xref: /openbmc/linux/fs/inode.c (revision 257ba15cedf1288f0c96118d7e63947231d27278)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/rwsem.h>
18 #include <linux/hash.h>
19 #include <linux/swap.h>
20 #include <linux/security.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/fsnotify.h>
26 #include <linux/mount.h>
27 #include <linux/async.h>
28 #include <linux/posix_acl.h>
29 
30 /*
31  * This is needed for the following functions:
32  *  - inode_has_buffers
33  *  - invalidate_inode_buffers
34  *  - invalidate_bdev
35  *
36  * FIXME: remove all knowledge of the buffer layer from this file
37  */
38 #include <linux/buffer_head.h>
39 
40 /*
41  * New inode.c implementation.
42  *
43  * This implementation has the basic premise of trying
44  * to be extremely low-overhead and SMP-safe, yet be
45  * simple enough to be "obviously correct".
46  *
47  * Famous last words.
48  */
49 
50 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
51 
52 /* #define INODE_PARANOIA 1 */
53 /* #define INODE_DEBUG 1 */
54 
55 /*
56  * Inode lookup is no longer as critical as it used to be:
57  * most of the lookups are going to be through the dcache.
58  */
59 #define I_HASHBITS	i_hash_shift
60 #define I_HASHMASK	i_hash_mask
61 
62 static unsigned int i_hash_mask __read_mostly;
63 static unsigned int i_hash_shift __read_mostly;
64 
65 /*
66  * Each inode can be on two separate lists. One is
67  * the hash list of the inode, used for lookups. The
68  * other linked list is the "type" list:
69  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
70  *  "dirty"  - as "in_use" but also dirty
71  *  "unused" - valid inode, i_count = 0
72  *
73  * A "dirty" list is maintained for each super block,
74  * allowing for low-overhead inode sync() operations.
75  */
76 
77 LIST_HEAD(inode_in_use);
78 LIST_HEAD(inode_unused);
79 static struct hlist_head *inode_hashtable __read_mostly;
80 
81 /*
82  * A simple spinlock to protect the list manipulations.
83  *
84  * NOTE! You also have to own the lock if you change
85  * the i_state of an inode while it is in use..
86  */
87 DEFINE_SPINLOCK(inode_lock);
88 
89 /*
90  * iprune_sem provides exclusion between the kswapd or try_to_free_pages
91  * icache shrinking path, and the umount path.  Without this exclusion,
92  * by the time prune_icache calls iput for the inode whose pages it has
93  * been invalidating, or by the time it calls clear_inode & destroy_inode
94  * from its final dispose_list, the struct super_block they refer to
95  * (for inode->i_sb->s_op) may already have been freed and reused.
96  *
97  * We make this an rwsem because the fastpath is icache shrinking. In
98  * some cases a filesystem may be doing a significant amount of work in
99  * its inode reclaim code, so this should improve parallelism.
100  */
101 static DECLARE_RWSEM(iprune_sem);
102 
103 /*
104  * Statistics gathering..
105  */
106 struct inodes_stat_t inodes_stat;
107 
108 static struct kmem_cache *inode_cachep __read_mostly;
109 
110 static void wake_up_inode(struct inode *inode)
111 {
112 	/*
113 	 * Prevent speculative execution through spin_unlock(&inode_lock);
114 	 */
115 	smp_mb();
116 	wake_up_bit(&inode->i_state, __I_NEW);
117 }
118 
119 /**
120  * inode_init_always - perform inode structure intialisation
121  * @sb: superblock inode belongs to
122  * @inode: inode to initialise
123  *
124  * These are initializations that need to be done on every inode
125  * allocation as the fields are not initialised by slab allocation.
126  */
127 int inode_init_always(struct super_block *sb, struct inode *inode)
128 {
129 	static const struct address_space_operations empty_aops;
130 	static const struct inode_operations empty_iops;
131 	static const struct file_operations empty_fops;
132 	struct address_space *const mapping = &inode->i_data;
133 
134 	inode->i_sb = sb;
135 	inode->i_blkbits = sb->s_blocksize_bits;
136 	inode->i_flags = 0;
137 	atomic_set(&inode->i_count, 1);
138 	inode->i_op = &empty_iops;
139 	inode->i_fop = &empty_fops;
140 	inode->i_nlink = 1;
141 	inode->i_uid = 0;
142 	inode->i_gid = 0;
143 	atomic_set(&inode->i_writecount, 0);
144 	inode->i_size = 0;
145 	inode->i_blocks = 0;
146 	inode->i_bytes = 0;
147 	inode->i_generation = 0;
148 #ifdef CONFIG_QUOTA
149 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
150 #endif
151 	inode->i_pipe = NULL;
152 	inode->i_bdev = NULL;
153 	inode->i_cdev = NULL;
154 	inode->i_rdev = 0;
155 	inode->dirtied_when = 0;
156 
157 	if (security_inode_alloc(inode))
158 		goto out;
159 	spin_lock_init(&inode->i_lock);
160 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
161 
162 	mutex_init(&inode->i_mutex);
163 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
164 
165 	init_rwsem(&inode->i_alloc_sem);
166 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
167 
168 	mapping->a_ops = &empty_aops;
169 	mapping->host = inode;
170 	mapping->flags = 0;
171 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
172 	mapping->assoc_mapping = NULL;
173 	mapping->backing_dev_info = &default_backing_dev_info;
174 	mapping->writeback_index = 0;
175 
176 	/*
177 	 * If the block_device provides a backing_dev_info for client
178 	 * inodes then use that.  Otherwise the inode share the bdev's
179 	 * backing_dev_info.
180 	 */
181 	if (sb->s_bdev) {
182 		struct backing_dev_info *bdi;
183 
184 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
185 		mapping->backing_dev_info = bdi;
186 	}
187 	inode->i_private = NULL;
188 	inode->i_mapping = mapping;
189 #ifdef CONFIG_FS_POSIX_ACL
190 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
191 #endif
192 
193 #ifdef CONFIG_FSNOTIFY
194 	inode->i_fsnotify_mask = 0;
195 #endif
196 
197 	return 0;
198 out:
199 	return -ENOMEM;
200 }
201 EXPORT_SYMBOL(inode_init_always);
202 
203 static struct inode *alloc_inode(struct super_block *sb)
204 {
205 	struct inode *inode;
206 
207 	if (sb->s_op->alloc_inode)
208 		inode = sb->s_op->alloc_inode(sb);
209 	else
210 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
211 
212 	if (!inode)
213 		return NULL;
214 
215 	if (unlikely(inode_init_always(sb, inode))) {
216 		if (inode->i_sb->s_op->destroy_inode)
217 			inode->i_sb->s_op->destroy_inode(inode);
218 		else
219 			kmem_cache_free(inode_cachep, inode);
220 		return NULL;
221 	}
222 
223 	return inode;
224 }
225 
226 void __destroy_inode(struct inode *inode)
227 {
228 	BUG_ON(inode_has_buffers(inode));
229 	security_inode_free(inode);
230 	fsnotify_inode_delete(inode);
231 #ifdef CONFIG_FS_POSIX_ACL
232 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
233 		posix_acl_release(inode->i_acl);
234 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
235 		posix_acl_release(inode->i_default_acl);
236 #endif
237 }
238 EXPORT_SYMBOL(__destroy_inode);
239 
240 void destroy_inode(struct inode *inode)
241 {
242 	__destroy_inode(inode);
243 	if (inode->i_sb->s_op->destroy_inode)
244 		inode->i_sb->s_op->destroy_inode(inode);
245 	else
246 		kmem_cache_free(inode_cachep, (inode));
247 }
248 
249 /*
250  * These are initializations that only need to be done
251  * once, because the fields are idempotent across use
252  * of the inode, so let the slab aware of that.
253  */
254 void inode_init_once(struct inode *inode)
255 {
256 	memset(inode, 0, sizeof(*inode));
257 	INIT_HLIST_NODE(&inode->i_hash);
258 	INIT_LIST_HEAD(&inode->i_dentry);
259 	INIT_LIST_HEAD(&inode->i_devices);
260 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
261 	spin_lock_init(&inode->i_data.tree_lock);
262 	spin_lock_init(&inode->i_data.i_mmap_lock);
263 	INIT_LIST_HEAD(&inode->i_data.private_list);
264 	spin_lock_init(&inode->i_data.private_lock);
265 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
266 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
267 	i_size_ordered_init(inode);
268 #ifdef CONFIG_INOTIFY
269 	INIT_LIST_HEAD(&inode->inotify_watches);
270 	mutex_init(&inode->inotify_mutex);
271 #endif
272 #ifdef CONFIG_FSNOTIFY
273 	INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries);
274 #endif
275 }
276 EXPORT_SYMBOL(inode_init_once);
277 
278 static void init_once(void *foo)
279 {
280 	struct inode *inode = (struct inode *) foo;
281 
282 	inode_init_once(inode);
283 }
284 
285 /*
286  * inode_lock must be held
287  */
288 void __iget(struct inode *inode)
289 {
290 	if (atomic_read(&inode->i_count)) {
291 		atomic_inc(&inode->i_count);
292 		return;
293 	}
294 	atomic_inc(&inode->i_count);
295 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
296 		list_move(&inode->i_list, &inode_in_use);
297 	inodes_stat.nr_unused--;
298 }
299 
300 /**
301  * clear_inode - clear an inode
302  * @inode: inode to clear
303  *
304  * This is called by the filesystem to tell us
305  * that the inode is no longer useful. We just
306  * terminate it with extreme prejudice.
307  */
308 void clear_inode(struct inode *inode)
309 {
310 	might_sleep();
311 	invalidate_inode_buffers(inode);
312 
313 	BUG_ON(inode->i_data.nrpages);
314 	BUG_ON(!(inode->i_state & I_FREEING));
315 	BUG_ON(inode->i_state & I_CLEAR);
316 	inode_sync_wait(inode);
317 	if (inode->i_sb->s_op->clear_inode)
318 		inode->i_sb->s_op->clear_inode(inode);
319 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
320 		bd_forget(inode);
321 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
322 		cd_forget(inode);
323 	inode->i_state = I_CLEAR;
324 }
325 EXPORT_SYMBOL(clear_inode);
326 
327 /*
328  * dispose_list - dispose of the contents of a local list
329  * @head: the head of the list to free
330  *
331  * Dispose-list gets a local list with local inodes in it, so it doesn't
332  * need to worry about list corruption and SMP locks.
333  */
334 static void dispose_list(struct list_head *head)
335 {
336 	int nr_disposed = 0;
337 
338 	while (!list_empty(head)) {
339 		struct inode *inode;
340 
341 		inode = list_first_entry(head, struct inode, i_list);
342 		list_del(&inode->i_list);
343 
344 		if (inode->i_data.nrpages)
345 			truncate_inode_pages(&inode->i_data, 0);
346 		clear_inode(inode);
347 
348 		spin_lock(&inode_lock);
349 		hlist_del_init(&inode->i_hash);
350 		list_del_init(&inode->i_sb_list);
351 		spin_unlock(&inode_lock);
352 
353 		wake_up_inode(inode);
354 		destroy_inode(inode);
355 		nr_disposed++;
356 	}
357 	spin_lock(&inode_lock);
358 	inodes_stat.nr_inodes -= nr_disposed;
359 	spin_unlock(&inode_lock);
360 }
361 
362 /*
363  * Invalidate all inodes for a device.
364  */
365 static int invalidate_list(struct list_head *head, struct list_head *dispose)
366 {
367 	struct list_head *next;
368 	int busy = 0, count = 0;
369 
370 	next = head->next;
371 	for (;;) {
372 		struct list_head *tmp = next;
373 		struct inode *inode;
374 
375 		/*
376 		 * We can reschedule here without worrying about the list's
377 		 * consistency because the per-sb list of inodes must not
378 		 * change during umount anymore, and because iprune_sem keeps
379 		 * shrink_icache_memory() away.
380 		 */
381 		cond_resched_lock(&inode_lock);
382 
383 		next = next->next;
384 		if (tmp == head)
385 			break;
386 		inode = list_entry(tmp, struct inode, i_sb_list);
387 		if (inode->i_state & I_NEW)
388 			continue;
389 		invalidate_inode_buffers(inode);
390 		if (!atomic_read(&inode->i_count)) {
391 			list_move(&inode->i_list, dispose);
392 			WARN_ON(inode->i_state & I_NEW);
393 			inode->i_state |= I_FREEING;
394 			count++;
395 			continue;
396 		}
397 		busy = 1;
398 	}
399 	/* only unused inodes may be cached with i_count zero */
400 	inodes_stat.nr_unused -= count;
401 	return busy;
402 }
403 
404 /**
405  *	invalidate_inodes	- discard the inodes on a device
406  *	@sb: superblock
407  *
408  *	Discard all of the inodes for a given superblock. If the discard
409  *	fails because there are busy inodes then a non zero value is returned.
410  *	If the discard is successful all the inodes have been discarded.
411  */
412 int invalidate_inodes(struct super_block *sb)
413 {
414 	int busy;
415 	LIST_HEAD(throw_away);
416 
417 	down_write(&iprune_sem);
418 	spin_lock(&inode_lock);
419 	inotify_unmount_inodes(&sb->s_inodes);
420 	fsnotify_unmount_inodes(&sb->s_inodes);
421 	busy = invalidate_list(&sb->s_inodes, &throw_away);
422 	spin_unlock(&inode_lock);
423 
424 	dispose_list(&throw_away);
425 	up_write(&iprune_sem);
426 
427 	return busy;
428 }
429 EXPORT_SYMBOL(invalidate_inodes);
430 
431 static int can_unuse(struct inode *inode)
432 {
433 	if (inode->i_state)
434 		return 0;
435 	if (inode_has_buffers(inode))
436 		return 0;
437 	if (atomic_read(&inode->i_count))
438 		return 0;
439 	if (inode->i_data.nrpages)
440 		return 0;
441 	return 1;
442 }
443 
444 /*
445  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
446  * a temporary list and then are freed outside inode_lock by dispose_list().
447  *
448  * Any inodes which are pinned purely because of attached pagecache have their
449  * pagecache removed.  We expect the final iput() on that inode to add it to
450  * the front of the inode_unused list.  So look for it there and if the
451  * inode is still freeable, proceed.  The right inode is found 99.9% of the
452  * time in testing on a 4-way.
453  *
454  * If the inode has metadata buffers attached to mapping->private_list then
455  * try to remove them.
456  */
457 static void prune_icache(int nr_to_scan)
458 {
459 	LIST_HEAD(freeable);
460 	int nr_pruned = 0;
461 	int nr_scanned;
462 	unsigned long reap = 0;
463 
464 	down_read(&iprune_sem);
465 	spin_lock(&inode_lock);
466 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
467 		struct inode *inode;
468 
469 		if (list_empty(&inode_unused))
470 			break;
471 
472 		inode = list_entry(inode_unused.prev, struct inode, i_list);
473 
474 		if (inode->i_state || atomic_read(&inode->i_count)) {
475 			list_move(&inode->i_list, &inode_unused);
476 			continue;
477 		}
478 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
479 			__iget(inode);
480 			spin_unlock(&inode_lock);
481 			if (remove_inode_buffers(inode))
482 				reap += invalidate_mapping_pages(&inode->i_data,
483 								0, -1);
484 			iput(inode);
485 			spin_lock(&inode_lock);
486 
487 			if (inode != list_entry(inode_unused.next,
488 						struct inode, i_list))
489 				continue;	/* wrong inode or list_empty */
490 			if (!can_unuse(inode))
491 				continue;
492 		}
493 		list_move(&inode->i_list, &freeable);
494 		WARN_ON(inode->i_state & I_NEW);
495 		inode->i_state |= I_FREEING;
496 		nr_pruned++;
497 	}
498 	inodes_stat.nr_unused -= nr_pruned;
499 	if (current_is_kswapd())
500 		__count_vm_events(KSWAPD_INODESTEAL, reap);
501 	else
502 		__count_vm_events(PGINODESTEAL, reap);
503 	spin_unlock(&inode_lock);
504 
505 	dispose_list(&freeable);
506 	up_read(&iprune_sem);
507 }
508 
509 /*
510  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
511  * "unused" means that no dentries are referring to the inodes: the files are
512  * not open and the dcache references to those inodes have already been
513  * reclaimed.
514  *
515  * This function is passed the number of inodes to scan, and it returns the
516  * total number of remaining possibly-reclaimable inodes.
517  */
518 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
519 {
520 	if (nr) {
521 		/*
522 		 * Nasty deadlock avoidance.  We may hold various FS locks,
523 		 * and we don't want to recurse into the FS that called us
524 		 * in clear_inode() and friends..
525 		 */
526 		if (!(gfp_mask & __GFP_FS))
527 			return -1;
528 		prune_icache(nr);
529 	}
530 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
531 }
532 
533 static struct shrinker icache_shrinker = {
534 	.shrink = shrink_icache_memory,
535 	.seeks = DEFAULT_SEEKS,
536 };
537 
538 static void __wait_on_freeing_inode(struct inode *inode);
539 /*
540  * Called with the inode lock held.
541  * NOTE: we are not increasing the inode-refcount, you must call __iget()
542  * by hand after calling find_inode now! This simplifies iunique and won't
543  * add any additional branch in the common code.
544  */
545 static struct inode *find_inode(struct super_block *sb,
546 				struct hlist_head *head,
547 				int (*test)(struct inode *, void *),
548 				void *data)
549 {
550 	struct hlist_node *node;
551 	struct inode *inode = NULL;
552 
553 repeat:
554 	hlist_for_each_entry(inode, node, head, i_hash) {
555 		if (inode->i_sb != sb)
556 			continue;
557 		if (!test(inode, data))
558 			continue;
559 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
560 			__wait_on_freeing_inode(inode);
561 			goto repeat;
562 		}
563 		break;
564 	}
565 	return node ? inode : NULL;
566 }
567 
568 /*
569  * find_inode_fast is the fast path version of find_inode, see the comment at
570  * iget_locked for details.
571  */
572 static struct inode *find_inode_fast(struct super_block *sb,
573 				struct hlist_head *head, unsigned long ino)
574 {
575 	struct hlist_node *node;
576 	struct inode *inode = NULL;
577 
578 repeat:
579 	hlist_for_each_entry(inode, node, head, i_hash) {
580 		if (inode->i_ino != ino)
581 			continue;
582 		if (inode->i_sb != sb)
583 			continue;
584 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
585 			__wait_on_freeing_inode(inode);
586 			goto repeat;
587 		}
588 		break;
589 	}
590 	return node ? inode : NULL;
591 }
592 
593 static unsigned long hash(struct super_block *sb, unsigned long hashval)
594 {
595 	unsigned long tmp;
596 
597 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
598 			L1_CACHE_BYTES;
599 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
600 	return tmp & I_HASHMASK;
601 }
602 
603 static inline void
604 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
605 			struct inode *inode)
606 {
607 	inodes_stat.nr_inodes++;
608 	list_add(&inode->i_list, &inode_in_use);
609 	list_add(&inode->i_sb_list, &sb->s_inodes);
610 	if (head)
611 		hlist_add_head(&inode->i_hash, head);
612 }
613 
614 /**
615  * inode_add_to_lists - add a new inode to relevant lists
616  * @sb: superblock inode belongs to
617  * @inode: inode to mark in use
618  *
619  * When an inode is allocated it needs to be accounted for, added to the in use
620  * list, the owning superblock and the inode hash. This needs to be done under
621  * the inode_lock, so export a function to do this rather than the inode lock
622  * itself. We calculate the hash list to add to here so it is all internal
623  * which requires the caller to have already set up the inode number in the
624  * inode to add.
625  */
626 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
627 {
628 	struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
629 
630 	spin_lock(&inode_lock);
631 	__inode_add_to_lists(sb, head, inode);
632 	spin_unlock(&inode_lock);
633 }
634 EXPORT_SYMBOL_GPL(inode_add_to_lists);
635 
636 /**
637  *	new_inode 	- obtain an inode
638  *	@sb: superblock
639  *
640  *	Allocates a new inode for given superblock. The default gfp_mask
641  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
642  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
643  *	for the page cache are not reclaimable or migratable,
644  *	mapping_set_gfp_mask() must be called with suitable flags on the
645  *	newly created inode's mapping
646  *
647  */
648 struct inode *new_inode(struct super_block *sb)
649 {
650 	/*
651 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
652 	 * error if st_ino won't fit in target struct field. Use 32bit counter
653 	 * here to attempt to avoid that.
654 	 */
655 	static unsigned int last_ino;
656 	struct inode *inode;
657 
658 	spin_lock_prefetch(&inode_lock);
659 
660 	inode = alloc_inode(sb);
661 	if (inode) {
662 		spin_lock(&inode_lock);
663 		__inode_add_to_lists(sb, NULL, inode);
664 		inode->i_ino = ++last_ino;
665 		inode->i_state = 0;
666 		spin_unlock(&inode_lock);
667 	}
668 	return inode;
669 }
670 EXPORT_SYMBOL(new_inode);
671 
672 void unlock_new_inode(struct inode *inode)
673 {
674 #ifdef CONFIG_DEBUG_LOCK_ALLOC
675 	if (inode->i_mode & S_IFDIR) {
676 		struct file_system_type *type = inode->i_sb->s_type;
677 
678 		/* Set new key only if filesystem hasn't already changed it */
679 		if (!lockdep_match_class(&inode->i_mutex,
680 		    &type->i_mutex_key)) {
681 			/*
682 			 * ensure nobody is actually holding i_mutex
683 			 */
684 			mutex_destroy(&inode->i_mutex);
685 			mutex_init(&inode->i_mutex);
686 			lockdep_set_class(&inode->i_mutex,
687 					  &type->i_mutex_dir_key);
688 		}
689 	}
690 #endif
691 	/*
692 	 * This is special!  We do not need the spinlock when clearing I_NEW,
693 	 * because we're guaranteed that nobody else tries to do anything about
694 	 * the state of the inode when it is locked, as we just created it (so
695 	 * there can be no old holders that haven't tested I_NEW).
696 	 * However we must emit the memory barrier so that other CPUs reliably
697 	 * see the clearing of I_NEW after the other inode initialisation has
698 	 * completed.
699 	 */
700 	smp_mb();
701 	WARN_ON(!(inode->i_state & I_NEW));
702 	inode->i_state &= ~I_NEW;
703 	wake_up_inode(inode);
704 }
705 EXPORT_SYMBOL(unlock_new_inode);
706 
707 /*
708  * This is called without the inode lock held.. Be careful.
709  *
710  * We no longer cache the sb_flags in i_flags - see fs.h
711  *	-- rmk@arm.uk.linux.org
712  */
713 static struct inode *get_new_inode(struct super_block *sb,
714 				struct hlist_head *head,
715 				int (*test)(struct inode *, void *),
716 				int (*set)(struct inode *, void *),
717 				void *data)
718 {
719 	struct inode *inode;
720 
721 	inode = alloc_inode(sb);
722 	if (inode) {
723 		struct inode *old;
724 
725 		spin_lock(&inode_lock);
726 		/* We released the lock, so.. */
727 		old = find_inode(sb, head, test, data);
728 		if (!old) {
729 			if (set(inode, data))
730 				goto set_failed;
731 
732 			__inode_add_to_lists(sb, head, inode);
733 			inode->i_state = I_NEW;
734 			spin_unlock(&inode_lock);
735 
736 			/* Return the locked inode with I_NEW set, the
737 			 * caller is responsible for filling in the contents
738 			 */
739 			return inode;
740 		}
741 
742 		/*
743 		 * Uhhuh, somebody else created the same inode under
744 		 * us. Use the old inode instead of the one we just
745 		 * allocated.
746 		 */
747 		__iget(old);
748 		spin_unlock(&inode_lock);
749 		destroy_inode(inode);
750 		inode = old;
751 		wait_on_inode(inode);
752 	}
753 	return inode;
754 
755 set_failed:
756 	spin_unlock(&inode_lock);
757 	destroy_inode(inode);
758 	return NULL;
759 }
760 
761 /*
762  * get_new_inode_fast is the fast path version of get_new_inode, see the
763  * comment at iget_locked for details.
764  */
765 static struct inode *get_new_inode_fast(struct super_block *sb,
766 				struct hlist_head *head, unsigned long ino)
767 {
768 	struct inode *inode;
769 
770 	inode = alloc_inode(sb);
771 	if (inode) {
772 		struct inode *old;
773 
774 		spin_lock(&inode_lock);
775 		/* We released the lock, so.. */
776 		old = find_inode_fast(sb, head, ino);
777 		if (!old) {
778 			inode->i_ino = ino;
779 			__inode_add_to_lists(sb, head, inode);
780 			inode->i_state = I_NEW;
781 			spin_unlock(&inode_lock);
782 
783 			/* Return the locked inode with I_NEW set, the
784 			 * caller is responsible for filling in the contents
785 			 */
786 			return inode;
787 		}
788 
789 		/*
790 		 * Uhhuh, somebody else created the same inode under
791 		 * us. Use the old inode instead of the one we just
792 		 * allocated.
793 		 */
794 		__iget(old);
795 		spin_unlock(&inode_lock);
796 		destroy_inode(inode);
797 		inode = old;
798 		wait_on_inode(inode);
799 	}
800 	return inode;
801 }
802 
803 /**
804  *	iunique - get a unique inode number
805  *	@sb: superblock
806  *	@max_reserved: highest reserved inode number
807  *
808  *	Obtain an inode number that is unique on the system for a given
809  *	superblock. This is used by file systems that have no natural
810  *	permanent inode numbering system. An inode number is returned that
811  *	is higher than the reserved limit but unique.
812  *
813  *	BUGS:
814  *	With a large number of inodes live on the file system this function
815  *	currently becomes quite slow.
816  */
817 ino_t iunique(struct super_block *sb, ino_t max_reserved)
818 {
819 	/*
820 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
821 	 * error if st_ino won't fit in target struct field. Use 32bit counter
822 	 * here to attempt to avoid that.
823 	 */
824 	static unsigned int counter;
825 	struct inode *inode;
826 	struct hlist_head *head;
827 	ino_t res;
828 
829 	spin_lock(&inode_lock);
830 	do {
831 		if (counter <= max_reserved)
832 			counter = max_reserved + 1;
833 		res = counter++;
834 		head = inode_hashtable + hash(sb, res);
835 		inode = find_inode_fast(sb, head, res);
836 	} while (inode != NULL);
837 	spin_unlock(&inode_lock);
838 
839 	return res;
840 }
841 EXPORT_SYMBOL(iunique);
842 
843 struct inode *igrab(struct inode *inode)
844 {
845 	spin_lock(&inode_lock);
846 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
847 		__iget(inode);
848 	else
849 		/*
850 		 * Handle the case where s_op->clear_inode is not been
851 		 * called yet, and somebody is calling igrab
852 		 * while the inode is getting freed.
853 		 */
854 		inode = NULL;
855 	spin_unlock(&inode_lock);
856 	return inode;
857 }
858 EXPORT_SYMBOL(igrab);
859 
860 /**
861  * ifind - internal function, you want ilookup5() or iget5().
862  * @sb:		super block of file system to search
863  * @head:       the head of the list to search
864  * @test:	callback used for comparisons between inodes
865  * @data:	opaque data pointer to pass to @test
866  * @wait:	if true wait for the inode to be unlocked, if false do not
867  *
868  * ifind() searches for the inode specified by @data in the inode
869  * cache. This is a generalized version of ifind_fast() for file systems where
870  * the inode number is not sufficient for unique identification of an inode.
871  *
872  * If the inode is in the cache, the inode is returned with an incremented
873  * reference count.
874  *
875  * Otherwise NULL is returned.
876  *
877  * Note, @test is called with the inode_lock held, so can't sleep.
878  */
879 static struct inode *ifind(struct super_block *sb,
880 		struct hlist_head *head, int (*test)(struct inode *, void *),
881 		void *data, const int wait)
882 {
883 	struct inode *inode;
884 
885 	spin_lock(&inode_lock);
886 	inode = find_inode(sb, head, test, data);
887 	if (inode) {
888 		__iget(inode);
889 		spin_unlock(&inode_lock);
890 		if (likely(wait))
891 			wait_on_inode(inode);
892 		return inode;
893 	}
894 	spin_unlock(&inode_lock);
895 	return NULL;
896 }
897 
898 /**
899  * ifind_fast - internal function, you want ilookup() or iget().
900  * @sb:		super block of file system to search
901  * @head:       head of the list to search
902  * @ino:	inode number to search for
903  *
904  * ifind_fast() searches for the inode @ino in the inode cache. This is for
905  * file systems where the inode number is sufficient for unique identification
906  * of an inode.
907  *
908  * If the inode is in the cache, the inode is returned with an incremented
909  * reference count.
910  *
911  * Otherwise NULL is returned.
912  */
913 static struct inode *ifind_fast(struct super_block *sb,
914 		struct hlist_head *head, unsigned long ino)
915 {
916 	struct inode *inode;
917 
918 	spin_lock(&inode_lock);
919 	inode = find_inode_fast(sb, head, ino);
920 	if (inode) {
921 		__iget(inode);
922 		spin_unlock(&inode_lock);
923 		wait_on_inode(inode);
924 		return inode;
925 	}
926 	spin_unlock(&inode_lock);
927 	return NULL;
928 }
929 
930 /**
931  * ilookup5_nowait - search for an inode in the inode cache
932  * @sb:		super block of file system to search
933  * @hashval:	hash value (usually inode number) to search for
934  * @test:	callback used for comparisons between inodes
935  * @data:	opaque data pointer to pass to @test
936  *
937  * ilookup5() uses ifind() to search for the inode specified by @hashval and
938  * @data in the inode cache. This is a generalized version of ilookup() for
939  * file systems where the inode number is not sufficient for unique
940  * identification of an inode.
941  *
942  * If the inode is in the cache, the inode is returned with an incremented
943  * reference count.  Note, the inode lock is not waited upon so you have to be
944  * very careful what you do with the returned inode.  You probably should be
945  * using ilookup5() instead.
946  *
947  * Otherwise NULL is returned.
948  *
949  * Note, @test is called with the inode_lock held, so can't sleep.
950  */
951 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
952 		int (*test)(struct inode *, void *), void *data)
953 {
954 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
955 
956 	return ifind(sb, head, test, data, 0);
957 }
958 EXPORT_SYMBOL(ilookup5_nowait);
959 
960 /**
961  * ilookup5 - search for an inode in the inode cache
962  * @sb:		super block of file system to search
963  * @hashval:	hash value (usually inode number) to search for
964  * @test:	callback used for comparisons between inodes
965  * @data:	opaque data pointer to pass to @test
966  *
967  * ilookup5() uses ifind() to search for the inode specified by @hashval and
968  * @data in the inode cache. This is a generalized version of ilookup() for
969  * file systems where the inode number is not sufficient for unique
970  * identification of an inode.
971  *
972  * If the inode is in the cache, the inode lock is waited upon and the inode is
973  * returned with an incremented reference count.
974  *
975  * Otherwise NULL is returned.
976  *
977  * Note, @test is called with the inode_lock held, so can't sleep.
978  */
979 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
980 		int (*test)(struct inode *, void *), void *data)
981 {
982 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
983 
984 	return ifind(sb, head, test, data, 1);
985 }
986 EXPORT_SYMBOL(ilookup5);
987 
988 /**
989  * ilookup - search for an inode in the inode cache
990  * @sb:		super block of file system to search
991  * @ino:	inode number to search for
992  *
993  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
994  * This is for file systems where the inode number is sufficient for unique
995  * identification of an inode.
996  *
997  * If the inode is in the cache, the inode is returned with an incremented
998  * reference count.
999  *
1000  * Otherwise NULL is returned.
1001  */
1002 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1003 {
1004 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1005 
1006 	return ifind_fast(sb, head, ino);
1007 }
1008 EXPORT_SYMBOL(ilookup);
1009 
1010 /**
1011  * iget5_locked - obtain an inode from a mounted file system
1012  * @sb:		super block of file system
1013  * @hashval:	hash value (usually inode number) to get
1014  * @test:	callback used for comparisons between inodes
1015  * @set:	callback used to initialize a new struct inode
1016  * @data:	opaque data pointer to pass to @test and @set
1017  *
1018  * iget5_locked() uses ifind() to search for the inode specified by @hashval
1019  * and @data in the inode cache and if present it is returned with an increased
1020  * reference count. This is a generalized version of iget_locked() for file
1021  * systems where the inode number is not sufficient for unique identification
1022  * of an inode.
1023  *
1024  * If the inode is not in cache, get_new_inode() is called to allocate a new
1025  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1026  * file system gets to fill it in before unlocking it via unlock_new_inode().
1027  *
1028  * Note both @test and @set are called with the inode_lock held, so can't sleep.
1029  */
1030 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1031 		int (*test)(struct inode *, void *),
1032 		int (*set)(struct inode *, void *), void *data)
1033 {
1034 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1035 	struct inode *inode;
1036 
1037 	inode = ifind(sb, head, test, data, 1);
1038 	if (inode)
1039 		return inode;
1040 	/*
1041 	 * get_new_inode() will do the right thing, re-trying the search
1042 	 * in case it had to block at any point.
1043 	 */
1044 	return get_new_inode(sb, head, test, set, data);
1045 }
1046 EXPORT_SYMBOL(iget5_locked);
1047 
1048 /**
1049  * iget_locked - obtain an inode from a mounted file system
1050  * @sb:		super block of file system
1051  * @ino:	inode number to get
1052  *
1053  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1054  * the inode cache and if present it is returned with an increased reference
1055  * count. This is for file systems where the inode number is sufficient for
1056  * unique identification of an inode.
1057  *
1058  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1059  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1060  * The file system gets to fill it in before unlocking it via
1061  * unlock_new_inode().
1062  */
1063 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1064 {
1065 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1066 	struct inode *inode;
1067 
1068 	inode = ifind_fast(sb, head, ino);
1069 	if (inode)
1070 		return inode;
1071 	/*
1072 	 * get_new_inode_fast() will do the right thing, re-trying the search
1073 	 * in case it had to block at any point.
1074 	 */
1075 	return get_new_inode_fast(sb, head, ino);
1076 }
1077 EXPORT_SYMBOL(iget_locked);
1078 
1079 int insert_inode_locked(struct inode *inode)
1080 {
1081 	struct super_block *sb = inode->i_sb;
1082 	ino_t ino = inode->i_ino;
1083 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1084 
1085 	inode->i_state |= I_NEW;
1086 	while (1) {
1087 		struct hlist_node *node;
1088 		struct inode *old = NULL;
1089 		spin_lock(&inode_lock);
1090 		hlist_for_each_entry(old, node, head, i_hash) {
1091 			if (old->i_ino != ino)
1092 				continue;
1093 			if (old->i_sb != sb)
1094 				continue;
1095 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1096 				continue;
1097 			break;
1098 		}
1099 		if (likely(!node)) {
1100 			hlist_add_head(&inode->i_hash, head);
1101 			spin_unlock(&inode_lock);
1102 			return 0;
1103 		}
1104 		__iget(old);
1105 		spin_unlock(&inode_lock);
1106 		wait_on_inode(old);
1107 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1108 			iput(old);
1109 			return -EBUSY;
1110 		}
1111 		iput(old);
1112 	}
1113 }
1114 EXPORT_SYMBOL(insert_inode_locked);
1115 
1116 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1117 		int (*test)(struct inode *, void *), void *data)
1118 {
1119 	struct super_block *sb = inode->i_sb;
1120 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1121 
1122 	inode->i_state |= I_NEW;
1123 
1124 	while (1) {
1125 		struct hlist_node *node;
1126 		struct inode *old = NULL;
1127 
1128 		spin_lock(&inode_lock);
1129 		hlist_for_each_entry(old, node, head, i_hash) {
1130 			if (old->i_sb != sb)
1131 				continue;
1132 			if (!test(old, data))
1133 				continue;
1134 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1135 				continue;
1136 			break;
1137 		}
1138 		if (likely(!node)) {
1139 			hlist_add_head(&inode->i_hash, head);
1140 			spin_unlock(&inode_lock);
1141 			return 0;
1142 		}
1143 		__iget(old);
1144 		spin_unlock(&inode_lock);
1145 		wait_on_inode(old);
1146 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1147 			iput(old);
1148 			return -EBUSY;
1149 		}
1150 		iput(old);
1151 	}
1152 }
1153 EXPORT_SYMBOL(insert_inode_locked4);
1154 
1155 /**
1156  *	__insert_inode_hash - hash an inode
1157  *	@inode: unhashed inode
1158  *	@hashval: unsigned long value used to locate this object in the
1159  *		inode_hashtable.
1160  *
1161  *	Add an inode to the inode hash for this superblock.
1162  */
1163 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1164 {
1165 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1166 	spin_lock(&inode_lock);
1167 	hlist_add_head(&inode->i_hash, head);
1168 	spin_unlock(&inode_lock);
1169 }
1170 EXPORT_SYMBOL(__insert_inode_hash);
1171 
1172 /**
1173  *	remove_inode_hash - remove an inode from the hash
1174  *	@inode: inode to unhash
1175  *
1176  *	Remove an inode from the superblock.
1177  */
1178 void remove_inode_hash(struct inode *inode)
1179 {
1180 	spin_lock(&inode_lock);
1181 	hlist_del_init(&inode->i_hash);
1182 	spin_unlock(&inode_lock);
1183 }
1184 EXPORT_SYMBOL(remove_inode_hash);
1185 
1186 /*
1187  * Tell the filesystem that this inode is no longer of any interest and should
1188  * be completely destroyed.
1189  *
1190  * We leave the inode in the inode hash table until *after* the filesystem's
1191  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1192  * instigate) will always find up-to-date information either in the hash or on
1193  * disk.
1194  *
1195  * I_FREEING is set so that no-one will take a new reference to the inode while
1196  * it is being deleted.
1197  */
1198 void generic_delete_inode(struct inode *inode)
1199 {
1200 	const struct super_operations *op = inode->i_sb->s_op;
1201 
1202 	list_del_init(&inode->i_list);
1203 	list_del_init(&inode->i_sb_list);
1204 	WARN_ON(inode->i_state & I_NEW);
1205 	inode->i_state |= I_FREEING;
1206 	inodes_stat.nr_inodes--;
1207 	spin_unlock(&inode_lock);
1208 
1209 	security_inode_delete(inode);
1210 
1211 	if (op->delete_inode) {
1212 		void (*delete)(struct inode *) = op->delete_inode;
1213 		if (!is_bad_inode(inode))
1214 			vfs_dq_init(inode);
1215 		/* Filesystems implementing their own
1216 		 * s_op->delete_inode are required to call
1217 		 * truncate_inode_pages and clear_inode()
1218 		 * internally */
1219 		delete(inode);
1220 	} else {
1221 		truncate_inode_pages(&inode->i_data, 0);
1222 		clear_inode(inode);
1223 	}
1224 	spin_lock(&inode_lock);
1225 	hlist_del_init(&inode->i_hash);
1226 	spin_unlock(&inode_lock);
1227 	wake_up_inode(inode);
1228 	BUG_ON(inode->i_state != I_CLEAR);
1229 	destroy_inode(inode);
1230 }
1231 EXPORT_SYMBOL(generic_delete_inode);
1232 
1233 /**
1234  *	generic_detach_inode - remove inode from inode lists
1235  *	@inode: inode to remove
1236  *
1237  *	Remove inode from inode lists, write it if it's dirty. This is just an
1238  *	internal VFS helper exported for hugetlbfs. Do not use!
1239  *
1240  *	Returns 1 if inode should be completely destroyed.
1241  */
1242 int generic_detach_inode(struct inode *inode)
1243 {
1244 	struct super_block *sb = inode->i_sb;
1245 
1246 	if (!hlist_unhashed(&inode->i_hash)) {
1247 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1248 			list_move(&inode->i_list, &inode_unused);
1249 		inodes_stat.nr_unused++;
1250 		if (sb->s_flags & MS_ACTIVE) {
1251 			spin_unlock(&inode_lock);
1252 			return 0;
1253 		}
1254 		WARN_ON(inode->i_state & I_NEW);
1255 		inode->i_state |= I_WILL_FREE;
1256 		spin_unlock(&inode_lock);
1257 		write_inode_now(inode, 1);
1258 		spin_lock(&inode_lock);
1259 		WARN_ON(inode->i_state & I_NEW);
1260 		inode->i_state &= ~I_WILL_FREE;
1261 		inodes_stat.nr_unused--;
1262 		hlist_del_init(&inode->i_hash);
1263 	}
1264 	list_del_init(&inode->i_list);
1265 	list_del_init(&inode->i_sb_list);
1266 	WARN_ON(inode->i_state & I_NEW);
1267 	inode->i_state |= I_FREEING;
1268 	inodes_stat.nr_inodes--;
1269 	spin_unlock(&inode_lock);
1270 	return 1;
1271 }
1272 EXPORT_SYMBOL_GPL(generic_detach_inode);
1273 
1274 static void generic_forget_inode(struct inode *inode)
1275 {
1276 	if (!generic_detach_inode(inode))
1277 		return;
1278 	if (inode->i_data.nrpages)
1279 		truncate_inode_pages(&inode->i_data, 0);
1280 	clear_inode(inode);
1281 	wake_up_inode(inode);
1282 	destroy_inode(inode);
1283 }
1284 
1285 /*
1286  * Normal UNIX filesystem behaviour: delete the
1287  * inode when the usage count drops to zero, and
1288  * i_nlink is zero.
1289  */
1290 void generic_drop_inode(struct inode *inode)
1291 {
1292 	if (!inode->i_nlink)
1293 		generic_delete_inode(inode);
1294 	else
1295 		generic_forget_inode(inode);
1296 }
1297 EXPORT_SYMBOL_GPL(generic_drop_inode);
1298 
1299 /*
1300  * Called when we're dropping the last reference
1301  * to an inode.
1302  *
1303  * Call the FS "drop()" function, defaulting to
1304  * the legacy UNIX filesystem behaviour..
1305  *
1306  * NOTE! NOTE! NOTE! We're called with the inode lock
1307  * held, and the drop function is supposed to release
1308  * the lock!
1309  */
1310 static inline void iput_final(struct inode *inode)
1311 {
1312 	const struct super_operations *op = inode->i_sb->s_op;
1313 	void (*drop)(struct inode *) = generic_drop_inode;
1314 
1315 	if (op && op->drop_inode)
1316 		drop = op->drop_inode;
1317 	drop(inode);
1318 }
1319 
1320 /**
1321  *	iput	- put an inode
1322  *	@inode: inode to put
1323  *
1324  *	Puts an inode, dropping its usage count. If the inode use count hits
1325  *	zero, the inode is then freed and may also be destroyed.
1326  *
1327  *	Consequently, iput() can sleep.
1328  */
1329 void iput(struct inode *inode)
1330 {
1331 	if (inode) {
1332 		BUG_ON(inode->i_state == I_CLEAR);
1333 
1334 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1335 			iput_final(inode);
1336 	}
1337 }
1338 EXPORT_SYMBOL(iput);
1339 
1340 /**
1341  *	bmap	- find a block number in a file
1342  *	@inode: inode of file
1343  *	@block: block to find
1344  *
1345  *	Returns the block number on the device holding the inode that
1346  *	is the disk block number for the block of the file requested.
1347  *	That is, asked for block 4 of inode 1 the function will return the
1348  *	disk block relative to the disk start that holds that block of the
1349  *	file.
1350  */
1351 sector_t bmap(struct inode *inode, sector_t block)
1352 {
1353 	sector_t res = 0;
1354 	if (inode->i_mapping->a_ops->bmap)
1355 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1356 	return res;
1357 }
1358 EXPORT_SYMBOL(bmap);
1359 
1360 /*
1361  * With relative atime, only update atime if the previous atime is
1362  * earlier than either the ctime or mtime or if at least a day has
1363  * passed since the last atime update.
1364  */
1365 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1366 			     struct timespec now)
1367 {
1368 
1369 	if (!(mnt->mnt_flags & MNT_RELATIME))
1370 		return 1;
1371 	/*
1372 	 * Is mtime younger than atime? If yes, update atime:
1373 	 */
1374 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1375 		return 1;
1376 	/*
1377 	 * Is ctime younger than atime? If yes, update atime:
1378 	 */
1379 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1380 		return 1;
1381 
1382 	/*
1383 	 * Is the previous atime value older than a day? If yes,
1384 	 * update atime:
1385 	 */
1386 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1387 		return 1;
1388 	/*
1389 	 * Good, we can skip the atime update:
1390 	 */
1391 	return 0;
1392 }
1393 
1394 /**
1395  *	touch_atime	-	update the access time
1396  *	@mnt: mount the inode is accessed on
1397  *	@dentry: dentry accessed
1398  *
1399  *	Update the accessed time on an inode and mark it for writeback.
1400  *	This function automatically handles read only file systems and media,
1401  *	as well as the "noatime" flag and inode specific "noatime" markers.
1402  */
1403 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1404 {
1405 	struct inode *inode = dentry->d_inode;
1406 	struct timespec now;
1407 
1408 	if (inode->i_flags & S_NOATIME)
1409 		return;
1410 	if (IS_NOATIME(inode))
1411 		return;
1412 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1413 		return;
1414 
1415 	if (mnt->mnt_flags & MNT_NOATIME)
1416 		return;
1417 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1418 		return;
1419 
1420 	now = current_fs_time(inode->i_sb);
1421 
1422 	if (!relatime_need_update(mnt, inode, now))
1423 		return;
1424 
1425 	if (timespec_equal(&inode->i_atime, &now))
1426 		return;
1427 
1428 	if (mnt_want_write(mnt))
1429 		return;
1430 
1431 	inode->i_atime = now;
1432 	mark_inode_dirty_sync(inode);
1433 	mnt_drop_write(mnt);
1434 }
1435 EXPORT_SYMBOL(touch_atime);
1436 
1437 /**
1438  *	file_update_time	-	update mtime and ctime time
1439  *	@file: file accessed
1440  *
1441  *	Update the mtime and ctime members of an inode and mark the inode
1442  *	for writeback.  Note that this function is meant exclusively for
1443  *	usage in the file write path of filesystems, and filesystems may
1444  *	choose to explicitly ignore update via this function with the
1445  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1446  *	timestamps are handled by the server.
1447  */
1448 
1449 void file_update_time(struct file *file)
1450 {
1451 	struct inode *inode = file->f_path.dentry->d_inode;
1452 	struct timespec now;
1453 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1454 
1455 	/* First try to exhaust all avenues to not sync */
1456 	if (IS_NOCMTIME(inode))
1457 		return;
1458 
1459 	now = current_fs_time(inode->i_sb);
1460 	if (!timespec_equal(&inode->i_mtime, &now))
1461 		sync_it = S_MTIME;
1462 
1463 	if (!timespec_equal(&inode->i_ctime, &now))
1464 		sync_it |= S_CTIME;
1465 
1466 	if (IS_I_VERSION(inode))
1467 		sync_it |= S_VERSION;
1468 
1469 	if (!sync_it)
1470 		return;
1471 
1472 	/* Finally allowed to write? Takes lock. */
1473 	if (mnt_want_write_file(file))
1474 		return;
1475 
1476 	/* Only change inode inside the lock region */
1477 	if (sync_it & S_VERSION)
1478 		inode_inc_iversion(inode);
1479 	if (sync_it & S_CTIME)
1480 		inode->i_ctime = now;
1481 	if (sync_it & S_MTIME)
1482 		inode->i_mtime = now;
1483 	mark_inode_dirty_sync(inode);
1484 	mnt_drop_write(file->f_path.mnt);
1485 }
1486 EXPORT_SYMBOL(file_update_time);
1487 
1488 int inode_needs_sync(struct inode *inode)
1489 {
1490 	if (IS_SYNC(inode))
1491 		return 1;
1492 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1493 		return 1;
1494 	return 0;
1495 }
1496 EXPORT_SYMBOL(inode_needs_sync);
1497 
1498 int inode_wait(void *word)
1499 {
1500 	schedule();
1501 	return 0;
1502 }
1503 EXPORT_SYMBOL(inode_wait);
1504 
1505 /*
1506  * If we try to find an inode in the inode hash while it is being
1507  * deleted, we have to wait until the filesystem completes its
1508  * deletion before reporting that it isn't found.  This function waits
1509  * until the deletion _might_ have completed.  Callers are responsible
1510  * to recheck inode state.
1511  *
1512  * It doesn't matter if I_NEW is not set initially, a call to
1513  * wake_up_inode() after removing from the hash list will DTRT.
1514  *
1515  * This is called with inode_lock held.
1516  */
1517 static void __wait_on_freeing_inode(struct inode *inode)
1518 {
1519 	wait_queue_head_t *wq;
1520 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1521 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1522 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1523 	spin_unlock(&inode_lock);
1524 	schedule();
1525 	finish_wait(wq, &wait.wait);
1526 	spin_lock(&inode_lock);
1527 }
1528 
1529 static __initdata unsigned long ihash_entries;
1530 static int __init set_ihash_entries(char *str)
1531 {
1532 	if (!str)
1533 		return 0;
1534 	ihash_entries = simple_strtoul(str, &str, 0);
1535 	return 1;
1536 }
1537 __setup("ihash_entries=", set_ihash_entries);
1538 
1539 /*
1540  * Initialize the waitqueues and inode hash table.
1541  */
1542 void __init inode_init_early(void)
1543 {
1544 	int loop;
1545 
1546 	/* If hashes are distributed across NUMA nodes, defer
1547 	 * hash allocation until vmalloc space is available.
1548 	 */
1549 	if (hashdist)
1550 		return;
1551 
1552 	inode_hashtable =
1553 		alloc_large_system_hash("Inode-cache",
1554 					sizeof(struct hlist_head),
1555 					ihash_entries,
1556 					14,
1557 					HASH_EARLY,
1558 					&i_hash_shift,
1559 					&i_hash_mask,
1560 					0);
1561 
1562 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1563 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1564 }
1565 
1566 void __init inode_init(void)
1567 {
1568 	int loop;
1569 
1570 	/* inode slab cache */
1571 	inode_cachep = kmem_cache_create("inode_cache",
1572 					 sizeof(struct inode),
1573 					 0,
1574 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1575 					 SLAB_MEM_SPREAD),
1576 					 init_once);
1577 	register_shrinker(&icache_shrinker);
1578 
1579 	/* Hash may have been set up in inode_init_early */
1580 	if (!hashdist)
1581 		return;
1582 
1583 	inode_hashtable =
1584 		alloc_large_system_hash("Inode-cache",
1585 					sizeof(struct hlist_head),
1586 					ihash_entries,
1587 					14,
1588 					0,
1589 					&i_hash_shift,
1590 					&i_hash_mask,
1591 					0);
1592 
1593 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1594 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1595 }
1596 
1597 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1598 {
1599 	inode->i_mode = mode;
1600 	if (S_ISCHR(mode)) {
1601 		inode->i_fop = &def_chr_fops;
1602 		inode->i_rdev = rdev;
1603 	} else if (S_ISBLK(mode)) {
1604 		inode->i_fop = &def_blk_fops;
1605 		inode->i_rdev = rdev;
1606 	} else if (S_ISFIFO(mode))
1607 		inode->i_fop = &def_fifo_fops;
1608 	else if (S_ISSOCK(mode))
1609 		inode->i_fop = &bad_sock_fops;
1610 	else
1611 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1612 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1613 				  inode->i_ino);
1614 }
1615 EXPORT_SYMBOL(init_special_inode);
1616