xref: /openbmc/linux/fs/gfs2/file.c (revision 3aa139aa9fdc138a84243dc49dc18d9b40e1c6e4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/spinlock.h>
9 #include <linux/compat.h>
10 #include <linux/completion.h>
11 #include <linux/buffer_head.h>
12 #include <linux/pagemap.h>
13 #include <linux/uio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mm.h>
16 #include <linux/mount.h>
17 #include <linux/fs.h>
18 #include <linux/gfs2_ondisk.h>
19 #include <linux/falloc.h>
20 #include <linux/swap.h>
21 #include <linux/crc32.h>
22 #include <linux/writeback.h>
23 #include <linux/uaccess.h>
24 #include <linux/dlm.h>
25 #include <linux/dlm_plock.h>
26 #include <linux/delay.h>
27 #include <linux/backing-dev.h>
28 #include <linux/fileattr.h>
29 
30 #include "gfs2.h"
31 #include "incore.h"
32 #include "bmap.h"
33 #include "aops.h"
34 #include "dir.h"
35 #include "glock.h"
36 #include "glops.h"
37 #include "inode.h"
38 #include "log.h"
39 #include "meta_io.h"
40 #include "quota.h"
41 #include "rgrp.h"
42 #include "trans.h"
43 #include "util.h"
44 
45 /**
46  * gfs2_llseek - seek to a location in a file
47  * @file: the file
48  * @offset: the offset
49  * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
50  *
51  * SEEK_END requires the glock for the file because it references the
52  * file's size.
53  *
54  * Returns: The new offset, or errno
55  */
56 
57 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
58 {
59 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
60 	struct gfs2_holder i_gh;
61 	loff_t error;
62 
63 	switch (whence) {
64 	case SEEK_END:
65 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
66 					   &i_gh);
67 		if (!error) {
68 			error = generic_file_llseek(file, offset, whence);
69 			gfs2_glock_dq_uninit(&i_gh);
70 		}
71 		break;
72 
73 	case SEEK_DATA:
74 		error = gfs2_seek_data(file, offset);
75 		break;
76 
77 	case SEEK_HOLE:
78 		error = gfs2_seek_hole(file, offset);
79 		break;
80 
81 	case SEEK_CUR:
82 	case SEEK_SET:
83 		/*
84 		 * These don't reference inode->i_size and don't depend on the
85 		 * block mapping, so we don't need the glock.
86 		 */
87 		error = generic_file_llseek(file, offset, whence);
88 		break;
89 	default:
90 		error = -EINVAL;
91 	}
92 
93 	return error;
94 }
95 
96 /**
97  * gfs2_readdir - Iterator for a directory
98  * @file: The directory to read from
99  * @ctx: What to feed directory entries to
100  *
101  * Returns: errno
102  */
103 
104 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
105 {
106 	struct inode *dir = file->f_mapping->host;
107 	struct gfs2_inode *dip = GFS2_I(dir);
108 	struct gfs2_holder d_gh;
109 	int error;
110 
111 	error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
112 	if (error)
113 		return error;
114 
115 	error = gfs2_dir_read(dir, ctx, &file->f_ra);
116 
117 	gfs2_glock_dq_uninit(&d_gh);
118 
119 	return error;
120 }
121 
122 /**
123  * fsflag_gfs2flag
124  *
125  * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
126  * and to GFS2_DIF_JDATA for non-directories.
127  */
128 static struct {
129 	u32 fsflag;
130 	u32 gfsflag;
131 } fsflag_gfs2flag[] = {
132 	{FS_SYNC_FL, GFS2_DIF_SYNC},
133 	{FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
134 	{FS_APPEND_FL, GFS2_DIF_APPENDONLY},
135 	{FS_NOATIME_FL, GFS2_DIF_NOATIME},
136 	{FS_INDEX_FL, GFS2_DIF_EXHASH},
137 	{FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
138 	{FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
139 };
140 
141 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
142 {
143 	int i;
144 	u32 fsflags = 0;
145 
146 	if (S_ISDIR(inode->i_mode))
147 		gfsflags &= ~GFS2_DIF_JDATA;
148 	else
149 		gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
150 
151 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
152 		if (gfsflags & fsflag_gfs2flag[i].gfsflag)
153 			fsflags |= fsflag_gfs2flag[i].fsflag;
154 	return fsflags;
155 }
156 
157 int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa)
158 {
159 	struct inode *inode = d_inode(dentry);
160 	struct gfs2_inode *ip = GFS2_I(inode);
161 	struct gfs2_holder gh;
162 	int error;
163 	u32 fsflags;
164 
165 	if (d_is_special(dentry))
166 		return -ENOTTY;
167 
168 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
169 	error = gfs2_glock_nq(&gh);
170 	if (error)
171 		goto out_uninit;
172 
173 	fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
174 
175 	fileattr_fill_flags(fa, fsflags);
176 
177 	gfs2_glock_dq(&gh);
178 out_uninit:
179 	gfs2_holder_uninit(&gh);
180 	return error;
181 }
182 
183 void gfs2_set_inode_flags(struct inode *inode)
184 {
185 	struct gfs2_inode *ip = GFS2_I(inode);
186 	unsigned int flags = inode->i_flags;
187 
188 	flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
189 	if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
190 		flags |= S_NOSEC;
191 	if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
192 		flags |= S_IMMUTABLE;
193 	if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
194 		flags |= S_APPEND;
195 	if (ip->i_diskflags & GFS2_DIF_NOATIME)
196 		flags |= S_NOATIME;
197 	if (ip->i_diskflags & GFS2_DIF_SYNC)
198 		flags |= S_SYNC;
199 	inode->i_flags = flags;
200 }
201 
202 /* Flags that can be set by user space */
203 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|			\
204 			     GFS2_DIF_IMMUTABLE|		\
205 			     GFS2_DIF_APPENDONLY|		\
206 			     GFS2_DIF_NOATIME|			\
207 			     GFS2_DIF_SYNC|			\
208 			     GFS2_DIF_TOPDIR|			\
209 			     GFS2_DIF_INHERIT_JDATA)
210 
211 /**
212  * do_gfs2_set_flags - set flags on an inode
213  * @filp: file pointer
214  * @reqflags: The flags to set
215  * @mask: Indicates which flags are valid
216  * @fsflags: The FS_* inode flags passed in
217  *
218  */
219 static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask,
220 			     const u32 fsflags)
221 {
222 	struct gfs2_inode *ip = GFS2_I(inode);
223 	struct gfs2_sbd *sdp = GFS2_SB(inode);
224 	struct buffer_head *bh;
225 	struct gfs2_holder gh;
226 	int error;
227 	u32 new_flags, flags;
228 
229 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
230 	if (error)
231 		return error;
232 
233 	error = 0;
234 	flags = ip->i_diskflags;
235 	new_flags = (flags & ~mask) | (reqflags & mask);
236 	if ((new_flags ^ flags) == 0)
237 		goto out;
238 
239 	error = -EPERM;
240 	if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
241 		goto out;
242 	if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
243 		goto out;
244 	if (!IS_IMMUTABLE(inode)) {
245 		error = gfs2_permission(&init_user_ns, inode, MAY_WRITE);
246 		if (error)
247 			goto out;
248 	}
249 	if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
250 		if (new_flags & GFS2_DIF_JDATA)
251 			gfs2_log_flush(sdp, ip->i_gl,
252 				       GFS2_LOG_HEAD_FLUSH_NORMAL |
253 				       GFS2_LFC_SET_FLAGS);
254 		error = filemap_fdatawrite(inode->i_mapping);
255 		if (error)
256 			goto out;
257 		error = filemap_fdatawait(inode->i_mapping);
258 		if (error)
259 			goto out;
260 		if (new_flags & GFS2_DIF_JDATA)
261 			gfs2_ordered_del_inode(ip);
262 	}
263 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
264 	if (error)
265 		goto out;
266 	error = gfs2_meta_inode_buffer(ip, &bh);
267 	if (error)
268 		goto out_trans_end;
269 	inode->i_ctime = current_time(inode);
270 	gfs2_trans_add_meta(ip->i_gl, bh);
271 	ip->i_diskflags = new_flags;
272 	gfs2_dinode_out(ip, bh->b_data);
273 	brelse(bh);
274 	gfs2_set_inode_flags(inode);
275 	gfs2_set_aops(inode);
276 out_trans_end:
277 	gfs2_trans_end(sdp);
278 out:
279 	gfs2_glock_dq_uninit(&gh);
280 	return error;
281 }
282 
283 int gfs2_fileattr_set(struct user_namespace *mnt_userns,
284 		      struct dentry *dentry, struct fileattr *fa)
285 {
286 	struct inode *inode = d_inode(dentry);
287 	u32 fsflags = fa->flags, gfsflags = 0;
288 	u32 mask;
289 	int i;
290 
291 	if (d_is_special(dentry))
292 		return -ENOTTY;
293 
294 	if (fileattr_has_fsx(fa))
295 		return -EOPNOTSUPP;
296 
297 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
298 		if (fsflags & fsflag_gfs2flag[i].fsflag) {
299 			fsflags &= ~fsflag_gfs2flag[i].fsflag;
300 			gfsflags |= fsflag_gfs2flag[i].gfsflag;
301 		}
302 	}
303 	if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
304 		return -EINVAL;
305 
306 	mask = GFS2_FLAGS_USER_SET;
307 	if (S_ISDIR(inode->i_mode)) {
308 		mask &= ~GFS2_DIF_JDATA;
309 	} else {
310 		/* The GFS2_DIF_TOPDIR flag is only valid for directories. */
311 		if (gfsflags & GFS2_DIF_TOPDIR)
312 			return -EINVAL;
313 		mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
314 	}
315 
316 	return do_gfs2_set_flags(inode, gfsflags, mask, fsflags);
317 }
318 
319 static int gfs2_getlabel(struct file *filp, char __user *label)
320 {
321 	struct inode *inode = file_inode(filp);
322 	struct gfs2_sbd *sdp = GFS2_SB(inode);
323 
324 	if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
325 		return -EFAULT;
326 
327 	return 0;
328 }
329 
330 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
331 {
332 	switch(cmd) {
333 	case FITRIM:
334 		return gfs2_fitrim(filp, (void __user *)arg);
335 	case FS_IOC_GETFSLABEL:
336 		return gfs2_getlabel(filp, (char __user *)arg);
337 	}
338 
339 	return -ENOTTY;
340 }
341 
342 #ifdef CONFIG_COMPAT
343 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
344 {
345 	switch(cmd) {
346 	/* Keep this list in sync with gfs2_ioctl */
347 	case FITRIM:
348 	case FS_IOC_GETFSLABEL:
349 		break;
350 	default:
351 		return -ENOIOCTLCMD;
352 	}
353 
354 	return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
355 }
356 #else
357 #define gfs2_compat_ioctl NULL
358 #endif
359 
360 /**
361  * gfs2_size_hint - Give a hint to the size of a write request
362  * @filep: The struct file
363  * @offset: The file offset of the write
364  * @size: The length of the write
365  *
366  * When we are about to do a write, this function records the total
367  * write size in order to provide a suitable hint to the lower layers
368  * about how many blocks will be required.
369  *
370  */
371 
372 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
373 {
374 	struct inode *inode = file_inode(filep);
375 	struct gfs2_sbd *sdp = GFS2_SB(inode);
376 	struct gfs2_inode *ip = GFS2_I(inode);
377 	size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
378 	int hint = min_t(size_t, INT_MAX, blks);
379 
380 	if (hint > atomic_read(&ip->i_sizehint))
381 		atomic_set(&ip->i_sizehint, hint);
382 }
383 
384 /**
385  * gfs2_allocate_page_backing - Allocate blocks for a write fault
386  * @page: The (locked) page to allocate backing for
387  * @length: Size of the allocation
388  *
389  * We try to allocate all the blocks required for the page in one go.  This
390  * might fail for various reasons, so we keep trying until all the blocks to
391  * back this page are allocated.  If some of the blocks are already allocated,
392  * that is ok too.
393  */
394 static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
395 {
396 	u64 pos = page_offset(page);
397 
398 	do {
399 		struct iomap iomap = { };
400 
401 		if (gfs2_iomap_get_alloc(page->mapping->host, pos, length, &iomap))
402 			return -EIO;
403 
404 		if (length < iomap.length)
405 			iomap.length = length;
406 		length -= iomap.length;
407 		pos += iomap.length;
408 	} while (length > 0);
409 
410 	return 0;
411 }
412 
413 /**
414  * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
415  * @vma: The virtual memory area
416  * @vmf: The virtual memory fault containing the page to become writable
417  *
418  * When the page becomes writable, we need to ensure that we have
419  * blocks allocated on disk to back that page.
420  */
421 
422 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
423 {
424 	struct page *page = vmf->page;
425 	struct inode *inode = file_inode(vmf->vma->vm_file);
426 	struct gfs2_inode *ip = GFS2_I(inode);
427 	struct gfs2_sbd *sdp = GFS2_SB(inode);
428 	struct gfs2_alloc_parms ap = { .aflags = 0, };
429 	u64 offset = page_offset(page);
430 	unsigned int data_blocks, ind_blocks, rblocks;
431 	struct gfs2_holder gh;
432 	unsigned int length;
433 	loff_t size;
434 	int ret;
435 
436 	sb_start_pagefault(inode->i_sb);
437 
438 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
439 	ret = gfs2_glock_nq(&gh);
440 	if (ret)
441 		goto out_uninit;
442 
443 	/* Check page index against inode size */
444 	size = i_size_read(inode);
445 	if (offset >= size) {
446 		ret = -EINVAL;
447 		goto out_unlock;
448 	}
449 
450 	/* Update file times before taking page lock */
451 	file_update_time(vmf->vma->vm_file);
452 
453 	/* page is wholly or partially inside EOF */
454 	if (offset > size - PAGE_SIZE)
455 		length = offset_in_page(size);
456 	else
457 		length = PAGE_SIZE;
458 
459 	gfs2_size_hint(vmf->vma->vm_file, offset, length);
460 
461 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
462 	set_bit(GIF_SW_PAGED, &ip->i_flags);
463 
464 	/*
465 	 * iomap_writepage / iomap_writepages currently don't support inline
466 	 * files, so always unstuff here.
467 	 */
468 
469 	if (!gfs2_is_stuffed(ip) &&
470 	    !gfs2_write_alloc_required(ip, offset, length)) {
471 		lock_page(page);
472 		if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
473 			ret = -EAGAIN;
474 			unlock_page(page);
475 		}
476 		goto out_unlock;
477 	}
478 
479 	ret = gfs2_rindex_update(sdp);
480 	if (ret)
481 		goto out_unlock;
482 
483 	gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
484 	ap.target = data_blocks + ind_blocks;
485 	ret = gfs2_quota_lock_check(ip, &ap);
486 	if (ret)
487 		goto out_unlock;
488 	ret = gfs2_inplace_reserve(ip, &ap);
489 	if (ret)
490 		goto out_quota_unlock;
491 
492 	rblocks = RES_DINODE + ind_blocks;
493 	if (gfs2_is_jdata(ip))
494 		rblocks += data_blocks ? data_blocks : 1;
495 	if (ind_blocks || data_blocks) {
496 		rblocks += RES_STATFS + RES_QUOTA;
497 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
498 	}
499 	ret = gfs2_trans_begin(sdp, rblocks, 0);
500 	if (ret)
501 		goto out_trans_fail;
502 
503 	lock_page(page);
504 	ret = -EAGAIN;
505 	/* If truncated, we must retry the operation, we may have raced
506 	 * with the glock demotion code.
507 	 */
508 	if (!PageUptodate(page) || page->mapping != inode->i_mapping)
509 		goto out_trans_end;
510 
511 	/* Unstuff, if required, and allocate backing blocks for page */
512 	ret = 0;
513 	if (gfs2_is_stuffed(ip))
514 		ret = gfs2_unstuff_dinode(ip, page);
515 	if (ret == 0)
516 		ret = gfs2_allocate_page_backing(page, length);
517 
518 out_trans_end:
519 	if (ret)
520 		unlock_page(page);
521 	gfs2_trans_end(sdp);
522 out_trans_fail:
523 	gfs2_inplace_release(ip);
524 out_quota_unlock:
525 	gfs2_quota_unlock(ip);
526 out_unlock:
527 	gfs2_glock_dq(&gh);
528 out_uninit:
529 	gfs2_holder_uninit(&gh);
530 	if (ret == 0) {
531 		set_page_dirty(page);
532 		wait_for_stable_page(page);
533 	}
534 	sb_end_pagefault(inode->i_sb);
535 	return block_page_mkwrite_return(ret);
536 }
537 
538 static vm_fault_t gfs2_fault(struct vm_fault *vmf)
539 {
540 	struct inode *inode = file_inode(vmf->vma->vm_file);
541 	struct gfs2_inode *ip = GFS2_I(inode);
542 	struct gfs2_holder gh;
543 	vm_fault_t ret;
544 	int err;
545 
546 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
547 	err = gfs2_glock_nq(&gh);
548 	if (err) {
549 		ret = block_page_mkwrite_return(err);
550 		goto out_uninit;
551 	}
552 	ret = filemap_fault(vmf);
553 	gfs2_glock_dq(&gh);
554 out_uninit:
555 	gfs2_holder_uninit(&gh);
556 	return ret;
557 }
558 
559 static const struct vm_operations_struct gfs2_vm_ops = {
560 	.fault = gfs2_fault,
561 	.map_pages = filemap_map_pages,
562 	.page_mkwrite = gfs2_page_mkwrite,
563 };
564 
565 /**
566  * gfs2_mmap -
567  * @file: The file to map
568  * @vma: The VMA which described the mapping
569  *
570  * There is no need to get a lock here unless we should be updating
571  * atime. We ignore any locking errors since the only consequence is
572  * a missed atime update (which will just be deferred until later).
573  *
574  * Returns: 0
575  */
576 
577 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
578 {
579 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
580 
581 	if (!(file->f_flags & O_NOATIME) &&
582 	    !IS_NOATIME(&ip->i_inode)) {
583 		struct gfs2_holder i_gh;
584 		int error;
585 
586 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
587 					   &i_gh);
588 		if (error)
589 			return error;
590 		/* grab lock to update inode */
591 		gfs2_glock_dq_uninit(&i_gh);
592 		file_accessed(file);
593 	}
594 	vma->vm_ops = &gfs2_vm_ops;
595 
596 	return 0;
597 }
598 
599 /**
600  * gfs2_open_common - This is common to open and atomic_open
601  * @inode: The inode being opened
602  * @file: The file being opened
603  *
604  * This maybe called under a glock or not depending upon how it has
605  * been called. We must always be called under a glock for regular
606  * files, however. For other file types, it does not matter whether
607  * we hold the glock or not.
608  *
609  * Returns: Error code or 0 for success
610  */
611 
612 int gfs2_open_common(struct inode *inode, struct file *file)
613 {
614 	struct gfs2_file *fp;
615 	int ret;
616 
617 	if (S_ISREG(inode->i_mode)) {
618 		ret = generic_file_open(inode, file);
619 		if (ret)
620 			return ret;
621 	}
622 
623 	fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
624 	if (!fp)
625 		return -ENOMEM;
626 
627 	mutex_init(&fp->f_fl_mutex);
628 
629 	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
630 	file->private_data = fp;
631 	if (file->f_mode & FMODE_WRITE) {
632 		ret = gfs2_qa_get(GFS2_I(inode));
633 		if (ret)
634 			goto fail;
635 	}
636 	return 0;
637 
638 fail:
639 	kfree(file->private_data);
640 	file->private_data = NULL;
641 	return ret;
642 }
643 
644 /**
645  * gfs2_open - open a file
646  * @inode: the inode to open
647  * @file: the struct file for this opening
648  *
649  * After atomic_open, this function is only used for opening files
650  * which are already cached. We must still get the glock for regular
651  * files to ensure that we have the file size uptodate for the large
652  * file check which is in the common code. That is only an issue for
653  * regular files though.
654  *
655  * Returns: errno
656  */
657 
658 static int gfs2_open(struct inode *inode, struct file *file)
659 {
660 	struct gfs2_inode *ip = GFS2_I(inode);
661 	struct gfs2_holder i_gh;
662 	int error;
663 	bool need_unlock = false;
664 
665 	if (S_ISREG(ip->i_inode.i_mode)) {
666 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
667 					   &i_gh);
668 		if (error)
669 			return error;
670 		need_unlock = true;
671 	}
672 
673 	error = gfs2_open_common(inode, file);
674 
675 	if (need_unlock)
676 		gfs2_glock_dq_uninit(&i_gh);
677 
678 	return error;
679 }
680 
681 /**
682  * gfs2_release - called to close a struct file
683  * @inode: the inode the struct file belongs to
684  * @file: the struct file being closed
685  *
686  * Returns: errno
687  */
688 
689 static int gfs2_release(struct inode *inode, struct file *file)
690 {
691 	struct gfs2_inode *ip = GFS2_I(inode);
692 
693 	kfree(file->private_data);
694 	file->private_data = NULL;
695 
696 	if (gfs2_rs_active(&ip->i_res))
697 		gfs2_rs_delete(ip, &inode->i_writecount);
698 	if (file->f_mode & FMODE_WRITE)
699 		gfs2_qa_put(ip);
700 	return 0;
701 }
702 
703 /**
704  * gfs2_fsync - sync the dirty data for a file (across the cluster)
705  * @file: the file that points to the dentry
706  * @start: the start position in the file to sync
707  * @end: the end position in the file to sync
708  * @datasync: set if we can ignore timestamp changes
709  *
710  * We split the data flushing here so that we don't wait for the data
711  * until after we've also sent the metadata to disk. Note that for
712  * data=ordered, we will write & wait for the data at the log flush
713  * stage anyway, so this is unlikely to make much of a difference
714  * except in the data=writeback case.
715  *
716  * If the fdatawrite fails due to any reason except -EIO, we will
717  * continue the remainder of the fsync, although we'll still report
718  * the error at the end. This is to match filemap_write_and_wait_range()
719  * behaviour.
720  *
721  * Returns: errno
722  */
723 
724 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
725 		      int datasync)
726 {
727 	struct address_space *mapping = file->f_mapping;
728 	struct inode *inode = mapping->host;
729 	int sync_state = inode->i_state & I_DIRTY;
730 	struct gfs2_inode *ip = GFS2_I(inode);
731 	int ret = 0, ret1 = 0;
732 
733 	if (mapping->nrpages) {
734 		ret1 = filemap_fdatawrite_range(mapping, start, end);
735 		if (ret1 == -EIO)
736 			return ret1;
737 	}
738 
739 	if (!gfs2_is_jdata(ip))
740 		sync_state &= ~I_DIRTY_PAGES;
741 	if (datasync)
742 		sync_state &= ~I_DIRTY_SYNC;
743 
744 	if (sync_state) {
745 		ret = sync_inode_metadata(inode, 1);
746 		if (ret)
747 			return ret;
748 		if (gfs2_is_jdata(ip))
749 			ret = file_write_and_wait(file);
750 		if (ret)
751 			return ret;
752 		gfs2_ail_flush(ip->i_gl, 1);
753 	}
754 
755 	if (mapping->nrpages)
756 		ret = file_fdatawait_range(file, start, end);
757 
758 	return ret ? ret : ret1;
759 }
760 
761 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
762 				     struct gfs2_holder *gh)
763 {
764 	struct file *file = iocb->ki_filp;
765 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
766 	size_t count = iov_iter_count(to);
767 	ssize_t ret;
768 
769 	if (!count)
770 		return 0; /* skip atime */
771 
772 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
773 	ret = gfs2_glock_nq(gh);
774 	if (ret)
775 		goto out_uninit;
776 
777 	ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL, 0);
778 	gfs2_glock_dq(gh);
779 out_uninit:
780 	gfs2_holder_uninit(gh);
781 	return ret;
782 }
783 
784 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
785 				      struct gfs2_holder *gh)
786 {
787 	struct file *file = iocb->ki_filp;
788 	struct inode *inode = file->f_mapping->host;
789 	struct gfs2_inode *ip = GFS2_I(inode);
790 	size_t len = iov_iter_count(from);
791 	loff_t offset = iocb->ki_pos;
792 	ssize_t ret;
793 
794 	/*
795 	 * Deferred lock, even if its a write, since we do no allocation on
796 	 * this path. All we need to change is the atime, and this lock mode
797 	 * ensures that other nodes have flushed their buffered read caches
798 	 * (i.e. their page cache entries for this inode). We do not,
799 	 * unfortunately, have the option of only flushing a range like the
800 	 * VFS does.
801 	 */
802 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
803 	ret = gfs2_glock_nq(gh);
804 	if (ret)
805 		goto out_uninit;
806 
807 	/* Silently fall back to buffered I/O when writing beyond EOF */
808 	if (offset + len > i_size_read(&ip->i_inode))
809 		goto out;
810 
811 	ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL, 0);
812 	if (ret == -ENOTBLK)
813 		ret = 0;
814 out:
815 	gfs2_glock_dq(gh);
816 out_uninit:
817 	gfs2_holder_uninit(gh);
818 	return ret;
819 }
820 
821 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
822 {
823 	struct gfs2_inode *ip;
824 	struct gfs2_holder gh;
825 	size_t written = 0;
826 	ssize_t ret;
827 
828 	if (iocb->ki_flags & IOCB_DIRECT) {
829 		ret = gfs2_file_direct_read(iocb, to, &gh);
830 		if (likely(ret != -ENOTBLK))
831 			return ret;
832 		iocb->ki_flags &= ~IOCB_DIRECT;
833 	}
834 	iocb->ki_flags |= IOCB_NOIO;
835 	ret = generic_file_read_iter(iocb, to);
836 	iocb->ki_flags &= ~IOCB_NOIO;
837 	if (ret >= 0) {
838 		if (!iov_iter_count(to))
839 			return ret;
840 		written = ret;
841 	} else {
842 		if (ret != -EAGAIN)
843 			return ret;
844 		if (iocb->ki_flags & IOCB_NOWAIT)
845 			return ret;
846 	}
847 	ip = GFS2_I(iocb->ki_filp->f_mapping->host);
848 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
849 	ret = gfs2_glock_nq(&gh);
850 	if (ret)
851 		goto out_uninit;
852 	ret = generic_file_read_iter(iocb, to);
853 	if (ret > 0)
854 		written += ret;
855 	gfs2_glock_dq(&gh);
856 out_uninit:
857 	gfs2_holder_uninit(&gh);
858 	return written ? written : ret;
859 }
860 
861 /**
862  * gfs2_file_write_iter - Perform a write to a file
863  * @iocb: The io context
864  * @from: The data to write
865  *
866  * We have to do a lock/unlock here to refresh the inode size for
867  * O_APPEND writes, otherwise we can land up writing at the wrong
868  * offset. There is still a race, but provided the app is using its
869  * own file locking, this will make O_APPEND work as expected.
870  *
871  */
872 
873 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
874 {
875 	struct file *file = iocb->ki_filp;
876 	struct inode *inode = file_inode(file);
877 	struct gfs2_inode *ip = GFS2_I(inode);
878 	struct gfs2_holder gh;
879 	ssize_t ret;
880 
881 	gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
882 
883 	if (iocb->ki_flags & IOCB_APPEND) {
884 		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
885 		if (ret)
886 			return ret;
887 		gfs2_glock_dq_uninit(&gh);
888 	}
889 
890 	inode_lock(inode);
891 	ret = generic_write_checks(iocb, from);
892 	if (ret <= 0)
893 		goto out_unlock;
894 
895 	ret = file_remove_privs(file);
896 	if (ret)
897 		goto out_unlock;
898 
899 	ret = file_update_time(file);
900 	if (ret)
901 		goto out_unlock;
902 
903 	if (iocb->ki_flags & IOCB_DIRECT) {
904 		struct address_space *mapping = file->f_mapping;
905 		ssize_t buffered, ret2;
906 
907 		ret = gfs2_file_direct_write(iocb, from, &gh);
908 		if (ret < 0 || !iov_iter_count(from))
909 			goto out_unlock;
910 
911 		iocb->ki_flags |= IOCB_DSYNC;
912 		current->backing_dev_info = inode_to_bdi(inode);
913 		buffered = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
914 		current->backing_dev_info = NULL;
915 		if (unlikely(buffered <= 0))
916 			goto out_unlock;
917 
918 		/*
919 		 * We need to ensure that the page cache pages are written to
920 		 * disk and invalidated to preserve the expected O_DIRECT
921 		 * semantics.  If the writeback or invalidate fails, only report
922 		 * the direct I/O range as we don't know if the buffered pages
923 		 * made it to disk.
924 		 */
925 		iocb->ki_pos += buffered;
926 		ret2 = generic_write_sync(iocb, buffered);
927 		invalidate_mapping_pages(mapping,
928 				(iocb->ki_pos - buffered) >> PAGE_SHIFT,
929 				(iocb->ki_pos - 1) >> PAGE_SHIFT);
930 		if (!ret || ret2 > 0)
931 			ret += ret2;
932 	} else {
933 		current->backing_dev_info = inode_to_bdi(inode);
934 		ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
935 		current->backing_dev_info = NULL;
936 		if (likely(ret > 0)) {
937 			iocb->ki_pos += ret;
938 			ret = generic_write_sync(iocb, ret);
939 		}
940 	}
941 
942 out_unlock:
943 	inode_unlock(inode);
944 	return ret;
945 }
946 
947 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
948 			   int mode)
949 {
950 	struct super_block *sb = inode->i_sb;
951 	struct gfs2_inode *ip = GFS2_I(inode);
952 	loff_t end = offset + len;
953 	struct buffer_head *dibh;
954 	int error;
955 
956 	error = gfs2_meta_inode_buffer(ip, &dibh);
957 	if (unlikely(error))
958 		return error;
959 
960 	gfs2_trans_add_meta(ip->i_gl, dibh);
961 
962 	if (gfs2_is_stuffed(ip)) {
963 		error = gfs2_unstuff_dinode(ip, NULL);
964 		if (unlikely(error))
965 			goto out;
966 	}
967 
968 	while (offset < end) {
969 		struct iomap iomap = { };
970 
971 		error = gfs2_iomap_get_alloc(inode, offset, end - offset,
972 					     &iomap);
973 		if (error)
974 			goto out;
975 		offset = iomap.offset + iomap.length;
976 		if (!(iomap.flags & IOMAP_F_NEW))
977 			continue;
978 		error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
979 					 iomap.length >> inode->i_blkbits,
980 					 GFP_NOFS);
981 		if (error) {
982 			fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
983 			goto out;
984 		}
985 	}
986 out:
987 	brelse(dibh);
988 	return error;
989 }
990 
991 /**
992  * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
993  *                     blocks, determine how many bytes can be written.
994  * @ip:          The inode in question.
995  * @len:         Max cap of bytes. What we return in *len must be <= this.
996  * @data_blocks: Compute and return the number of data blocks needed
997  * @ind_blocks:  Compute and return the number of indirect blocks needed
998  * @max_blocks:  The total blocks available to work with.
999  *
1000  * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
1001  */
1002 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
1003 			    unsigned int *data_blocks, unsigned int *ind_blocks,
1004 			    unsigned int max_blocks)
1005 {
1006 	loff_t max = *len;
1007 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1008 	unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
1009 
1010 	for (tmp = max_data; tmp > sdp->sd_diptrs;) {
1011 		tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
1012 		max_data -= tmp;
1013 	}
1014 
1015 	*data_blocks = max_data;
1016 	*ind_blocks = max_blocks - max_data;
1017 	*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
1018 	if (*len > max) {
1019 		*len = max;
1020 		gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
1021 	}
1022 }
1023 
1024 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1025 {
1026 	struct inode *inode = file_inode(file);
1027 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1028 	struct gfs2_inode *ip = GFS2_I(inode);
1029 	struct gfs2_alloc_parms ap = { .aflags = 0, };
1030 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1031 	loff_t bytes, max_bytes, max_blks;
1032 	int error;
1033 	const loff_t pos = offset;
1034 	const loff_t count = len;
1035 	loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1036 	loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1037 	loff_t max_chunk_size = UINT_MAX & bsize_mask;
1038 
1039 	next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1040 
1041 	offset &= bsize_mask;
1042 
1043 	len = next - offset;
1044 	bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1045 	if (!bytes)
1046 		bytes = UINT_MAX;
1047 	bytes &= bsize_mask;
1048 	if (bytes == 0)
1049 		bytes = sdp->sd_sb.sb_bsize;
1050 
1051 	gfs2_size_hint(file, offset, len);
1052 
1053 	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1054 	ap.min_target = data_blocks + ind_blocks;
1055 
1056 	while (len > 0) {
1057 		if (len < bytes)
1058 			bytes = len;
1059 		if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1060 			len -= bytes;
1061 			offset += bytes;
1062 			continue;
1063 		}
1064 
1065 		/* We need to determine how many bytes we can actually
1066 		 * fallocate without exceeding quota or going over the
1067 		 * end of the fs. We start off optimistically by assuming
1068 		 * we can write max_bytes */
1069 		max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1070 
1071 		/* Since max_bytes is most likely a theoretical max, we
1072 		 * calculate a more realistic 'bytes' to serve as a good
1073 		 * starting point for the number of bytes we may be able
1074 		 * to write */
1075 		gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1076 		ap.target = data_blocks + ind_blocks;
1077 
1078 		error = gfs2_quota_lock_check(ip, &ap);
1079 		if (error)
1080 			return error;
1081 		/* ap.allowed tells us how many blocks quota will allow
1082 		 * us to write. Check if this reduces max_blks */
1083 		max_blks = UINT_MAX;
1084 		if (ap.allowed)
1085 			max_blks = ap.allowed;
1086 
1087 		error = gfs2_inplace_reserve(ip, &ap);
1088 		if (error)
1089 			goto out_qunlock;
1090 
1091 		/* check if the selected rgrp limits our max_blks further */
1092 		if (ip->i_res.rs_reserved < max_blks)
1093 			max_blks = ip->i_res.rs_reserved;
1094 
1095 		/* Almost done. Calculate bytes that can be written using
1096 		 * max_blks. We also recompute max_bytes, data_blocks and
1097 		 * ind_blocks */
1098 		calc_max_reserv(ip, &max_bytes, &data_blocks,
1099 				&ind_blocks, max_blks);
1100 
1101 		rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1102 			  RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1103 		if (gfs2_is_jdata(ip))
1104 			rblocks += data_blocks ? data_blocks : 1;
1105 
1106 		error = gfs2_trans_begin(sdp, rblocks,
1107 					 PAGE_SIZE >> inode->i_blkbits);
1108 		if (error)
1109 			goto out_trans_fail;
1110 
1111 		error = fallocate_chunk(inode, offset, max_bytes, mode);
1112 		gfs2_trans_end(sdp);
1113 
1114 		if (error)
1115 			goto out_trans_fail;
1116 
1117 		len -= max_bytes;
1118 		offset += max_bytes;
1119 		gfs2_inplace_release(ip);
1120 		gfs2_quota_unlock(ip);
1121 	}
1122 
1123 	if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1124 		i_size_write(inode, pos + count);
1125 	file_update_time(file);
1126 	mark_inode_dirty(inode);
1127 
1128 	if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1129 		return vfs_fsync_range(file, pos, pos + count - 1,
1130 			       (file->f_flags & __O_SYNC) ? 0 : 1);
1131 	return 0;
1132 
1133 out_trans_fail:
1134 	gfs2_inplace_release(ip);
1135 out_qunlock:
1136 	gfs2_quota_unlock(ip);
1137 	return error;
1138 }
1139 
1140 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1141 {
1142 	struct inode *inode = file_inode(file);
1143 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1144 	struct gfs2_inode *ip = GFS2_I(inode);
1145 	struct gfs2_holder gh;
1146 	int ret;
1147 
1148 	if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1149 		return -EOPNOTSUPP;
1150 	/* fallocate is needed by gfs2_grow to reserve space in the rindex */
1151 	if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1152 		return -EOPNOTSUPP;
1153 
1154 	inode_lock(inode);
1155 
1156 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1157 	ret = gfs2_glock_nq(&gh);
1158 	if (ret)
1159 		goto out_uninit;
1160 
1161 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1162 	    (offset + len) > inode->i_size) {
1163 		ret = inode_newsize_ok(inode, offset + len);
1164 		if (ret)
1165 			goto out_unlock;
1166 	}
1167 
1168 	ret = get_write_access(inode);
1169 	if (ret)
1170 		goto out_unlock;
1171 
1172 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1173 		ret = __gfs2_punch_hole(file, offset, len);
1174 	} else {
1175 		ret = __gfs2_fallocate(file, mode, offset, len);
1176 		if (ret)
1177 			gfs2_rs_deltree(&ip->i_res);
1178 	}
1179 
1180 	put_write_access(inode);
1181 out_unlock:
1182 	gfs2_glock_dq(&gh);
1183 out_uninit:
1184 	gfs2_holder_uninit(&gh);
1185 	inode_unlock(inode);
1186 	return ret;
1187 }
1188 
1189 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1190 				      struct file *out, loff_t *ppos,
1191 				      size_t len, unsigned int flags)
1192 {
1193 	ssize_t ret;
1194 
1195 	gfs2_size_hint(out, *ppos, len);
1196 
1197 	ret = iter_file_splice_write(pipe, out, ppos, len, flags);
1198 	return ret;
1199 }
1200 
1201 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1202 
1203 /**
1204  * gfs2_lock - acquire/release a posix lock on a file
1205  * @file: the file pointer
1206  * @cmd: either modify or retrieve lock state, possibly wait
1207  * @fl: type and range of lock
1208  *
1209  * Returns: errno
1210  */
1211 
1212 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1213 {
1214 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1215 	struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1216 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1217 
1218 	if (!(fl->fl_flags & FL_POSIX))
1219 		return -ENOLCK;
1220 	if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1221 		return -ENOLCK;
1222 
1223 	if (cmd == F_CANCELLK) {
1224 		/* Hack: */
1225 		cmd = F_SETLK;
1226 		fl->fl_type = F_UNLCK;
1227 	}
1228 	if (unlikely(gfs2_withdrawn(sdp))) {
1229 		if (fl->fl_type == F_UNLCK)
1230 			locks_lock_file_wait(file, fl);
1231 		return -EIO;
1232 	}
1233 	if (IS_GETLK(cmd))
1234 		return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1235 	else if (fl->fl_type == F_UNLCK)
1236 		return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1237 	else
1238 		return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1239 }
1240 
1241 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1242 {
1243 	struct gfs2_file *fp = file->private_data;
1244 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1245 	struct gfs2_inode *ip = GFS2_I(file_inode(file));
1246 	struct gfs2_glock *gl;
1247 	unsigned int state;
1248 	u16 flags;
1249 	int error = 0;
1250 	int sleeptime;
1251 
1252 	state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1253 	flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1254 
1255 	mutex_lock(&fp->f_fl_mutex);
1256 
1257 	if (gfs2_holder_initialized(fl_gh)) {
1258 		struct file_lock request;
1259 		if (fl_gh->gh_state == state)
1260 			goto out;
1261 		locks_init_lock(&request);
1262 		request.fl_type = F_UNLCK;
1263 		request.fl_flags = FL_FLOCK;
1264 		locks_lock_file_wait(file, &request);
1265 		gfs2_glock_dq(fl_gh);
1266 		gfs2_holder_reinit(state, flags, fl_gh);
1267 	} else {
1268 		error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1269 				       &gfs2_flock_glops, CREATE, &gl);
1270 		if (error)
1271 			goto out;
1272 		gfs2_holder_init(gl, state, flags, fl_gh);
1273 		gfs2_glock_put(gl);
1274 	}
1275 	for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1276 		error = gfs2_glock_nq(fl_gh);
1277 		if (error != GLR_TRYFAILED)
1278 			break;
1279 		fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1280 		fl_gh->gh_error = 0;
1281 		msleep(sleeptime);
1282 	}
1283 	if (error) {
1284 		gfs2_holder_uninit(fl_gh);
1285 		if (error == GLR_TRYFAILED)
1286 			error = -EAGAIN;
1287 	} else {
1288 		error = locks_lock_file_wait(file, fl);
1289 		gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1290 	}
1291 
1292 out:
1293 	mutex_unlock(&fp->f_fl_mutex);
1294 	return error;
1295 }
1296 
1297 static void do_unflock(struct file *file, struct file_lock *fl)
1298 {
1299 	struct gfs2_file *fp = file->private_data;
1300 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1301 
1302 	mutex_lock(&fp->f_fl_mutex);
1303 	locks_lock_file_wait(file, fl);
1304 	if (gfs2_holder_initialized(fl_gh)) {
1305 		gfs2_glock_dq(fl_gh);
1306 		gfs2_holder_uninit(fl_gh);
1307 	}
1308 	mutex_unlock(&fp->f_fl_mutex);
1309 }
1310 
1311 /**
1312  * gfs2_flock - acquire/release a flock lock on a file
1313  * @file: the file pointer
1314  * @cmd: either modify or retrieve lock state, possibly wait
1315  * @fl: type and range of lock
1316  *
1317  * Returns: errno
1318  */
1319 
1320 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1321 {
1322 	if (!(fl->fl_flags & FL_FLOCK))
1323 		return -ENOLCK;
1324 	if (fl->fl_type & LOCK_MAND)
1325 		return -EOPNOTSUPP;
1326 
1327 	if (fl->fl_type == F_UNLCK) {
1328 		do_unflock(file, fl);
1329 		return 0;
1330 	} else {
1331 		return do_flock(file, cmd, fl);
1332 	}
1333 }
1334 
1335 const struct file_operations gfs2_file_fops = {
1336 	.llseek		= gfs2_llseek,
1337 	.read_iter	= gfs2_file_read_iter,
1338 	.write_iter	= gfs2_file_write_iter,
1339 	.iopoll		= iomap_dio_iopoll,
1340 	.unlocked_ioctl	= gfs2_ioctl,
1341 	.compat_ioctl	= gfs2_compat_ioctl,
1342 	.mmap		= gfs2_mmap,
1343 	.open		= gfs2_open,
1344 	.release	= gfs2_release,
1345 	.fsync		= gfs2_fsync,
1346 	.lock		= gfs2_lock,
1347 	.flock		= gfs2_flock,
1348 	.splice_read	= generic_file_splice_read,
1349 	.splice_write	= gfs2_file_splice_write,
1350 	.setlease	= simple_nosetlease,
1351 	.fallocate	= gfs2_fallocate,
1352 };
1353 
1354 const struct file_operations gfs2_dir_fops = {
1355 	.iterate_shared	= gfs2_readdir,
1356 	.unlocked_ioctl	= gfs2_ioctl,
1357 	.compat_ioctl	= gfs2_compat_ioctl,
1358 	.open		= gfs2_open,
1359 	.release	= gfs2_release,
1360 	.fsync		= gfs2_fsync,
1361 	.lock		= gfs2_lock,
1362 	.flock		= gfs2_flock,
1363 	.llseek		= default_llseek,
1364 };
1365 
1366 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1367 
1368 const struct file_operations gfs2_file_fops_nolock = {
1369 	.llseek		= gfs2_llseek,
1370 	.read_iter	= gfs2_file_read_iter,
1371 	.write_iter	= gfs2_file_write_iter,
1372 	.iopoll		= iomap_dio_iopoll,
1373 	.unlocked_ioctl	= gfs2_ioctl,
1374 	.compat_ioctl	= gfs2_compat_ioctl,
1375 	.mmap		= gfs2_mmap,
1376 	.open		= gfs2_open,
1377 	.release	= gfs2_release,
1378 	.fsync		= gfs2_fsync,
1379 	.splice_read	= generic_file_splice_read,
1380 	.splice_write	= gfs2_file_splice_write,
1381 	.setlease	= generic_setlease,
1382 	.fallocate	= gfs2_fallocate,
1383 };
1384 
1385 const struct file_operations gfs2_dir_fops_nolock = {
1386 	.iterate_shared	= gfs2_readdir,
1387 	.unlocked_ioctl	= gfs2_ioctl,
1388 	.compat_ioctl	= gfs2_compat_ioctl,
1389 	.open		= gfs2_open,
1390 	.release	= gfs2_release,
1391 	.fsync		= gfs2_fsync,
1392 	.llseek		= default_llseek,
1393 };
1394 
1395