1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Red Hat, Inc. 4 * Copyright (C) 2016-2019 Christoph Hellwig. 5 */ 6 #include <linux/module.h> 7 #include <linux/compiler.h> 8 #include <linux/fs.h> 9 #include <linux/iomap.h> 10 #include <linux/pagemap.h> 11 #include <linux/uio.h> 12 #include <linux/buffer_head.h> 13 #include <linux/dax.h> 14 #include <linux/writeback.h> 15 #include <linux/list_sort.h> 16 #include <linux/swap.h> 17 #include <linux/bio.h> 18 #include <linux/sched/signal.h> 19 #include <linux/migrate.h> 20 #include "trace.h" 21 22 #include "../internal.h" 23 24 #define IOEND_BATCH_SIZE 4096 25 26 /* 27 * Structure allocated for each folio when block size < folio size 28 * to track sub-folio uptodate status and I/O completions. 29 */ 30 struct iomap_page { 31 atomic_t read_bytes_pending; 32 atomic_t write_bytes_pending; 33 spinlock_t uptodate_lock; 34 unsigned long uptodate[]; 35 }; 36 37 static inline struct iomap_page *to_iomap_page(struct folio *folio) 38 { 39 if (folio_test_private(folio)) 40 return folio_get_private(folio); 41 return NULL; 42 } 43 44 static struct bio_set iomap_ioend_bioset; 45 46 static struct iomap_page * 47 iomap_page_create(struct inode *inode, struct folio *folio, unsigned int flags) 48 { 49 struct iomap_page *iop = to_iomap_page(folio); 50 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 51 gfp_t gfp; 52 53 if (iop || nr_blocks <= 1) 54 return iop; 55 56 if (flags & IOMAP_NOWAIT) 57 gfp = GFP_NOWAIT; 58 else 59 gfp = GFP_NOFS | __GFP_NOFAIL; 60 61 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)), 62 gfp); 63 if (iop) { 64 spin_lock_init(&iop->uptodate_lock); 65 if (folio_test_uptodate(folio)) 66 bitmap_fill(iop->uptodate, nr_blocks); 67 folio_attach_private(folio, iop); 68 } 69 return iop; 70 } 71 72 static void iomap_page_release(struct folio *folio) 73 { 74 struct iomap_page *iop = folio_detach_private(folio); 75 struct inode *inode = folio->mapping->host; 76 unsigned int nr_blocks = i_blocks_per_folio(inode, folio); 77 78 if (!iop) 79 return; 80 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending)); 81 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending)); 82 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) != 83 folio_test_uptodate(folio)); 84 kfree(iop); 85 } 86 87 /* 88 * Calculate the range inside the folio that we actually need to read. 89 */ 90 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio, 91 loff_t *pos, loff_t length, size_t *offp, size_t *lenp) 92 { 93 struct iomap_page *iop = to_iomap_page(folio); 94 loff_t orig_pos = *pos; 95 loff_t isize = i_size_read(inode); 96 unsigned block_bits = inode->i_blkbits; 97 unsigned block_size = (1 << block_bits); 98 size_t poff = offset_in_folio(folio, *pos); 99 size_t plen = min_t(loff_t, folio_size(folio) - poff, length); 100 unsigned first = poff >> block_bits; 101 unsigned last = (poff + plen - 1) >> block_bits; 102 103 /* 104 * If the block size is smaller than the page size, we need to check the 105 * per-block uptodate status and adjust the offset and length if needed 106 * to avoid reading in already uptodate ranges. 107 */ 108 if (iop) { 109 unsigned int i; 110 111 /* move forward for each leading block marked uptodate */ 112 for (i = first; i <= last; i++) { 113 if (!test_bit(i, iop->uptodate)) 114 break; 115 *pos += block_size; 116 poff += block_size; 117 plen -= block_size; 118 first++; 119 } 120 121 /* truncate len if we find any trailing uptodate block(s) */ 122 for ( ; i <= last; i++) { 123 if (test_bit(i, iop->uptodate)) { 124 plen -= (last - i + 1) * block_size; 125 last = i - 1; 126 break; 127 } 128 } 129 } 130 131 /* 132 * If the extent spans the block that contains the i_size, we need to 133 * handle both halves separately so that we properly zero data in the 134 * page cache for blocks that are entirely outside of i_size. 135 */ 136 if (orig_pos <= isize && orig_pos + length > isize) { 137 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits; 138 139 if (first <= end && last > end) 140 plen -= (last - end) * block_size; 141 } 142 143 *offp = poff; 144 *lenp = plen; 145 } 146 147 static void iomap_iop_set_range_uptodate(struct folio *folio, 148 struct iomap_page *iop, size_t off, size_t len) 149 { 150 struct inode *inode = folio->mapping->host; 151 unsigned first = off >> inode->i_blkbits; 152 unsigned last = (off + len - 1) >> inode->i_blkbits; 153 unsigned long flags; 154 155 spin_lock_irqsave(&iop->uptodate_lock, flags); 156 bitmap_set(iop->uptodate, first, last - first + 1); 157 if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio))) 158 folio_mark_uptodate(folio); 159 spin_unlock_irqrestore(&iop->uptodate_lock, flags); 160 } 161 162 static void iomap_set_range_uptodate(struct folio *folio, 163 struct iomap_page *iop, size_t off, size_t len) 164 { 165 if (folio_test_error(folio)) 166 return; 167 168 if (iop) 169 iomap_iop_set_range_uptodate(folio, iop, off, len); 170 else 171 folio_mark_uptodate(folio); 172 } 173 174 static void iomap_finish_folio_read(struct folio *folio, size_t offset, 175 size_t len, int error) 176 { 177 struct iomap_page *iop = to_iomap_page(folio); 178 179 if (unlikely(error)) { 180 folio_clear_uptodate(folio); 181 folio_set_error(folio); 182 } else { 183 iomap_set_range_uptodate(folio, iop, offset, len); 184 } 185 186 if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending)) 187 folio_unlock(folio); 188 } 189 190 static void iomap_read_end_io(struct bio *bio) 191 { 192 int error = blk_status_to_errno(bio->bi_status); 193 struct folio_iter fi; 194 195 bio_for_each_folio_all(fi, bio) 196 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error); 197 bio_put(bio); 198 } 199 200 struct iomap_readpage_ctx { 201 struct folio *cur_folio; 202 bool cur_folio_in_bio; 203 struct bio *bio; 204 struct readahead_control *rac; 205 }; 206 207 /** 208 * iomap_read_inline_data - copy inline data into the page cache 209 * @iter: iteration structure 210 * @folio: folio to copy to 211 * 212 * Copy the inline data in @iter into @folio and zero out the rest of the folio. 213 * Only a single IOMAP_INLINE extent is allowed at the end of each file. 214 * Returns zero for success to complete the read, or the usual negative errno. 215 */ 216 static int iomap_read_inline_data(const struct iomap_iter *iter, 217 struct folio *folio) 218 { 219 struct iomap_page *iop; 220 const struct iomap *iomap = iomap_iter_srcmap(iter); 221 size_t size = i_size_read(iter->inode) - iomap->offset; 222 size_t poff = offset_in_page(iomap->offset); 223 size_t offset = offset_in_folio(folio, iomap->offset); 224 void *addr; 225 226 if (folio_test_uptodate(folio)) 227 return 0; 228 229 if (WARN_ON_ONCE(size > PAGE_SIZE - poff)) 230 return -EIO; 231 if (WARN_ON_ONCE(size > PAGE_SIZE - 232 offset_in_page(iomap->inline_data))) 233 return -EIO; 234 if (WARN_ON_ONCE(size > iomap->length)) 235 return -EIO; 236 if (offset > 0) 237 iop = iomap_page_create(iter->inode, folio, iter->flags); 238 else 239 iop = to_iomap_page(folio); 240 241 addr = kmap_local_folio(folio, offset); 242 memcpy(addr, iomap->inline_data, size); 243 memset(addr + size, 0, PAGE_SIZE - poff - size); 244 kunmap_local(addr); 245 iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff); 246 return 0; 247 } 248 249 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter, 250 loff_t pos) 251 { 252 const struct iomap *srcmap = iomap_iter_srcmap(iter); 253 254 return srcmap->type != IOMAP_MAPPED || 255 (srcmap->flags & IOMAP_F_NEW) || 256 pos >= i_size_read(iter->inode); 257 } 258 259 static loff_t iomap_readpage_iter(const struct iomap_iter *iter, 260 struct iomap_readpage_ctx *ctx, loff_t offset) 261 { 262 const struct iomap *iomap = &iter->iomap; 263 loff_t pos = iter->pos + offset; 264 loff_t length = iomap_length(iter) - offset; 265 struct folio *folio = ctx->cur_folio; 266 struct iomap_page *iop; 267 loff_t orig_pos = pos; 268 size_t poff, plen; 269 sector_t sector; 270 271 if (iomap->type == IOMAP_INLINE) 272 return iomap_read_inline_data(iter, folio); 273 274 /* zero post-eof blocks as the page may be mapped */ 275 iop = iomap_page_create(iter->inode, folio, iter->flags); 276 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen); 277 if (plen == 0) 278 goto done; 279 280 if (iomap_block_needs_zeroing(iter, pos)) { 281 folio_zero_range(folio, poff, plen); 282 iomap_set_range_uptodate(folio, iop, poff, plen); 283 goto done; 284 } 285 286 ctx->cur_folio_in_bio = true; 287 if (iop) 288 atomic_add(plen, &iop->read_bytes_pending); 289 290 sector = iomap_sector(iomap, pos); 291 if (!ctx->bio || 292 bio_end_sector(ctx->bio) != sector || 293 !bio_add_folio(ctx->bio, folio, plen, poff)) { 294 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL); 295 gfp_t orig_gfp = gfp; 296 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE); 297 298 if (ctx->bio) 299 submit_bio(ctx->bio); 300 301 if (ctx->rac) /* same as readahead_gfp_mask */ 302 gfp |= __GFP_NORETRY | __GFP_NOWARN; 303 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs), 304 REQ_OP_READ, gfp); 305 /* 306 * If the bio_alloc fails, try it again for a single page to 307 * avoid having to deal with partial page reads. This emulates 308 * what do_mpage_read_folio does. 309 */ 310 if (!ctx->bio) { 311 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ, 312 orig_gfp); 313 } 314 if (ctx->rac) 315 ctx->bio->bi_opf |= REQ_RAHEAD; 316 ctx->bio->bi_iter.bi_sector = sector; 317 ctx->bio->bi_end_io = iomap_read_end_io; 318 bio_add_folio(ctx->bio, folio, plen, poff); 319 } 320 321 done: 322 /* 323 * Move the caller beyond our range so that it keeps making progress. 324 * For that, we have to include any leading non-uptodate ranges, but 325 * we can skip trailing ones as they will be handled in the next 326 * iteration. 327 */ 328 return pos - orig_pos + plen; 329 } 330 331 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops) 332 { 333 struct iomap_iter iter = { 334 .inode = folio->mapping->host, 335 .pos = folio_pos(folio), 336 .len = folio_size(folio), 337 }; 338 struct iomap_readpage_ctx ctx = { 339 .cur_folio = folio, 340 }; 341 int ret; 342 343 trace_iomap_readpage(iter.inode, 1); 344 345 while ((ret = iomap_iter(&iter, ops)) > 0) 346 iter.processed = iomap_readpage_iter(&iter, &ctx, 0); 347 348 if (ret < 0) 349 folio_set_error(folio); 350 351 if (ctx.bio) { 352 submit_bio(ctx.bio); 353 WARN_ON_ONCE(!ctx.cur_folio_in_bio); 354 } else { 355 WARN_ON_ONCE(ctx.cur_folio_in_bio); 356 folio_unlock(folio); 357 } 358 359 /* 360 * Just like mpage_readahead and block_read_full_folio, we always 361 * return 0 and just set the folio error flag on errors. This 362 * should be cleaned up throughout the stack eventually. 363 */ 364 return 0; 365 } 366 EXPORT_SYMBOL_GPL(iomap_read_folio); 367 368 static loff_t iomap_readahead_iter(const struct iomap_iter *iter, 369 struct iomap_readpage_ctx *ctx) 370 { 371 loff_t length = iomap_length(iter); 372 loff_t done, ret; 373 374 for (done = 0; done < length; done += ret) { 375 if (ctx->cur_folio && 376 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) { 377 if (!ctx->cur_folio_in_bio) 378 folio_unlock(ctx->cur_folio); 379 ctx->cur_folio = NULL; 380 } 381 if (!ctx->cur_folio) { 382 ctx->cur_folio = readahead_folio(ctx->rac); 383 ctx->cur_folio_in_bio = false; 384 } 385 ret = iomap_readpage_iter(iter, ctx, done); 386 if (ret <= 0) 387 return ret; 388 } 389 390 return done; 391 } 392 393 /** 394 * iomap_readahead - Attempt to read pages from a file. 395 * @rac: Describes the pages to be read. 396 * @ops: The operations vector for the filesystem. 397 * 398 * This function is for filesystems to call to implement their readahead 399 * address_space operation. 400 * 401 * Context: The @ops callbacks may submit I/O (eg to read the addresses of 402 * blocks from disc), and may wait for it. The caller may be trying to 403 * access a different page, and so sleeping excessively should be avoided. 404 * It may allocate memory, but should avoid costly allocations. This 405 * function is called with memalloc_nofs set, so allocations will not cause 406 * the filesystem to be reentered. 407 */ 408 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops) 409 { 410 struct iomap_iter iter = { 411 .inode = rac->mapping->host, 412 .pos = readahead_pos(rac), 413 .len = readahead_length(rac), 414 }; 415 struct iomap_readpage_ctx ctx = { 416 .rac = rac, 417 }; 418 419 trace_iomap_readahead(rac->mapping->host, readahead_count(rac)); 420 421 while (iomap_iter(&iter, ops) > 0) 422 iter.processed = iomap_readahead_iter(&iter, &ctx); 423 424 if (ctx.bio) 425 submit_bio(ctx.bio); 426 if (ctx.cur_folio) { 427 if (!ctx.cur_folio_in_bio) 428 folio_unlock(ctx.cur_folio); 429 } 430 } 431 EXPORT_SYMBOL_GPL(iomap_readahead); 432 433 /* 434 * iomap_is_partially_uptodate checks whether blocks within a folio are 435 * uptodate or not. 436 * 437 * Returns true if all blocks which correspond to the specified part 438 * of the folio are uptodate. 439 */ 440 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 441 { 442 struct iomap_page *iop = to_iomap_page(folio); 443 struct inode *inode = folio->mapping->host; 444 unsigned first, last, i; 445 446 if (!iop) 447 return false; 448 449 /* Caller's range may extend past the end of this folio */ 450 count = min(folio_size(folio) - from, count); 451 452 /* First and last blocks in range within folio */ 453 first = from >> inode->i_blkbits; 454 last = (from + count - 1) >> inode->i_blkbits; 455 456 for (i = first; i <= last; i++) 457 if (!test_bit(i, iop->uptodate)) 458 return false; 459 return true; 460 } 461 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate); 462 463 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags) 464 { 465 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio), 466 folio_size(folio)); 467 468 /* 469 * mm accommodates an old ext3 case where clean folios might 470 * not have had the dirty bit cleared. Thus, it can send actual 471 * dirty folios to ->release_folio() via shrink_active_list(); 472 * skip those here. 473 */ 474 if (folio_test_dirty(folio) || folio_test_writeback(folio)) 475 return false; 476 iomap_page_release(folio); 477 return true; 478 } 479 EXPORT_SYMBOL_GPL(iomap_release_folio); 480 481 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len) 482 { 483 trace_iomap_invalidate_folio(folio->mapping->host, 484 folio_pos(folio) + offset, len); 485 486 /* 487 * If we're invalidating the entire folio, clear the dirty state 488 * from it and release it to avoid unnecessary buildup of the LRU. 489 */ 490 if (offset == 0 && len == folio_size(folio)) { 491 WARN_ON_ONCE(folio_test_writeback(folio)); 492 folio_cancel_dirty(folio); 493 iomap_page_release(folio); 494 } else if (folio_test_large(folio)) { 495 /* Must release the iop so the page can be split */ 496 WARN_ON_ONCE(!folio_test_uptodate(folio) && 497 folio_test_dirty(folio)); 498 iomap_page_release(folio); 499 } 500 } 501 EXPORT_SYMBOL_GPL(iomap_invalidate_folio); 502 503 #ifdef CONFIG_MIGRATION 504 int 505 iomap_migrate_page(struct address_space *mapping, struct page *newpage, 506 struct page *page, enum migrate_mode mode) 507 { 508 struct folio *folio = page_folio(page); 509 struct folio *newfolio = page_folio(newpage); 510 int ret; 511 512 ret = folio_migrate_mapping(mapping, newfolio, folio, 0); 513 if (ret != MIGRATEPAGE_SUCCESS) 514 return ret; 515 516 if (folio_test_private(folio)) 517 folio_attach_private(newfolio, folio_detach_private(folio)); 518 519 if (mode != MIGRATE_SYNC_NO_COPY) 520 folio_migrate_copy(newfolio, folio); 521 else 522 folio_migrate_flags(newfolio, folio); 523 return MIGRATEPAGE_SUCCESS; 524 } 525 EXPORT_SYMBOL_GPL(iomap_migrate_page); 526 #endif /* CONFIG_MIGRATION */ 527 528 static void 529 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len) 530 { 531 loff_t i_size = i_size_read(inode); 532 533 /* 534 * Only truncate newly allocated pages beyoned EOF, even if the 535 * write started inside the existing inode size. 536 */ 537 if (pos + len > i_size) 538 truncate_pagecache_range(inode, max(pos, i_size), 539 pos + len - 1); 540 } 541 542 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio, 543 size_t poff, size_t plen, const struct iomap *iomap) 544 { 545 struct bio_vec bvec; 546 struct bio bio; 547 548 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ); 549 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start); 550 bio_add_folio(&bio, folio, plen, poff); 551 return submit_bio_wait(&bio); 552 } 553 554 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 555 size_t len, struct folio *folio) 556 { 557 const struct iomap *srcmap = iomap_iter_srcmap(iter); 558 struct iomap_page *iop; 559 loff_t block_size = i_blocksize(iter->inode); 560 loff_t block_start = round_down(pos, block_size); 561 loff_t block_end = round_up(pos + len, block_size); 562 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio); 563 size_t from = offset_in_folio(folio, pos), to = from + len; 564 size_t poff, plen; 565 566 if (folio_test_uptodate(folio)) 567 return 0; 568 folio_clear_error(folio); 569 570 iop = iomap_page_create(iter->inode, folio, iter->flags); 571 if ((iter->flags & IOMAP_NOWAIT) && !iop && nr_blocks > 1) 572 return -EAGAIN; 573 574 do { 575 iomap_adjust_read_range(iter->inode, folio, &block_start, 576 block_end - block_start, &poff, &plen); 577 if (plen == 0) 578 break; 579 580 if (!(iter->flags & IOMAP_UNSHARE) && 581 (from <= poff || from >= poff + plen) && 582 (to <= poff || to >= poff + plen)) 583 continue; 584 585 if (iomap_block_needs_zeroing(iter, block_start)) { 586 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE)) 587 return -EIO; 588 folio_zero_segments(folio, poff, from, to, poff + plen); 589 } else { 590 int status; 591 592 if (iter->flags & IOMAP_NOWAIT) 593 return -EAGAIN; 594 595 status = iomap_read_folio_sync(block_start, folio, 596 poff, plen, srcmap); 597 if (status) 598 return status; 599 } 600 iomap_set_range_uptodate(folio, iop, poff, plen); 601 } while ((block_start += plen) < block_end); 602 603 return 0; 604 } 605 606 static int iomap_write_begin_inline(const struct iomap_iter *iter, 607 struct folio *folio) 608 { 609 /* needs more work for the tailpacking case; disable for now */ 610 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0)) 611 return -EIO; 612 return iomap_read_inline_data(iter, folio); 613 } 614 615 static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos, 616 size_t len, struct folio **foliop) 617 { 618 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 619 const struct iomap *srcmap = iomap_iter_srcmap(iter); 620 struct folio *folio; 621 unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS; 622 int status = 0; 623 624 if (iter->flags & IOMAP_NOWAIT) 625 fgp |= FGP_NOWAIT; 626 627 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length); 628 if (srcmap != &iter->iomap) 629 BUG_ON(pos + len > srcmap->offset + srcmap->length); 630 631 if (fatal_signal_pending(current)) 632 return -EINTR; 633 634 if (!mapping_large_folio_support(iter->inode->i_mapping)) 635 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos)); 636 637 if (page_ops && page_ops->page_prepare) { 638 status = page_ops->page_prepare(iter->inode, pos, len); 639 if (status) 640 return status; 641 } 642 643 folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT, 644 fgp, mapping_gfp_mask(iter->inode->i_mapping)); 645 if (!folio) { 646 status = (iter->flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOMEM; 647 goto out_no_page; 648 } 649 if (pos + len > folio_pos(folio) + folio_size(folio)) 650 len = folio_pos(folio) + folio_size(folio) - pos; 651 652 if (srcmap->type == IOMAP_INLINE) 653 status = iomap_write_begin_inline(iter, folio); 654 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) 655 status = __block_write_begin_int(folio, pos, len, NULL, srcmap); 656 else 657 status = __iomap_write_begin(iter, pos, len, folio); 658 659 if (unlikely(status)) 660 goto out_unlock; 661 662 *foliop = folio; 663 return 0; 664 665 out_unlock: 666 folio_unlock(folio); 667 folio_put(folio); 668 iomap_write_failed(iter->inode, pos, len); 669 670 out_no_page: 671 if (page_ops && page_ops->page_done) 672 page_ops->page_done(iter->inode, pos, 0, NULL); 673 return status; 674 } 675 676 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len, 677 size_t copied, struct folio *folio) 678 { 679 struct iomap_page *iop = to_iomap_page(folio); 680 flush_dcache_folio(folio); 681 682 /* 683 * The blocks that were entirely written will now be uptodate, so we 684 * don't have to worry about a read_folio reading them and overwriting a 685 * partial write. However, if we've encountered a short write and only 686 * partially written into a block, it will not be marked uptodate, so a 687 * read_folio might come in and destroy our partial write. 688 * 689 * Do the simplest thing and just treat any short write to a 690 * non-uptodate page as a zero-length write, and force the caller to 691 * redo the whole thing. 692 */ 693 if (unlikely(copied < len && !folio_test_uptodate(folio))) 694 return 0; 695 iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len); 696 filemap_dirty_folio(inode->i_mapping, folio); 697 return copied; 698 } 699 700 static size_t iomap_write_end_inline(const struct iomap_iter *iter, 701 struct folio *folio, loff_t pos, size_t copied) 702 { 703 const struct iomap *iomap = &iter->iomap; 704 void *addr; 705 706 WARN_ON_ONCE(!folio_test_uptodate(folio)); 707 BUG_ON(!iomap_inline_data_valid(iomap)); 708 709 flush_dcache_folio(folio); 710 addr = kmap_local_folio(folio, pos); 711 memcpy(iomap_inline_data(iomap, pos), addr, copied); 712 kunmap_local(addr); 713 714 mark_inode_dirty(iter->inode); 715 return copied; 716 } 717 718 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */ 719 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len, 720 size_t copied, struct folio *folio) 721 { 722 const struct iomap_page_ops *page_ops = iter->iomap.page_ops; 723 const struct iomap *srcmap = iomap_iter_srcmap(iter); 724 loff_t old_size = iter->inode->i_size; 725 size_t ret; 726 727 if (srcmap->type == IOMAP_INLINE) { 728 ret = iomap_write_end_inline(iter, folio, pos, copied); 729 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) { 730 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len, 731 copied, &folio->page, NULL); 732 } else { 733 ret = __iomap_write_end(iter->inode, pos, len, copied, folio); 734 } 735 736 /* 737 * Update the in-memory inode size after copying the data into the page 738 * cache. It's up to the file system to write the updated size to disk, 739 * preferably after I/O completion so that no stale data is exposed. 740 */ 741 if (pos + ret > old_size) { 742 i_size_write(iter->inode, pos + ret); 743 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED; 744 } 745 folio_unlock(folio); 746 747 if (old_size < pos) 748 pagecache_isize_extended(iter->inode, old_size, pos); 749 if (page_ops && page_ops->page_done) 750 page_ops->page_done(iter->inode, pos, ret, &folio->page); 751 folio_put(folio); 752 753 if (ret < len) 754 iomap_write_failed(iter->inode, pos + ret, len - ret); 755 return ret; 756 } 757 758 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i) 759 { 760 loff_t length = iomap_length(iter); 761 loff_t pos = iter->pos; 762 ssize_t written = 0; 763 long status = 0; 764 struct address_space *mapping = iter->inode->i_mapping; 765 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0; 766 767 do { 768 struct folio *folio; 769 struct page *page; 770 unsigned long offset; /* Offset into pagecache page */ 771 unsigned long bytes; /* Bytes to write to page */ 772 size_t copied; /* Bytes copied from user */ 773 774 offset = offset_in_page(pos); 775 bytes = min_t(unsigned long, PAGE_SIZE - offset, 776 iov_iter_count(i)); 777 again: 778 status = balance_dirty_pages_ratelimited_flags(mapping, 779 bdp_flags); 780 if (unlikely(status)) 781 break; 782 783 if (bytes > length) 784 bytes = length; 785 786 /* 787 * Bring in the user page that we'll copy from _first_. 788 * Otherwise there's a nasty deadlock on copying from the 789 * same page as we're writing to, without it being marked 790 * up-to-date. 791 * 792 * For async buffered writes the assumption is that the user 793 * page has already been faulted in. This can be optimized by 794 * faulting the user page. 795 */ 796 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 797 status = -EFAULT; 798 break; 799 } 800 801 status = iomap_write_begin(iter, pos, bytes, &folio); 802 if (unlikely(status)) 803 break; 804 805 page = folio_file_page(folio, pos >> PAGE_SHIFT); 806 if (mapping_writably_mapped(mapping)) 807 flush_dcache_page(page); 808 809 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 810 811 status = iomap_write_end(iter, pos, bytes, copied, folio); 812 813 if (unlikely(copied != status)) 814 iov_iter_revert(i, copied - status); 815 816 cond_resched(); 817 if (unlikely(status == 0)) { 818 /* 819 * A short copy made iomap_write_end() reject the 820 * thing entirely. Might be memory poisoning 821 * halfway through, might be a race with munmap, 822 * might be severe memory pressure. 823 */ 824 if (copied) 825 bytes = copied; 826 goto again; 827 } 828 pos += status; 829 written += status; 830 length -= status; 831 } while (iov_iter_count(i) && length); 832 833 if (status == -EAGAIN) { 834 iov_iter_revert(i, written); 835 return -EAGAIN; 836 } 837 return written ? written : status; 838 } 839 840 ssize_t 841 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i, 842 const struct iomap_ops *ops) 843 { 844 struct iomap_iter iter = { 845 .inode = iocb->ki_filp->f_mapping->host, 846 .pos = iocb->ki_pos, 847 .len = iov_iter_count(i), 848 .flags = IOMAP_WRITE, 849 }; 850 int ret; 851 852 if (iocb->ki_flags & IOCB_NOWAIT) 853 iter.flags |= IOMAP_NOWAIT; 854 855 while ((ret = iomap_iter(&iter, ops)) > 0) 856 iter.processed = iomap_write_iter(&iter, i); 857 if (iter.pos == iocb->ki_pos) 858 return ret; 859 return iter.pos - iocb->ki_pos; 860 } 861 EXPORT_SYMBOL_GPL(iomap_file_buffered_write); 862 863 static loff_t iomap_unshare_iter(struct iomap_iter *iter) 864 { 865 struct iomap *iomap = &iter->iomap; 866 const struct iomap *srcmap = iomap_iter_srcmap(iter); 867 loff_t pos = iter->pos; 868 loff_t length = iomap_length(iter); 869 long status = 0; 870 loff_t written = 0; 871 872 /* don't bother with blocks that are not shared to start with */ 873 if (!(iomap->flags & IOMAP_F_SHARED)) 874 return length; 875 /* don't bother with holes or unwritten extents */ 876 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 877 return length; 878 879 do { 880 unsigned long offset = offset_in_page(pos); 881 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length); 882 struct folio *folio; 883 884 status = iomap_write_begin(iter, pos, bytes, &folio); 885 if (unlikely(status)) 886 return status; 887 888 status = iomap_write_end(iter, pos, bytes, bytes, folio); 889 if (WARN_ON_ONCE(status == 0)) 890 return -EIO; 891 892 cond_resched(); 893 894 pos += status; 895 written += status; 896 length -= status; 897 898 balance_dirty_pages_ratelimited(iter->inode->i_mapping); 899 } while (length); 900 901 return written; 902 } 903 904 int 905 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len, 906 const struct iomap_ops *ops) 907 { 908 struct iomap_iter iter = { 909 .inode = inode, 910 .pos = pos, 911 .len = len, 912 .flags = IOMAP_WRITE | IOMAP_UNSHARE, 913 }; 914 int ret; 915 916 while ((ret = iomap_iter(&iter, ops)) > 0) 917 iter.processed = iomap_unshare_iter(&iter); 918 return ret; 919 } 920 EXPORT_SYMBOL_GPL(iomap_file_unshare); 921 922 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero) 923 { 924 const struct iomap *srcmap = iomap_iter_srcmap(iter); 925 loff_t pos = iter->pos; 926 loff_t length = iomap_length(iter); 927 loff_t written = 0; 928 929 /* already zeroed? we're done. */ 930 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 931 return length; 932 933 do { 934 struct folio *folio; 935 int status; 936 size_t offset; 937 size_t bytes = min_t(u64, SIZE_MAX, length); 938 939 status = iomap_write_begin(iter, pos, bytes, &folio); 940 if (status) 941 return status; 942 943 offset = offset_in_folio(folio, pos); 944 if (bytes > folio_size(folio) - offset) 945 bytes = folio_size(folio) - offset; 946 947 folio_zero_range(folio, offset, bytes); 948 folio_mark_accessed(folio); 949 950 bytes = iomap_write_end(iter, pos, bytes, bytes, folio); 951 if (WARN_ON_ONCE(bytes == 0)) 952 return -EIO; 953 954 pos += bytes; 955 length -= bytes; 956 written += bytes; 957 if (did_zero) 958 *did_zero = true; 959 } while (length > 0); 960 961 return written; 962 } 963 964 int 965 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 966 const struct iomap_ops *ops) 967 { 968 struct iomap_iter iter = { 969 .inode = inode, 970 .pos = pos, 971 .len = len, 972 .flags = IOMAP_ZERO, 973 }; 974 int ret; 975 976 while ((ret = iomap_iter(&iter, ops)) > 0) 977 iter.processed = iomap_zero_iter(&iter, did_zero); 978 return ret; 979 } 980 EXPORT_SYMBOL_GPL(iomap_zero_range); 981 982 int 983 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 984 const struct iomap_ops *ops) 985 { 986 unsigned int blocksize = i_blocksize(inode); 987 unsigned int off = pos & (blocksize - 1); 988 989 /* Block boundary? Nothing to do */ 990 if (!off) 991 return 0; 992 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops); 993 } 994 EXPORT_SYMBOL_GPL(iomap_truncate_page); 995 996 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter, 997 struct folio *folio) 998 { 999 loff_t length = iomap_length(iter); 1000 int ret; 1001 1002 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) { 1003 ret = __block_write_begin_int(folio, iter->pos, length, NULL, 1004 &iter->iomap); 1005 if (ret) 1006 return ret; 1007 block_commit_write(&folio->page, 0, length); 1008 } else { 1009 WARN_ON_ONCE(!folio_test_uptodate(folio)); 1010 folio_mark_dirty(folio); 1011 } 1012 1013 return length; 1014 } 1015 1016 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops) 1017 { 1018 struct iomap_iter iter = { 1019 .inode = file_inode(vmf->vma->vm_file), 1020 .flags = IOMAP_WRITE | IOMAP_FAULT, 1021 }; 1022 struct folio *folio = page_folio(vmf->page); 1023 ssize_t ret; 1024 1025 folio_lock(folio); 1026 ret = folio_mkwrite_check_truncate(folio, iter.inode); 1027 if (ret < 0) 1028 goto out_unlock; 1029 iter.pos = folio_pos(folio); 1030 iter.len = ret; 1031 while ((ret = iomap_iter(&iter, ops)) > 0) 1032 iter.processed = iomap_folio_mkwrite_iter(&iter, folio); 1033 1034 if (ret < 0) 1035 goto out_unlock; 1036 folio_wait_stable(folio); 1037 return VM_FAULT_LOCKED; 1038 out_unlock: 1039 folio_unlock(folio); 1040 return block_page_mkwrite_return(ret); 1041 } 1042 EXPORT_SYMBOL_GPL(iomap_page_mkwrite); 1043 1044 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio, 1045 size_t len, int error) 1046 { 1047 struct iomap_page *iop = to_iomap_page(folio); 1048 1049 if (error) { 1050 folio_set_error(folio); 1051 mapping_set_error(inode->i_mapping, error); 1052 } 1053 1054 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop); 1055 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0); 1056 1057 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending)) 1058 folio_end_writeback(folio); 1059 } 1060 1061 /* 1062 * We're now finished for good with this ioend structure. Update the page 1063 * state, release holds on bios, and finally free up memory. Do not use the 1064 * ioend after this. 1065 */ 1066 static u32 1067 iomap_finish_ioend(struct iomap_ioend *ioend, int error) 1068 { 1069 struct inode *inode = ioend->io_inode; 1070 struct bio *bio = &ioend->io_inline_bio; 1071 struct bio *last = ioend->io_bio, *next; 1072 u64 start = bio->bi_iter.bi_sector; 1073 loff_t offset = ioend->io_offset; 1074 bool quiet = bio_flagged(bio, BIO_QUIET); 1075 u32 folio_count = 0; 1076 1077 for (bio = &ioend->io_inline_bio; bio; bio = next) { 1078 struct folio_iter fi; 1079 1080 /* 1081 * For the last bio, bi_private points to the ioend, so we 1082 * need to explicitly end the iteration here. 1083 */ 1084 if (bio == last) 1085 next = NULL; 1086 else 1087 next = bio->bi_private; 1088 1089 /* walk all folios in bio, ending page IO on them */ 1090 bio_for_each_folio_all(fi, bio) { 1091 iomap_finish_folio_write(inode, fi.folio, fi.length, 1092 error); 1093 folio_count++; 1094 } 1095 bio_put(bio); 1096 } 1097 /* The ioend has been freed by bio_put() */ 1098 1099 if (unlikely(error && !quiet)) { 1100 printk_ratelimited(KERN_ERR 1101 "%s: writeback error on inode %lu, offset %lld, sector %llu", 1102 inode->i_sb->s_id, inode->i_ino, offset, start); 1103 } 1104 return folio_count; 1105 } 1106 1107 /* 1108 * Ioend completion routine for merged bios. This can only be called from task 1109 * contexts as merged ioends can be of unbound length. Hence we have to break up 1110 * the writeback completions into manageable chunks to avoid long scheduler 1111 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get 1112 * good batch processing throughput without creating adverse scheduler latency 1113 * conditions. 1114 */ 1115 void 1116 iomap_finish_ioends(struct iomap_ioend *ioend, int error) 1117 { 1118 struct list_head tmp; 1119 u32 completions; 1120 1121 might_sleep(); 1122 1123 list_replace_init(&ioend->io_list, &tmp); 1124 completions = iomap_finish_ioend(ioend, error); 1125 1126 while (!list_empty(&tmp)) { 1127 if (completions > IOEND_BATCH_SIZE * 8) { 1128 cond_resched(); 1129 completions = 0; 1130 } 1131 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list); 1132 list_del_init(&ioend->io_list); 1133 completions += iomap_finish_ioend(ioend, error); 1134 } 1135 } 1136 EXPORT_SYMBOL_GPL(iomap_finish_ioends); 1137 1138 /* 1139 * We can merge two adjacent ioends if they have the same set of work to do. 1140 */ 1141 static bool 1142 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next) 1143 { 1144 if (ioend->io_bio->bi_status != next->io_bio->bi_status) 1145 return false; 1146 if ((ioend->io_flags & IOMAP_F_SHARED) ^ 1147 (next->io_flags & IOMAP_F_SHARED)) 1148 return false; 1149 if ((ioend->io_type == IOMAP_UNWRITTEN) ^ 1150 (next->io_type == IOMAP_UNWRITTEN)) 1151 return false; 1152 if (ioend->io_offset + ioend->io_size != next->io_offset) 1153 return false; 1154 /* 1155 * Do not merge physically discontiguous ioends. The filesystem 1156 * completion functions will have to iterate the physical 1157 * discontiguities even if we merge the ioends at a logical level, so 1158 * we don't gain anything by merging physical discontiguities here. 1159 * 1160 * We cannot use bio->bi_iter.bi_sector here as it is modified during 1161 * submission so does not point to the start sector of the bio at 1162 * completion. 1163 */ 1164 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector) 1165 return false; 1166 return true; 1167 } 1168 1169 void 1170 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends) 1171 { 1172 struct iomap_ioend *next; 1173 1174 INIT_LIST_HEAD(&ioend->io_list); 1175 1176 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend, 1177 io_list))) { 1178 if (!iomap_ioend_can_merge(ioend, next)) 1179 break; 1180 list_move_tail(&next->io_list, &ioend->io_list); 1181 ioend->io_size += next->io_size; 1182 } 1183 } 1184 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge); 1185 1186 static int 1187 iomap_ioend_compare(void *priv, const struct list_head *a, 1188 const struct list_head *b) 1189 { 1190 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list); 1191 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list); 1192 1193 if (ia->io_offset < ib->io_offset) 1194 return -1; 1195 if (ia->io_offset > ib->io_offset) 1196 return 1; 1197 return 0; 1198 } 1199 1200 void 1201 iomap_sort_ioends(struct list_head *ioend_list) 1202 { 1203 list_sort(NULL, ioend_list, iomap_ioend_compare); 1204 } 1205 EXPORT_SYMBOL_GPL(iomap_sort_ioends); 1206 1207 static void iomap_writepage_end_bio(struct bio *bio) 1208 { 1209 struct iomap_ioend *ioend = bio->bi_private; 1210 1211 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status)); 1212 } 1213 1214 /* 1215 * Submit the final bio for an ioend. 1216 * 1217 * If @error is non-zero, it means that we have a situation where some part of 1218 * the submission process has failed after we've marked pages for writeback 1219 * and unlocked them. In this situation, we need to fail the bio instead of 1220 * submitting it. This typically only happens on a filesystem shutdown. 1221 */ 1222 static int 1223 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend, 1224 int error) 1225 { 1226 ioend->io_bio->bi_private = ioend; 1227 ioend->io_bio->bi_end_io = iomap_writepage_end_bio; 1228 1229 if (wpc->ops->prepare_ioend) 1230 error = wpc->ops->prepare_ioend(ioend, error); 1231 if (error) { 1232 /* 1233 * If we're failing the IO now, just mark the ioend with an 1234 * error and finish it. This will run IO completion immediately 1235 * as there is only one reference to the ioend at this point in 1236 * time. 1237 */ 1238 ioend->io_bio->bi_status = errno_to_blk_status(error); 1239 bio_endio(ioend->io_bio); 1240 return error; 1241 } 1242 1243 submit_bio(ioend->io_bio); 1244 return 0; 1245 } 1246 1247 static struct iomap_ioend * 1248 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc, 1249 loff_t offset, sector_t sector, struct writeback_control *wbc) 1250 { 1251 struct iomap_ioend *ioend; 1252 struct bio *bio; 1253 1254 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS, 1255 REQ_OP_WRITE | wbc_to_write_flags(wbc), 1256 GFP_NOFS, &iomap_ioend_bioset); 1257 bio->bi_iter.bi_sector = sector; 1258 wbc_init_bio(wbc, bio); 1259 1260 ioend = container_of(bio, struct iomap_ioend, io_inline_bio); 1261 INIT_LIST_HEAD(&ioend->io_list); 1262 ioend->io_type = wpc->iomap.type; 1263 ioend->io_flags = wpc->iomap.flags; 1264 ioend->io_inode = inode; 1265 ioend->io_size = 0; 1266 ioend->io_folios = 0; 1267 ioend->io_offset = offset; 1268 ioend->io_bio = bio; 1269 ioend->io_sector = sector; 1270 return ioend; 1271 } 1272 1273 /* 1274 * Allocate a new bio, and chain the old bio to the new one. 1275 * 1276 * Note that we have to perform the chaining in this unintuitive order 1277 * so that the bi_private linkage is set up in the right direction for the 1278 * traversal in iomap_finish_ioend(). 1279 */ 1280 static struct bio * 1281 iomap_chain_bio(struct bio *prev) 1282 { 1283 struct bio *new; 1284 1285 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS); 1286 bio_clone_blkg_association(new, prev); 1287 new->bi_iter.bi_sector = bio_end_sector(prev); 1288 1289 bio_chain(prev, new); 1290 bio_get(prev); /* for iomap_finish_ioend */ 1291 submit_bio(prev); 1292 return new; 1293 } 1294 1295 static bool 1296 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset, 1297 sector_t sector) 1298 { 1299 if ((wpc->iomap.flags & IOMAP_F_SHARED) != 1300 (wpc->ioend->io_flags & IOMAP_F_SHARED)) 1301 return false; 1302 if (wpc->iomap.type != wpc->ioend->io_type) 1303 return false; 1304 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size) 1305 return false; 1306 if (sector != bio_end_sector(wpc->ioend->io_bio)) 1307 return false; 1308 /* 1309 * Limit ioend bio chain lengths to minimise IO completion latency. This 1310 * also prevents long tight loops ending page writeback on all the 1311 * folios in the ioend. 1312 */ 1313 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE) 1314 return false; 1315 return true; 1316 } 1317 1318 /* 1319 * Test to see if we have an existing ioend structure that we could append to 1320 * first; otherwise finish off the current ioend and start another. 1321 */ 1322 static void 1323 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio, 1324 struct iomap_page *iop, struct iomap_writepage_ctx *wpc, 1325 struct writeback_control *wbc, struct list_head *iolist) 1326 { 1327 sector_t sector = iomap_sector(&wpc->iomap, pos); 1328 unsigned len = i_blocksize(inode); 1329 size_t poff = offset_in_folio(folio, pos); 1330 1331 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) { 1332 if (wpc->ioend) 1333 list_add(&wpc->ioend->io_list, iolist); 1334 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc); 1335 } 1336 1337 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) { 1338 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio); 1339 bio_add_folio(wpc->ioend->io_bio, folio, len, poff); 1340 } 1341 1342 if (iop) 1343 atomic_add(len, &iop->write_bytes_pending); 1344 wpc->ioend->io_size += len; 1345 wbc_account_cgroup_owner(wbc, &folio->page, len); 1346 } 1347 1348 /* 1349 * We implement an immediate ioend submission policy here to avoid needing to 1350 * chain multiple ioends and hence nest mempool allocations which can violate 1351 * the forward progress guarantees we need to provide. The current ioend we're 1352 * adding blocks to is cached in the writepage context, and if the new block 1353 * doesn't append to the cached ioend, it will create a new ioend and cache that 1354 * instead. 1355 * 1356 * If a new ioend is created and cached, the old ioend is returned and queued 1357 * locally for submission once the entire page is processed or an error has been 1358 * detected. While ioends are submitted immediately after they are completed, 1359 * batching optimisations are provided by higher level block plugging. 1360 * 1361 * At the end of a writeback pass, there will be a cached ioend remaining on the 1362 * writepage context that the caller will need to submit. 1363 */ 1364 static int 1365 iomap_writepage_map(struct iomap_writepage_ctx *wpc, 1366 struct writeback_control *wbc, struct inode *inode, 1367 struct folio *folio, u64 end_pos) 1368 { 1369 struct iomap_page *iop = iomap_page_create(inode, folio, 0); 1370 struct iomap_ioend *ioend, *next; 1371 unsigned len = i_blocksize(inode); 1372 unsigned nblocks = i_blocks_per_folio(inode, folio); 1373 u64 pos = folio_pos(folio); 1374 int error = 0, count = 0, i; 1375 LIST_HEAD(submit_list); 1376 1377 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0); 1378 1379 /* 1380 * Walk through the folio to find areas to write back. If we 1381 * run off the end of the current map or find the current map 1382 * invalid, grab a new one. 1383 */ 1384 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) { 1385 if (iop && !test_bit(i, iop->uptodate)) 1386 continue; 1387 1388 error = wpc->ops->map_blocks(wpc, inode, pos); 1389 if (error) 1390 break; 1391 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE)) 1392 continue; 1393 if (wpc->iomap.type == IOMAP_HOLE) 1394 continue; 1395 iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc, 1396 &submit_list); 1397 count++; 1398 } 1399 if (count) 1400 wpc->ioend->io_folios++; 1401 1402 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list)); 1403 WARN_ON_ONCE(!folio_test_locked(folio)); 1404 WARN_ON_ONCE(folio_test_writeback(folio)); 1405 WARN_ON_ONCE(folio_test_dirty(folio)); 1406 1407 /* 1408 * We cannot cancel the ioend directly here on error. We may have 1409 * already set other pages under writeback and hence we have to run I/O 1410 * completion to mark the error state of the pages under writeback 1411 * appropriately. 1412 */ 1413 if (unlikely(error)) { 1414 /* 1415 * Let the filesystem know what portion of the current page 1416 * failed to map. If the page hasn't been added to ioend, it 1417 * won't be affected by I/O completion and we must unlock it 1418 * now. 1419 */ 1420 if (wpc->ops->discard_folio) 1421 wpc->ops->discard_folio(folio, pos); 1422 if (!count) { 1423 folio_unlock(folio); 1424 goto done; 1425 } 1426 } 1427 1428 folio_start_writeback(folio); 1429 folio_unlock(folio); 1430 1431 /* 1432 * Preserve the original error if there was one; catch 1433 * submission errors here and propagate into subsequent ioend 1434 * submissions. 1435 */ 1436 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1437 int error2; 1438 1439 list_del_init(&ioend->io_list); 1440 error2 = iomap_submit_ioend(wpc, ioend, error); 1441 if (error2 && !error) 1442 error = error2; 1443 } 1444 1445 /* 1446 * We can end up here with no error and nothing to write only if we race 1447 * with a partial page truncate on a sub-page block sized filesystem. 1448 */ 1449 if (!count) 1450 folio_end_writeback(folio); 1451 done: 1452 mapping_set_error(folio->mapping, error); 1453 return error; 1454 } 1455 1456 /* 1457 * Write out a dirty page. 1458 * 1459 * For delalloc space on the page, we need to allocate space and flush it. 1460 * For unwritten space on the page, we need to start the conversion to 1461 * regular allocated space. 1462 */ 1463 static int 1464 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data) 1465 { 1466 struct folio *folio = page_folio(page); 1467 struct iomap_writepage_ctx *wpc = data; 1468 struct inode *inode = folio->mapping->host; 1469 u64 end_pos, isize; 1470 1471 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio)); 1472 1473 /* 1474 * Refuse to write the folio out if we're called from reclaim context. 1475 * 1476 * This avoids stack overflows when called from deeply used stacks in 1477 * random callers for direct reclaim or memcg reclaim. We explicitly 1478 * allow reclaim from kswapd as the stack usage there is relatively low. 1479 * 1480 * This should never happen except in the case of a VM regression so 1481 * warn about it. 1482 */ 1483 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1484 PF_MEMALLOC)) 1485 goto redirty; 1486 1487 /* 1488 * Is this folio beyond the end of the file? 1489 * 1490 * The folio index is less than the end_index, adjust the end_pos 1491 * to the highest offset that this folio should represent. 1492 * ----------------------------------------------------- 1493 * | file mapping | <EOF> | 1494 * ----------------------------------------------------- 1495 * | Page ... | Page N-2 | Page N-1 | Page N | | 1496 * ^--------------------------------^----------|-------- 1497 * | desired writeback range | see else | 1498 * ---------------------------------^------------------| 1499 */ 1500 isize = i_size_read(inode); 1501 end_pos = folio_pos(folio) + folio_size(folio); 1502 if (end_pos > isize) { 1503 /* 1504 * Check whether the page to write out is beyond or straddles 1505 * i_size or not. 1506 * ------------------------------------------------------- 1507 * | file mapping | <EOF> | 1508 * ------------------------------------------------------- 1509 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1510 * ^--------------------------------^-----------|--------- 1511 * | | Straddles | 1512 * ---------------------------------^-----------|--------| 1513 */ 1514 size_t poff = offset_in_folio(folio, isize); 1515 pgoff_t end_index = isize >> PAGE_SHIFT; 1516 1517 /* 1518 * Skip the page if it's fully outside i_size, e.g. due to a 1519 * truncate operation that's in progress. We must redirty the 1520 * page so that reclaim stops reclaiming it. Otherwise 1521 * iomap_release_folio() is called on it and gets confused. 1522 * 1523 * Note that the end_index is unsigned long. If the given 1524 * offset is greater than 16TB on a 32-bit system then if we 1525 * checked if the page is fully outside i_size with 1526 * "if (page->index >= end_index + 1)", "end_index + 1" would 1527 * overflow and evaluate to 0. Hence this page would be 1528 * redirtied and written out repeatedly, which would result in 1529 * an infinite loop; the user program performing this operation 1530 * would hang. Instead, we can detect this situation by 1531 * checking if the page is totally beyond i_size or if its 1532 * offset is just equal to the EOF. 1533 */ 1534 if (folio->index > end_index || 1535 (folio->index == end_index && poff == 0)) 1536 goto redirty; 1537 1538 /* 1539 * The page straddles i_size. It must be zeroed out on each 1540 * and every writepage invocation because it may be mmapped. 1541 * "A file is mapped in multiples of the page size. For a file 1542 * that is not a multiple of the page size, the remaining 1543 * memory is zeroed when mapped, and writes to that region are 1544 * not written out to the file." 1545 */ 1546 folio_zero_segment(folio, poff, folio_size(folio)); 1547 end_pos = isize; 1548 } 1549 1550 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos); 1551 1552 redirty: 1553 folio_redirty_for_writepage(wbc, folio); 1554 folio_unlock(folio); 1555 return 0; 1556 } 1557 1558 int 1559 iomap_writepage(struct page *page, struct writeback_control *wbc, 1560 struct iomap_writepage_ctx *wpc, 1561 const struct iomap_writeback_ops *ops) 1562 { 1563 int ret; 1564 1565 wpc->ops = ops; 1566 ret = iomap_do_writepage(page, wbc, wpc); 1567 if (!wpc->ioend) 1568 return ret; 1569 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1570 } 1571 EXPORT_SYMBOL_GPL(iomap_writepage); 1572 1573 int 1574 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc, 1575 struct iomap_writepage_ctx *wpc, 1576 const struct iomap_writeback_ops *ops) 1577 { 1578 int ret; 1579 1580 wpc->ops = ops; 1581 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc); 1582 if (!wpc->ioend) 1583 return ret; 1584 return iomap_submit_ioend(wpc, wpc->ioend, ret); 1585 } 1586 EXPORT_SYMBOL_GPL(iomap_writepages); 1587 1588 static int __init iomap_init(void) 1589 { 1590 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE), 1591 offsetof(struct iomap_ioend, io_inline_bio), 1592 BIOSET_NEED_BVECS); 1593 } 1594 fs_initcall(iomap_init); 1595