1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved. 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/spinlock.h> 9 #include <linux/compat.h> 10 #include <linux/completion.h> 11 #include <linux/buffer_head.h> 12 #include <linux/pagemap.h> 13 #include <linux/uio.h> 14 #include <linux/blkdev.h> 15 #include <linux/mm.h> 16 #include <linux/mount.h> 17 #include <linux/fs.h> 18 #include <linux/gfs2_ondisk.h> 19 #include <linux/falloc.h> 20 #include <linux/swap.h> 21 #include <linux/crc32.h> 22 #include <linux/writeback.h> 23 #include <linux/uaccess.h> 24 #include <linux/dlm.h> 25 #include <linux/dlm_plock.h> 26 #include <linux/delay.h> 27 #include <linux/backing-dev.h> 28 #include <linux/fileattr.h> 29 30 #include "gfs2.h" 31 #include "incore.h" 32 #include "bmap.h" 33 #include "aops.h" 34 #include "dir.h" 35 #include "glock.h" 36 #include "glops.h" 37 #include "inode.h" 38 #include "log.h" 39 #include "meta_io.h" 40 #include "quota.h" 41 #include "rgrp.h" 42 #include "trans.h" 43 #include "util.h" 44 45 /** 46 * gfs2_llseek - seek to a location in a file 47 * @file: the file 48 * @offset: the offset 49 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END) 50 * 51 * SEEK_END requires the glock for the file because it references the 52 * file's size. 53 * 54 * Returns: The new offset, or errno 55 */ 56 57 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence) 58 { 59 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 60 struct gfs2_holder i_gh; 61 loff_t error; 62 63 switch (whence) { 64 case SEEK_END: 65 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 66 &i_gh); 67 if (!error) { 68 error = generic_file_llseek(file, offset, whence); 69 gfs2_glock_dq_uninit(&i_gh); 70 } 71 break; 72 73 case SEEK_DATA: 74 error = gfs2_seek_data(file, offset); 75 break; 76 77 case SEEK_HOLE: 78 error = gfs2_seek_hole(file, offset); 79 break; 80 81 case SEEK_CUR: 82 case SEEK_SET: 83 /* 84 * These don't reference inode->i_size and don't depend on the 85 * block mapping, so we don't need the glock. 86 */ 87 error = generic_file_llseek(file, offset, whence); 88 break; 89 default: 90 error = -EINVAL; 91 } 92 93 return error; 94 } 95 96 /** 97 * gfs2_readdir - Iterator for a directory 98 * @file: The directory to read from 99 * @ctx: What to feed directory entries to 100 * 101 * Returns: errno 102 */ 103 104 static int gfs2_readdir(struct file *file, struct dir_context *ctx) 105 { 106 struct inode *dir = file->f_mapping->host; 107 struct gfs2_inode *dip = GFS2_I(dir); 108 struct gfs2_holder d_gh; 109 int error; 110 111 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh); 112 if (error) 113 return error; 114 115 error = gfs2_dir_read(dir, ctx, &file->f_ra); 116 117 gfs2_glock_dq_uninit(&d_gh); 118 119 return error; 120 } 121 122 /** 123 * fsflag_gfs2flag 124 * 125 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories, 126 * and to GFS2_DIF_JDATA for non-directories. 127 */ 128 static struct { 129 u32 fsflag; 130 u32 gfsflag; 131 } fsflag_gfs2flag[] = { 132 {FS_SYNC_FL, GFS2_DIF_SYNC}, 133 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE}, 134 {FS_APPEND_FL, GFS2_DIF_APPENDONLY}, 135 {FS_NOATIME_FL, GFS2_DIF_NOATIME}, 136 {FS_INDEX_FL, GFS2_DIF_EXHASH}, 137 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR}, 138 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA}, 139 }; 140 141 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags) 142 { 143 int i; 144 u32 fsflags = 0; 145 146 if (S_ISDIR(inode->i_mode)) 147 gfsflags &= ~GFS2_DIF_JDATA; 148 else 149 gfsflags &= ~GFS2_DIF_INHERIT_JDATA; 150 151 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) 152 if (gfsflags & fsflag_gfs2flag[i].gfsflag) 153 fsflags |= fsflag_gfs2flag[i].fsflag; 154 return fsflags; 155 } 156 157 int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa) 158 { 159 struct inode *inode = d_inode(dentry); 160 struct gfs2_inode *ip = GFS2_I(inode); 161 struct gfs2_holder gh; 162 int error; 163 u32 fsflags; 164 165 if (d_is_special(dentry)) 166 return -ENOTTY; 167 168 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 169 error = gfs2_glock_nq(&gh); 170 if (error) 171 goto out_uninit; 172 173 fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags); 174 175 fileattr_fill_flags(fa, fsflags); 176 177 gfs2_glock_dq(&gh); 178 out_uninit: 179 gfs2_holder_uninit(&gh); 180 return error; 181 } 182 183 void gfs2_set_inode_flags(struct inode *inode) 184 { 185 struct gfs2_inode *ip = GFS2_I(inode); 186 unsigned int flags = inode->i_flags; 187 188 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC); 189 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode)) 190 flags |= S_NOSEC; 191 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE) 192 flags |= S_IMMUTABLE; 193 if (ip->i_diskflags & GFS2_DIF_APPENDONLY) 194 flags |= S_APPEND; 195 if (ip->i_diskflags & GFS2_DIF_NOATIME) 196 flags |= S_NOATIME; 197 if (ip->i_diskflags & GFS2_DIF_SYNC) 198 flags |= S_SYNC; 199 inode->i_flags = flags; 200 } 201 202 /* Flags that can be set by user space */ 203 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \ 204 GFS2_DIF_IMMUTABLE| \ 205 GFS2_DIF_APPENDONLY| \ 206 GFS2_DIF_NOATIME| \ 207 GFS2_DIF_SYNC| \ 208 GFS2_DIF_TOPDIR| \ 209 GFS2_DIF_INHERIT_JDATA) 210 211 /** 212 * do_gfs2_set_flags - set flags on an inode 213 * @filp: file pointer 214 * @reqflags: The flags to set 215 * @mask: Indicates which flags are valid 216 * @fsflags: The FS_* inode flags passed in 217 * 218 */ 219 static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask, 220 const u32 fsflags) 221 { 222 struct gfs2_inode *ip = GFS2_I(inode); 223 struct gfs2_sbd *sdp = GFS2_SB(inode); 224 struct buffer_head *bh; 225 struct gfs2_holder gh; 226 int error; 227 u32 new_flags, flags; 228 229 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 230 if (error) 231 return error; 232 233 error = 0; 234 flags = ip->i_diskflags; 235 new_flags = (flags & ~mask) | (reqflags & mask); 236 if ((new_flags ^ flags) == 0) 237 goto out; 238 239 error = -EPERM; 240 if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE)) 241 goto out; 242 if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY)) 243 goto out; 244 if (!IS_IMMUTABLE(inode)) { 245 error = gfs2_permission(&init_user_ns, inode, MAY_WRITE); 246 if (error) 247 goto out; 248 } 249 if ((flags ^ new_flags) & GFS2_DIF_JDATA) { 250 if (new_flags & GFS2_DIF_JDATA) 251 gfs2_log_flush(sdp, ip->i_gl, 252 GFS2_LOG_HEAD_FLUSH_NORMAL | 253 GFS2_LFC_SET_FLAGS); 254 error = filemap_fdatawrite(inode->i_mapping); 255 if (error) 256 goto out; 257 error = filemap_fdatawait(inode->i_mapping); 258 if (error) 259 goto out; 260 if (new_flags & GFS2_DIF_JDATA) 261 gfs2_ordered_del_inode(ip); 262 } 263 error = gfs2_trans_begin(sdp, RES_DINODE, 0); 264 if (error) 265 goto out; 266 error = gfs2_meta_inode_buffer(ip, &bh); 267 if (error) 268 goto out_trans_end; 269 inode->i_ctime = current_time(inode); 270 gfs2_trans_add_meta(ip->i_gl, bh); 271 ip->i_diskflags = new_flags; 272 gfs2_dinode_out(ip, bh->b_data); 273 brelse(bh); 274 gfs2_set_inode_flags(inode); 275 gfs2_set_aops(inode); 276 out_trans_end: 277 gfs2_trans_end(sdp); 278 out: 279 gfs2_glock_dq_uninit(&gh); 280 return error; 281 } 282 283 int gfs2_fileattr_set(struct user_namespace *mnt_userns, 284 struct dentry *dentry, struct fileattr *fa) 285 { 286 struct inode *inode = d_inode(dentry); 287 u32 fsflags = fa->flags, gfsflags = 0; 288 u32 mask; 289 int i; 290 291 if (d_is_special(dentry)) 292 return -ENOTTY; 293 294 if (fileattr_has_fsx(fa)) 295 return -EOPNOTSUPP; 296 297 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) { 298 if (fsflags & fsflag_gfs2flag[i].fsflag) { 299 fsflags &= ~fsflag_gfs2flag[i].fsflag; 300 gfsflags |= fsflag_gfs2flag[i].gfsflag; 301 } 302 } 303 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET) 304 return -EINVAL; 305 306 mask = GFS2_FLAGS_USER_SET; 307 if (S_ISDIR(inode->i_mode)) { 308 mask &= ~GFS2_DIF_JDATA; 309 } else { 310 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */ 311 if (gfsflags & GFS2_DIF_TOPDIR) 312 return -EINVAL; 313 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA); 314 } 315 316 return do_gfs2_set_flags(inode, gfsflags, mask, fsflags); 317 } 318 319 static int gfs2_getlabel(struct file *filp, char __user *label) 320 { 321 struct inode *inode = file_inode(filp); 322 struct gfs2_sbd *sdp = GFS2_SB(inode); 323 324 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN)) 325 return -EFAULT; 326 327 return 0; 328 } 329 330 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 331 { 332 switch(cmd) { 333 case FITRIM: 334 return gfs2_fitrim(filp, (void __user *)arg); 335 case FS_IOC_GETFSLABEL: 336 return gfs2_getlabel(filp, (char __user *)arg); 337 } 338 339 return -ENOTTY; 340 } 341 342 #ifdef CONFIG_COMPAT 343 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 344 { 345 switch(cmd) { 346 /* Keep this list in sync with gfs2_ioctl */ 347 case FITRIM: 348 case FS_IOC_GETFSLABEL: 349 break; 350 default: 351 return -ENOIOCTLCMD; 352 } 353 354 return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 355 } 356 #else 357 #define gfs2_compat_ioctl NULL 358 #endif 359 360 /** 361 * gfs2_size_hint - Give a hint to the size of a write request 362 * @filep: The struct file 363 * @offset: The file offset of the write 364 * @size: The length of the write 365 * 366 * When we are about to do a write, this function records the total 367 * write size in order to provide a suitable hint to the lower layers 368 * about how many blocks will be required. 369 * 370 */ 371 372 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size) 373 { 374 struct inode *inode = file_inode(filep); 375 struct gfs2_sbd *sdp = GFS2_SB(inode); 376 struct gfs2_inode *ip = GFS2_I(inode); 377 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift; 378 int hint = min_t(size_t, INT_MAX, blks); 379 380 if (hint > atomic_read(&ip->i_sizehint)) 381 atomic_set(&ip->i_sizehint, hint); 382 } 383 384 /** 385 * gfs2_allocate_page_backing - Allocate blocks for a write fault 386 * @page: The (locked) page to allocate backing for 387 * @length: Size of the allocation 388 * 389 * We try to allocate all the blocks required for the page in one go. This 390 * might fail for various reasons, so we keep trying until all the blocks to 391 * back this page are allocated. If some of the blocks are already allocated, 392 * that is ok too. 393 */ 394 static int gfs2_allocate_page_backing(struct page *page, unsigned int length) 395 { 396 u64 pos = page_offset(page); 397 398 do { 399 struct iomap iomap = { }; 400 401 if (gfs2_iomap_get_alloc(page->mapping->host, pos, length, &iomap)) 402 return -EIO; 403 404 if (length < iomap.length) 405 iomap.length = length; 406 length -= iomap.length; 407 pos += iomap.length; 408 } while (length > 0); 409 410 return 0; 411 } 412 413 /** 414 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable 415 * @vma: The virtual memory area 416 * @vmf: The virtual memory fault containing the page to become writable 417 * 418 * When the page becomes writable, we need to ensure that we have 419 * blocks allocated on disk to back that page. 420 */ 421 422 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf) 423 { 424 struct page *page = vmf->page; 425 struct inode *inode = file_inode(vmf->vma->vm_file); 426 struct gfs2_inode *ip = GFS2_I(inode); 427 struct gfs2_sbd *sdp = GFS2_SB(inode); 428 struct gfs2_alloc_parms ap = { .aflags = 0, }; 429 u64 offset = page_offset(page); 430 unsigned int data_blocks, ind_blocks, rblocks; 431 struct gfs2_holder gh; 432 unsigned int length; 433 loff_t size; 434 int ret; 435 436 sb_start_pagefault(inode->i_sb); 437 438 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 439 ret = gfs2_glock_nq(&gh); 440 if (ret) 441 goto out_uninit; 442 443 /* Check page index against inode size */ 444 size = i_size_read(inode); 445 if (offset >= size) { 446 ret = -EINVAL; 447 goto out_unlock; 448 } 449 450 /* Update file times before taking page lock */ 451 file_update_time(vmf->vma->vm_file); 452 453 /* page is wholly or partially inside EOF */ 454 if (offset > size - PAGE_SIZE) 455 length = offset_in_page(size); 456 else 457 length = PAGE_SIZE; 458 459 gfs2_size_hint(vmf->vma->vm_file, offset, length); 460 461 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags); 462 set_bit(GIF_SW_PAGED, &ip->i_flags); 463 464 /* 465 * iomap_writepage / iomap_writepages currently don't support inline 466 * files, so always unstuff here. 467 */ 468 469 if (!gfs2_is_stuffed(ip) && 470 !gfs2_write_alloc_required(ip, offset, length)) { 471 lock_page(page); 472 if (!PageUptodate(page) || page->mapping != inode->i_mapping) { 473 ret = -EAGAIN; 474 unlock_page(page); 475 } 476 goto out_unlock; 477 } 478 479 ret = gfs2_rindex_update(sdp); 480 if (ret) 481 goto out_unlock; 482 483 gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks); 484 ap.target = data_blocks + ind_blocks; 485 ret = gfs2_quota_lock_check(ip, &ap); 486 if (ret) 487 goto out_unlock; 488 ret = gfs2_inplace_reserve(ip, &ap); 489 if (ret) 490 goto out_quota_unlock; 491 492 rblocks = RES_DINODE + ind_blocks; 493 if (gfs2_is_jdata(ip)) 494 rblocks += data_blocks ? data_blocks : 1; 495 if (ind_blocks || data_blocks) { 496 rblocks += RES_STATFS + RES_QUOTA; 497 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks); 498 } 499 ret = gfs2_trans_begin(sdp, rblocks, 0); 500 if (ret) 501 goto out_trans_fail; 502 503 lock_page(page); 504 ret = -EAGAIN; 505 /* If truncated, we must retry the operation, we may have raced 506 * with the glock demotion code. 507 */ 508 if (!PageUptodate(page) || page->mapping != inode->i_mapping) 509 goto out_trans_end; 510 511 /* Unstuff, if required, and allocate backing blocks for page */ 512 ret = 0; 513 if (gfs2_is_stuffed(ip)) 514 ret = gfs2_unstuff_dinode(ip, page); 515 if (ret == 0) 516 ret = gfs2_allocate_page_backing(page, length); 517 518 out_trans_end: 519 if (ret) 520 unlock_page(page); 521 gfs2_trans_end(sdp); 522 out_trans_fail: 523 gfs2_inplace_release(ip); 524 out_quota_unlock: 525 gfs2_quota_unlock(ip); 526 out_unlock: 527 gfs2_glock_dq(&gh); 528 out_uninit: 529 gfs2_holder_uninit(&gh); 530 if (ret == 0) { 531 set_page_dirty(page); 532 wait_for_stable_page(page); 533 } 534 sb_end_pagefault(inode->i_sb); 535 return block_page_mkwrite_return(ret); 536 } 537 538 static vm_fault_t gfs2_fault(struct vm_fault *vmf) 539 { 540 struct inode *inode = file_inode(vmf->vma->vm_file); 541 struct gfs2_inode *ip = GFS2_I(inode); 542 struct gfs2_holder gh; 543 vm_fault_t ret; 544 int err; 545 546 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 547 err = gfs2_glock_nq(&gh); 548 if (err) { 549 ret = block_page_mkwrite_return(err); 550 goto out_uninit; 551 } 552 ret = filemap_fault(vmf); 553 gfs2_glock_dq(&gh); 554 out_uninit: 555 gfs2_holder_uninit(&gh); 556 return ret; 557 } 558 559 static const struct vm_operations_struct gfs2_vm_ops = { 560 .fault = gfs2_fault, 561 .map_pages = filemap_map_pages, 562 .page_mkwrite = gfs2_page_mkwrite, 563 }; 564 565 /** 566 * gfs2_mmap - 567 * @file: The file to map 568 * @vma: The VMA which described the mapping 569 * 570 * There is no need to get a lock here unless we should be updating 571 * atime. We ignore any locking errors since the only consequence is 572 * a missed atime update (which will just be deferred until later). 573 * 574 * Returns: 0 575 */ 576 577 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma) 578 { 579 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 580 581 if (!(file->f_flags & O_NOATIME) && 582 !IS_NOATIME(&ip->i_inode)) { 583 struct gfs2_holder i_gh; 584 int error; 585 586 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 587 &i_gh); 588 if (error) 589 return error; 590 /* grab lock to update inode */ 591 gfs2_glock_dq_uninit(&i_gh); 592 file_accessed(file); 593 } 594 vma->vm_ops = &gfs2_vm_ops; 595 596 return 0; 597 } 598 599 /** 600 * gfs2_open_common - This is common to open and atomic_open 601 * @inode: The inode being opened 602 * @file: The file being opened 603 * 604 * This maybe called under a glock or not depending upon how it has 605 * been called. We must always be called under a glock for regular 606 * files, however. For other file types, it does not matter whether 607 * we hold the glock or not. 608 * 609 * Returns: Error code or 0 for success 610 */ 611 612 int gfs2_open_common(struct inode *inode, struct file *file) 613 { 614 struct gfs2_file *fp; 615 int ret; 616 617 if (S_ISREG(inode->i_mode)) { 618 ret = generic_file_open(inode, file); 619 if (ret) 620 return ret; 621 } 622 623 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS); 624 if (!fp) 625 return -ENOMEM; 626 627 mutex_init(&fp->f_fl_mutex); 628 629 gfs2_assert_warn(GFS2_SB(inode), !file->private_data); 630 file->private_data = fp; 631 if (file->f_mode & FMODE_WRITE) { 632 ret = gfs2_qa_get(GFS2_I(inode)); 633 if (ret) 634 goto fail; 635 } 636 return 0; 637 638 fail: 639 kfree(file->private_data); 640 file->private_data = NULL; 641 return ret; 642 } 643 644 /** 645 * gfs2_open - open a file 646 * @inode: the inode to open 647 * @file: the struct file for this opening 648 * 649 * After atomic_open, this function is only used for opening files 650 * which are already cached. We must still get the glock for regular 651 * files to ensure that we have the file size uptodate for the large 652 * file check which is in the common code. That is only an issue for 653 * regular files though. 654 * 655 * Returns: errno 656 */ 657 658 static int gfs2_open(struct inode *inode, struct file *file) 659 { 660 struct gfs2_inode *ip = GFS2_I(inode); 661 struct gfs2_holder i_gh; 662 int error; 663 bool need_unlock = false; 664 665 if (S_ISREG(ip->i_inode.i_mode)) { 666 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, 667 &i_gh); 668 if (error) 669 return error; 670 need_unlock = true; 671 } 672 673 error = gfs2_open_common(inode, file); 674 675 if (need_unlock) 676 gfs2_glock_dq_uninit(&i_gh); 677 678 return error; 679 } 680 681 /** 682 * gfs2_release - called to close a struct file 683 * @inode: the inode the struct file belongs to 684 * @file: the struct file being closed 685 * 686 * Returns: errno 687 */ 688 689 static int gfs2_release(struct inode *inode, struct file *file) 690 { 691 struct gfs2_inode *ip = GFS2_I(inode); 692 693 kfree(file->private_data); 694 file->private_data = NULL; 695 696 if (gfs2_rs_active(&ip->i_res)) 697 gfs2_rs_delete(ip, &inode->i_writecount); 698 if (file->f_mode & FMODE_WRITE) 699 gfs2_qa_put(ip); 700 return 0; 701 } 702 703 /** 704 * gfs2_fsync - sync the dirty data for a file (across the cluster) 705 * @file: the file that points to the dentry 706 * @start: the start position in the file to sync 707 * @end: the end position in the file to sync 708 * @datasync: set if we can ignore timestamp changes 709 * 710 * We split the data flushing here so that we don't wait for the data 711 * until after we've also sent the metadata to disk. Note that for 712 * data=ordered, we will write & wait for the data at the log flush 713 * stage anyway, so this is unlikely to make much of a difference 714 * except in the data=writeback case. 715 * 716 * If the fdatawrite fails due to any reason except -EIO, we will 717 * continue the remainder of the fsync, although we'll still report 718 * the error at the end. This is to match filemap_write_and_wait_range() 719 * behaviour. 720 * 721 * Returns: errno 722 */ 723 724 static int gfs2_fsync(struct file *file, loff_t start, loff_t end, 725 int datasync) 726 { 727 struct address_space *mapping = file->f_mapping; 728 struct inode *inode = mapping->host; 729 int sync_state = inode->i_state & I_DIRTY; 730 struct gfs2_inode *ip = GFS2_I(inode); 731 int ret = 0, ret1 = 0; 732 733 if (mapping->nrpages) { 734 ret1 = filemap_fdatawrite_range(mapping, start, end); 735 if (ret1 == -EIO) 736 return ret1; 737 } 738 739 if (!gfs2_is_jdata(ip)) 740 sync_state &= ~I_DIRTY_PAGES; 741 if (datasync) 742 sync_state &= ~I_DIRTY_SYNC; 743 744 if (sync_state) { 745 ret = sync_inode_metadata(inode, 1); 746 if (ret) 747 return ret; 748 if (gfs2_is_jdata(ip)) 749 ret = file_write_and_wait(file); 750 if (ret) 751 return ret; 752 gfs2_ail_flush(ip->i_gl, 1); 753 } 754 755 if (mapping->nrpages) 756 ret = file_fdatawait_range(file, start, end); 757 758 return ret ? ret : ret1; 759 } 760 761 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to, 762 struct gfs2_holder *gh) 763 { 764 struct file *file = iocb->ki_filp; 765 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 766 size_t count = iov_iter_count(to); 767 ssize_t ret; 768 769 if (!count) 770 return 0; /* skip atime */ 771 772 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh); 773 ret = gfs2_glock_nq(gh); 774 if (ret) 775 goto out_uninit; 776 777 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL, 0); 778 gfs2_glock_dq(gh); 779 out_uninit: 780 gfs2_holder_uninit(gh); 781 return ret; 782 } 783 784 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from, 785 struct gfs2_holder *gh) 786 { 787 struct file *file = iocb->ki_filp; 788 struct inode *inode = file->f_mapping->host; 789 struct gfs2_inode *ip = GFS2_I(inode); 790 size_t len = iov_iter_count(from); 791 loff_t offset = iocb->ki_pos; 792 ssize_t ret; 793 794 /* 795 * Deferred lock, even if its a write, since we do no allocation on 796 * this path. All we need to change is the atime, and this lock mode 797 * ensures that other nodes have flushed their buffered read caches 798 * (i.e. their page cache entries for this inode). We do not, 799 * unfortunately, have the option of only flushing a range like the 800 * VFS does. 801 */ 802 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh); 803 ret = gfs2_glock_nq(gh); 804 if (ret) 805 goto out_uninit; 806 807 /* Silently fall back to buffered I/O when writing beyond EOF */ 808 if (offset + len > i_size_read(&ip->i_inode)) 809 goto out; 810 811 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL, 0); 812 if (ret == -ENOTBLK) 813 ret = 0; 814 out: 815 gfs2_glock_dq(gh); 816 out_uninit: 817 gfs2_holder_uninit(gh); 818 return ret; 819 } 820 821 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 822 { 823 struct gfs2_inode *ip; 824 struct gfs2_holder gh; 825 size_t written = 0; 826 ssize_t ret; 827 828 if (iocb->ki_flags & IOCB_DIRECT) { 829 ret = gfs2_file_direct_read(iocb, to, &gh); 830 if (likely(ret != -ENOTBLK)) 831 return ret; 832 iocb->ki_flags &= ~IOCB_DIRECT; 833 } 834 iocb->ki_flags |= IOCB_NOIO; 835 ret = generic_file_read_iter(iocb, to); 836 iocb->ki_flags &= ~IOCB_NOIO; 837 if (ret >= 0) { 838 if (!iov_iter_count(to)) 839 return ret; 840 written = ret; 841 } else { 842 if (ret != -EAGAIN) 843 return ret; 844 if (iocb->ki_flags & IOCB_NOWAIT) 845 return ret; 846 } 847 ip = GFS2_I(iocb->ki_filp->f_mapping->host); 848 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 849 ret = gfs2_glock_nq(&gh); 850 if (ret) 851 goto out_uninit; 852 ret = generic_file_read_iter(iocb, to); 853 if (ret > 0) 854 written += ret; 855 gfs2_glock_dq(&gh); 856 out_uninit: 857 gfs2_holder_uninit(&gh); 858 return written ? written : ret; 859 } 860 861 /** 862 * gfs2_file_write_iter - Perform a write to a file 863 * @iocb: The io context 864 * @from: The data to write 865 * 866 * We have to do a lock/unlock here to refresh the inode size for 867 * O_APPEND writes, otherwise we can land up writing at the wrong 868 * offset. There is still a race, but provided the app is using its 869 * own file locking, this will make O_APPEND work as expected. 870 * 871 */ 872 873 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 874 { 875 struct file *file = iocb->ki_filp; 876 struct inode *inode = file_inode(file); 877 struct gfs2_inode *ip = GFS2_I(inode); 878 struct gfs2_holder gh; 879 ssize_t ret; 880 881 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from)); 882 883 if (iocb->ki_flags & IOCB_APPEND) { 884 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh); 885 if (ret) 886 return ret; 887 gfs2_glock_dq_uninit(&gh); 888 } 889 890 inode_lock(inode); 891 ret = generic_write_checks(iocb, from); 892 if (ret <= 0) 893 goto out_unlock; 894 895 ret = file_remove_privs(file); 896 if (ret) 897 goto out_unlock; 898 899 ret = file_update_time(file); 900 if (ret) 901 goto out_unlock; 902 903 if (iocb->ki_flags & IOCB_DIRECT) { 904 struct address_space *mapping = file->f_mapping; 905 ssize_t buffered, ret2; 906 907 ret = gfs2_file_direct_write(iocb, from, &gh); 908 if (ret < 0 || !iov_iter_count(from)) 909 goto out_unlock; 910 911 iocb->ki_flags |= IOCB_DSYNC; 912 current->backing_dev_info = inode_to_bdi(inode); 913 buffered = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops); 914 current->backing_dev_info = NULL; 915 if (unlikely(buffered <= 0)) 916 goto out_unlock; 917 918 /* 919 * We need to ensure that the page cache pages are written to 920 * disk and invalidated to preserve the expected O_DIRECT 921 * semantics. If the writeback or invalidate fails, only report 922 * the direct I/O range as we don't know if the buffered pages 923 * made it to disk. 924 */ 925 iocb->ki_pos += buffered; 926 ret2 = generic_write_sync(iocb, buffered); 927 invalidate_mapping_pages(mapping, 928 (iocb->ki_pos - buffered) >> PAGE_SHIFT, 929 (iocb->ki_pos - 1) >> PAGE_SHIFT); 930 if (!ret || ret2 > 0) 931 ret += ret2; 932 } else { 933 current->backing_dev_info = inode_to_bdi(inode); 934 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops); 935 current->backing_dev_info = NULL; 936 if (likely(ret > 0)) { 937 iocb->ki_pos += ret; 938 ret = generic_write_sync(iocb, ret); 939 } 940 } 941 942 out_unlock: 943 inode_unlock(inode); 944 return ret; 945 } 946 947 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len, 948 int mode) 949 { 950 struct super_block *sb = inode->i_sb; 951 struct gfs2_inode *ip = GFS2_I(inode); 952 loff_t end = offset + len; 953 struct buffer_head *dibh; 954 int error; 955 956 error = gfs2_meta_inode_buffer(ip, &dibh); 957 if (unlikely(error)) 958 return error; 959 960 gfs2_trans_add_meta(ip->i_gl, dibh); 961 962 if (gfs2_is_stuffed(ip)) { 963 error = gfs2_unstuff_dinode(ip, NULL); 964 if (unlikely(error)) 965 goto out; 966 } 967 968 while (offset < end) { 969 struct iomap iomap = { }; 970 971 error = gfs2_iomap_get_alloc(inode, offset, end - offset, 972 &iomap); 973 if (error) 974 goto out; 975 offset = iomap.offset + iomap.length; 976 if (!(iomap.flags & IOMAP_F_NEW)) 977 continue; 978 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits, 979 iomap.length >> inode->i_blkbits, 980 GFP_NOFS); 981 if (error) { 982 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n"); 983 goto out; 984 } 985 } 986 out: 987 brelse(dibh); 988 return error; 989 } 990 991 /** 992 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of 993 * blocks, determine how many bytes can be written. 994 * @ip: The inode in question. 995 * @len: Max cap of bytes. What we return in *len must be <= this. 996 * @data_blocks: Compute and return the number of data blocks needed 997 * @ind_blocks: Compute and return the number of indirect blocks needed 998 * @max_blocks: The total blocks available to work with. 999 * 1000 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in. 1001 */ 1002 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len, 1003 unsigned int *data_blocks, unsigned int *ind_blocks, 1004 unsigned int max_blocks) 1005 { 1006 loff_t max = *len; 1007 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode); 1008 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1); 1009 1010 for (tmp = max_data; tmp > sdp->sd_diptrs;) { 1011 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs); 1012 max_data -= tmp; 1013 } 1014 1015 *data_blocks = max_data; 1016 *ind_blocks = max_blocks - max_data; 1017 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift; 1018 if (*len > max) { 1019 *len = max; 1020 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks); 1021 } 1022 } 1023 1024 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 1025 { 1026 struct inode *inode = file_inode(file); 1027 struct gfs2_sbd *sdp = GFS2_SB(inode); 1028 struct gfs2_inode *ip = GFS2_I(inode); 1029 struct gfs2_alloc_parms ap = { .aflags = 0, }; 1030 unsigned int data_blocks = 0, ind_blocks = 0, rblocks; 1031 loff_t bytes, max_bytes, max_blks; 1032 int error; 1033 const loff_t pos = offset; 1034 const loff_t count = len; 1035 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1); 1036 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift; 1037 loff_t max_chunk_size = UINT_MAX & bsize_mask; 1038 1039 next = (next + 1) << sdp->sd_sb.sb_bsize_shift; 1040 1041 offset &= bsize_mask; 1042 1043 len = next - offset; 1044 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2; 1045 if (!bytes) 1046 bytes = UINT_MAX; 1047 bytes &= bsize_mask; 1048 if (bytes == 0) 1049 bytes = sdp->sd_sb.sb_bsize; 1050 1051 gfs2_size_hint(file, offset, len); 1052 1053 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks); 1054 ap.min_target = data_blocks + ind_blocks; 1055 1056 while (len > 0) { 1057 if (len < bytes) 1058 bytes = len; 1059 if (!gfs2_write_alloc_required(ip, offset, bytes)) { 1060 len -= bytes; 1061 offset += bytes; 1062 continue; 1063 } 1064 1065 /* We need to determine how many bytes we can actually 1066 * fallocate without exceeding quota or going over the 1067 * end of the fs. We start off optimistically by assuming 1068 * we can write max_bytes */ 1069 max_bytes = (len > max_chunk_size) ? max_chunk_size : len; 1070 1071 /* Since max_bytes is most likely a theoretical max, we 1072 * calculate a more realistic 'bytes' to serve as a good 1073 * starting point for the number of bytes we may be able 1074 * to write */ 1075 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks); 1076 ap.target = data_blocks + ind_blocks; 1077 1078 error = gfs2_quota_lock_check(ip, &ap); 1079 if (error) 1080 return error; 1081 /* ap.allowed tells us how many blocks quota will allow 1082 * us to write. Check if this reduces max_blks */ 1083 max_blks = UINT_MAX; 1084 if (ap.allowed) 1085 max_blks = ap.allowed; 1086 1087 error = gfs2_inplace_reserve(ip, &ap); 1088 if (error) 1089 goto out_qunlock; 1090 1091 /* check if the selected rgrp limits our max_blks further */ 1092 if (ip->i_res.rs_reserved < max_blks) 1093 max_blks = ip->i_res.rs_reserved; 1094 1095 /* Almost done. Calculate bytes that can be written using 1096 * max_blks. We also recompute max_bytes, data_blocks and 1097 * ind_blocks */ 1098 calc_max_reserv(ip, &max_bytes, &data_blocks, 1099 &ind_blocks, max_blks); 1100 1101 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA + 1102 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks); 1103 if (gfs2_is_jdata(ip)) 1104 rblocks += data_blocks ? data_blocks : 1; 1105 1106 error = gfs2_trans_begin(sdp, rblocks, 1107 PAGE_SIZE >> inode->i_blkbits); 1108 if (error) 1109 goto out_trans_fail; 1110 1111 error = fallocate_chunk(inode, offset, max_bytes, mode); 1112 gfs2_trans_end(sdp); 1113 1114 if (error) 1115 goto out_trans_fail; 1116 1117 len -= max_bytes; 1118 offset += max_bytes; 1119 gfs2_inplace_release(ip); 1120 gfs2_quota_unlock(ip); 1121 } 1122 1123 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) 1124 i_size_write(inode, pos + count); 1125 file_update_time(file); 1126 mark_inode_dirty(inode); 1127 1128 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host)) 1129 return vfs_fsync_range(file, pos, pos + count - 1, 1130 (file->f_flags & __O_SYNC) ? 0 : 1); 1131 return 0; 1132 1133 out_trans_fail: 1134 gfs2_inplace_release(ip); 1135 out_qunlock: 1136 gfs2_quota_unlock(ip); 1137 return error; 1138 } 1139 1140 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len) 1141 { 1142 struct inode *inode = file_inode(file); 1143 struct gfs2_sbd *sdp = GFS2_SB(inode); 1144 struct gfs2_inode *ip = GFS2_I(inode); 1145 struct gfs2_holder gh; 1146 int ret; 1147 1148 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE)) 1149 return -EOPNOTSUPP; 1150 /* fallocate is needed by gfs2_grow to reserve space in the rindex */ 1151 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex) 1152 return -EOPNOTSUPP; 1153 1154 inode_lock(inode); 1155 1156 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh); 1157 ret = gfs2_glock_nq(&gh); 1158 if (ret) 1159 goto out_uninit; 1160 1161 if (!(mode & FALLOC_FL_KEEP_SIZE) && 1162 (offset + len) > inode->i_size) { 1163 ret = inode_newsize_ok(inode, offset + len); 1164 if (ret) 1165 goto out_unlock; 1166 } 1167 1168 ret = get_write_access(inode); 1169 if (ret) 1170 goto out_unlock; 1171 1172 if (mode & FALLOC_FL_PUNCH_HOLE) { 1173 ret = __gfs2_punch_hole(file, offset, len); 1174 } else { 1175 ret = __gfs2_fallocate(file, mode, offset, len); 1176 if (ret) 1177 gfs2_rs_deltree(&ip->i_res); 1178 } 1179 1180 put_write_access(inode); 1181 out_unlock: 1182 gfs2_glock_dq(&gh); 1183 out_uninit: 1184 gfs2_holder_uninit(&gh); 1185 inode_unlock(inode); 1186 return ret; 1187 } 1188 1189 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe, 1190 struct file *out, loff_t *ppos, 1191 size_t len, unsigned int flags) 1192 { 1193 ssize_t ret; 1194 1195 gfs2_size_hint(out, *ppos, len); 1196 1197 ret = iter_file_splice_write(pipe, out, ppos, len, flags); 1198 return ret; 1199 } 1200 1201 #ifdef CONFIG_GFS2_FS_LOCKING_DLM 1202 1203 /** 1204 * gfs2_lock - acquire/release a posix lock on a file 1205 * @file: the file pointer 1206 * @cmd: either modify or retrieve lock state, possibly wait 1207 * @fl: type and range of lock 1208 * 1209 * Returns: errno 1210 */ 1211 1212 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl) 1213 { 1214 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host); 1215 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host); 1216 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1217 1218 if (!(fl->fl_flags & FL_POSIX)) 1219 return -ENOLCK; 1220 if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK) 1221 return -ENOLCK; 1222 1223 if (cmd == F_CANCELLK) { 1224 /* Hack: */ 1225 cmd = F_SETLK; 1226 fl->fl_type = F_UNLCK; 1227 } 1228 if (unlikely(gfs2_withdrawn(sdp))) { 1229 if (fl->fl_type == F_UNLCK) 1230 locks_lock_file_wait(file, fl); 1231 return -EIO; 1232 } 1233 if (IS_GETLK(cmd)) 1234 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl); 1235 else if (fl->fl_type == F_UNLCK) 1236 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl); 1237 else 1238 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl); 1239 } 1240 1241 static int do_flock(struct file *file, int cmd, struct file_lock *fl) 1242 { 1243 struct gfs2_file *fp = file->private_data; 1244 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1245 struct gfs2_inode *ip = GFS2_I(file_inode(file)); 1246 struct gfs2_glock *gl; 1247 unsigned int state; 1248 u16 flags; 1249 int error = 0; 1250 int sleeptime; 1251 1252 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED; 1253 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT; 1254 1255 mutex_lock(&fp->f_fl_mutex); 1256 1257 if (gfs2_holder_initialized(fl_gh)) { 1258 struct file_lock request; 1259 if (fl_gh->gh_state == state) 1260 goto out; 1261 locks_init_lock(&request); 1262 request.fl_type = F_UNLCK; 1263 request.fl_flags = FL_FLOCK; 1264 locks_lock_file_wait(file, &request); 1265 gfs2_glock_dq(fl_gh); 1266 gfs2_holder_reinit(state, flags, fl_gh); 1267 } else { 1268 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr, 1269 &gfs2_flock_glops, CREATE, &gl); 1270 if (error) 1271 goto out; 1272 gfs2_holder_init(gl, state, flags, fl_gh); 1273 gfs2_glock_put(gl); 1274 } 1275 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) { 1276 error = gfs2_glock_nq(fl_gh); 1277 if (error != GLR_TRYFAILED) 1278 break; 1279 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT; 1280 fl_gh->gh_error = 0; 1281 msleep(sleeptime); 1282 } 1283 if (error) { 1284 gfs2_holder_uninit(fl_gh); 1285 if (error == GLR_TRYFAILED) 1286 error = -EAGAIN; 1287 } else { 1288 error = locks_lock_file_wait(file, fl); 1289 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error); 1290 } 1291 1292 out: 1293 mutex_unlock(&fp->f_fl_mutex); 1294 return error; 1295 } 1296 1297 static void do_unflock(struct file *file, struct file_lock *fl) 1298 { 1299 struct gfs2_file *fp = file->private_data; 1300 struct gfs2_holder *fl_gh = &fp->f_fl_gh; 1301 1302 mutex_lock(&fp->f_fl_mutex); 1303 locks_lock_file_wait(file, fl); 1304 if (gfs2_holder_initialized(fl_gh)) { 1305 gfs2_glock_dq(fl_gh); 1306 gfs2_holder_uninit(fl_gh); 1307 } 1308 mutex_unlock(&fp->f_fl_mutex); 1309 } 1310 1311 /** 1312 * gfs2_flock - acquire/release a flock lock on a file 1313 * @file: the file pointer 1314 * @cmd: either modify or retrieve lock state, possibly wait 1315 * @fl: type and range of lock 1316 * 1317 * Returns: errno 1318 */ 1319 1320 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl) 1321 { 1322 if (!(fl->fl_flags & FL_FLOCK)) 1323 return -ENOLCK; 1324 if (fl->fl_type & LOCK_MAND) 1325 return -EOPNOTSUPP; 1326 1327 if (fl->fl_type == F_UNLCK) { 1328 do_unflock(file, fl); 1329 return 0; 1330 } else { 1331 return do_flock(file, cmd, fl); 1332 } 1333 } 1334 1335 const struct file_operations gfs2_file_fops = { 1336 .llseek = gfs2_llseek, 1337 .read_iter = gfs2_file_read_iter, 1338 .write_iter = gfs2_file_write_iter, 1339 .iopoll = iomap_dio_iopoll, 1340 .unlocked_ioctl = gfs2_ioctl, 1341 .compat_ioctl = gfs2_compat_ioctl, 1342 .mmap = gfs2_mmap, 1343 .open = gfs2_open, 1344 .release = gfs2_release, 1345 .fsync = gfs2_fsync, 1346 .lock = gfs2_lock, 1347 .flock = gfs2_flock, 1348 .splice_read = generic_file_splice_read, 1349 .splice_write = gfs2_file_splice_write, 1350 .setlease = simple_nosetlease, 1351 .fallocate = gfs2_fallocate, 1352 }; 1353 1354 const struct file_operations gfs2_dir_fops = { 1355 .iterate_shared = gfs2_readdir, 1356 .unlocked_ioctl = gfs2_ioctl, 1357 .compat_ioctl = gfs2_compat_ioctl, 1358 .open = gfs2_open, 1359 .release = gfs2_release, 1360 .fsync = gfs2_fsync, 1361 .lock = gfs2_lock, 1362 .flock = gfs2_flock, 1363 .llseek = default_llseek, 1364 }; 1365 1366 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */ 1367 1368 const struct file_operations gfs2_file_fops_nolock = { 1369 .llseek = gfs2_llseek, 1370 .read_iter = gfs2_file_read_iter, 1371 .write_iter = gfs2_file_write_iter, 1372 .iopoll = iomap_dio_iopoll, 1373 .unlocked_ioctl = gfs2_ioctl, 1374 .compat_ioctl = gfs2_compat_ioctl, 1375 .mmap = gfs2_mmap, 1376 .open = gfs2_open, 1377 .release = gfs2_release, 1378 .fsync = gfs2_fsync, 1379 .splice_read = generic_file_splice_read, 1380 .splice_write = gfs2_file_splice_write, 1381 .setlease = generic_setlease, 1382 .fallocate = gfs2_fallocate, 1383 }; 1384 1385 const struct file_operations gfs2_dir_fops_nolock = { 1386 .iterate_shared = gfs2_readdir, 1387 .unlocked_ioctl = gfs2_ioctl, 1388 .compat_ioctl = gfs2_compat_ioctl, 1389 .open = gfs2_open, 1390 .release = gfs2_release, 1391 .fsync = gfs2_fsync, 1392 .llseek = default_llseek, 1393 }; 1394 1395