1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/config.h> 8 #include <linux/fs.h> 9 #include <linux/mm.h> 10 #include <linux/dcache.h> 11 #include <linux/init.h> 12 #include <linux/quotaops.h> 13 #include <linux/slab.h> 14 #include <linux/writeback.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/hash.h> 19 #include <linux/swap.h> 20 #include <linux/security.h> 21 #include <linux/pagemap.h> 22 #include <linux/cdev.h> 23 #include <linux/bootmem.h> 24 25 /* 26 * This is needed for the following functions: 27 * - inode_has_buffers 28 * - invalidate_inode_buffers 29 * - fsync_bdev 30 * - invalidate_bdev 31 * 32 * FIXME: remove all knowledge of the buffer layer from this file 33 */ 34 #include <linux/buffer_head.h> 35 36 /* 37 * New inode.c implementation. 38 * 39 * This implementation has the basic premise of trying 40 * to be extremely low-overhead and SMP-safe, yet be 41 * simple enough to be "obviously correct". 42 * 43 * Famous last words. 44 */ 45 46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 47 48 /* #define INODE_PARANOIA 1 */ 49 /* #define INODE_DEBUG 1 */ 50 51 /* 52 * Inode lookup is no longer as critical as it used to be: 53 * most of the lookups are going to be through the dcache. 54 */ 55 #define I_HASHBITS i_hash_shift 56 #define I_HASHMASK i_hash_mask 57 58 static unsigned int i_hash_mask; 59 static unsigned int i_hash_shift; 60 61 /* 62 * Each inode can be on two separate lists. One is 63 * the hash list of the inode, used for lookups. The 64 * other linked list is the "type" list: 65 * "in_use" - valid inode, i_count > 0, i_nlink > 0 66 * "dirty" - as "in_use" but also dirty 67 * "unused" - valid inode, i_count = 0 68 * 69 * A "dirty" list is maintained for each super block, 70 * allowing for low-overhead inode sync() operations. 71 */ 72 73 LIST_HEAD(inode_in_use); 74 LIST_HEAD(inode_unused); 75 static struct hlist_head *inode_hashtable; 76 77 /* 78 * A simple spinlock to protect the list manipulations. 79 * 80 * NOTE! You also have to own the lock if you change 81 * the i_state of an inode while it is in use.. 82 */ 83 DEFINE_SPINLOCK(inode_lock); 84 85 /* 86 * iprune_sem provides exclusion between the kswapd or try_to_free_pages 87 * icache shrinking path, and the umount path. Without this exclusion, 88 * by the time prune_icache calls iput for the inode whose pages it has 89 * been invalidating, or by the time it calls clear_inode & destroy_inode 90 * from its final dispose_list, the struct super_block they refer to 91 * (for inode->i_sb->s_op) may already have been freed and reused. 92 */ 93 DECLARE_MUTEX(iprune_sem); 94 95 /* 96 * Statistics gathering.. 97 */ 98 struct inodes_stat_t inodes_stat; 99 100 static kmem_cache_t * inode_cachep; 101 102 static struct inode *alloc_inode(struct super_block *sb) 103 { 104 static struct address_space_operations empty_aops; 105 static struct inode_operations empty_iops; 106 static struct file_operations empty_fops; 107 struct inode *inode; 108 109 if (sb->s_op->alloc_inode) 110 inode = sb->s_op->alloc_inode(sb); 111 else 112 inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL); 113 114 if (inode) { 115 struct address_space * const mapping = &inode->i_data; 116 117 inode->i_sb = sb; 118 inode->i_blkbits = sb->s_blocksize_bits; 119 inode->i_flags = 0; 120 atomic_set(&inode->i_count, 1); 121 inode->i_op = &empty_iops; 122 inode->i_fop = &empty_fops; 123 inode->i_nlink = 1; 124 atomic_set(&inode->i_writecount, 0); 125 inode->i_size = 0; 126 inode->i_blocks = 0; 127 inode->i_bytes = 0; 128 inode->i_generation = 0; 129 #ifdef CONFIG_QUOTA 130 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 131 #endif 132 inode->i_pipe = NULL; 133 inode->i_bdev = NULL; 134 inode->i_cdev = NULL; 135 inode->i_rdev = 0; 136 inode->i_security = NULL; 137 inode->dirtied_when = 0; 138 if (security_inode_alloc(inode)) { 139 if (inode->i_sb->s_op->destroy_inode) 140 inode->i_sb->s_op->destroy_inode(inode); 141 else 142 kmem_cache_free(inode_cachep, (inode)); 143 return NULL; 144 } 145 146 mapping->a_ops = &empty_aops; 147 mapping->host = inode; 148 mapping->flags = 0; 149 mapping_set_gfp_mask(mapping, GFP_HIGHUSER); 150 mapping->assoc_mapping = NULL; 151 mapping->backing_dev_info = &default_backing_dev_info; 152 153 /* 154 * If the block_device provides a backing_dev_info for client 155 * inodes then use that. Otherwise the inode share the bdev's 156 * backing_dev_info. 157 */ 158 if (sb->s_bdev) { 159 struct backing_dev_info *bdi; 160 161 bdi = sb->s_bdev->bd_inode_backing_dev_info; 162 if (!bdi) 163 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 164 mapping->backing_dev_info = bdi; 165 } 166 memset(&inode->u, 0, sizeof(inode->u)); 167 inode->i_mapping = mapping; 168 } 169 return inode; 170 } 171 172 void destroy_inode(struct inode *inode) 173 { 174 if (inode_has_buffers(inode)) 175 BUG(); 176 security_inode_free(inode); 177 if (inode->i_sb->s_op->destroy_inode) 178 inode->i_sb->s_op->destroy_inode(inode); 179 else 180 kmem_cache_free(inode_cachep, (inode)); 181 } 182 183 184 /* 185 * These are initializations that only need to be done 186 * once, because the fields are idempotent across use 187 * of the inode, so let the slab aware of that. 188 */ 189 void inode_init_once(struct inode *inode) 190 { 191 memset(inode, 0, sizeof(*inode)); 192 INIT_HLIST_NODE(&inode->i_hash); 193 INIT_LIST_HEAD(&inode->i_dentry); 194 INIT_LIST_HEAD(&inode->i_devices); 195 sema_init(&inode->i_sem, 1); 196 init_rwsem(&inode->i_alloc_sem); 197 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 198 rwlock_init(&inode->i_data.tree_lock); 199 spin_lock_init(&inode->i_data.i_mmap_lock); 200 INIT_LIST_HEAD(&inode->i_data.private_list); 201 spin_lock_init(&inode->i_data.private_lock); 202 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 203 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 204 spin_lock_init(&inode->i_lock); 205 i_size_ordered_init(inode); 206 } 207 208 EXPORT_SYMBOL(inode_init_once); 209 210 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) 211 { 212 struct inode * inode = (struct inode *) foo; 213 214 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 215 SLAB_CTOR_CONSTRUCTOR) 216 inode_init_once(inode); 217 } 218 219 /* 220 * inode_lock must be held 221 */ 222 void __iget(struct inode * inode) 223 { 224 if (atomic_read(&inode->i_count)) { 225 atomic_inc(&inode->i_count); 226 return; 227 } 228 atomic_inc(&inode->i_count); 229 if (!(inode->i_state & (I_DIRTY|I_LOCK))) 230 list_move(&inode->i_list, &inode_in_use); 231 inodes_stat.nr_unused--; 232 } 233 234 /** 235 * clear_inode - clear an inode 236 * @inode: inode to clear 237 * 238 * This is called by the filesystem to tell us 239 * that the inode is no longer useful. We just 240 * terminate it with extreme prejudice. 241 */ 242 void clear_inode(struct inode *inode) 243 { 244 might_sleep(); 245 invalidate_inode_buffers(inode); 246 247 if (inode->i_data.nrpages) 248 BUG(); 249 if (!(inode->i_state & I_FREEING)) 250 BUG(); 251 if (inode->i_state & I_CLEAR) 252 BUG(); 253 wait_on_inode(inode); 254 DQUOT_DROP(inode); 255 if (inode->i_sb && inode->i_sb->s_op->clear_inode) 256 inode->i_sb->s_op->clear_inode(inode); 257 if (inode->i_bdev) 258 bd_forget(inode); 259 if (inode->i_cdev) 260 cd_forget(inode); 261 inode->i_state = I_CLEAR; 262 } 263 264 EXPORT_SYMBOL(clear_inode); 265 266 /* 267 * dispose_list - dispose of the contents of a local list 268 * @head: the head of the list to free 269 * 270 * Dispose-list gets a local list with local inodes in it, so it doesn't 271 * need to worry about list corruption and SMP locks. 272 */ 273 static void dispose_list(struct list_head *head) 274 { 275 int nr_disposed = 0; 276 277 while (!list_empty(head)) { 278 struct inode *inode; 279 280 inode = list_entry(head->next, struct inode, i_list); 281 list_del(&inode->i_list); 282 283 if (inode->i_data.nrpages) 284 truncate_inode_pages(&inode->i_data, 0); 285 clear_inode(inode); 286 destroy_inode(inode); 287 nr_disposed++; 288 } 289 spin_lock(&inode_lock); 290 inodes_stat.nr_inodes -= nr_disposed; 291 spin_unlock(&inode_lock); 292 } 293 294 /* 295 * Invalidate all inodes for a device. 296 */ 297 static int invalidate_list(struct list_head *head, struct list_head *dispose) 298 { 299 struct list_head *next; 300 int busy = 0, count = 0; 301 302 next = head->next; 303 for (;;) { 304 struct list_head * tmp = next; 305 struct inode * inode; 306 307 /* 308 * We can reschedule here without worrying about the list's 309 * consistency because the per-sb list of inodes must not 310 * change during umount anymore, and because iprune_sem keeps 311 * shrink_icache_memory() away. 312 */ 313 cond_resched_lock(&inode_lock); 314 315 next = next->next; 316 if (tmp == head) 317 break; 318 inode = list_entry(tmp, struct inode, i_sb_list); 319 invalidate_inode_buffers(inode); 320 if (!atomic_read(&inode->i_count)) { 321 hlist_del_init(&inode->i_hash); 322 list_del(&inode->i_sb_list); 323 list_move(&inode->i_list, dispose); 324 inode->i_state |= I_FREEING; 325 count++; 326 continue; 327 } 328 busy = 1; 329 } 330 /* only unused inodes may be cached with i_count zero */ 331 inodes_stat.nr_unused -= count; 332 return busy; 333 } 334 335 /* 336 * This is a two-stage process. First we collect all 337 * offending inodes onto the throw-away list, and in 338 * the second stage we actually dispose of them. This 339 * is because we don't want to sleep while messing 340 * with the global lists.. 341 */ 342 343 /** 344 * invalidate_inodes - discard the inodes on a device 345 * @sb: superblock 346 * 347 * Discard all of the inodes for a given superblock. If the discard 348 * fails because there are busy inodes then a non zero value is returned. 349 * If the discard is successful all the inodes have been discarded. 350 */ 351 int invalidate_inodes(struct super_block * sb) 352 { 353 int busy; 354 LIST_HEAD(throw_away); 355 356 down(&iprune_sem); 357 spin_lock(&inode_lock); 358 busy = invalidate_list(&sb->s_inodes, &throw_away); 359 spin_unlock(&inode_lock); 360 361 dispose_list(&throw_away); 362 up(&iprune_sem); 363 364 return busy; 365 } 366 367 EXPORT_SYMBOL(invalidate_inodes); 368 369 int __invalidate_device(struct block_device *bdev, int do_sync) 370 { 371 struct super_block *sb; 372 int res; 373 374 if (do_sync) 375 fsync_bdev(bdev); 376 377 res = 0; 378 sb = get_super(bdev); 379 if (sb) { 380 /* 381 * no need to lock the super, get_super holds the 382 * read semaphore so the filesystem cannot go away 383 * under us (->put_super runs with the write lock 384 * hold). 385 */ 386 shrink_dcache_sb(sb); 387 res = invalidate_inodes(sb); 388 drop_super(sb); 389 } 390 invalidate_bdev(bdev, 0); 391 return res; 392 } 393 394 EXPORT_SYMBOL(__invalidate_device); 395 396 static int can_unuse(struct inode *inode) 397 { 398 if (inode->i_state) 399 return 0; 400 if (inode_has_buffers(inode)) 401 return 0; 402 if (atomic_read(&inode->i_count)) 403 return 0; 404 if (inode->i_data.nrpages) 405 return 0; 406 return 1; 407 } 408 409 /* 410 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 411 * a temporary list and then are freed outside inode_lock by dispose_list(). 412 * 413 * Any inodes which are pinned purely because of attached pagecache have their 414 * pagecache removed. We expect the final iput() on that inode to add it to 415 * the front of the inode_unused list. So look for it there and if the 416 * inode is still freeable, proceed. The right inode is found 99.9% of the 417 * time in testing on a 4-way. 418 * 419 * If the inode has metadata buffers attached to mapping->private_list then 420 * try to remove them. 421 */ 422 static void prune_icache(int nr_to_scan) 423 { 424 LIST_HEAD(freeable); 425 int nr_pruned = 0; 426 int nr_scanned; 427 unsigned long reap = 0; 428 429 down(&iprune_sem); 430 spin_lock(&inode_lock); 431 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 432 struct inode *inode; 433 434 if (list_empty(&inode_unused)) 435 break; 436 437 inode = list_entry(inode_unused.prev, struct inode, i_list); 438 439 if (inode->i_state || atomic_read(&inode->i_count)) { 440 list_move(&inode->i_list, &inode_unused); 441 continue; 442 } 443 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 444 __iget(inode); 445 spin_unlock(&inode_lock); 446 if (remove_inode_buffers(inode)) 447 reap += invalidate_inode_pages(&inode->i_data); 448 iput(inode); 449 spin_lock(&inode_lock); 450 451 if (inode != list_entry(inode_unused.next, 452 struct inode, i_list)) 453 continue; /* wrong inode or list_empty */ 454 if (!can_unuse(inode)) 455 continue; 456 } 457 hlist_del_init(&inode->i_hash); 458 list_del_init(&inode->i_sb_list); 459 list_move(&inode->i_list, &freeable); 460 inode->i_state |= I_FREEING; 461 nr_pruned++; 462 } 463 inodes_stat.nr_unused -= nr_pruned; 464 spin_unlock(&inode_lock); 465 466 dispose_list(&freeable); 467 up(&iprune_sem); 468 469 if (current_is_kswapd()) 470 mod_page_state(kswapd_inodesteal, reap); 471 else 472 mod_page_state(pginodesteal, reap); 473 } 474 475 /* 476 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 477 * "unused" means that no dentries are referring to the inodes: the files are 478 * not open and the dcache references to those inodes have already been 479 * reclaimed. 480 * 481 * This function is passed the number of inodes to scan, and it returns the 482 * total number of remaining possibly-reclaimable inodes. 483 */ 484 static int shrink_icache_memory(int nr, unsigned int gfp_mask) 485 { 486 if (nr) { 487 /* 488 * Nasty deadlock avoidance. We may hold various FS locks, 489 * and we don't want to recurse into the FS that called us 490 * in clear_inode() and friends.. 491 */ 492 if (!(gfp_mask & __GFP_FS)) 493 return -1; 494 prune_icache(nr); 495 } 496 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 497 } 498 499 static void __wait_on_freeing_inode(struct inode *inode); 500 /* 501 * Called with the inode lock held. 502 * NOTE: we are not increasing the inode-refcount, you must call __iget() 503 * by hand after calling find_inode now! This simplifies iunique and won't 504 * add any additional branch in the common code. 505 */ 506 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) 507 { 508 struct hlist_node *node; 509 struct inode * inode = NULL; 510 511 repeat: 512 hlist_for_each (node, head) { 513 inode = hlist_entry(node, struct inode, i_hash); 514 if (inode->i_sb != sb) 515 continue; 516 if (!test(inode, data)) 517 continue; 518 if (inode->i_state & (I_FREEING|I_CLEAR)) { 519 __wait_on_freeing_inode(inode); 520 goto repeat; 521 } 522 break; 523 } 524 return node ? inode : NULL; 525 } 526 527 /* 528 * find_inode_fast is the fast path version of find_inode, see the comment at 529 * iget_locked for details. 530 */ 531 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino) 532 { 533 struct hlist_node *node; 534 struct inode * inode = NULL; 535 536 repeat: 537 hlist_for_each (node, head) { 538 inode = hlist_entry(node, struct inode, i_hash); 539 if (inode->i_ino != ino) 540 continue; 541 if (inode->i_sb != sb) 542 continue; 543 if (inode->i_state & (I_FREEING|I_CLEAR)) { 544 __wait_on_freeing_inode(inode); 545 goto repeat; 546 } 547 break; 548 } 549 return node ? inode : NULL; 550 } 551 552 /** 553 * new_inode - obtain an inode 554 * @sb: superblock 555 * 556 * Allocates a new inode for given superblock. 557 */ 558 struct inode *new_inode(struct super_block *sb) 559 { 560 static unsigned long last_ino; 561 struct inode * inode; 562 563 spin_lock_prefetch(&inode_lock); 564 565 inode = alloc_inode(sb); 566 if (inode) { 567 spin_lock(&inode_lock); 568 inodes_stat.nr_inodes++; 569 list_add(&inode->i_list, &inode_in_use); 570 list_add(&inode->i_sb_list, &sb->s_inodes); 571 inode->i_ino = ++last_ino; 572 inode->i_state = 0; 573 spin_unlock(&inode_lock); 574 } 575 return inode; 576 } 577 578 EXPORT_SYMBOL(new_inode); 579 580 void unlock_new_inode(struct inode *inode) 581 { 582 /* 583 * This is special! We do not need the spinlock 584 * when clearing I_LOCK, because we're guaranteed 585 * that nobody else tries to do anything about the 586 * state of the inode when it is locked, as we 587 * just created it (so there can be no old holders 588 * that haven't tested I_LOCK). 589 */ 590 inode->i_state &= ~(I_LOCK|I_NEW); 591 wake_up_inode(inode); 592 } 593 594 EXPORT_SYMBOL(unlock_new_inode); 595 596 /* 597 * This is called without the inode lock held.. Be careful. 598 * 599 * We no longer cache the sb_flags in i_flags - see fs.h 600 * -- rmk@arm.uk.linux.org 601 */ 602 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) 603 { 604 struct inode * inode; 605 606 inode = alloc_inode(sb); 607 if (inode) { 608 struct inode * old; 609 610 spin_lock(&inode_lock); 611 /* We released the lock, so.. */ 612 old = find_inode(sb, head, test, data); 613 if (!old) { 614 if (set(inode, data)) 615 goto set_failed; 616 617 inodes_stat.nr_inodes++; 618 list_add(&inode->i_list, &inode_in_use); 619 list_add(&inode->i_sb_list, &sb->s_inodes); 620 hlist_add_head(&inode->i_hash, head); 621 inode->i_state = I_LOCK|I_NEW; 622 spin_unlock(&inode_lock); 623 624 /* Return the locked inode with I_NEW set, the 625 * caller is responsible for filling in the contents 626 */ 627 return inode; 628 } 629 630 /* 631 * Uhhuh, somebody else created the same inode under 632 * us. Use the old inode instead of the one we just 633 * allocated. 634 */ 635 __iget(old); 636 spin_unlock(&inode_lock); 637 destroy_inode(inode); 638 inode = old; 639 wait_on_inode(inode); 640 } 641 return inode; 642 643 set_failed: 644 spin_unlock(&inode_lock); 645 destroy_inode(inode); 646 return NULL; 647 } 648 649 /* 650 * get_new_inode_fast is the fast path version of get_new_inode, see the 651 * comment at iget_locked for details. 652 */ 653 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) 654 { 655 struct inode * inode; 656 657 inode = alloc_inode(sb); 658 if (inode) { 659 struct inode * old; 660 661 spin_lock(&inode_lock); 662 /* We released the lock, so.. */ 663 old = find_inode_fast(sb, head, ino); 664 if (!old) { 665 inode->i_ino = ino; 666 inodes_stat.nr_inodes++; 667 list_add(&inode->i_list, &inode_in_use); 668 list_add(&inode->i_sb_list, &sb->s_inodes); 669 hlist_add_head(&inode->i_hash, head); 670 inode->i_state = I_LOCK|I_NEW; 671 spin_unlock(&inode_lock); 672 673 /* Return the locked inode with I_NEW set, the 674 * caller is responsible for filling in the contents 675 */ 676 return inode; 677 } 678 679 /* 680 * Uhhuh, somebody else created the same inode under 681 * us. Use the old inode instead of the one we just 682 * allocated. 683 */ 684 __iget(old); 685 spin_unlock(&inode_lock); 686 destroy_inode(inode); 687 inode = old; 688 wait_on_inode(inode); 689 } 690 return inode; 691 } 692 693 static inline unsigned long hash(struct super_block *sb, unsigned long hashval) 694 { 695 unsigned long tmp; 696 697 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 698 L1_CACHE_BYTES; 699 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 700 return tmp & I_HASHMASK; 701 } 702 703 /** 704 * iunique - get a unique inode number 705 * @sb: superblock 706 * @max_reserved: highest reserved inode number 707 * 708 * Obtain an inode number that is unique on the system for a given 709 * superblock. This is used by file systems that have no natural 710 * permanent inode numbering system. An inode number is returned that 711 * is higher than the reserved limit but unique. 712 * 713 * BUGS: 714 * With a large number of inodes live on the file system this function 715 * currently becomes quite slow. 716 */ 717 ino_t iunique(struct super_block *sb, ino_t max_reserved) 718 { 719 static ino_t counter; 720 struct inode *inode; 721 struct hlist_head * head; 722 ino_t res; 723 spin_lock(&inode_lock); 724 retry: 725 if (counter > max_reserved) { 726 head = inode_hashtable + hash(sb,counter); 727 res = counter++; 728 inode = find_inode_fast(sb, head, res); 729 if (!inode) { 730 spin_unlock(&inode_lock); 731 return res; 732 } 733 } else { 734 counter = max_reserved + 1; 735 } 736 goto retry; 737 738 } 739 740 EXPORT_SYMBOL(iunique); 741 742 struct inode *igrab(struct inode *inode) 743 { 744 spin_lock(&inode_lock); 745 if (!(inode->i_state & I_FREEING)) 746 __iget(inode); 747 else 748 /* 749 * Handle the case where s_op->clear_inode is not been 750 * called yet, and somebody is calling igrab 751 * while the inode is getting freed. 752 */ 753 inode = NULL; 754 spin_unlock(&inode_lock); 755 return inode; 756 } 757 758 EXPORT_SYMBOL(igrab); 759 760 /** 761 * ifind - internal function, you want ilookup5() or iget5(). 762 * @sb: super block of file system to search 763 * @head: the head of the list to search 764 * @test: callback used for comparisons between inodes 765 * @data: opaque data pointer to pass to @test 766 * 767 * ifind() searches for the inode specified by @data in the inode 768 * cache. This is a generalized version of ifind_fast() for file systems where 769 * the inode number is not sufficient for unique identification of an inode. 770 * 771 * If the inode is in the cache, the inode is returned with an incremented 772 * reference count. 773 * 774 * Otherwise NULL is returned. 775 * 776 * Note, @test is called with the inode_lock held, so can't sleep. 777 */ 778 static inline struct inode *ifind(struct super_block *sb, 779 struct hlist_head *head, int (*test)(struct inode *, void *), 780 void *data) 781 { 782 struct inode *inode; 783 784 spin_lock(&inode_lock); 785 inode = find_inode(sb, head, test, data); 786 if (inode) { 787 __iget(inode); 788 spin_unlock(&inode_lock); 789 wait_on_inode(inode); 790 return inode; 791 } 792 spin_unlock(&inode_lock); 793 return NULL; 794 } 795 796 /** 797 * ifind_fast - internal function, you want ilookup() or iget(). 798 * @sb: super block of file system to search 799 * @head: head of the list to search 800 * @ino: inode number to search for 801 * 802 * ifind_fast() searches for the inode @ino in the inode cache. This is for 803 * file systems where the inode number is sufficient for unique identification 804 * of an inode. 805 * 806 * If the inode is in the cache, the inode is returned with an incremented 807 * reference count. 808 * 809 * Otherwise NULL is returned. 810 */ 811 static inline struct inode *ifind_fast(struct super_block *sb, 812 struct hlist_head *head, unsigned long ino) 813 { 814 struct inode *inode; 815 816 spin_lock(&inode_lock); 817 inode = find_inode_fast(sb, head, ino); 818 if (inode) { 819 __iget(inode); 820 spin_unlock(&inode_lock); 821 wait_on_inode(inode); 822 return inode; 823 } 824 spin_unlock(&inode_lock); 825 return NULL; 826 } 827 828 /** 829 * ilookup5 - search for an inode in the inode cache 830 * @sb: super block of file system to search 831 * @hashval: hash value (usually inode number) to search for 832 * @test: callback used for comparisons between inodes 833 * @data: opaque data pointer to pass to @test 834 * 835 * ilookup5() uses ifind() to search for the inode specified by @hashval and 836 * @data in the inode cache. This is a generalized version of ilookup() for 837 * file systems where the inode number is not sufficient for unique 838 * identification of an inode. 839 * 840 * If the inode is in the cache, the inode is returned with an incremented 841 * reference count. 842 * 843 * Otherwise NULL is returned. 844 * 845 * Note, @test is called with the inode_lock held, so can't sleep. 846 */ 847 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 848 int (*test)(struct inode *, void *), void *data) 849 { 850 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 851 852 return ifind(sb, head, test, data); 853 } 854 855 EXPORT_SYMBOL(ilookup5); 856 857 /** 858 * ilookup - search for an inode in the inode cache 859 * @sb: super block of file system to search 860 * @ino: inode number to search for 861 * 862 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 863 * This is for file systems where the inode number is sufficient for unique 864 * identification of an inode. 865 * 866 * If the inode is in the cache, the inode is returned with an incremented 867 * reference count. 868 * 869 * Otherwise NULL is returned. 870 */ 871 struct inode *ilookup(struct super_block *sb, unsigned long ino) 872 { 873 struct hlist_head *head = inode_hashtable + hash(sb, ino); 874 875 return ifind_fast(sb, head, ino); 876 } 877 878 EXPORT_SYMBOL(ilookup); 879 880 /** 881 * iget5_locked - obtain an inode from a mounted file system 882 * @sb: super block of file system 883 * @hashval: hash value (usually inode number) to get 884 * @test: callback used for comparisons between inodes 885 * @set: callback used to initialize a new struct inode 886 * @data: opaque data pointer to pass to @test and @set 887 * 888 * This is iget() without the read_inode() portion of get_new_inode(). 889 * 890 * iget5_locked() uses ifind() to search for the inode specified by @hashval 891 * and @data in the inode cache and if present it is returned with an increased 892 * reference count. This is a generalized version of iget_locked() for file 893 * systems where the inode number is not sufficient for unique identification 894 * of an inode. 895 * 896 * If the inode is not in cache, get_new_inode() is called to allocate a new 897 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 898 * file system gets to fill it in before unlocking it via unlock_new_inode(). 899 * 900 * Note both @test and @set are called with the inode_lock held, so can't sleep. 901 */ 902 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 903 int (*test)(struct inode *, void *), 904 int (*set)(struct inode *, void *), void *data) 905 { 906 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 907 struct inode *inode; 908 909 inode = ifind(sb, head, test, data); 910 if (inode) 911 return inode; 912 /* 913 * get_new_inode() will do the right thing, re-trying the search 914 * in case it had to block at any point. 915 */ 916 return get_new_inode(sb, head, test, set, data); 917 } 918 919 EXPORT_SYMBOL(iget5_locked); 920 921 /** 922 * iget_locked - obtain an inode from a mounted file system 923 * @sb: super block of file system 924 * @ino: inode number to get 925 * 926 * This is iget() without the read_inode() portion of get_new_inode_fast(). 927 * 928 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 929 * the inode cache and if present it is returned with an increased reference 930 * count. This is for file systems where the inode number is sufficient for 931 * unique identification of an inode. 932 * 933 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 934 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 935 * The file system gets to fill it in before unlocking it via 936 * unlock_new_inode(). 937 */ 938 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 939 { 940 struct hlist_head *head = inode_hashtable + hash(sb, ino); 941 struct inode *inode; 942 943 inode = ifind_fast(sb, head, ino); 944 if (inode) 945 return inode; 946 /* 947 * get_new_inode_fast() will do the right thing, re-trying the search 948 * in case it had to block at any point. 949 */ 950 return get_new_inode_fast(sb, head, ino); 951 } 952 953 EXPORT_SYMBOL(iget_locked); 954 955 /** 956 * __insert_inode_hash - hash an inode 957 * @inode: unhashed inode 958 * @hashval: unsigned long value used to locate this object in the 959 * inode_hashtable. 960 * 961 * Add an inode to the inode hash for this superblock. 962 */ 963 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 964 { 965 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 966 spin_lock(&inode_lock); 967 hlist_add_head(&inode->i_hash, head); 968 spin_unlock(&inode_lock); 969 } 970 971 EXPORT_SYMBOL(__insert_inode_hash); 972 973 /** 974 * remove_inode_hash - remove an inode from the hash 975 * @inode: inode to unhash 976 * 977 * Remove an inode from the superblock. 978 */ 979 void remove_inode_hash(struct inode *inode) 980 { 981 spin_lock(&inode_lock); 982 hlist_del_init(&inode->i_hash); 983 spin_unlock(&inode_lock); 984 } 985 986 EXPORT_SYMBOL(remove_inode_hash); 987 988 /* 989 * Tell the filesystem that this inode is no longer of any interest and should 990 * be completely destroyed. 991 * 992 * We leave the inode in the inode hash table until *after* the filesystem's 993 * ->delete_inode completes. This ensures that an iget (such as nfsd might 994 * instigate) will always find up-to-date information either in the hash or on 995 * disk. 996 * 997 * I_FREEING is set so that no-one will take a new reference to the inode while 998 * it is being deleted. 999 */ 1000 void generic_delete_inode(struct inode *inode) 1001 { 1002 struct super_operations *op = inode->i_sb->s_op; 1003 1004 list_del_init(&inode->i_list); 1005 list_del_init(&inode->i_sb_list); 1006 inode->i_state|=I_FREEING; 1007 inodes_stat.nr_inodes--; 1008 spin_unlock(&inode_lock); 1009 1010 if (inode->i_data.nrpages) 1011 truncate_inode_pages(&inode->i_data, 0); 1012 1013 security_inode_delete(inode); 1014 1015 if (op->delete_inode) { 1016 void (*delete)(struct inode *) = op->delete_inode; 1017 if (!is_bad_inode(inode)) 1018 DQUOT_INIT(inode); 1019 /* s_op->delete_inode internally recalls clear_inode() */ 1020 delete(inode); 1021 } else 1022 clear_inode(inode); 1023 spin_lock(&inode_lock); 1024 hlist_del_init(&inode->i_hash); 1025 spin_unlock(&inode_lock); 1026 wake_up_inode(inode); 1027 if (inode->i_state != I_CLEAR) 1028 BUG(); 1029 destroy_inode(inode); 1030 } 1031 1032 EXPORT_SYMBOL(generic_delete_inode); 1033 1034 static void generic_forget_inode(struct inode *inode) 1035 { 1036 struct super_block *sb = inode->i_sb; 1037 1038 if (!hlist_unhashed(&inode->i_hash)) { 1039 if (!(inode->i_state & (I_DIRTY|I_LOCK))) 1040 list_move(&inode->i_list, &inode_unused); 1041 inodes_stat.nr_unused++; 1042 spin_unlock(&inode_lock); 1043 if (!sb || (sb->s_flags & MS_ACTIVE)) 1044 return; 1045 write_inode_now(inode, 1); 1046 spin_lock(&inode_lock); 1047 inodes_stat.nr_unused--; 1048 hlist_del_init(&inode->i_hash); 1049 } 1050 list_del_init(&inode->i_list); 1051 list_del_init(&inode->i_sb_list); 1052 inode->i_state|=I_FREEING; 1053 inodes_stat.nr_inodes--; 1054 spin_unlock(&inode_lock); 1055 if (inode->i_data.nrpages) 1056 truncate_inode_pages(&inode->i_data, 0); 1057 clear_inode(inode); 1058 destroy_inode(inode); 1059 } 1060 1061 /* 1062 * Normal UNIX filesystem behaviour: delete the 1063 * inode when the usage count drops to zero, and 1064 * i_nlink is zero. 1065 */ 1066 static void generic_drop_inode(struct inode *inode) 1067 { 1068 if (!inode->i_nlink) 1069 generic_delete_inode(inode); 1070 else 1071 generic_forget_inode(inode); 1072 } 1073 1074 /* 1075 * Called when we're dropping the last reference 1076 * to an inode. 1077 * 1078 * Call the FS "drop()" function, defaulting to 1079 * the legacy UNIX filesystem behaviour.. 1080 * 1081 * NOTE! NOTE! NOTE! We're called with the inode lock 1082 * held, and the drop function is supposed to release 1083 * the lock! 1084 */ 1085 static inline void iput_final(struct inode *inode) 1086 { 1087 struct super_operations *op = inode->i_sb->s_op; 1088 void (*drop)(struct inode *) = generic_drop_inode; 1089 1090 if (op && op->drop_inode) 1091 drop = op->drop_inode; 1092 drop(inode); 1093 } 1094 1095 /** 1096 * iput - put an inode 1097 * @inode: inode to put 1098 * 1099 * Puts an inode, dropping its usage count. If the inode use count hits 1100 * zero, the inode is then freed and may also be destroyed. 1101 * 1102 * Consequently, iput() can sleep. 1103 */ 1104 void iput(struct inode *inode) 1105 { 1106 if (inode) { 1107 struct super_operations *op = inode->i_sb->s_op; 1108 1109 BUG_ON(inode->i_state == I_CLEAR); 1110 1111 if (op && op->put_inode) 1112 op->put_inode(inode); 1113 1114 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1115 iput_final(inode); 1116 } 1117 } 1118 1119 EXPORT_SYMBOL(iput); 1120 1121 /** 1122 * bmap - find a block number in a file 1123 * @inode: inode of file 1124 * @block: block to find 1125 * 1126 * Returns the block number on the device holding the inode that 1127 * is the disk block number for the block of the file requested. 1128 * That is, asked for block 4 of inode 1 the function will return the 1129 * disk block relative to the disk start that holds that block of the 1130 * file. 1131 */ 1132 sector_t bmap(struct inode * inode, sector_t block) 1133 { 1134 sector_t res = 0; 1135 if (inode->i_mapping->a_ops->bmap) 1136 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1137 return res; 1138 } 1139 1140 EXPORT_SYMBOL(bmap); 1141 1142 /** 1143 * update_atime - update the access time 1144 * @inode: inode accessed 1145 * 1146 * Update the accessed time on an inode and mark it for writeback. 1147 * This function automatically handles read only file systems and media, 1148 * as well as the "noatime" flag and inode specific "noatime" markers. 1149 */ 1150 void update_atime(struct inode *inode) 1151 { 1152 struct timespec now; 1153 1154 if (IS_NOATIME(inode)) 1155 return; 1156 if (IS_NODIRATIME(inode) && S_ISDIR(inode->i_mode)) 1157 return; 1158 if (IS_RDONLY(inode)) 1159 return; 1160 1161 now = current_fs_time(inode->i_sb); 1162 if (!timespec_equal(&inode->i_atime, &now)) { 1163 inode->i_atime = now; 1164 mark_inode_dirty_sync(inode); 1165 } else { 1166 if (!timespec_equal(&inode->i_atime, &now)) 1167 inode->i_atime = now; 1168 } 1169 } 1170 1171 EXPORT_SYMBOL(update_atime); 1172 1173 /** 1174 * inode_update_time - update mtime and ctime time 1175 * @inode: inode accessed 1176 * @ctime_too: update ctime too 1177 * 1178 * Update the mtime time on an inode and mark it for writeback. 1179 * When ctime_too is specified update the ctime too. 1180 */ 1181 1182 void inode_update_time(struct inode *inode, int ctime_too) 1183 { 1184 struct timespec now; 1185 int sync_it = 0; 1186 1187 if (IS_NOCMTIME(inode)) 1188 return; 1189 if (IS_RDONLY(inode)) 1190 return; 1191 1192 now = current_fs_time(inode->i_sb); 1193 if (!timespec_equal(&inode->i_mtime, &now)) 1194 sync_it = 1; 1195 inode->i_mtime = now; 1196 1197 if (ctime_too) { 1198 if (!timespec_equal(&inode->i_ctime, &now)) 1199 sync_it = 1; 1200 inode->i_ctime = now; 1201 } 1202 if (sync_it) 1203 mark_inode_dirty_sync(inode); 1204 } 1205 1206 EXPORT_SYMBOL(inode_update_time); 1207 1208 int inode_needs_sync(struct inode *inode) 1209 { 1210 if (IS_SYNC(inode)) 1211 return 1; 1212 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1213 return 1; 1214 return 0; 1215 } 1216 1217 EXPORT_SYMBOL(inode_needs_sync); 1218 1219 /* 1220 * Quota functions that want to walk the inode lists.. 1221 */ 1222 #ifdef CONFIG_QUOTA 1223 1224 /* Function back in dquot.c */ 1225 int remove_inode_dquot_ref(struct inode *, int, struct list_head *); 1226 1227 void remove_dquot_ref(struct super_block *sb, int type, 1228 struct list_head *tofree_head) 1229 { 1230 struct inode *inode; 1231 1232 if (!sb->dq_op) 1233 return; /* nothing to do */ 1234 spin_lock(&inode_lock); /* This lock is for inodes code */ 1235 1236 /* 1237 * We don't have to lock against quota code - test IS_QUOTAINIT is 1238 * just for speedup... 1239 */ 1240 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) 1241 if (!IS_NOQUOTA(inode)) 1242 remove_inode_dquot_ref(inode, type, tofree_head); 1243 1244 spin_unlock(&inode_lock); 1245 } 1246 1247 #endif 1248 1249 int inode_wait(void *word) 1250 { 1251 schedule(); 1252 return 0; 1253 } 1254 1255 /* 1256 * If we try to find an inode in the inode hash while it is being deleted, we 1257 * have to wait until the filesystem completes its deletion before reporting 1258 * that it isn't found. This is because iget will immediately call 1259 * ->read_inode, and we want to be sure that evidence of the deletion is found 1260 * by ->read_inode. 1261 * This is called with inode_lock held. 1262 */ 1263 static void __wait_on_freeing_inode(struct inode *inode) 1264 { 1265 wait_queue_head_t *wq; 1266 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1267 1268 /* 1269 * I_FREEING and I_CLEAR are cleared in process context under 1270 * inode_lock, so we have to give the tasks who would clear them 1271 * a chance to run and acquire inode_lock. 1272 */ 1273 if (!(inode->i_state & I_LOCK)) { 1274 spin_unlock(&inode_lock); 1275 yield(); 1276 spin_lock(&inode_lock); 1277 return; 1278 } 1279 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1280 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1281 spin_unlock(&inode_lock); 1282 schedule(); 1283 finish_wait(wq, &wait.wait); 1284 spin_lock(&inode_lock); 1285 } 1286 1287 void wake_up_inode(struct inode *inode) 1288 { 1289 /* 1290 * Prevent speculative execution through spin_unlock(&inode_lock); 1291 */ 1292 smp_mb(); 1293 wake_up_bit(&inode->i_state, __I_LOCK); 1294 } 1295 1296 static __initdata unsigned long ihash_entries; 1297 static int __init set_ihash_entries(char *str) 1298 { 1299 if (!str) 1300 return 0; 1301 ihash_entries = simple_strtoul(str, &str, 0); 1302 return 1; 1303 } 1304 __setup("ihash_entries=", set_ihash_entries); 1305 1306 /* 1307 * Initialize the waitqueues and inode hash table. 1308 */ 1309 void __init inode_init_early(void) 1310 { 1311 int loop; 1312 1313 /* If hashes are distributed across NUMA nodes, defer 1314 * hash allocation until vmalloc space is available. 1315 */ 1316 if (hashdist) 1317 return; 1318 1319 inode_hashtable = 1320 alloc_large_system_hash("Inode-cache", 1321 sizeof(struct hlist_head), 1322 ihash_entries, 1323 14, 1324 HASH_EARLY, 1325 &i_hash_shift, 1326 &i_hash_mask, 1327 0); 1328 1329 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1330 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1331 } 1332 1333 void __init inode_init(unsigned long mempages) 1334 { 1335 int loop; 1336 1337 /* inode slab cache */ 1338 inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode), 1339 0, SLAB_PANIC, init_once, NULL); 1340 set_shrinker(DEFAULT_SEEKS, shrink_icache_memory); 1341 1342 /* Hash may have been set up in inode_init_early */ 1343 if (!hashdist) 1344 return; 1345 1346 inode_hashtable = 1347 alloc_large_system_hash("Inode-cache", 1348 sizeof(struct hlist_head), 1349 ihash_entries, 1350 14, 1351 0, 1352 &i_hash_shift, 1353 &i_hash_mask, 1354 0); 1355 1356 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1357 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1358 } 1359 1360 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1361 { 1362 inode->i_mode = mode; 1363 if (S_ISCHR(mode)) { 1364 inode->i_fop = &def_chr_fops; 1365 inode->i_rdev = rdev; 1366 } else if (S_ISBLK(mode)) { 1367 inode->i_fop = &def_blk_fops; 1368 inode->i_rdev = rdev; 1369 } else if (S_ISFIFO(mode)) 1370 inode->i_fop = &def_fifo_fops; 1371 else if (S_ISSOCK(mode)) 1372 inode->i_fop = &bad_sock_fops; 1373 else 1374 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1375 mode); 1376 } 1377 EXPORT_SYMBOL(init_special_inode); 1378