1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/sched/mm.h> 42 43 static const struct super_operations hugetlbfs_ops; 44 static const struct address_space_operations hugetlbfs_aops; 45 const struct file_operations hugetlbfs_file_operations; 46 static const struct inode_operations hugetlbfs_dir_inode_operations; 47 static const struct inode_operations hugetlbfs_inode_operations; 48 49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 50 51 struct hugetlbfs_fs_context { 52 struct hstate *hstate; 53 unsigned long long max_size_opt; 54 unsigned long long min_size_opt; 55 long max_hpages; 56 long nr_inodes; 57 long min_hpages; 58 enum hugetlbfs_size_type max_val_type; 59 enum hugetlbfs_size_type min_val_type; 60 kuid_t uid; 61 kgid_t gid; 62 umode_t mode; 63 }; 64 65 int sysctl_hugetlb_shm_group; 66 67 enum hugetlb_param { 68 Opt_gid, 69 Opt_min_size, 70 Opt_mode, 71 Opt_nr_inodes, 72 Opt_pagesize, 73 Opt_size, 74 Opt_uid, 75 }; 76 77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 78 fsparam_u32 ("gid", Opt_gid), 79 fsparam_string("min_size", Opt_min_size), 80 fsparam_u32 ("mode", Opt_mode), 81 fsparam_string("nr_inodes", Opt_nr_inodes), 82 fsparam_string("pagesize", Opt_pagesize), 83 fsparam_string("size", Opt_size), 84 fsparam_u32 ("uid", Opt_uid), 85 {} 86 }; 87 88 #ifdef CONFIG_NUMA 89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91 { 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 mpol_cond_put(vma->vm_policy); 99 } 100 #else 101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103 { 104 } 105 106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107 { 108 } 109 #endif 110 111 static void huge_pagevec_release(struct pagevec *pvec) 112 { 113 int i; 114 115 for (i = 0; i < pagevec_count(pvec); ++i) 116 put_page(pvec->pages[i]); 117 118 pagevec_reinit(pvec); 119 } 120 121 /* 122 * Mask used when checking the page offset value passed in via system 123 * calls. This value will be converted to a loff_t which is signed. 124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 125 * value. The extra bit (- 1 in the shift value) is to take the sign 126 * bit into account. 127 */ 128 #define PGOFF_LOFFT_MAX \ 129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 130 131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 132 { 133 struct inode *inode = file_inode(file); 134 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 135 loff_t len, vma_len; 136 int ret; 137 struct hstate *h = hstate_file(file); 138 139 /* 140 * vma address alignment (but not the pgoff alignment) has 141 * already been checked by prepare_hugepage_range. If you add 142 * any error returns here, do so after setting VM_HUGETLB, so 143 * is_vm_hugetlb_page tests below unmap_region go the right 144 * way when do_mmap unwinds (may be important on powerpc 145 * and ia64). 146 */ 147 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 148 vma->vm_ops = &hugetlb_vm_ops; 149 150 ret = seal_check_future_write(info->seals, vma); 151 if (ret) 152 return ret; 153 154 /* 155 * page based offset in vm_pgoff could be sufficiently large to 156 * overflow a loff_t when converted to byte offset. This can 157 * only happen on architectures where sizeof(loff_t) == 158 * sizeof(unsigned long). So, only check in those instances. 159 */ 160 if (sizeof(unsigned long) == sizeof(loff_t)) { 161 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 162 return -EINVAL; 163 } 164 165 /* must be huge page aligned */ 166 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 167 return -EINVAL; 168 169 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 170 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 171 /* check for overflow */ 172 if (len < vma_len) 173 return -EINVAL; 174 175 inode_lock(inode); 176 file_accessed(file); 177 178 ret = -ENOMEM; 179 if (!hugetlb_reserve_pages(inode, 180 vma->vm_pgoff >> huge_page_order(h), 181 len >> huge_page_shift(h), vma, 182 vma->vm_flags)) 183 goto out; 184 185 ret = 0; 186 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 187 i_size_write(inode, len); 188 out: 189 inode_unlock(inode); 190 191 return ret; 192 } 193 194 /* 195 * Called under mmap_write_lock(mm). 196 */ 197 198 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 199 static unsigned long 200 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 201 unsigned long len, unsigned long pgoff, unsigned long flags) 202 { 203 struct hstate *h = hstate_file(file); 204 struct vm_unmapped_area_info info; 205 206 info.flags = 0; 207 info.length = len; 208 info.low_limit = current->mm->mmap_base; 209 info.high_limit = TASK_SIZE; 210 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 211 info.align_offset = 0; 212 return vm_unmapped_area(&info); 213 } 214 215 static unsigned long 216 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 217 unsigned long len, unsigned long pgoff, unsigned long flags) 218 { 219 struct hstate *h = hstate_file(file); 220 struct vm_unmapped_area_info info; 221 222 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 223 info.length = len; 224 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 225 info.high_limit = current->mm->mmap_base; 226 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 227 info.align_offset = 0; 228 addr = vm_unmapped_area(&info); 229 230 /* 231 * A failed mmap() very likely causes application failure, 232 * so fall back to the bottom-up function here. This scenario 233 * can happen with large stack limits and large mmap() 234 * allocations. 235 */ 236 if (unlikely(offset_in_page(addr))) { 237 VM_BUG_ON(addr != -ENOMEM); 238 info.flags = 0; 239 info.low_limit = current->mm->mmap_base; 240 info.high_limit = TASK_SIZE; 241 addr = vm_unmapped_area(&info); 242 } 243 244 return addr; 245 } 246 247 static unsigned long 248 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 249 unsigned long len, unsigned long pgoff, unsigned long flags) 250 { 251 struct mm_struct *mm = current->mm; 252 struct vm_area_struct *vma; 253 struct hstate *h = hstate_file(file); 254 255 if (len & ~huge_page_mask(h)) 256 return -EINVAL; 257 if (len > TASK_SIZE) 258 return -ENOMEM; 259 260 if (flags & MAP_FIXED) { 261 if (prepare_hugepage_range(file, addr, len)) 262 return -EINVAL; 263 return addr; 264 } 265 266 if (addr) { 267 addr = ALIGN(addr, huge_page_size(h)); 268 vma = find_vma(mm, addr); 269 if (TASK_SIZE - len >= addr && 270 (!vma || addr + len <= vm_start_gap(vma))) 271 return addr; 272 } 273 274 /* 275 * Use mm->get_unmapped_area value as a hint to use topdown routine. 276 * If architectures have special needs, they should define their own 277 * version of hugetlb_get_unmapped_area. 278 */ 279 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 280 return hugetlb_get_unmapped_area_topdown(file, addr, len, 281 pgoff, flags); 282 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 283 pgoff, flags); 284 } 285 #endif 286 287 static size_t 288 hugetlbfs_read_actor(struct page *page, unsigned long offset, 289 struct iov_iter *to, unsigned long size) 290 { 291 size_t copied = 0; 292 int i, chunksize; 293 294 /* Find which 4k chunk and offset with in that chunk */ 295 i = offset >> PAGE_SHIFT; 296 offset = offset & ~PAGE_MASK; 297 298 while (size) { 299 size_t n; 300 chunksize = PAGE_SIZE; 301 if (offset) 302 chunksize -= offset; 303 if (chunksize > size) 304 chunksize = size; 305 n = copy_page_to_iter(&page[i], offset, chunksize, to); 306 copied += n; 307 if (n != chunksize) 308 return copied; 309 offset = 0; 310 size -= chunksize; 311 i++; 312 } 313 return copied; 314 } 315 316 /* 317 * Support for read() - Find the page attached to f_mapping and copy out the 318 * data. Its *very* similar to generic_file_buffered_read(), we can't use that 319 * since it has PAGE_SIZE assumptions. 320 */ 321 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 322 { 323 struct file *file = iocb->ki_filp; 324 struct hstate *h = hstate_file(file); 325 struct address_space *mapping = file->f_mapping; 326 struct inode *inode = mapping->host; 327 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 328 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 329 unsigned long end_index; 330 loff_t isize; 331 ssize_t retval = 0; 332 333 while (iov_iter_count(to)) { 334 struct page *page; 335 size_t nr, copied; 336 337 /* nr is the maximum number of bytes to copy from this page */ 338 nr = huge_page_size(h); 339 isize = i_size_read(inode); 340 if (!isize) 341 break; 342 end_index = (isize - 1) >> huge_page_shift(h); 343 if (index > end_index) 344 break; 345 if (index == end_index) { 346 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 347 if (nr <= offset) 348 break; 349 } 350 nr = nr - offset; 351 352 /* Find the page */ 353 page = find_lock_page(mapping, index); 354 if (unlikely(page == NULL)) { 355 /* 356 * We have a HOLE, zero out the user-buffer for the 357 * length of the hole or request. 358 */ 359 copied = iov_iter_zero(nr, to); 360 } else { 361 unlock_page(page); 362 363 /* 364 * We have the page, copy it to user space buffer. 365 */ 366 copied = hugetlbfs_read_actor(page, offset, to, nr); 367 put_page(page); 368 } 369 offset += copied; 370 retval += copied; 371 if (copied != nr && iov_iter_count(to)) { 372 if (!retval) 373 retval = -EFAULT; 374 break; 375 } 376 index += offset >> huge_page_shift(h); 377 offset &= ~huge_page_mask(h); 378 } 379 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 380 return retval; 381 } 382 383 static int hugetlbfs_write_begin(struct file *file, 384 struct address_space *mapping, 385 loff_t pos, unsigned len, unsigned flags, 386 struct page **pagep, void **fsdata) 387 { 388 return -EINVAL; 389 } 390 391 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 392 loff_t pos, unsigned len, unsigned copied, 393 struct page *page, void *fsdata) 394 { 395 BUG(); 396 return -EINVAL; 397 } 398 399 static void remove_huge_page(struct page *page) 400 { 401 ClearPageDirty(page); 402 ClearPageUptodate(page); 403 delete_from_page_cache(page); 404 } 405 406 static void 407 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 408 { 409 struct vm_area_struct *vma; 410 411 /* 412 * end == 0 indicates that the entire range after 413 * start should be unmapped. 414 */ 415 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 416 unsigned long v_offset; 417 unsigned long v_end; 418 419 /* 420 * Can the expression below overflow on 32-bit arches? 421 * No, because the interval tree returns us only those vmas 422 * which overlap the truncated area starting at pgoff, 423 * and no vma on a 32-bit arch can span beyond the 4GB. 424 */ 425 if (vma->vm_pgoff < start) 426 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 427 else 428 v_offset = 0; 429 430 if (!end) 431 v_end = vma->vm_end; 432 else { 433 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 434 + vma->vm_start; 435 if (v_end > vma->vm_end) 436 v_end = vma->vm_end; 437 } 438 439 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 440 NULL); 441 } 442 } 443 444 /* 445 * remove_inode_hugepages handles two distinct cases: truncation and hole 446 * punch. There are subtle differences in operation for each case. 447 * 448 * truncation is indicated by end of range being LLONG_MAX 449 * In this case, we first scan the range and release found pages. 450 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 451 * maps and global counts. Page faults can not race with truncation 452 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents 453 * page faults in the truncated range by checking i_size. i_size is 454 * modified while holding i_mmap_rwsem. 455 * hole punch is indicated if end is not LLONG_MAX 456 * In the hole punch case we scan the range and release found pages. 457 * Only when releasing a page is the associated region/reserve map 458 * deleted. The region/reserve map for ranges without associated 459 * pages are not modified. Page faults can race with hole punch. 460 * This is indicated if we find a mapped page. 461 * Note: If the passed end of range value is beyond the end of file, but 462 * not LLONG_MAX this routine still performs a hole punch operation. 463 */ 464 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 465 loff_t lend) 466 { 467 struct hstate *h = hstate_inode(inode); 468 struct address_space *mapping = &inode->i_data; 469 const pgoff_t start = lstart >> huge_page_shift(h); 470 const pgoff_t end = lend >> huge_page_shift(h); 471 struct pagevec pvec; 472 pgoff_t next, index; 473 int i, freed = 0; 474 bool truncate_op = (lend == LLONG_MAX); 475 476 pagevec_init(&pvec); 477 next = start; 478 while (next < end) { 479 /* 480 * When no more pages are found, we are done. 481 */ 482 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 483 break; 484 485 for (i = 0; i < pagevec_count(&pvec); ++i) { 486 struct page *page = pvec.pages[i]; 487 u32 hash = 0; 488 489 index = page->index; 490 if (!truncate_op) { 491 /* 492 * Only need to hold the fault mutex in the 493 * hole punch case. This prevents races with 494 * page faults. Races are not possible in the 495 * case of truncation. 496 */ 497 hash = hugetlb_fault_mutex_hash(mapping, index); 498 mutex_lock(&hugetlb_fault_mutex_table[hash]); 499 } 500 501 /* 502 * If page is mapped, it was faulted in after being 503 * unmapped in caller. Unmap (again) now after taking 504 * the fault mutex. The mutex will prevent faults 505 * until we finish removing the page. 506 * 507 * This race can only happen in the hole punch case. 508 * Getting here in a truncate operation is a bug. 509 */ 510 if (unlikely(page_mapped(page))) { 511 BUG_ON(truncate_op); 512 513 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 514 i_mmap_lock_write(mapping); 515 mutex_lock(&hugetlb_fault_mutex_table[hash]); 516 hugetlb_vmdelete_list(&mapping->i_mmap, 517 index * pages_per_huge_page(h), 518 (index + 1) * pages_per_huge_page(h)); 519 i_mmap_unlock_write(mapping); 520 } 521 522 lock_page(page); 523 /* 524 * We must free the huge page and remove from page 525 * cache (remove_huge_page) BEFORE removing the 526 * region/reserve map (hugetlb_unreserve_pages). In 527 * rare out of memory conditions, removal of the 528 * region/reserve map could fail. Correspondingly, 529 * the subpool and global reserve usage count can need 530 * to be adjusted. 531 */ 532 VM_BUG_ON(HPageRestoreReserve(page)); 533 remove_huge_page(page); 534 freed++; 535 if (!truncate_op) { 536 if (unlikely(hugetlb_unreserve_pages(inode, 537 index, index + 1, 1))) 538 hugetlb_fix_reserve_counts(inode); 539 } 540 541 unlock_page(page); 542 if (!truncate_op) 543 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 544 } 545 huge_pagevec_release(&pvec); 546 cond_resched(); 547 } 548 549 if (truncate_op) 550 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 551 } 552 553 static void hugetlbfs_evict_inode(struct inode *inode) 554 { 555 struct resv_map *resv_map; 556 557 remove_inode_hugepages(inode, 0, LLONG_MAX); 558 559 /* 560 * Get the resv_map from the address space embedded in the inode. 561 * This is the address space which points to any resv_map allocated 562 * at inode creation time. If this is a device special inode, 563 * i_mapping may not point to the original address space. 564 */ 565 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 566 /* Only regular and link inodes have associated reserve maps */ 567 if (resv_map) 568 resv_map_release(&resv_map->refs); 569 clear_inode(inode); 570 } 571 572 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 573 { 574 pgoff_t pgoff; 575 struct address_space *mapping = inode->i_mapping; 576 struct hstate *h = hstate_inode(inode); 577 578 BUG_ON(offset & ~huge_page_mask(h)); 579 pgoff = offset >> PAGE_SHIFT; 580 581 i_mmap_lock_write(mapping); 582 i_size_write(inode, offset); 583 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 584 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 585 i_mmap_unlock_write(mapping); 586 remove_inode_hugepages(inode, offset, LLONG_MAX); 587 } 588 589 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 590 { 591 struct hstate *h = hstate_inode(inode); 592 loff_t hpage_size = huge_page_size(h); 593 loff_t hole_start, hole_end; 594 595 /* 596 * For hole punch round up the beginning offset of the hole and 597 * round down the end. 598 */ 599 hole_start = round_up(offset, hpage_size); 600 hole_end = round_down(offset + len, hpage_size); 601 602 if (hole_end > hole_start) { 603 struct address_space *mapping = inode->i_mapping; 604 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 605 606 inode_lock(inode); 607 608 /* protected by i_rwsem */ 609 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 610 inode_unlock(inode); 611 return -EPERM; 612 } 613 614 i_mmap_lock_write(mapping); 615 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 616 hugetlb_vmdelete_list(&mapping->i_mmap, 617 hole_start >> PAGE_SHIFT, 618 hole_end >> PAGE_SHIFT); 619 i_mmap_unlock_write(mapping); 620 remove_inode_hugepages(inode, hole_start, hole_end); 621 inode_unlock(inode); 622 } 623 624 return 0; 625 } 626 627 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 628 loff_t len) 629 { 630 struct inode *inode = file_inode(file); 631 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 632 struct address_space *mapping = inode->i_mapping; 633 struct hstate *h = hstate_inode(inode); 634 struct vm_area_struct pseudo_vma; 635 struct mm_struct *mm = current->mm; 636 loff_t hpage_size = huge_page_size(h); 637 unsigned long hpage_shift = huge_page_shift(h); 638 pgoff_t start, index, end; 639 int error; 640 u32 hash; 641 642 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 643 return -EOPNOTSUPP; 644 645 if (mode & FALLOC_FL_PUNCH_HOLE) 646 return hugetlbfs_punch_hole(inode, offset, len); 647 648 /* 649 * Default preallocate case. 650 * For this range, start is rounded down and end is rounded up 651 * as well as being converted to page offsets. 652 */ 653 start = offset >> hpage_shift; 654 end = (offset + len + hpage_size - 1) >> hpage_shift; 655 656 inode_lock(inode); 657 658 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 659 error = inode_newsize_ok(inode, offset + len); 660 if (error) 661 goto out; 662 663 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 664 error = -EPERM; 665 goto out; 666 } 667 668 /* 669 * Initialize a pseudo vma as this is required by the huge page 670 * allocation routines. If NUMA is configured, use page index 671 * as input to create an allocation policy. 672 */ 673 vma_init(&pseudo_vma, mm); 674 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 675 pseudo_vma.vm_file = file; 676 677 for (index = start; index < end; index++) { 678 /* 679 * This is supposed to be the vaddr where the page is being 680 * faulted in, but we have no vaddr here. 681 */ 682 struct page *page; 683 unsigned long addr; 684 685 cond_resched(); 686 687 /* 688 * fallocate(2) manpage permits EINTR; we may have been 689 * interrupted because we are using up too much memory. 690 */ 691 if (signal_pending(current)) { 692 error = -EINTR; 693 break; 694 } 695 696 /* Set numa allocation policy based on index */ 697 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 698 699 /* addr is the offset within the file (zero based) */ 700 addr = index * hpage_size; 701 702 /* 703 * fault mutex taken here, protects against fault path 704 * and hole punch. inode_lock previously taken protects 705 * against truncation. 706 */ 707 hash = hugetlb_fault_mutex_hash(mapping, index); 708 mutex_lock(&hugetlb_fault_mutex_table[hash]); 709 710 /* See if already present in mapping to avoid alloc/free */ 711 page = find_get_page(mapping, index); 712 if (page) { 713 put_page(page); 714 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 715 hugetlb_drop_vma_policy(&pseudo_vma); 716 continue; 717 } 718 719 /* 720 * Allocate page without setting the avoid_reserve argument. 721 * There certainly are no reserves associated with the 722 * pseudo_vma. However, there could be shared mappings with 723 * reserves for the file at the inode level. If we fallocate 724 * pages in these areas, we need to consume the reserves 725 * to keep reservation accounting consistent. 726 */ 727 page = alloc_huge_page(&pseudo_vma, addr, 0); 728 hugetlb_drop_vma_policy(&pseudo_vma); 729 if (IS_ERR(page)) { 730 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 731 error = PTR_ERR(page); 732 goto out; 733 } 734 clear_huge_page(page, addr, pages_per_huge_page(h)); 735 __SetPageUptodate(page); 736 error = huge_add_to_page_cache(page, mapping, index); 737 if (unlikely(error)) { 738 restore_reserve_on_error(h, &pseudo_vma, addr, page); 739 put_page(page); 740 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 741 goto out; 742 } 743 744 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 745 746 SetHPageMigratable(page); 747 /* 748 * unlock_page because locked by add_to_page_cache() 749 * put_page() due to reference from alloc_huge_page() 750 */ 751 unlock_page(page); 752 put_page(page); 753 } 754 755 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 756 i_size_write(inode, offset + len); 757 inode->i_ctime = current_time(inode); 758 out: 759 inode_unlock(inode); 760 return error; 761 } 762 763 static int hugetlbfs_setattr(struct user_namespace *mnt_userns, 764 struct dentry *dentry, struct iattr *attr) 765 { 766 struct inode *inode = d_inode(dentry); 767 struct hstate *h = hstate_inode(inode); 768 int error; 769 unsigned int ia_valid = attr->ia_valid; 770 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 771 772 error = setattr_prepare(&init_user_ns, dentry, attr); 773 if (error) 774 return error; 775 776 if (ia_valid & ATTR_SIZE) { 777 loff_t oldsize = inode->i_size; 778 loff_t newsize = attr->ia_size; 779 780 if (newsize & ~huge_page_mask(h)) 781 return -EINVAL; 782 /* protected by i_rwsem */ 783 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 784 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 785 return -EPERM; 786 hugetlb_vmtruncate(inode, newsize); 787 } 788 789 setattr_copy(&init_user_ns, inode, attr); 790 mark_inode_dirty(inode); 791 return 0; 792 } 793 794 static struct inode *hugetlbfs_get_root(struct super_block *sb, 795 struct hugetlbfs_fs_context *ctx) 796 { 797 struct inode *inode; 798 799 inode = new_inode(sb); 800 if (inode) { 801 inode->i_ino = get_next_ino(); 802 inode->i_mode = S_IFDIR | ctx->mode; 803 inode->i_uid = ctx->uid; 804 inode->i_gid = ctx->gid; 805 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 806 inode->i_op = &hugetlbfs_dir_inode_operations; 807 inode->i_fop = &simple_dir_operations; 808 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 809 inc_nlink(inode); 810 lockdep_annotate_inode_mutex_key(inode); 811 } 812 return inode; 813 } 814 815 /* 816 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 817 * be taken from reclaim -- unlike regular filesystems. This needs an 818 * annotation because huge_pmd_share() does an allocation under hugetlb's 819 * i_mmap_rwsem. 820 */ 821 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 822 823 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 824 struct inode *dir, 825 umode_t mode, dev_t dev) 826 { 827 struct inode *inode; 828 struct resv_map *resv_map = NULL; 829 830 /* 831 * Reserve maps are only needed for inodes that can have associated 832 * page allocations. 833 */ 834 if (S_ISREG(mode) || S_ISLNK(mode)) { 835 resv_map = resv_map_alloc(); 836 if (!resv_map) 837 return NULL; 838 } 839 840 inode = new_inode(sb); 841 if (inode) { 842 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 843 844 inode->i_ino = get_next_ino(); 845 inode_init_owner(&init_user_ns, inode, dir, mode); 846 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 847 &hugetlbfs_i_mmap_rwsem_key); 848 inode->i_mapping->a_ops = &hugetlbfs_aops; 849 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 850 inode->i_mapping->private_data = resv_map; 851 info->seals = F_SEAL_SEAL; 852 switch (mode & S_IFMT) { 853 default: 854 init_special_inode(inode, mode, dev); 855 break; 856 case S_IFREG: 857 inode->i_op = &hugetlbfs_inode_operations; 858 inode->i_fop = &hugetlbfs_file_operations; 859 break; 860 case S_IFDIR: 861 inode->i_op = &hugetlbfs_dir_inode_operations; 862 inode->i_fop = &simple_dir_operations; 863 864 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 865 inc_nlink(inode); 866 break; 867 case S_IFLNK: 868 inode->i_op = &page_symlink_inode_operations; 869 inode_nohighmem(inode); 870 break; 871 } 872 lockdep_annotate_inode_mutex_key(inode); 873 } else { 874 if (resv_map) 875 kref_put(&resv_map->refs, resv_map_release); 876 } 877 878 return inode; 879 } 880 881 /* 882 * File creation. Allocate an inode, and we're done.. 883 */ 884 static int do_hugetlbfs_mknod(struct inode *dir, 885 struct dentry *dentry, 886 umode_t mode, 887 dev_t dev, 888 bool tmpfile) 889 { 890 struct inode *inode; 891 int error = -ENOSPC; 892 893 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 894 if (inode) { 895 dir->i_ctime = dir->i_mtime = current_time(dir); 896 if (tmpfile) { 897 d_tmpfile(dentry, inode); 898 } else { 899 d_instantiate(dentry, inode); 900 dget(dentry);/* Extra count - pin the dentry in core */ 901 } 902 error = 0; 903 } 904 return error; 905 } 906 907 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 908 struct dentry *dentry, umode_t mode, dev_t dev) 909 { 910 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 911 } 912 913 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 914 struct dentry *dentry, umode_t mode) 915 { 916 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry, 917 mode | S_IFDIR, 0); 918 if (!retval) 919 inc_nlink(dir); 920 return retval; 921 } 922 923 static int hugetlbfs_create(struct user_namespace *mnt_userns, 924 struct inode *dir, struct dentry *dentry, 925 umode_t mode, bool excl) 926 { 927 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 928 } 929 930 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns, 931 struct inode *dir, struct dentry *dentry, 932 umode_t mode) 933 { 934 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 935 } 936 937 static int hugetlbfs_symlink(struct user_namespace *mnt_userns, 938 struct inode *dir, struct dentry *dentry, 939 const char *symname) 940 { 941 struct inode *inode; 942 int error = -ENOSPC; 943 944 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 945 if (inode) { 946 int l = strlen(symname)+1; 947 error = page_symlink(inode, symname, l); 948 if (!error) { 949 d_instantiate(dentry, inode); 950 dget(dentry); 951 } else 952 iput(inode); 953 } 954 dir->i_ctime = dir->i_mtime = current_time(dir); 955 956 return error; 957 } 958 959 static int hugetlbfs_migrate_page(struct address_space *mapping, 960 struct page *newpage, struct page *page, 961 enum migrate_mode mode) 962 { 963 int rc; 964 965 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 966 if (rc != MIGRATEPAGE_SUCCESS) 967 return rc; 968 969 if (hugetlb_page_subpool(page)) { 970 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page)); 971 hugetlb_set_page_subpool(page, NULL); 972 } 973 974 if (mode != MIGRATE_SYNC_NO_COPY) 975 migrate_page_copy(newpage, page); 976 else 977 migrate_page_states(newpage, page); 978 979 return MIGRATEPAGE_SUCCESS; 980 } 981 982 static int hugetlbfs_error_remove_page(struct address_space *mapping, 983 struct page *page) 984 { 985 struct inode *inode = mapping->host; 986 pgoff_t index = page->index; 987 988 remove_huge_page(page); 989 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 990 hugetlb_fix_reserve_counts(inode); 991 992 return 0; 993 } 994 995 /* 996 * Display the mount options in /proc/mounts. 997 */ 998 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 999 { 1000 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1001 struct hugepage_subpool *spool = sbinfo->spool; 1002 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1003 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1004 char mod; 1005 1006 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1007 seq_printf(m, ",uid=%u", 1008 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1009 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1010 seq_printf(m, ",gid=%u", 1011 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1012 if (sbinfo->mode != 0755) 1013 seq_printf(m, ",mode=%o", sbinfo->mode); 1014 if (sbinfo->max_inodes != -1) 1015 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1016 1017 hpage_size /= 1024; 1018 mod = 'K'; 1019 if (hpage_size >= 1024) { 1020 hpage_size /= 1024; 1021 mod = 'M'; 1022 } 1023 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1024 if (spool) { 1025 if (spool->max_hpages != -1) 1026 seq_printf(m, ",size=%llu", 1027 (unsigned long long)spool->max_hpages << hpage_shift); 1028 if (spool->min_hpages != -1) 1029 seq_printf(m, ",min_size=%llu", 1030 (unsigned long long)spool->min_hpages << hpage_shift); 1031 } 1032 return 0; 1033 } 1034 1035 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1036 { 1037 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1038 struct hstate *h = hstate_inode(d_inode(dentry)); 1039 1040 buf->f_type = HUGETLBFS_MAGIC; 1041 buf->f_bsize = huge_page_size(h); 1042 if (sbinfo) { 1043 spin_lock(&sbinfo->stat_lock); 1044 /* If no limits set, just report 0 for max/free/used 1045 * blocks, like simple_statfs() */ 1046 if (sbinfo->spool) { 1047 long free_pages; 1048 1049 spin_lock(&sbinfo->spool->lock); 1050 buf->f_blocks = sbinfo->spool->max_hpages; 1051 free_pages = sbinfo->spool->max_hpages 1052 - sbinfo->spool->used_hpages; 1053 buf->f_bavail = buf->f_bfree = free_pages; 1054 spin_unlock(&sbinfo->spool->lock); 1055 buf->f_files = sbinfo->max_inodes; 1056 buf->f_ffree = sbinfo->free_inodes; 1057 } 1058 spin_unlock(&sbinfo->stat_lock); 1059 } 1060 buf->f_namelen = NAME_MAX; 1061 return 0; 1062 } 1063 1064 static void hugetlbfs_put_super(struct super_block *sb) 1065 { 1066 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1067 1068 if (sbi) { 1069 sb->s_fs_info = NULL; 1070 1071 if (sbi->spool) 1072 hugepage_put_subpool(sbi->spool); 1073 1074 kfree(sbi); 1075 } 1076 } 1077 1078 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1079 { 1080 if (sbinfo->free_inodes >= 0) { 1081 spin_lock(&sbinfo->stat_lock); 1082 if (unlikely(!sbinfo->free_inodes)) { 1083 spin_unlock(&sbinfo->stat_lock); 1084 return 0; 1085 } 1086 sbinfo->free_inodes--; 1087 spin_unlock(&sbinfo->stat_lock); 1088 } 1089 1090 return 1; 1091 } 1092 1093 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1094 { 1095 if (sbinfo->free_inodes >= 0) { 1096 spin_lock(&sbinfo->stat_lock); 1097 sbinfo->free_inodes++; 1098 spin_unlock(&sbinfo->stat_lock); 1099 } 1100 } 1101 1102 1103 static struct kmem_cache *hugetlbfs_inode_cachep; 1104 1105 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1106 { 1107 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1108 struct hugetlbfs_inode_info *p; 1109 1110 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1111 return NULL; 1112 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 1113 if (unlikely(!p)) { 1114 hugetlbfs_inc_free_inodes(sbinfo); 1115 return NULL; 1116 } 1117 1118 /* 1119 * Any time after allocation, hugetlbfs_destroy_inode can be called 1120 * for the inode. mpol_free_shared_policy is unconditionally called 1121 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1122 * in case of a quick call to destroy. 1123 * 1124 * Note that the policy is initialized even if we are creating a 1125 * private inode. This simplifies hugetlbfs_destroy_inode. 1126 */ 1127 mpol_shared_policy_init(&p->policy, NULL); 1128 1129 return &p->vfs_inode; 1130 } 1131 1132 static void hugetlbfs_free_inode(struct inode *inode) 1133 { 1134 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1135 } 1136 1137 static void hugetlbfs_destroy_inode(struct inode *inode) 1138 { 1139 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1140 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1141 } 1142 1143 static const struct address_space_operations hugetlbfs_aops = { 1144 .write_begin = hugetlbfs_write_begin, 1145 .write_end = hugetlbfs_write_end, 1146 .set_page_dirty = __set_page_dirty_no_writeback, 1147 .migratepage = hugetlbfs_migrate_page, 1148 .error_remove_page = hugetlbfs_error_remove_page, 1149 }; 1150 1151 1152 static void init_once(void *foo) 1153 { 1154 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1155 1156 inode_init_once(&ei->vfs_inode); 1157 } 1158 1159 const struct file_operations hugetlbfs_file_operations = { 1160 .read_iter = hugetlbfs_read_iter, 1161 .mmap = hugetlbfs_file_mmap, 1162 .fsync = noop_fsync, 1163 .get_unmapped_area = hugetlb_get_unmapped_area, 1164 .llseek = default_llseek, 1165 .fallocate = hugetlbfs_fallocate, 1166 }; 1167 1168 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1169 .create = hugetlbfs_create, 1170 .lookup = simple_lookup, 1171 .link = simple_link, 1172 .unlink = simple_unlink, 1173 .symlink = hugetlbfs_symlink, 1174 .mkdir = hugetlbfs_mkdir, 1175 .rmdir = simple_rmdir, 1176 .mknod = hugetlbfs_mknod, 1177 .rename = simple_rename, 1178 .setattr = hugetlbfs_setattr, 1179 .tmpfile = hugetlbfs_tmpfile, 1180 }; 1181 1182 static const struct inode_operations hugetlbfs_inode_operations = { 1183 .setattr = hugetlbfs_setattr, 1184 }; 1185 1186 static const struct super_operations hugetlbfs_ops = { 1187 .alloc_inode = hugetlbfs_alloc_inode, 1188 .free_inode = hugetlbfs_free_inode, 1189 .destroy_inode = hugetlbfs_destroy_inode, 1190 .evict_inode = hugetlbfs_evict_inode, 1191 .statfs = hugetlbfs_statfs, 1192 .put_super = hugetlbfs_put_super, 1193 .show_options = hugetlbfs_show_options, 1194 }; 1195 1196 /* 1197 * Convert size option passed from command line to number of huge pages 1198 * in the pool specified by hstate. Size option could be in bytes 1199 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1200 */ 1201 static long 1202 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1203 enum hugetlbfs_size_type val_type) 1204 { 1205 if (val_type == NO_SIZE) 1206 return -1; 1207 1208 if (val_type == SIZE_PERCENT) { 1209 size_opt <<= huge_page_shift(h); 1210 size_opt *= h->max_huge_pages; 1211 do_div(size_opt, 100); 1212 } 1213 1214 size_opt >>= huge_page_shift(h); 1215 return size_opt; 1216 } 1217 1218 /* 1219 * Parse one mount parameter. 1220 */ 1221 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1222 { 1223 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1224 struct fs_parse_result result; 1225 char *rest; 1226 unsigned long ps; 1227 int opt; 1228 1229 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1230 if (opt < 0) 1231 return opt; 1232 1233 switch (opt) { 1234 case Opt_uid: 1235 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1236 if (!uid_valid(ctx->uid)) 1237 goto bad_val; 1238 return 0; 1239 1240 case Opt_gid: 1241 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1242 if (!gid_valid(ctx->gid)) 1243 goto bad_val; 1244 return 0; 1245 1246 case Opt_mode: 1247 ctx->mode = result.uint_32 & 01777U; 1248 return 0; 1249 1250 case Opt_size: 1251 /* memparse() will accept a K/M/G without a digit */ 1252 if (!isdigit(param->string[0])) 1253 goto bad_val; 1254 ctx->max_size_opt = memparse(param->string, &rest); 1255 ctx->max_val_type = SIZE_STD; 1256 if (*rest == '%') 1257 ctx->max_val_type = SIZE_PERCENT; 1258 return 0; 1259 1260 case Opt_nr_inodes: 1261 /* memparse() will accept a K/M/G without a digit */ 1262 if (!isdigit(param->string[0])) 1263 goto bad_val; 1264 ctx->nr_inodes = memparse(param->string, &rest); 1265 return 0; 1266 1267 case Opt_pagesize: 1268 ps = memparse(param->string, &rest); 1269 ctx->hstate = size_to_hstate(ps); 1270 if (!ctx->hstate) { 1271 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1272 return -EINVAL; 1273 } 1274 return 0; 1275 1276 case Opt_min_size: 1277 /* memparse() will accept a K/M/G without a digit */ 1278 if (!isdigit(param->string[0])) 1279 goto bad_val; 1280 ctx->min_size_opt = memparse(param->string, &rest); 1281 ctx->min_val_type = SIZE_STD; 1282 if (*rest == '%') 1283 ctx->min_val_type = SIZE_PERCENT; 1284 return 0; 1285 1286 default: 1287 return -EINVAL; 1288 } 1289 1290 bad_val: 1291 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1292 param->string, param->key); 1293 } 1294 1295 /* 1296 * Validate the parsed options. 1297 */ 1298 static int hugetlbfs_validate(struct fs_context *fc) 1299 { 1300 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1301 1302 /* 1303 * Use huge page pool size (in hstate) to convert the size 1304 * options to number of huge pages. If NO_SIZE, -1 is returned. 1305 */ 1306 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1307 ctx->max_size_opt, 1308 ctx->max_val_type); 1309 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1310 ctx->min_size_opt, 1311 ctx->min_val_type); 1312 1313 /* 1314 * If max_size was specified, then min_size must be smaller 1315 */ 1316 if (ctx->max_val_type > NO_SIZE && 1317 ctx->min_hpages > ctx->max_hpages) { 1318 pr_err("Minimum size can not be greater than maximum size\n"); 1319 return -EINVAL; 1320 } 1321 1322 return 0; 1323 } 1324 1325 static int 1326 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1327 { 1328 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1329 struct hugetlbfs_sb_info *sbinfo; 1330 1331 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1332 if (!sbinfo) 1333 return -ENOMEM; 1334 sb->s_fs_info = sbinfo; 1335 spin_lock_init(&sbinfo->stat_lock); 1336 sbinfo->hstate = ctx->hstate; 1337 sbinfo->max_inodes = ctx->nr_inodes; 1338 sbinfo->free_inodes = ctx->nr_inodes; 1339 sbinfo->spool = NULL; 1340 sbinfo->uid = ctx->uid; 1341 sbinfo->gid = ctx->gid; 1342 sbinfo->mode = ctx->mode; 1343 1344 /* 1345 * Allocate and initialize subpool if maximum or minimum size is 1346 * specified. Any needed reservations (for minimum size) are taken 1347 * taken when the subpool is created. 1348 */ 1349 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1350 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1351 ctx->max_hpages, 1352 ctx->min_hpages); 1353 if (!sbinfo->spool) 1354 goto out_free; 1355 } 1356 sb->s_maxbytes = MAX_LFS_FILESIZE; 1357 sb->s_blocksize = huge_page_size(ctx->hstate); 1358 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1359 sb->s_magic = HUGETLBFS_MAGIC; 1360 sb->s_op = &hugetlbfs_ops; 1361 sb->s_time_gran = 1; 1362 1363 /* 1364 * Due to the special and limited functionality of hugetlbfs, it does 1365 * not work well as a stacking filesystem. 1366 */ 1367 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1368 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1369 if (!sb->s_root) 1370 goto out_free; 1371 return 0; 1372 out_free: 1373 kfree(sbinfo->spool); 1374 kfree(sbinfo); 1375 return -ENOMEM; 1376 } 1377 1378 static int hugetlbfs_get_tree(struct fs_context *fc) 1379 { 1380 int err = hugetlbfs_validate(fc); 1381 if (err) 1382 return err; 1383 return get_tree_nodev(fc, hugetlbfs_fill_super); 1384 } 1385 1386 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1387 { 1388 kfree(fc->fs_private); 1389 } 1390 1391 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1392 .free = hugetlbfs_fs_context_free, 1393 .parse_param = hugetlbfs_parse_param, 1394 .get_tree = hugetlbfs_get_tree, 1395 }; 1396 1397 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1398 { 1399 struct hugetlbfs_fs_context *ctx; 1400 1401 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1402 if (!ctx) 1403 return -ENOMEM; 1404 1405 ctx->max_hpages = -1; /* No limit on size by default */ 1406 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1407 ctx->uid = current_fsuid(); 1408 ctx->gid = current_fsgid(); 1409 ctx->mode = 0755; 1410 ctx->hstate = &default_hstate; 1411 ctx->min_hpages = -1; /* No default minimum size */ 1412 ctx->max_val_type = NO_SIZE; 1413 ctx->min_val_type = NO_SIZE; 1414 fc->fs_private = ctx; 1415 fc->ops = &hugetlbfs_fs_context_ops; 1416 return 0; 1417 } 1418 1419 static struct file_system_type hugetlbfs_fs_type = { 1420 .name = "hugetlbfs", 1421 .init_fs_context = hugetlbfs_init_fs_context, 1422 .parameters = hugetlb_fs_parameters, 1423 .kill_sb = kill_litter_super, 1424 }; 1425 1426 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1427 1428 static int can_do_hugetlb_shm(void) 1429 { 1430 kgid_t shm_group; 1431 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1432 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1433 } 1434 1435 static int get_hstate_idx(int page_size_log) 1436 { 1437 struct hstate *h = hstate_sizelog(page_size_log); 1438 1439 if (!h) 1440 return -1; 1441 return hstate_index(h); 1442 } 1443 1444 /* 1445 * Note that size should be aligned to proper hugepage size in caller side, 1446 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1447 */ 1448 struct file *hugetlb_file_setup(const char *name, size_t size, 1449 vm_flags_t acctflag, struct ucounts **ucounts, 1450 int creat_flags, int page_size_log) 1451 { 1452 struct inode *inode; 1453 struct vfsmount *mnt; 1454 int hstate_idx; 1455 struct file *file; 1456 1457 hstate_idx = get_hstate_idx(page_size_log); 1458 if (hstate_idx < 0) 1459 return ERR_PTR(-ENODEV); 1460 1461 *ucounts = NULL; 1462 mnt = hugetlbfs_vfsmount[hstate_idx]; 1463 if (!mnt) 1464 return ERR_PTR(-ENOENT); 1465 1466 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1467 *ucounts = current_ucounts(); 1468 if (user_shm_lock(size, *ucounts)) { 1469 task_lock(current); 1470 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1471 current->comm, current->pid); 1472 task_unlock(current); 1473 } else { 1474 *ucounts = NULL; 1475 return ERR_PTR(-EPERM); 1476 } 1477 } 1478 1479 file = ERR_PTR(-ENOSPC); 1480 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1481 if (!inode) 1482 goto out; 1483 if (creat_flags == HUGETLB_SHMFS_INODE) 1484 inode->i_flags |= S_PRIVATE; 1485 1486 inode->i_size = size; 1487 clear_nlink(inode); 1488 1489 if (!hugetlb_reserve_pages(inode, 0, 1490 size >> huge_page_shift(hstate_inode(inode)), NULL, 1491 acctflag)) 1492 file = ERR_PTR(-ENOMEM); 1493 else 1494 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1495 &hugetlbfs_file_operations); 1496 if (!IS_ERR(file)) 1497 return file; 1498 1499 iput(inode); 1500 out: 1501 if (*ucounts) { 1502 user_shm_unlock(size, *ucounts); 1503 *ucounts = NULL; 1504 } 1505 return file; 1506 } 1507 1508 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1509 { 1510 struct fs_context *fc; 1511 struct vfsmount *mnt; 1512 1513 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1514 if (IS_ERR(fc)) { 1515 mnt = ERR_CAST(fc); 1516 } else { 1517 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1518 ctx->hstate = h; 1519 mnt = fc_mount(fc); 1520 put_fs_context(fc); 1521 } 1522 if (IS_ERR(mnt)) 1523 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1524 huge_page_size(h) >> 10); 1525 return mnt; 1526 } 1527 1528 static int __init init_hugetlbfs_fs(void) 1529 { 1530 struct vfsmount *mnt; 1531 struct hstate *h; 1532 int error; 1533 int i; 1534 1535 if (!hugepages_supported()) { 1536 pr_info("disabling because there are no supported hugepage sizes\n"); 1537 return -ENOTSUPP; 1538 } 1539 1540 error = -ENOMEM; 1541 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1542 sizeof(struct hugetlbfs_inode_info), 1543 0, SLAB_ACCOUNT, init_once); 1544 if (hugetlbfs_inode_cachep == NULL) 1545 goto out; 1546 1547 error = register_filesystem(&hugetlbfs_fs_type); 1548 if (error) 1549 goto out_free; 1550 1551 /* default hstate mount is required */ 1552 mnt = mount_one_hugetlbfs(&default_hstate); 1553 if (IS_ERR(mnt)) { 1554 error = PTR_ERR(mnt); 1555 goto out_unreg; 1556 } 1557 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1558 1559 /* other hstates are optional */ 1560 i = 0; 1561 for_each_hstate(h) { 1562 if (i == default_hstate_idx) { 1563 i++; 1564 continue; 1565 } 1566 1567 mnt = mount_one_hugetlbfs(h); 1568 if (IS_ERR(mnt)) 1569 hugetlbfs_vfsmount[i] = NULL; 1570 else 1571 hugetlbfs_vfsmount[i] = mnt; 1572 i++; 1573 } 1574 1575 return 0; 1576 1577 out_unreg: 1578 (void)unregister_filesystem(&hugetlbfs_fs_type); 1579 out_free: 1580 kmem_cache_destroy(hugetlbfs_inode_cachep); 1581 out: 1582 return error; 1583 } 1584 fs_initcall(init_hugetlbfs_fs) 1585