1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/slab.h> 12 #include <linux/writeback.h> 13 #include <linux/module.h> 14 #include <linux/backing-dev.h> 15 #include <linux/wait.h> 16 #include <linux/rwsem.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/fsnotify.h> 24 #include <linux/mount.h> 25 #include <linux/async.h> 26 #include <linux/posix_acl.h> 27 #include <linux/prefetch.h> 28 #include <linux/ima.h> 29 #include <linux/cred.h> 30 #include "internal.h" 31 32 /* 33 * inode locking rules. 34 * 35 * inode->i_lock protects: 36 * inode->i_state, inode->i_hash, __iget() 37 * inode_lru_lock protects: 38 * inode_lru, inode->i_lru 39 * inode_sb_list_lock protects: 40 * sb->s_inodes, inode->i_sb_list 41 * inode_wb_list_lock protects: 42 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list 43 * inode_hash_lock protects: 44 * inode_hashtable, inode->i_hash 45 * 46 * Lock ordering: 47 * 48 * inode_sb_list_lock 49 * inode->i_lock 50 * inode_lru_lock 51 * 52 * inode_wb_list_lock 53 * inode->i_lock 54 * 55 * inode_hash_lock 56 * inode_sb_list_lock 57 * inode->i_lock 58 * 59 * iunique_lock 60 * inode_hash_lock 61 */ 62 63 /* 64 * This is needed for the following functions: 65 * - inode_has_buffers 66 * - invalidate_bdev 67 * 68 * FIXME: remove all knowledge of the buffer layer from this file 69 */ 70 #include <linux/buffer_head.h> 71 72 /* 73 * New inode.c implementation. 74 * 75 * This implementation has the basic premise of trying 76 * to be extremely low-overhead and SMP-safe, yet be 77 * simple enough to be "obviously correct". 78 * 79 * Famous last words. 80 */ 81 82 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 83 84 /* #define INODE_PARANOIA 1 */ 85 /* #define INODE_DEBUG 1 */ 86 87 /* 88 * Inode lookup is no longer as critical as it used to be: 89 * most of the lookups are going to be through the dcache. 90 */ 91 #define I_HASHBITS i_hash_shift 92 #define I_HASHMASK i_hash_mask 93 94 static unsigned int i_hash_mask __read_mostly; 95 static unsigned int i_hash_shift __read_mostly; 96 static struct hlist_head *inode_hashtable __read_mostly; 97 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 98 99 /* 100 * Each inode can be on two separate lists. One is 101 * the hash list of the inode, used for lookups. The 102 * other linked list is the "type" list: 103 * "in_use" - valid inode, i_count > 0, i_nlink > 0 104 * "dirty" - as "in_use" but also dirty 105 * "unused" - valid inode, i_count = 0 106 * 107 * A "dirty" list is maintained for each super block, 108 * allowing for low-overhead inode sync() operations. 109 */ 110 111 static LIST_HEAD(inode_lru); 112 static DEFINE_SPINLOCK(inode_lru_lock); 113 114 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); 115 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_wb_list_lock); 116 117 /* 118 * iprune_sem provides exclusion between the icache shrinking and the 119 * umount path. 120 * 121 * We don't actually need it to protect anything in the umount path, 122 * but only need to cycle through it to make sure any inode that 123 * prune_icache took off the LRU list has been fully torn down by the 124 * time we are past evict_inodes. 125 */ 126 static DECLARE_RWSEM(iprune_sem); 127 128 /* 129 * Empty aops. Can be used for the cases where the user does not 130 * define any of the address_space operations. 131 */ 132 const struct address_space_operations empty_aops = { 133 }; 134 EXPORT_SYMBOL(empty_aops); 135 136 /* 137 * Statistics gathering.. 138 */ 139 struct inodes_stat_t inodes_stat; 140 141 static DEFINE_PER_CPU(unsigned int, nr_inodes); 142 143 static struct kmem_cache *inode_cachep __read_mostly; 144 145 static int get_nr_inodes(void) 146 { 147 int i; 148 int sum = 0; 149 for_each_possible_cpu(i) 150 sum += per_cpu(nr_inodes, i); 151 return sum < 0 ? 0 : sum; 152 } 153 154 static inline int get_nr_inodes_unused(void) 155 { 156 return inodes_stat.nr_unused; 157 } 158 159 int get_nr_dirty_inodes(void) 160 { 161 /* not actually dirty inodes, but a wild approximation */ 162 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 163 return nr_dirty > 0 ? nr_dirty : 0; 164 } 165 166 /* 167 * Handle nr_inode sysctl 168 */ 169 #ifdef CONFIG_SYSCTL 170 int proc_nr_inodes(ctl_table *table, int write, 171 void __user *buffer, size_t *lenp, loff_t *ppos) 172 { 173 inodes_stat.nr_inodes = get_nr_inodes(); 174 return proc_dointvec(table, write, buffer, lenp, ppos); 175 } 176 #endif 177 178 /** 179 * inode_init_always - perform inode structure intialisation 180 * @sb: superblock inode belongs to 181 * @inode: inode to initialise 182 * 183 * These are initializations that need to be done on every inode 184 * allocation as the fields are not initialised by slab allocation. 185 */ 186 int inode_init_always(struct super_block *sb, struct inode *inode) 187 { 188 static const struct inode_operations empty_iops; 189 static const struct file_operations empty_fops; 190 struct address_space *const mapping = &inode->i_data; 191 192 inode->i_sb = sb; 193 inode->i_blkbits = sb->s_blocksize_bits; 194 inode->i_flags = 0; 195 atomic_set(&inode->i_count, 1); 196 inode->i_op = &empty_iops; 197 inode->i_fop = &empty_fops; 198 inode->i_nlink = 1; 199 inode->i_uid = 0; 200 inode->i_gid = 0; 201 atomic_set(&inode->i_writecount, 0); 202 inode->i_size = 0; 203 inode->i_blocks = 0; 204 inode->i_bytes = 0; 205 inode->i_generation = 0; 206 #ifdef CONFIG_QUOTA 207 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 208 #endif 209 inode->i_pipe = NULL; 210 inode->i_bdev = NULL; 211 inode->i_cdev = NULL; 212 inode->i_rdev = 0; 213 inode->dirtied_when = 0; 214 215 if (security_inode_alloc(inode)) 216 goto out; 217 spin_lock_init(&inode->i_lock); 218 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 219 220 mutex_init(&inode->i_mutex); 221 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 222 223 init_rwsem(&inode->i_alloc_sem); 224 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 225 226 mapping->a_ops = &empty_aops; 227 mapping->host = inode; 228 mapping->flags = 0; 229 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 230 mapping->assoc_mapping = NULL; 231 mapping->backing_dev_info = &default_backing_dev_info; 232 mapping->writeback_index = 0; 233 234 /* 235 * If the block_device provides a backing_dev_info for client 236 * inodes then use that. Otherwise the inode share the bdev's 237 * backing_dev_info. 238 */ 239 if (sb->s_bdev) { 240 struct backing_dev_info *bdi; 241 242 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 243 mapping->backing_dev_info = bdi; 244 } 245 inode->i_private = NULL; 246 inode->i_mapping = mapping; 247 #ifdef CONFIG_FS_POSIX_ACL 248 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 249 #endif 250 251 #ifdef CONFIG_FSNOTIFY 252 inode->i_fsnotify_mask = 0; 253 #endif 254 255 this_cpu_inc(nr_inodes); 256 257 return 0; 258 out: 259 return -ENOMEM; 260 } 261 EXPORT_SYMBOL(inode_init_always); 262 263 static struct inode *alloc_inode(struct super_block *sb) 264 { 265 struct inode *inode; 266 267 if (sb->s_op->alloc_inode) 268 inode = sb->s_op->alloc_inode(sb); 269 else 270 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 271 272 if (!inode) 273 return NULL; 274 275 if (unlikely(inode_init_always(sb, inode))) { 276 if (inode->i_sb->s_op->destroy_inode) 277 inode->i_sb->s_op->destroy_inode(inode); 278 else 279 kmem_cache_free(inode_cachep, inode); 280 return NULL; 281 } 282 283 return inode; 284 } 285 286 void free_inode_nonrcu(struct inode *inode) 287 { 288 kmem_cache_free(inode_cachep, inode); 289 } 290 EXPORT_SYMBOL(free_inode_nonrcu); 291 292 void __destroy_inode(struct inode *inode) 293 { 294 BUG_ON(inode_has_buffers(inode)); 295 security_inode_free(inode); 296 fsnotify_inode_delete(inode); 297 #ifdef CONFIG_FS_POSIX_ACL 298 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 299 posix_acl_release(inode->i_acl); 300 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 301 posix_acl_release(inode->i_default_acl); 302 #endif 303 this_cpu_dec(nr_inodes); 304 } 305 EXPORT_SYMBOL(__destroy_inode); 306 307 static void i_callback(struct rcu_head *head) 308 { 309 struct inode *inode = container_of(head, struct inode, i_rcu); 310 INIT_LIST_HEAD(&inode->i_dentry); 311 kmem_cache_free(inode_cachep, inode); 312 } 313 314 static void destroy_inode(struct inode *inode) 315 { 316 BUG_ON(!list_empty(&inode->i_lru)); 317 __destroy_inode(inode); 318 if (inode->i_sb->s_op->destroy_inode) 319 inode->i_sb->s_op->destroy_inode(inode); 320 else 321 call_rcu(&inode->i_rcu, i_callback); 322 } 323 324 void address_space_init_once(struct address_space *mapping) 325 { 326 memset(mapping, 0, sizeof(*mapping)); 327 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 328 spin_lock_init(&mapping->tree_lock); 329 mutex_init(&mapping->i_mmap_mutex); 330 INIT_LIST_HEAD(&mapping->private_list); 331 spin_lock_init(&mapping->private_lock); 332 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap); 333 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); 334 } 335 EXPORT_SYMBOL(address_space_init_once); 336 337 /* 338 * These are initializations that only need to be done 339 * once, because the fields are idempotent across use 340 * of the inode, so let the slab aware of that. 341 */ 342 void inode_init_once(struct inode *inode) 343 { 344 memset(inode, 0, sizeof(*inode)); 345 INIT_HLIST_NODE(&inode->i_hash); 346 INIT_LIST_HEAD(&inode->i_dentry); 347 INIT_LIST_HEAD(&inode->i_devices); 348 INIT_LIST_HEAD(&inode->i_wb_list); 349 INIT_LIST_HEAD(&inode->i_lru); 350 address_space_init_once(&inode->i_data); 351 i_size_ordered_init(inode); 352 #ifdef CONFIG_FSNOTIFY 353 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 354 #endif 355 } 356 EXPORT_SYMBOL(inode_init_once); 357 358 static void init_once(void *foo) 359 { 360 struct inode *inode = (struct inode *) foo; 361 362 inode_init_once(inode); 363 } 364 365 /* 366 * inode->i_lock must be held 367 */ 368 void __iget(struct inode *inode) 369 { 370 atomic_inc(&inode->i_count); 371 } 372 373 /* 374 * get additional reference to inode; caller must already hold one. 375 */ 376 void ihold(struct inode *inode) 377 { 378 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 379 } 380 EXPORT_SYMBOL(ihold); 381 382 static void inode_lru_list_add(struct inode *inode) 383 { 384 spin_lock(&inode_lru_lock); 385 if (list_empty(&inode->i_lru)) { 386 list_add(&inode->i_lru, &inode_lru); 387 inodes_stat.nr_unused++; 388 } 389 spin_unlock(&inode_lru_lock); 390 } 391 392 static void inode_lru_list_del(struct inode *inode) 393 { 394 spin_lock(&inode_lru_lock); 395 if (!list_empty(&inode->i_lru)) { 396 list_del_init(&inode->i_lru); 397 inodes_stat.nr_unused--; 398 } 399 spin_unlock(&inode_lru_lock); 400 } 401 402 /** 403 * inode_sb_list_add - add inode to the superblock list of inodes 404 * @inode: inode to add 405 */ 406 void inode_sb_list_add(struct inode *inode) 407 { 408 spin_lock(&inode_sb_list_lock); 409 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 410 spin_unlock(&inode_sb_list_lock); 411 } 412 EXPORT_SYMBOL_GPL(inode_sb_list_add); 413 414 static inline void inode_sb_list_del(struct inode *inode) 415 { 416 spin_lock(&inode_sb_list_lock); 417 list_del_init(&inode->i_sb_list); 418 spin_unlock(&inode_sb_list_lock); 419 } 420 421 static unsigned long hash(struct super_block *sb, unsigned long hashval) 422 { 423 unsigned long tmp; 424 425 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 426 L1_CACHE_BYTES; 427 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 428 return tmp & I_HASHMASK; 429 } 430 431 /** 432 * __insert_inode_hash - hash an inode 433 * @inode: unhashed inode 434 * @hashval: unsigned long value used to locate this object in the 435 * inode_hashtable. 436 * 437 * Add an inode to the inode hash for this superblock. 438 */ 439 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 440 { 441 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 442 443 spin_lock(&inode_hash_lock); 444 spin_lock(&inode->i_lock); 445 hlist_add_head(&inode->i_hash, b); 446 spin_unlock(&inode->i_lock); 447 spin_unlock(&inode_hash_lock); 448 } 449 EXPORT_SYMBOL(__insert_inode_hash); 450 451 /** 452 * remove_inode_hash - remove an inode from the hash 453 * @inode: inode to unhash 454 * 455 * Remove an inode from the superblock. 456 */ 457 void remove_inode_hash(struct inode *inode) 458 { 459 spin_lock(&inode_hash_lock); 460 spin_lock(&inode->i_lock); 461 hlist_del_init(&inode->i_hash); 462 spin_unlock(&inode->i_lock); 463 spin_unlock(&inode_hash_lock); 464 } 465 EXPORT_SYMBOL(remove_inode_hash); 466 467 void end_writeback(struct inode *inode) 468 { 469 might_sleep(); 470 BUG_ON(inode->i_data.nrpages); 471 BUG_ON(!list_empty(&inode->i_data.private_list)); 472 BUG_ON(!(inode->i_state & I_FREEING)); 473 BUG_ON(inode->i_state & I_CLEAR); 474 inode_sync_wait(inode); 475 /* don't need i_lock here, no concurrent mods to i_state */ 476 inode->i_state = I_FREEING | I_CLEAR; 477 } 478 EXPORT_SYMBOL(end_writeback); 479 480 /* 481 * Free the inode passed in, removing it from the lists it is still connected 482 * to. We remove any pages still attached to the inode and wait for any IO that 483 * is still in progress before finally destroying the inode. 484 * 485 * An inode must already be marked I_FREEING so that we avoid the inode being 486 * moved back onto lists if we race with other code that manipulates the lists 487 * (e.g. writeback_single_inode). The caller is responsible for setting this. 488 * 489 * An inode must already be removed from the LRU list before being evicted from 490 * the cache. This should occur atomically with setting the I_FREEING state 491 * flag, so no inodes here should ever be on the LRU when being evicted. 492 */ 493 static void evict(struct inode *inode) 494 { 495 const struct super_operations *op = inode->i_sb->s_op; 496 497 BUG_ON(!(inode->i_state & I_FREEING)); 498 BUG_ON(!list_empty(&inode->i_lru)); 499 500 inode_wb_list_del(inode); 501 inode_sb_list_del(inode); 502 503 if (op->evict_inode) { 504 op->evict_inode(inode); 505 } else { 506 if (inode->i_data.nrpages) 507 truncate_inode_pages(&inode->i_data, 0); 508 end_writeback(inode); 509 } 510 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 511 bd_forget(inode); 512 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 513 cd_forget(inode); 514 515 remove_inode_hash(inode); 516 517 spin_lock(&inode->i_lock); 518 wake_up_bit(&inode->i_state, __I_NEW); 519 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 520 spin_unlock(&inode->i_lock); 521 522 destroy_inode(inode); 523 } 524 525 /* 526 * dispose_list - dispose of the contents of a local list 527 * @head: the head of the list to free 528 * 529 * Dispose-list gets a local list with local inodes in it, so it doesn't 530 * need to worry about list corruption and SMP locks. 531 */ 532 static void dispose_list(struct list_head *head) 533 { 534 while (!list_empty(head)) { 535 struct inode *inode; 536 537 inode = list_first_entry(head, struct inode, i_lru); 538 list_del_init(&inode->i_lru); 539 540 evict(inode); 541 } 542 } 543 544 /** 545 * evict_inodes - evict all evictable inodes for a superblock 546 * @sb: superblock to operate on 547 * 548 * Make sure that no inodes with zero refcount are retained. This is 549 * called by superblock shutdown after having MS_ACTIVE flag removed, 550 * so any inode reaching zero refcount during or after that call will 551 * be immediately evicted. 552 */ 553 void evict_inodes(struct super_block *sb) 554 { 555 struct inode *inode, *next; 556 LIST_HEAD(dispose); 557 558 spin_lock(&inode_sb_list_lock); 559 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 560 if (atomic_read(&inode->i_count)) 561 continue; 562 563 spin_lock(&inode->i_lock); 564 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 565 spin_unlock(&inode->i_lock); 566 continue; 567 } 568 569 inode->i_state |= I_FREEING; 570 inode_lru_list_del(inode); 571 spin_unlock(&inode->i_lock); 572 list_add(&inode->i_lru, &dispose); 573 } 574 spin_unlock(&inode_sb_list_lock); 575 576 dispose_list(&dispose); 577 578 /* 579 * Cycle through iprune_sem to make sure any inode that prune_icache 580 * moved off the list before we took the lock has been fully torn 581 * down. 582 */ 583 down_write(&iprune_sem); 584 up_write(&iprune_sem); 585 } 586 587 /** 588 * invalidate_inodes - attempt to free all inodes on a superblock 589 * @sb: superblock to operate on 590 * @kill_dirty: flag to guide handling of dirty inodes 591 * 592 * Attempts to free all inodes for a given superblock. If there were any 593 * busy inodes return a non-zero value, else zero. 594 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 595 * them as busy. 596 */ 597 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 598 { 599 int busy = 0; 600 struct inode *inode, *next; 601 LIST_HEAD(dispose); 602 603 spin_lock(&inode_sb_list_lock); 604 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 605 spin_lock(&inode->i_lock); 606 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 607 spin_unlock(&inode->i_lock); 608 continue; 609 } 610 if (inode->i_state & I_DIRTY && !kill_dirty) { 611 spin_unlock(&inode->i_lock); 612 busy = 1; 613 continue; 614 } 615 if (atomic_read(&inode->i_count)) { 616 spin_unlock(&inode->i_lock); 617 busy = 1; 618 continue; 619 } 620 621 inode->i_state |= I_FREEING; 622 inode_lru_list_del(inode); 623 spin_unlock(&inode->i_lock); 624 list_add(&inode->i_lru, &dispose); 625 } 626 spin_unlock(&inode_sb_list_lock); 627 628 dispose_list(&dispose); 629 630 return busy; 631 } 632 633 static int can_unuse(struct inode *inode) 634 { 635 if (inode->i_state & ~I_REFERENCED) 636 return 0; 637 if (inode_has_buffers(inode)) 638 return 0; 639 if (atomic_read(&inode->i_count)) 640 return 0; 641 if (inode->i_data.nrpages) 642 return 0; 643 return 1; 644 } 645 646 /* 647 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a 648 * temporary list and then are freed outside inode_lru_lock by dispose_list(). 649 * 650 * Any inodes which are pinned purely because of attached pagecache have their 651 * pagecache removed. If the inode has metadata buffers attached to 652 * mapping->private_list then try to remove them. 653 * 654 * If the inode has the I_REFERENCED flag set, then it means that it has been 655 * used recently - the flag is set in iput_final(). When we encounter such an 656 * inode, clear the flag and move it to the back of the LRU so it gets another 657 * pass through the LRU before it gets reclaimed. This is necessary because of 658 * the fact we are doing lazy LRU updates to minimise lock contention so the 659 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 660 * with this flag set because they are the inodes that are out of order. 661 */ 662 static void prune_icache(int nr_to_scan) 663 { 664 LIST_HEAD(freeable); 665 int nr_scanned; 666 unsigned long reap = 0; 667 668 down_read(&iprune_sem); 669 spin_lock(&inode_lru_lock); 670 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 671 struct inode *inode; 672 673 if (list_empty(&inode_lru)) 674 break; 675 676 inode = list_entry(inode_lru.prev, struct inode, i_lru); 677 678 /* 679 * we are inverting the inode_lru_lock/inode->i_lock here, 680 * so use a trylock. If we fail to get the lock, just move the 681 * inode to the back of the list so we don't spin on it. 682 */ 683 if (!spin_trylock(&inode->i_lock)) { 684 list_move(&inode->i_lru, &inode_lru); 685 continue; 686 } 687 688 /* 689 * Referenced or dirty inodes are still in use. Give them 690 * another pass through the LRU as we canot reclaim them now. 691 */ 692 if (atomic_read(&inode->i_count) || 693 (inode->i_state & ~I_REFERENCED)) { 694 list_del_init(&inode->i_lru); 695 spin_unlock(&inode->i_lock); 696 inodes_stat.nr_unused--; 697 continue; 698 } 699 700 /* recently referenced inodes get one more pass */ 701 if (inode->i_state & I_REFERENCED) { 702 inode->i_state &= ~I_REFERENCED; 703 list_move(&inode->i_lru, &inode_lru); 704 spin_unlock(&inode->i_lock); 705 continue; 706 } 707 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 708 __iget(inode); 709 spin_unlock(&inode->i_lock); 710 spin_unlock(&inode_lru_lock); 711 if (remove_inode_buffers(inode)) 712 reap += invalidate_mapping_pages(&inode->i_data, 713 0, -1); 714 iput(inode); 715 spin_lock(&inode_lru_lock); 716 717 if (inode != list_entry(inode_lru.next, 718 struct inode, i_lru)) 719 continue; /* wrong inode or list_empty */ 720 /* avoid lock inversions with trylock */ 721 if (!spin_trylock(&inode->i_lock)) 722 continue; 723 if (!can_unuse(inode)) { 724 spin_unlock(&inode->i_lock); 725 continue; 726 } 727 } 728 WARN_ON(inode->i_state & I_NEW); 729 inode->i_state |= I_FREEING; 730 spin_unlock(&inode->i_lock); 731 732 list_move(&inode->i_lru, &freeable); 733 inodes_stat.nr_unused--; 734 } 735 if (current_is_kswapd()) 736 __count_vm_events(KSWAPD_INODESTEAL, reap); 737 else 738 __count_vm_events(PGINODESTEAL, reap); 739 spin_unlock(&inode_lru_lock); 740 741 dispose_list(&freeable); 742 up_read(&iprune_sem); 743 } 744 745 /* 746 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 747 * "unused" means that no dentries are referring to the inodes: the files are 748 * not open and the dcache references to those inodes have already been 749 * reclaimed. 750 * 751 * This function is passed the number of inodes to scan, and it returns the 752 * total number of remaining possibly-reclaimable inodes. 753 */ 754 static int shrink_icache_memory(struct shrinker *shrink, 755 struct shrink_control *sc) 756 { 757 int nr = sc->nr_to_scan; 758 gfp_t gfp_mask = sc->gfp_mask; 759 760 if (nr) { 761 /* 762 * Nasty deadlock avoidance. We may hold various FS locks, 763 * and we don't want to recurse into the FS that called us 764 * in clear_inode() and friends.. 765 */ 766 if (!(gfp_mask & __GFP_FS)) 767 return -1; 768 prune_icache(nr); 769 } 770 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure; 771 } 772 773 static struct shrinker icache_shrinker = { 774 .shrink = shrink_icache_memory, 775 .seeks = DEFAULT_SEEKS, 776 }; 777 778 static void __wait_on_freeing_inode(struct inode *inode); 779 /* 780 * Called with the inode lock held. 781 */ 782 static struct inode *find_inode(struct super_block *sb, 783 struct hlist_head *head, 784 int (*test)(struct inode *, void *), 785 void *data) 786 { 787 struct hlist_node *node; 788 struct inode *inode = NULL; 789 790 repeat: 791 hlist_for_each_entry(inode, node, head, i_hash) { 792 spin_lock(&inode->i_lock); 793 if (inode->i_sb != sb) { 794 spin_unlock(&inode->i_lock); 795 continue; 796 } 797 if (!test(inode, data)) { 798 spin_unlock(&inode->i_lock); 799 continue; 800 } 801 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 802 __wait_on_freeing_inode(inode); 803 goto repeat; 804 } 805 __iget(inode); 806 spin_unlock(&inode->i_lock); 807 return inode; 808 } 809 return NULL; 810 } 811 812 /* 813 * find_inode_fast is the fast path version of find_inode, see the comment at 814 * iget_locked for details. 815 */ 816 static struct inode *find_inode_fast(struct super_block *sb, 817 struct hlist_head *head, unsigned long ino) 818 { 819 struct hlist_node *node; 820 struct inode *inode = NULL; 821 822 repeat: 823 hlist_for_each_entry(inode, node, head, i_hash) { 824 spin_lock(&inode->i_lock); 825 if (inode->i_ino != ino) { 826 spin_unlock(&inode->i_lock); 827 continue; 828 } 829 if (inode->i_sb != sb) { 830 spin_unlock(&inode->i_lock); 831 continue; 832 } 833 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 834 __wait_on_freeing_inode(inode); 835 goto repeat; 836 } 837 __iget(inode); 838 spin_unlock(&inode->i_lock); 839 return inode; 840 } 841 return NULL; 842 } 843 844 /* 845 * Each cpu owns a range of LAST_INO_BATCH numbers. 846 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 847 * to renew the exhausted range. 848 * 849 * This does not significantly increase overflow rate because every CPU can 850 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 851 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 852 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 853 * overflow rate by 2x, which does not seem too significant. 854 * 855 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 856 * error if st_ino won't fit in target struct field. Use 32bit counter 857 * here to attempt to avoid that. 858 */ 859 #define LAST_INO_BATCH 1024 860 static DEFINE_PER_CPU(unsigned int, last_ino); 861 862 unsigned int get_next_ino(void) 863 { 864 unsigned int *p = &get_cpu_var(last_ino); 865 unsigned int res = *p; 866 867 #ifdef CONFIG_SMP 868 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 869 static atomic_t shared_last_ino; 870 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 871 872 res = next - LAST_INO_BATCH; 873 } 874 #endif 875 876 *p = ++res; 877 put_cpu_var(last_ino); 878 return res; 879 } 880 EXPORT_SYMBOL(get_next_ino); 881 882 /** 883 * new_inode - obtain an inode 884 * @sb: superblock 885 * 886 * Allocates a new inode for given superblock. The default gfp_mask 887 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 888 * If HIGHMEM pages are unsuitable or it is known that pages allocated 889 * for the page cache are not reclaimable or migratable, 890 * mapping_set_gfp_mask() must be called with suitable flags on the 891 * newly created inode's mapping 892 * 893 */ 894 struct inode *new_inode(struct super_block *sb) 895 { 896 struct inode *inode; 897 898 spin_lock_prefetch(&inode_sb_list_lock); 899 900 inode = alloc_inode(sb); 901 if (inode) { 902 spin_lock(&inode->i_lock); 903 inode->i_state = 0; 904 spin_unlock(&inode->i_lock); 905 inode_sb_list_add(inode); 906 } 907 return inode; 908 } 909 EXPORT_SYMBOL(new_inode); 910 911 /** 912 * unlock_new_inode - clear the I_NEW state and wake up any waiters 913 * @inode: new inode to unlock 914 * 915 * Called when the inode is fully initialised to clear the new state of the 916 * inode and wake up anyone waiting for the inode to finish initialisation. 917 */ 918 void unlock_new_inode(struct inode *inode) 919 { 920 #ifdef CONFIG_DEBUG_LOCK_ALLOC 921 if (S_ISDIR(inode->i_mode)) { 922 struct file_system_type *type = inode->i_sb->s_type; 923 924 /* Set new key only if filesystem hasn't already changed it */ 925 if (!lockdep_match_class(&inode->i_mutex, 926 &type->i_mutex_key)) { 927 /* 928 * ensure nobody is actually holding i_mutex 929 */ 930 mutex_destroy(&inode->i_mutex); 931 mutex_init(&inode->i_mutex); 932 lockdep_set_class(&inode->i_mutex, 933 &type->i_mutex_dir_key); 934 } 935 } 936 #endif 937 spin_lock(&inode->i_lock); 938 WARN_ON(!(inode->i_state & I_NEW)); 939 inode->i_state &= ~I_NEW; 940 wake_up_bit(&inode->i_state, __I_NEW); 941 spin_unlock(&inode->i_lock); 942 } 943 EXPORT_SYMBOL(unlock_new_inode); 944 945 /** 946 * iget5_locked - obtain an inode from a mounted file system 947 * @sb: super block of file system 948 * @hashval: hash value (usually inode number) to get 949 * @test: callback used for comparisons between inodes 950 * @set: callback used to initialize a new struct inode 951 * @data: opaque data pointer to pass to @test and @set 952 * 953 * Search for the inode specified by @hashval and @data in the inode cache, 954 * and if present it is return it with an increased reference count. This is 955 * a generalized version of iget_locked() for file systems where the inode 956 * number is not sufficient for unique identification of an inode. 957 * 958 * If the inode is not in cache, allocate a new inode and return it locked, 959 * hashed, and with the I_NEW flag set. The file system gets to fill it in 960 * before unlocking it via unlock_new_inode(). 961 * 962 * Note both @test and @set are called with the inode_hash_lock held, so can't 963 * sleep. 964 */ 965 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 966 int (*test)(struct inode *, void *), 967 int (*set)(struct inode *, void *), void *data) 968 { 969 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 970 struct inode *inode; 971 972 spin_lock(&inode_hash_lock); 973 inode = find_inode(sb, head, test, data); 974 spin_unlock(&inode_hash_lock); 975 976 if (inode) { 977 wait_on_inode(inode); 978 return inode; 979 } 980 981 inode = alloc_inode(sb); 982 if (inode) { 983 struct inode *old; 984 985 spin_lock(&inode_hash_lock); 986 /* We released the lock, so.. */ 987 old = find_inode(sb, head, test, data); 988 if (!old) { 989 if (set(inode, data)) 990 goto set_failed; 991 992 spin_lock(&inode->i_lock); 993 inode->i_state = I_NEW; 994 hlist_add_head(&inode->i_hash, head); 995 spin_unlock(&inode->i_lock); 996 inode_sb_list_add(inode); 997 spin_unlock(&inode_hash_lock); 998 999 /* Return the locked inode with I_NEW set, the 1000 * caller is responsible for filling in the contents 1001 */ 1002 return inode; 1003 } 1004 1005 /* 1006 * Uhhuh, somebody else created the same inode under 1007 * us. Use the old inode instead of the one we just 1008 * allocated. 1009 */ 1010 spin_unlock(&inode_hash_lock); 1011 destroy_inode(inode); 1012 inode = old; 1013 wait_on_inode(inode); 1014 } 1015 return inode; 1016 1017 set_failed: 1018 spin_unlock(&inode_hash_lock); 1019 destroy_inode(inode); 1020 return NULL; 1021 } 1022 EXPORT_SYMBOL(iget5_locked); 1023 1024 /** 1025 * iget_locked - obtain an inode from a mounted file system 1026 * @sb: super block of file system 1027 * @ino: inode number to get 1028 * 1029 * Search for the inode specified by @ino in the inode cache and if present 1030 * return it with an increased reference count. This is for file systems 1031 * where the inode number is sufficient for unique identification of an inode. 1032 * 1033 * If the inode is not in cache, allocate a new inode and return it locked, 1034 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1035 * before unlocking it via unlock_new_inode(). 1036 */ 1037 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1038 { 1039 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1040 struct inode *inode; 1041 1042 spin_lock(&inode_hash_lock); 1043 inode = find_inode_fast(sb, head, ino); 1044 spin_unlock(&inode_hash_lock); 1045 if (inode) { 1046 wait_on_inode(inode); 1047 return inode; 1048 } 1049 1050 inode = alloc_inode(sb); 1051 if (inode) { 1052 struct inode *old; 1053 1054 spin_lock(&inode_hash_lock); 1055 /* We released the lock, so.. */ 1056 old = find_inode_fast(sb, head, ino); 1057 if (!old) { 1058 inode->i_ino = ino; 1059 spin_lock(&inode->i_lock); 1060 inode->i_state = I_NEW; 1061 hlist_add_head(&inode->i_hash, head); 1062 spin_unlock(&inode->i_lock); 1063 inode_sb_list_add(inode); 1064 spin_unlock(&inode_hash_lock); 1065 1066 /* Return the locked inode with I_NEW set, the 1067 * caller is responsible for filling in the contents 1068 */ 1069 return inode; 1070 } 1071 1072 /* 1073 * Uhhuh, somebody else created the same inode under 1074 * us. Use the old inode instead of the one we just 1075 * allocated. 1076 */ 1077 spin_unlock(&inode_hash_lock); 1078 destroy_inode(inode); 1079 inode = old; 1080 wait_on_inode(inode); 1081 } 1082 return inode; 1083 } 1084 EXPORT_SYMBOL(iget_locked); 1085 1086 /* 1087 * search the inode cache for a matching inode number. 1088 * If we find one, then the inode number we are trying to 1089 * allocate is not unique and so we should not use it. 1090 * 1091 * Returns 1 if the inode number is unique, 0 if it is not. 1092 */ 1093 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1094 { 1095 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1096 struct hlist_node *node; 1097 struct inode *inode; 1098 1099 spin_lock(&inode_hash_lock); 1100 hlist_for_each_entry(inode, node, b, i_hash) { 1101 if (inode->i_ino == ino && inode->i_sb == sb) { 1102 spin_unlock(&inode_hash_lock); 1103 return 0; 1104 } 1105 } 1106 spin_unlock(&inode_hash_lock); 1107 1108 return 1; 1109 } 1110 1111 /** 1112 * iunique - get a unique inode number 1113 * @sb: superblock 1114 * @max_reserved: highest reserved inode number 1115 * 1116 * Obtain an inode number that is unique on the system for a given 1117 * superblock. This is used by file systems that have no natural 1118 * permanent inode numbering system. An inode number is returned that 1119 * is higher than the reserved limit but unique. 1120 * 1121 * BUGS: 1122 * With a large number of inodes live on the file system this function 1123 * currently becomes quite slow. 1124 */ 1125 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1126 { 1127 /* 1128 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1129 * error if st_ino won't fit in target struct field. Use 32bit counter 1130 * here to attempt to avoid that. 1131 */ 1132 static DEFINE_SPINLOCK(iunique_lock); 1133 static unsigned int counter; 1134 ino_t res; 1135 1136 spin_lock(&iunique_lock); 1137 do { 1138 if (counter <= max_reserved) 1139 counter = max_reserved + 1; 1140 res = counter++; 1141 } while (!test_inode_iunique(sb, res)); 1142 spin_unlock(&iunique_lock); 1143 1144 return res; 1145 } 1146 EXPORT_SYMBOL(iunique); 1147 1148 struct inode *igrab(struct inode *inode) 1149 { 1150 spin_lock(&inode->i_lock); 1151 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1152 __iget(inode); 1153 spin_unlock(&inode->i_lock); 1154 } else { 1155 spin_unlock(&inode->i_lock); 1156 /* 1157 * Handle the case where s_op->clear_inode is not been 1158 * called yet, and somebody is calling igrab 1159 * while the inode is getting freed. 1160 */ 1161 inode = NULL; 1162 } 1163 return inode; 1164 } 1165 EXPORT_SYMBOL(igrab); 1166 1167 /** 1168 * ilookup5_nowait - search for an inode in the inode cache 1169 * @sb: super block of file system to search 1170 * @hashval: hash value (usually inode number) to search for 1171 * @test: callback used for comparisons between inodes 1172 * @data: opaque data pointer to pass to @test 1173 * 1174 * Search for the inode specified by @hashval and @data in the inode cache. 1175 * If the inode is in the cache, the inode is returned with an incremented 1176 * reference count. 1177 * 1178 * Note: I_NEW is not waited upon so you have to be very careful what you do 1179 * with the returned inode. You probably should be using ilookup5() instead. 1180 * 1181 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1182 */ 1183 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1184 int (*test)(struct inode *, void *), void *data) 1185 { 1186 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1187 struct inode *inode; 1188 1189 spin_lock(&inode_hash_lock); 1190 inode = find_inode(sb, head, test, data); 1191 spin_unlock(&inode_hash_lock); 1192 1193 return inode; 1194 } 1195 EXPORT_SYMBOL(ilookup5_nowait); 1196 1197 /** 1198 * ilookup5 - search for an inode in the inode cache 1199 * @sb: super block of file system to search 1200 * @hashval: hash value (usually inode number) to search for 1201 * @test: callback used for comparisons between inodes 1202 * @data: opaque data pointer to pass to @test 1203 * 1204 * Search for the inode specified by @hashval and @data in the inode cache, 1205 * and if the inode is in the cache, return the inode with an incremented 1206 * reference count. Waits on I_NEW before returning the inode. 1207 * returned with an incremented reference count. 1208 * 1209 * This is a generalized version of ilookup() for file systems where the 1210 * inode number is not sufficient for unique identification of an inode. 1211 * 1212 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1213 */ 1214 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1215 int (*test)(struct inode *, void *), void *data) 1216 { 1217 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1218 1219 if (inode) 1220 wait_on_inode(inode); 1221 return inode; 1222 } 1223 EXPORT_SYMBOL(ilookup5); 1224 1225 /** 1226 * ilookup - search for an inode in the inode cache 1227 * @sb: super block of file system to search 1228 * @ino: inode number to search for 1229 * 1230 * Search for the inode @ino in the inode cache, and if the inode is in the 1231 * cache, the inode is returned with an incremented reference count. 1232 */ 1233 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1234 { 1235 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1236 struct inode *inode; 1237 1238 spin_lock(&inode_hash_lock); 1239 inode = find_inode_fast(sb, head, ino); 1240 spin_unlock(&inode_hash_lock); 1241 1242 if (inode) 1243 wait_on_inode(inode); 1244 return inode; 1245 } 1246 EXPORT_SYMBOL(ilookup); 1247 1248 int insert_inode_locked(struct inode *inode) 1249 { 1250 struct super_block *sb = inode->i_sb; 1251 ino_t ino = inode->i_ino; 1252 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1253 1254 while (1) { 1255 struct hlist_node *node; 1256 struct inode *old = NULL; 1257 spin_lock(&inode_hash_lock); 1258 hlist_for_each_entry(old, node, head, i_hash) { 1259 if (old->i_ino != ino) 1260 continue; 1261 if (old->i_sb != sb) 1262 continue; 1263 spin_lock(&old->i_lock); 1264 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1265 spin_unlock(&old->i_lock); 1266 continue; 1267 } 1268 break; 1269 } 1270 if (likely(!node)) { 1271 spin_lock(&inode->i_lock); 1272 inode->i_state |= I_NEW; 1273 hlist_add_head(&inode->i_hash, head); 1274 spin_unlock(&inode->i_lock); 1275 spin_unlock(&inode_hash_lock); 1276 return 0; 1277 } 1278 __iget(old); 1279 spin_unlock(&old->i_lock); 1280 spin_unlock(&inode_hash_lock); 1281 wait_on_inode(old); 1282 if (unlikely(!inode_unhashed(old))) { 1283 iput(old); 1284 return -EBUSY; 1285 } 1286 iput(old); 1287 } 1288 } 1289 EXPORT_SYMBOL(insert_inode_locked); 1290 1291 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1292 int (*test)(struct inode *, void *), void *data) 1293 { 1294 struct super_block *sb = inode->i_sb; 1295 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1296 1297 while (1) { 1298 struct hlist_node *node; 1299 struct inode *old = NULL; 1300 1301 spin_lock(&inode_hash_lock); 1302 hlist_for_each_entry(old, node, head, i_hash) { 1303 if (old->i_sb != sb) 1304 continue; 1305 if (!test(old, data)) 1306 continue; 1307 spin_lock(&old->i_lock); 1308 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1309 spin_unlock(&old->i_lock); 1310 continue; 1311 } 1312 break; 1313 } 1314 if (likely(!node)) { 1315 spin_lock(&inode->i_lock); 1316 inode->i_state |= I_NEW; 1317 hlist_add_head(&inode->i_hash, head); 1318 spin_unlock(&inode->i_lock); 1319 spin_unlock(&inode_hash_lock); 1320 return 0; 1321 } 1322 __iget(old); 1323 spin_unlock(&old->i_lock); 1324 spin_unlock(&inode_hash_lock); 1325 wait_on_inode(old); 1326 if (unlikely(!inode_unhashed(old))) { 1327 iput(old); 1328 return -EBUSY; 1329 } 1330 iput(old); 1331 } 1332 } 1333 EXPORT_SYMBOL(insert_inode_locked4); 1334 1335 1336 int generic_delete_inode(struct inode *inode) 1337 { 1338 return 1; 1339 } 1340 EXPORT_SYMBOL(generic_delete_inode); 1341 1342 /* 1343 * Normal UNIX filesystem behaviour: delete the 1344 * inode when the usage count drops to zero, and 1345 * i_nlink is zero. 1346 */ 1347 int generic_drop_inode(struct inode *inode) 1348 { 1349 return !inode->i_nlink || inode_unhashed(inode); 1350 } 1351 EXPORT_SYMBOL_GPL(generic_drop_inode); 1352 1353 /* 1354 * Called when we're dropping the last reference 1355 * to an inode. 1356 * 1357 * Call the FS "drop_inode()" function, defaulting to 1358 * the legacy UNIX filesystem behaviour. If it tells 1359 * us to evict inode, do so. Otherwise, retain inode 1360 * in cache if fs is alive, sync and evict if fs is 1361 * shutting down. 1362 */ 1363 static void iput_final(struct inode *inode) 1364 { 1365 struct super_block *sb = inode->i_sb; 1366 const struct super_operations *op = inode->i_sb->s_op; 1367 int drop; 1368 1369 WARN_ON(inode->i_state & I_NEW); 1370 1371 if (op && op->drop_inode) 1372 drop = op->drop_inode(inode); 1373 else 1374 drop = generic_drop_inode(inode); 1375 1376 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1377 inode->i_state |= I_REFERENCED; 1378 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1379 inode_lru_list_add(inode); 1380 spin_unlock(&inode->i_lock); 1381 return; 1382 } 1383 1384 if (!drop) { 1385 inode->i_state |= I_WILL_FREE; 1386 spin_unlock(&inode->i_lock); 1387 write_inode_now(inode, 1); 1388 spin_lock(&inode->i_lock); 1389 WARN_ON(inode->i_state & I_NEW); 1390 inode->i_state &= ~I_WILL_FREE; 1391 } 1392 1393 inode->i_state |= I_FREEING; 1394 inode_lru_list_del(inode); 1395 spin_unlock(&inode->i_lock); 1396 1397 evict(inode); 1398 } 1399 1400 /** 1401 * iput - put an inode 1402 * @inode: inode to put 1403 * 1404 * Puts an inode, dropping its usage count. If the inode use count hits 1405 * zero, the inode is then freed and may also be destroyed. 1406 * 1407 * Consequently, iput() can sleep. 1408 */ 1409 void iput(struct inode *inode) 1410 { 1411 if (inode) { 1412 BUG_ON(inode->i_state & I_CLEAR); 1413 1414 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) 1415 iput_final(inode); 1416 } 1417 } 1418 EXPORT_SYMBOL(iput); 1419 1420 /** 1421 * bmap - find a block number in a file 1422 * @inode: inode of file 1423 * @block: block to find 1424 * 1425 * Returns the block number on the device holding the inode that 1426 * is the disk block number for the block of the file requested. 1427 * That is, asked for block 4 of inode 1 the function will return the 1428 * disk block relative to the disk start that holds that block of the 1429 * file. 1430 */ 1431 sector_t bmap(struct inode *inode, sector_t block) 1432 { 1433 sector_t res = 0; 1434 if (inode->i_mapping->a_ops->bmap) 1435 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1436 return res; 1437 } 1438 EXPORT_SYMBOL(bmap); 1439 1440 /* 1441 * With relative atime, only update atime if the previous atime is 1442 * earlier than either the ctime or mtime or if at least a day has 1443 * passed since the last atime update. 1444 */ 1445 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1446 struct timespec now) 1447 { 1448 1449 if (!(mnt->mnt_flags & MNT_RELATIME)) 1450 return 1; 1451 /* 1452 * Is mtime younger than atime? If yes, update atime: 1453 */ 1454 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1455 return 1; 1456 /* 1457 * Is ctime younger than atime? If yes, update atime: 1458 */ 1459 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1460 return 1; 1461 1462 /* 1463 * Is the previous atime value older than a day? If yes, 1464 * update atime: 1465 */ 1466 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1467 return 1; 1468 /* 1469 * Good, we can skip the atime update: 1470 */ 1471 return 0; 1472 } 1473 1474 /** 1475 * touch_atime - update the access time 1476 * @mnt: mount the inode is accessed on 1477 * @dentry: dentry accessed 1478 * 1479 * Update the accessed time on an inode and mark it for writeback. 1480 * This function automatically handles read only file systems and media, 1481 * as well as the "noatime" flag and inode specific "noatime" markers. 1482 */ 1483 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1484 { 1485 struct inode *inode = dentry->d_inode; 1486 struct timespec now; 1487 1488 if (inode->i_flags & S_NOATIME) 1489 return; 1490 if (IS_NOATIME(inode)) 1491 return; 1492 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1493 return; 1494 1495 if (mnt->mnt_flags & MNT_NOATIME) 1496 return; 1497 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1498 return; 1499 1500 now = current_fs_time(inode->i_sb); 1501 1502 if (!relatime_need_update(mnt, inode, now)) 1503 return; 1504 1505 if (timespec_equal(&inode->i_atime, &now)) 1506 return; 1507 1508 if (mnt_want_write(mnt)) 1509 return; 1510 1511 inode->i_atime = now; 1512 mark_inode_dirty_sync(inode); 1513 mnt_drop_write(mnt); 1514 } 1515 EXPORT_SYMBOL(touch_atime); 1516 1517 /** 1518 * file_update_time - update mtime and ctime time 1519 * @file: file accessed 1520 * 1521 * Update the mtime and ctime members of an inode and mark the inode 1522 * for writeback. Note that this function is meant exclusively for 1523 * usage in the file write path of filesystems, and filesystems may 1524 * choose to explicitly ignore update via this function with the 1525 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1526 * timestamps are handled by the server. 1527 */ 1528 1529 void file_update_time(struct file *file) 1530 { 1531 struct inode *inode = file->f_path.dentry->d_inode; 1532 struct timespec now; 1533 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 1534 1535 /* First try to exhaust all avenues to not sync */ 1536 if (IS_NOCMTIME(inode)) 1537 return; 1538 1539 now = current_fs_time(inode->i_sb); 1540 if (!timespec_equal(&inode->i_mtime, &now)) 1541 sync_it = S_MTIME; 1542 1543 if (!timespec_equal(&inode->i_ctime, &now)) 1544 sync_it |= S_CTIME; 1545 1546 if (IS_I_VERSION(inode)) 1547 sync_it |= S_VERSION; 1548 1549 if (!sync_it) 1550 return; 1551 1552 /* Finally allowed to write? Takes lock. */ 1553 if (mnt_want_write_file(file)) 1554 return; 1555 1556 /* Only change inode inside the lock region */ 1557 if (sync_it & S_VERSION) 1558 inode_inc_iversion(inode); 1559 if (sync_it & S_CTIME) 1560 inode->i_ctime = now; 1561 if (sync_it & S_MTIME) 1562 inode->i_mtime = now; 1563 mark_inode_dirty_sync(inode); 1564 mnt_drop_write(file->f_path.mnt); 1565 } 1566 EXPORT_SYMBOL(file_update_time); 1567 1568 int inode_needs_sync(struct inode *inode) 1569 { 1570 if (IS_SYNC(inode)) 1571 return 1; 1572 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1573 return 1; 1574 return 0; 1575 } 1576 EXPORT_SYMBOL(inode_needs_sync); 1577 1578 int inode_wait(void *word) 1579 { 1580 schedule(); 1581 return 0; 1582 } 1583 EXPORT_SYMBOL(inode_wait); 1584 1585 /* 1586 * If we try to find an inode in the inode hash while it is being 1587 * deleted, we have to wait until the filesystem completes its 1588 * deletion before reporting that it isn't found. This function waits 1589 * until the deletion _might_ have completed. Callers are responsible 1590 * to recheck inode state. 1591 * 1592 * It doesn't matter if I_NEW is not set initially, a call to 1593 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1594 * will DTRT. 1595 */ 1596 static void __wait_on_freeing_inode(struct inode *inode) 1597 { 1598 wait_queue_head_t *wq; 1599 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1600 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1601 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1602 spin_unlock(&inode->i_lock); 1603 spin_unlock(&inode_hash_lock); 1604 schedule(); 1605 finish_wait(wq, &wait.wait); 1606 spin_lock(&inode_hash_lock); 1607 } 1608 1609 static __initdata unsigned long ihash_entries; 1610 static int __init set_ihash_entries(char *str) 1611 { 1612 if (!str) 1613 return 0; 1614 ihash_entries = simple_strtoul(str, &str, 0); 1615 return 1; 1616 } 1617 __setup("ihash_entries=", set_ihash_entries); 1618 1619 /* 1620 * Initialize the waitqueues and inode hash table. 1621 */ 1622 void __init inode_init_early(void) 1623 { 1624 int loop; 1625 1626 /* If hashes are distributed across NUMA nodes, defer 1627 * hash allocation until vmalloc space is available. 1628 */ 1629 if (hashdist) 1630 return; 1631 1632 inode_hashtable = 1633 alloc_large_system_hash("Inode-cache", 1634 sizeof(struct hlist_head), 1635 ihash_entries, 1636 14, 1637 HASH_EARLY, 1638 &i_hash_shift, 1639 &i_hash_mask, 1640 0); 1641 1642 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1643 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1644 } 1645 1646 void __init inode_init(void) 1647 { 1648 int loop; 1649 1650 /* inode slab cache */ 1651 inode_cachep = kmem_cache_create("inode_cache", 1652 sizeof(struct inode), 1653 0, 1654 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1655 SLAB_MEM_SPREAD), 1656 init_once); 1657 register_shrinker(&icache_shrinker); 1658 1659 /* Hash may have been set up in inode_init_early */ 1660 if (!hashdist) 1661 return; 1662 1663 inode_hashtable = 1664 alloc_large_system_hash("Inode-cache", 1665 sizeof(struct hlist_head), 1666 ihash_entries, 1667 14, 1668 0, 1669 &i_hash_shift, 1670 &i_hash_mask, 1671 0); 1672 1673 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1674 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1675 } 1676 1677 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1678 { 1679 inode->i_mode = mode; 1680 if (S_ISCHR(mode)) { 1681 inode->i_fop = &def_chr_fops; 1682 inode->i_rdev = rdev; 1683 } else if (S_ISBLK(mode)) { 1684 inode->i_fop = &def_blk_fops; 1685 inode->i_rdev = rdev; 1686 } else if (S_ISFIFO(mode)) 1687 inode->i_fop = &def_fifo_fops; 1688 else if (S_ISSOCK(mode)) 1689 inode->i_fop = &bad_sock_fops; 1690 else 1691 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1692 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1693 inode->i_ino); 1694 } 1695 EXPORT_SYMBOL(init_special_inode); 1696 1697 /** 1698 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1699 * @inode: New inode 1700 * @dir: Directory inode 1701 * @mode: mode of the new inode 1702 */ 1703 void inode_init_owner(struct inode *inode, const struct inode *dir, 1704 mode_t mode) 1705 { 1706 inode->i_uid = current_fsuid(); 1707 if (dir && dir->i_mode & S_ISGID) { 1708 inode->i_gid = dir->i_gid; 1709 if (S_ISDIR(mode)) 1710 mode |= S_ISGID; 1711 } else 1712 inode->i_gid = current_fsgid(); 1713 inode->i_mode = mode; 1714 } 1715 EXPORT_SYMBOL(inode_init_owner); 1716 1717 /** 1718 * inode_owner_or_capable - check current task permissions to inode 1719 * @inode: inode being checked 1720 * 1721 * Return true if current either has CAP_FOWNER to the inode, or 1722 * owns the file. 1723 */ 1724 bool inode_owner_or_capable(const struct inode *inode) 1725 { 1726 struct user_namespace *ns = inode_userns(inode); 1727 1728 if (current_user_ns() == ns && current_fsuid() == inode->i_uid) 1729 return true; 1730 if (ns_capable(ns, CAP_FOWNER)) 1731 return true; 1732 return false; 1733 } 1734 EXPORT_SYMBOL(inode_owner_or_capable); 1735