1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/backing-dev.h> 10 #include <linux/hash.h> 11 #include <linux/swap.h> 12 #include <linux/security.h> 13 #include <linux/cdev.h> 14 #include <linux/memblock.h> 15 #include <linux/fsnotify.h> 16 #include <linux/mount.h> 17 #include <linux/posix_acl.h> 18 #include <linux/prefetch.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget() 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __read_mostly; 58 static unsigned int i_hash_shift __read_mostly; 59 static struct hlist_head *inode_hashtable __read_mostly; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 /* 71 * Statistics gathering.. 72 */ 73 struct inodes_stat_t inodes_stat; 74 75 static DEFINE_PER_CPU(unsigned long, nr_inodes); 76 static DEFINE_PER_CPU(unsigned long, nr_unused); 77 78 static struct kmem_cache *inode_cachep __read_mostly; 79 80 static long get_nr_inodes(void) 81 { 82 int i; 83 long sum = 0; 84 for_each_possible_cpu(i) 85 sum += per_cpu(nr_inodes, i); 86 return sum < 0 ? 0 : sum; 87 } 88 89 static inline long get_nr_inodes_unused(void) 90 { 91 int i; 92 long sum = 0; 93 for_each_possible_cpu(i) 94 sum += per_cpu(nr_unused, i); 95 return sum < 0 ? 0 : sum; 96 } 97 98 long get_nr_dirty_inodes(void) 99 { 100 /* not actually dirty inodes, but a wild approximation */ 101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 102 return nr_dirty > 0 ? nr_dirty : 0; 103 } 104 105 /* 106 * Handle nr_inode sysctl 107 */ 108 #ifdef CONFIG_SYSCTL 109 int proc_nr_inodes(struct ctl_table *table, int write, 110 void *buffer, size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 #endif 117 118 static int no_open(struct inode *inode, struct file *file) 119 { 120 return -ENXIO; 121 } 122 123 /** 124 * inode_init_always - perform inode structure initialisation 125 * @sb: superblock inode belongs to 126 * @inode: inode to initialise 127 * 128 * These are initializations that need to be done on every inode 129 * allocation as the fields are not initialised by slab allocation. 130 */ 131 int inode_init_always(struct super_block *sb, struct inode *inode) 132 { 133 static const struct inode_operations empty_iops; 134 static const struct file_operations no_open_fops = {.open = no_open}; 135 struct address_space *const mapping = &inode->i_data; 136 137 inode->i_sb = sb; 138 inode->i_blkbits = sb->s_blocksize_bits; 139 inode->i_flags = 0; 140 atomic64_set(&inode->i_sequence, 0); 141 atomic_set(&inode->i_count, 1); 142 inode->i_op = &empty_iops; 143 inode->i_fop = &no_open_fops; 144 inode->i_ino = 0; 145 inode->__i_nlink = 1; 146 inode->i_opflags = 0; 147 if (sb->s_xattr) 148 inode->i_opflags |= IOP_XATTR; 149 i_uid_write(inode, 0); 150 i_gid_write(inode, 0); 151 atomic_set(&inode->i_writecount, 0); 152 inode->i_size = 0; 153 inode->i_write_hint = WRITE_LIFE_NOT_SET; 154 inode->i_blocks = 0; 155 inode->i_bytes = 0; 156 inode->i_generation = 0; 157 inode->i_pipe = NULL; 158 inode->i_cdev = NULL; 159 inode->i_link = NULL; 160 inode->i_dir_seq = 0; 161 inode->i_rdev = 0; 162 inode->dirtied_when = 0; 163 164 #ifdef CONFIG_CGROUP_WRITEBACK 165 inode->i_wb_frn_winner = 0; 166 inode->i_wb_frn_avg_time = 0; 167 inode->i_wb_frn_history = 0; 168 #endif 169 170 if (security_inode_alloc(inode)) 171 goto out; 172 spin_lock_init(&inode->i_lock); 173 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 174 175 init_rwsem(&inode->i_rwsem); 176 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 177 178 atomic_set(&inode->i_dio_count, 0); 179 180 mapping->a_ops = &empty_aops; 181 mapping->host = inode; 182 mapping->flags = 0; 183 if (sb->s_type->fs_flags & FS_THP_SUPPORT) 184 __set_bit(AS_THP_SUPPORT, &mapping->flags); 185 mapping->wb_err = 0; 186 atomic_set(&mapping->i_mmap_writable, 0); 187 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 188 atomic_set(&mapping->nr_thps, 0); 189 #endif 190 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 191 mapping->private_data = NULL; 192 mapping->writeback_index = 0; 193 inode->i_private = NULL; 194 inode->i_mapping = mapping; 195 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 196 #ifdef CONFIG_FS_POSIX_ACL 197 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 198 #endif 199 200 #ifdef CONFIG_FSNOTIFY 201 inode->i_fsnotify_mask = 0; 202 #endif 203 inode->i_flctx = NULL; 204 this_cpu_inc(nr_inodes); 205 206 return 0; 207 out: 208 return -ENOMEM; 209 } 210 EXPORT_SYMBOL(inode_init_always); 211 212 void free_inode_nonrcu(struct inode *inode) 213 { 214 kmem_cache_free(inode_cachep, inode); 215 } 216 EXPORT_SYMBOL(free_inode_nonrcu); 217 218 static void i_callback(struct rcu_head *head) 219 { 220 struct inode *inode = container_of(head, struct inode, i_rcu); 221 if (inode->free_inode) 222 inode->free_inode(inode); 223 else 224 free_inode_nonrcu(inode); 225 } 226 227 static struct inode *alloc_inode(struct super_block *sb) 228 { 229 const struct super_operations *ops = sb->s_op; 230 struct inode *inode; 231 232 if (ops->alloc_inode) 233 inode = ops->alloc_inode(sb); 234 else 235 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 236 237 if (!inode) 238 return NULL; 239 240 if (unlikely(inode_init_always(sb, inode))) { 241 if (ops->destroy_inode) { 242 ops->destroy_inode(inode); 243 if (!ops->free_inode) 244 return NULL; 245 } 246 inode->free_inode = ops->free_inode; 247 i_callback(&inode->i_rcu); 248 return NULL; 249 } 250 251 return inode; 252 } 253 254 void __destroy_inode(struct inode *inode) 255 { 256 BUG_ON(inode_has_buffers(inode)); 257 inode_detach_wb(inode); 258 security_inode_free(inode); 259 fsnotify_inode_delete(inode); 260 locks_free_lock_context(inode); 261 if (!inode->i_nlink) { 262 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 263 atomic_long_dec(&inode->i_sb->s_remove_count); 264 } 265 266 #ifdef CONFIG_FS_POSIX_ACL 267 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 268 posix_acl_release(inode->i_acl); 269 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 270 posix_acl_release(inode->i_default_acl); 271 #endif 272 this_cpu_dec(nr_inodes); 273 } 274 EXPORT_SYMBOL(__destroy_inode); 275 276 static void destroy_inode(struct inode *inode) 277 { 278 const struct super_operations *ops = inode->i_sb->s_op; 279 280 BUG_ON(!list_empty(&inode->i_lru)); 281 __destroy_inode(inode); 282 if (ops->destroy_inode) { 283 ops->destroy_inode(inode); 284 if (!ops->free_inode) 285 return; 286 } 287 inode->free_inode = ops->free_inode; 288 call_rcu(&inode->i_rcu, i_callback); 289 } 290 291 /** 292 * drop_nlink - directly drop an inode's link count 293 * @inode: inode 294 * 295 * This is a low-level filesystem helper to replace any 296 * direct filesystem manipulation of i_nlink. In cases 297 * where we are attempting to track writes to the 298 * filesystem, a decrement to zero means an imminent 299 * write when the file is truncated and actually unlinked 300 * on the filesystem. 301 */ 302 void drop_nlink(struct inode *inode) 303 { 304 WARN_ON(inode->i_nlink == 0); 305 inode->__i_nlink--; 306 if (!inode->i_nlink) 307 atomic_long_inc(&inode->i_sb->s_remove_count); 308 } 309 EXPORT_SYMBOL(drop_nlink); 310 311 /** 312 * clear_nlink - directly zero an inode's link count 313 * @inode: inode 314 * 315 * This is a low-level filesystem helper to replace any 316 * direct filesystem manipulation of i_nlink. See 317 * drop_nlink() for why we care about i_nlink hitting zero. 318 */ 319 void clear_nlink(struct inode *inode) 320 { 321 if (inode->i_nlink) { 322 inode->__i_nlink = 0; 323 atomic_long_inc(&inode->i_sb->s_remove_count); 324 } 325 } 326 EXPORT_SYMBOL(clear_nlink); 327 328 /** 329 * set_nlink - directly set an inode's link count 330 * @inode: inode 331 * @nlink: new nlink (should be non-zero) 332 * 333 * This is a low-level filesystem helper to replace any 334 * direct filesystem manipulation of i_nlink. 335 */ 336 void set_nlink(struct inode *inode, unsigned int nlink) 337 { 338 if (!nlink) { 339 clear_nlink(inode); 340 } else { 341 /* Yes, some filesystems do change nlink from zero to one */ 342 if (inode->i_nlink == 0) 343 atomic_long_dec(&inode->i_sb->s_remove_count); 344 345 inode->__i_nlink = nlink; 346 } 347 } 348 EXPORT_SYMBOL(set_nlink); 349 350 /** 351 * inc_nlink - directly increment an inode's link count 352 * @inode: inode 353 * 354 * This is a low-level filesystem helper to replace any 355 * direct filesystem manipulation of i_nlink. Currently, 356 * it is only here for parity with dec_nlink(). 357 */ 358 void inc_nlink(struct inode *inode) 359 { 360 if (unlikely(inode->i_nlink == 0)) { 361 WARN_ON(!(inode->i_state & I_LINKABLE)); 362 atomic_long_dec(&inode->i_sb->s_remove_count); 363 } 364 365 inode->__i_nlink++; 366 } 367 EXPORT_SYMBOL(inc_nlink); 368 369 static void __address_space_init_once(struct address_space *mapping) 370 { 371 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 372 init_rwsem(&mapping->i_mmap_rwsem); 373 INIT_LIST_HEAD(&mapping->private_list); 374 spin_lock_init(&mapping->private_lock); 375 mapping->i_mmap = RB_ROOT_CACHED; 376 } 377 378 void address_space_init_once(struct address_space *mapping) 379 { 380 memset(mapping, 0, sizeof(*mapping)); 381 __address_space_init_once(mapping); 382 } 383 EXPORT_SYMBOL(address_space_init_once); 384 385 /* 386 * These are initializations that only need to be done 387 * once, because the fields are idempotent across use 388 * of the inode, so let the slab aware of that. 389 */ 390 void inode_init_once(struct inode *inode) 391 { 392 memset(inode, 0, sizeof(*inode)); 393 INIT_HLIST_NODE(&inode->i_hash); 394 INIT_LIST_HEAD(&inode->i_devices); 395 INIT_LIST_HEAD(&inode->i_io_list); 396 INIT_LIST_HEAD(&inode->i_wb_list); 397 INIT_LIST_HEAD(&inode->i_lru); 398 __address_space_init_once(&inode->i_data); 399 i_size_ordered_init(inode); 400 } 401 EXPORT_SYMBOL(inode_init_once); 402 403 static void init_once(void *foo) 404 { 405 struct inode *inode = (struct inode *) foo; 406 407 inode_init_once(inode); 408 } 409 410 /* 411 * inode->i_lock must be held 412 */ 413 void __iget(struct inode *inode) 414 { 415 atomic_inc(&inode->i_count); 416 } 417 418 /* 419 * get additional reference to inode; caller must already hold one. 420 */ 421 void ihold(struct inode *inode) 422 { 423 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 424 } 425 EXPORT_SYMBOL(ihold); 426 427 static void inode_lru_list_add(struct inode *inode) 428 { 429 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 430 this_cpu_inc(nr_unused); 431 else 432 inode->i_state |= I_REFERENCED; 433 } 434 435 /* 436 * Add inode to LRU if needed (inode is unused and clean). 437 * 438 * Needs inode->i_lock held. 439 */ 440 void inode_add_lru(struct inode *inode) 441 { 442 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 443 I_FREEING | I_WILL_FREE)) && 444 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE) 445 inode_lru_list_add(inode); 446 } 447 448 449 static void inode_lru_list_del(struct inode *inode) 450 { 451 452 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 453 this_cpu_dec(nr_unused); 454 } 455 456 /** 457 * inode_sb_list_add - add inode to the superblock list of inodes 458 * @inode: inode to add 459 */ 460 void inode_sb_list_add(struct inode *inode) 461 { 462 spin_lock(&inode->i_sb->s_inode_list_lock); 463 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 464 spin_unlock(&inode->i_sb->s_inode_list_lock); 465 } 466 EXPORT_SYMBOL_GPL(inode_sb_list_add); 467 468 static inline void inode_sb_list_del(struct inode *inode) 469 { 470 if (!list_empty(&inode->i_sb_list)) { 471 spin_lock(&inode->i_sb->s_inode_list_lock); 472 list_del_init(&inode->i_sb_list); 473 spin_unlock(&inode->i_sb->s_inode_list_lock); 474 } 475 } 476 477 static unsigned long hash(struct super_block *sb, unsigned long hashval) 478 { 479 unsigned long tmp; 480 481 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 482 L1_CACHE_BYTES; 483 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 484 return tmp & i_hash_mask; 485 } 486 487 /** 488 * __insert_inode_hash - hash an inode 489 * @inode: unhashed inode 490 * @hashval: unsigned long value used to locate this object in the 491 * inode_hashtable. 492 * 493 * Add an inode to the inode hash for this superblock. 494 */ 495 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 496 { 497 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 498 499 spin_lock(&inode_hash_lock); 500 spin_lock(&inode->i_lock); 501 hlist_add_head_rcu(&inode->i_hash, b); 502 spin_unlock(&inode->i_lock); 503 spin_unlock(&inode_hash_lock); 504 } 505 EXPORT_SYMBOL(__insert_inode_hash); 506 507 /** 508 * __remove_inode_hash - remove an inode from the hash 509 * @inode: inode to unhash 510 * 511 * Remove an inode from the superblock. 512 */ 513 void __remove_inode_hash(struct inode *inode) 514 { 515 spin_lock(&inode_hash_lock); 516 spin_lock(&inode->i_lock); 517 hlist_del_init_rcu(&inode->i_hash); 518 spin_unlock(&inode->i_lock); 519 spin_unlock(&inode_hash_lock); 520 } 521 EXPORT_SYMBOL(__remove_inode_hash); 522 523 void clear_inode(struct inode *inode) 524 { 525 /* 526 * We have to cycle the i_pages lock here because reclaim can be in the 527 * process of removing the last page (in __delete_from_page_cache()) 528 * and we must not free the mapping under it. 529 */ 530 xa_lock_irq(&inode->i_data.i_pages); 531 BUG_ON(inode->i_data.nrpages); 532 BUG_ON(inode->i_data.nrexceptional); 533 xa_unlock_irq(&inode->i_data.i_pages); 534 BUG_ON(!list_empty(&inode->i_data.private_list)); 535 BUG_ON(!(inode->i_state & I_FREEING)); 536 BUG_ON(inode->i_state & I_CLEAR); 537 BUG_ON(!list_empty(&inode->i_wb_list)); 538 /* don't need i_lock here, no concurrent mods to i_state */ 539 inode->i_state = I_FREEING | I_CLEAR; 540 } 541 EXPORT_SYMBOL(clear_inode); 542 543 /* 544 * Free the inode passed in, removing it from the lists it is still connected 545 * to. We remove any pages still attached to the inode and wait for any IO that 546 * is still in progress before finally destroying the inode. 547 * 548 * An inode must already be marked I_FREEING so that we avoid the inode being 549 * moved back onto lists if we race with other code that manipulates the lists 550 * (e.g. writeback_single_inode). The caller is responsible for setting this. 551 * 552 * An inode must already be removed from the LRU list before being evicted from 553 * the cache. This should occur atomically with setting the I_FREEING state 554 * flag, so no inodes here should ever be on the LRU when being evicted. 555 */ 556 static void evict(struct inode *inode) 557 { 558 const struct super_operations *op = inode->i_sb->s_op; 559 560 BUG_ON(!(inode->i_state & I_FREEING)); 561 BUG_ON(!list_empty(&inode->i_lru)); 562 563 if (!list_empty(&inode->i_io_list)) 564 inode_io_list_del(inode); 565 566 inode_sb_list_del(inode); 567 568 /* 569 * Wait for flusher thread to be done with the inode so that filesystem 570 * does not start destroying it while writeback is still running. Since 571 * the inode has I_FREEING set, flusher thread won't start new work on 572 * the inode. We just have to wait for running writeback to finish. 573 */ 574 inode_wait_for_writeback(inode); 575 576 if (op->evict_inode) { 577 op->evict_inode(inode); 578 } else { 579 truncate_inode_pages_final(&inode->i_data); 580 clear_inode(inode); 581 } 582 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 583 cd_forget(inode); 584 585 remove_inode_hash(inode); 586 587 spin_lock(&inode->i_lock); 588 wake_up_bit(&inode->i_state, __I_NEW); 589 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 590 spin_unlock(&inode->i_lock); 591 592 destroy_inode(inode); 593 } 594 595 /* 596 * dispose_list - dispose of the contents of a local list 597 * @head: the head of the list to free 598 * 599 * Dispose-list gets a local list with local inodes in it, so it doesn't 600 * need to worry about list corruption and SMP locks. 601 */ 602 static void dispose_list(struct list_head *head) 603 { 604 while (!list_empty(head)) { 605 struct inode *inode; 606 607 inode = list_first_entry(head, struct inode, i_lru); 608 list_del_init(&inode->i_lru); 609 610 evict(inode); 611 cond_resched(); 612 } 613 } 614 615 /** 616 * evict_inodes - evict all evictable inodes for a superblock 617 * @sb: superblock to operate on 618 * 619 * Make sure that no inodes with zero refcount are retained. This is 620 * called by superblock shutdown after having SB_ACTIVE flag removed, 621 * so any inode reaching zero refcount during or after that call will 622 * be immediately evicted. 623 */ 624 void evict_inodes(struct super_block *sb) 625 { 626 struct inode *inode, *next; 627 LIST_HEAD(dispose); 628 629 again: 630 spin_lock(&sb->s_inode_list_lock); 631 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 632 if (atomic_read(&inode->i_count)) 633 continue; 634 635 spin_lock(&inode->i_lock); 636 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 637 spin_unlock(&inode->i_lock); 638 continue; 639 } 640 641 inode->i_state |= I_FREEING; 642 inode_lru_list_del(inode); 643 spin_unlock(&inode->i_lock); 644 list_add(&inode->i_lru, &dispose); 645 646 /* 647 * We can have a ton of inodes to evict at unmount time given 648 * enough memory, check to see if we need to go to sleep for a 649 * bit so we don't livelock. 650 */ 651 if (need_resched()) { 652 spin_unlock(&sb->s_inode_list_lock); 653 cond_resched(); 654 dispose_list(&dispose); 655 goto again; 656 } 657 } 658 spin_unlock(&sb->s_inode_list_lock); 659 660 dispose_list(&dispose); 661 } 662 EXPORT_SYMBOL_GPL(evict_inodes); 663 664 /** 665 * invalidate_inodes - attempt to free all inodes on a superblock 666 * @sb: superblock to operate on 667 * @kill_dirty: flag to guide handling of dirty inodes 668 * 669 * Attempts to free all inodes for a given superblock. If there were any 670 * busy inodes return a non-zero value, else zero. 671 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 672 * them as busy. 673 */ 674 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 675 { 676 int busy = 0; 677 struct inode *inode, *next; 678 LIST_HEAD(dispose); 679 680 again: 681 spin_lock(&sb->s_inode_list_lock); 682 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 683 spin_lock(&inode->i_lock); 684 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 685 spin_unlock(&inode->i_lock); 686 continue; 687 } 688 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 689 spin_unlock(&inode->i_lock); 690 busy = 1; 691 continue; 692 } 693 if (atomic_read(&inode->i_count)) { 694 spin_unlock(&inode->i_lock); 695 busy = 1; 696 continue; 697 } 698 699 inode->i_state |= I_FREEING; 700 inode_lru_list_del(inode); 701 spin_unlock(&inode->i_lock); 702 list_add(&inode->i_lru, &dispose); 703 if (need_resched()) { 704 spin_unlock(&sb->s_inode_list_lock); 705 cond_resched(); 706 dispose_list(&dispose); 707 goto again; 708 } 709 } 710 spin_unlock(&sb->s_inode_list_lock); 711 712 dispose_list(&dispose); 713 714 return busy; 715 } 716 717 /* 718 * Isolate the inode from the LRU in preparation for freeing it. 719 * 720 * Any inodes which are pinned purely because of attached pagecache have their 721 * pagecache removed. If the inode has metadata buffers attached to 722 * mapping->private_list then try to remove them. 723 * 724 * If the inode has the I_REFERENCED flag set, then it means that it has been 725 * used recently - the flag is set in iput_final(). When we encounter such an 726 * inode, clear the flag and move it to the back of the LRU so it gets another 727 * pass through the LRU before it gets reclaimed. This is necessary because of 728 * the fact we are doing lazy LRU updates to minimise lock contention so the 729 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 730 * with this flag set because they are the inodes that are out of order. 731 */ 732 static enum lru_status inode_lru_isolate(struct list_head *item, 733 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 734 { 735 struct list_head *freeable = arg; 736 struct inode *inode = container_of(item, struct inode, i_lru); 737 738 /* 739 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 740 * If we fail to get the lock, just skip it. 741 */ 742 if (!spin_trylock(&inode->i_lock)) 743 return LRU_SKIP; 744 745 /* 746 * Referenced or dirty inodes are still in use. Give them another pass 747 * through the LRU as we canot reclaim them now. 748 */ 749 if (atomic_read(&inode->i_count) || 750 (inode->i_state & ~I_REFERENCED)) { 751 list_lru_isolate(lru, &inode->i_lru); 752 spin_unlock(&inode->i_lock); 753 this_cpu_dec(nr_unused); 754 return LRU_REMOVED; 755 } 756 757 /* recently referenced inodes get one more pass */ 758 if (inode->i_state & I_REFERENCED) { 759 inode->i_state &= ~I_REFERENCED; 760 spin_unlock(&inode->i_lock); 761 return LRU_ROTATE; 762 } 763 764 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 765 __iget(inode); 766 spin_unlock(&inode->i_lock); 767 spin_unlock(lru_lock); 768 if (remove_inode_buffers(inode)) { 769 unsigned long reap; 770 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 771 if (current_is_kswapd()) 772 __count_vm_events(KSWAPD_INODESTEAL, reap); 773 else 774 __count_vm_events(PGINODESTEAL, reap); 775 if (current->reclaim_state) 776 current->reclaim_state->reclaimed_slab += reap; 777 } 778 iput(inode); 779 spin_lock(lru_lock); 780 return LRU_RETRY; 781 } 782 783 WARN_ON(inode->i_state & I_NEW); 784 inode->i_state |= I_FREEING; 785 list_lru_isolate_move(lru, &inode->i_lru, freeable); 786 spin_unlock(&inode->i_lock); 787 788 this_cpu_dec(nr_unused); 789 return LRU_REMOVED; 790 } 791 792 /* 793 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 794 * This is called from the superblock shrinker function with a number of inodes 795 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 796 * then are freed outside inode_lock by dispose_list(). 797 */ 798 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 799 { 800 LIST_HEAD(freeable); 801 long freed; 802 803 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 804 inode_lru_isolate, &freeable); 805 dispose_list(&freeable); 806 return freed; 807 } 808 809 static void __wait_on_freeing_inode(struct inode *inode); 810 /* 811 * Called with the inode lock held. 812 */ 813 static struct inode *find_inode(struct super_block *sb, 814 struct hlist_head *head, 815 int (*test)(struct inode *, void *), 816 void *data) 817 { 818 struct inode *inode = NULL; 819 820 repeat: 821 hlist_for_each_entry(inode, head, i_hash) { 822 if (inode->i_sb != sb) 823 continue; 824 if (!test(inode, data)) 825 continue; 826 spin_lock(&inode->i_lock); 827 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 828 __wait_on_freeing_inode(inode); 829 goto repeat; 830 } 831 if (unlikely(inode->i_state & I_CREATING)) { 832 spin_unlock(&inode->i_lock); 833 return ERR_PTR(-ESTALE); 834 } 835 __iget(inode); 836 spin_unlock(&inode->i_lock); 837 return inode; 838 } 839 return NULL; 840 } 841 842 /* 843 * find_inode_fast is the fast path version of find_inode, see the comment at 844 * iget_locked for details. 845 */ 846 static struct inode *find_inode_fast(struct super_block *sb, 847 struct hlist_head *head, unsigned long ino) 848 { 849 struct inode *inode = NULL; 850 851 repeat: 852 hlist_for_each_entry(inode, head, i_hash) { 853 if (inode->i_ino != ino) 854 continue; 855 if (inode->i_sb != sb) 856 continue; 857 spin_lock(&inode->i_lock); 858 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 859 __wait_on_freeing_inode(inode); 860 goto repeat; 861 } 862 if (unlikely(inode->i_state & I_CREATING)) { 863 spin_unlock(&inode->i_lock); 864 return ERR_PTR(-ESTALE); 865 } 866 __iget(inode); 867 spin_unlock(&inode->i_lock); 868 return inode; 869 } 870 return NULL; 871 } 872 873 /* 874 * Each cpu owns a range of LAST_INO_BATCH numbers. 875 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 876 * to renew the exhausted range. 877 * 878 * This does not significantly increase overflow rate because every CPU can 879 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 880 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 881 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 882 * overflow rate by 2x, which does not seem too significant. 883 * 884 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 885 * error if st_ino won't fit in target struct field. Use 32bit counter 886 * here to attempt to avoid that. 887 */ 888 #define LAST_INO_BATCH 1024 889 static DEFINE_PER_CPU(unsigned int, last_ino); 890 891 unsigned int get_next_ino(void) 892 { 893 unsigned int *p = &get_cpu_var(last_ino); 894 unsigned int res = *p; 895 896 #ifdef CONFIG_SMP 897 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 898 static atomic_t shared_last_ino; 899 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 900 901 res = next - LAST_INO_BATCH; 902 } 903 #endif 904 905 res++; 906 /* get_next_ino should not provide a 0 inode number */ 907 if (unlikely(!res)) 908 res++; 909 *p = res; 910 put_cpu_var(last_ino); 911 return res; 912 } 913 EXPORT_SYMBOL(get_next_ino); 914 915 /** 916 * new_inode_pseudo - obtain an inode 917 * @sb: superblock 918 * 919 * Allocates a new inode for given superblock. 920 * Inode wont be chained in superblock s_inodes list 921 * This means : 922 * - fs can't be unmount 923 * - quotas, fsnotify, writeback can't work 924 */ 925 struct inode *new_inode_pseudo(struct super_block *sb) 926 { 927 struct inode *inode = alloc_inode(sb); 928 929 if (inode) { 930 spin_lock(&inode->i_lock); 931 inode->i_state = 0; 932 spin_unlock(&inode->i_lock); 933 INIT_LIST_HEAD(&inode->i_sb_list); 934 } 935 return inode; 936 } 937 938 /** 939 * new_inode - obtain an inode 940 * @sb: superblock 941 * 942 * Allocates a new inode for given superblock. The default gfp_mask 943 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 944 * If HIGHMEM pages are unsuitable or it is known that pages allocated 945 * for the page cache are not reclaimable or migratable, 946 * mapping_set_gfp_mask() must be called with suitable flags on the 947 * newly created inode's mapping 948 * 949 */ 950 struct inode *new_inode(struct super_block *sb) 951 { 952 struct inode *inode; 953 954 spin_lock_prefetch(&sb->s_inode_list_lock); 955 956 inode = new_inode_pseudo(sb); 957 if (inode) 958 inode_sb_list_add(inode); 959 return inode; 960 } 961 EXPORT_SYMBOL(new_inode); 962 963 #ifdef CONFIG_DEBUG_LOCK_ALLOC 964 void lockdep_annotate_inode_mutex_key(struct inode *inode) 965 { 966 if (S_ISDIR(inode->i_mode)) { 967 struct file_system_type *type = inode->i_sb->s_type; 968 969 /* Set new key only if filesystem hasn't already changed it */ 970 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 971 /* 972 * ensure nobody is actually holding i_mutex 973 */ 974 // mutex_destroy(&inode->i_mutex); 975 init_rwsem(&inode->i_rwsem); 976 lockdep_set_class(&inode->i_rwsem, 977 &type->i_mutex_dir_key); 978 } 979 } 980 } 981 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 982 #endif 983 984 /** 985 * unlock_new_inode - clear the I_NEW state and wake up any waiters 986 * @inode: new inode to unlock 987 * 988 * Called when the inode is fully initialised to clear the new state of the 989 * inode and wake up anyone waiting for the inode to finish initialisation. 990 */ 991 void unlock_new_inode(struct inode *inode) 992 { 993 lockdep_annotate_inode_mutex_key(inode); 994 spin_lock(&inode->i_lock); 995 WARN_ON(!(inode->i_state & I_NEW)); 996 inode->i_state &= ~I_NEW & ~I_CREATING; 997 smp_mb(); 998 wake_up_bit(&inode->i_state, __I_NEW); 999 spin_unlock(&inode->i_lock); 1000 } 1001 EXPORT_SYMBOL(unlock_new_inode); 1002 1003 void discard_new_inode(struct inode *inode) 1004 { 1005 lockdep_annotate_inode_mutex_key(inode); 1006 spin_lock(&inode->i_lock); 1007 WARN_ON(!(inode->i_state & I_NEW)); 1008 inode->i_state &= ~I_NEW; 1009 smp_mb(); 1010 wake_up_bit(&inode->i_state, __I_NEW); 1011 spin_unlock(&inode->i_lock); 1012 iput(inode); 1013 } 1014 EXPORT_SYMBOL(discard_new_inode); 1015 1016 /** 1017 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1018 * 1019 * Lock any non-NULL argument that is not a directory. 1020 * Zero, one or two objects may be locked by this function. 1021 * 1022 * @inode1: first inode to lock 1023 * @inode2: second inode to lock 1024 */ 1025 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1026 { 1027 if (inode1 > inode2) 1028 swap(inode1, inode2); 1029 1030 if (inode1 && !S_ISDIR(inode1->i_mode)) 1031 inode_lock(inode1); 1032 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1033 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1034 } 1035 EXPORT_SYMBOL(lock_two_nondirectories); 1036 1037 /** 1038 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1039 * @inode1: first inode to unlock 1040 * @inode2: second inode to unlock 1041 */ 1042 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1043 { 1044 if (inode1 && !S_ISDIR(inode1->i_mode)) 1045 inode_unlock(inode1); 1046 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1047 inode_unlock(inode2); 1048 } 1049 EXPORT_SYMBOL(unlock_two_nondirectories); 1050 1051 /** 1052 * inode_insert5 - obtain an inode from a mounted file system 1053 * @inode: pre-allocated inode to use for insert to cache 1054 * @hashval: hash value (usually inode number) to get 1055 * @test: callback used for comparisons between inodes 1056 * @set: callback used to initialize a new struct inode 1057 * @data: opaque data pointer to pass to @test and @set 1058 * 1059 * Search for the inode specified by @hashval and @data in the inode cache, 1060 * and if present it is return it with an increased reference count. This is 1061 * a variant of iget5_locked() for callers that don't want to fail on memory 1062 * allocation of inode. 1063 * 1064 * If the inode is not in cache, insert the pre-allocated inode to cache and 1065 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1066 * to fill it in before unlocking it via unlock_new_inode(). 1067 * 1068 * Note both @test and @set are called with the inode_hash_lock held, so can't 1069 * sleep. 1070 */ 1071 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1072 int (*test)(struct inode *, void *), 1073 int (*set)(struct inode *, void *), void *data) 1074 { 1075 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1076 struct inode *old; 1077 bool creating = inode->i_state & I_CREATING; 1078 1079 again: 1080 spin_lock(&inode_hash_lock); 1081 old = find_inode(inode->i_sb, head, test, data); 1082 if (unlikely(old)) { 1083 /* 1084 * Uhhuh, somebody else created the same inode under us. 1085 * Use the old inode instead of the preallocated one. 1086 */ 1087 spin_unlock(&inode_hash_lock); 1088 if (IS_ERR(old)) 1089 return NULL; 1090 wait_on_inode(old); 1091 if (unlikely(inode_unhashed(old))) { 1092 iput(old); 1093 goto again; 1094 } 1095 return old; 1096 } 1097 1098 if (set && unlikely(set(inode, data))) { 1099 inode = NULL; 1100 goto unlock; 1101 } 1102 1103 /* 1104 * Return the locked inode with I_NEW set, the 1105 * caller is responsible for filling in the contents 1106 */ 1107 spin_lock(&inode->i_lock); 1108 inode->i_state |= I_NEW; 1109 hlist_add_head_rcu(&inode->i_hash, head); 1110 spin_unlock(&inode->i_lock); 1111 if (!creating) 1112 inode_sb_list_add(inode); 1113 unlock: 1114 spin_unlock(&inode_hash_lock); 1115 1116 return inode; 1117 } 1118 EXPORT_SYMBOL(inode_insert5); 1119 1120 /** 1121 * iget5_locked - obtain an inode from a mounted file system 1122 * @sb: super block of file system 1123 * @hashval: hash value (usually inode number) to get 1124 * @test: callback used for comparisons between inodes 1125 * @set: callback used to initialize a new struct inode 1126 * @data: opaque data pointer to pass to @test and @set 1127 * 1128 * Search for the inode specified by @hashval and @data in the inode cache, 1129 * and if present it is return it with an increased reference count. This is 1130 * a generalized version of iget_locked() for file systems where the inode 1131 * number is not sufficient for unique identification of an inode. 1132 * 1133 * If the inode is not in cache, allocate a new inode and return it locked, 1134 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1135 * before unlocking it via unlock_new_inode(). 1136 * 1137 * Note both @test and @set are called with the inode_hash_lock held, so can't 1138 * sleep. 1139 */ 1140 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1141 int (*test)(struct inode *, void *), 1142 int (*set)(struct inode *, void *), void *data) 1143 { 1144 struct inode *inode = ilookup5(sb, hashval, test, data); 1145 1146 if (!inode) { 1147 struct inode *new = alloc_inode(sb); 1148 1149 if (new) { 1150 new->i_state = 0; 1151 inode = inode_insert5(new, hashval, test, set, data); 1152 if (unlikely(inode != new)) 1153 destroy_inode(new); 1154 } 1155 } 1156 return inode; 1157 } 1158 EXPORT_SYMBOL(iget5_locked); 1159 1160 /** 1161 * iget_locked - obtain an inode from a mounted file system 1162 * @sb: super block of file system 1163 * @ino: inode number to get 1164 * 1165 * Search for the inode specified by @ino in the inode cache and if present 1166 * return it with an increased reference count. This is for file systems 1167 * where the inode number is sufficient for unique identification of an inode. 1168 * 1169 * If the inode is not in cache, allocate a new inode and return it locked, 1170 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1171 * before unlocking it via unlock_new_inode(). 1172 */ 1173 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1174 { 1175 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1176 struct inode *inode; 1177 again: 1178 spin_lock(&inode_hash_lock); 1179 inode = find_inode_fast(sb, head, ino); 1180 spin_unlock(&inode_hash_lock); 1181 if (inode) { 1182 if (IS_ERR(inode)) 1183 return NULL; 1184 wait_on_inode(inode); 1185 if (unlikely(inode_unhashed(inode))) { 1186 iput(inode); 1187 goto again; 1188 } 1189 return inode; 1190 } 1191 1192 inode = alloc_inode(sb); 1193 if (inode) { 1194 struct inode *old; 1195 1196 spin_lock(&inode_hash_lock); 1197 /* We released the lock, so.. */ 1198 old = find_inode_fast(sb, head, ino); 1199 if (!old) { 1200 inode->i_ino = ino; 1201 spin_lock(&inode->i_lock); 1202 inode->i_state = I_NEW; 1203 hlist_add_head_rcu(&inode->i_hash, head); 1204 spin_unlock(&inode->i_lock); 1205 inode_sb_list_add(inode); 1206 spin_unlock(&inode_hash_lock); 1207 1208 /* Return the locked inode with I_NEW set, the 1209 * caller is responsible for filling in the contents 1210 */ 1211 return inode; 1212 } 1213 1214 /* 1215 * Uhhuh, somebody else created the same inode under 1216 * us. Use the old inode instead of the one we just 1217 * allocated. 1218 */ 1219 spin_unlock(&inode_hash_lock); 1220 destroy_inode(inode); 1221 if (IS_ERR(old)) 1222 return NULL; 1223 inode = old; 1224 wait_on_inode(inode); 1225 if (unlikely(inode_unhashed(inode))) { 1226 iput(inode); 1227 goto again; 1228 } 1229 } 1230 return inode; 1231 } 1232 EXPORT_SYMBOL(iget_locked); 1233 1234 /* 1235 * search the inode cache for a matching inode number. 1236 * If we find one, then the inode number we are trying to 1237 * allocate is not unique and so we should not use it. 1238 * 1239 * Returns 1 if the inode number is unique, 0 if it is not. 1240 */ 1241 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1242 { 1243 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1244 struct inode *inode; 1245 1246 hlist_for_each_entry_rcu(inode, b, i_hash) { 1247 if (inode->i_ino == ino && inode->i_sb == sb) 1248 return 0; 1249 } 1250 return 1; 1251 } 1252 1253 /** 1254 * iunique - get a unique inode number 1255 * @sb: superblock 1256 * @max_reserved: highest reserved inode number 1257 * 1258 * Obtain an inode number that is unique on the system for a given 1259 * superblock. This is used by file systems that have no natural 1260 * permanent inode numbering system. An inode number is returned that 1261 * is higher than the reserved limit but unique. 1262 * 1263 * BUGS: 1264 * With a large number of inodes live on the file system this function 1265 * currently becomes quite slow. 1266 */ 1267 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1268 { 1269 /* 1270 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1271 * error if st_ino won't fit in target struct field. Use 32bit counter 1272 * here to attempt to avoid that. 1273 */ 1274 static DEFINE_SPINLOCK(iunique_lock); 1275 static unsigned int counter; 1276 ino_t res; 1277 1278 rcu_read_lock(); 1279 spin_lock(&iunique_lock); 1280 do { 1281 if (counter <= max_reserved) 1282 counter = max_reserved + 1; 1283 res = counter++; 1284 } while (!test_inode_iunique(sb, res)); 1285 spin_unlock(&iunique_lock); 1286 rcu_read_unlock(); 1287 1288 return res; 1289 } 1290 EXPORT_SYMBOL(iunique); 1291 1292 struct inode *igrab(struct inode *inode) 1293 { 1294 spin_lock(&inode->i_lock); 1295 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1296 __iget(inode); 1297 spin_unlock(&inode->i_lock); 1298 } else { 1299 spin_unlock(&inode->i_lock); 1300 /* 1301 * Handle the case where s_op->clear_inode is not been 1302 * called yet, and somebody is calling igrab 1303 * while the inode is getting freed. 1304 */ 1305 inode = NULL; 1306 } 1307 return inode; 1308 } 1309 EXPORT_SYMBOL(igrab); 1310 1311 /** 1312 * ilookup5_nowait - search for an inode in the inode cache 1313 * @sb: super block of file system to search 1314 * @hashval: hash value (usually inode number) to search for 1315 * @test: callback used for comparisons between inodes 1316 * @data: opaque data pointer to pass to @test 1317 * 1318 * Search for the inode specified by @hashval and @data in the inode cache. 1319 * If the inode is in the cache, the inode is returned with an incremented 1320 * reference count. 1321 * 1322 * Note: I_NEW is not waited upon so you have to be very careful what you do 1323 * with the returned inode. You probably should be using ilookup5() instead. 1324 * 1325 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1326 */ 1327 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1328 int (*test)(struct inode *, void *), void *data) 1329 { 1330 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1331 struct inode *inode; 1332 1333 spin_lock(&inode_hash_lock); 1334 inode = find_inode(sb, head, test, data); 1335 spin_unlock(&inode_hash_lock); 1336 1337 return IS_ERR(inode) ? NULL : inode; 1338 } 1339 EXPORT_SYMBOL(ilookup5_nowait); 1340 1341 /** 1342 * ilookup5 - search for an inode in the inode cache 1343 * @sb: super block of file system to search 1344 * @hashval: hash value (usually inode number) to search for 1345 * @test: callback used for comparisons between inodes 1346 * @data: opaque data pointer to pass to @test 1347 * 1348 * Search for the inode specified by @hashval and @data in the inode cache, 1349 * and if the inode is in the cache, return the inode with an incremented 1350 * reference count. Waits on I_NEW before returning the inode. 1351 * returned with an incremented reference count. 1352 * 1353 * This is a generalized version of ilookup() for file systems where the 1354 * inode number is not sufficient for unique identification of an inode. 1355 * 1356 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1357 */ 1358 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1359 int (*test)(struct inode *, void *), void *data) 1360 { 1361 struct inode *inode; 1362 again: 1363 inode = ilookup5_nowait(sb, hashval, test, data); 1364 if (inode) { 1365 wait_on_inode(inode); 1366 if (unlikely(inode_unhashed(inode))) { 1367 iput(inode); 1368 goto again; 1369 } 1370 } 1371 return inode; 1372 } 1373 EXPORT_SYMBOL(ilookup5); 1374 1375 /** 1376 * ilookup - search for an inode in the inode cache 1377 * @sb: super block of file system to search 1378 * @ino: inode number to search for 1379 * 1380 * Search for the inode @ino in the inode cache, and if the inode is in the 1381 * cache, the inode is returned with an incremented reference count. 1382 */ 1383 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1384 { 1385 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1386 struct inode *inode; 1387 again: 1388 spin_lock(&inode_hash_lock); 1389 inode = find_inode_fast(sb, head, ino); 1390 spin_unlock(&inode_hash_lock); 1391 1392 if (inode) { 1393 if (IS_ERR(inode)) 1394 return NULL; 1395 wait_on_inode(inode); 1396 if (unlikely(inode_unhashed(inode))) { 1397 iput(inode); 1398 goto again; 1399 } 1400 } 1401 return inode; 1402 } 1403 EXPORT_SYMBOL(ilookup); 1404 1405 /** 1406 * find_inode_nowait - find an inode in the inode cache 1407 * @sb: super block of file system to search 1408 * @hashval: hash value (usually inode number) to search for 1409 * @match: callback used for comparisons between inodes 1410 * @data: opaque data pointer to pass to @match 1411 * 1412 * Search for the inode specified by @hashval and @data in the inode 1413 * cache, where the helper function @match will return 0 if the inode 1414 * does not match, 1 if the inode does match, and -1 if the search 1415 * should be stopped. The @match function must be responsible for 1416 * taking the i_lock spin_lock and checking i_state for an inode being 1417 * freed or being initialized, and incrementing the reference count 1418 * before returning 1. It also must not sleep, since it is called with 1419 * the inode_hash_lock spinlock held. 1420 * 1421 * This is a even more generalized version of ilookup5() when the 1422 * function must never block --- find_inode() can block in 1423 * __wait_on_freeing_inode() --- or when the caller can not increment 1424 * the reference count because the resulting iput() might cause an 1425 * inode eviction. The tradeoff is that the @match funtion must be 1426 * very carefully implemented. 1427 */ 1428 struct inode *find_inode_nowait(struct super_block *sb, 1429 unsigned long hashval, 1430 int (*match)(struct inode *, unsigned long, 1431 void *), 1432 void *data) 1433 { 1434 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1435 struct inode *inode, *ret_inode = NULL; 1436 int mval; 1437 1438 spin_lock(&inode_hash_lock); 1439 hlist_for_each_entry(inode, head, i_hash) { 1440 if (inode->i_sb != sb) 1441 continue; 1442 mval = match(inode, hashval, data); 1443 if (mval == 0) 1444 continue; 1445 if (mval == 1) 1446 ret_inode = inode; 1447 goto out; 1448 } 1449 out: 1450 spin_unlock(&inode_hash_lock); 1451 return ret_inode; 1452 } 1453 EXPORT_SYMBOL(find_inode_nowait); 1454 1455 /** 1456 * find_inode_rcu - find an inode in the inode cache 1457 * @sb: Super block of file system to search 1458 * @hashval: Key to hash 1459 * @test: Function to test match on an inode 1460 * @data: Data for test function 1461 * 1462 * Search for the inode specified by @hashval and @data in the inode cache, 1463 * where the helper function @test will return 0 if the inode does not match 1464 * and 1 if it does. The @test function must be responsible for taking the 1465 * i_lock spin_lock and checking i_state for an inode being freed or being 1466 * initialized. 1467 * 1468 * If successful, this will return the inode for which the @test function 1469 * returned 1 and NULL otherwise. 1470 * 1471 * The @test function is not permitted to take a ref on any inode presented. 1472 * It is also not permitted to sleep. 1473 * 1474 * The caller must hold the RCU read lock. 1475 */ 1476 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1477 int (*test)(struct inode *, void *), void *data) 1478 { 1479 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1480 struct inode *inode; 1481 1482 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1483 "suspicious find_inode_rcu() usage"); 1484 1485 hlist_for_each_entry_rcu(inode, head, i_hash) { 1486 if (inode->i_sb == sb && 1487 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1488 test(inode, data)) 1489 return inode; 1490 } 1491 return NULL; 1492 } 1493 EXPORT_SYMBOL(find_inode_rcu); 1494 1495 /** 1496 * find_inode_by_ino_rcu - Find an inode in the inode cache 1497 * @sb: Super block of file system to search 1498 * @ino: The inode number to match 1499 * 1500 * Search for the inode specified by @hashval and @data in the inode cache, 1501 * where the helper function @test will return 0 if the inode does not match 1502 * and 1 if it does. The @test function must be responsible for taking the 1503 * i_lock spin_lock and checking i_state for an inode being freed or being 1504 * initialized. 1505 * 1506 * If successful, this will return the inode for which the @test function 1507 * returned 1 and NULL otherwise. 1508 * 1509 * The @test function is not permitted to take a ref on any inode presented. 1510 * It is also not permitted to sleep. 1511 * 1512 * The caller must hold the RCU read lock. 1513 */ 1514 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1515 unsigned long ino) 1516 { 1517 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1518 struct inode *inode; 1519 1520 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1521 "suspicious find_inode_by_ino_rcu() usage"); 1522 1523 hlist_for_each_entry_rcu(inode, head, i_hash) { 1524 if (inode->i_ino == ino && 1525 inode->i_sb == sb && 1526 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1527 return inode; 1528 } 1529 return NULL; 1530 } 1531 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1532 1533 int insert_inode_locked(struct inode *inode) 1534 { 1535 struct super_block *sb = inode->i_sb; 1536 ino_t ino = inode->i_ino; 1537 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1538 1539 while (1) { 1540 struct inode *old = NULL; 1541 spin_lock(&inode_hash_lock); 1542 hlist_for_each_entry(old, head, i_hash) { 1543 if (old->i_ino != ino) 1544 continue; 1545 if (old->i_sb != sb) 1546 continue; 1547 spin_lock(&old->i_lock); 1548 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1549 spin_unlock(&old->i_lock); 1550 continue; 1551 } 1552 break; 1553 } 1554 if (likely(!old)) { 1555 spin_lock(&inode->i_lock); 1556 inode->i_state |= I_NEW | I_CREATING; 1557 hlist_add_head_rcu(&inode->i_hash, head); 1558 spin_unlock(&inode->i_lock); 1559 spin_unlock(&inode_hash_lock); 1560 return 0; 1561 } 1562 if (unlikely(old->i_state & I_CREATING)) { 1563 spin_unlock(&old->i_lock); 1564 spin_unlock(&inode_hash_lock); 1565 return -EBUSY; 1566 } 1567 __iget(old); 1568 spin_unlock(&old->i_lock); 1569 spin_unlock(&inode_hash_lock); 1570 wait_on_inode(old); 1571 if (unlikely(!inode_unhashed(old))) { 1572 iput(old); 1573 return -EBUSY; 1574 } 1575 iput(old); 1576 } 1577 } 1578 EXPORT_SYMBOL(insert_inode_locked); 1579 1580 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1581 int (*test)(struct inode *, void *), void *data) 1582 { 1583 struct inode *old; 1584 1585 inode->i_state |= I_CREATING; 1586 old = inode_insert5(inode, hashval, test, NULL, data); 1587 1588 if (old != inode) { 1589 iput(old); 1590 return -EBUSY; 1591 } 1592 return 0; 1593 } 1594 EXPORT_SYMBOL(insert_inode_locked4); 1595 1596 1597 int generic_delete_inode(struct inode *inode) 1598 { 1599 return 1; 1600 } 1601 EXPORT_SYMBOL(generic_delete_inode); 1602 1603 /* 1604 * Called when we're dropping the last reference 1605 * to an inode. 1606 * 1607 * Call the FS "drop_inode()" function, defaulting to 1608 * the legacy UNIX filesystem behaviour. If it tells 1609 * us to evict inode, do so. Otherwise, retain inode 1610 * in cache if fs is alive, sync and evict if fs is 1611 * shutting down. 1612 */ 1613 static void iput_final(struct inode *inode) 1614 { 1615 struct super_block *sb = inode->i_sb; 1616 const struct super_operations *op = inode->i_sb->s_op; 1617 unsigned long state; 1618 int drop; 1619 1620 WARN_ON(inode->i_state & I_NEW); 1621 1622 if (op->drop_inode) 1623 drop = op->drop_inode(inode); 1624 else 1625 drop = generic_drop_inode(inode); 1626 1627 if (!drop && 1628 !(inode->i_state & I_DONTCACHE) && 1629 (sb->s_flags & SB_ACTIVE)) { 1630 inode_add_lru(inode); 1631 spin_unlock(&inode->i_lock); 1632 return; 1633 } 1634 1635 state = inode->i_state; 1636 if (!drop) { 1637 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1638 spin_unlock(&inode->i_lock); 1639 1640 write_inode_now(inode, 1); 1641 1642 spin_lock(&inode->i_lock); 1643 state = inode->i_state; 1644 WARN_ON(state & I_NEW); 1645 state &= ~I_WILL_FREE; 1646 } 1647 1648 WRITE_ONCE(inode->i_state, state | I_FREEING); 1649 if (!list_empty(&inode->i_lru)) 1650 inode_lru_list_del(inode); 1651 spin_unlock(&inode->i_lock); 1652 1653 evict(inode); 1654 } 1655 1656 /** 1657 * iput - put an inode 1658 * @inode: inode to put 1659 * 1660 * Puts an inode, dropping its usage count. If the inode use count hits 1661 * zero, the inode is then freed and may also be destroyed. 1662 * 1663 * Consequently, iput() can sleep. 1664 */ 1665 void iput(struct inode *inode) 1666 { 1667 if (!inode) 1668 return; 1669 BUG_ON(inode->i_state & I_CLEAR); 1670 retry: 1671 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1672 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1673 atomic_inc(&inode->i_count); 1674 spin_unlock(&inode->i_lock); 1675 trace_writeback_lazytime_iput(inode); 1676 mark_inode_dirty_sync(inode); 1677 goto retry; 1678 } 1679 iput_final(inode); 1680 } 1681 } 1682 EXPORT_SYMBOL(iput); 1683 1684 #ifdef CONFIG_BLOCK 1685 /** 1686 * bmap - find a block number in a file 1687 * @inode: inode owning the block number being requested 1688 * @block: pointer containing the block to find 1689 * 1690 * Replaces the value in ``*block`` with the block number on the device holding 1691 * corresponding to the requested block number in the file. 1692 * That is, asked for block 4 of inode 1 the function will replace the 1693 * 4 in ``*block``, with disk block relative to the disk start that holds that 1694 * block of the file. 1695 * 1696 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1697 * hole, returns 0 and ``*block`` is also set to 0. 1698 */ 1699 int bmap(struct inode *inode, sector_t *block) 1700 { 1701 if (!inode->i_mapping->a_ops->bmap) 1702 return -EINVAL; 1703 1704 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1705 return 0; 1706 } 1707 EXPORT_SYMBOL(bmap); 1708 #endif 1709 1710 /* 1711 * With relative atime, only update atime if the previous atime is 1712 * earlier than either the ctime or mtime or if at least a day has 1713 * passed since the last atime update. 1714 */ 1715 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1716 struct timespec64 now) 1717 { 1718 1719 if (!(mnt->mnt_flags & MNT_RELATIME)) 1720 return 1; 1721 /* 1722 * Is mtime younger than atime? If yes, update atime: 1723 */ 1724 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1725 return 1; 1726 /* 1727 * Is ctime younger than atime? If yes, update atime: 1728 */ 1729 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1730 return 1; 1731 1732 /* 1733 * Is the previous atime value older than a day? If yes, 1734 * update atime: 1735 */ 1736 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1737 return 1; 1738 /* 1739 * Good, we can skip the atime update: 1740 */ 1741 return 0; 1742 } 1743 1744 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) 1745 { 1746 int dirty_flags = 0; 1747 1748 if (flags & (S_ATIME | S_CTIME | S_MTIME)) { 1749 if (flags & S_ATIME) 1750 inode->i_atime = *time; 1751 if (flags & S_CTIME) 1752 inode->i_ctime = *time; 1753 if (flags & S_MTIME) 1754 inode->i_mtime = *time; 1755 1756 if (inode->i_sb->s_flags & SB_LAZYTIME) 1757 dirty_flags |= I_DIRTY_TIME; 1758 else 1759 dirty_flags |= I_DIRTY_SYNC; 1760 } 1761 1762 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false)) 1763 dirty_flags |= I_DIRTY_SYNC; 1764 1765 __mark_inode_dirty(inode, dirty_flags); 1766 return 0; 1767 } 1768 EXPORT_SYMBOL(generic_update_time); 1769 1770 /* 1771 * This does the actual work of updating an inodes time or version. Must have 1772 * had called mnt_want_write() before calling this. 1773 */ 1774 static int update_time(struct inode *inode, struct timespec64 *time, int flags) 1775 { 1776 if (inode->i_op->update_time) 1777 return inode->i_op->update_time(inode, time, flags); 1778 return generic_update_time(inode, time, flags); 1779 } 1780 1781 /** 1782 * atime_needs_update - update the access time 1783 * @path: the &struct path to update 1784 * @inode: inode to update 1785 * 1786 * Update the accessed time on an inode and mark it for writeback. 1787 * This function automatically handles read only file systems and media, 1788 * as well as the "noatime" flag and inode specific "noatime" markers. 1789 */ 1790 bool atime_needs_update(const struct path *path, struct inode *inode) 1791 { 1792 struct vfsmount *mnt = path->mnt; 1793 struct timespec64 now; 1794 1795 if (inode->i_flags & S_NOATIME) 1796 return false; 1797 1798 /* Atime updates will likely cause i_uid and i_gid to be written 1799 * back improprely if their true value is unknown to the vfs. 1800 */ 1801 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode)) 1802 return false; 1803 1804 if (IS_NOATIME(inode)) 1805 return false; 1806 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1807 return false; 1808 1809 if (mnt->mnt_flags & MNT_NOATIME) 1810 return false; 1811 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1812 return false; 1813 1814 now = current_time(inode); 1815 1816 if (!relatime_need_update(mnt, inode, now)) 1817 return false; 1818 1819 if (timespec64_equal(&inode->i_atime, &now)) 1820 return false; 1821 1822 return true; 1823 } 1824 1825 void touch_atime(const struct path *path) 1826 { 1827 struct vfsmount *mnt = path->mnt; 1828 struct inode *inode = d_inode(path->dentry); 1829 struct timespec64 now; 1830 1831 if (!atime_needs_update(path, inode)) 1832 return; 1833 1834 if (!sb_start_write_trylock(inode->i_sb)) 1835 return; 1836 1837 if (__mnt_want_write(mnt) != 0) 1838 goto skip_update; 1839 /* 1840 * File systems can error out when updating inodes if they need to 1841 * allocate new space to modify an inode (such is the case for 1842 * Btrfs), but since we touch atime while walking down the path we 1843 * really don't care if we failed to update the atime of the file, 1844 * so just ignore the return value. 1845 * We may also fail on filesystems that have the ability to make parts 1846 * of the fs read only, e.g. subvolumes in Btrfs. 1847 */ 1848 now = current_time(inode); 1849 update_time(inode, &now, S_ATIME); 1850 __mnt_drop_write(mnt); 1851 skip_update: 1852 sb_end_write(inode->i_sb); 1853 } 1854 EXPORT_SYMBOL(touch_atime); 1855 1856 /* 1857 * The logic we want is 1858 * 1859 * if suid or (sgid and xgrp) 1860 * remove privs 1861 */ 1862 int should_remove_suid(struct dentry *dentry) 1863 { 1864 umode_t mode = d_inode(dentry)->i_mode; 1865 int kill = 0; 1866 1867 /* suid always must be killed */ 1868 if (unlikely(mode & S_ISUID)) 1869 kill = ATTR_KILL_SUID; 1870 1871 /* 1872 * sgid without any exec bits is just a mandatory locking mark; leave 1873 * it alone. If some exec bits are set, it's a real sgid; kill it. 1874 */ 1875 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1876 kill |= ATTR_KILL_SGID; 1877 1878 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1879 return kill; 1880 1881 return 0; 1882 } 1883 EXPORT_SYMBOL(should_remove_suid); 1884 1885 /* 1886 * Return mask of changes for notify_change() that need to be done as a 1887 * response to write or truncate. Return 0 if nothing has to be changed. 1888 * Negative value on error (change should be denied). 1889 */ 1890 int dentry_needs_remove_privs(struct dentry *dentry) 1891 { 1892 struct inode *inode = d_inode(dentry); 1893 int mask = 0; 1894 int ret; 1895 1896 if (IS_NOSEC(inode)) 1897 return 0; 1898 1899 mask = should_remove_suid(dentry); 1900 ret = security_inode_need_killpriv(dentry); 1901 if (ret < 0) 1902 return ret; 1903 if (ret) 1904 mask |= ATTR_KILL_PRIV; 1905 return mask; 1906 } 1907 1908 static int __remove_privs(struct user_namespace *mnt_userns, 1909 struct dentry *dentry, int kill) 1910 { 1911 struct iattr newattrs; 1912 1913 newattrs.ia_valid = ATTR_FORCE | kill; 1914 /* 1915 * Note we call this on write, so notify_change will not 1916 * encounter any conflicting delegations: 1917 */ 1918 return notify_change(mnt_userns, dentry, &newattrs, NULL); 1919 } 1920 1921 /* 1922 * Remove special file priviledges (suid, capabilities) when file is written 1923 * to or truncated. 1924 */ 1925 int file_remove_privs(struct file *file) 1926 { 1927 struct dentry *dentry = file_dentry(file); 1928 struct inode *inode = file_inode(file); 1929 int kill; 1930 int error = 0; 1931 1932 /* 1933 * Fast path for nothing security related. 1934 * As well for non-regular files, e.g. blkdev inodes. 1935 * For example, blkdev_write_iter() might get here 1936 * trying to remove privs which it is not allowed to. 1937 */ 1938 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 1939 return 0; 1940 1941 kill = dentry_needs_remove_privs(dentry); 1942 if (kill < 0) 1943 return kill; 1944 if (kill) 1945 error = __remove_privs(file_mnt_user_ns(file), dentry, kill); 1946 if (!error) 1947 inode_has_no_xattr(inode); 1948 1949 return error; 1950 } 1951 EXPORT_SYMBOL(file_remove_privs); 1952 1953 /** 1954 * file_update_time - update mtime and ctime time 1955 * @file: file accessed 1956 * 1957 * Update the mtime and ctime members of an inode and mark the inode 1958 * for writeback. Note that this function is meant exclusively for 1959 * usage in the file write path of filesystems, and filesystems may 1960 * choose to explicitly ignore update via this function with the 1961 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1962 * timestamps are handled by the server. This can return an error for 1963 * file systems who need to allocate space in order to update an inode. 1964 */ 1965 1966 int file_update_time(struct file *file) 1967 { 1968 struct inode *inode = file_inode(file); 1969 struct timespec64 now; 1970 int sync_it = 0; 1971 int ret; 1972 1973 /* First try to exhaust all avenues to not sync */ 1974 if (IS_NOCMTIME(inode)) 1975 return 0; 1976 1977 now = current_time(inode); 1978 if (!timespec64_equal(&inode->i_mtime, &now)) 1979 sync_it = S_MTIME; 1980 1981 if (!timespec64_equal(&inode->i_ctime, &now)) 1982 sync_it |= S_CTIME; 1983 1984 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 1985 sync_it |= S_VERSION; 1986 1987 if (!sync_it) 1988 return 0; 1989 1990 /* Finally allowed to write? Takes lock. */ 1991 if (__mnt_want_write_file(file)) 1992 return 0; 1993 1994 ret = update_time(inode, &now, sync_it); 1995 __mnt_drop_write_file(file); 1996 1997 return ret; 1998 } 1999 EXPORT_SYMBOL(file_update_time); 2000 2001 /* Caller must hold the file's inode lock */ 2002 int file_modified(struct file *file) 2003 { 2004 int err; 2005 2006 /* 2007 * Clear the security bits if the process is not being run by root. 2008 * This keeps people from modifying setuid and setgid binaries. 2009 */ 2010 err = file_remove_privs(file); 2011 if (err) 2012 return err; 2013 2014 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2015 return 0; 2016 2017 return file_update_time(file); 2018 } 2019 EXPORT_SYMBOL(file_modified); 2020 2021 int inode_needs_sync(struct inode *inode) 2022 { 2023 if (IS_SYNC(inode)) 2024 return 1; 2025 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2026 return 1; 2027 return 0; 2028 } 2029 EXPORT_SYMBOL(inode_needs_sync); 2030 2031 /* 2032 * If we try to find an inode in the inode hash while it is being 2033 * deleted, we have to wait until the filesystem completes its 2034 * deletion before reporting that it isn't found. This function waits 2035 * until the deletion _might_ have completed. Callers are responsible 2036 * to recheck inode state. 2037 * 2038 * It doesn't matter if I_NEW is not set initially, a call to 2039 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2040 * will DTRT. 2041 */ 2042 static void __wait_on_freeing_inode(struct inode *inode) 2043 { 2044 wait_queue_head_t *wq; 2045 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2046 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2047 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2048 spin_unlock(&inode->i_lock); 2049 spin_unlock(&inode_hash_lock); 2050 schedule(); 2051 finish_wait(wq, &wait.wq_entry); 2052 spin_lock(&inode_hash_lock); 2053 } 2054 2055 static __initdata unsigned long ihash_entries; 2056 static int __init set_ihash_entries(char *str) 2057 { 2058 if (!str) 2059 return 0; 2060 ihash_entries = simple_strtoul(str, &str, 0); 2061 return 1; 2062 } 2063 __setup("ihash_entries=", set_ihash_entries); 2064 2065 /* 2066 * Initialize the waitqueues and inode hash table. 2067 */ 2068 void __init inode_init_early(void) 2069 { 2070 /* If hashes are distributed across NUMA nodes, defer 2071 * hash allocation until vmalloc space is available. 2072 */ 2073 if (hashdist) 2074 return; 2075 2076 inode_hashtable = 2077 alloc_large_system_hash("Inode-cache", 2078 sizeof(struct hlist_head), 2079 ihash_entries, 2080 14, 2081 HASH_EARLY | HASH_ZERO, 2082 &i_hash_shift, 2083 &i_hash_mask, 2084 0, 2085 0); 2086 } 2087 2088 void __init inode_init(void) 2089 { 2090 /* inode slab cache */ 2091 inode_cachep = kmem_cache_create("inode_cache", 2092 sizeof(struct inode), 2093 0, 2094 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2095 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2096 init_once); 2097 2098 /* Hash may have been set up in inode_init_early */ 2099 if (!hashdist) 2100 return; 2101 2102 inode_hashtable = 2103 alloc_large_system_hash("Inode-cache", 2104 sizeof(struct hlist_head), 2105 ihash_entries, 2106 14, 2107 HASH_ZERO, 2108 &i_hash_shift, 2109 &i_hash_mask, 2110 0, 2111 0); 2112 } 2113 2114 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2115 { 2116 inode->i_mode = mode; 2117 if (S_ISCHR(mode)) { 2118 inode->i_fop = &def_chr_fops; 2119 inode->i_rdev = rdev; 2120 } else if (S_ISBLK(mode)) { 2121 inode->i_fop = &def_blk_fops; 2122 inode->i_rdev = rdev; 2123 } else if (S_ISFIFO(mode)) 2124 inode->i_fop = &pipefifo_fops; 2125 else if (S_ISSOCK(mode)) 2126 ; /* leave it no_open_fops */ 2127 else 2128 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2129 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2130 inode->i_ino); 2131 } 2132 EXPORT_SYMBOL(init_special_inode); 2133 2134 /** 2135 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2136 * @mnt_userns: User namespace of the mount the inode was created from 2137 * @inode: New inode 2138 * @dir: Directory inode 2139 * @mode: mode of the new inode 2140 * 2141 * If the inode has been created through an idmapped mount the user namespace of 2142 * the vfsmount must be passed through @mnt_userns. This function will then take 2143 * care to map the inode according to @mnt_userns before checking permissions 2144 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2145 * checking is to be performed on the raw inode simply passs init_user_ns. 2146 */ 2147 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode, 2148 const struct inode *dir, umode_t mode) 2149 { 2150 inode_fsuid_set(inode, mnt_userns); 2151 if (dir && dir->i_mode & S_ISGID) { 2152 inode->i_gid = dir->i_gid; 2153 2154 /* Directories are special, and always inherit S_ISGID */ 2155 if (S_ISDIR(mode)) 2156 mode |= S_ISGID; 2157 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) && 2158 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) && 2159 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID)) 2160 mode &= ~S_ISGID; 2161 } else 2162 inode_fsgid_set(inode, mnt_userns); 2163 inode->i_mode = mode; 2164 } 2165 EXPORT_SYMBOL(inode_init_owner); 2166 2167 /** 2168 * inode_owner_or_capable - check current task permissions to inode 2169 * @mnt_userns: user namespace of the mount the inode was found from 2170 * @inode: inode being checked 2171 * 2172 * Return true if current either has CAP_FOWNER in a namespace with the 2173 * inode owner uid mapped, or owns the file. 2174 * 2175 * If the inode has been found through an idmapped mount the user namespace of 2176 * the vfsmount must be passed through @mnt_userns. This function will then take 2177 * care to map the inode according to @mnt_userns before checking permissions. 2178 * On non-idmapped mounts or if permission checking is to be performed on the 2179 * raw inode simply passs init_user_ns. 2180 */ 2181 bool inode_owner_or_capable(struct user_namespace *mnt_userns, 2182 const struct inode *inode) 2183 { 2184 kuid_t i_uid; 2185 struct user_namespace *ns; 2186 2187 i_uid = i_uid_into_mnt(mnt_userns, inode); 2188 if (uid_eq(current_fsuid(), i_uid)) 2189 return true; 2190 2191 ns = current_user_ns(); 2192 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER)) 2193 return true; 2194 return false; 2195 } 2196 EXPORT_SYMBOL(inode_owner_or_capable); 2197 2198 /* 2199 * Direct i/o helper functions 2200 */ 2201 static void __inode_dio_wait(struct inode *inode) 2202 { 2203 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2204 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2205 2206 do { 2207 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2208 if (atomic_read(&inode->i_dio_count)) 2209 schedule(); 2210 } while (atomic_read(&inode->i_dio_count)); 2211 finish_wait(wq, &q.wq_entry); 2212 } 2213 2214 /** 2215 * inode_dio_wait - wait for outstanding DIO requests to finish 2216 * @inode: inode to wait for 2217 * 2218 * Waits for all pending direct I/O requests to finish so that we can 2219 * proceed with a truncate or equivalent operation. 2220 * 2221 * Must be called under a lock that serializes taking new references 2222 * to i_dio_count, usually by inode->i_mutex. 2223 */ 2224 void inode_dio_wait(struct inode *inode) 2225 { 2226 if (atomic_read(&inode->i_dio_count)) 2227 __inode_dio_wait(inode); 2228 } 2229 EXPORT_SYMBOL(inode_dio_wait); 2230 2231 /* 2232 * inode_set_flags - atomically set some inode flags 2233 * 2234 * Note: the caller should be holding i_mutex, or else be sure that 2235 * they have exclusive access to the inode structure (i.e., while the 2236 * inode is being instantiated). The reason for the cmpxchg() loop 2237 * --- which wouldn't be necessary if all code paths which modify 2238 * i_flags actually followed this rule, is that there is at least one 2239 * code path which doesn't today so we use cmpxchg() out of an abundance 2240 * of caution. 2241 * 2242 * In the long run, i_mutex is overkill, and we should probably look 2243 * at using the i_lock spinlock to protect i_flags, and then make sure 2244 * it is so documented in include/linux/fs.h and that all code follows 2245 * the locking convention!! 2246 */ 2247 void inode_set_flags(struct inode *inode, unsigned int flags, 2248 unsigned int mask) 2249 { 2250 WARN_ON_ONCE(flags & ~mask); 2251 set_mask_bits(&inode->i_flags, mask, flags); 2252 } 2253 EXPORT_SYMBOL(inode_set_flags); 2254 2255 void inode_nohighmem(struct inode *inode) 2256 { 2257 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2258 } 2259 EXPORT_SYMBOL(inode_nohighmem); 2260 2261 /** 2262 * timestamp_truncate - Truncate timespec to a granularity 2263 * @t: Timespec 2264 * @inode: inode being updated 2265 * 2266 * Truncate a timespec to the granularity supported by the fs 2267 * containing the inode. Always rounds down. gran must 2268 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2269 */ 2270 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2271 { 2272 struct super_block *sb = inode->i_sb; 2273 unsigned int gran = sb->s_time_gran; 2274 2275 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2276 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2277 t.tv_nsec = 0; 2278 2279 /* Avoid division in the common cases 1 ns and 1 s. */ 2280 if (gran == 1) 2281 ; /* nothing */ 2282 else if (gran == NSEC_PER_SEC) 2283 t.tv_nsec = 0; 2284 else if (gran > 1 && gran < NSEC_PER_SEC) 2285 t.tv_nsec -= t.tv_nsec % gran; 2286 else 2287 WARN(1, "invalid file time granularity: %u", gran); 2288 return t; 2289 } 2290 EXPORT_SYMBOL(timestamp_truncate); 2291 2292 /** 2293 * current_time - Return FS time 2294 * @inode: inode. 2295 * 2296 * Return the current time truncated to the time granularity supported by 2297 * the fs. 2298 * 2299 * Note that inode and inode->sb cannot be NULL. 2300 * Otherwise, the function warns and returns time without truncation. 2301 */ 2302 struct timespec64 current_time(struct inode *inode) 2303 { 2304 struct timespec64 now; 2305 2306 ktime_get_coarse_real_ts64(&now); 2307 2308 if (unlikely(!inode->i_sb)) { 2309 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2310 return now; 2311 } 2312 2313 return timestamp_truncate(now, inode); 2314 } 2315 EXPORT_SYMBOL(current_time); 2316