the caller will need to submit.
1780  */
1781 static int
1782 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1783 		struct writeback_control *wbc, struct inode *inode,
1784 		struct folio *folio, u64 end_pos)
1785 {
1786 	struct iomap_folio_state *ifs = folio->private;
1787 	struct iomap_ioend *ioend, *next;
1788 	unsigned len = i_blocksize(inode);
1789 	unsigned nblocks = i_blocks_per_folio(inode, folio);
1790 	u64 pos = folio_pos(folio);
1791 	int error = 0, count = 0, i;
1792 	LIST_HEAD(submit_list);
1793 
1794 	WARN_ON_ONCE(end_pos <= pos);
1795 
1796 	if (!ifs && nblocks > 1) {
1797 		ifs = ifs_alloc(inode, folio, 0);
1798 		iomap_set_range_dirty(folio, 0, end_pos - pos);
1799 	}
1800 
1801 	WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) != 0);
1802 
1803 	/*
1804 	 * Walk through the folio to find areas to write back. If we
1805 	 * run off the end of the current map or find the current map
1806 	 * invalid, grab a new one.
1807 	 */
1808 	for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1809 		if (ifs && !ifs_block_is_dirty(folio, ifs, i))
1810 			continue;
1811 
1812 		error = wpc->ops->map_blocks(wpc, inode, pos);
1813 		if (error)
1814 			break;
1815 		trace_iomap_writepage_map(inode, &wpc->iomap);
1816 		if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1817 			continue;
1818 		if (wpc->iomap.type == IOMAP_HOLE)
1819 			continue;
1820 		iomap_add_to_ioend(inode, pos, folio, ifs, wpc, wbc,
1821 				 &submit_list);
1822 		count++;
1823 	}
1824 	if (count)
1825 		wpc->ioend->io_folios++;
1826 
1827 	WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1828 	WARN_ON_ONCE(!folio_test_locked(folio));
1829 	WARN_ON_ONCE(folio_test_writeback(folio));
1830 	WARN_ON_ONCE(folio_test_dirty(folio));
1831 
1832 	/*
1833 	 * We cannot cancel the ioend directly here on error.  We may have
1834 	 * already set other pages under writeback and hence we have to run I/O
1835 	 * completion to mark the error state of the pages under writeback
1836 	 * appropriately.
1837 	 */
1838 	if (unlikely(error)) {
1839 		/*
1840 		 * Let the filesystem know what portion of the current page
1841 		 * failed to map.
1842 		 */
1843 		if (wpc->ops->discard_folio)
1844 			wpc->ops->discard_folio(folio, pos);
1845 	}
1846 
1847 	/*
1848 	 * We can have dirty bits set past end of file in page_mkwrite path
1849 	 * while mapping the last partial folio. Hence it's better to clear
1850 	 * all the dirty bits in the folio here.
1851 	 */
1852 	iomap_clear_range_dirty(folio, 0, folio_size(folio));
1853 
1854 	/*
1855 	 * If the page hasn't been added to the ioend, it won't be affected by
1856 	 * I/O completion and we must unlock it now.
1857 	 */
1858 	if (error && !count) {
1859 		folio_unlock(folio);
1860 		goto done;
1861 	}
1862 
1863 	folio_start_writeback(folio);
1864 	folio_unlock(folio);
1865 
1866 	/*
1867 	 * Preserve the original error if there was one; catch
1868 	 * submission errors here and propagate into subsequent ioend
1869 	 * submissions.
1870 	 */
1871 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1872 		int error2;
1873 
1874 		list_del_init(&ioend->io_list);
1875 		error2 = iomap_submit_ioend(wpc, ioend, error);
1876 		if (error2 && !error)
1877 			error = error2;
1878 	}
1879 
1880 	/*
1881 	 * We can end up here with no error and nothing to write only if we race
1882 	 * with a partial page truncate on a sub-page block sized filesystem.
1883 	 */
1884 	if (!count)
1885 		folio_end_writeback(folio);
1886 done:
1887 	mapping_set_error(inode->i_mapping, error);
1888 	return error;
1889 }
1890 
1891 /*
1892  * Write out a dirty page.
1893  *
1894  * For delalloc space on the page, we need to allocate space and flush it.
1895  * For unwritten space on the page, we need to start the conversion to
1896  * regular allocated space.
1897  */
1898 static int iomap_do_writepage(struct folio *folio,
1899 		struct writeback_control *wbc, void *data)
1900 {
1901 	struct iomap_writepage_ctx *wpc = data;
1902 	struct inode *inode = folio->mapping->host;
1903 	u64 end_pos, isize;
1904 
1905 	trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1906 
1907 	/*
1908 	 * Refuse to write the folio out if we're called from reclaim context.
1909 	 *
1910 	 * This avoids stack overflows when called from deeply used stacks in
1911 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1912 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1913 	 *
1914 	 * This should never happen except in the case of a VM regression so
1915 	 * warn about it.
1916 	 */
1917 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1918 			PF_MEMALLOC))
1919 		goto redirty;
1920 
1921 	/*
1922 	 * Is this folio beyond the end of the file?
1923 	 *
1924 	 * The folio index is less than the end_index, adjust the end_pos
1925 	 * to the highest offset that this folio should represent.
1926 	 * -----------------------------------------------------
1927 	 * |			file mapping	       | <EOF> |
1928 	 * -----------------------------------------------------
1929 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1930 	 * ^--------------------------------^----------|--------
1931 	 * |     desired writeback range    |      see else    |
1932 	 * ---------------------------------^------------------|
1933 	 */
1934 	isize = i_size_read(inode);
1935 	end_pos = folio_pos(folio) + folio_size(folio);
1936 	if (end_pos > isize) {
1937 		/*
1938 		 * Check whether the page to write out is beyond or straddles
1939 		 * i_size or not.
1940 		 * -------------------------------------------------------
1941 		 * |		file mapping		        | <EOF>  |
1942 		 * -------------------------------------------------------
1943 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1944 		 * ^--------------------------------^-----------|---------
1945 		 * |				    |      Straddles     |
1946 		 * ---------------------------------^-----------|--------|
1947 		 */
1948 		size_t poff = offset_in_folio(folio, isize);
1949 		pgoff_t end_index = isize >> PAGE_SHIFT;
1950 
1951 		/*
1952 		 * Skip the page if it's fully outside i_size, e.g.
1953 		 * due to a truncate operation that's in progress.  We've
1954 		 * cleaned this page and truncate will finish things off for
1955 		 * us.
1956 		 *
1957 		 * Note that the end_index is unsigned long.  If the given
1958 		 * offset is greater than 16TB on a 32-bit system then if we
1959 		 * checked if the page is fully outside i_size with
1960 		 * "if (page->index >= end_index + 1)", "end_index + 1" would
1961 		 * overflow and evaluate to 0.  Hence this page would be
1962 		 * redirtied and written out repeatedly, which would result in
1963 		 * an infinite loop; the user program performing this operation
1964 		 * would hang.  Instead, we can detect this situation by
1965 		 * checking if the page is totally beyond i_size or if its
1966 		 * offset is just equal to the EOF.
1967 		 */
1968 		if (folio->index > end_index ||
1969 		    (folio->index == end_index && poff == 0))
1970 			goto unlock;
1971 
1972 		/*
1973 		 * The page straddles i_size.  It must be zeroed out on each
1974 		 * and every writepage invocation because it may be mmapped.
1975 		 * "A file is mapped in multiples of the page size.  For a file
1976 		 * that is not a multiple of the page size, the remaining
1977 		 * memory is zeroed when mapped, and writes to that region are
1978 		 * not written out to the file."
1979 		 */
1980 		folio_zero_segment(folio, poff, folio_size(folio));
1981 		end_pos = isize;
1982 	}
1983 
1984 	return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1985 
1986 redirty:
1987 	folio_redirty_for_writepage(wbc, folio);
1988 unlock:
1989 	folio_unlock(folio);
1990 	return 0;
1991 }
1992 
1993 int
1994 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1995 		struct iomap_writepage_ctx *wpc,
1996 		const struct iomap_writeback_ops *ops)
1997 {
1998 	int			ret;
1999 
2000 	wpc->ops = ops;
2001 	ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
2002 	if (!wpc->ioend)
2003 		return ret;
2004 	return iomap_submit_ioend(wpc, wpc->ioend, ret);
2005 }
2006 EXPORT_SYMBOL_GPL(iomap_writepages);
2007 
2008 static int __init iomap_init(void)
2009 {
2010 	return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
2011 			   offsetof(struct iomap_ioend, io_inline_bio),
2012 			   BIOSET_NEED_BVECS);
2013 }
2014 fs_initcall(iomap_init);
2015