xref: /openbmc/linux/fs/inode.c (revision 1495f230fa7750479c79e3656286b9183d662077)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 #include <linux/prefetch.h>
28 #include <linux/ima.h>
29 #include <linux/cred.h>
30 #include "internal.h"
31 
32 /*
33  * inode locking rules.
34  *
35  * inode->i_lock protects:
36  *   inode->i_state, inode->i_hash, __iget()
37  * inode_lru_lock protects:
38  *   inode_lru, inode->i_lru
39  * inode_sb_list_lock protects:
40  *   sb->s_inodes, inode->i_sb_list
41  * inode_wb_list_lock protects:
42  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
43  * inode_hash_lock protects:
44  *   inode_hashtable, inode->i_hash
45  *
46  * Lock ordering:
47  *
48  * inode_sb_list_lock
49  *   inode->i_lock
50  *     inode_lru_lock
51  *
52  * inode_wb_list_lock
53  *   inode->i_lock
54  *
55  * inode_hash_lock
56  *   inode_sb_list_lock
57  *   inode->i_lock
58  *
59  * iunique_lock
60  *   inode_hash_lock
61  */
62 
63 /*
64  * This is needed for the following functions:
65  *  - inode_has_buffers
66  *  - invalidate_bdev
67  *
68  * FIXME: remove all knowledge of the buffer layer from this file
69  */
70 #include <linux/buffer_head.h>
71 
72 /*
73  * New inode.c implementation.
74  *
75  * This implementation has the basic premise of trying
76  * to be extremely low-overhead and SMP-safe, yet be
77  * simple enough to be "obviously correct".
78  *
79  * Famous last words.
80  */
81 
82 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
83 
84 /* #define INODE_PARANOIA 1 */
85 /* #define INODE_DEBUG 1 */
86 
87 /*
88  * Inode lookup is no longer as critical as it used to be:
89  * most of the lookups are going to be through the dcache.
90  */
91 #define I_HASHBITS	i_hash_shift
92 #define I_HASHMASK	i_hash_mask
93 
94 static unsigned int i_hash_mask __read_mostly;
95 static unsigned int i_hash_shift __read_mostly;
96 static struct hlist_head *inode_hashtable __read_mostly;
97 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
98 
99 /*
100  * Each inode can be on two separate lists. One is
101  * the hash list of the inode, used for lookups. The
102  * other linked list is the "type" list:
103  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
104  *  "dirty"  - as "in_use" but also dirty
105  *  "unused" - valid inode, i_count = 0
106  *
107  * A "dirty" list is maintained for each super block,
108  * allowing for low-overhead inode sync() operations.
109  */
110 
111 static LIST_HEAD(inode_lru);
112 static DEFINE_SPINLOCK(inode_lru_lock);
113 
114 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
115 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_wb_list_lock);
116 
117 /*
118  * iprune_sem provides exclusion between the icache shrinking and the
119  * umount path.
120  *
121  * We don't actually need it to protect anything in the umount path,
122  * but only need to cycle through it to make sure any inode that
123  * prune_icache took off the LRU list has been fully torn down by the
124  * time we are past evict_inodes.
125  */
126 static DECLARE_RWSEM(iprune_sem);
127 
128 /*
129  * Empty aops. Can be used for the cases where the user does not
130  * define any of the address_space operations.
131  */
132 const struct address_space_operations empty_aops = {
133 };
134 EXPORT_SYMBOL(empty_aops);
135 
136 /*
137  * Statistics gathering..
138  */
139 struct inodes_stat_t inodes_stat;
140 
141 static DEFINE_PER_CPU(unsigned int, nr_inodes);
142 
143 static struct kmem_cache *inode_cachep __read_mostly;
144 
145 static int get_nr_inodes(void)
146 {
147 	int i;
148 	int sum = 0;
149 	for_each_possible_cpu(i)
150 		sum += per_cpu(nr_inodes, i);
151 	return sum < 0 ? 0 : sum;
152 }
153 
154 static inline int get_nr_inodes_unused(void)
155 {
156 	return inodes_stat.nr_unused;
157 }
158 
159 int get_nr_dirty_inodes(void)
160 {
161 	/* not actually dirty inodes, but a wild approximation */
162 	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
163 	return nr_dirty > 0 ? nr_dirty : 0;
164 }
165 
166 /*
167  * Handle nr_inode sysctl
168  */
169 #ifdef CONFIG_SYSCTL
170 int proc_nr_inodes(ctl_table *table, int write,
171 		   void __user *buffer, size_t *lenp, loff_t *ppos)
172 {
173 	inodes_stat.nr_inodes = get_nr_inodes();
174 	return proc_dointvec(table, write, buffer, lenp, ppos);
175 }
176 #endif
177 
178 /**
179  * inode_init_always - perform inode structure intialisation
180  * @sb: superblock inode belongs to
181  * @inode: inode to initialise
182  *
183  * These are initializations that need to be done on every inode
184  * allocation as the fields are not initialised by slab allocation.
185  */
186 int inode_init_always(struct super_block *sb, struct inode *inode)
187 {
188 	static const struct inode_operations empty_iops;
189 	static const struct file_operations empty_fops;
190 	struct address_space *const mapping = &inode->i_data;
191 
192 	inode->i_sb = sb;
193 	inode->i_blkbits = sb->s_blocksize_bits;
194 	inode->i_flags = 0;
195 	atomic_set(&inode->i_count, 1);
196 	inode->i_op = &empty_iops;
197 	inode->i_fop = &empty_fops;
198 	inode->i_nlink = 1;
199 	inode->i_uid = 0;
200 	inode->i_gid = 0;
201 	atomic_set(&inode->i_writecount, 0);
202 	inode->i_size = 0;
203 	inode->i_blocks = 0;
204 	inode->i_bytes = 0;
205 	inode->i_generation = 0;
206 #ifdef CONFIG_QUOTA
207 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
208 #endif
209 	inode->i_pipe = NULL;
210 	inode->i_bdev = NULL;
211 	inode->i_cdev = NULL;
212 	inode->i_rdev = 0;
213 	inode->dirtied_when = 0;
214 
215 	if (security_inode_alloc(inode))
216 		goto out;
217 	spin_lock_init(&inode->i_lock);
218 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
219 
220 	mutex_init(&inode->i_mutex);
221 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
222 
223 	init_rwsem(&inode->i_alloc_sem);
224 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
225 
226 	mapping->a_ops = &empty_aops;
227 	mapping->host = inode;
228 	mapping->flags = 0;
229 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
230 	mapping->assoc_mapping = NULL;
231 	mapping->backing_dev_info = &default_backing_dev_info;
232 	mapping->writeback_index = 0;
233 
234 	/*
235 	 * If the block_device provides a backing_dev_info for client
236 	 * inodes then use that.  Otherwise the inode share the bdev's
237 	 * backing_dev_info.
238 	 */
239 	if (sb->s_bdev) {
240 		struct backing_dev_info *bdi;
241 
242 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
243 		mapping->backing_dev_info = bdi;
244 	}
245 	inode->i_private = NULL;
246 	inode->i_mapping = mapping;
247 #ifdef CONFIG_FS_POSIX_ACL
248 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
249 #endif
250 
251 #ifdef CONFIG_FSNOTIFY
252 	inode->i_fsnotify_mask = 0;
253 #endif
254 
255 	this_cpu_inc(nr_inodes);
256 
257 	return 0;
258 out:
259 	return -ENOMEM;
260 }
261 EXPORT_SYMBOL(inode_init_always);
262 
263 static struct inode *alloc_inode(struct super_block *sb)
264 {
265 	struct inode *inode;
266 
267 	if (sb->s_op->alloc_inode)
268 		inode = sb->s_op->alloc_inode(sb);
269 	else
270 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
271 
272 	if (!inode)
273 		return NULL;
274 
275 	if (unlikely(inode_init_always(sb, inode))) {
276 		if (inode->i_sb->s_op->destroy_inode)
277 			inode->i_sb->s_op->destroy_inode(inode);
278 		else
279 			kmem_cache_free(inode_cachep, inode);
280 		return NULL;
281 	}
282 
283 	return inode;
284 }
285 
286 void free_inode_nonrcu(struct inode *inode)
287 {
288 	kmem_cache_free(inode_cachep, inode);
289 }
290 EXPORT_SYMBOL(free_inode_nonrcu);
291 
292 void __destroy_inode(struct inode *inode)
293 {
294 	BUG_ON(inode_has_buffers(inode));
295 	security_inode_free(inode);
296 	fsnotify_inode_delete(inode);
297 #ifdef CONFIG_FS_POSIX_ACL
298 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
299 		posix_acl_release(inode->i_acl);
300 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
301 		posix_acl_release(inode->i_default_acl);
302 #endif
303 	this_cpu_dec(nr_inodes);
304 }
305 EXPORT_SYMBOL(__destroy_inode);
306 
307 static void i_callback(struct rcu_head *head)
308 {
309 	struct inode *inode = container_of(head, struct inode, i_rcu);
310 	INIT_LIST_HEAD(&inode->i_dentry);
311 	kmem_cache_free(inode_cachep, inode);
312 }
313 
314 static void destroy_inode(struct inode *inode)
315 {
316 	BUG_ON(!list_empty(&inode->i_lru));
317 	__destroy_inode(inode);
318 	if (inode->i_sb->s_op->destroy_inode)
319 		inode->i_sb->s_op->destroy_inode(inode);
320 	else
321 		call_rcu(&inode->i_rcu, i_callback);
322 }
323 
324 void address_space_init_once(struct address_space *mapping)
325 {
326 	memset(mapping, 0, sizeof(*mapping));
327 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
328 	spin_lock_init(&mapping->tree_lock);
329 	mutex_init(&mapping->i_mmap_mutex);
330 	INIT_LIST_HEAD(&mapping->private_list);
331 	spin_lock_init(&mapping->private_lock);
332 	INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
333 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
334 }
335 EXPORT_SYMBOL(address_space_init_once);
336 
337 /*
338  * These are initializations that only need to be done
339  * once, because the fields are idempotent across use
340  * of the inode, so let the slab aware of that.
341  */
342 void inode_init_once(struct inode *inode)
343 {
344 	memset(inode, 0, sizeof(*inode));
345 	INIT_HLIST_NODE(&inode->i_hash);
346 	INIT_LIST_HEAD(&inode->i_dentry);
347 	INIT_LIST_HEAD(&inode->i_devices);
348 	INIT_LIST_HEAD(&inode->i_wb_list);
349 	INIT_LIST_HEAD(&inode->i_lru);
350 	address_space_init_once(&inode->i_data);
351 	i_size_ordered_init(inode);
352 #ifdef CONFIG_FSNOTIFY
353 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
354 #endif
355 }
356 EXPORT_SYMBOL(inode_init_once);
357 
358 static void init_once(void *foo)
359 {
360 	struct inode *inode = (struct inode *) foo;
361 
362 	inode_init_once(inode);
363 }
364 
365 /*
366  * inode->i_lock must be held
367  */
368 void __iget(struct inode *inode)
369 {
370 	atomic_inc(&inode->i_count);
371 }
372 
373 /*
374  * get additional reference to inode; caller must already hold one.
375  */
376 void ihold(struct inode *inode)
377 {
378 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
379 }
380 EXPORT_SYMBOL(ihold);
381 
382 static void inode_lru_list_add(struct inode *inode)
383 {
384 	spin_lock(&inode_lru_lock);
385 	if (list_empty(&inode->i_lru)) {
386 		list_add(&inode->i_lru, &inode_lru);
387 		inodes_stat.nr_unused++;
388 	}
389 	spin_unlock(&inode_lru_lock);
390 }
391 
392 static void inode_lru_list_del(struct inode *inode)
393 {
394 	spin_lock(&inode_lru_lock);
395 	if (!list_empty(&inode->i_lru)) {
396 		list_del_init(&inode->i_lru);
397 		inodes_stat.nr_unused--;
398 	}
399 	spin_unlock(&inode_lru_lock);
400 }
401 
402 /**
403  * inode_sb_list_add - add inode to the superblock list of inodes
404  * @inode: inode to add
405  */
406 void inode_sb_list_add(struct inode *inode)
407 {
408 	spin_lock(&inode_sb_list_lock);
409 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
410 	spin_unlock(&inode_sb_list_lock);
411 }
412 EXPORT_SYMBOL_GPL(inode_sb_list_add);
413 
414 static inline void inode_sb_list_del(struct inode *inode)
415 {
416 	spin_lock(&inode_sb_list_lock);
417 	list_del_init(&inode->i_sb_list);
418 	spin_unlock(&inode_sb_list_lock);
419 }
420 
421 static unsigned long hash(struct super_block *sb, unsigned long hashval)
422 {
423 	unsigned long tmp;
424 
425 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
426 			L1_CACHE_BYTES;
427 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
428 	return tmp & I_HASHMASK;
429 }
430 
431 /**
432  *	__insert_inode_hash - hash an inode
433  *	@inode: unhashed inode
434  *	@hashval: unsigned long value used to locate this object in the
435  *		inode_hashtable.
436  *
437  *	Add an inode to the inode hash for this superblock.
438  */
439 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
440 {
441 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
442 
443 	spin_lock(&inode_hash_lock);
444 	spin_lock(&inode->i_lock);
445 	hlist_add_head(&inode->i_hash, b);
446 	spin_unlock(&inode->i_lock);
447 	spin_unlock(&inode_hash_lock);
448 }
449 EXPORT_SYMBOL(__insert_inode_hash);
450 
451 /**
452  *	remove_inode_hash - remove an inode from the hash
453  *	@inode: inode to unhash
454  *
455  *	Remove an inode from the superblock.
456  */
457 void remove_inode_hash(struct inode *inode)
458 {
459 	spin_lock(&inode_hash_lock);
460 	spin_lock(&inode->i_lock);
461 	hlist_del_init(&inode->i_hash);
462 	spin_unlock(&inode->i_lock);
463 	spin_unlock(&inode_hash_lock);
464 }
465 EXPORT_SYMBOL(remove_inode_hash);
466 
467 void end_writeback(struct inode *inode)
468 {
469 	might_sleep();
470 	BUG_ON(inode->i_data.nrpages);
471 	BUG_ON(!list_empty(&inode->i_data.private_list));
472 	BUG_ON(!(inode->i_state & I_FREEING));
473 	BUG_ON(inode->i_state & I_CLEAR);
474 	inode_sync_wait(inode);
475 	/* don't need i_lock here, no concurrent mods to i_state */
476 	inode->i_state = I_FREEING | I_CLEAR;
477 }
478 EXPORT_SYMBOL(end_writeback);
479 
480 /*
481  * Free the inode passed in, removing it from the lists it is still connected
482  * to. We remove any pages still attached to the inode and wait for any IO that
483  * is still in progress before finally destroying the inode.
484  *
485  * An inode must already be marked I_FREEING so that we avoid the inode being
486  * moved back onto lists if we race with other code that manipulates the lists
487  * (e.g. writeback_single_inode). The caller is responsible for setting this.
488  *
489  * An inode must already be removed from the LRU list before being evicted from
490  * the cache. This should occur atomically with setting the I_FREEING state
491  * flag, so no inodes here should ever be on the LRU when being evicted.
492  */
493 static void evict(struct inode *inode)
494 {
495 	const struct super_operations *op = inode->i_sb->s_op;
496 
497 	BUG_ON(!(inode->i_state & I_FREEING));
498 	BUG_ON(!list_empty(&inode->i_lru));
499 
500 	inode_wb_list_del(inode);
501 	inode_sb_list_del(inode);
502 
503 	if (op->evict_inode) {
504 		op->evict_inode(inode);
505 	} else {
506 		if (inode->i_data.nrpages)
507 			truncate_inode_pages(&inode->i_data, 0);
508 		end_writeback(inode);
509 	}
510 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
511 		bd_forget(inode);
512 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
513 		cd_forget(inode);
514 
515 	remove_inode_hash(inode);
516 
517 	spin_lock(&inode->i_lock);
518 	wake_up_bit(&inode->i_state, __I_NEW);
519 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
520 	spin_unlock(&inode->i_lock);
521 
522 	destroy_inode(inode);
523 }
524 
525 /*
526  * dispose_list - dispose of the contents of a local list
527  * @head: the head of the list to free
528  *
529  * Dispose-list gets a local list with local inodes in it, so it doesn't
530  * need to worry about list corruption and SMP locks.
531  */
532 static void dispose_list(struct list_head *head)
533 {
534 	while (!list_empty(head)) {
535 		struct inode *inode;
536 
537 		inode = list_first_entry(head, struct inode, i_lru);
538 		list_del_init(&inode->i_lru);
539 
540 		evict(inode);
541 	}
542 }
543 
544 /**
545  * evict_inodes	- evict all evictable inodes for a superblock
546  * @sb:		superblock to operate on
547  *
548  * Make sure that no inodes with zero refcount are retained.  This is
549  * called by superblock shutdown after having MS_ACTIVE flag removed,
550  * so any inode reaching zero refcount during or after that call will
551  * be immediately evicted.
552  */
553 void evict_inodes(struct super_block *sb)
554 {
555 	struct inode *inode, *next;
556 	LIST_HEAD(dispose);
557 
558 	spin_lock(&inode_sb_list_lock);
559 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
560 		if (atomic_read(&inode->i_count))
561 			continue;
562 
563 		spin_lock(&inode->i_lock);
564 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
565 			spin_unlock(&inode->i_lock);
566 			continue;
567 		}
568 
569 		inode->i_state |= I_FREEING;
570 		inode_lru_list_del(inode);
571 		spin_unlock(&inode->i_lock);
572 		list_add(&inode->i_lru, &dispose);
573 	}
574 	spin_unlock(&inode_sb_list_lock);
575 
576 	dispose_list(&dispose);
577 
578 	/*
579 	 * Cycle through iprune_sem to make sure any inode that prune_icache
580 	 * moved off the list before we took the lock has been fully torn
581 	 * down.
582 	 */
583 	down_write(&iprune_sem);
584 	up_write(&iprune_sem);
585 }
586 
587 /**
588  * invalidate_inodes	- attempt to free all inodes on a superblock
589  * @sb:		superblock to operate on
590  * @kill_dirty: flag to guide handling of dirty inodes
591  *
592  * Attempts to free all inodes for a given superblock.  If there were any
593  * busy inodes return a non-zero value, else zero.
594  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
595  * them as busy.
596  */
597 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
598 {
599 	int busy = 0;
600 	struct inode *inode, *next;
601 	LIST_HEAD(dispose);
602 
603 	spin_lock(&inode_sb_list_lock);
604 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
605 		spin_lock(&inode->i_lock);
606 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
607 			spin_unlock(&inode->i_lock);
608 			continue;
609 		}
610 		if (inode->i_state & I_DIRTY && !kill_dirty) {
611 			spin_unlock(&inode->i_lock);
612 			busy = 1;
613 			continue;
614 		}
615 		if (atomic_read(&inode->i_count)) {
616 			spin_unlock(&inode->i_lock);
617 			busy = 1;
618 			continue;
619 		}
620 
621 		inode->i_state |= I_FREEING;
622 		inode_lru_list_del(inode);
623 		spin_unlock(&inode->i_lock);
624 		list_add(&inode->i_lru, &dispose);
625 	}
626 	spin_unlock(&inode_sb_list_lock);
627 
628 	dispose_list(&dispose);
629 
630 	return busy;
631 }
632 
633 static int can_unuse(struct inode *inode)
634 {
635 	if (inode->i_state & ~I_REFERENCED)
636 		return 0;
637 	if (inode_has_buffers(inode))
638 		return 0;
639 	if (atomic_read(&inode->i_count))
640 		return 0;
641 	if (inode->i_data.nrpages)
642 		return 0;
643 	return 1;
644 }
645 
646 /*
647  * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
648  * temporary list and then are freed outside inode_lru_lock by dispose_list().
649  *
650  * Any inodes which are pinned purely because of attached pagecache have their
651  * pagecache removed.  If the inode has metadata buffers attached to
652  * mapping->private_list then try to remove them.
653  *
654  * If the inode has the I_REFERENCED flag set, then it means that it has been
655  * used recently - the flag is set in iput_final(). When we encounter such an
656  * inode, clear the flag and move it to the back of the LRU so it gets another
657  * pass through the LRU before it gets reclaimed. This is necessary because of
658  * the fact we are doing lazy LRU updates to minimise lock contention so the
659  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
660  * with this flag set because they are the inodes that are out of order.
661  */
662 static void prune_icache(int nr_to_scan)
663 {
664 	LIST_HEAD(freeable);
665 	int nr_scanned;
666 	unsigned long reap = 0;
667 
668 	down_read(&iprune_sem);
669 	spin_lock(&inode_lru_lock);
670 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
671 		struct inode *inode;
672 
673 		if (list_empty(&inode_lru))
674 			break;
675 
676 		inode = list_entry(inode_lru.prev, struct inode, i_lru);
677 
678 		/*
679 		 * we are inverting the inode_lru_lock/inode->i_lock here,
680 		 * so use a trylock. If we fail to get the lock, just move the
681 		 * inode to the back of the list so we don't spin on it.
682 		 */
683 		if (!spin_trylock(&inode->i_lock)) {
684 			list_move(&inode->i_lru, &inode_lru);
685 			continue;
686 		}
687 
688 		/*
689 		 * Referenced or dirty inodes are still in use. Give them
690 		 * another pass through the LRU as we canot reclaim them now.
691 		 */
692 		if (atomic_read(&inode->i_count) ||
693 		    (inode->i_state & ~I_REFERENCED)) {
694 			list_del_init(&inode->i_lru);
695 			spin_unlock(&inode->i_lock);
696 			inodes_stat.nr_unused--;
697 			continue;
698 		}
699 
700 		/* recently referenced inodes get one more pass */
701 		if (inode->i_state & I_REFERENCED) {
702 			inode->i_state &= ~I_REFERENCED;
703 			list_move(&inode->i_lru, &inode_lru);
704 			spin_unlock(&inode->i_lock);
705 			continue;
706 		}
707 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
708 			__iget(inode);
709 			spin_unlock(&inode->i_lock);
710 			spin_unlock(&inode_lru_lock);
711 			if (remove_inode_buffers(inode))
712 				reap += invalidate_mapping_pages(&inode->i_data,
713 								0, -1);
714 			iput(inode);
715 			spin_lock(&inode_lru_lock);
716 
717 			if (inode != list_entry(inode_lru.next,
718 						struct inode, i_lru))
719 				continue;	/* wrong inode or list_empty */
720 			/* avoid lock inversions with trylock */
721 			if (!spin_trylock(&inode->i_lock))
722 				continue;
723 			if (!can_unuse(inode)) {
724 				spin_unlock(&inode->i_lock);
725 				continue;
726 			}
727 		}
728 		WARN_ON(inode->i_state & I_NEW);
729 		inode->i_state |= I_FREEING;
730 		spin_unlock(&inode->i_lock);
731 
732 		list_move(&inode->i_lru, &freeable);
733 		inodes_stat.nr_unused--;
734 	}
735 	if (current_is_kswapd())
736 		__count_vm_events(KSWAPD_INODESTEAL, reap);
737 	else
738 		__count_vm_events(PGINODESTEAL, reap);
739 	spin_unlock(&inode_lru_lock);
740 
741 	dispose_list(&freeable);
742 	up_read(&iprune_sem);
743 }
744 
745 /*
746  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
747  * "unused" means that no dentries are referring to the inodes: the files are
748  * not open and the dcache references to those inodes have already been
749  * reclaimed.
750  *
751  * This function is passed the number of inodes to scan, and it returns the
752  * total number of remaining possibly-reclaimable inodes.
753  */
754 static int shrink_icache_memory(struct shrinker *shrink,
755 				struct shrink_control *sc)
756 {
757 	int nr = sc->nr_to_scan;
758 	gfp_t gfp_mask = sc->gfp_mask;
759 
760 	if (nr) {
761 		/*
762 		 * Nasty deadlock avoidance.  We may hold various FS locks,
763 		 * and we don't want to recurse into the FS that called us
764 		 * in clear_inode() and friends..
765 		 */
766 		if (!(gfp_mask & __GFP_FS))
767 			return -1;
768 		prune_icache(nr);
769 	}
770 	return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
771 }
772 
773 static struct shrinker icache_shrinker = {
774 	.shrink = shrink_icache_memory,
775 	.seeks = DEFAULT_SEEKS,
776 };
777 
778 static void __wait_on_freeing_inode(struct inode *inode);
779 /*
780  * Called with the inode lock held.
781  */
782 static struct inode *find_inode(struct super_block *sb,
783 				struct hlist_head *head,
784 				int (*test)(struct inode *, void *),
785 				void *data)
786 {
787 	struct hlist_node *node;
788 	struct inode *inode = NULL;
789 
790 repeat:
791 	hlist_for_each_entry(inode, node, head, i_hash) {
792 		spin_lock(&inode->i_lock);
793 		if (inode->i_sb != sb) {
794 			spin_unlock(&inode->i_lock);
795 			continue;
796 		}
797 		if (!test(inode, data)) {
798 			spin_unlock(&inode->i_lock);
799 			continue;
800 		}
801 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
802 			__wait_on_freeing_inode(inode);
803 			goto repeat;
804 		}
805 		__iget(inode);
806 		spin_unlock(&inode->i_lock);
807 		return inode;
808 	}
809 	return NULL;
810 }
811 
812 /*
813  * find_inode_fast is the fast path version of find_inode, see the comment at
814  * iget_locked for details.
815  */
816 static struct inode *find_inode_fast(struct super_block *sb,
817 				struct hlist_head *head, unsigned long ino)
818 {
819 	struct hlist_node *node;
820 	struct inode *inode = NULL;
821 
822 repeat:
823 	hlist_for_each_entry(inode, node, head, i_hash) {
824 		spin_lock(&inode->i_lock);
825 		if (inode->i_ino != ino) {
826 			spin_unlock(&inode->i_lock);
827 			continue;
828 		}
829 		if (inode->i_sb != sb) {
830 			spin_unlock(&inode->i_lock);
831 			continue;
832 		}
833 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
834 			__wait_on_freeing_inode(inode);
835 			goto repeat;
836 		}
837 		__iget(inode);
838 		spin_unlock(&inode->i_lock);
839 		return inode;
840 	}
841 	return NULL;
842 }
843 
844 /*
845  * Each cpu owns a range of LAST_INO_BATCH numbers.
846  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
847  * to renew the exhausted range.
848  *
849  * This does not significantly increase overflow rate because every CPU can
850  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
851  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
852  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
853  * overflow rate by 2x, which does not seem too significant.
854  *
855  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
856  * error if st_ino won't fit in target struct field. Use 32bit counter
857  * here to attempt to avoid that.
858  */
859 #define LAST_INO_BATCH 1024
860 static DEFINE_PER_CPU(unsigned int, last_ino);
861 
862 unsigned int get_next_ino(void)
863 {
864 	unsigned int *p = &get_cpu_var(last_ino);
865 	unsigned int res = *p;
866 
867 #ifdef CONFIG_SMP
868 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
869 		static atomic_t shared_last_ino;
870 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
871 
872 		res = next - LAST_INO_BATCH;
873 	}
874 #endif
875 
876 	*p = ++res;
877 	put_cpu_var(last_ino);
878 	return res;
879 }
880 EXPORT_SYMBOL(get_next_ino);
881 
882 /**
883  *	new_inode 	- obtain an inode
884  *	@sb: superblock
885  *
886  *	Allocates a new inode for given superblock. The default gfp_mask
887  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
888  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
889  *	for the page cache are not reclaimable or migratable,
890  *	mapping_set_gfp_mask() must be called with suitable flags on the
891  *	newly created inode's mapping
892  *
893  */
894 struct inode *new_inode(struct super_block *sb)
895 {
896 	struct inode *inode;
897 
898 	spin_lock_prefetch(&inode_sb_list_lock);
899 
900 	inode = alloc_inode(sb);
901 	if (inode) {
902 		spin_lock(&inode->i_lock);
903 		inode->i_state = 0;
904 		spin_unlock(&inode->i_lock);
905 		inode_sb_list_add(inode);
906 	}
907 	return inode;
908 }
909 EXPORT_SYMBOL(new_inode);
910 
911 /**
912  * unlock_new_inode - clear the I_NEW state and wake up any waiters
913  * @inode:	new inode to unlock
914  *
915  * Called when the inode is fully initialised to clear the new state of the
916  * inode and wake up anyone waiting for the inode to finish initialisation.
917  */
918 void unlock_new_inode(struct inode *inode)
919 {
920 #ifdef CONFIG_DEBUG_LOCK_ALLOC
921 	if (S_ISDIR(inode->i_mode)) {
922 		struct file_system_type *type = inode->i_sb->s_type;
923 
924 		/* Set new key only if filesystem hasn't already changed it */
925 		if (!lockdep_match_class(&inode->i_mutex,
926 		    &type->i_mutex_key)) {
927 			/*
928 			 * ensure nobody is actually holding i_mutex
929 			 */
930 			mutex_destroy(&inode->i_mutex);
931 			mutex_init(&inode->i_mutex);
932 			lockdep_set_class(&inode->i_mutex,
933 					  &type->i_mutex_dir_key);
934 		}
935 	}
936 #endif
937 	spin_lock(&inode->i_lock);
938 	WARN_ON(!(inode->i_state & I_NEW));
939 	inode->i_state &= ~I_NEW;
940 	wake_up_bit(&inode->i_state, __I_NEW);
941 	spin_unlock(&inode->i_lock);
942 }
943 EXPORT_SYMBOL(unlock_new_inode);
944 
945 /**
946  * iget5_locked - obtain an inode from a mounted file system
947  * @sb:		super block of file system
948  * @hashval:	hash value (usually inode number) to get
949  * @test:	callback used for comparisons between inodes
950  * @set:	callback used to initialize a new struct inode
951  * @data:	opaque data pointer to pass to @test and @set
952  *
953  * Search for the inode specified by @hashval and @data in the inode cache,
954  * and if present it is return it with an increased reference count. This is
955  * a generalized version of iget_locked() for file systems where the inode
956  * number is not sufficient for unique identification of an inode.
957  *
958  * If the inode is not in cache, allocate a new inode and return it locked,
959  * hashed, and with the I_NEW flag set. The file system gets to fill it in
960  * before unlocking it via unlock_new_inode().
961  *
962  * Note both @test and @set are called with the inode_hash_lock held, so can't
963  * sleep.
964  */
965 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
966 		int (*test)(struct inode *, void *),
967 		int (*set)(struct inode *, void *), void *data)
968 {
969 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
970 	struct inode *inode;
971 
972 	spin_lock(&inode_hash_lock);
973 	inode = find_inode(sb, head, test, data);
974 	spin_unlock(&inode_hash_lock);
975 
976 	if (inode) {
977 		wait_on_inode(inode);
978 		return inode;
979 	}
980 
981 	inode = alloc_inode(sb);
982 	if (inode) {
983 		struct inode *old;
984 
985 		spin_lock(&inode_hash_lock);
986 		/* We released the lock, so.. */
987 		old = find_inode(sb, head, test, data);
988 		if (!old) {
989 			if (set(inode, data))
990 				goto set_failed;
991 
992 			spin_lock(&inode->i_lock);
993 			inode->i_state = I_NEW;
994 			hlist_add_head(&inode->i_hash, head);
995 			spin_unlock(&inode->i_lock);
996 			inode_sb_list_add(inode);
997 			spin_unlock(&inode_hash_lock);
998 
999 			/* Return the locked inode with I_NEW set, the
1000 			 * caller is responsible for filling in the contents
1001 			 */
1002 			return inode;
1003 		}
1004 
1005 		/*
1006 		 * Uhhuh, somebody else created the same inode under
1007 		 * us. Use the old inode instead of the one we just
1008 		 * allocated.
1009 		 */
1010 		spin_unlock(&inode_hash_lock);
1011 		destroy_inode(inode);
1012 		inode = old;
1013 		wait_on_inode(inode);
1014 	}
1015 	return inode;
1016 
1017 set_failed:
1018 	spin_unlock(&inode_hash_lock);
1019 	destroy_inode(inode);
1020 	return NULL;
1021 }
1022 EXPORT_SYMBOL(iget5_locked);
1023 
1024 /**
1025  * iget_locked - obtain an inode from a mounted file system
1026  * @sb:		super block of file system
1027  * @ino:	inode number to get
1028  *
1029  * Search for the inode specified by @ino in the inode cache and if present
1030  * return it with an increased reference count. This is for file systems
1031  * where the inode number is sufficient for unique identification of an inode.
1032  *
1033  * If the inode is not in cache, allocate a new inode and return it locked,
1034  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1035  * before unlocking it via unlock_new_inode().
1036  */
1037 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1038 {
1039 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1040 	struct inode *inode;
1041 
1042 	spin_lock(&inode_hash_lock);
1043 	inode = find_inode_fast(sb, head, ino);
1044 	spin_unlock(&inode_hash_lock);
1045 	if (inode) {
1046 		wait_on_inode(inode);
1047 		return inode;
1048 	}
1049 
1050 	inode = alloc_inode(sb);
1051 	if (inode) {
1052 		struct inode *old;
1053 
1054 		spin_lock(&inode_hash_lock);
1055 		/* We released the lock, so.. */
1056 		old = find_inode_fast(sb, head, ino);
1057 		if (!old) {
1058 			inode->i_ino = ino;
1059 			spin_lock(&inode->i_lock);
1060 			inode->i_state = I_NEW;
1061 			hlist_add_head(&inode->i_hash, head);
1062 			spin_unlock(&inode->i_lock);
1063 			inode_sb_list_add(inode);
1064 			spin_unlock(&inode_hash_lock);
1065 
1066 			/* Return the locked inode with I_NEW set, the
1067 			 * caller is responsible for filling in the contents
1068 			 */
1069 			return inode;
1070 		}
1071 
1072 		/*
1073 		 * Uhhuh, somebody else created the same inode under
1074 		 * us. Use the old inode instead of the one we just
1075 		 * allocated.
1076 		 */
1077 		spin_unlock(&inode_hash_lock);
1078 		destroy_inode(inode);
1079 		inode = old;
1080 		wait_on_inode(inode);
1081 	}
1082 	return inode;
1083 }
1084 EXPORT_SYMBOL(iget_locked);
1085 
1086 /*
1087  * search the inode cache for a matching inode number.
1088  * If we find one, then the inode number we are trying to
1089  * allocate is not unique and so we should not use it.
1090  *
1091  * Returns 1 if the inode number is unique, 0 if it is not.
1092  */
1093 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1094 {
1095 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1096 	struct hlist_node *node;
1097 	struct inode *inode;
1098 
1099 	spin_lock(&inode_hash_lock);
1100 	hlist_for_each_entry(inode, node, b, i_hash) {
1101 		if (inode->i_ino == ino && inode->i_sb == sb) {
1102 			spin_unlock(&inode_hash_lock);
1103 			return 0;
1104 		}
1105 	}
1106 	spin_unlock(&inode_hash_lock);
1107 
1108 	return 1;
1109 }
1110 
1111 /**
1112  *	iunique - get a unique inode number
1113  *	@sb: superblock
1114  *	@max_reserved: highest reserved inode number
1115  *
1116  *	Obtain an inode number that is unique on the system for a given
1117  *	superblock. This is used by file systems that have no natural
1118  *	permanent inode numbering system. An inode number is returned that
1119  *	is higher than the reserved limit but unique.
1120  *
1121  *	BUGS:
1122  *	With a large number of inodes live on the file system this function
1123  *	currently becomes quite slow.
1124  */
1125 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1126 {
1127 	/*
1128 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1129 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1130 	 * here to attempt to avoid that.
1131 	 */
1132 	static DEFINE_SPINLOCK(iunique_lock);
1133 	static unsigned int counter;
1134 	ino_t res;
1135 
1136 	spin_lock(&iunique_lock);
1137 	do {
1138 		if (counter <= max_reserved)
1139 			counter = max_reserved + 1;
1140 		res = counter++;
1141 	} while (!test_inode_iunique(sb, res));
1142 	spin_unlock(&iunique_lock);
1143 
1144 	return res;
1145 }
1146 EXPORT_SYMBOL(iunique);
1147 
1148 struct inode *igrab(struct inode *inode)
1149 {
1150 	spin_lock(&inode->i_lock);
1151 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1152 		__iget(inode);
1153 		spin_unlock(&inode->i_lock);
1154 	} else {
1155 		spin_unlock(&inode->i_lock);
1156 		/*
1157 		 * Handle the case where s_op->clear_inode is not been
1158 		 * called yet, and somebody is calling igrab
1159 		 * while the inode is getting freed.
1160 		 */
1161 		inode = NULL;
1162 	}
1163 	return inode;
1164 }
1165 EXPORT_SYMBOL(igrab);
1166 
1167 /**
1168  * ilookup5_nowait - search for an inode in the inode cache
1169  * @sb:		super block of file system to search
1170  * @hashval:	hash value (usually inode number) to search for
1171  * @test:	callback used for comparisons between inodes
1172  * @data:	opaque data pointer to pass to @test
1173  *
1174  * Search for the inode specified by @hashval and @data in the inode cache.
1175  * If the inode is in the cache, the inode is returned with an incremented
1176  * reference count.
1177  *
1178  * Note: I_NEW is not waited upon so you have to be very careful what you do
1179  * with the returned inode.  You probably should be using ilookup5() instead.
1180  *
1181  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1182  */
1183 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1184 		int (*test)(struct inode *, void *), void *data)
1185 {
1186 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1187 	struct inode *inode;
1188 
1189 	spin_lock(&inode_hash_lock);
1190 	inode = find_inode(sb, head, test, data);
1191 	spin_unlock(&inode_hash_lock);
1192 
1193 	return inode;
1194 }
1195 EXPORT_SYMBOL(ilookup5_nowait);
1196 
1197 /**
1198  * ilookup5 - search for an inode in the inode cache
1199  * @sb:		super block of file system to search
1200  * @hashval:	hash value (usually inode number) to search for
1201  * @test:	callback used for comparisons between inodes
1202  * @data:	opaque data pointer to pass to @test
1203  *
1204  * Search for the inode specified by @hashval and @data in the inode cache,
1205  * and if the inode is in the cache, return the inode with an incremented
1206  * reference count.  Waits on I_NEW before returning the inode.
1207  * returned with an incremented reference count.
1208  *
1209  * This is a generalized version of ilookup() for file systems where the
1210  * inode number is not sufficient for unique identification of an inode.
1211  *
1212  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1213  */
1214 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1215 		int (*test)(struct inode *, void *), void *data)
1216 {
1217 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1218 
1219 	if (inode)
1220 		wait_on_inode(inode);
1221 	return inode;
1222 }
1223 EXPORT_SYMBOL(ilookup5);
1224 
1225 /**
1226  * ilookup - search for an inode in the inode cache
1227  * @sb:		super block of file system to search
1228  * @ino:	inode number to search for
1229  *
1230  * Search for the inode @ino in the inode cache, and if the inode is in the
1231  * cache, the inode is returned with an incremented reference count.
1232  */
1233 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1234 {
1235 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1236 	struct inode *inode;
1237 
1238 	spin_lock(&inode_hash_lock);
1239 	inode = find_inode_fast(sb, head, ino);
1240 	spin_unlock(&inode_hash_lock);
1241 
1242 	if (inode)
1243 		wait_on_inode(inode);
1244 	return inode;
1245 }
1246 EXPORT_SYMBOL(ilookup);
1247 
1248 int insert_inode_locked(struct inode *inode)
1249 {
1250 	struct super_block *sb = inode->i_sb;
1251 	ino_t ino = inode->i_ino;
1252 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1253 
1254 	while (1) {
1255 		struct hlist_node *node;
1256 		struct inode *old = NULL;
1257 		spin_lock(&inode_hash_lock);
1258 		hlist_for_each_entry(old, node, head, i_hash) {
1259 			if (old->i_ino != ino)
1260 				continue;
1261 			if (old->i_sb != sb)
1262 				continue;
1263 			spin_lock(&old->i_lock);
1264 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1265 				spin_unlock(&old->i_lock);
1266 				continue;
1267 			}
1268 			break;
1269 		}
1270 		if (likely(!node)) {
1271 			spin_lock(&inode->i_lock);
1272 			inode->i_state |= I_NEW;
1273 			hlist_add_head(&inode->i_hash, head);
1274 			spin_unlock(&inode->i_lock);
1275 			spin_unlock(&inode_hash_lock);
1276 			return 0;
1277 		}
1278 		__iget(old);
1279 		spin_unlock(&old->i_lock);
1280 		spin_unlock(&inode_hash_lock);
1281 		wait_on_inode(old);
1282 		if (unlikely(!inode_unhashed(old))) {
1283 			iput(old);
1284 			return -EBUSY;
1285 		}
1286 		iput(old);
1287 	}
1288 }
1289 EXPORT_SYMBOL(insert_inode_locked);
1290 
1291 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1292 		int (*test)(struct inode *, void *), void *data)
1293 {
1294 	struct super_block *sb = inode->i_sb;
1295 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1296 
1297 	while (1) {
1298 		struct hlist_node *node;
1299 		struct inode *old = NULL;
1300 
1301 		spin_lock(&inode_hash_lock);
1302 		hlist_for_each_entry(old, node, head, i_hash) {
1303 			if (old->i_sb != sb)
1304 				continue;
1305 			if (!test(old, data))
1306 				continue;
1307 			spin_lock(&old->i_lock);
1308 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1309 				spin_unlock(&old->i_lock);
1310 				continue;
1311 			}
1312 			break;
1313 		}
1314 		if (likely(!node)) {
1315 			spin_lock(&inode->i_lock);
1316 			inode->i_state |= I_NEW;
1317 			hlist_add_head(&inode->i_hash, head);
1318 			spin_unlock(&inode->i_lock);
1319 			spin_unlock(&inode_hash_lock);
1320 			return 0;
1321 		}
1322 		__iget(old);
1323 		spin_unlock(&old->i_lock);
1324 		spin_unlock(&inode_hash_lock);
1325 		wait_on_inode(old);
1326 		if (unlikely(!inode_unhashed(old))) {
1327 			iput(old);
1328 			return -EBUSY;
1329 		}
1330 		iput(old);
1331 	}
1332 }
1333 EXPORT_SYMBOL(insert_inode_locked4);
1334 
1335 
1336 int generic_delete_inode(struct inode *inode)
1337 {
1338 	return 1;
1339 }
1340 EXPORT_SYMBOL(generic_delete_inode);
1341 
1342 /*
1343  * Normal UNIX filesystem behaviour: delete the
1344  * inode when the usage count drops to zero, and
1345  * i_nlink is zero.
1346  */
1347 int generic_drop_inode(struct inode *inode)
1348 {
1349 	return !inode->i_nlink || inode_unhashed(inode);
1350 }
1351 EXPORT_SYMBOL_GPL(generic_drop_inode);
1352 
1353 /*
1354  * Called when we're dropping the last reference
1355  * to an inode.
1356  *
1357  * Call the FS "drop_inode()" function, defaulting to
1358  * the legacy UNIX filesystem behaviour.  If it tells
1359  * us to evict inode, do so.  Otherwise, retain inode
1360  * in cache if fs is alive, sync and evict if fs is
1361  * shutting down.
1362  */
1363 static void iput_final(struct inode *inode)
1364 {
1365 	struct super_block *sb = inode->i_sb;
1366 	const struct super_operations *op = inode->i_sb->s_op;
1367 	int drop;
1368 
1369 	WARN_ON(inode->i_state & I_NEW);
1370 
1371 	if (op && op->drop_inode)
1372 		drop = op->drop_inode(inode);
1373 	else
1374 		drop = generic_drop_inode(inode);
1375 
1376 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1377 		inode->i_state |= I_REFERENCED;
1378 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1379 			inode_lru_list_add(inode);
1380 		spin_unlock(&inode->i_lock);
1381 		return;
1382 	}
1383 
1384 	if (!drop) {
1385 		inode->i_state |= I_WILL_FREE;
1386 		spin_unlock(&inode->i_lock);
1387 		write_inode_now(inode, 1);
1388 		spin_lock(&inode->i_lock);
1389 		WARN_ON(inode->i_state & I_NEW);
1390 		inode->i_state &= ~I_WILL_FREE;
1391 	}
1392 
1393 	inode->i_state |= I_FREEING;
1394 	inode_lru_list_del(inode);
1395 	spin_unlock(&inode->i_lock);
1396 
1397 	evict(inode);
1398 }
1399 
1400 /**
1401  *	iput	- put an inode
1402  *	@inode: inode to put
1403  *
1404  *	Puts an inode, dropping its usage count. If the inode use count hits
1405  *	zero, the inode is then freed and may also be destroyed.
1406  *
1407  *	Consequently, iput() can sleep.
1408  */
1409 void iput(struct inode *inode)
1410 {
1411 	if (inode) {
1412 		BUG_ON(inode->i_state & I_CLEAR);
1413 
1414 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1415 			iput_final(inode);
1416 	}
1417 }
1418 EXPORT_SYMBOL(iput);
1419 
1420 /**
1421  *	bmap	- find a block number in a file
1422  *	@inode: inode of file
1423  *	@block: block to find
1424  *
1425  *	Returns the block number on the device holding the inode that
1426  *	is the disk block number for the block of the file requested.
1427  *	That is, asked for block 4 of inode 1 the function will return the
1428  *	disk block relative to the disk start that holds that block of the
1429  *	file.
1430  */
1431 sector_t bmap(struct inode *inode, sector_t block)
1432 {
1433 	sector_t res = 0;
1434 	if (inode->i_mapping->a_ops->bmap)
1435 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1436 	return res;
1437 }
1438 EXPORT_SYMBOL(bmap);
1439 
1440 /*
1441  * With relative atime, only update atime if the previous atime is
1442  * earlier than either the ctime or mtime or if at least a day has
1443  * passed since the last atime update.
1444  */
1445 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1446 			     struct timespec now)
1447 {
1448 
1449 	if (!(mnt->mnt_flags & MNT_RELATIME))
1450 		return 1;
1451 	/*
1452 	 * Is mtime younger than atime? If yes, update atime:
1453 	 */
1454 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1455 		return 1;
1456 	/*
1457 	 * Is ctime younger than atime? If yes, update atime:
1458 	 */
1459 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1460 		return 1;
1461 
1462 	/*
1463 	 * Is the previous atime value older than a day? If yes,
1464 	 * update atime:
1465 	 */
1466 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1467 		return 1;
1468 	/*
1469 	 * Good, we can skip the atime update:
1470 	 */
1471 	return 0;
1472 }
1473 
1474 /**
1475  *	touch_atime	-	update the access time
1476  *	@mnt: mount the inode is accessed on
1477  *	@dentry: dentry accessed
1478  *
1479  *	Update the accessed time on an inode and mark it for writeback.
1480  *	This function automatically handles read only file systems and media,
1481  *	as well as the "noatime" flag and inode specific "noatime" markers.
1482  */
1483 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1484 {
1485 	struct inode *inode = dentry->d_inode;
1486 	struct timespec now;
1487 
1488 	if (inode->i_flags & S_NOATIME)
1489 		return;
1490 	if (IS_NOATIME(inode))
1491 		return;
1492 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1493 		return;
1494 
1495 	if (mnt->mnt_flags & MNT_NOATIME)
1496 		return;
1497 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1498 		return;
1499 
1500 	now = current_fs_time(inode->i_sb);
1501 
1502 	if (!relatime_need_update(mnt, inode, now))
1503 		return;
1504 
1505 	if (timespec_equal(&inode->i_atime, &now))
1506 		return;
1507 
1508 	if (mnt_want_write(mnt))
1509 		return;
1510 
1511 	inode->i_atime = now;
1512 	mark_inode_dirty_sync(inode);
1513 	mnt_drop_write(mnt);
1514 }
1515 EXPORT_SYMBOL(touch_atime);
1516 
1517 /**
1518  *	file_update_time	-	update mtime and ctime time
1519  *	@file: file accessed
1520  *
1521  *	Update the mtime and ctime members of an inode and mark the inode
1522  *	for writeback.  Note that this function is meant exclusively for
1523  *	usage in the file write path of filesystems, and filesystems may
1524  *	choose to explicitly ignore update via this function with the
1525  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1526  *	timestamps are handled by the server.
1527  */
1528 
1529 void file_update_time(struct file *file)
1530 {
1531 	struct inode *inode = file->f_path.dentry->d_inode;
1532 	struct timespec now;
1533 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1534 
1535 	/* First try to exhaust all avenues to not sync */
1536 	if (IS_NOCMTIME(inode))
1537 		return;
1538 
1539 	now = current_fs_time(inode->i_sb);
1540 	if (!timespec_equal(&inode->i_mtime, &now))
1541 		sync_it = S_MTIME;
1542 
1543 	if (!timespec_equal(&inode->i_ctime, &now))
1544 		sync_it |= S_CTIME;
1545 
1546 	if (IS_I_VERSION(inode))
1547 		sync_it |= S_VERSION;
1548 
1549 	if (!sync_it)
1550 		return;
1551 
1552 	/* Finally allowed to write? Takes lock. */
1553 	if (mnt_want_write_file(file))
1554 		return;
1555 
1556 	/* Only change inode inside the lock region */
1557 	if (sync_it & S_VERSION)
1558 		inode_inc_iversion(inode);
1559 	if (sync_it & S_CTIME)
1560 		inode->i_ctime = now;
1561 	if (sync_it & S_MTIME)
1562 		inode->i_mtime = now;
1563 	mark_inode_dirty_sync(inode);
1564 	mnt_drop_write(file->f_path.mnt);
1565 }
1566 EXPORT_SYMBOL(file_update_time);
1567 
1568 int inode_needs_sync(struct inode *inode)
1569 {
1570 	if (IS_SYNC(inode))
1571 		return 1;
1572 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1573 		return 1;
1574 	return 0;
1575 }
1576 EXPORT_SYMBOL(inode_needs_sync);
1577 
1578 int inode_wait(void *word)
1579 {
1580 	schedule();
1581 	return 0;
1582 }
1583 EXPORT_SYMBOL(inode_wait);
1584 
1585 /*
1586  * If we try to find an inode in the inode hash while it is being
1587  * deleted, we have to wait until the filesystem completes its
1588  * deletion before reporting that it isn't found.  This function waits
1589  * until the deletion _might_ have completed.  Callers are responsible
1590  * to recheck inode state.
1591  *
1592  * It doesn't matter if I_NEW is not set initially, a call to
1593  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1594  * will DTRT.
1595  */
1596 static void __wait_on_freeing_inode(struct inode *inode)
1597 {
1598 	wait_queue_head_t *wq;
1599 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1600 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1601 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1602 	spin_unlock(&inode->i_lock);
1603 	spin_unlock(&inode_hash_lock);
1604 	schedule();
1605 	finish_wait(wq, &wait.wait);
1606 	spin_lock(&inode_hash_lock);
1607 }
1608 
1609 static __initdata unsigned long ihash_entries;
1610 static int __init set_ihash_entries(char *str)
1611 {
1612 	if (!str)
1613 		return 0;
1614 	ihash_entries = simple_strtoul(str, &str, 0);
1615 	return 1;
1616 }
1617 __setup("ihash_entries=", set_ihash_entries);
1618 
1619 /*
1620  * Initialize the waitqueues and inode hash table.
1621  */
1622 void __init inode_init_early(void)
1623 {
1624 	int loop;
1625 
1626 	/* If hashes are distributed across NUMA nodes, defer
1627 	 * hash allocation until vmalloc space is available.
1628 	 */
1629 	if (hashdist)
1630 		return;
1631 
1632 	inode_hashtable =
1633 		alloc_large_system_hash("Inode-cache",
1634 					sizeof(struct hlist_head),
1635 					ihash_entries,
1636 					14,
1637 					HASH_EARLY,
1638 					&i_hash_shift,
1639 					&i_hash_mask,
1640 					0);
1641 
1642 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1643 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1644 }
1645 
1646 void __init inode_init(void)
1647 {
1648 	int loop;
1649 
1650 	/* inode slab cache */
1651 	inode_cachep = kmem_cache_create("inode_cache",
1652 					 sizeof(struct inode),
1653 					 0,
1654 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1655 					 SLAB_MEM_SPREAD),
1656 					 init_once);
1657 	register_shrinker(&icache_shrinker);
1658 
1659 	/* Hash may have been set up in inode_init_early */
1660 	if (!hashdist)
1661 		return;
1662 
1663 	inode_hashtable =
1664 		alloc_large_system_hash("Inode-cache",
1665 					sizeof(struct hlist_head),
1666 					ihash_entries,
1667 					14,
1668 					0,
1669 					&i_hash_shift,
1670 					&i_hash_mask,
1671 					0);
1672 
1673 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1674 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1675 }
1676 
1677 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1678 {
1679 	inode->i_mode = mode;
1680 	if (S_ISCHR(mode)) {
1681 		inode->i_fop = &def_chr_fops;
1682 		inode->i_rdev = rdev;
1683 	} else if (S_ISBLK(mode)) {
1684 		inode->i_fop = &def_blk_fops;
1685 		inode->i_rdev = rdev;
1686 	} else if (S_ISFIFO(mode))
1687 		inode->i_fop = &def_fifo_fops;
1688 	else if (S_ISSOCK(mode))
1689 		inode->i_fop = &bad_sock_fops;
1690 	else
1691 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1692 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1693 				  inode->i_ino);
1694 }
1695 EXPORT_SYMBOL(init_special_inode);
1696 
1697 /**
1698  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1699  * @inode: New inode
1700  * @dir: Directory inode
1701  * @mode: mode of the new inode
1702  */
1703 void inode_init_owner(struct inode *inode, const struct inode *dir,
1704 			mode_t mode)
1705 {
1706 	inode->i_uid = current_fsuid();
1707 	if (dir && dir->i_mode & S_ISGID) {
1708 		inode->i_gid = dir->i_gid;
1709 		if (S_ISDIR(mode))
1710 			mode |= S_ISGID;
1711 	} else
1712 		inode->i_gid = current_fsgid();
1713 	inode->i_mode = mode;
1714 }
1715 EXPORT_SYMBOL(inode_init_owner);
1716 
1717 /**
1718  * inode_owner_or_capable - check current task permissions to inode
1719  * @inode: inode being checked
1720  *
1721  * Return true if current either has CAP_FOWNER to the inode, or
1722  * owns the file.
1723  */
1724 bool inode_owner_or_capable(const struct inode *inode)
1725 {
1726 	struct user_namespace *ns = inode_userns(inode);
1727 
1728 	if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1729 		return true;
1730 	if (ns_capable(ns, CAP_FOWNER))
1731 		return true;
1732 	return false;
1733 }
1734 EXPORT_SYMBOL(inode_owner_or_capable);
1735