1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 /* 27 * Structure allocated for each folio when block size < folio size 28 * to track sub-folio uptodate status and I/O completions. 29 */ 30 struct iomap_page { 31 atomic_t read_bytes_pending; 32 atomic_t write_bytes_pending; 33 spinlock_t uptodate_lock; 34 unsigned long uptodate[]; 35 }; 36 37 static inline struct iomap_page *to_iomap_page(struct folio *folio) 38 { 39 if (folio_test_private(folio)) 40 return folio_get_private(folio); 41 return NULL; 42 } 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static struct iomap_page * 47 iomap_page_create(struct inode *inode, struct folio *folio) 48 { 49 struct iomap_page *iop = to_iomap_page(folio); 50 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 51 52 if (iop || nr_blocks <= 1) 53 return iop; 54 55 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)), 56 GFP_NOFS | __GFP_NOFAIL); 57 spin_lock_init(&iop->uptodate_lock); 58 if (folio_test_uptodate(folio)) 59 bitmap_fill(iop->uptodate, nr_blocks); 60 folio_attach_private(folio, iop); 61 return iop; 62 } 63 64 static void iomap_page_release(struct folio *folio) 65 { 66 struct iomap_page *iop = folio_detach_private(folio); 67 struct inode *inode = folio->mapping->host; 68 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 69 70 if (!iop) 71 return; 72 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending)); 73 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending)); 74 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) != 75 folio_test_uptodate(folio)); 76 kfree(iop); 77 } 78 79 /* 80 * Calculate the range inside the folio that we actually need to read. 81 */ 82 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 83 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 84 { 85 struct iomap_page *iop = to_iomap_page(folio); 86 loff_t orig_pos = *pos; 87 loff_t isize = i_size_read(inode); 88 unsigned block_bits = inode->i_blkbits; 89 unsigned block_size = (1 << block_bits); 90 size_t poff = offset_in_folio(folio, *pos); 91 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 92 unsigned first = poff >> block_bits; 93 unsigned last = (poff + plen - 1) >> block_bits; 94 95 /* 96 * If the block size is smaller than the page size, we need to check the 97 * per-block uptodate status and adjust the offset and length if needed 98 * to avoid reading in already uptodate ranges. 99 */ 100 if (iop) { 101 unsigned int i; 102 103 /* move forward for each leading block marked uptodate */ 104 for (i = first; i <= last; i++) { 105 if (!test_bit(i, iop->uptodate)) 106 break; 107 *pos += block_size; 108 poff += block_size; 109 plen -= block_size; 110 first++; 111 } 112 113 /* truncate len if we find any trailing uptodate block(s) */ 114 for ( ; i <= last; i++) { 115 if (test_bit(i, iop->uptodate)) { 116 plen -= (last - i + 1) * block_size; 117 last = i - 1; 118 break; 119 } 120 } 121 } 122 123 /* 124 * If the extent spans the block that contains the i_size, we need to 125 * handle both halves separately so that we properly zero data in the 126 * page cache for blocks that are entirely outside of i_size. 127 */ 128 if (orig_pos <= isize && orig_pos + length > isize) { 129 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 130 131 if (first <= end && last > end) 132 plen -= (last - end) * block_size; 133 } 134 135 *offp = poff; 136 *lenp = plen; 137 } 138 139 static void iomap_iop_set_range_uptodate(struct folio *folio, 140 struct iomap_page *iop, size_t off, size_t len) 141 { 142 struct inode *inode = folio->mapping->host; 143 unsigned first = off >> inode->i_blkbits; 144 unsigned last = (off + len - 1) >> inode->i_blkbits; 145 unsigned long flags; 146 147 spin_lock_irqsave(&iop->uptodate_lock, flags); 148 bitmap_set(iop->uptodate, first, last - first + 1); 149 if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio))) 150 folio_mark_uptodate(folio); 151 spin_unlock_irqrestore(&iop->uptodate_lock, flags); 152 } 153 154 static void iomap_set_range_uptodate(struct folio *folio, 155 struct iomap_page *iop, size_t off, size_t len) 156 { 157 if (iop) 158 iomap_iop_set_range_uptodate(folio, iop, off, len); 159 else 160 folio_mark_uptodate(folio); 161 } 162 163 static void iomap_finish_folio_read(struct folio *folio, size_t offset, 164 size_t len, int error) 165 { 166 struct iomap_page *iop = to_iomap_page(folio); 167 168 if (unlikely(error)) { 169 folio_clear_uptodate(folio); 170 folio_set_error(folio); 171 } else { 172 iomap_set_range_uptodate(folio, iop, offset, len); 173 } 174 175 if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending)) 176 folio_unlock(folio); 177 } 178 179 static void iomap_read_end_io(struct bio *bio) 180 { 181 int error = blk_status_to_errno(bio->bi_status); 182 struct folio_iter fi; 183 184 bio_for_each_folio_all(fi, bio) 185 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 186 bio_put(bio); 187 } 188 189 struct iomap_readpage_ctx { 190 struct folio *cur_folio; 191 bool cur_folio_in_bio; 192 struct bio *bio; 193 struct readahead_control *rac; 194 }; 195 196 /** 197 * iomap_read_inline_data - copy inline data into the page cache 198 * @iter: iteration structure 199 * @folio: folio to copy to 200 * 201 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 202 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 203 * Returns zero for success to complete the read, or the usual negative errno. 204 */ 205 static int iomap_read_inline_data(const struct iomap_iter *iter, 206 struct folio *folio) 207 { 208 struct iomap_page *iop; 209 const struct iomap *iomap = iomap_iter_srcmap(iter); 210 size_t size = i_size_read(iter->inode) - iomap->offset; 211 size_t poff = offset_in_page(iomap->offset); 212 size_t offset = offset_in_folio(folio, iomap->offset); 213 void *addr; 214 215 if (folio_test_uptodate(folio)) 216 return 0; 217 218 if (WARN_ON_ONCE(size > PAGE_SIZE - poff)) 219 return -EIO; 220 if (WARN_ON_ONCE(size > PAGE_SIZE - 221 offset_in_page(iomap->inline_data))) 222 return -EIO; 223 if (WARN_ON_ONCE(size > iomap->length)) 224 return -EIO; 225 if (offset > 0) 226 iop = iomap_page_create(iter->inode, folio); 227 else 228 iop = to_iomap_page(folio); 229 230 addr = kmap_local_folio(folio, offset); 231 memcpy(addr, iomap->inline_data, size); 232 memset(addr + size, 0, PAGE_SIZE - poff - size); 233 kunmap_local(addr); 234 iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff); 235 return 0; 236 } 237 238 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 239 loff_t pos) 240 { 241 const struct iomap *srcmap = iomap_iter_srcmap(iter); 242 243 return srcmap->type != IOMAP_MAPPED || 244 (srcmap->flags & IOMAP_F_NEW) || 245 pos >= i_size_read(iter->inode); 246 } 247 248 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 249 struct iomap_readpage_ctx *ctx, loff_t offset) 250 { 251 const struct iomap *iomap = &iter->iomap; 252 loff_t pos = iter->pos + offset; 253 loff_t length = iomap_length(iter) - offset; 254 struct folio *folio = ctx->cur_folio; 255 struct iomap_page *iop; 256 loff_t orig_pos = pos; 257 size_t poff, plen; 258 sector_t sector; 259 260 if (iomap->type == IOMAP_INLINE) 261 return iomap_read_inline_data(iter, folio); 262 263 /* zero post-eof blocks as the page may be mapped */ 264 iop = iomap_page_create(iter->inode, folio); 265 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 266 if (plen == 0) 267 goto done; 268 269 if (iomap_block_needs_zeroing(iter, pos)) { 270 folio_zero_range(folio, poff, plen); 271 iomap_set_range_uptodate(folio, iop, poff, plen); 272 goto done; 273 } 274 275 ctx->cur_folio_in_bio = true; 276 if (iop) 277 atomic_add(plen, &iop->read_bytes_pending); 278 279 sector = iomap_sector(iomap, pos); 280 if (!ctx->bio || 281 bio_end_sector(ctx->bio) != sector || 282 !bio_add_folio(ctx->bio, folio, plen, poff)) { 283 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 284 gfp_t orig_gfp = gfp; 285 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 286 287 if (ctx->bio) 288 submit_bio(ctx->bio); 289 290 if (ctx->rac) /* same as readahead_gfp_mask */ 291 gfp |= __GFP_NORETRY | __GFP_NOWARN; 292 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 293 REQ_OP_READ, gfp); 294 /* 295 * If the bio_alloc fails, try it again for a single page to 296 * avoid having to deal with partial page reads. This emulates 297 * what do_mpage_read_folio does. 298 */ 299 if (!ctx->bio) { 300 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 301 orig_gfp); 302 } 303 if (ctx->rac) 304 ctx->bio->bi_opf |= REQ_RAHEAD; 305 ctx->bio->bi_iter.bi_sector = sector; 306 ctx->bio->bi_end_io = iomap_read_end_io; 307 bio_add_folio(ctx->bio, folio, plen, poff); 308 } 309 310 done: 311 /* 312 * Move the caller beyond our range so that it keeps making progress. 313 * For that, we have to include any leading non-uptodate ranges, but 314 * we can skip trailing ones as they will be handled in the next 315 * iteration. 316 */ 317 return pos - orig_pos + plen; 318 } 319 320 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 321 { 322 struct iomap_iter iter = { 323 .inode = folio->mapping->host, 324 .pos = folio_pos(folio), 325 .len = folio_size(folio), 326 }; 327 struct iomap_readpage_ctx ctx = { 328 .cur_folio = folio, 329 }; 330 int ret; 331 332 trace_iomap_readpage(iter.inode, 1); 333 334 while ((ret = iomap_iter(&iter, ops)) > 0) 335 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 336 337 if (ret < 0) 338 folio_set_error(folio); 339 340 if (ctx.bio) { 341 submit_bio(ctx.bio); 342 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 343 } else { 344 WARN_ON_ONCE(ctx.cur_folio_in_bio); 345 folio_unlock(folio); 346 } 347 348 /* 349 * Just like mpage_readahead and block_read_full_folio, we always 350 * return 0 and just set the folio error flag on errors. This 351 * should be cleaned up throughout the stack eventually. 352 */ 353 return 0; 354 } 355 EXPORT_SYMBOL_GPL(iomap_read_folio); 356 357 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 358 struct iomap_readpage_ctx *ctx) 359 { 360 loff_t length = iomap_length(iter); 361 loff_t done, ret; 362 363 for (done = 0; done < length; done += ret) { 364 if (ctx->cur_folio && 365 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 366 if (!ctx->cur_folio_in_bio) 367 folio_unlock(ctx->cur_folio); 368 ctx->cur_folio = NULL; 369 } 370 if (!ctx->cur_folio) { 371 ctx->cur_folio = readahead_folio(ctx->rac); 372 ctx->cur_folio_in_bio = false; 373 } 374 ret = iomap_readpage_iter(iter, ctx, done); 375 if (ret <= 0) 376 return ret; 377 } 378 379 return done; 380 } 381 382 /** 383 * iomap_readahead - Attempt to read pages from a file. 384 * @rac: Describes the pages to be read. 385 * @ops: The operations vector for the filesystem. 386 * 387 * This function is for filesystems to call to implement their readahead 388 * address_space operation. 389 * 390 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 391 * blocks from disc), and may wait for it. The caller may be trying to 392 * access a different page, and so sleeping excessively should be avoided. 393 * It may allocate memory, but should avoid costly allocations. This 394 * function is called with memalloc_nofs set, so allocations will not cause 395 * the filesystem to be reentered. 396 */ 397 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 398 { 399 struct iomap_iter iter = { 400 .inode = rac->mapping->host, 401 .pos = readahead_pos(rac), 402 .len = readahead_length(rac), 403 }; 404 struct iomap_readpage_ctx ctx = { 405 .rac = rac, 406 }; 407 408 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 409 410 while (iomap_iter(&iter, ops) > 0) 411 iter.processed = iomap_readahead_iter(&iter, &ctx); 412 413 if (ctx.bio) 414 submit_bio(ctx.bio); 415 if (ctx.cur_folio) { 416 if (!ctx.cur_folio_in_bio) 417 folio_unlock(ctx.cur_folio); 418 } 419 } 420 EXPORT_SYMBOL_GPL(iomap_readahead); 421 422 /* 423 * iomap_is_partially_uptodate checks whether blocks within a folio are 424 * uptodate or not. 425 * 426 * Returns true if all blocks which correspond to the specified part 427 * of the folio are uptodate. 428 */ 429 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 430 { 431 struct iomap_page *iop = to_iomap_page(folio); 432 struct inode *inode = folio->mapping->host; 433 unsigned first, last, i; 434 435 if (!iop) 436 return false; 437 438 /* Caller's range may extend past the end of this folio */ 439 count = min(folio_size(folio) - from, count); 440 441 /* First and last blocks in range within folio */ 442 first = from >> inode->i_blkbits; 443 last = (from + count - 1) >> inode->i_blkbits; 444 445 for (i = first; i <= last; i++) 446 if (!test_bit(i, iop->uptodate)) 447 return false; 448 return true; 449 } 450 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 451 452 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 453 { 454 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 455 folio_size(folio)); 456 457 /* 458 * mm accommodates an old ext3 case where clean folios might 459 * not have had the dirty bit cleared. Thus, it can send actual 460 * dirty folios to ->release_folio() via shrink_active_list(); 461 * skip those here. 462 */ 463 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 464 return false; 465 iomap_page_release(folio); 466 return true; 467 } 468 EXPORT_SYMBOL_GPL(iomap_release_folio); 469 470 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 471 { 472 trace_iomap_invalidate_folio(folio->mapping->host, 473 folio_pos(folio) + offset, len); 474 475 /* 476 * If we're invalidating the entire folio, clear the dirty state 477 * from it and release it to avoid unnecessary buildup of the LRU. 478 */ 479 if (offset == 0 && len == folio_size(folio)) { 480 WARN_ON_ONCE(folio_test_writeback(folio)); 481 folio_cancel_dirty(folio); 482 iomap_page_release(folio); 483 } else if (folio_test_large(folio)) { 484 /* Must release the iop so the page can be split */ 485 WARN_ON_ONCE(!folio_test_uptodate(folio) && 486 folio_test_dirty(folio)); 487 iomap_page_release(folio); 488 } 489 } 490 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 491 492 static void 493 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 494 { 495 loff_t i_size = i_size_read(inode); 496 497 /* 498 * Only truncate newly allocated pages beyoned EOF, even if the 499 * write started inside the existing inode size. 500 */ 501 if (pos + len > i_size) 502 truncate_pagecache_range(inode, max(pos, i_size), 503 pos + len - 1); 504 } 505 506 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 507 size_t poff, size_t plen, const struct iomap *iomap) 508 { 509 struct bio_vec bvec; 510 struct bio bio; 511 512 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 513 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 514 bio_add_folio(&bio, folio, plen, poff); 515 return submit_bio_wait(&bio); 516 } 517 518 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 519 size_t len, struct folio *folio) 520 { 521 const struct iomap *srcmap = iomap_iter_srcmap(iter); 522 struct iomap_page *iop = iomap_page_create(iter->inode, folio); 523 loff_t block_size = i_blocksize(iter->inode); 524 loff_t block_start = round_down(pos, block_size); 525 loff_t block_end = round_up(pos + len, block_size); 526 size_t from = offset_in_folio(folio, pos), to = from + len; 527 size_t poff, plen; 528 529 if (folio_test_uptodate(folio)) 530 return 0; 531 folio_clear_error(folio); 532 533 do { 534 iomap_adjust_read_range(iter->inode, folio, &block_start, 535 block_end - block_start, &poff, &plen); 536 if (plen == 0) 537 break; 538 539 if (!(iter->flags & IOMAP_UNSHARE) && 540 (from <= poff || from >= poff + plen) && 541 (to <= poff || to >= poff + plen)) 542 continue; 543 544 if (iomap_block_needs_zeroing(iter, block_start)) { 545 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 546 return -EIO; 547 folio_zero_segments(folio, poff, from, to, poff + plen); 548 } else { 549 int status = iomap_read_folio_sync(block_start, folio, 550 poff, plen, srcmap); 551 if (status) 552 return status; 553 } 554 iomap_set_range_uptodate(folio, iop, poff, plen); 555 } while ((block_start += plen) < block_end); 556 557 return 0; 558 } 559 560 static int iomap_write_begin_inline(const struct iomap_iter *iter, 561 struct folio *folio) 562 { 563 /* needs more work for the tailpacking case; disable for now */ 564 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 565 return -EIO; 566 return iomap_read_inline_data(iter, folio); 567 } 568 569 static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 570 size_t len, struct folio **foliop) 571 { 572 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 573 const struct iomap *srcmap = iomap_iter_srcmap(iter); 574 struct folio *folio; 575 unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS; 576 int status = 0; 577 578 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 579 if (srcmap != &iter->iomap) 580 BUG_ON(pos + len > srcmap->offset + srcmap->length); 581 582 if (fatal_signal_pending(current)) 583 return -EINTR; 584 585 if (!mapping_large_folio_support(iter->inode->i_mapping)) 586 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 587 588 if (page_ops && page_ops->page_prepare) { 589 status = page_ops->page_prepare(iter->inode, pos, len); 590 if (status) 591 return status; 592 } 593 594 folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 595 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 596 if (!folio) { 597 status = -ENOMEM; 598 goto out_no_page; 599 } 600 if (pos + len > folio_pos(folio) + folio_size(folio)) 601 len = folio_pos(folio) + folio_size(folio) - pos; 602 603 if (srcmap->type == IOMAP_INLINE) 604 status = iomap_write_begin_inline(iter, folio); 605 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 606 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 607 else 608 status = __iomap_write_begin(iter, pos, len, folio); 609 610 if (unlikely(status)) 611 goto out_unlock; 612 613 *foliop = folio; 614 return 0; 615 616 out_unlock: 617 folio_unlock(folio); 618 folio_put(folio); 619 iomap_write_failed(iter->inode, pos, len); 620 621 out_no_page: 622 if (page_ops && page_ops->page_done) 623 page_ops->page_done(iter->inode, pos, 0, NULL); 624 return status; 625 } 626 627 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 628 size_t copied, struct folio *folio) 629 { 630 struct iomap_page *iop = to_iomap_page(folio); 631 flush_dcache_folio(folio); 632 633 /* 634 * The blocks that were entirely written will now be uptodate, so we 635 * don't have to worry about a read_folio reading them and overwriting a 636 * partial write. However, if we've encountered a short write and only 637 * partially written into a block, it will not be marked uptodate, so a 638 * read_folio might come in and destroy our partial write. 639 * 640 * Do the simplest thing and just treat any short write to a 641 * non-uptodate page as a zero-length write, and force the caller to 642 * redo the whole thing. 643 */ 644 if (unlikely(copied < len && !folio_test_uptodate(folio))) 645 return 0; 646 iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len); 647 filemap_dirty_folio(inode->i_mapping, folio); 648 return copied; 649 } 650 651 static size_t iomap_write_end_inline(const struct iomap_iter *iter, 652 struct folio *folio, loff_t pos, size_t copied) 653 { 654 const struct iomap *iomap = &iter->iomap; 655 void *addr; 656 657 WARN_ON_ONCE(!folio_test_uptodate(folio)); 658 BUG_ON(!iomap_inline_data_valid(iomap)); 659 660 flush_dcache_folio(folio); 661 addr = kmap_local_folio(folio, pos); 662 memcpy(iomap_inline_data(iomap, pos), addr, copied); 663 kunmap_local(addr); 664 665 mark_inode_dirty(iter->inode); 666 return copied; 667 } 668 669 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 670 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 671 size_t copied, struct folio *folio) 672 { 673 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 674 const struct iomap *srcmap = iomap_iter_srcmap(iter); 675 loff_t old_size = iter->inode->i_size; 676 size_t ret; 677 678 if (srcmap->type == IOMAP_INLINE) { 679 ret = iomap_write_end_inline(iter, folio, pos, copied); 680 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 681 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len, 682 copied, &folio->page, NULL); 683 } else { 684 ret = __iomap_write_end(iter->inode, pos, len, copied, folio); 685 } 686 687 /* 688 * Update the in-memory inode size after copying the data into the page 689 * cache. It's up to the file system to write the updated size to disk, 690 * preferably after I/O completion so that no stale data is exposed. 691 */ 692 if (pos + ret > old_size) { 693 i_size_write(iter->inode, pos + ret); 694 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 695 } 696 folio_unlock(folio); 697 698 if (old_size < pos) 699 pagecache_isize_extended(iter->inode, old_size, pos); 700 if (page_ops && page_ops->page_done) 701 page_ops->page_done(iter->inode, pos, ret, &folio->page); 702 folio_put(folio); 703 704 if (ret < len) 705 iomap_write_failed(iter->inode, pos + ret, len - ret); 706 return ret; 707 } 708 709 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 710 { 711 loff_t length = iomap_length(iter); 712 loff_t pos = iter->pos; 713 ssize_t written = 0; 714 long status = 0; 715 716 do { 717 struct folio *folio; 718 struct page *page; 719 unsigned long offset; /* Offset into pagecache page */ 720 unsigned long bytes; /* Bytes to write to page */ 721 size_t copied; /* Bytes copied from user */ 722 723 offset = offset_in_page(pos); 724 bytes = min_t(unsigned long, PAGE_SIZE - offset, 725 iov_iter_count(i)); 726 again: 727 if (bytes > length) 728 bytes = length; 729 730 /* 731 * Bring in the user page that we'll copy from _first_. 732 * Otherwise there's a nasty deadlock on copying from the 733 * same page as we're writing to, without it being marked 734 * up-to-date. 735 */ 736 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 737 status = -EFAULT; 738 break; 739 } 740 741 status = iomap_write_begin(iter, pos, bytes, &folio); 742 if (unlikely(status)) 743 break; 744 745 page = folio_file_page(folio, pos >> PAGE_SHIFT); 746 if (mapping_writably_mapped(iter->inode->i_mapping)) 747 flush_dcache_page(page); 748 749 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 750 751 status = iomap_write_end(iter, pos, bytes, copied, folio); 752 753 if (unlikely(copied != status)) 754 iov_iter_revert(i, copied - status); 755 756 cond_resched(); 757 if (unlikely(status == 0)) { 758 /* 759 * A short copy made iomap_write_end() reject the 760 * thing entirely. Might be memory poisoning 761 * halfway through, might be a race with munmap, 762 * might be severe memory pressure. 763 */ 764 if (copied) 765 bytes = copied; 766 goto again; 767 } 768 pos += status; 769 written += status; 770 length -= status; 771 772 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 773 } while (iov_iter_count(i) && length); 774 775 return written ? written : status; 776 } 777 778 ssize_t 779 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 780 const struct iomap_ops *ops) 781 { 782 struct iomap_iter iter = { 783 .inode = iocb->ki_filp->f_mapping->host, 784 .pos = iocb->ki_pos, 785 .len = iov_iter_count(i), 786 .flags = IOMAP_WRITE, 787 }; 788 int ret; 789 790 while ((ret = iomap_iter(&iter, ops)) > 0) 791 iter.processed = iomap_write_iter(&iter, i); 792 if (iter.pos == iocb->ki_pos) 793 return ret; 794 return iter.pos - iocb->ki_pos; 795 } 796 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 797 798 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 799 { 800 struct iomap *iomap = &iter->iomap; 801 const struct iomap *srcmap = iomap_iter_srcmap(iter); 802 loff_t pos = iter->pos; 803 loff_t length = iomap_length(iter); 804 long status = 0; 805 loff_t written = 0; 806 807 /* don't bother with blocks that are not shared to start with */ 808 if (!(iomap->flags & IOMAP_F_SHARED)) 809 return length; 810 /* don't bother with holes or unwritten extents */ 811 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 812 return length; 813 814 do { 815 unsigned long offset = offset_in_page(pos); 816 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); 817 struct folio *folio; 818 819 status = iomap_write_begin(iter, pos, bytes, &folio); 820 if (unlikely(status)) 821 return status; 822 823 status = iomap_write_end(iter, pos, bytes, bytes, folio); 824 if (WARN_ON_ONCE(status == 0)) 825 return -EIO; 826 827 cond_resched(); 828 829 pos += status; 830 written += status; 831 length -= status; 832 833 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 834 } while (length); 835 836 return written; 837 } 838 839 int 840 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 841 const struct iomap_ops *ops) 842 { 843 struct iomap_iter iter = { 844 .inode = inode, 845 .pos = pos, 846 .len = len, 847 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 848 }; 849 int ret; 850 851 while ((ret = iomap_iter(&iter, ops)) > 0) 852 iter.processed = iomap_unshare_iter(&iter); 853 return ret; 854 } 855 EXPORT_SYMBOL_GPL(iomap_file_unshare); 856 857 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 858 { 859 const struct iomap *srcmap = iomap_iter_srcmap(iter); 860 loff_t pos = iter->pos; 861 loff_t length = iomap_length(iter); 862 loff_t written = 0; 863 864 /* already zeroed? we're done. */ 865 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 866 return length; 867 868 do { 869 struct folio *folio; 870 int status; 871 size_t offset; 872 size_t bytes = min_t(u64, SIZE_MAX, length); 873 874 status = iomap_write_begin(iter, pos, bytes, &folio); 875 if (status) 876 return status; 877 878 offset = offset_in_folio(folio, pos); 879 if (bytes > folio_size(folio) - offset) 880 bytes = folio_size(folio) - offset; 881 882 folio_zero_range(folio, offset, bytes); 883 folio_mark_accessed(folio); 884 885 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 886 if (WARN_ON_ONCE(bytes == 0)) 887 return -EIO; 888 889 pos += bytes; 890 length -= bytes; 891 written += bytes; 892 if (did_zero) 893 *did_zero = true; 894 } while (length > 0); 895 896 return written; 897 } 898 899 int 900 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 901 const struct iomap_ops *ops) 902 { 903 struct iomap_iter iter = { 904 .inode = inode, 905 .pos = pos, 906 .len = len, 907 .flags = IOMAP_ZERO, 908 }; 909 int ret; 910 911 while ((ret = iomap_iter(&iter, ops)) > 0) 912 iter.processed = iomap_zero_iter(&iter, did_zero); 913 return ret; 914 } 915 EXPORT_SYMBOL_GPL(iomap_zero_range); 916 917 int 918 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 919 const struct iomap_ops *ops) 920 { 921 unsigned int blocksize = i_blocksize(inode); 922 unsigned int off = pos & (blocksize - 1); 923 924 /* Block boundary? Nothing to do */ 925 if (!off) 926 return 0; 927 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 928 } 929 EXPORT_SYMBOL_GPL(iomap_truncate_page); 930 931 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 932 struct folio *folio) 933 { 934 loff_t length = iomap_length(iter); 935 int ret; 936 937 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 938 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 939 &iter->iomap); 940 if (ret) 941 return ret; 942 block_commit_write(&folio->page, 0, length); 943 } else { 944 WARN_ON_ONCE(!folio_test_uptodate(folio)); 945 folio_mark_dirty(folio); 946 } 947 948 return length; 949 } 950 951 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 952 { 953 struct iomap_iter iter = { 954 .inode = file_inode(vmf->vma->vm_file), 955 .flags = IOMAP_WRITE | IOMAP_FAULT, 956 }; 957 struct folio *folio = page_folio(vmf->page); 958 ssize_t ret; 959 960 folio_lock(folio); 961 ret = folio_mkwrite_check_truncate(folio, iter.inode); 962 if (ret < 0) 963 goto out_unlock; 964 iter.pos = folio_pos(folio); 965 iter.len = ret; 966 while ((ret = iomap_iter(&iter, ops)) > 0) 967 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 968 969 if (ret < 0) 970 goto out_unlock; 971 folio_wait_stable(folio); 972 return VM_FAULT_LOCKED; 973 out_unlock: 974 folio_unlock(folio); 975 return block_page_mkwrite_return(ret); 976 } 977 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 978 979 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 980 size_t len, int error) 981 { 982 struct iomap_page *iop = to_iomap_page(folio); 983 984 if (error) { 985 folio_set_error(folio); 986 mapping_set_error(inode->i_mapping, error); 987 } 988 989 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop); 990 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0); 991 992 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending)) 993 folio_end_writeback(folio); 994 } 995 996 /* 997 * We're now finished for good with this ioend structure. Update the page 998 * state, release holds on bios, and finally free up memory. Do not use the 999 * ioend after this. 1000 */ 1001 static u32 1002 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1003 { 1004 struct inode *inode = ioend->io_inode; 1005 struct bio *bio = &ioend->io_inline_bio; 1006 struct bio *last = ioend->io_bio, *next; 1007 u64 start = bio->bi_iter.bi_sector; 1008 loff_t offset = ioend->io_offset; 1009 bool quiet = bio_flagged(bio, BIO_QUIET); 1010 u32 folio_count = 0; 1011 1012 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1013 struct folio_iter fi; 1014 1015 /* 1016 * For the last bio, bi_private points to the ioend, so we 1017 * need to explicitly end the iteration here. 1018 */ 1019 if (bio == last) 1020 next = NULL; 1021 else 1022 next = bio->bi_private; 1023 1024 /* walk all folios in bio, ending page IO on them */ 1025 bio_for_each_folio_all(fi, bio) { 1026 iomap_finish_folio_write(inode, fi.folio, fi.length, 1027 error); 1028 folio_count++; 1029 } 1030 bio_put(bio); 1031 } 1032 /* The ioend has been freed by bio_put() */ 1033 1034 if (unlikely(error && !quiet)) { 1035 printk_ratelimited(KERN_ERR 1036 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1037 inode->i_sb->s_id, inode->i_ino, offset, start); 1038 } 1039 return folio_count; 1040 } 1041 1042 /* 1043 * Ioend completion routine for merged bios. This can only be called from task 1044 * contexts as merged ioends can be of unbound length. Hence we have to break up 1045 * the writeback completions into manageable chunks to avoid long scheduler 1046 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1047 * good batch processing throughput without creating adverse scheduler latency 1048 * conditions. 1049 */ 1050 void 1051 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1052 { 1053 struct list_head tmp; 1054 u32 completions; 1055 1056 might_sleep(); 1057 1058 list_replace_init(&ioend->io_list, &tmp); 1059 completions = iomap_finish_ioend(ioend, error); 1060 1061 while (!list_empty(&tmp)) { 1062 if (completions > IOEND_BATCH_SIZE * 8) { 1063 cond_resched(); 1064 completions = 0; 1065 } 1066 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1067 list_del_init(&ioend->io_list); 1068 completions += iomap_finish_ioend(ioend, error); 1069 } 1070 } 1071 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1072 1073 /* 1074 * We can merge two adjacent ioends if they have the same set of work to do. 1075 */ 1076 static bool 1077 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1078 { 1079 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1080 return false; 1081 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1082 (next->io_flags & IOMAP_F_SHARED)) 1083 return false; 1084 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1085 (next->io_type == IOMAP_UNWRITTEN)) 1086 return false; 1087 if (ioend->io_offset + ioend->io_size != next->io_offset) 1088 return false; 1089 /* 1090 * Do not merge physically discontiguous ioends. The filesystem 1091 * completion functions will have to iterate the physical 1092 * discontiguities even if we merge the ioends at a logical level, so 1093 * we don't gain anything by merging physical discontiguities here. 1094 * 1095 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1096 * submission so does not point to the start sector of the bio at 1097 * completion. 1098 */ 1099 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1100 return false; 1101 return true; 1102 } 1103 1104 void 1105 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1106 { 1107 struct iomap_ioend *next; 1108 1109 INIT_LIST_HEAD(&ioend->io_list); 1110 1111 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1112 io_list))) { 1113 if (!iomap_ioend_can_merge(ioend, next)) 1114 break; 1115 list_move_tail(&next->io_list, &ioend->io_list); 1116 ioend->io_size += next->io_size; 1117 } 1118 } 1119 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1120 1121 static int 1122 iomap_ioend_compare(void *priv, const struct list_head *a, 1123 const struct list_head *b) 1124 { 1125 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1126 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1127 1128 if (ia->io_offset < ib->io_offset) 1129 return -1; 1130 if (ia->io_offset > ib->io_offset) 1131 return 1; 1132 return 0; 1133 } 1134 1135 void 1136 iomap_sort_ioends(struct list_head *ioend_list) 1137 { 1138 list_sort(NULL, ioend_list, iomap_ioend_compare); 1139 } 1140 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1141 1142 static void iomap_writepage_end_bio(struct bio *bio) 1143 { 1144 struct iomap_ioend *ioend = bio->bi_private; 1145 1146 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1147 } 1148 1149 /* 1150 * Submit the final bio for an ioend. 1151 * 1152 * If @error is non-zero, it means that we have a situation where some part of 1153 * the submission process has failed after we've marked pages for writeback 1154 * and unlocked them. In this situation, we need to fail the bio instead of 1155 * submitting it. This typically only happens on a filesystem shutdown. 1156 */ 1157 static int 1158 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1159 int error) 1160 { 1161 ioend->io_bio->bi_private = ioend; 1162 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1163 1164 if (wpc->ops->prepare_ioend) 1165 error = wpc->ops->prepare_ioend(ioend, error); 1166 if (error) { 1167 /* 1168 * If we're failing the IO now, just mark the ioend with an 1169 * error and finish it. This will run IO completion immediately 1170 * as there is only one reference to the ioend at this point in 1171 * time. 1172 */ 1173 ioend->io_bio->bi_status = errno_to_blk_status(error); 1174 bio_endio(ioend->io_bio); 1175 return error; 1176 } 1177 1178 submit_bio(ioend->io_bio); 1179 return 0; 1180 } 1181 1182 static struct iomap_ioend * 1183 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1184 loff_t offset, sector_t sector, struct writeback_control *wbc) 1185 { 1186 struct iomap_ioend *ioend; 1187 struct bio *bio; 1188 1189 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1190 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1191 GFP_NOFS, &iomap_ioend_bioset); 1192 bio->bi_iter.bi_sector = sector; 1193 wbc_init_bio(wbc, bio); 1194 1195 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1196 INIT_LIST_HEAD(&ioend->io_list); 1197 ioend->io_type = wpc->iomap.type; 1198 ioend->io_flags = wpc->iomap.flags; 1199 ioend->io_inode = inode; 1200 ioend->io_size = 0; 1201 ioend->io_folios = 0; 1202 ioend->io_offset = offset; 1203 ioend->io_bio = bio; 1204 ioend->io_sector = sector; 1205 return ioend; 1206 } 1207 1208 /* 1209 * Allocate a new bio, and chain the old bio to the new one. 1210 * 1211 * Note that we have to perform the chaining in this unintuitive order 1212 * so that the bi_private linkage is set up in the right direction for the 1213 * traversal in iomap_finish_ioend(). 1214 */ 1215 static struct bio * 1216 iomap_chain_bio(struct bio *prev) 1217 { 1218 struct bio *new; 1219 1220 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS); 1221 bio_clone_blkg_association(new, prev); 1222 new->bi_iter.bi_sector = bio_end_sector(prev); 1223 1224 bio_chain(prev, new); 1225 bio_get(prev); /* for iomap_finish_ioend */ 1226 submit_bio(prev); 1227 return new; 1228 } 1229 1230 static bool 1231 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1232 sector_t sector) 1233 { 1234 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1235 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1236 return false; 1237 if (wpc->iomap.type != wpc->ioend->io_type) 1238 return false; 1239 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1240 return false; 1241 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1242 return false; 1243 /* 1244 * Limit ioend bio chain lengths to minimise IO completion latency. This 1245 * also prevents long tight loops ending page writeback on all the 1246 * folios in the ioend. 1247 */ 1248 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE) 1249 return false; 1250 return true; 1251 } 1252 1253 /* 1254 * Test to see if we have an existing ioend structure that we could append to 1255 * first; otherwise finish off the current ioend and start another. 1256 */ 1257 static void 1258 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio, 1259 struct iomap_page *iop, struct iomap_writepage_ctx *wpc, 1260 struct writeback_control *wbc, struct list_head *iolist) 1261 { 1262 sector_t sector = iomap_sector(&wpc->iomap, pos); 1263 unsigned len = i_blocksize(inode); 1264 size_t poff = offset_in_folio(folio, pos); 1265 1266 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) { 1267 if (wpc->ioend) 1268 list_add(&wpc->ioend->io_list, iolist); 1269 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc); 1270 } 1271 1272 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) { 1273 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio); 1274 bio_add_folio(wpc->ioend->io_bio, folio, len, poff); 1275 } 1276 1277 if (iop) 1278 atomic_add(len, &iop->write_bytes_pending); 1279 wpc->ioend->io_size += len; 1280 wbc_account_cgroup_owner(wbc, &folio->page, len); 1281 } 1282 1283 /* 1284 * We implement an immediate ioend submission policy here to avoid needing to 1285 * chain multiple ioends and hence nest mempool allocations which can violate 1286 * the forward progress guarantees we need to provide. The current ioend we're 1287 * adding blocks to is cached in the writepage context, and if the new block 1288 * doesn't append to the cached ioend, it will create a new ioend and cache that 1289 * instead. 1290 * 1291 * If a new ioend is created and cached, the old ioend is returned and queued 1292 * locally for submission once the entire page is processed or an error has been 1293 * detected. While ioends are submitted immediately after they are completed, 1294 * batching optimisations are provided by higher level block plugging. 1295 * 1296 * At the end of a writeback pass, there will be a cached ioend remaining on the 1297 * writepage context that the caller will need to submit. 1298 */ 1299 static int 1300 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1301 struct writeback_control *wbc, struct inode *inode, 1302 struct folio *folio, u64 end_pos) 1303 { 1304 struct iomap_page *iop = iomap_page_create(inode, folio); 1305 struct iomap_ioend *ioend, *next; 1306 unsigned len = i_blocksize(inode); 1307 unsigned nblocks = i_blocks_per_folio(inode, folio); 1308 u64 pos = folio_pos(folio); 1309 int error = 0, count = 0, i; 1310 LIST_HEAD(submit_list); 1311 1312 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0); 1313 1314 /* 1315 * Walk through the folio to find areas to write back. If we 1316 * run off the end of the current map or find the current map 1317 * invalid, grab a new one. 1318 */ 1319 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) { 1320 if (iop && !test_bit(i, iop->uptodate)) 1321 continue; 1322 1323 error = wpc->ops->map_blocks(wpc, inode, pos); 1324 if (error) 1325 break; 1326 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1327 continue; 1328 if (wpc->iomap.type == IOMAP_HOLE) 1329 continue; 1330 iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc, 1331 &submit_list); 1332 count++; 1333 } 1334 if (count) 1335 wpc->ioend->io_folios++; 1336 1337 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1338 WARN_ON_ONCE(!folio_test_locked(folio)); 1339 WARN_ON_ONCE(folio_test_writeback(folio)); 1340 WARN_ON_ONCE(folio_test_dirty(folio)); 1341 1342 /* 1343 * We cannot cancel the ioend directly here on error. We may have 1344 * already set other pages under writeback and hence we have to run I/O 1345 * completion to mark the error state of the pages under writeback 1346 * appropriately. 1347 */ 1348 if (unlikely(error)) { 1349 /* 1350 * Let the filesystem know what portion of the current page 1351 * failed to map. If the page hasn't been added to ioend, it 1352 * won't be affected by I/O completion and we must unlock it 1353 * now. 1354 */ 1355 if (wpc->ops->discard_folio) 1356 wpc->ops->discard_folio(folio, pos); 1357 if (!count) { 1358 folio_unlock(folio); 1359 goto done; 1360 } 1361 } 1362 1363 folio_start_writeback(folio); 1364 folio_unlock(folio); 1365 1366 /* 1367 * Preserve the original error if there was one; catch 1368 * submission errors here and propagate into subsequent ioend 1369 * submissions. 1370 */ 1371 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1372 int error2; 1373 1374 list_del_init(&ioend->io_list); 1375 error2 = iomap_submit_ioend(wpc, ioend, error); 1376 if (error2 && !error) 1377 error = error2; 1378 } 1379 1380 /* 1381 * We can end up here with no error and nothing to write only if we race 1382 * with a partial page truncate on a sub-page block sized filesystem. 1383 */ 1384 if (!count) 1385 folio_end_writeback(folio); 1386 done: 1387 mapping_set_error(folio->mapping, error); 1388 return error; 1389 } 1390 1391 /* 1392 * Write out a dirty page. 1393 * 1394 * For delalloc space on the page, we need to allocate space and flush it. 1395 * For unwritten space on the page, we need to start the conversion to 1396 * regular allocated space. 1397 */ 1398 static int 1399 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data) 1400 { 1401 struct folio *folio = page_folio(page); 1402 struct iomap_writepage_ctx *wpc = data; 1403 struct inode *inode = folio->mapping->host; 1404 u64 end_pos, isize; 1405 1406 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio)); 1407 1408 /* 1409 * Refuse to write the folio out if we're called from reclaim context. 1410 * 1411 * This avoids stack overflows when called from deeply used stacks in 1412 * random callers for direct reclaim or memcg reclaim. We explicitly 1413 * allow reclaim from kswapd as the stack usage there is relatively low. 1414 * 1415 * This should never happen except in the case of a VM regression so 1416 * warn about it. 1417 */ 1418 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1419 PF_MEMALLOC)) 1420 goto redirty; 1421 1422 /* 1423 * Is this folio beyond the end of the file? 1424 * 1425 * The folio index is less than the end_index, adjust the end_pos 1426 * to the highest offset that this folio should represent. 1427 * ----------------------------------------------------- 1428 * | file mapping | <EOF> | 1429 * ----------------------------------------------------- 1430 * | Page ... | Page N-2 | Page N-1 | Page N | | 1431 * ^--------------------------------^----------|-------- 1432 * | desired writeback range | see else | 1433 * ---------------------------------^------------------| 1434 */ 1435 isize = i_size_read(inode); 1436 end_pos = folio_pos(folio) + folio_size(folio); 1437 if (end_pos > isize) { 1438 /* 1439 * Check whether the page to write out is beyond or straddles 1440 * i_size or not. 1441 * ------------------------------------------------------- 1442 * | file mapping | <EOF> | 1443 * ------------------------------------------------------- 1444 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1445 * ^--------------------------------^-----------|--------- 1446 * | | Straddles | 1447 * ---------------------------------^-----------|--------| 1448 */ 1449 size_t poff = offset_in_folio(folio, isize); 1450 pgoff_t end_index = isize >> PAGE_SHIFT; 1451 1452 /* 1453 * Skip the page if it's fully outside i_size, e.g. due to a 1454 * truncate operation that's in progress. We must redirty the 1455 * page so that reclaim stops reclaiming it. Otherwise 1456 * iomap_release_folio() is called on it and gets confused. 1457 * 1458 * Note that the end_index is unsigned long. If the given 1459 * offset is greater than 16TB on a 32-bit system then if we 1460 * checked if the page is fully outside i_size with 1461 * "if (page->index >= end_index + 1)", "end_index + 1" would 1462 * overflow and evaluate to 0. Hence this page would be 1463 * redirtied and written out repeatedly, which would result in 1464 * an infinite loop; the user program performing this operation 1465 * would hang. Instead, we can detect this situation by 1466 * checking if the page is totally beyond i_size or if its 1467 * offset is just equal to the EOF. 1468 */ 1469 if (folio->index > end_index || 1470 (folio->index == end_index && poff == 0)) 1471 goto redirty; 1472 1473 /* 1474 * The page straddles i_size. It must be zeroed out on each 1475 * and every writepage invocation because it may be mmapped. 1476 * "A file is mapped in multiples of the page size. For a file 1477 * that is not a multiple of the page size, the remaining 1478 * memory is zeroed when mapped, and writes to that region are 1479 * not written out to the file." 1480 */ 1481 folio_zero_segment(folio, poff, folio_size(folio)); 1482 end_pos = isize; 1483 } 1484 1485 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos); 1486 1487 redirty: 1488 folio_redirty_for_writepage(wbc, folio); 1489 folio_unlock(folio); 1490 return 0; 1491 } 1492 1493 int 1494 iomap_writepage(struct page *page, struct writeback_control *wbc, 1495 struct iomap_writepage_ctx *wpc, 1496 const struct iomap_writeback_ops *ops) 1497 { 1498 int ret; 1499 1500 wpc->ops = ops; 1501 ret = iomap_do_writepage(page, wbc, wpc); 1502 if (!wpc->ioend) 1503 return ret; 1504 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1505 } 1506 EXPORT_SYMBOL_GPL(iomap_writepage); 1507 1508 int 1509 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1510 struct iomap_writepage_ctx *wpc, 1511 const struct iomap_writeback_ops *ops) 1512 { 1513 int ret; 1514 1515 wpc->ops = ops; 1516 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1517 if (!wpc->ioend) 1518 return ret; 1519 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1520 } 1521 EXPORT_SYMBOL_GPL(iomap_writepages); 1522 1523 static int __init iomap_init(void) 1524 { 1525 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1526 offsetof(struct iomap_ioend, io_inline_bio), 1527 BIOSET_NEED_BVECS); 1528 } 1529 fs_initcall(iomap_init); 1530