xref: /openbmc/linux/fs/inode.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/config.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/dcache.h>
11 #include <linux/init.h>
12 #include <linux/quotaops.h>
13 #include <linux/slab.h>
14 #include <linux/writeback.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/hash.h>
19 #include <linux/swap.h>
20 #include <linux/security.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 
25 /*
26  * This is needed for the following functions:
27  *  - inode_has_buffers
28  *  - invalidate_inode_buffers
29  *  - fsync_bdev
30  *  - invalidate_bdev
31  *
32  * FIXME: remove all knowledge of the buffer layer from this file
33  */
34 #include <linux/buffer_head.h>
35 
36 /*
37  * New inode.c implementation.
38  *
39  * This implementation has the basic premise of trying
40  * to be extremely low-overhead and SMP-safe, yet be
41  * simple enough to be "obviously correct".
42  *
43  * Famous last words.
44  */
45 
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
47 
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
50 
51 /*
52  * Inode lookup is no longer as critical as it used to be:
53  * most of the lookups are going to be through the dcache.
54  */
55 #define I_HASHBITS	i_hash_shift
56 #define I_HASHMASK	i_hash_mask
57 
58 static unsigned int i_hash_mask;
59 static unsigned int i_hash_shift;
60 
61 /*
62  * Each inode can be on two separate lists. One is
63  * the hash list of the inode, used for lookups. The
64  * other linked list is the "type" list:
65  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
66  *  "dirty"  - as "in_use" but also dirty
67  *  "unused" - valid inode, i_count = 0
68  *
69  * A "dirty" list is maintained for each super block,
70  * allowing for low-overhead inode sync() operations.
71  */
72 
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable;
76 
77 /*
78  * A simple spinlock to protect the list manipulations.
79  *
80  * NOTE! You also have to own the lock if you change
81  * the i_state of an inode while it is in use..
82  */
83 DEFINE_SPINLOCK(inode_lock);
84 
85 /*
86  * iprune_sem provides exclusion between the kswapd or try_to_free_pages
87  * icache shrinking path, and the umount path.  Without this exclusion,
88  * by the time prune_icache calls iput for the inode whose pages it has
89  * been invalidating, or by the time it calls clear_inode & destroy_inode
90  * from its final dispose_list, the struct super_block they refer to
91  * (for inode->i_sb->s_op) may already have been freed and reused.
92  */
93 DECLARE_MUTEX(iprune_sem);
94 
95 /*
96  * Statistics gathering..
97  */
98 struct inodes_stat_t inodes_stat;
99 
100 static kmem_cache_t * inode_cachep;
101 
102 static struct inode *alloc_inode(struct super_block *sb)
103 {
104 	static struct address_space_operations empty_aops;
105 	static struct inode_operations empty_iops;
106 	static struct file_operations empty_fops;
107 	struct inode *inode;
108 
109 	if (sb->s_op->alloc_inode)
110 		inode = sb->s_op->alloc_inode(sb);
111 	else
112 		inode = (struct inode *) kmem_cache_alloc(inode_cachep, SLAB_KERNEL);
113 
114 	if (inode) {
115 		struct address_space * const mapping = &inode->i_data;
116 
117 		inode->i_sb = sb;
118 		inode->i_blkbits = sb->s_blocksize_bits;
119 		inode->i_flags = 0;
120 		atomic_set(&inode->i_count, 1);
121 		inode->i_op = &empty_iops;
122 		inode->i_fop = &empty_fops;
123 		inode->i_nlink = 1;
124 		atomic_set(&inode->i_writecount, 0);
125 		inode->i_size = 0;
126 		inode->i_blocks = 0;
127 		inode->i_bytes = 0;
128 		inode->i_generation = 0;
129 #ifdef CONFIG_QUOTA
130 		memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
131 #endif
132 		inode->i_pipe = NULL;
133 		inode->i_bdev = NULL;
134 		inode->i_cdev = NULL;
135 		inode->i_rdev = 0;
136 		inode->i_security = NULL;
137 		inode->dirtied_when = 0;
138 		if (security_inode_alloc(inode)) {
139 			if (inode->i_sb->s_op->destroy_inode)
140 				inode->i_sb->s_op->destroy_inode(inode);
141 			else
142 				kmem_cache_free(inode_cachep, (inode));
143 			return NULL;
144 		}
145 
146 		mapping->a_ops = &empty_aops;
147  		mapping->host = inode;
148 		mapping->flags = 0;
149 		mapping_set_gfp_mask(mapping, GFP_HIGHUSER);
150 		mapping->assoc_mapping = NULL;
151 		mapping->backing_dev_info = &default_backing_dev_info;
152 
153 		/*
154 		 * If the block_device provides a backing_dev_info for client
155 		 * inodes then use that.  Otherwise the inode share the bdev's
156 		 * backing_dev_info.
157 		 */
158 		if (sb->s_bdev) {
159 			struct backing_dev_info *bdi;
160 
161 			bdi = sb->s_bdev->bd_inode_backing_dev_info;
162 			if (!bdi)
163 				bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
164 			mapping->backing_dev_info = bdi;
165 		}
166 		memset(&inode->u, 0, sizeof(inode->u));
167 		inode->i_mapping = mapping;
168 	}
169 	return inode;
170 }
171 
172 void destroy_inode(struct inode *inode)
173 {
174 	if (inode_has_buffers(inode))
175 		BUG();
176 	security_inode_free(inode);
177 	if (inode->i_sb->s_op->destroy_inode)
178 		inode->i_sb->s_op->destroy_inode(inode);
179 	else
180 		kmem_cache_free(inode_cachep, (inode));
181 }
182 
183 
184 /*
185  * These are initializations that only need to be done
186  * once, because the fields are idempotent across use
187  * of the inode, so let the slab aware of that.
188  */
189 void inode_init_once(struct inode *inode)
190 {
191 	memset(inode, 0, sizeof(*inode));
192 	INIT_HLIST_NODE(&inode->i_hash);
193 	INIT_LIST_HEAD(&inode->i_dentry);
194 	INIT_LIST_HEAD(&inode->i_devices);
195 	sema_init(&inode->i_sem, 1);
196 	init_rwsem(&inode->i_alloc_sem);
197 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
198 	rwlock_init(&inode->i_data.tree_lock);
199 	spin_lock_init(&inode->i_data.i_mmap_lock);
200 	INIT_LIST_HEAD(&inode->i_data.private_list);
201 	spin_lock_init(&inode->i_data.private_lock);
202 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
203 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
204 	spin_lock_init(&inode->i_lock);
205 	i_size_ordered_init(inode);
206 }
207 
208 EXPORT_SYMBOL(inode_init_once);
209 
210 static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
211 {
212 	struct inode * inode = (struct inode *) foo;
213 
214 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
215 	    SLAB_CTOR_CONSTRUCTOR)
216 		inode_init_once(inode);
217 }
218 
219 /*
220  * inode_lock must be held
221  */
222 void __iget(struct inode * inode)
223 {
224 	if (atomic_read(&inode->i_count)) {
225 		atomic_inc(&inode->i_count);
226 		return;
227 	}
228 	atomic_inc(&inode->i_count);
229 	if (!(inode->i_state & (I_DIRTY|I_LOCK)))
230 		list_move(&inode->i_list, &inode_in_use);
231 	inodes_stat.nr_unused--;
232 }
233 
234 /**
235  * clear_inode - clear an inode
236  * @inode: inode to clear
237  *
238  * This is called by the filesystem to tell us
239  * that the inode is no longer useful. We just
240  * terminate it with extreme prejudice.
241  */
242 void clear_inode(struct inode *inode)
243 {
244 	might_sleep();
245 	invalidate_inode_buffers(inode);
246 
247 	if (inode->i_data.nrpages)
248 		BUG();
249 	if (!(inode->i_state & I_FREEING))
250 		BUG();
251 	if (inode->i_state & I_CLEAR)
252 		BUG();
253 	wait_on_inode(inode);
254 	DQUOT_DROP(inode);
255 	if (inode->i_sb && inode->i_sb->s_op->clear_inode)
256 		inode->i_sb->s_op->clear_inode(inode);
257 	if (inode->i_bdev)
258 		bd_forget(inode);
259 	if (inode->i_cdev)
260 		cd_forget(inode);
261 	inode->i_state = I_CLEAR;
262 }
263 
264 EXPORT_SYMBOL(clear_inode);
265 
266 /*
267  * dispose_list - dispose of the contents of a local list
268  * @head: the head of the list to free
269  *
270  * Dispose-list gets a local list with local inodes in it, so it doesn't
271  * need to worry about list corruption and SMP locks.
272  */
273 static void dispose_list(struct list_head *head)
274 {
275 	int nr_disposed = 0;
276 
277 	while (!list_empty(head)) {
278 		struct inode *inode;
279 
280 		inode = list_entry(head->next, struct inode, i_list);
281 		list_del(&inode->i_list);
282 
283 		if (inode->i_data.nrpages)
284 			truncate_inode_pages(&inode->i_data, 0);
285 		clear_inode(inode);
286 		destroy_inode(inode);
287 		nr_disposed++;
288 	}
289 	spin_lock(&inode_lock);
290 	inodes_stat.nr_inodes -= nr_disposed;
291 	spin_unlock(&inode_lock);
292 }
293 
294 /*
295  * Invalidate all inodes for a device.
296  */
297 static int invalidate_list(struct list_head *head, struct list_head *dispose)
298 {
299 	struct list_head *next;
300 	int busy = 0, count = 0;
301 
302 	next = head->next;
303 	for (;;) {
304 		struct list_head * tmp = next;
305 		struct inode * inode;
306 
307 		/*
308 		 * We can reschedule here without worrying about the list's
309 		 * consistency because the per-sb list of inodes must not
310 		 * change during umount anymore, and because iprune_sem keeps
311 		 * shrink_icache_memory() away.
312 		 */
313 		cond_resched_lock(&inode_lock);
314 
315 		next = next->next;
316 		if (tmp == head)
317 			break;
318 		inode = list_entry(tmp, struct inode, i_sb_list);
319 		invalidate_inode_buffers(inode);
320 		if (!atomic_read(&inode->i_count)) {
321 			hlist_del_init(&inode->i_hash);
322 			list_del(&inode->i_sb_list);
323 			list_move(&inode->i_list, dispose);
324 			inode->i_state |= I_FREEING;
325 			count++;
326 			continue;
327 		}
328 		busy = 1;
329 	}
330 	/* only unused inodes may be cached with i_count zero */
331 	inodes_stat.nr_unused -= count;
332 	return busy;
333 }
334 
335 /*
336  * This is a two-stage process. First we collect all
337  * offending inodes onto the throw-away list, and in
338  * the second stage we actually dispose of them. This
339  * is because we don't want to sleep while messing
340  * with the global lists..
341  */
342 
343 /**
344  *	invalidate_inodes	- discard the inodes on a device
345  *	@sb: superblock
346  *
347  *	Discard all of the inodes for a given superblock. If the discard
348  *	fails because there are busy inodes then a non zero value is returned.
349  *	If the discard is successful all the inodes have been discarded.
350  */
351 int invalidate_inodes(struct super_block * sb)
352 {
353 	int busy;
354 	LIST_HEAD(throw_away);
355 
356 	down(&iprune_sem);
357 	spin_lock(&inode_lock);
358 	busy = invalidate_list(&sb->s_inodes, &throw_away);
359 	spin_unlock(&inode_lock);
360 
361 	dispose_list(&throw_away);
362 	up(&iprune_sem);
363 
364 	return busy;
365 }
366 
367 EXPORT_SYMBOL(invalidate_inodes);
368 
369 int __invalidate_device(struct block_device *bdev, int do_sync)
370 {
371 	struct super_block *sb;
372 	int res;
373 
374 	if (do_sync)
375 		fsync_bdev(bdev);
376 
377 	res = 0;
378 	sb = get_super(bdev);
379 	if (sb) {
380 		/*
381 		 * no need to lock the super, get_super holds the
382 		 * read semaphore so the filesystem cannot go away
383 		 * under us (->put_super runs with the write lock
384 		 * hold).
385 		 */
386 		shrink_dcache_sb(sb);
387 		res = invalidate_inodes(sb);
388 		drop_super(sb);
389 	}
390 	invalidate_bdev(bdev, 0);
391 	return res;
392 }
393 
394 EXPORT_SYMBOL(__invalidate_device);
395 
396 static int can_unuse(struct inode *inode)
397 {
398 	if (inode->i_state)
399 		return 0;
400 	if (inode_has_buffers(inode))
401 		return 0;
402 	if (atomic_read(&inode->i_count))
403 		return 0;
404 	if (inode->i_data.nrpages)
405 		return 0;
406 	return 1;
407 }
408 
409 /*
410  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
411  * a temporary list and then are freed outside inode_lock by dispose_list().
412  *
413  * Any inodes which are pinned purely because of attached pagecache have their
414  * pagecache removed.  We expect the final iput() on that inode to add it to
415  * the front of the inode_unused list.  So look for it there and if the
416  * inode is still freeable, proceed.  The right inode is found 99.9% of the
417  * time in testing on a 4-way.
418  *
419  * If the inode has metadata buffers attached to mapping->private_list then
420  * try to remove them.
421  */
422 static void prune_icache(int nr_to_scan)
423 {
424 	LIST_HEAD(freeable);
425 	int nr_pruned = 0;
426 	int nr_scanned;
427 	unsigned long reap = 0;
428 
429 	down(&iprune_sem);
430 	spin_lock(&inode_lock);
431 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
432 		struct inode *inode;
433 
434 		if (list_empty(&inode_unused))
435 			break;
436 
437 		inode = list_entry(inode_unused.prev, struct inode, i_list);
438 
439 		if (inode->i_state || atomic_read(&inode->i_count)) {
440 			list_move(&inode->i_list, &inode_unused);
441 			continue;
442 		}
443 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
444 			__iget(inode);
445 			spin_unlock(&inode_lock);
446 			if (remove_inode_buffers(inode))
447 				reap += invalidate_inode_pages(&inode->i_data);
448 			iput(inode);
449 			spin_lock(&inode_lock);
450 
451 			if (inode != list_entry(inode_unused.next,
452 						struct inode, i_list))
453 				continue;	/* wrong inode or list_empty */
454 			if (!can_unuse(inode))
455 				continue;
456 		}
457 		hlist_del_init(&inode->i_hash);
458 		list_del_init(&inode->i_sb_list);
459 		list_move(&inode->i_list, &freeable);
460 		inode->i_state |= I_FREEING;
461 		nr_pruned++;
462 	}
463 	inodes_stat.nr_unused -= nr_pruned;
464 	spin_unlock(&inode_lock);
465 
466 	dispose_list(&freeable);
467 	up(&iprune_sem);
468 
469 	if (current_is_kswapd())
470 		mod_page_state(kswapd_inodesteal, reap);
471 	else
472 		mod_page_state(pginodesteal, reap);
473 }
474 
475 /*
476  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
477  * "unused" means that no dentries are referring to the inodes: the files are
478  * not open and the dcache references to those inodes have already been
479  * reclaimed.
480  *
481  * This function is passed the number of inodes to scan, and it returns the
482  * total number of remaining possibly-reclaimable inodes.
483  */
484 static int shrink_icache_memory(int nr, unsigned int gfp_mask)
485 {
486 	if (nr) {
487 		/*
488 		 * Nasty deadlock avoidance.  We may hold various FS locks,
489 		 * and we don't want to recurse into the FS that called us
490 		 * in clear_inode() and friends..
491 	 	 */
492 		if (!(gfp_mask & __GFP_FS))
493 			return -1;
494 		prune_icache(nr);
495 	}
496 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
497 }
498 
499 static void __wait_on_freeing_inode(struct inode *inode);
500 /*
501  * Called with the inode lock held.
502  * NOTE: we are not increasing the inode-refcount, you must call __iget()
503  * by hand after calling find_inode now! This simplifies iunique and won't
504  * add any additional branch in the common code.
505  */
506 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
507 {
508 	struct hlist_node *node;
509 	struct inode * inode = NULL;
510 
511 repeat:
512 	hlist_for_each (node, head) {
513 		inode = hlist_entry(node, struct inode, i_hash);
514 		if (inode->i_sb != sb)
515 			continue;
516 		if (!test(inode, data))
517 			continue;
518 		if (inode->i_state & (I_FREEING|I_CLEAR)) {
519 			__wait_on_freeing_inode(inode);
520 			goto repeat;
521 		}
522 		break;
523 	}
524 	return node ? inode : NULL;
525 }
526 
527 /*
528  * find_inode_fast is the fast path version of find_inode, see the comment at
529  * iget_locked for details.
530  */
531 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
532 {
533 	struct hlist_node *node;
534 	struct inode * inode = NULL;
535 
536 repeat:
537 	hlist_for_each (node, head) {
538 		inode = hlist_entry(node, struct inode, i_hash);
539 		if (inode->i_ino != ino)
540 			continue;
541 		if (inode->i_sb != sb)
542 			continue;
543 		if (inode->i_state & (I_FREEING|I_CLEAR)) {
544 			__wait_on_freeing_inode(inode);
545 			goto repeat;
546 		}
547 		break;
548 	}
549 	return node ? inode : NULL;
550 }
551 
552 /**
553  *	new_inode 	- obtain an inode
554  *	@sb: superblock
555  *
556  *	Allocates a new inode for given superblock.
557  */
558 struct inode *new_inode(struct super_block *sb)
559 {
560 	static unsigned long last_ino;
561 	struct inode * inode;
562 
563 	spin_lock_prefetch(&inode_lock);
564 
565 	inode = alloc_inode(sb);
566 	if (inode) {
567 		spin_lock(&inode_lock);
568 		inodes_stat.nr_inodes++;
569 		list_add(&inode->i_list, &inode_in_use);
570 		list_add(&inode->i_sb_list, &sb->s_inodes);
571 		inode->i_ino = ++last_ino;
572 		inode->i_state = 0;
573 		spin_unlock(&inode_lock);
574 	}
575 	return inode;
576 }
577 
578 EXPORT_SYMBOL(new_inode);
579 
580 void unlock_new_inode(struct inode *inode)
581 {
582 	/*
583 	 * This is special!  We do not need the spinlock
584 	 * when clearing I_LOCK, because we're guaranteed
585 	 * that nobody else tries to do anything about the
586 	 * state of the inode when it is locked, as we
587 	 * just created it (so there can be no old holders
588 	 * that haven't tested I_LOCK).
589 	 */
590 	inode->i_state &= ~(I_LOCK|I_NEW);
591 	wake_up_inode(inode);
592 }
593 
594 EXPORT_SYMBOL(unlock_new_inode);
595 
596 /*
597  * This is called without the inode lock held.. Be careful.
598  *
599  * We no longer cache the sb_flags in i_flags - see fs.h
600  *	-- rmk@arm.uk.linux.org
601  */
602 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
603 {
604 	struct inode * inode;
605 
606 	inode = alloc_inode(sb);
607 	if (inode) {
608 		struct inode * old;
609 
610 		spin_lock(&inode_lock);
611 		/* We released the lock, so.. */
612 		old = find_inode(sb, head, test, data);
613 		if (!old) {
614 			if (set(inode, data))
615 				goto set_failed;
616 
617 			inodes_stat.nr_inodes++;
618 			list_add(&inode->i_list, &inode_in_use);
619 			list_add(&inode->i_sb_list, &sb->s_inodes);
620 			hlist_add_head(&inode->i_hash, head);
621 			inode->i_state = I_LOCK|I_NEW;
622 			spin_unlock(&inode_lock);
623 
624 			/* Return the locked inode with I_NEW set, the
625 			 * caller is responsible for filling in the contents
626 			 */
627 			return inode;
628 		}
629 
630 		/*
631 		 * Uhhuh, somebody else created the same inode under
632 		 * us. Use the old inode instead of the one we just
633 		 * allocated.
634 		 */
635 		__iget(old);
636 		spin_unlock(&inode_lock);
637 		destroy_inode(inode);
638 		inode = old;
639 		wait_on_inode(inode);
640 	}
641 	return inode;
642 
643 set_failed:
644 	spin_unlock(&inode_lock);
645 	destroy_inode(inode);
646 	return NULL;
647 }
648 
649 /*
650  * get_new_inode_fast is the fast path version of get_new_inode, see the
651  * comment at iget_locked for details.
652  */
653 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
654 {
655 	struct inode * inode;
656 
657 	inode = alloc_inode(sb);
658 	if (inode) {
659 		struct inode * old;
660 
661 		spin_lock(&inode_lock);
662 		/* We released the lock, so.. */
663 		old = find_inode_fast(sb, head, ino);
664 		if (!old) {
665 			inode->i_ino = ino;
666 			inodes_stat.nr_inodes++;
667 			list_add(&inode->i_list, &inode_in_use);
668 			list_add(&inode->i_sb_list, &sb->s_inodes);
669 			hlist_add_head(&inode->i_hash, head);
670 			inode->i_state = I_LOCK|I_NEW;
671 			spin_unlock(&inode_lock);
672 
673 			/* Return the locked inode with I_NEW set, the
674 			 * caller is responsible for filling in the contents
675 			 */
676 			return inode;
677 		}
678 
679 		/*
680 		 * Uhhuh, somebody else created the same inode under
681 		 * us. Use the old inode instead of the one we just
682 		 * allocated.
683 		 */
684 		__iget(old);
685 		spin_unlock(&inode_lock);
686 		destroy_inode(inode);
687 		inode = old;
688 		wait_on_inode(inode);
689 	}
690 	return inode;
691 }
692 
693 static inline unsigned long hash(struct super_block *sb, unsigned long hashval)
694 {
695 	unsigned long tmp;
696 
697 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
698 			L1_CACHE_BYTES;
699 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
700 	return tmp & I_HASHMASK;
701 }
702 
703 /**
704  *	iunique - get a unique inode number
705  *	@sb: superblock
706  *	@max_reserved: highest reserved inode number
707  *
708  *	Obtain an inode number that is unique on the system for a given
709  *	superblock. This is used by file systems that have no natural
710  *	permanent inode numbering system. An inode number is returned that
711  *	is higher than the reserved limit but unique.
712  *
713  *	BUGS:
714  *	With a large number of inodes live on the file system this function
715  *	currently becomes quite slow.
716  */
717 ino_t iunique(struct super_block *sb, ino_t max_reserved)
718 {
719 	static ino_t counter;
720 	struct inode *inode;
721 	struct hlist_head * head;
722 	ino_t res;
723 	spin_lock(&inode_lock);
724 retry:
725 	if (counter > max_reserved) {
726 		head = inode_hashtable + hash(sb,counter);
727 		res = counter++;
728 		inode = find_inode_fast(sb, head, res);
729 		if (!inode) {
730 			spin_unlock(&inode_lock);
731 			return res;
732 		}
733 	} else {
734 		counter = max_reserved + 1;
735 	}
736 	goto retry;
737 
738 }
739 
740 EXPORT_SYMBOL(iunique);
741 
742 struct inode *igrab(struct inode *inode)
743 {
744 	spin_lock(&inode_lock);
745 	if (!(inode->i_state & I_FREEING))
746 		__iget(inode);
747 	else
748 		/*
749 		 * Handle the case where s_op->clear_inode is not been
750 		 * called yet, and somebody is calling igrab
751 		 * while the inode is getting freed.
752 		 */
753 		inode = NULL;
754 	spin_unlock(&inode_lock);
755 	return inode;
756 }
757 
758 EXPORT_SYMBOL(igrab);
759 
760 /**
761  * ifind - internal function, you want ilookup5() or iget5().
762  * @sb:		super block of file system to search
763  * @head:       the head of the list to search
764  * @test:	callback used for comparisons between inodes
765  * @data:	opaque data pointer to pass to @test
766  *
767  * ifind() searches for the inode specified by @data in the inode
768  * cache. This is a generalized version of ifind_fast() for file systems where
769  * the inode number is not sufficient for unique identification of an inode.
770  *
771  * If the inode is in the cache, the inode is returned with an incremented
772  * reference count.
773  *
774  * Otherwise NULL is returned.
775  *
776  * Note, @test is called with the inode_lock held, so can't sleep.
777  */
778 static inline struct inode *ifind(struct super_block *sb,
779 		struct hlist_head *head, int (*test)(struct inode *, void *),
780 		void *data)
781 {
782 	struct inode *inode;
783 
784 	spin_lock(&inode_lock);
785 	inode = find_inode(sb, head, test, data);
786 	if (inode) {
787 		__iget(inode);
788 		spin_unlock(&inode_lock);
789 		wait_on_inode(inode);
790 		return inode;
791 	}
792 	spin_unlock(&inode_lock);
793 	return NULL;
794 }
795 
796 /**
797  * ifind_fast - internal function, you want ilookup() or iget().
798  * @sb:		super block of file system to search
799  * @head:       head of the list to search
800  * @ino:	inode number to search for
801  *
802  * ifind_fast() searches for the inode @ino in the inode cache. This is for
803  * file systems where the inode number is sufficient for unique identification
804  * of an inode.
805  *
806  * If the inode is in the cache, the inode is returned with an incremented
807  * reference count.
808  *
809  * Otherwise NULL is returned.
810  */
811 static inline struct inode *ifind_fast(struct super_block *sb,
812 		struct hlist_head *head, unsigned long ino)
813 {
814 	struct inode *inode;
815 
816 	spin_lock(&inode_lock);
817 	inode = find_inode_fast(sb, head, ino);
818 	if (inode) {
819 		__iget(inode);
820 		spin_unlock(&inode_lock);
821 		wait_on_inode(inode);
822 		return inode;
823 	}
824 	spin_unlock(&inode_lock);
825 	return NULL;
826 }
827 
828 /**
829  * ilookup5 - search for an inode in the inode cache
830  * @sb:		super block of file system to search
831  * @hashval:	hash value (usually inode number) to search for
832  * @test:	callback used for comparisons between inodes
833  * @data:	opaque data pointer to pass to @test
834  *
835  * ilookup5() uses ifind() to search for the inode specified by @hashval and
836  * @data in the inode cache. This is a generalized version of ilookup() for
837  * file systems where the inode number is not sufficient for unique
838  * identification of an inode.
839  *
840  * If the inode is in the cache, the inode is returned with an incremented
841  * reference count.
842  *
843  * Otherwise NULL is returned.
844  *
845  * Note, @test is called with the inode_lock held, so can't sleep.
846  */
847 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
848 		int (*test)(struct inode *, void *), void *data)
849 {
850 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
851 
852 	return ifind(sb, head, test, data);
853 }
854 
855 EXPORT_SYMBOL(ilookup5);
856 
857 /**
858  * ilookup - search for an inode in the inode cache
859  * @sb:		super block of file system to search
860  * @ino:	inode number to search for
861  *
862  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
863  * This is for file systems where the inode number is sufficient for unique
864  * identification of an inode.
865  *
866  * If the inode is in the cache, the inode is returned with an incremented
867  * reference count.
868  *
869  * Otherwise NULL is returned.
870  */
871 struct inode *ilookup(struct super_block *sb, unsigned long ino)
872 {
873 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
874 
875 	return ifind_fast(sb, head, ino);
876 }
877 
878 EXPORT_SYMBOL(ilookup);
879 
880 /**
881  * iget5_locked - obtain an inode from a mounted file system
882  * @sb:		super block of file system
883  * @hashval:	hash value (usually inode number) to get
884  * @test:	callback used for comparisons between inodes
885  * @set:	callback used to initialize a new struct inode
886  * @data:	opaque data pointer to pass to @test and @set
887  *
888  * This is iget() without the read_inode() portion of get_new_inode().
889  *
890  * iget5_locked() uses ifind() to search for the inode specified by @hashval
891  * and @data in the inode cache and if present it is returned with an increased
892  * reference count. This is a generalized version of iget_locked() for file
893  * systems where the inode number is not sufficient for unique identification
894  * of an inode.
895  *
896  * If the inode is not in cache, get_new_inode() is called to allocate a new
897  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
898  * file system gets to fill it in before unlocking it via unlock_new_inode().
899  *
900  * Note both @test and @set are called with the inode_lock held, so can't sleep.
901  */
902 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
903 		int (*test)(struct inode *, void *),
904 		int (*set)(struct inode *, void *), void *data)
905 {
906 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
907 	struct inode *inode;
908 
909 	inode = ifind(sb, head, test, data);
910 	if (inode)
911 		return inode;
912 	/*
913 	 * get_new_inode() will do the right thing, re-trying the search
914 	 * in case it had to block at any point.
915 	 */
916 	return get_new_inode(sb, head, test, set, data);
917 }
918 
919 EXPORT_SYMBOL(iget5_locked);
920 
921 /**
922  * iget_locked - obtain an inode from a mounted file system
923  * @sb:		super block of file system
924  * @ino:	inode number to get
925  *
926  * This is iget() without the read_inode() portion of get_new_inode_fast().
927  *
928  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
929  * the inode cache and if present it is returned with an increased reference
930  * count. This is for file systems where the inode number is sufficient for
931  * unique identification of an inode.
932  *
933  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
934  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
935  * The file system gets to fill it in before unlocking it via
936  * unlock_new_inode().
937  */
938 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
939 {
940 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
941 	struct inode *inode;
942 
943 	inode = ifind_fast(sb, head, ino);
944 	if (inode)
945 		return inode;
946 	/*
947 	 * get_new_inode_fast() will do the right thing, re-trying the search
948 	 * in case it had to block at any point.
949 	 */
950 	return get_new_inode_fast(sb, head, ino);
951 }
952 
953 EXPORT_SYMBOL(iget_locked);
954 
955 /**
956  *	__insert_inode_hash - hash an inode
957  *	@inode: unhashed inode
958  *	@hashval: unsigned long value used to locate this object in the
959  *		inode_hashtable.
960  *
961  *	Add an inode to the inode hash for this superblock.
962  */
963 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
964 {
965 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
966 	spin_lock(&inode_lock);
967 	hlist_add_head(&inode->i_hash, head);
968 	spin_unlock(&inode_lock);
969 }
970 
971 EXPORT_SYMBOL(__insert_inode_hash);
972 
973 /**
974  *	remove_inode_hash - remove an inode from the hash
975  *	@inode: inode to unhash
976  *
977  *	Remove an inode from the superblock.
978  */
979 void remove_inode_hash(struct inode *inode)
980 {
981 	spin_lock(&inode_lock);
982 	hlist_del_init(&inode->i_hash);
983 	spin_unlock(&inode_lock);
984 }
985 
986 EXPORT_SYMBOL(remove_inode_hash);
987 
988 /*
989  * Tell the filesystem that this inode is no longer of any interest and should
990  * be completely destroyed.
991  *
992  * We leave the inode in the inode hash table until *after* the filesystem's
993  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
994  * instigate) will always find up-to-date information either in the hash or on
995  * disk.
996  *
997  * I_FREEING is set so that no-one will take a new reference to the inode while
998  * it is being deleted.
999  */
1000 void generic_delete_inode(struct inode *inode)
1001 {
1002 	struct super_operations *op = inode->i_sb->s_op;
1003 
1004 	list_del_init(&inode->i_list);
1005 	list_del_init(&inode->i_sb_list);
1006 	inode->i_state|=I_FREEING;
1007 	inodes_stat.nr_inodes--;
1008 	spin_unlock(&inode_lock);
1009 
1010 	if (inode->i_data.nrpages)
1011 		truncate_inode_pages(&inode->i_data, 0);
1012 
1013 	security_inode_delete(inode);
1014 
1015 	if (op->delete_inode) {
1016 		void (*delete)(struct inode *) = op->delete_inode;
1017 		if (!is_bad_inode(inode))
1018 			DQUOT_INIT(inode);
1019 		/* s_op->delete_inode internally recalls clear_inode() */
1020 		delete(inode);
1021 	} else
1022 		clear_inode(inode);
1023 	spin_lock(&inode_lock);
1024 	hlist_del_init(&inode->i_hash);
1025 	spin_unlock(&inode_lock);
1026 	wake_up_inode(inode);
1027 	if (inode->i_state != I_CLEAR)
1028 		BUG();
1029 	destroy_inode(inode);
1030 }
1031 
1032 EXPORT_SYMBOL(generic_delete_inode);
1033 
1034 static void generic_forget_inode(struct inode *inode)
1035 {
1036 	struct super_block *sb = inode->i_sb;
1037 
1038 	if (!hlist_unhashed(&inode->i_hash)) {
1039 		if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1040 			list_move(&inode->i_list, &inode_unused);
1041 		inodes_stat.nr_unused++;
1042 		spin_unlock(&inode_lock);
1043 		if (!sb || (sb->s_flags & MS_ACTIVE))
1044 			return;
1045 		write_inode_now(inode, 1);
1046 		spin_lock(&inode_lock);
1047 		inodes_stat.nr_unused--;
1048 		hlist_del_init(&inode->i_hash);
1049 	}
1050 	list_del_init(&inode->i_list);
1051 	list_del_init(&inode->i_sb_list);
1052 	inode->i_state|=I_FREEING;
1053 	inodes_stat.nr_inodes--;
1054 	spin_unlock(&inode_lock);
1055 	if (inode->i_data.nrpages)
1056 		truncate_inode_pages(&inode->i_data, 0);
1057 	clear_inode(inode);
1058 	destroy_inode(inode);
1059 }
1060 
1061 /*
1062  * Normal UNIX filesystem behaviour: delete the
1063  * inode when the usage count drops to zero, and
1064  * i_nlink is zero.
1065  */
1066 static void generic_drop_inode(struct inode *inode)
1067 {
1068 	if (!inode->i_nlink)
1069 		generic_delete_inode(inode);
1070 	else
1071 		generic_forget_inode(inode);
1072 }
1073 
1074 /*
1075  * Called when we're dropping the last reference
1076  * to an inode.
1077  *
1078  * Call the FS "drop()" function, defaulting to
1079  * the legacy UNIX filesystem behaviour..
1080  *
1081  * NOTE! NOTE! NOTE! We're called with the inode lock
1082  * held, and the drop function is supposed to release
1083  * the lock!
1084  */
1085 static inline void iput_final(struct inode *inode)
1086 {
1087 	struct super_operations *op = inode->i_sb->s_op;
1088 	void (*drop)(struct inode *) = generic_drop_inode;
1089 
1090 	if (op && op->drop_inode)
1091 		drop = op->drop_inode;
1092 	drop(inode);
1093 }
1094 
1095 /**
1096  *	iput	- put an inode
1097  *	@inode: inode to put
1098  *
1099  *	Puts an inode, dropping its usage count. If the inode use count hits
1100  *	zero, the inode is then freed and may also be destroyed.
1101  *
1102  *	Consequently, iput() can sleep.
1103  */
1104 void iput(struct inode *inode)
1105 {
1106 	if (inode) {
1107 		struct super_operations *op = inode->i_sb->s_op;
1108 
1109 		BUG_ON(inode->i_state == I_CLEAR);
1110 
1111 		if (op && op->put_inode)
1112 			op->put_inode(inode);
1113 
1114 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1115 			iput_final(inode);
1116 	}
1117 }
1118 
1119 EXPORT_SYMBOL(iput);
1120 
1121 /**
1122  *	bmap	- find a block number in a file
1123  *	@inode: inode of file
1124  *	@block: block to find
1125  *
1126  *	Returns the block number on the device holding the inode that
1127  *	is the disk block number for the block of the file requested.
1128  *	That is, asked for block 4 of inode 1 the function will return the
1129  *	disk block relative to the disk start that holds that block of the
1130  *	file.
1131  */
1132 sector_t bmap(struct inode * inode, sector_t block)
1133 {
1134 	sector_t res = 0;
1135 	if (inode->i_mapping->a_ops->bmap)
1136 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1137 	return res;
1138 }
1139 
1140 EXPORT_SYMBOL(bmap);
1141 
1142 /**
1143  *	update_atime	-	update the access time
1144  *	@inode: inode accessed
1145  *
1146  *	Update the accessed time on an inode and mark it for writeback.
1147  *	This function automatically handles read only file systems and media,
1148  *	as well as the "noatime" flag and inode specific "noatime" markers.
1149  */
1150 void update_atime(struct inode *inode)
1151 {
1152 	struct timespec now;
1153 
1154 	if (IS_NOATIME(inode))
1155 		return;
1156 	if (IS_NODIRATIME(inode) && S_ISDIR(inode->i_mode))
1157 		return;
1158 	if (IS_RDONLY(inode))
1159 		return;
1160 
1161 	now = current_fs_time(inode->i_sb);
1162 	if (!timespec_equal(&inode->i_atime, &now)) {
1163 		inode->i_atime = now;
1164 		mark_inode_dirty_sync(inode);
1165 	} else {
1166 		if (!timespec_equal(&inode->i_atime, &now))
1167 			inode->i_atime = now;
1168 	}
1169 }
1170 
1171 EXPORT_SYMBOL(update_atime);
1172 
1173 /**
1174  *	inode_update_time	-	update mtime and ctime time
1175  *	@inode: inode accessed
1176  *	@ctime_too: update ctime too
1177  *
1178  *	Update the mtime time on an inode and mark it for writeback.
1179  *	When ctime_too is specified update the ctime too.
1180  */
1181 
1182 void inode_update_time(struct inode *inode, int ctime_too)
1183 {
1184 	struct timespec now;
1185 	int sync_it = 0;
1186 
1187 	if (IS_NOCMTIME(inode))
1188 		return;
1189 	if (IS_RDONLY(inode))
1190 		return;
1191 
1192 	now = current_fs_time(inode->i_sb);
1193 	if (!timespec_equal(&inode->i_mtime, &now))
1194 		sync_it = 1;
1195 	inode->i_mtime = now;
1196 
1197 	if (ctime_too) {
1198 		if (!timespec_equal(&inode->i_ctime, &now))
1199 			sync_it = 1;
1200 		inode->i_ctime = now;
1201 	}
1202 	if (sync_it)
1203 		mark_inode_dirty_sync(inode);
1204 }
1205 
1206 EXPORT_SYMBOL(inode_update_time);
1207 
1208 int inode_needs_sync(struct inode *inode)
1209 {
1210 	if (IS_SYNC(inode))
1211 		return 1;
1212 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1213 		return 1;
1214 	return 0;
1215 }
1216 
1217 EXPORT_SYMBOL(inode_needs_sync);
1218 
1219 /*
1220  *	Quota functions that want to walk the inode lists..
1221  */
1222 #ifdef CONFIG_QUOTA
1223 
1224 /* Function back in dquot.c */
1225 int remove_inode_dquot_ref(struct inode *, int, struct list_head *);
1226 
1227 void remove_dquot_ref(struct super_block *sb, int type,
1228 			struct list_head *tofree_head)
1229 {
1230 	struct inode *inode;
1231 
1232 	if (!sb->dq_op)
1233 		return;	/* nothing to do */
1234 	spin_lock(&inode_lock);	/* This lock is for inodes code */
1235 
1236 	/*
1237 	 * We don't have to lock against quota code - test IS_QUOTAINIT is
1238 	 * just for speedup...
1239 	 */
1240 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list)
1241 		if (!IS_NOQUOTA(inode))
1242 			remove_inode_dquot_ref(inode, type, tofree_head);
1243 
1244 	spin_unlock(&inode_lock);
1245 }
1246 
1247 #endif
1248 
1249 int inode_wait(void *word)
1250 {
1251 	schedule();
1252 	return 0;
1253 }
1254 
1255 /*
1256  * If we try to find an inode in the inode hash while it is being deleted, we
1257  * have to wait until the filesystem completes its deletion before reporting
1258  * that it isn't found.  This is because iget will immediately call
1259  * ->read_inode, and we want to be sure that evidence of the deletion is found
1260  * by ->read_inode.
1261  * This is called with inode_lock held.
1262  */
1263 static void __wait_on_freeing_inode(struct inode *inode)
1264 {
1265 	wait_queue_head_t *wq;
1266 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1267 
1268 	/*
1269 	 * I_FREEING and I_CLEAR are cleared in process context under
1270 	 * inode_lock, so we have to give the tasks who would clear them
1271 	 * a chance to run and acquire inode_lock.
1272 	 */
1273 	if (!(inode->i_state & I_LOCK)) {
1274 		spin_unlock(&inode_lock);
1275 		yield();
1276 		spin_lock(&inode_lock);
1277 		return;
1278 	}
1279 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1280 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1281 	spin_unlock(&inode_lock);
1282 	schedule();
1283 	finish_wait(wq, &wait.wait);
1284 	spin_lock(&inode_lock);
1285 }
1286 
1287 void wake_up_inode(struct inode *inode)
1288 {
1289 	/*
1290 	 * Prevent speculative execution through spin_unlock(&inode_lock);
1291 	 */
1292 	smp_mb();
1293 	wake_up_bit(&inode->i_state, __I_LOCK);
1294 }
1295 
1296 static __initdata unsigned long ihash_entries;
1297 static int __init set_ihash_entries(char *str)
1298 {
1299 	if (!str)
1300 		return 0;
1301 	ihash_entries = simple_strtoul(str, &str, 0);
1302 	return 1;
1303 }
1304 __setup("ihash_entries=", set_ihash_entries);
1305 
1306 /*
1307  * Initialize the waitqueues and inode hash table.
1308  */
1309 void __init inode_init_early(void)
1310 {
1311 	int loop;
1312 
1313 	/* If hashes are distributed across NUMA nodes, defer
1314 	 * hash allocation until vmalloc space is available.
1315 	 */
1316 	if (hashdist)
1317 		return;
1318 
1319 	inode_hashtable =
1320 		alloc_large_system_hash("Inode-cache",
1321 					sizeof(struct hlist_head),
1322 					ihash_entries,
1323 					14,
1324 					HASH_EARLY,
1325 					&i_hash_shift,
1326 					&i_hash_mask,
1327 					0);
1328 
1329 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1330 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1331 }
1332 
1333 void __init inode_init(unsigned long mempages)
1334 {
1335 	int loop;
1336 
1337 	/* inode slab cache */
1338 	inode_cachep = kmem_cache_create("inode_cache", sizeof(struct inode),
1339 				0, SLAB_PANIC, init_once, NULL);
1340 	set_shrinker(DEFAULT_SEEKS, shrink_icache_memory);
1341 
1342 	/* Hash may have been set up in inode_init_early */
1343 	if (!hashdist)
1344 		return;
1345 
1346 	inode_hashtable =
1347 		alloc_large_system_hash("Inode-cache",
1348 					sizeof(struct hlist_head),
1349 					ihash_entries,
1350 					14,
1351 					0,
1352 					&i_hash_shift,
1353 					&i_hash_mask,
1354 					0);
1355 
1356 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1357 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1358 }
1359 
1360 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1361 {
1362 	inode->i_mode = mode;
1363 	if (S_ISCHR(mode)) {
1364 		inode->i_fop = &def_chr_fops;
1365 		inode->i_rdev = rdev;
1366 	} else if (S_ISBLK(mode)) {
1367 		inode->i_fop = &def_blk_fops;
1368 		inode->i_rdev = rdev;
1369 	} else if (S_ISFIFO(mode))
1370 		inode->i_fop = &def_fifo_fops;
1371 	else if (S_ISSOCK(mode))
1372 		inode->i_fop = &bad_sock_fops;
1373 	else
1374 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1375 		       mode);
1376 }
1377 EXPORT_SYMBOL(init_special_inode);
1378