1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/rwsem.h> 18 #include <linux/hash.h> 19 #include <linux/swap.h> 20 #include <linux/security.h> 21 #include <linux/pagemap.h> 22 #include <linux/cdev.h> 23 #include <linux/bootmem.h> 24 #include <linux/inotify.h> 25 #include <linux/fsnotify.h> 26 #include <linux/mount.h> 27 #include <linux/async.h> 28 #include <linux/posix_acl.h> 29 30 /* 31 * This is needed for the following functions: 32 * - inode_has_buffers 33 * - invalidate_inode_buffers 34 * - invalidate_bdev 35 * 36 * FIXME: remove all knowledge of the buffer layer from this file 37 */ 38 #include <linux/buffer_head.h> 39 40 /* 41 * New inode.c implementation. 42 * 43 * This implementation has the basic premise of trying 44 * to be extremely low-overhead and SMP-safe, yet be 45 * simple enough to be "obviously correct". 46 * 47 * Famous last words. 48 */ 49 50 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 51 52 /* #define INODE_PARANOIA 1 */ 53 /* #define INODE_DEBUG 1 */ 54 55 /* 56 * Inode lookup is no longer as critical as it used to be: 57 * most of the lookups are going to be through the dcache. 58 */ 59 #define I_HASHBITS i_hash_shift 60 #define I_HASHMASK i_hash_mask 61 62 static unsigned int i_hash_mask __read_mostly; 63 static unsigned int i_hash_shift __read_mostly; 64 65 /* 66 * Each inode can be on two separate lists. One is 67 * the hash list of the inode, used for lookups. The 68 * other linked list is the "type" list: 69 * "in_use" - valid inode, i_count > 0, i_nlink > 0 70 * "dirty" - as "in_use" but also dirty 71 * "unused" - valid inode, i_count = 0 72 * 73 * A "dirty" list is maintained for each super block, 74 * allowing for low-overhead inode sync() operations. 75 */ 76 77 LIST_HEAD(inode_in_use); 78 LIST_HEAD(inode_unused); 79 static struct hlist_head *inode_hashtable __read_mostly; 80 81 /* 82 * A simple spinlock to protect the list manipulations. 83 * 84 * NOTE! You also have to own the lock if you change 85 * the i_state of an inode while it is in use.. 86 */ 87 DEFINE_SPINLOCK(inode_lock); 88 89 /* 90 * iprune_sem provides exclusion between the kswapd or try_to_free_pages 91 * icache shrinking path, and the umount path. Without this exclusion, 92 * by the time prune_icache calls iput for the inode whose pages it has 93 * been invalidating, or by the time it calls clear_inode & destroy_inode 94 * from its final dispose_list, the struct super_block they refer to 95 * (for inode->i_sb->s_op) may already have been freed and reused. 96 * 97 * We make this an rwsem because the fastpath is icache shrinking. In 98 * some cases a filesystem may be doing a significant amount of work in 99 * its inode reclaim code, so this should improve parallelism. 100 */ 101 static DECLARE_RWSEM(iprune_sem); 102 103 /* 104 * Statistics gathering.. 105 */ 106 struct inodes_stat_t inodes_stat; 107 108 static struct kmem_cache *inode_cachep __read_mostly; 109 110 static void wake_up_inode(struct inode *inode) 111 { 112 /* 113 * Prevent speculative execution through spin_unlock(&inode_lock); 114 */ 115 smp_mb(); 116 wake_up_bit(&inode->i_state, __I_NEW); 117 } 118 119 /** 120 * inode_init_always - perform inode structure intialisation 121 * @sb: superblock inode belongs to 122 * @inode: inode to initialise 123 * 124 * These are initializations that need to be done on every inode 125 * allocation as the fields are not initialised by slab allocation. 126 */ 127 int inode_init_always(struct super_block *sb, struct inode *inode) 128 { 129 static const struct address_space_operations empty_aops; 130 static const struct inode_operations empty_iops; 131 static const struct file_operations empty_fops; 132 struct address_space *const mapping = &inode->i_data; 133 134 inode->i_sb = sb; 135 inode->i_blkbits = sb->s_blocksize_bits; 136 inode->i_flags = 0; 137 atomic_set(&inode->i_count, 1); 138 inode->i_op = &empty_iops; 139 inode->i_fop = &empty_fops; 140 inode->i_nlink = 1; 141 inode->i_uid = 0; 142 inode->i_gid = 0; 143 atomic_set(&inode->i_writecount, 0); 144 inode->i_size = 0; 145 inode->i_blocks = 0; 146 inode->i_bytes = 0; 147 inode->i_generation = 0; 148 #ifdef CONFIG_QUOTA 149 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 150 #endif 151 inode->i_pipe = NULL; 152 inode->i_bdev = NULL; 153 inode->i_cdev = NULL; 154 inode->i_rdev = 0; 155 inode->dirtied_when = 0; 156 157 if (security_inode_alloc(inode)) 158 goto out; 159 spin_lock_init(&inode->i_lock); 160 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 161 162 mutex_init(&inode->i_mutex); 163 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 164 165 init_rwsem(&inode->i_alloc_sem); 166 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 167 168 mapping->a_ops = &empty_aops; 169 mapping->host = inode; 170 mapping->flags = 0; 171 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 172 mapping->assoc_mapping = NULL; 173 mapping->backing_dev_info = &default_backing_dev_info; 174 mapping->writeback_index = 0; 175 176 /* 177 * If the block_device provides a backing_dev_info for client 178 * inodes then use that. Otherwise the inode share the bdev's 179 * backing_dev_info. 180 */ 181 if (sb->s_bdev) { 182 struct backing_dev_info *bdi; 183 184 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 185 mapping->backing_dev_info = bdi; 186 } 187 inode->i_private = NULL; 188 inode->i_mapping = mapping; 189 #ifdef CONFIG_FS_POSIX_ACL 190 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 191 #endif 192 193 #ifdef CONFIG_FSNOTIFY 194 inode->i_fsnotify_mask = 0; 195 #endif 196 197 return 0; 198 out: 199 return -ENOMEM; 200 } 201 EXPORT_SYMBOL(inode_init_always); 202 203 static struct inode *alloc_inode(struct super_block *sb) 204 { 205 struct inode *inode; 206 207 if (sb->s_op->alloc_inode) 208 inode = sb->s_op->alloc_inode(sb); 209 else 210 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 211 212 if (!inode) 213 return NULL; 214 215 if (unlikely(inode_init_always(sb, inode))) { 216 if (inode->i_sb->s_op->destroy_inode) 217 inode->i_sb->s_op->destroy_inode(inode); 218 else 219 kmem_cache_free(inode_cachep, inode); 220 return NULL; 221 } 222 223 return inode; 224 } 225 226 void __destroy_inode(struct inode *inode) 227 { 228 BUG_ON(inode_has_buffers(inode)); 229 security_inode_free(inode); 230 fsnotify_inode_delete(inode); 231 #ifdef CONFIG_FS_POSIX_ACL 232 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 233 posix_acl_release(inode->i_acl); 234 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 235 posix_acl_release(inode->i_default_acl); 236 #endif 237 } 238 EXPORT_SYMBOL(__destroy_inode); 239 240 void destroy_inode(struct inode *inode) 241 { 242 __destroy_inode(inode); 243 if (inode->i_sb->s_op->destroy_inode) 244 inode->i_sb->s_op->destroy_inode(inode); 245 else 246 kmem_cache_free(inode_cachep, (inode)); 247 } 248 249 /* 250 * These are initializations that only need to be done 251 * once, because the fields are idempotent across use 252 * of the inode, so let the slab aware of that. 253 */ 254 void inode_init_once(struct inode *inode) 255 { 256 memset(inode, 0, sizeof(*inode)); 257 INIT_HLIST_NODE(&inode->i_hash); 258 INIT_LIST_HEAD(&inode->i_dentry); 259 INIT_LIST_HEAD(&inode->i_devices); 260 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 261 spin_lock_init(&inode->i_data.tree_lock); 262 spin_lock_init(&inode->i_data.i_mmap_lock); 263 INIT_LIST_HEAD(&inode->i_data.private_list); 264 spin_lock_init(&inode->i_data.private_lock); 265 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 266 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 267 i_size_ordered_init(inode); 268 #ifdef CONFIG_INOTIFY 269 INIT_LIST_HEAD(&inode->inotify_watches); 270 mutex_init(&inode->inotify_mutex); 271 #endif 272 #ifdef CONFIG_FSNOTIFY 273 INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries); 274 #endif 275 } 276 EXPORT_SYMBOL(inode_init_once); 277 278 static void init_once(void *foo) 279 { 280 struct inode *inode = (struct inode *) foo; 281 282 inode_init_once(inode); 283 } 284 285 /* 286 * inode_lock must be held 287 */ 288 void __iget(struct inode *inode) 289 { 290 if (atomic_read(&inode->i_count)) { 291 atomic_inc(&inode->i_count); 292 return; 293 } 294 atomic_inc(&inode->i_count); 295 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 296 list_move(&inode->i_list, &inode_in_use); 297 inodes_stat.nr_unused--; 298 } 299 300 /** 301 * clear_inode - clear an inode 302 * @inode: inode to clear 303 * 304 * This is called by the filesystem to tell us 305 * that the inode is no longer useful. We just 306 * terminate it with extreme prejudice. 307 */ 308 void clear_inode(struct inode *inode) 309 { 310 might_sleep(); 311 invalidate_inode_buffers(inode); 312 313 BUG_ON(inode->i_data.nrpages); 314 BUG_ON(!(inode->i_state & I_FREEING)); 315 BUG_ON(inode->i_state & I_CLEAR); 316 inode_sync_wait(inode); 317 if (inode->i_sb->s_op->clear_inode) 318 inode->i_sb->s_op->clear_inode(inode); 319 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 320 bd_forget(inode); 321 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 322 cd_forget(inode); 323 inode->i_state = I_CLEAR; 324 } 325 EXPORT_SYMBOL(clear_inode); 326 327 /* 328 * dispose_list - dispose of the contents of a local list 329 * @head: the head of the list to free 330 * 331 * Dispose-list gets a local list with local inodes in it, so it doesn't 332 * need to worry about list corruption and SMP locks. 333 */ 334 static void dispose_list(struct list_head *head) 335 { 336 int nr_disposed = 0; 337 338 while (!list_empty(head)) { 339 struct inode *inode; 340 341 inode = list_first_entry(head, struct inode, i_list); 342 list_del(&inode->i_list); 343 344 if (inode->i_data.nrpages) 345 truncate_inode_pages(&inode->i_data, 0); 346 clear_inode(inode); 347 348 spin_lock(&inode_lock); 349 hlist_del_init(&inode->i_hash); 350 list_del_init(&inode->i_sb_list); 351 spin_unlock(&inode_lock); 352 353 wake_up_inode(inode); 354 destroy_inode(inode); 355 nr_disposed++; 356 } 357 spin_lock(&inode_lock); 358 inodes_stat.nr_inodes -= nr_disposed; 359 spin_unlock(&inode_lock); 360 } 361 362 /* 363 * Invalidate all inodes for a device. 364 */ 365 static int invalidate_list(struct list_head *head, struct list_head *dispose) 366 { 367 struct list_head *next; 368 int busy = 0, count = 0; 369 370 next = head->next; 371 for (;;) { 372 struct list_head *tmp = next; 373 struct inode *inode; 374 375 /* 376 * We can reschedule here without worrying about the list's 377 * consistency because the per-sb list of inodes must not 378 * change during umount anymore, and because iprune_sem keeps 379 * shrink_icache_memory() away. 380 */ 381 cond_resched_lock(&inode_lock); 382 383 next = next->next; 384 if (tmp == head) 385 break; 386 inode = list_entry(tmp, struct inode, i_sb_list); 387 if (inode->i_state & I_NEW) 388 continue; 389 invalidate_inode_buffers(inode); 390 if (!atomic_read(&inode->i_count)) { 391 list_move(&inode->i_list, dispose); 392 WARN_ON(inode->i_state & I_NEW); 393 inode->i_state |= I_FREEING; 394 count++; 395 continue; 396 } 397 busy = 1; 398 } 399 /* only unused inodes may be cached with i_count zero */ 400 inodes_stat.nr_unused -= count; 401 return busy; 402 } 403 404 /** 405 * invalidate_inodes - discard the inodes on a device 406 * @sb: superblock 407 * 408 * Discard all of the inodes for a given superblock. If the discard 409 * fails because there are busy inodes then a non zero value is returned. 410 * If the discard is successful all the inodes have been discarded. 411 */ 412 int invalidate_inodes(struct super_block *sb) 413 { 414 int busy; 415 LIST_HEAD(throw_away); 416 417 down_write(&iprune_sem); 418 spin_lock(&inode_lock); 419 inotify_unmount_inodes(&sb->s_inodes); 420 fsnotify_unmount_inodes(&sb->s_inodes); 421 busy = invalidate_list(&sb->s_inodes, &throw_away); 422 spin_unlock(&inode_lock); 423 424 dispose_list(&throw_away); 425 up_write(&iprune_sem); 426 427 return busy; 428 } 429 EXPORT_SYMBOL(invalidate_inodes); 430 431 static int can_unuse(struct inode *inode) 432 { 433 if (inode->i_state) 434 return 0; 435 if (inode_has_buffers(inode)) 436 return 0; 437 if (atomic_read(&inode->i_count)) 438 return 0; 439 if (inode->i_data.nrpages) 440 return 0; 441 return 1; 442 } 443 444 /* 445 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 446 * a temporary list and then are freed outside inode_lock by dispose_list(). 447 * 448 * Any inodes which are pinned purely because of attached pagecache have their 449 * pagecache removed. We expect the final iput() on that inode to add it to 450 * the front of the inode_unused list. So look for it there and if the 451 * inode is still freeable, proceed. The right inode is found 99.9% of the 452 * time in testing on a 4-way. 453 * 454 * If the inode has metadata buffers attached to mapping->private_list then 455 * try to remove them. 456 */ 457 static void prune_icache(int nr_to_scan) 458 { 459 LIST_HEAD(freeable); 460 int nr_pruned = 0; 461 int nr_scanned; 462 unsigned long reap = 0; 463 464 down_read(&iprune_sem); 465 spin_lock(&inode_lock); 466 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 467 struct inode *inode; 468 469 if (list_empty(&inode_unused)) 470 break; 471 472 inode = list_entry(inode_unused.prev, struct inode, i_list); 473 474 if (inode->i_state || atomic_read(&inode->i_count)) { 475 list_move(&inode->i_list, &inode_unused); 476 continue; 477 } 478 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 479 __iget(inode); 480 spin_unlock(&inode_lock); 481 if (remove_inode_buffers(inode)) 482 reap += invalidate_mapping_pages(&inode->i_data, 483 0, -1); 484 iput(inode); 485 spin_lock(&inode_lock); 486 487 if (inode != list_entry(inode_unused.next, 488 struct inode, i_list)) 489 continue; /* wrong inode or list_empty */ 490 if (!can_unuse(inode)) 491 continue; 492 } 493 list_move(&inode->i_list, &freeable); 494 WARN_ON(inode->i_state & I_NEW); 495 inode->i_state |= I_FREEING; 496 nr_pruned++; 497 } 498 inodes_stat.nr_unused -= nr_pruned; 499 if (current_is_kswapd()) 500 __count_vm_events(KSWAPD_INODESTEAL, reap); 501 else 502 __count_vm_events(PGINODESTEAL, reap); 503 spin_unlock(&inode_lock); 504 505 dispose_list(&freeable); 506 up_read(&iprune_sem); 507 } 508 509 /* 510 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 511 * "unused" means that no dentries are referring to the inodes: the files are 512 * not open and the dcache references to those inodes have already been 513 * reclaimed. 514 * 515 * This function is passed the number of inodes to scan, and it returns the 516 * total number of remaining possibly-reclaimable inodes. 517 */ 518 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 519 { 520 if (nr) { 521 /* 522 * Nasty deadlock avoidance. We may hold various FS locks, 523 * and we don't want to recurse into the FS that called us 524 * in clear_inode() and friends.. 525 */ 526 if (!(gfp_mask & __GFP_FS)) 527 return -1; 528 prune_icache(nr); 529 } 530 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 531 } 532 533 static struct shrinker icache_shrinker = { 534 .shrink = shrink_icache_memory, 535 .seeks = DEFAULT_SEEKS, 536 }; 537 538 static void __wait_on_freeing_inode(struct inode *inode); 539 /* 540 * Called with the inode lock held. 541 * NOTE: we are not increasing the inode-refcount, you must call __iget() 542 * by hand after calling find_inode now! This simplifies iunique and won't 543 * add any additional branch in the common code. 544 */ 545 static struct inode *find_inode(struct super_block *sb, 546 struct hlist_head *head, 547 int (*test)(struct inode *, void *), 548 void *data) 549 { 550 struct hlist_node *node; 551 struct inode *inode = NULL; 552 553 repeat: 554 hlist_for_each_entry(inode, node, head, i_hash) { 555 if (inode->i_sb != sb) 556 continue; 557 if (!test(inode, data)) 558 continue; 559 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 560 __wait_on_freeing_inode(inode); 561 goto repeat; 562 } 563 break; 564 } 565 return node ? inode : NULL; 566 } 567 568 /* 569 * find_inode_fast is the fast path version of find_inode, see the comment at 570 * iget_locked for details. 571 */ 572 static struct inode *find_inode_fast(struct super_block *sb, 573 struct hlist_head *head, unsigned long ino) 574 { 575 struct hlist_node *node; 576 struct inode *inode = NULL; 577 578 repeat: 579 hlist_for_each_entry(inode, node, head, i_hash) { 580 if (inode->i_ino != ino) 581 continue; 582 if (inode->i_sb != sb) 583 continue; 584 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 585 __wait_on_freeing_inode(inode); 586 goto repeat; 587 } 588 break; 589 } 590 return node ? inode : NULL; 591 } 592 593 static unsigned long hash(struct super_block *sb, unsigned long hashval) 594 { 595 unsigned long tmp; 596 597 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 598 L1_CACHE_BYTES; 599 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 600 return tmp & I_HASHMASK; 601 } 602 603 static inline void 604 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head, 605 struct inode *inode) 606 { 607 inodes_stat.nr_inodes++; 608 list_add(&inode->i_list, &inode_in_use); 609 list_add(&inode->i_sb_list, &sb->s_inodes); 610 if (head) 611 hlist_add_head(&inode->i_hash, head); 612 } 613 614 /** 615 * inode_add_to_lists - add a new inode to relevant lists 616 * @sb: superblock inode belongs to 617 * @inode: inode to mark in use 618 * 619 * When an inode is allocated it needs to be accounted for, added to the in use 620 * list, the owning superblock and the inode hash. This needs to be done under 621 * the inode_lock, so export a function to do this rather than the inode lock 622 * itself. We calculate the hash list to add to here so it is all internal 623 * which requires the caller to have already set up the inode number in the 624 * inode to add. 625 */ 626 void inode_add_to_lists(struct super_block *sb, struct inode *inode) 627 { 628 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino); 629 630 spin_lock(&inode_lock); 631 __inode_add_to_lists(sb, head, inode); 632 spin_unlock(&inode_lock); 633 } 634 EXPORT_SYMBOL_GPL(inode_add_to_lists); 635 636 /** 637 * new_inode - obtain an inode 638 * @sb: superblock 639 * 640 * Allocates a new inode for given superblock. The default gfp_mask 641 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 642 * If HIGHMEM pages are unsuitable or it is known that pages allocated 643 * for the page cache are not reclaimable or migratable, 644 * mapping_set_gfp_mask() must be called with suitable flags on the 645 * newly created inode's mapping 646 * 647 */ 648 struct inode *new_inode(struct super_block *sb) 649 { 650 /* 651 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 652 * error if st_ino won't fit in target struct field. Use 32bit counter 653 * here to attempt to avoid that. 654 */ 655 static unsigned int last_ino; 656 struct inode *inode; 657 658 spin_lock_prefetch(&inode_lock); 659 660 inode = alloc_inode(sb); 661 if (inode) { 662 spin_lock(&inode_lock); 663 __inode_add_to_lists(sb, NULL, inode); 664 inode->i_ino = ++last_ino; 665 inode->i_state = 0; 666 spin_unlock(&inode_lock); 667 } 668 return inode; 669 } 670 EXPORT_SYMBOL(new_inode); 671 672 void unlock_new_inode(struct inode *inode) 673 { 674 #ifdef CONFIG_DEBUG_LOCK_ALLOC 675 if (inode->i_mode & S_IFDIR) { 676 struct file_system_type *type = inode->i_sb->s_type; 677 678 /* Set new key only if filesystem hasn't already changed it */ 679 if (!lockdep_match_class(&inode->i_mutex, 680 &type->i_mutex_key)) { 681 /* 682 * ensure nobody is actually holding i_mutex 683 */ 684 mutex_destroy(&inode->i_mutex); 685 mutex_init(&inode->i_mutex); 686 lockdep_set_class(&inode->i_mutex, 687 &type->i_mutex_dir_key); 688 } 689 } 690 #endif 691 /* 692 * This is special! We do not need the spinlock when clearing I_NEW, 693 * because we're guaranteed that nobody else tries to do anything about 694 * the state of the inode when it is locked, as we just created it (so 695 * there can be no old holders that haven't tested I_NEW). 696 * However we must emit the memory barrier so that other CPUs reliably 697 * see the clearing of I_NEW after the other inode initialisation has 698 * completed. 699 */ 700 smp_mb(); 701 WARN_ON(!(inode->i_state & I_NEW)); 702 inode->i_state &= ~I_NEW; 703 wake_up_inode(inode); 704 } 705 EXPORT_SYMBOL(unlock_new_inode); 706 707 /* 708 * This is called without the inode lock held.. Be careful. 709 * 710 * We no longer cache the sb_flags in i_flags - see fs.h 711 * -- rmk@arm.uk.linux.org 712 */ 713 static struct inode *get_new_inode(struct super_block *sb, 714 struct hlist_head *head, 715 int (*test)(struct inode *, void *), 716 int (*set)(struct inode *, void *), 717 void *data) 718 { 719 struct inode *inode; 720 721 inode = alloc_inode(sb); 722 if (inode) { 723 struct inode *old; 724 725 spin_lock(&inode_lock); 726 /* We released the lock, so.. */ 727 old = find_inode(sb, head, test, data); 728 if (!old) { 729 if (set(inode, data)) 730 goto set_failed; 731 732 __inode_add_to_lists(sb, head, inode); 733 inode->i_state = I_NEW; 734 spin_unlock(&inode_lock); 735 736 /* Return the locked inode with I_NEW set, the 737 * caller is responsible for filling in the contents 738 */ 739 return inode; 740 } 741 742 /* 743 * Uhhuh, somebody else created the same inode under 744 * us. Use the old inode instead of the one we just 745 * allocated. 746 */ 747 __iget(old); 748 spin_unlock(&inode_lock); 749 destroy_inode(inode); 750 inode = old; 751 wait_on_inode(inode); 752 } 753 return inode; 754 755 set_failed: 756 spin_unlock(&inode_lock); 757 destroy_inode(inode); 758 return NULL; 759 } 760 761 /* 762 * get_new_inode_fast is the fast path version of get_new_inode, see the 763 * comment at iget_locked for details. 764 */ 765 static struct inode *get_new_inode_fast(struct super_block *sb, 766 struct hlist_head *head, unsigned long ino) 767 { 768 struct inode *inode; 769 770 inode = alloc_inode(sb); 771 if (inode) { 772 struct inode *old; 773 774 spin_lock(&inode_lock); 775 /* We released the lock, so.. */ 776 old = find_inode_fast(sb, head, ino); 777 if (!old) { 778 inode->i_ino = ino; 779 __inode_add_to_lists(sb, head, inode); 780 inode->i_state = I_NEW; 781 spin_unlock(&inode_lock); 782 783 /* Return the locked inode with I_NEW set, the 784 * caller is responsible for filling in the contents 785 */ 786 return inode; 787 } 788 789 /* 790 * Uhhuh, somebody else created the same inode under 791 * us. Use the old inode instead of the one we just 792 * allocated. 793 */ 794 __iget(old); 795 spin_unlock(&inode_lock); 796 destroy_inode(inode); 797 inode = old; 798 wait_on_inode(inode); 799 } 800 return inode; 801 } 802 803 /** 804 * iunique - get a unique inode number 805 * @sb: superblock 806 * @max_reserved: highest reserved inode number 807 * 808 * Obtain an inode number that is unique on the system for a given 809 * superblock. This is used by file systems that have no natural 810 * permanent inode numbering system. An inode number is returned that 811 * is higher than the reserved limit but unique. 812 * 813 * BUGS: 814 * With a large number of inodes live on the file system this function 815 * currently becomes quite slow. 816 */ 817 ino_t iunique(struct super_block *sb, ino_t max_reserved) 818 { 819 /* 820 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 821 * error if st_ino won't fit in target struct field. Use 32bit counter 822 * here to attempt to avoid that. 823 */ 824 static unsigned int counter; 825 struct inode *inode; 826 struct hlist_head *head; 827 ino_t res; 828 829 spin_lock(&inode_lock); 830 do { 831 if (counter <= max_reserved) 832 counter = max_reserved + 1; 833 res = counter++; 834 head = inode_hashtable + hash(sb, res); 835 inode = find_inode_fast(sb, head, res); 836 } while (inode != NULL); 837 spin_unlock(&inode_lock); 838 839 return res; 840 } 841 EXPORT_SYMBOL(iunique); 842 843 struct inode *igrab(struct inode *inode) 844 { 845 spin_lock(&inode_lock); 846 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 847 __iget(inode); 848 else 849 /* 850 * Handle the case where s_op->clear_inode is not been 851 * called yet, and somebody is calling igrab 852 * while the inode is getting freed. 853 */ 854 inode = NULL; 855 spin_unlock(&inode_lock); 856 return inode; 857 } 858 EXPORT_SYMBOL(igrab); 859 860 /** 861 * ifind - internal function, you want ilookup5() or iget5(). 862 * @sb: super block of file system to search 863 * @head: the head of the list to search 864 * @test: callback used for comparisons between inodes 865 * @data: opaque data pointer to pass to @test 866 * @wait: if true wait for the inode to be unlocked, if false do not 867 * 868 * ifind() searches for the inode specified by @data in the inode 869 * cache. This is a generalized version of ifind_fast() for file systems where 870 * the inode number is not sufficient for unique identification of an inode. 871 * 872 * If the inode is in the cache, the inode is returned with an incremented 873 * reference count. 874 * 875 * Otherwise NULL is returned. 876 * 877 * Note, @test is called with the inode_lock held, so can't sleep. 878 */ 879 static struct inode *ifind(struct super_block *sb, 880 struct hlist_head *head, int (*test)(struct inode *, void *), 881 void *data, const int wait) 882 { 883 struct inode *inode; 884 885 spin_lock(&inode_lock); 886 inode = find_inode(sb, head, test, data); 887 if (inode) { 888 __iget(inode); 889 spin_unlock(&inode_lock); 890 if (likely(wait)) 891 wait_on_inode(inode); 892 return inode; 893 } 894 spin_unlock(&inode_lock); 895 return NULL; 896 } 897 898 /** 899 * ifind_fast - internal function, you want ilookup() or iget(). 900 * @sb: super block of file system to search 901 * @head: head of the list to search 902 * @ino: inode number to search for 903 * 904 * ifind_fast() searches for the inode @ino in the inode cache. This is for 905 * file systems where the inode number is sufficient for unique identification 906 * of an inode. 907 * 908 * If the inode is in the cache, the inode is returned with an incremented 909 * reference count. 910 * 911 * Otherwise NULL is returned. 912 */ 913 static struct inode *ifind_fast(struct super_block *sb, 914 struct hlist_head *head, unsigned long ino) 915 { 916 struct inode *inode; 917 918 spin_lock(&inode_lock); 919 inode = find_inode_fast(sb, head, ino); 920 if (inode) { 921 __iget(inode); 922 spin_unlock(&inode_lock); 923 wait_on_inode(inode); 924 return inode; 925 } 926 spin_unlock(&inode_lock); 927 return NULL; 928 } 929 930 /** 931 * ilookup5_nowait - search for an inode in the inode cache 932 * @sb: super block of file system to search 933 * @hashval: hash value (usually inode number) to search for 934 * @test: callback used for comparisons between inodes 935 * @data: opaque data pointer to pass to @test 936 * 937 * ilookup5() uses ifind() to search for the inode specified by @hashval and 938 * @data in the inode cache. This is a generalized version of ilookup() for 939 * file systems where the inode number is not sufficient for unique 940 * identification of an inode. 941 * 942 * If the inode is in the cache, the inode is returned with an incremented 943 * reference count. Note, the inode lock is not waited upon so you have to be 944 * very careful what you do with the returned inode. You probably should be 945 * using ilookup5() instead. 946 * 947 * Otherwise NULL is returned. 948 * 949 * Note, @test is called with the inode_lock held, so can't sleep. 950 */ 951 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 952 int (*test)(struct inode *, void *), void *data) 953 { 954 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 955 956 return ifind(sb, head, test, data, 0); 957 } 958 EXPORT_SYMBOL(ilookup5_nowait); 959 960 /** 961 * ilookup5 - search for an inode in the inode cache 962 * @sb: super block of file system to search 963 * @hashval: hash value (usually inode number) to search for 964 * @test: callback used for comparisons between inodes 965 * @data: opaque data pointer to pass to @test 966 * 967 * ilookup5() uses ifind() to search for the inode specified by @hashval and 968 * @data in the inode cache. This is a generalized version of ilookup() for 969 * file systems where the inode number is not sufficient for unique 970 * identification of an inode. 971 * 972 * If the inode is in the cache, the inode lock is waited upon and the inode is 973 * returned with an incremented reference count. 974 * 975 * Otherwise NULL is returned. 976 * 977 * Note, @test is called with the inode_lock held, so can't sleep. 978 */ 979 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 980 int (*test)(struct inode *, void *), void *data) 981 { 982 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 983 984 return ifind(sb, head, test, data, 1); 985 } 986 EXPORT_SYMBOL(ilookup5); 987 988 /** 989 * ilookup - search for an inode in the inode cache 990 * @sb: super block of file system to search 991 * @ino: inode number to search for 992 * 993 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 994 * This is for file systems where the inode number is sufficient for unique 995 * identification of an inode. 996 * 997 * If the inode is in the cache, the inode is returned with an incremented 998 * reference count. 999 * 1000 * Otherwise NULL is returned. 1001 */ 1002 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1003 { 1004 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1005 1006 return ifind_fast(sb, head, ino); 1007 } 1008 EXPORT_SYMBOL(ilookup); 1009 1010 /** 1011 * iget5_locked - obtain an inode from a mounted file system 1012 * @sb: super block of file system 1013 * @hashval: hash value (usually inode number) to get 1014 * @test: callback used for comparisons between inodes 1015 * @set: callback used to initialize a new struct inode 1016 * @data: opaque data pointer to pass to @test and @set 1017 * 1018 * iget5_locked() uses ifind() to search for the inode specified by @hashval 1019 * and @data in the inode cache and if present it is returned with an increased 1020 * reference count. This is a generalized version of iget_locked() for file 1021 * systems where the inode number is not sufficient for unique identification 1022 * of an inode. 1023 * 1024 * If the inode is not in cache, get_new_inode() is called to allocate a new 1025 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 1026 * file system gets to fill it in before unlocking it via unlock_new_inode(). 1027 * 1028 * Note both @test and @set are called with the inode_lock held, so can't sleep. 1029 */ 1030 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1031 int (*test)(struct inode *, void *), 1032 int (*set)(struct inode *, void *), void *data) 1033 { 1034 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1035 struct inode *inode; 1036 1037 inode = ifind(sb, head, test, data, 1); 1038 if (inode) 1039 return inode; 1040 /* 1041 * get_new_inode() will do the right thing, re-trying the search 1042 * in case it had to block at any point. 1043 */ 1044 return get_new_inode(sb, head, test, set, data); 1045 } 1046 EXPORT_SYMBOL(iget5_locked); 1047 1048 /** 1049 * iget_locked - obtain an inode from a mounted file system 1050 * @sb: super block of file system 1051 * @ino: inode number to get 1052 * 1053 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 1054 * the inode cache and if present it is returned with an increased reference 1055 * count. This is for file systems where the inode number is sufficient for 1056 * unique identification of an inode. 1057 * 1058 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 1059 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 1060 * The file system gets to fill it in before unlocking it via 1061 * unlock_new_inode(). 1062 */ 1063 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1064 { 1065 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1066 struct inode *inode; 1067 1068 inode = ifind_fast(sb, head, ino); 1069 if (inode) 1070 return inode; 1071 /* 1072 * get_new_inode_fast() will do the right thing, re-trying the search 1073 * in case it had to block at any point. 1074 */ 1075 return get_new_inode_fast(sb, head, ino); 1076 } 1077 EXPORT_SYMBOL(iget_locked); 1078 1079 int insert_inode_locked(struct inode *inode) 1080 { 1081 struct super_block *sb = inode->i_sb; 1082 ino_t ino = inode->i_ino; 1083 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1084 1085 inode->i_state |= I_NEW; 1086 while (1) { 1087 struct hlist_node *node; 1088 struct inode *old = NULL; 1089 spin_lock(&inode_lock); 1090 hlist_for_each_entry(old, node, head, i_hash) { 1091 if (old->i_ino != ino) 1092 continue; 1093 if (old->i_sb != sb) 1094 continue; 1095 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) 1096 continue; 1097 break; 1098 } 1099 if (likely(!node)) { 1100 hlist_add_head(&inode->i_hash, head); 1101 spin_unlock(&inode_lock); 1102 return 0; 1103 } 1104 __iget(old); 1105 spin_unlock(&inode_lock); 1106 wait_on_inode(old); 1107 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1108 iput(old); 1109 return -EBUSY; 1110 } 1111 iput(old); 1112 } 1113 } 1114 EXPORT_SYMBOL(insert_inode_locked); 1115 1116 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1117 int (*test)(struct inode *, void *), void *data) 1118 { 1119 struct super_block *sb = inode->i_sb; 1120 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1121 1122 inode->i_state |= I_NEW; 1123 1124 while (1) { 1125 struct hlist_node *node; 1126 struct inode *old = NULL; 1127 1128 spin_lock(&inode_lock); 1129 hlist_for_each_entry(old, node, head, i_hash) { 1130 if (old->i_sb != sb) 1131 continue; 1132 if (!test(old, data)) 1133 continue; 1134 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) 1135 continue; 1136 break; 1137 } 1138 if (likely(!node)) { 1139 hlist_add_head(&inode->i_hash, head); 1140 spin_unlock(&inode_lock); 1141 return 0; 1142 } 1143 __iget(old); 1144 spin_unlock(&inode_lock); 1145 wait_on_inode(old); 1146 if (unlikely(!hlist_unhashed(&old->i_hash))) { 1147 iput(old); 1148 return -EBUSY; 1149 } 1150 iput(old); 1151 } 1152 } 1153 EXPORT_SYMBOL(insert_inode_locked4); 1154 1155 /** 1156 * __insert_inode_hash - hash an inode 1157 * @inode: unhashed inode 1158 * @hashval: unsigned long value used to locate this object in the 1159 * inode_hashtable. 1160 * 1161 * Add an inode to the inode hash for this superblock. 1162 */ 1163 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1164 { 1165 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1166 spin_lock(&inode_lock); 1167 hlist_add_head(&inode->i_hash, head); 1168 spin_unlock(&inode_lock); 1169 } 1170 EXPORT_SYMBOL(__insert_inode_hash); 1171 1172 /** 1173 * remove_inode_hash - remove an inode from the hash 1174 * @inode: inode to unhash 1175 * 1176 * Remove an inode from the superblock. 1177 */ 1178 void remove_inode_hash(struct inode *inode) 1179 { 1180 spin_lock(&inode_lock); 1181 hlist_del_init(&inode->i_hash); 1182 spin_unlock(&inode_lock); 1183 } 1184 EXPORT_SYMBOL(remove_inode_hash); 1185 1186 /* 1187 * Tell the filesystem that this inode is no longer of any interest and should 1188 * be completely destroyed. 1189 * 1190 * We leave the inode in the inode hash table until *after* the filesystem's 1191 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1192 * instigate) will always find up-to-date information either in the hash or on 1193 * disk. 1194 * 1195 * I_FREEING is set so that no-one will take a new reference to the inode while 1196 * it is being deleted. 1197 */ 1198 void generic_delete_inode(struct inode *inode) 1199 { 1200 const struct super_operations *op = inode->i_sb->s_op; 1201 1202 list_del_init(&inode->i_list); 1203 list_del_init(&inode->i_sb_list); 1204 WARN_ON(inode->i_state & I_NEW); 1205 inode->i_state |= I_FREEING; 1206 inodes_stat.nr_inodes--; 1207 spin_unlock(&inode_lock); 1208 1209 security_inode_delete(inode); 1210 1211 if (op->delete_inode) { 1212 void (*delete)(struct inode *) = op->delete_inode; 1213 if (!is_bad_inode(inode)) 1214 vfs_dq_init(inode); 1215 /* Filesystems implementing their own 1216 * s_op->delete_inode are required to call 1217 * truncate_inode_pages and clear_inode() 1218 * internally */ 1219 delete(inode); 1220 } else { 1221 truncate_inode_pages(&inode->i_data, 0); 1222 clear_inode(inode); 1223 } 1224 spin_lock(&inode_lock); 1225 hlist_del_init(&inode->i_hash); 1226 spin_unlock(&inode_lock); 1227 wake_up_inode(inode); 1228 BUG_ON(inode->i_state != I_CLEAR); 1229 destroy_inode(inode); 1230 } 1231 EXPORT_SYMBOL(generic_delete_inode); 1232 1233 /** 1234 * generic_detach_inode - remove inode from inode lists 1235 * @inode: inode to remove 1236 * 1237 * Remove inode from inode lists, write it if it's dirty. This is just an 1238 * internal VFS helper exported for hugetlbfs. Do not use! 1239 * 1240 * Returns 1 if inode should be completely destroyed. 1241 */ 1242 int generic_detach_inode(struct inode *inode) 1243 { 1244 struct super_block *sb = inode->i_sb; 1245 1246 if (!hlist_unhashed(&inode->i_hash)) { 1247 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1248 list_move(&inode->i_list, &inode_unused); 1249 inodes_stat.nr_unused++; 1250 if (sb->s_flags & MS_ACTIVE) { 1251 spin_unlock(&inode_lock); 1252 return 0; 1253 } 1254 WARN_ON(inode->i_state & I_NEW); 1255 inode->i_state |= I_WILL_FREE; 1256 spin_unlock(&inode_lock); 1257 write_inode_now(inode, 1); 1258 spin_lock(&inode_lock); 1259 WARN_ON(inode->i_state & I_NEW); 1260 inode->i_state &= ~I_WILL_FREE; 1261 inodes_stat.nr_unused--; 1262 hlist_del_init(&inode->i_hash); 1263 } 1264 list_del_init(&inode->i_list); 1265 list_del_init(&inode->i_sb_list); 1266 WARN_ON(inode->i_state & I_NEW); 1267 inode->i_state |= I_FREEING; 1268 inodes_stat.nr_inodes--; 1269 spin_unlock(&inode_lock); 1270 return 1; 1271 } 1272 EXPORT_SYMBOL_GPL(generic_detach_inode); 1273 1274 static void generic_forget_inode(struct inode *inode) 1275 { 1276 if (!generic_detach_inode(inode)) 1277 return; 1278 if (inode->i_data.nrpages) 1279 truncate_inode_pages(&inode->i_data, 0); 1280 clear_inode(inode); 1281 wake_up_inode(inode); 1282 destroy_inode(inode); 1283 } 1284 1285 /* 1286 * Normal UNIX filesystem behaviour: delete the 1287 * inode when the usage count drops to zero, and 1288 * i_nlink is zero. 1289 */ 1290 void generic_drop_inode(struct inode *inode) 1291 { 1292 if (!inode->i_nlink) 1293 generic_delete_inode(inode); 1294 else 1295 generic_forget_inode(inode); 1296 } 1297 EXPORT_SYMBOL_GPL(generic_drop_inode); 1298 1299 /* 1300 * Called when we're dropping the last reference 1301 * to an inode. 1302 * 1303 * Call the FS "drop()" function, defaulting to 1304 * the legacy UNIX filesystem behaviour.. 1305 * 1306 * NOTE! NOTE! NOTE! We're called with the inode lock 1307 * held, and the drop function is supposed to release 1308 * the lock! 1309 */ 1310 static inline void iput_final(struct inode *inode) 1311 { 1312 const struct super_operations *op = inode->i_sb->s_op; 1313 void (*drop)(struct inode *) = generic_drop_inode; 1314 1315 if (op && op->drop_inode) 1316 drop = op->drop_inode; 1317 drop(inode); 1318 } 1319 1320 /** 1321 * iput - put an inode 1322 * @inode: inode to put 1323 * 1324 * Puts an inode, dropping its usage count. If the inode use count hits 1325 * zero, the inode is then freed and may also be destroyed. 1326 * 1327 * Consequently, iput() can sleep. 1328 */ 1329 void iput(struct inode *inode) 1330 { 1331 if (inode) { 1332 BUG_ON(inode->i_state == I_CLEAR); 1333 1334 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1335 iput_final(inode); 1336 } 1337 } 1338 EXPORT_SYMBOL(iput); 1339 1340 /** 1341 * bmap - find a block number in a file 1342 * @inode: inode of file 1343 * @block: block to find 1344 * 1345 * Returns the block number on the device holding the inode that 1346 * is the disk block number for the block of the file requested. 1347 * That is, asked for block 4 of inode 1 the function will return the 1348 * disk block relative to the disk start that holds that block of the 1349 * file. 1350 */ 1351 sector_t bmap(struct inode *inode, sector_t block) 1352 { 1353 sector_t res = 0; 1354 if (inode->i_mapping->a_ops->bmap) 1355 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1356 return res; 1357 } 1358 EXPORT_SYMBOL(bmap); 1359 1360 /* 1361 * With relative atime, only update atime if the previous atime is 1362 * earlier than either the ctime or mtime or if at least a day has 1363 * passed since the last atime update. 1364 */ 1365 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1366 struct timespec now) 1367 { 1368 1369 if (!(mnt->mnt_flags & MNT_RELATIME)) 1370 return 1; 1371 /* 1372 * Is mtime younger than atime? If yes, update atime: 1373 */ 1374 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1375 return 1; 1376 /* 1377 * Is ctime younger than atime? If yes, update atime: 1378 */ 1379 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1380 return 1; 1381 1382 /* 1383 * Is the previous atime value older than a day? If yes, 1384 * update atime: 1385 */ 1386 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1387 return 1; 1388 /* 1389 * Good, we can skip the atime update: 1390 */ 1391 return 0; 1392 } 1393 1394 /** 1395 * touch_atime - update the access time 1396 * @mnt: mount the inode is accessed on 1397 * @dentry: dentry accessed 1398 * 1399 * Update the accessed time on an inode and mark it for writeback. 1400 * This function automatically handles read only file systems and media, 1401 * as well as the "noatime" flag and inode specific "noatime" markers. 1402 */ 1403 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1404 { 1405 struct inode *inode = dentry->d_inode; 1406 struct timespec now; 1407 1408 if (inode->i_flags & S_NOATIME) 1409 return; 1410 if (IS_NOATIME(inode)) 1411 return; 1412 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1413 return; 1414 1415 if (mnt->mnt_flags & MNT_NOATIME) 1416 return; 1417 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1418 return; 1419 1420 now = current_fs_time(inode->i_sb); 1421 1422 if (!relatime_need_update(mnt, inode, now)) 1423 return; 1424 1425 if (timespec_equal(&inode->i_atime, &now)) 1426 return; 1427 1428 if (mnt_want_write(mnt)) 1429 return; 1430 1431 inode->i_atime = now; 1432 mark_inode_dirty_sync(inode); 1433 mnt_drop_write(mnt); 1434 } 1435 EXPORT_SYMBOL(touch_atime); 1436 1437 /** 1438 * file_update_time - update mtime and ctime time 1439 * @file: file accessed 1440 * 1441 * Update the mtime and ctime members of an inode and mark the inode 1442 * for writeback. Note that this function is meant exclusively for 1443 * usage in the file write path of filesystems, and filesystems may 1444 * choose to explicitly ignore update via this function with the 1445 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1446 * timestamps are handled by the server. 1447 */ 1448 1449 void file_update_time(struct file *file) 1450 { 1451 struct inode *inode = file->f_path.dentry->d_inode; 1452 struct timespec now; 1453 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 1454 1455 /* First try to exhaust all avenues to not sync */ 1456 if (IS_NOCMTIME(inode)) 1457 return; 1458 1459 now = current_fs_time(inode->i_sb); 1460 if (!timespec_equal(&inode->i_mtime, &now)) 1461 sync_it = S_MTIME; 1462 1463 if (!timespec_equal(&inode->i_ctime, &now)) 1464 sync_it |= S_CTIME; 1465 1466 if (IS_I_VERSION(inode)) 1467 sync_it |= S_VERSION; 1468 1469 if (!sync_it) 1470 return; 1471 1472 /* Finally allowed to write? Takes lock. */ 1473 if (mnt_want_write_file(file)) 1474 return; 1475 1476 /* Only change inode inside the lock region */ 1477 if (sync_it & S_VERSION) 1478 inode_inc_iversion(inode); 1479 if (sync_it & S_CTIME) 1480 inode->i_ctime = now; 1481 if (sync_it & S_MTIME) 1482 inode->i_mtime = now; 1483 mark_inode_dirty_sync(inode); 1484 mnt_drop_write(file->f_path.mnt); 1485 } 1486 EXPORT_SYMBOL(file_update_time); 1487 1488 int inode_needs_sync(struct inode *inode) 1489 { 1490 if (IS_SYNC(inode)) 1491 return 1; 1492 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1493 return 1; 1494 return 0; 1495 } 1496 EXPORT_SYMBOL(inode_needs_sync); 1497 1498 int inode_wait(void *word) 1499 { 1500 schedule(); 1501 return 0; 1502 } 1503 EXPORT_SYMBOL(inode_wait); 1504 1505 /* 1506 * If we try to find an inode in the inode hash while it is being 1507 * deleted, we have to wait until the filesystem completes its 1508 * deletion before reporting that it isn't found. This function waits 1509 * until the deletion _might_ have completed. Callers are responsible 1510 * to recheck inode state. 1511 * 1512 * It doesn't matter if I_NEW is not set initially, a call to 1513 * wake_up_inode() after removing from the hash list will DTRT. 1514 * 1515 * This is called with inode_lock held. 1516 */ 1517 static void __wait_on_freeing_inode(struct inode *inode) 1518 { 1519 wait_queue_head_t *wq; 1520 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1521 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1522 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1523 spin_unlock(&inode_lock); 1524 schedule(); 1525 finish_wait(wq, &wait.wait); 1526 spin_lock(&inode_lock); 1527 } 1528 1529 static __initdata unsigned long ihash_entries; 1530 static int __init set_ihash_entries(char *str) 1531 { 1532 if (!str) 1533 return 0; 1534 ihash_entries = simple_strtoul(str, &str, 0); 1535 return 1; 1536 } 1537 __setup("ihash_entries=", set_ihash_entries); 1538 1539 /* 1540 * Initialize the waitqueues and inode hash table. 1541 */ 1542 void __init inode_init_early(void) 1543 { 1544 int loop; 1545 1546 /* If hashes are distributed across NUMA nodes, defer 1547 * hash allocation until vmalloc space is available. 1548 */ 1549 if (hashdist) 1550 return; 1551 1552 inode_hashtable = 1553 alloc_large_system_hash("Inode-cache", 1554 sizeof(struct hlist_head), 1555 ihash_entries, 1556 14, 1557 HASH_EARLY, 1558 &i_hash_shift, 1559 &i_hash_mask, 1560 0); 1561 1562 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1563 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1564 } 1565 1566 void __init inode_init(void) 1567 { 1568 int loop; 1569 1570 /* inode slab cache */ 1571 inode_cachep = kmem_cache_create("inode_cache", 1572 sizeof(struct inode), 1573 0, 1574 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1575 SLAB_MEM_SPREAD), 1576 init_once); 1577 register_shrinker(&icache_shrinker); 1578 1579 /* Hash may have been set up in inode_init_early */ 1580 if (!hashdist) 1581 return; 1582 1583 inode_hashtable = 1584 alloc_large_system_hash("Inode-cache", 1585 sizeof(struct hlist_head), 1586 ihash_entries, 1587 14, 1588 0, 1589 &i_hash_shift, 1590 &i_hash_mask, 1591 0); 1592 1593 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1594 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1595 } 1596 1597 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1598 { 1599 inode->i_mode = mode; 1600 if (S_ISCHR(mode)) { 1601 inode->i_fop = &def_chr_fops; 1602 inode->i_rdev = rdev; 1603 } else if (S_ISBLK(mode)) { 1604 inode->i_fop = &def_blk_fops; 1605 inode->i_rdev = rdev; 1606 } else if (S_ISFIFO(mode)) 1607 inode->i_fop = &def_fifo_fops; 1608 else if (S_ISSOCK(mode)) 1609 inode->i_fop = &bad_sock_fops; 1610 else 1611 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1612 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1613 inode->i_ino); 1614 } 1615 EXPORT_SYMBOL(init_special_inode); 1616