xref: /openbmc/linux/fs/fuse/file.c (revision 7a36094d61bfe9843de5484ff0140227983ac5d5)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 
22 static const struct file_operations fuse_direct_io_file_operations;
23 
24 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
25 			  int opcode, struct fuse_open_out *outargp)
26 {
27 	struct fuse_open_in inarg;
28 	FUSE_ARGS(args);
29 
30 	memset(&inarg, 0, sizeof(inarg));
31 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
32 	if (!fc->atomic_o_trunc)
33 		inarg.flags &= ~O_TRUNC;
34 	args.in.h.opcode = opcode;
35 	args.in.h.nodeid = nodeid;
36 	args.in.numargs = 1;
37 	args.in.args[0].size = sizeof(inarg);
38 	args.in.args[0].value = &inarg;
39 	args.out.numargs = 1;
40 	args.out.args[0].size = sizeof(*outargp);
41 	args.out.args[0].value = outargp;
42 
43 	return fuse_simple_request(fc, &args);
44 }
45 
46 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
47 {
48 	struct fuse_file *ff;
49 
50 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL);
51 	if (unlikely(!ff))
52 		return NULL;
53 
54 	ff->fc = fc;
55 	ff->reserved_req = fuse_request_alloc(0);
56 	if (unlikely(!ff->reserved_req)) {
57 		kfree(ff);
58 		return NULL;
59 	}
60 
61 	INIT_LIST_HEAD(&ff->write_entry);
62 	refcount_set(&ff->count, 1);
63 	RB_CLEAR_NODE(&ff->polled_node);
64 	init_waitqueue_head(&ff->poll_wait);
65 
66 	spin_lock(&fc->lock);
67 	ff->kh = ++fc->khctr;
68 	spin_unlock(&fc->lock);
69 
70 	return ff;
71 }
72 
73 void fuse_file_free(struct fuse_file *ff)
74 {
75 	fuse_request_free(ff->reserved_req);
76 	kfree(ff);
77 }
78 
79 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
80 {
81 	refcount_inc(&ff->count);
82 	return ff;
83 }
84 
85 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req)
86 {
87 	iput(req->misc.release.inode);
88 }
89 
90 static void fuse_file_put(struct fuse_file *ff, bool sync)
91 {
92 	if (refcount_dec_and_test(&ff->count)) {
93 		struct fuse_req *req = ff->reserved_req;
94 
95 		if (ff->fc->no_open) {
96 			/*
97 			 * Drop the release request when client does not
98 			 * implement 'open'
99 			 */
100 			__clear_bit(FR_BACKGROUND, &req->flags);
101 			iput(req->misc.release.inode);
102 			fuse_put_request(ff->fc, req);
103 		} else if (sync) {
104 			__set_bit(FR_FORCE, &req->flags);
105 			__clear_bit(FR_BACKGROUND, &req->flags);
106 			fuse_request_send(ff->fc, req);
107 			iput(req->misc.release.inode);
108 			fuse_put_request(ff->fc, req);
109 		} else {
110 			req->end = fuse_release_end;
111 			__set_bit(FR_BACKGROUND, &req->flags);
112 			fuse_request_send_background(ff->fc, req);
113 		}
114 		kfree(ff);
115 	}
116 }
117 
118 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
119 		 bool isdir)
120 {
121 	struct fuse_file *ff;
122 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
123 
124 	ff = fuse_file_alloc(fc);
125 	if (!ff)
126 		return -ENOMEM;
127 
128 	ff->fh = 0;
129 	ff->open_flags = FOPEN_KEEP_CACHE; /* Default for no-open */
130 	if (!fc->no_open || isdir) {
131 		struct fuse_open_out outarg;
132 		int err;
133 
134 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
135 		if (!err) {
136 			ff->fh = outarg.fh;
137 			ff->open_flags = outarg.open_flags;
138 
139 		} else if (err != -ENOSYS || isdir) {
140 			fuse_file_free(ff);
141 			return err;
142 		} else {
143 			fc->no_open = 1;
144 		}
145 	}
146 
147 	if (isdir)
148 		ff->open_flags &= ~FOPEN_DIRECT_IO;
149 
150 	ff->nodeid = nodeid;
151 	file->private_data = ff;
152 
153 	return 0;
154 }
155 EXPORT_SYMBOL_GPL(fuse_do_open);
156 
157 static void fuse_link_write_file(struct file *file)
158 {
159 	struct inode *inode = file_inode(file);
160 	struct fuse_conn *fc = get_fuse_conn(inode);
161 	struct fuse_inode *fi = get_fuse_inode(inode);
162 	struct fuse_file *ff = file->private_data;
163 	/*
164 	 * file may be written through mmap, so chain it onto the
165 	 * inodes's write_file list
166 	 */
167 	spin_lock(&fc->lock);
168 	if (list_empty(&ff->write_entry))
169 		list_add(&ff->write_entry, &fi->write_files);
170 	spin_unlock(&fc->lock);
171 }
172 
173 void fuse_finish_open(struct inode *inode, struct file *file)
174 {
175 	struct fuse_file *ff = file->private_data;
176 	struct fuse_conn *fc = get_fuse_conn(inode);
177 
178 	if (ff->open_flags & FOPEN_DIRECT_IO)
179 		file->f_op = &fuse_direct_io_file_operations;
180 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
181 		invalidate_inode_pages2(inode->i_mapping);
182 	if (ff->open_flags & FOPEN_NONSEEKABLE)
183 		nonseekable_open(inode, file);
184 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
185 		struct fuse_inode *fi = get_fuse_inode(inode);
186 
187 		spin_lock(&fc->lock);
188 		fi->attr_version = ++fc->attr_version;
189 		i_size_write(inode, 0);
190 		spin_unlock(&fc->lock);
191 		fuse_invalidate_attr(inode);
192 		if (fc->writeback_cache)
193 			file_update_time(file);
194 	}
195 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
196 		fuse_link_write_file(file);
197 }
198 
199 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
200 {
201 	struct fuse_conn *fc = get_fuse_conn(inode);
202 	int err;
203 	bool lock_inode = (file->f_flags & O_TRUNC) &&
204 			  fc->atomic_o_trunc &&
205 			  fc->writeback_cache;
206 
207 	err = generic_file_open(inode, file);
208 	if (err)
209 		return err;
210 
211 	if (lock_inode)
212 		inode_lock(inode);
213 
214 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
215 
216 	if (!err)
217 		fuse_finish_open(inode, file);
218 
219 	if (lock_inode)
220 		inode_unlock(inode);
221 
222 	return err;
223 }
224 
225 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode)
226 {
227 	struct fuse_conn *fc = ff->fc;
228 	struct fuse_req *req = ff->reserved_req;
229 	struct fuse_release_in *inarg = &req->misc.release.in;
230 
231 	spin_lock(&fc->lock);
232 	list_del(&ff->write_entry);
233 	if (!RB_EMPTY_NODE(&ff->polled_node))
234 		rb_erase(&ff->polled_node, &fc->polled_files);
235 	spin_unlock(&fc->lock);
236 
237 	wake_up_interruptible_all(&ff->poll_wait);
238 
239 	inarg->fh = ff->fh;
240 	inarg->flags = flags;
241 	req->in.h.opcode = opcode;
242 	req->in.h.nodeid = ff->nodeid;
243 	req->in.numargs = 1;
244 	req->in.args[0].size = sizeof(struct fuse_release_in);
245 	req->in.args[0].value = inarg;
246 }
247 
248 void fuse_release_common(struct file *file, int opcode)
249 {
250 	struct fuse_file *ff = file->private_data;
251 	struct fuse_req *req = ff->reserved_req;
252 
253 	fuse_prepare_release(ff, file->f_flags, opcode);
254 
255 	if (ff->flock) {
256 		struct fuse_release_in *inarg = &req->misc.release.in;
257 		inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
258 		inarg->lock_owner = fuse_lock_owner_id(ff->fc,
259 						       (fl_owner_t) file);
260 	}
261 	/* Hold inode until release is finished */
262 	req->misc.release.inode = igrab(file_inode(file));
263 
264 	/*
265 	 * Normally this will send the RELEASE request, however if
266 	 * some asynchronous READ or WRITE requests are outstanding,
267 	 * the sending will be delayed.
268 	 *
269 	 * Make the release synchronous if this is a fuseblk mount,
270 	 * synchronous RELEASE is allowed (and desirable) in this case
271 	 * because the server can be trusted not to screw up.
272 	 */
273 	fuse_file_put(ff, ff->fc->destroy_req != NULL);
274 }
275 
276 static int fuse_open(struct inode *inode, struct file *file)
277 {
278 	return fuse_open_common(inode, file, false);
279 }
280 
281 static int fuse_release(struct inode *inode, struct file *file)
282 {
283 	struct fuse_conn *fc = get_fuse_conn(inode);
284 
285 	/* see fuse_vma_close() for !writeback_cache case */
286 	if (fc->writeback_cache)
287 		write_inode_now(inode, 1);
288 
289 	fuse_release_common(file, FUSE_RELEASE);
290 
291 	/* return value is ignored by VFS */
292 	return 0;
293 }
294 
295 void fuse_sync_release(struct fuse_file *ff, int flags)
296 {
297 	WARN_ON(refcount_read(&ff->count) > 1);
298 	fuse_prepare_release(ff, flags, FUSE_RELEASE);
299 	/*
300 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
301 	 * synchronous, we are fine with not doing igrab() here"
302 	 */
303 	fuse_file_put(ff, true);
304 }
305 EXPORT_SYMBOL_GPL(fuse_sync_release);
306 
307 /*
308  * Scramble the ID space with XTEA, so that the value of the files_struct
309  * pointer is not exposed to userspace.
310  */
311 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
312 {
313 	u32 *k = fc->scramble_key;
314 	u64 v = (unsigned long) id;
315 	u32 v0 = v;
316 	u32 v1 = v >> 32;
317 	u32 sum = 0;
318 	int i;
319 
320 	for (i = 0; i < 32; i++) {
321 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
322 		sum += 0x9E3779B9;
323 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
324 	}
325 
326 	return (u64) v0 + ((u64) v1 << 32);
327 }
328 
329 /*
330  * Check if any page in a range is under writeback
331  *
332  * This is currently done by walking the list of writepage requests
333  * for the inode, which can be pretty inefficient.
334  */
335 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
336 				   pgoff_t idx_to)
337 {
338 	struct fuse_conn *fc = get_fuse_conn(inode);
339 	struct fuse_inode *fi = get_fuse_inode(inode);
340 	struct fuse_req *req;
341 	bool found = false;
342 
343 	spin_lock(&fc->lock);
344 	list_for_each_entry(req, &fi->writepages, writepages_entry) {
345 		pgoff_t curr_index;
346 
347 		BUG_ON(req->inode != inode);
348 		curr_index = req->misc.write.in.offset >> PAGE_SHIFT;
349 		if (idx_from < curr_index + req->num_pages &&
350 		    curr_index <= idx_to) {
351 			found = true;
352 			break;
353 		}
354 	}
355 	spin_unlock(&fc->lock);
356 
357 	return found;
358 }
359 
360 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
361 {
362 	return fuse_range_is_writeback(inode, index, index);
363 }
364 
365 /*
366  * Wait for page writeback to be completed.
367  *
368  * Since fuse doesn't rely on the VM writeback tracking, this has to
369  * use some other means.
370  */
371 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
372 {
373 	struct fuse_inode *fi = get_fuse_inode(inode);
374 
375 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
376 	return 0;
377 }
378 
379 /*
380  * Wait for all pending writepages on the inode to finish.
381  *
382  * This is currently done by blocking further writes with FUSE_NOWRITE
383  * and waiting for all sent writes to complete.
384  *
385  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
386  * could conflict with truncation.
387  */
388 static void fuse_sync_writes(struct inode *inode)
389 {
390 	fuse_set_nowrite(inode);
391 	fuse_release_nowrite(inode);
392 }
393 
394 static int fuse_flush(struct file *file, fl_owner_t id)
395 {
396 	struct inode *inode = file_inode(file);
397 	struct fuse_conn *fc = get_fuse_conn(inode);
398 	struct fuse_file *ff = file->private_data;
399 	struct fuse_req *req;
400 	struct fuse_flush_in inarg;
401 	int err;
402 
403 	if (is_bad_inode(inode))
404 		return -EIO;
405 
406 	if (fc->no_flush)
407 		return 0;
408 
409 	err = write_inode_now(inode, 1);
410 	if (err)
411 		return err;
412 
413 	inode_lock(inode);
414 	fuse_sync_writes(inode);
415 	inode_unlock(inode);
416 
417 	err = filemap_check_errors(file->f_mapping);
418 	if (err)
419 		return err;
420 
421 	req = fuse_get_req_nofail_nopages(fc, file);
422 	memset(&inarg, 0, sizeof(inarg));
423 	inarg.fh = ff->fh;
424 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
425 	req->in.h.opcode = FUSE_FLUSH;
426 	req->in.h.nodeid = get_node_id(inode);
427 	req->in.numargs = 1;
428 	req->in.args[0].size = sizeof(inarg);
429 	req->in.args[0].value = &inarg;
430 	__set_bit(FR_FORCE, &req->flags);
431 	fuse_request_send(fc, req);
432 	err = req->out.h.error;
433 	fuse_put_request(fc, req);
434 	if (err == -ENOSYS) {
435 		fc->no_flush = 1;
436 		err = 0;
437 	}
438 	return err;
439 }
440 
441 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
442 		      int datasync, int isdir)
443 {
444 	struct inode *inode = file->f_mapping->host;
445 	struct fuse_conn *fc = get_fuse_conn(inode);
446 	struct fuse_file *ff = file->private_data;
447 	FUSE_ARGS(args);
448 	struct fuse_fsync_in inarg;
449 	int err;
450 
451 	if (is_bad_inode(inode))
452 		return -EIO;
453 
454 	inode_lock(inode);
455 
456 	/*
457 	 * Start writeback against all dirty pages of the inode, then
458 	 * wait for all outstanding writes, before sending the FSYNC
459 	 * request.
460 	 */
461 	err = file_write_and_wait_range(file, start, end);
462 	if (err)
463 		goto out;
464 
465 	fuse_sync_writes(inode);
466 
467 	/*
468 	 * Due to implementation of fuse writeback
469 	 * file_write_and_wait_range() does not catch errors.
470 	 * We have to do this directly after fuse_sync_writes()
471 	 */
472 	err = file_check_and_advance_wb_err(file);
473 	if (err)
474 		goto out;
475 
476 	err = sync_inode_metadata(inode, 1);
477 	if (err)
478 		goto out;
479 
480 	if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir))
481 		goto out;
482 
483 	memset(&inarg, 0, sizeof(inarg));
484 	inarg.fh = ff->fh;
485 	inarg.fsync_flags = datasync ? 1 : 0;
486 	args.in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC;
487 	args.in.h.nodeid = get_node_id(inode);
488 	args.in.numargs = 1;
489 	args.in.args[0].size = sizeof(inarg);
490 	args.in.args[0].value = &inarg;
491 	err = fuse_simple_request(fc, &args);
492 	if (err == -ENOSYS) {
493 		if (isdir)
494 			fc->no_fsyncdir = 1;
495 		else
496 			fc->no_fsync = 1;
497 		err = 0;
498 	}
499 out:
500 	inode_unlock(inode);
501 	return err;
502 }
503 
504 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
505 		      int datasync)
506 {
507 	return fuse_fsync_common(file, start, end, datasync, 0);
508 }
509 
510 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos,
511 		    size_t count, int opcode)
512 {
513 	struct fuse_read_in *inarg = &req->misc.read.in;
514 	struct fuse_file *ff = file->private_data;
515 
516 	inarg->fh = ff->fh;
517 	inarg->offset = pos;
518 	inarg->size = count;
519 	inarg->flags = file->f_flags;
520 	req->in.h.opcode = opcode;
521 	req->in.h.nodeid = ff->nodeid;
522 	req->in.numargs = 1;
523 	req->in.args[0].size = sizeof(struct fuse_read_in);
524 	req->in.args[0].value = inarg;
525 	req->out.argvar = 1;
526 	req->out.numargs = 1;
527 	req->out.args[0].size = count;
528 }
529 
530 static void fuse_release_user_pages(struct fuse_req *req, bool should_dirty)
531 {
532 	unsigned i;
533 
534 	for (i = 0; i < req->num_pages; i++) {
535 		struct page *page = req->pages[i];
536 		if (should_dirty)
537 			set_page_dirty_lock(page);
538 		put_page(page);
539 	}
540 }
541 
542 static void fuse_io_release(struct kref *kref)
543 {
544 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
545 }
546 
547 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
548 {
549 	if (io->err)
550 		return io->err;
551 
552 	if (io->bytes >= 0 && io->write)
553 		return -EIO;
554 
555 	return io->bytes < 0 ? io->size : io->bytes;
556 }
557 
558 /**
559  * In case of short read, the caller sets 'pos' to the position of
560  * actual end of fuse request in IO request. Otherwise, if bytes_requested
561  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
562  *
563  * An example:
564  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
565  * both submitted asynchronously. The first of them was ACKed by userspace as
566  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
567  * second request was ACKed as short, e.g. only 1K was read, resulting in
568  * pos == 33K.
569  *
570  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
571  * will be equal to the length of the longest contiguous fragment of
572  * transferred data starting from the beginning of IO request.
573  */
574 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
575 {
576 	int left;
577 
578 	spin_lock(&io->lock);
579 	if (err)
580 		io->err = io->err ? : err;
581 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
582 		io->bytes = pos;
583 
584 	left = --io->reqs;
585 	if (!left && io->blocking)
586 		complete(io->done);
587 	spin_unlock(&io->lock);
588 
589 	if (!left && !io->blocking) {
590 		ssize_t res = fuse_get_res_by_io(io);
591 
592 		if (res >= 0) {
593 			struct inode *inode = file_inode(io->iocb->ki_filp);
594 			struct fuse_conn *fc = get_fuse_conn(inode);
595 			struct fuse_inode *fi = get_fuse_inode(inode);
596 
597 			spin_lock(&fc->lock);
598 			fi->attr_version = ++fc->attr_version;
599 			spin_unlock(&fc->lock);
600 		}
601 
602 		io->iocb->ki_complete(io->iocb, res, 0);
603 	}
604 
605 	kref_put(&io->refcnt, fuse_io_release);
606 }
607 
608 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req)
609 {
610 	struct fuse_io_priv *io = req->io;
611 	ssize_t pos = -1;
612 
613 	fuse_release_user_pages(req, io->should_dirty);
614 
615 	if (io->write) {
616 		if (req->misc.write.in.size != req->misc.write.out.size)
617 			pos = req->misc.write.in.offset - io->offset +
618 				req->misc.write.out.size;
619 	} else {
620 		if (req->misc.read.in.size != req->out.args[0].size)
621 			pos = req->misc.read.in.offset - io->offset +
622 				req->out.args[0].size;
623 	}
624 
625 	fuse_aio_complete(io, req->out.h.error, pos);
626 }
627 
628 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req,
629 		size_t num_bytes, struct fuse_io_priv *io)
630 {
631 	spin_lock(&io->lock);
632 	kref_get(&io->refcnt);
633 	io->size += num_bytes;
634 	io->reqs++;
635 	spin_unlock(&io->lock);
636 
637 	req->io = io;
638 	req->end = fuse_aio_complete_req;
639 
640 	__fuse_get_request(req);
641 	fuse_request_send_background(fc, req);
642 
643 	return num_bytes;
644 }
645 
646 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io,
647 			     loff_t pos, size_t count, fl_owner_t owner)
648 {
649 	struct file *file = io->iocb->ki_filp;
650 	struct fuse_file *ff = file->private_data;
651 	struct fuse_conn *fc = ff->fc;
652 
653 	fuse_read_fill(req, file, pos, count, FUSE_READ);
654 	if (owner != NULL) {
655 		struct fuse_read_in *inarg = &req->misc.read.in;
656 
657 		inarg->read_flags |= FUSE_READ_LOCKOWNER;
658 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
659 	}
660 
661 	if (io->async)
662 		return fuse_async_req_send(fc, req, count, io);
663 
664 	fuse_request_send(fc, req);
665 	return req->out.args[0].size;
666 }
667 
668 static void fuse_read_update_size(struct inode *inode, loff_t size,
669 				  u64 attr_ver)
670 {
671 	struct fuse_conn *fc = get_fuse_conn(inode);
672 	struct fuse_inode *fi = get_fuse_inode(inode);
673 
674 	spin_lock(&fc->lock);
675 	if (attr_ver == fi->attr_version && size < inode->i_size &&
676 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
677 		fi->attr_version = ++fc->attr_version;
678 		i_size_write(inode, size);
679 	}
680 	spin_unlock(&fc->lock);
681 }
682 
683 static void fuse_short_read(struct fuse_req *req, struct inode *inode,
684 			    u64 attr_ver)
685 {
686 	size_t num_read = req->out.args[0].size;
687 	struct fuse_conn *fc = get_fuse_conn(inode);
688 
689 	if (fc->writeback_cache) {
690 		/*
691 		 * A hole in a file. Some data after the hole are in page cache,
692 		 * but have not reached the client fs yet. So, the hole is not
693 		 * present there.
694 		 */
695 		int i;
696 		int start_idx = num_read >> PAGE_SHIFT;
697 		size_t off = num_read & (PAGE_SIZE - 1);
698 
699 		for (i = start_idx; i < req->num_pages; i++) {
700 			zero_user_segment(req->pages[i], off, PAGE_SIZE);
701 			off = 0;
702 		}
703 	} else {
704 		loff_t pos = page_offset(req->pages[0]) + num_read;
705 		fuse_read_update_size(inode, pos, attr_ver);
706 	}
707 }
708 
709 static int fuse_do_readpage(struct file *file, struct page *page)
710 {
711 	struct kiocb iocb;
712 	struct fuse_io_priv io;
713 	struct inode *inode = page->mapping->host;
714 	struct fuse_conn *fc = get_fuse_conn(inode);
715 	struct fuse_req *req;
716 	size_t num_read;
717 	loff_t pos = page_offset(page);
718 	size_t count = PAGE_SIZE;
719 	u64 attr_ver;
720 	int err;
721 
722 	/*
723 	 * Page writeback can extend beyond the lifetime of the
724 	 * page-cache page, so make sure we read a properly synced
725 	 * page.
726 	 */
727 	fuse_wait_on_page_writeback(inode, page->index);
728 
729 	req = fuse_get_req(fc, 1);
730 	if (IS_ERR(req))
731 		return PTR_ERR(req);
732 
733 	attr_ver = fuse_get_attr_version(fc);
734 
735 	req->out.page_zeroing = 1;
736 	req->out.argpages = 1;
737 	req->num_pages = 1;
738 	req->pages[0] = page;
739 	req->page_descs[0].length = count;
740 	init_sync_kiocb(&iocb, file);
741 	io = (struct fuse_io_priv) FUSE_IO_PRIV_SYNC(&iocb);
742 	num_read = fuse_send_read(req, &io, pos, count, NULL);
743 	err = req->out.h.error;
744 
745 	if (!err) {
746 		/*
747 		 * Short read means EOF.  If file size is larger, truncate it
748 		 */
749 		if (num_read < count)
750 			fuse_short_read(req, inode, attr_ver);
751 
752 		SetPageUptodate(page);
753 	}
754 
755 	fuse_put_request(fc, req);
756 
757 	return err;
758 }
759 
760 static int fuse_readpage(struct file *file, struct page *page)
761 {
762 	struct inode *inode = page->mapping->host;
763 	int err;
764 
765 	err = -EIO;
766 	if (is_bad_inode(inode))
767 		goto out;
768 
769 	err = fuse_do_readpage(file, page);
770 	fuse_invalidate_atime(inode);
771  out:
772 	unlock_page(page);
773 	return err;
774 }
775 
776 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req)
777 {
778 	int i;
779 	size_t count = req->misc.read.in.size;
780 	size_t num_read = req->out.args[0].size;
781 	struct address_space *mapping = NULL;
782 
783 	for (i = 0; mapping == NULL && i < req->num_pages; i++)
784 		mapping = req->pages[i]->mapping;
785 
786 	if (mapping) {
787 		struct inode *inode = mapping->host;
788 
789 		/*
790 		 * Short read means EOF. If file size is larger, truncate it
791 		 */
792 		if (!req->out.h.error && num_read < count)
793 			fuse_short_read(req, inode, req->misc.read.attr_ver);
794 
795 		fuse_invalidate_atime(inode);
796 	}
797 
798 	for (i = 0; i < req->num_pages; i++) {
799 		struct page *page = req->pages[i];
800 		if (!req->out.h.error)
801 			SetPageUptodate(page);
802 		else
803 			SetPageError(page);
804 		unlock_page(page);
805 		put_page(page);
806 	}
807 	if (req->ff)
808 		fuse_file_put(req->ff, false);
809 }
810 
811 static void fuse_send_readpages(struct fuse_req *req, struct file *file)
812 {
813 	struct fuse_file *ff = file->private_data;
814 	struct fuse_conn *fc = ff->fc;
815 	loff_t pos = page_offset(req->pages[0]);
816 	size_t count = req->num_pages << PAGE_SHIFT;
817 
818 	req->out.argpages = 1;
819 	req->out.page_zeroing = 1;
820 	req->out.page_replace = 1;
821 	fuse_read_fill(req, file, pos, count, FUSE_READ);
822 	req->misc.read.attr_ver = fuse_get_attr_version(fc);
823 	if (fc->async_read) {
824 		req->ff = fuse_file_get(ff);
825 		req->end = fuse_readpages_end;
826 		fuse_request_send_background(fc, req);
827 	} else {
828 		fuse_request_send(fc, req);
829 		fuse_readpages_end(fc, req);
830 		fuse_put_request(fc, req);
831 	}
832 }
833 
834 struct fuse_fill_data {
835 	struct fuse_req *req;
836 	struct file *file;
837 	struct inode *inode;
838 	unsigned nr_pages;
839 };
840 
841 static int fuse_readpages_fill(void *_data, struct page *page)
842 {
843 	struct fuse_fill_data *data = _data;
844 	struct fuse_req *req = data->req;
845 	struct inode *inode = data->inode;
846 	struct fuse_conn *fc = get_fuse_conn(inode);
847 
848 	fuse_wait_on_page_writeback(inode, page->index);
849 
850 	if (req->num_pages &&
851 	    (req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
852 	     (req->num_pages + 1) * PAGE_SIZE > fc->max_read ||
853 	     req->pages[req->num_pages - 1]->index + 1 != page->index)) {
854 		int nr_alloc = min_t(unsigned, data->nr_pages,
855 				     FUSE_MAX_PAGES_PER_REQ);
856 		fuse_send_readpages(req, data->file);
857 		if (fc->async_read)
858 			req = fuse_get_req_for_background(fc, nr_alloc);
859 		else
860 			req = fuse_get_req(fc, nr_alloc);
861 
862 		data->req = req;
863 		if (IS_ERR(req)) {
864 			unlock_page(page);
865 			return PTR_ERR(req);
866 		}
867 	}
868 
869 	if (WARN_ON(req->num_pages >= req->max_pages)) {
870 		fuse_put_request(fc, req);
871 		return -EIO;
872 	}
873 
874 	get_page(page);
875 	req->pages[req->num_pages] = page;
876 	req->page_descs[req->num_pages].length = PAGE_SIZE;
877 	req->num_pages++;
878 	data->nr_pages--;
879 	return 0;
880 }
881 
882 static int fuse_readpages(struct file *file, struct address_space *mapping,
883 			  struct list_head *pages, unsigned nr_pages)
884 {
885 	struct inode *inode = mapping->host;
886 	struct fuse_conn *fc = get_fuse_conn(inode);
887 	struct fuse_fill_data data;
888 	int err;
889 	int nr_alloc = min_t(unsigned, nr_pages, FUSE_MAX_PAGES_PER_REQ);
890 
891 	err = -EIO;
892 	if (is_bad_inode(inode))
893 		goto out;
894 
895 	data.file = file;
896 	data.inode = inode;
897 	if (fc->async_read)
898 		data.req = fuse_get_req_for_background(fc, nr_alloc);
899 	else
900 		data.req = fuse_get_req(fc, nr_alloc);
901 	data.nr_pages = nr_pages;
902 	err = PTR_ERR(data.req);
903 	if (IS_ERR(data.req))
904 		goto out;
905 
906 	err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
907 	if (!err) {
908 		if (data.req->num_pages)
909 			fuse_send_readpages(data.req, file);
910 		else
911 			fuse_put_request(fc, data.req);
912 	}
913 out:
914 	return err;
915 }
916 
917 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
918 {
919 	struct inode *inode = iocb->ki_filp->f_mapping->host;
920 	struct fuse_conn *fc = get_fuse_conn(inode);
921 
922 	/*
923 	 * In auto invalidate mode, always update attributes on read.
924 	 * Otherwise, only update if we attempt to read past EOF (to ensure
925 	 * i_size is up to date).
926 	 */
927 	if (fc->auto_inval_data ||
928 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
929 		int err;
930 		err = fuse_update_attributes(inode, iocb->ki_filp);
931 		if (err)
932 			return err;
933 	}
934 
935 	return generic_file_read_iter(iocb, to);
936 }
937 
938 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff,
939 			    loff_t pos, size_t count)
940 {
941 	struct fuse_write_in *inarg = &req->misc.write.in;
942 	struct fuse_write_out *outarg = &req->misc.write.out;
943 
944 	inarg->fh = ff->fh;
945 	inarg->offset = pos;
946 	inarg->size = count;
947 	req->in.h.opcode = FUSE_WRITE;
948 	req->in.h.nodeid = ff->nodeid;
949 	req->in.numargs = 2;
950 	if (ff->fc->minor < 9)
951 		req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
952 	else
953 		req->in.args[0].size = sizeof(struct fuse_write_in);
954 	req->in.args[0].value = inarg;
955 	req->in.args[1].size = count;
956 	req->out.numargs = 1;
957 	req->out.args[0].size = sizeof(struct fuse_write_out);
958 	req->out.args[0].value = outarg;
959 }
960 
961 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io,
962 			      loff_t pos, size_t count, fl_owner_t owner)
963 {
964 	struct kiocb *iocb = io->iocb;
965 	struct file *file = iocb->ki_filp;
966 	struct fuse_file *ff = file->private_data;
967 	struct fuse_conn *fc = ff->fc;
968 	struct fuse_write_in *inarg = &req->misc.write.in;
969 
970 	fuse_write_fill(req, ff, pos, count);
971 	inarg->flags = file->f_flags;
972 	if (iocb->ki_flags & IOCB_DSYNC)
973 		inarg->flags |= O_DSYNC;
974 	if (iocb->ki_flags & IOCB_SYNC)
975 		inarg->flags |= O_SYNC;
976 	if (owner != NULL) {
977 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
978 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
979 	}
980 
981 	if (io->async)
982 		return fuse_async_req_send(fc, req, count, io);
983 
984 	fuse_request_send(fc, req);
985 	return req->misc.write.out.size;
986 }
987 
988 bool fuse_write_update_size(struct inode *inode, loff_t pos)
989 {
990 	struct fuse_conn *fc = get_fuse_conn(inode);
991 	struct fuse_inode *fi = get_fuse_inode(inode);
992 	bool ret = false;
993 
994 	spin_lock(&fc->lock);
995 	fi->attr_version = ++fc->attr_version;
996 	if (pos > inode->i_size) {
997 		i_size_write(inode, pos);
998 		ret = true;
999 	}
1000 	spin_unlock(&fc->lock);
1001 
1002 	return ret;
1003 }
1004 
1005 static size_t fuse_send_write_pages(struct fuse_req *req, struct kiocb *iocb,
1006 				    struct inode *inode, loff_t pos,
1007 				    size_t count)
1008 {
1009 	size_t res;
1010 	unsigned offset;
1011 	unsigned i;
1012 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1013 
1014 	for (i = 0; i < req->num_pages; i++)
1015 		fuse_wait_on_page_writeback(inode, req->pages[i]->index);
1016 
1017 	res = fuse_send_write(req, &io, pos, count, NULL);
1018 
1019 	offset = req->page_descs[0].offset;
1020 	count = res;
1021 	for (i = 0; i < req->num_pages; i++) {
1022 		struct page *page = req->pages[i];
1023 
1024 		if (!req->out.h.error && !offset && count >= PAGE_SIZE)
1025 			SetPageUptodate(page);
1026 
1027 		if (count > PAGE_SIZE - offset)
1028 			count -= PAGE_SIZE - offset;
1029 		else
1030 			count = 0;
1031 		offset = 0;
1032 
1033 		unlock_page(page);
1034 		put_page(page);
1035 	}
1036 
1037 	return res;
1038 }
1039 
1040 static ssize_t fuse_fill_write_pages(struct fuse_req *req,
1041 			       struct address_space *mapping,
1042 			       struct iov_iter *ii, loff_t pos)
1043 {
1044 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1045 	unsigned offset = pos & (PAGE_SIZE - 1);
1046 	size_t count = 0;
1047 	int err;
1048 
1049 	req->in.argpages = 1;
1050 	req->page_descs[0].offset = offset;
1051 
1052 	do {
1053 		size_t tmp;
1054 		struct page *page;
1055 		pgoff_t index = pos >> PAGE_SHIFT;
1056 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1057 				     iov_iter_count(ii));
1058 
1059 		bytes = min_t(size_t, bytes, fc->max_write - count);
1060 
1061  again:
1062 		err = -EFAULT;
1063 		if (iov_iter_fault_in_readable(ii, bytes))
1064 			break;
1065 
1066 		err = -ENOMEM;
1067 		page = grab_cache_page_write_begin(mapping, index, 0);
1068 		if (!page)
1069 			break;
1070 
1071 		if (mapping_writably_mapped(mapping))
1072 			flush_dcache_page(page);
1073 
1074 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1075 		flush_dcache_page(page);
1076 
1077 		iov_iter_advance(ii, tmp);
1078 		if (!tmp) {
1079 			unlock_page(page);
1080 			put_page(page);
1081 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1082 			goto again;
1083 		}
1084 
1085 		err = 0;
1086 		req->pages[req->num_pages] = page;
1087 		req->page_descs[req->num_pages].length = tmp;
1088 		req->num_pages++;
1089 
1090 		count += tmp;
1091 		pos += tmp;
1092 		offset += tmp;
1093 		if (offset == PAGE_SIZE)
1094 			offset = 0;
1095 
1096 		if (!fc->big_writes)
1097 			break;
1098 	} while (iov_iter_count(ii) && count < fc->max_write &&
1099 		 req->num_pages < req->max_pages && offset == 0);
1100 
1101 	return count > 0 ? count : err;
1102 }
1103 
1104 static inline unsigned fuse_wr_pages(loff_t pos, size_t len)
1105 {
1106 	return min_t(unsigned,
1107 		     ((pos + len - 1) >> PAGE_SHIFT) -
1108 		     (pos >> PAGE_SHIFT) + 1,
1109 		     FUSE_MAX_PAGES_PER_REQ);
1110 }
1111 
1112 static ssize_t fuse_perform_write(struct kiocb *iocb,
1113 				  struct address_space *mapping,
1114 				  struct iov_iter *ii, loff_t pos)
1115 {
1116 	struct inode *inode = mapping->host;
1117 	struct fuse_conn *fc = get_fuse_conn(inode);
1118 	struct fuse_inode *fi = get_fuse_inode(inode);
1119 	int err = 0;
1120 	ssize_t res = 0;
1121 
1122 	if (is_bad_inode(inode))
1123 		return -EIO;
1124 
1125 	if (inode->i_size < pos + iov_iter_count(ii))
1126 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1127 
1128 	do {
1129 		struct fuse_req *req;
1130 		ssize_t count;
1131 		unsigned nr_pages = fuse_wr_pages(pos, iov_iter_count(ii));
1132 
1133 		req = fuse_get_req(fc, nr_pages);
1134 		if (IS_ERR(req)) {
1135 			err = PTR_ERR(req);
1136 			break;
1137 		}
1138 
1139 		count = fuse_fill_write_pages(req, mapping, ii, pos);
1140 		if (count <= 0) {
1141 			err = count;
1142 		} else {
1143 			size_t num_written;
1144 
1145 			num_written = fuse_send_write_pages(req, iocb, inode,
1146 							    pos, count);
1147 			err = req->out.h.error;
1148 			if (!err) {
1149 				res += num_written;
1150 				pos += num_written;
1151 
1152 				/* break out of the loop on short write */
1153 				if (num_written != count)
1154 					err = -EIO;
1155 			}
1156 		}
1157 		fuse_put_request(fc, req);
1158 	} while (!err && iov_iter_count(ii));
1159 
1160 	if (res > 0)
1161 		fuse_write_update_size(inode, pos);
1162 
1163 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1164 	fuse_invalidate_attr(inode);
1165 
1166 	return res > 0 ? res : err;
1167 }
1168 
1169 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1170 {
1171 	struct file *file = iocb->ki_filp;
1172 	struct address_space *mapping = file->f_mapping;
1173 	ssize_t written = 0;
1174 	ssize_t written_buffered = 0;
1175 	struct inode *inode = mapping->host;
1176 	ssize_t err;
1177 	loff_t endbyte = 0;
1178 
1179 	if (get_fuse_conn(inode)->writeback_cache) {
1180 		/* Update size (EOF optimization) and mode (SUID clearing) */
1181 		err = fuse_update_attributes(mapping->host, file);
1182 		if (err)
1183 			return err;
1184 
1185 		return generic_file_write_iter(iocb, from);
1186 	}
1187 
1188 	inode_lock(inode);
1189 
1190 	/* We can write back this queue in page reclaim */
1191 	current->backing_dev_info = inode_to_bdi(inode);
1192 
1193 	err = generic_write_checks(iocb, from);
1194 	if (err <= 0)
1195 		goto out;
1196 
1197 	err = file_remove_privs(file);
1198 	if (err)
1199 		goto out;
1200 
1201 	err = file_update_time(file);
1202 	if (err)
1203 		goto out;
1204 
1205 	if (iocb->ki_flags & IOCB_DIRECT) {
1206 		loff_t pos = iocb->ki_pos;
1207 		written = generic_file_direct_write(iocb, from);
1208 		if (written < 0 || !iov_iter_count(from))
1209 			goto out;
1210 
1211 		pos += written;
1212 
1213 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1214 		if (written_buffered < 0) {
1215 			err = written_buffered;
1216 			goto out;
1217 		}
1218 		endbyte = pos + written_buffered - 1;
1219 
1220 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1221 						   endbyte);
1222 		if (err)
1223 			goto out;
1224 
1225 		invalidate_mapping_pages(file->f_mapping,
1226 					 pos >> PAGE_SHIFT,
1227 					 endbyte >> PAGE_SHIFT);
1228 
1229 		written += written_buffered;
1230 		iocb->ki_pos = pos + written_buffered;
1231 	} else {
1232 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1233 		if (written >= 0)
1234 			iocb->ki_pos += written;
1235 	}
1236 out:
1237 	current->backing_dev_info = NULL;
1238 	inode_unlock(inode);
1239 	if (written > 0)
1240 		written = generic_write_sync(iocb, written);
1241 
1242 	return written ? written : err;
1243 }
1244 
1245 static inline void fuse_page_descs_length_init(struct fuse_req *req,
1246 		unsigned index, unsigned nr_pages)
1247 {
1248 	int i;
1249 
1250 	for (i = index; i < index + nr_pages; i++)
1251 		req->page_descs[i].length = PAGE_SIZE -
1252 			req->page_descs[i].offset;
1253 }
1254 
1255 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1256 {
1257 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1258 }
1259 
1260 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1261 					size_t max_size)
1262 {
1263 	return min(iov_iter_single_seg_count(ii), max_size);
1264 }
1265 
1266 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii,
1267 			       size_t *nbytesp, int write)
1268 {
1269 	size_t nbytes = 0;  /* # bytes already packed in req */
1270 	ssize_t ret = 0;
1271 
1272 	/* Special case for kernel I/O: can copy directly into the buffer */
1273 	if (ii->type & ITER_KVEC) {
1274 		unsigned long user_addr = fuse_get_user_addr(ii);
1275 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1276 
1277 		if (write)
1278 			req->in.args[1].value = (void *) user_addr;
1279 		else
1280 			req->out.args[0].value = (void *) user_addr;
1281 
1282 		iov_iter_advance(ii, frag_size);
1283 		*nbytesp = frag_size;
1284 		return 0;
1285 	}
1286 
1287 	while (nbytes < *nbytesp && req->num_pages < req->max_pages) {
1288 		unsigned npages;
1289 		size_t start;
1290 		ret = iov_iter_get_pages(ii, &req->pages[req->num_pages],
1291 					*nbytesp - nbytes,
1292 					req->max_pages - req->num_pages,
1293 					&start);
1294 		if (ret < 0)
1295 			break;
1296 
1297 		iov_iter_advance(ii, ret);
1298 		nbytes += ret;
1299 
1300 		ret += start;
1301 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1302 
1303 		req->page_descs[req->num_pages].offset = start;
1304 		fuse_page_descs_length_init(req, req->num_pages, npages);
1305 
1306 		req->num_pages += npages;
1307 		req->page_descs[req->num_pages - 1].length -=
1308 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1309 	}
1310 
1311 	if (write)
1312 		req->in.argpages = 1;
1313 	else
1314 		req->out.argpages = 1;
1315 
1316 	*nbytesp = nbytes;
1317 
1318 	return ret < 0 ? ret : 0;
1319 }
1320 
1321 static inline int fuse_iter_npages(const struct iov_iter *ii_p)
1322 {
1323 	return iov_iter_npages(ii_p, FUSE_MAX_PAGES_PER_REQ);
1324 }
1325 
1326 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1327 		       loff_t *ppos, int flags)
1328 {
1329 	int write = flags & FUSE_DIO_WRITE;
1330 	int cuse = flags & FUSE_DIO_CUSE;
1331 	struct file *file = io->iocb->ki_filp;
1332 	struct inode *inode = file->f_mapping->host;
1333 	struct fuse_file *ff = file->private_data;
1334 	struct fuse_conn *fc = ff->fc;
1335 	size_t nmax = write ? fc->max_write : fc->max_read;
1336 	loff_t pos = *ppos;
1337 	size_t count = iov_iter_count(iter);
1338 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1339 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1340 	ssize_t res = 0;
1341 	struct fuse_req *req;
1342 	int err = 0;
1343 
1344 	if (io->async)
1345 		req = fuse_get_req_for_background(fc, fuse_iter_npages(iter));
1346 	else
1347 		req = fuse_get_req(fc, fuse_iter_npages(iter));
1348 	if (IS_ERR(req))
1349 		return PTR_ERR(req);
1350 
1351 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1352 		if (!write)
1353 			inode_lock(inode);
1354 		fuse_sync_writes(inode);
1355 		if (!write)
1356 			inode_unlock(inode);
1357 	}
1358 
1359 	io->should_dirty = !write && iter_is_iovec(iter);
1360 	while (count) {
1361 		size_t nres;
1362 		fl_owner_t owner = current->files;
1363 		size_t nbytes = min(count, nmax);
1364 		err = fuse_get_user_pages(req, iter, &nbytes, write);
1365 		if (err && !nbytes)
1366 			break;
1367 
1368 		if (write)
1369 			nres = fuse_send_write(req, io, pos, nbytes, owner);
1370 		else
1371 			nres = fuse_send_read(req, io, pos, nbytes, owner);
1372 
1373 		if (!io->async)
1374 			fuse_release_user_pages(req, io->should_dirty);
1375 		if (req->out.h.error) {
1376 			err = req->out.h.error;
1377 			break;
1378 		} else if (nres > nbytes) {
1379 			res = 0;
1380 			err = -EIO;
1381 			break;
1382 		}
1383 		count -= nres;
1384 		res += nres;
1385 		pos += nres;
1386 		if (nres != nbytes)
1387 			break;
1388 		if (count) {
1389 			fuse_put_request(fc, req);
1390 			if (io->async)
1391 				req = fuse_get_req_for_background(fc,
1392 					fuse_iter_npages(iter));
1393 			else
1394 				req = fuse_get_req(fc, fuse_iter_npages(iter));
1395 			if (IS_ERR(req))
1396 				break;
1397 		}
1398 	}
1399 	if (!IS_ERR(req))
1400 		fuse_put_request(fc, req);
1401 	if (res > 0)
1402 		*ppos = pos;
1403 
1404 	return res > 0 ? res : err;
1405 }
1406 EXPORT_SYMBOL_GPL(fuse_direct_io);
1407 
1408 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1409 				  struct iov_iter *iter,
1410 				  loff_t *ppos)
1411 {
1412 	ssize_t res;
1413 	struct inode *inode = file_inode(io->iocb->ki_filp);
1414 
1415 	if (is_bad_inode(inode))
1416 		return -EIO;
1417 
1418 	res = fuse_direct_io(io, iter, ppos, 0);
1419 
1420 	fuse_invalidate_attr(inode);
1421 
1422 	return res;
1423 }
1424 
1425 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1426 {
1427 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1428 	return __fuse_direct_read(&io, to, &iocb->ki_pos);
1429 }
1430 
1431 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1432 {
1433 	struct inode *inode = file_inode(iocb->ki_filp);
1434 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1435 	ssize_t res;
1436 
1437 	if (is_bad_inode(inode))
1438 		return -EIO;
1439 
1440 	/* Don't allow parallel writes to the same file */
1441 	inode_lock(inode);
1442 	res = generic_write_checks(iocb, from);
1443 	if (res > 0)
1444 		res = fuse_direct_io(&io, from, &iocb->ki_pos, FUSE_DIO_WRITE);
1445 	fuse_invalidate_attr(inode);
1446 	if (res > 0)
1447 		fuse_write_update_size(inode, iocb->ki_pos);
1448 	inode_unlock(inode);
1449 
1450 	return res;
1451 }
1452 
1453 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req)
1454 {
1455 	int i;
1456 
1457 	for (i = 0; i < req->num_pages; i++)
1458 		__free_page(req->pages[i]);
1459 
1460 	if (req->ff)
1461 		fuse_file_put(req->ff, false);
1462 }
1463 
1464 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req)
1465 {
1466 	struct inode *inode = req->inode;
1467 	struct fuse_inode *fi = get_fuse_inode(inode);
1468 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1469 	int i;
1470 
1471 	list_del(&req->writepages_entry);
1472 	for (i = 0; i < req->num_pages; i++) {
1473 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1474 		dec_node_page_state(req->pages[i], NR_WRITEBACK_TEMP);
1475 		wb_writeout_inc(&bdi->wb);
1476 	}
1477 	wake_up(&fi->page_waitq);
1478 }
1479 
1480 /* Called under fc->lock, may release and reacquire it */
1481 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req,
1482 				loff_t size)
1483 __releases(fc->lock)
1484 __acquires(fc->lock)
1485 {
1486 	struct fuse_inode *fi = get_fuse_inode(req->inode);
1487 	struct fuse_write_in *inarg = &req->misc.write.in;
1488 	__u64 data_size = req->num_pages * PAGE_SIZE;
1489 
1490 	if (!fc->connected)
1491 		goto out_free;
1492 
1493 	if (inarg->offset + data_size <= size) {
1494 		inarg->size = data_size;
1495 	} else if (inarg->offset < size) {
1496 		inarg->size = size - inarg->offset;
1497 	} else {
1498 		/* Got truncated off completely */
1499 		goto out_free;
1500 	}
1501 
1502 	req->in.args[1].size = inarg->size;
1503 	fi->writectr++;
1504 	fuse_request_send_background_locked(fc, req);
1505 	return;
1506 
1507  out_free:
1508 	fuse_writepage_finish(fc, req);
1509 	spin_unlock(&fc->lock);
1510 	fuse_writepage_free(fc, req);
1511 	fuse_put_request(fc, req);
1512 	spin_lock(&fc->lock);
1513 }
1514 
1515 /*
1516  * If fi->writectr is positive (no truncate or fsync going on) send
1517  * all queued writepage requests.
1518  *
1519  * Called with fc->lock
1520  */
1521 void fuse_flush_writepages(struct inode *inode)
1522 __releases(fc->lock)
1523 __acquires(fc->lock)
1524 {
1525 	struct fuse_conn *fc = get_fuse_conn(inode);
1526 	struct fuse_inode *fi = get_fuse_inode(inode);
1527 	size_t crop = i_size_read(inode);
1528 	struct fuse_req *req;
1529 
1530 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1531 		req = list_entry(fi->queued_writes.next, struct fuse_req, list);
1532 		list_del_init(&req->list);
1533 		fuse_send_writepage(fc, req, crop);
1534 	}
1535 }
1536 
1537 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req)
1538 {
1539 	struct inode *inode = req->inode;
1540 	struct fuse_inode *fi = get_fuse_inode(inode);
1541 
1542 	mapping_set_error(inode->i_mapping, req->out.h.error);
1543 	spin_lock(&fc->lock);
1544 	while (req->misc.write.next) {
1545 		struct fuse_conn *fc = get_fuse_conn(inode);
1546 		struct fuse_write_in *inarg = &req->misc.write.in;
1547 		struct fuse_req *next = req->misc.write.next;
1548 		req->misc.write.next = next->misc.write.next;
1549 		next->misc.write.next = NULL;
1550 		next->ff = fuse_file_get(req->ff);
1551 		list_add(&next->writepages_entry, &fi->writepages);
1552 
1553 		/*
1554 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1555 		 * based on primary request size.
1556 		 *
1557 		 * 1st case (trivial): there are no concurrent activities using
1558 		 * fuse_set/release_nowrite.  Then we're on safe side because
1559 		 * fuse_flush_writepages() would call fuse_send_writepage()
1560 		 * anyway.
1561 		 *
1562 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1563 		 * now for completion of all in-flight requests.  This happens
1564 		 * rarely and no more than once per page, so this should be
1565 		 * okay.
1566 		 *
1567 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1568 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1569 		 * that fuse_set_nowrite returned implies that all in-flight
1570 		 * requests were completed along with all of their secondary
1571 		 * requests.  Further primary requests are blocked by negative
1572 		 * writectr.  Hence there cannot be any in-flight requests and
1573 		 * no invocations of fuse_writepage_end() while we're in
1574 		 * fuse_set_nowrite..fuse_release_nowrite section.
1575 		 */
1576 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1577 	}
1578 	fi->writectr--;
1579 	fuse_writepage_finish(fc, req);
1580 	spin_unlock(&fc->lock);
1581 	fuse_writepage_free(fc, req);
1582 }
1583 
1584 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1585 					       struct fuse_inode *fi)
1586 {
1587 	struct fuse_file *ff = NULL;
1588 
1589 	spin_lock(&fc->lock);
1590 	if (!list_empty(&fi->write_files)) {
1591 		ff = list_entry(fi->write_files.next, struct fuse_file,
1592 				write_entry);
1593 		fuse_file_get(ff);
1594 	}
1595 	spin_unlock(&fc->lock);
1596 
1597 	return ff;
1598 }
1599 
1600 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1601 					     struct fuse_inode *fi)
1602 {
1603 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1604 	WARN_ON(!ff);
1605 	return ff;
1606 }
1607 
1608 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1609 {
1610 	struct fuse_conn *fc = get_fuse_conn(inode);
1611 	struct fuse_inode *fi = get_fuse_inode(inode);
1612 	struct fuse_file *ff;
1613 	int err;
1614 
1615 	ff = __fuse_write_file_get(fc, fi);
1616 	err = fuse_flush_times(inode, ff);
1617 	if (ff)
1618 		fuse_file_put(ff, 0);
1619 
1620 	return err;
1621 }
1622 
1623 static int fuse_writepage_locked(struct page *page)
1624 {
1625 	struct address_space *mapping = page->mapping;
1626 	struct inode *inode = mapping->host;
1627 	struct fuse_conn *fc = get_fuse_conn(inode);
1628 	struct fuse_inode *fi = get_fuse_inode(inode);
1629 	struct fuse_req *req;
1630 	struct page *tmp_page;
1631 	int error = -ENOMEM;
1632 
1633 	set_page_writeback(page);
1634 
1635 	req = fuse_request_alloc_nofs(1);
1636 	if (!req)
1637 		goto err;
1638 
1639 	/* writeback always goes to bg_queue */
1640 	__set_bit(FR_BACKGROUND, &req->flags);
1641 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1642 	if (!tmp_page)
1643 		goto err_free;
1644 
1645 	error = -EIO;
1646 	req->ff = fuse_write_file_get(fc, fi);
1647 	if (!req->ff)
1648 		goto err_nofile;
1649 
1650 	fuse_write_fill(req, req->ff, page_offset(page), 0);
1651 
1652 	copy_highpage(tmp_page, page);
1653 	req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1654 	req->misc.write.next = NULL;
1655 	req->in.argpages = 1;
1656 	req->num_pages = 1;
1657 	req->pages[0] = tmp_page;
1658 	req->page_descs[0].offset = 0;
1659 	req->page_descs[0].length = PAGE_SIZE;
1660 	req->end = fuse_writepage_end;
1661 	req->inode = inode;
1662 
1663 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1664 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1665 
1666 	spin_lock(&fc->lock);
1667 	list_add(&req->writepages_entry, &fi->writepages);
1668 	list_add_tail(&req->list, &fi->queued_writes);
1669 	fuse_flush_writepages(inode);
1670 	spin_unlock(&fc->lock);
1671 
1672 	end_page_writeback(page);
1673 
1674 	return 0;
1675 
1676 err_nofile:
1677 	__free_page(tmp_page);
1678 err_free:
1679 	fuse_request_free(req);
1680 err:
1681 	mapping_set_error(page->mapping, error);
1682 	end_page_writeback(page);
1683 	return error;
1684 }
1685 
1686 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1687 {
1688 	int err;
1689 
1690 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1691 		/*
1692 		 * ->writepages() should be called for sync() and friends.  We
1693 		 * should only get here on direct reclaim and then we are
1694 		 * allowed to skip a page which is already in flight
1695 		 */
1696 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1697 
1698 		redirty_page_for_writepage(wbc, page);
1699 		return 0;
1700 	}
1701 
1702 	err = fuse_writepage_locked(page);
1703 	unlock_page(page);
1704 
1705 	return err;
1706 }
1707 
1708 struct fuse_fill_wb_data {
1709 	struct fuse_req *req;
1710 	struct fuse_file *ff;
1711 	struct inode *inode;
1712 	struct page **orig_pages;
1713 };
1714 
1715 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1716 {
1717 	struct fuse_req *req = data->req;
1718 	struct inode *inode = data->inode;
1719 	struct fuse_conn *fc = get_fuse_conn(inode);
1720 	struct fuse_inode *fi = get_fuse_inode(inode);
1721 	int num_pages = req->num_pages;
1722 	int i;
1723 
1724 	req->ff = fuse_file_get(data->ff);
1725 	spin_lock(&fc->lock);
1726 	list_add_tail(&req->list, &fi->queued_writes);
1727 	fuse_flush_writepages(inode);
1728 	spin_unlock(&fc->lock);
1729 
1730 	for (i = 0; i < num_pages; i++)
1731 		end_page_writeback(data->orig_pages[i]);
1732 }
1733 
1734 static bool fuse_writepage_in_flight(struct fuse_req *new_req,
1735 				     struct page *page)
1736 {
1737 	struct fuse_conn *fc = get_fuse_conn(new_req->inode);
1738 	struct fuse_inode *fi = get_fuse_inode(new_req->inode);
1739 	struct fuse_req *tmp;
1740 	struct fuse_req *old_req;
1741 	bool found = false;
1742 	pgoff_t curr_index;
1743 
1744 	BUG_ON(new_req->num_pages != 0);
1745 
1746 	spin_lock(&fc->lock);
1747 	list_del(&new_req->writepages_entry);
1748 	list_for_each_entry(old_req, &fi->writepages, writepages_entry) {
1749 		BUG_ON(old_req->inode != new_req->inode);
1750 		curr_index = old_req->misc.write.in.offset >> PAGE_SHIFT;
1751 		if (curr_index <= page->index &&
1752 		    page->index < curr_index + old_req->num_pages) {
1753 			found = true;
1754 			break;
1755 		}
1756 	}
1757 	if (!found) {
1758 		list_add(&new_req->writepages_entry, &fi->writepages);
1759 		goto out_unlock;
1760 	}
1761 
1762 	new_req->num_pages = 1;
1763 	for (tmp = old_req; tmp != NULL; tmp = tmp->misc.write.next) {
1764 		BUG_ON(tmp->inode != new_req->inode);
1765 		curr_index = tmp->misc.write.in.offset >> PAGE_SHIFT;
1766 		if (tmp->num_pages == 1 &&
1767 		    curr_index == page->index) {
1768 			old_req = tmp;
1769 		}
1770 	}
1771 
1772 	if (old_req->num_pages == 1 && test_bit(FR_PENDING, &old_req->flags)) {
1773 		struct backing_dev_info *bdi = inode_to_bdi(page->mapping->host);
1774 
1775 		copy_highpage(old_req->pages[0], page);
1776 		spin_unlock(&fc->lock);
1777 
1778 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1779 		dec_node_page_state(page, NR_WRITEBACK_TEMP);
1780 		wb_writeout_inc(&bdi->wb);
1781 		fuse_writepage_free(fc, new_req);
1782 		fuse_request_free(new_req);
1783 		goto out;
1784 	} else {
1785 		new_req->misc.write.next = old_req->misc.write.next;
1786 		old_req->misc.write.next = new_req;
1787 	}
1788 out_unlock:
1789 	spin_unlock(&fc->lock);
1790 out:
1791 	return found;
1792 }
1793 
1794 static int fuse_writepages_fill(struct page *page,
1795 		struct writeback_control *wbc, void *_data)
1796 {
1797 	struct fuse_fill_wb_data *data = _data;
1798 	struct fuse_req *req = data->req;
1799 	struct inode *inode = data->inode;
1800 	struct fuse_conn *fc = get_fuse_conn(inode);
1801 	struct page *tmp_page;
1802 	bool is_writeback;
1803 	int err;
1804 
1805 	if (!data->ff) {
1806 		err = -EIO;
1807 		data->ff = fuse_write_file_get(fc, get_fuse_inode(inode));
1808 		if (!data->ff)
1809 			goto out_unlock;
1810 	}
1811 
1812 	/*
1813 	 * Being under writeback is unlikely but possible.  For example direct
1814 	 * read to an mmaped fuse file will set the page dirty twice; once when
1815 	 * the pages are faulted with get_user_pages(), and then after the read
1816 	 * completed.
1817 	 */
1818 	is_writeback = fuse_page_is_writeback(inode, page->index);
1819 
1820 	if (req && req->num_pages &&
1821 	    (is_writeback || req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
1822 	     (req->num_pages + 1) * PAGE_SIZE > fc->max_write ||
1823 	     data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) {
1824 		fuse_writepages_send(data);
1825 		data->req = NULL;
1826 	}
1827 	err = -ENOMEM;
1828 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1829 	if (!tmp_page)
1830 		goto out_unlock;
1831 
1832 	/*
1833 	 * The page must not be redirtied until the writeout is completed
1834 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
1835 	 * there could be more than one temporary page instance for each real
1836 	 * page.
1837 	 *
1838 	 * This is ensured by holding the page lock in page_mkwrite() while
1839 	 * checking fuse_page_is_writeback().  We already hold the page lock
1840 	 * since clear_page_dirty_for_io() and keep it held until we add the
1841 	 * request to the fi->writepages list and increment req->num_pages.
1842 	 * After this fuse_page_is_writeback() will indicate that the page is
1843 	 * under writeback, so we can release the page lock.
1844 	 */
1845 	if (data->req == NULL) {
1846 		struct fuse_inode *fi = get_fuse_inode(inode);
1847 
1848 		err = -ENOMEM;
1849 		req = fuse_request_alloc_nofs(FUSE_MAX_PAGES_PER_REQ);
1850 		if (!req) {
1851 			__free_page(tmp_page);
1852 			goto out_unlock;
1853 		}
1854 
1855 		fuse_write_fill(req, data->ff, page_offset(page), 0);
1856 		req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1857 		req->misc.write.next = NULL;
1858 		req->in.argpages = 1;
1859 		__set_bit(FR_BACKGROUND, &req->flags);
1860 		req->num_pages = 0;
1861 		req->end = fuse_writepage_end;
1862 		req->inode = inode;
1863 
1864 		spin_lock(&fc->lock);
1865 		list_add(&req->writepages_entry, &fi->writepages);
1866 		spin_unlock(&fc->lock);
1867 
1868 		data->req = req;
1869 	}
1870 	set_page_writeback(page);
1871 
1872 	copy_highpage(tmp_page, page);
1873 	req->pages[req->num_pages] = tmp_page;
1874 	req->page_descs[req->num_pages].offset = 0;
1875 	req->page_descs[req->num_pages].length = PAGE_SIZE;
1876 
1877 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1878 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1879 
1880 	err = 0;
1881 	if (is_writeback && fuse_writepage_in_flight(req, page)) {
1882 		end_page_writeback(page);
1883 		data->req = NULL;
1884 		goto out_unlock;
1885 	}
1886 	data->orig_pages[req->num_pages] = page;
1887 
1888 	/*
1889 	 * Protected by fc->lock against concurrent access by
1890 	 * fuse_page_is_writeback().
1891 	 */
1892 	spin_lock(&fc->lock);
1893 	req->num_pages++;
1894 	spin_unlock(&fc->lock);
1895 
1896 out_unlock:
1897 	unlock_page(page);
1898 
1899 	return err;
1900 }
1901 
1902 static int fuse_writepages(struct address_space *mapping,
1903 			   struct writeback_control *wbc)
1904 {
1905 	struct inode *inode = mapping->host;
1906 	struct fuse_fill_wb_data data;
1907 	int err;
1908 
1909 	err = -EIO;
1910 	if (is_bad_inode(inode))
1911 		goto out;
1912 
1913 	data.inode = inode;
1914 	data.req = NULL;
1915 	data.ff = NULL;
1916 
1917 	err = -ENOMEM;
1918 	data.orig_pages = kcalloc(FUSE_MAX_PAGES_PER_REQ,
1919 				  sizeof(struct page *),
1920 				  GFP_NOFS);
1921 	if (!data.orig_pages)
1922 		goto out;
1923 
1924 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
1925 	if (data.req) {
1926 		/* Ignore errors if we can write at least one page */
1927 		BUG_ON(!data.req->num_pages);
1928 		fuse_writepages_send(&data);
1929 		err = 0;
1930 	}
1931 	if (data.ff)
1932 		fuse_file_put(data.ff, false);
1933 
1934 	kfree(data.orig_pages);
1935 out:
1936 	return err;
1937 }
1938 
1939 /*
1940  * It's worthy to make sure that space is reserved on disk for the write,
1941  * but how to implement it without killing performance need more thinking.
1942  */
1943 static int fuse_write_begin(struct file *file, struct address_space *mapping,
1944 		loff_t pos, unsigned len, unsigned flags,
1945 		struct page **pagep, void **fsdata)
1946 {
1947 	pgoff_t index = pos >> PAGE_SHIFT;
1948 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
1949 	struct page *page;
1950 	loff_t fsize;
1951 	int err = -ENOMEM;
1952 
1953 	WARN_ON(!fc->writeback_cache);
1954 
1955 	page = grab_cache_page_write_begin(mapping, index, flags);
1956 	if (!page)
1957 		goto error;
1958 
1959 	fuse_wait_on_page_writeback(mapping->host, page->index);
1960 
1961 	if (PageUptodate(page) || len == PAGE_SIZE)
1962 		goto success;
1963 	/*
1964 	 * Check if the start this page comes after the end of file, in which
1965 	 * case the readpage can be optimized away.
1966 	 */
1967 	fsize = i_size_read(mapping->host);
1968 	if (fsize <= (pos & PAGE_MASK)) {
1969 		size_t off = pos & ~PAGE_MASK;
1970 		if (off)
1971 			zero_user_segment(page, 0, off);
1972 		goto success;
1973 	}
1974 	err = fuse_do_readpage(file, page);
1975 	if (err)
1976 		goto cleanup;
1977 success:
1978 	*pagep = page;
1979 	return 0;
1980 
1981 cleanup:
1982 	unlock_page(page);
1983 	put_page(page);
1984 error:
1985 	return err;
1986 }
1987 
1988 static int fuse_write_end(struct file *file, struct address_space *mapping,
1989 		loff_t pos, unsigned len, unsigned copied,
1990 		struct page *page, void *fsdata)
1991 {
1992 	struct inode *inode = page->mapping->host;
1993 
1994 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
1995 	if (!copied)
1996 		goto unlock;
1997 
1998 	if (!PageUptodate(page)) {
1999 		/* Zero any unwritten bytes at the end of the page */
2000 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2001 		if (endoff)
2002 			zero_user_segment(page, endoff, PAGE_SIZE);
2003 		SetPageUptodate(page);
2004 	}
2005 
2006 	fuse_write_update_size(inode, pos + copied);
2007 	set_page_dirty(page);
2008 
2009 unlock:
2010 	unlock_page(page);
2011 	put_page(page);
2012 
2013 	return copied;
2014 }
2015 
2016 static int fuse_launder_page(struct page *page)
2017 {
2018 	int err = 0;
2019 	if (clear_page_dirty_for_io(page)) {
2020 		struct inode *inode = page->mapping->host;
2021 		err = fuse_writepage_locked(page);
2022 		if (!err)
2023 			fuse_wait_on_page_writeback(inode, page->index);
2024 	}
2025 	return err;
2026 }
2027 
2028 /*
2029  * Write back dirty pages now, because there may not be any suitable
2030  * open files later
2031  */
2032 static void fuse_vma_close(struct vm_area_struct *vma)
2033 {
2034 	filemap_write_and_wait(vma->vm_file->f_mapping);
2035 }
2036 
2037 /*
2038  * Wait for writeback against this page to complete before allowing it
2039  * to be marked dirty again, and hence written back again, possibly
2040  * before the previous writepage completed.
2041  *
2042  * Block here, instead of in ->writepage(), so that the userspace fs
2043  * can only block processes actually operating on the filesystem.
2044  *
2045  * Otherwise unprivileged userspace fs would be able to block
2046  * unrelated:
2047  *
2048  * - page migration
2049  * - sync(2)
2050  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2051  */
2052 static int fuse_page_mkwrite(struct vm_fault *vmf)
2053 {
2054 	struct page *page = vmf->page;
2055 	struct inode *inode = file_inode(vmf->vma->vm_file);
2056 
2057 	file_update_time(vmf->vma->vm_file);
2058 	lock_page(page);
2059 	if (page->mapping != inode->i_mapping) {
2060 		unlock_page(page);
2061 		return VM_FAULT_NOPAGE;
2062 	}
2063 
2064 	fuse_wait_on_page_writeback(inode, page->index);
2065 	return VM_FAULT_LOCKED;
2066 }
2067 
2068 static const struct vm_operations_struct fuse_file_vm_ops = {
2069 	.close		= fuse_vma_close,
2070 	.fault		= filemap_fault,
2071 	.map_pages	= filemap_map_pages,
2072 	.page_mkwrite	= fuse_page_mkwrite,
2073 };
2074 
2075 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2076 {
2077 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2078 		fuse_link_write_file(file);
2079 
2080 	file_accessed(file);
2081 	vma->vm_ops = &fuse_file_vm_ops;
2082 	return 0;
2083 }
2084 
2085 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma)
2086 {
2087 	/* Can't provide the coherency needed for MAP_SHARED */
2088 	if (vma->vm_flags & VM_MAYSHARE)
2089 		return -ENODEV;
2090 
2091 	invalidate_inode_pages2(file->f_mapping);
2092 
2093 	return generic_file_mmap(file, vma);
2094 }
2095 
2096 static int convert_fuse_file_lock(struct fuse_conn *fc,
2097 				  const struct fuse_file_lock *ffl,
2098 				  struct file_lock *fl)
2099 {
2100 	switch (ffl->type) {
2101 	case F_UNLCK:
2102 		break;
2103 
2104 	case F_RDLCK:
2105 	case F_WRLCK:
2106 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2107 		    ffl->end < ffl->start)
2108 			return -EIO;
2109 
2110 		fl->fl_start = ffl->start;
2111 		fl->fl_end = ffl->end;
2112 
2113 		/*
2114 		 * Convert pid into init's pid namespace.  The locks API will
2115 		 * translate it into the caller's pid namespace.
2116 		 */
2117 		rcu_read_lock();
2118 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2119 		rcu_read_unlock();
2120 		break;
2121 
2122 	default:
2123 		return -EIO;
2124 	}
2125 	fl->fl_type = ffl->type;
2126 	return 0;
2127 }
2128 
2129 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2130 			 const struct file_lock *fl, int opcode, pid_t pid,
2131 			 int flock, struct fuse_lk_in *inarg)
2132 {
2133 	struct inode *inode = file_inode(file);
2134 	struct fuse_conn *fc = get_fuse_conn(inode);
2135 	struct fuse_file *ff = file->private_data;
2136 
2137 	memset(inarg, 0, sizeof(*inarg));
2138 	inarg->fh = ff->fh;
2139 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2140 	inarg->lk.start = fl->fl_start;
2141 	inarg->lk.end = fl->fl_end;
2142 	inarg->lk.type = fl->fl_type;
2143 	inarg->lk.pid = pid;
2144 	if (flock)
2145 		inarg->lk_flags |= FUSE_LK_FLOCK;
2146 	args->in.h.opcode = opcode;
2147 	args->in.h.nodeid = get_node_id(inode);
2148 	args->in.numargs = 1;
2149 	args->in.args[0].size = sizeof(*inarg);
2150 	args->in.args[0].value = inarg;
2151 }
2152 
2153 static int fuse_getlk(struct file *file, struct file_lock *fl)
2154 {
2155 	struct inode *inode = file_inode(file);
2156 	struct fuse_conn *fc = get_fuse_conn(inode);
2157 	FUSE_ARGS(args);
2158 	struct fuse_lk_in inarg;
2159 	struct fuse_lk_out outarg;
2160 	int err;
2161 
2162 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2163 	args.out.numargs = 1;
2164 	args.out.args[0].size = sizeof(outarg);
2165 	args.out.args[0].value = &outarg;
2166 	err = fuse_simple_request(fc, &args);
2167 	if (!err)
2168 		err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2169 
2170 	return err;
2171 }
2172 
2173 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2174 {
2175 	struct inode *inode = file_inode(file);
2176 	struct fuse_conn *fc = get_fuse_conn(inode);
2177 	FUSE_ARGS(args);
2178 	struct fuse_lk_in inarg;
2179 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2180 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2181 	pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2182 	int err;
2183 
2184 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2185 		/* NLM needs asynchronous locks, which we don't support yet */
2186 		return -ENOLCK;
2187 	}
2188 
2189 	/* Unlock on close is handled by the flush method */
2190 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2191 		return 0;
2192 
2193 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2194 	err = fuse_simple_request(fc, &args);
2195 
2196 	/* locking is restartable */
2197 	if (err == -EINTR)
2198 		err = -ERESTARTSYS;
2199 
2200 	return err;
2201 }
2202 
2203 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2204 {
2205 	struct inode *inode = file_inode(file);
2206 	struct fuse_conn *fc = get_fuse_conn(inode);
2207 	int err;
2208 
2209 	if (cmd == F_CANCELLK) {
2210 		err = 0;
2211 	} else if (cmd == F_GETLK) {
2212 		if (fc->no_lock) {
2213 			posix_test_lock(file, fl);
2214 			err = 0;
2215 		} else
2216 			err = fuse_getlk(file, fl);
2217 	} else {
2218 		if (fc->no_lock)
2219 			err = posix_lock_file(file, fl, NULL);
2220 		else
2221 			err = fuse_setlk(file, fl, 0);
2222 	}
2223 	return err;
2224 }
2225 
2226 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2227 {
2228 	struct inode *inode = file_inode(file);
2229 	struct fuse_conn *fc = get_fuse_conn(inode);
2230 	int err;
2231 
2232 	if (fc->no_flock) {
2233 		err = locks_lock_file_wait(file, fl);
2234 	} else {
2235 		struct fuse_file *ff = file->private_data;
2236 
2237 		/* emulate flock with POSIX locks */
2238 		ff->flock = true;
2239 		err = fuse_setlk(file, fl, 1);
2240 	}
2241 
2242 	return err;
2243 }
2244 
2245 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2246 {
2247 	struct inode *inode = mapping->host;
2248 	struct fuse_conn *fc = get_fuse_conn(inode);
2249 	FUSE_ARGS(args);
2250 	struct fuse_bmap_in inarg;
2251 	struct fuse_bmap_out outarg;
2252 	int err;
2253 
2254 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2255 		return 0;
2256 
2257 	memset(&inarg, 0, sizeof(inarg));
2258 	inarg.block = block;
2259 	inarg.blocksize = inode->i_sb->s_blocksize;
2260 	args.in.h.opcode = FUSE_BMAP;
2261 	args.in.h.nodeid = get_node_id(inode);
2262 	args.in.numargs = 1;
2263 	args.in.args[0].size = sizeof(inarg);
2264 	args.in.args[0].value = &inarg;
2265 	args.out.numargs = 1;
2266 	args.out.args[0].size = sizeof(outarg);
2267 	args.out.args[0].value = &outarg;
2268 	err = fuse_simple_request(fc, &args);
2269 	if (err == -ENOSYS)
2270 		fc->no_bmap = 1;
2271 
2272 	return err ? 0 : outarg.block;
2273 }
2274 
2275 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2276 {
2277 	struct inode *inode = file->f_mapping->host;
2278 	struct fuse_conn *fc = get_fuse_conn(inode);
2279 	struct fuse_file *ff = file->private_data;
2280 	FUSE_ARGS(args);
2281 	struct fuse_lseek_in inarg = {
2282 		.fh = ff->fh,
2283 		.offset = offset,
2284 		.whence = whence
2285 	};
2286 	struct fuse_lseek_out outarg;
2287 	int err;
2288 
2289 	if (fc->no_lseek)
2290 		goto fallback;
2291 
2292 	args.in.h.opcode = FUSE_LSEEK;
2293 	args.in.h.nodeid = ff->nodeid;
2294 	args.in.numargs = 1;
2295 	args.in.args[0].size = sizeof(inarg);
2296 	args.in.args[0].value = &inarg;
2297 	args.out.numargs = 1;
2298 	args.out.args[0].size = sizeof(outarg);
2299 	args.out.args[0].value = &outarg;
2300 	err = fuse_simple_request(fc, &args);
2301 	if (err) {
2302 		if (err == -ENOSYS) {
2303 			fc->no_lseek = 1;
2304 			goto fallback;
2305 		}
2306 		return err;
2307 	}
2308 
2309 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2310 
2311 fallback:
2312 	err = fuse_update_attributes(inode, file);
2313 	if (!err)
2314 		return generic_file_llseek(file, offset, whence);
2315 	else
2316 		return err;
2317 }
2318 
2319 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2320 {
2321 	loff_t retval;
2322 	struct inode *inode = file_inode(file);
2323 
2324 	switch (whence) {
2325 	case SEEK_SET:
2326 	case SEEK_CUR:
2327 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2328 		retval = generic_file_llseek(file, offset, whence);
2329 		break;
2330 	case SEEK_END:
2331 		inode_lock(inode);
2332 		retval = fuse_update_attributes(inode, file);
2333 		if (!retval)
2334 			retval = generic_file_llseek(file, offset, whence);
2335 		inode_unlock(inode);
2336 		break;
2337 	case SEEK_HOLE:
2338 	case SEEK_DATA:
2339 		inode_lock(inode);
2340 		retval = fuse_lseek(file, offset, whence);
2341 		inode_unlock(inode);
2342 		break;
2343 	default:
2344 		retval = -EINVAL;
2345 	}
2346 
2347 	return retval;
2348 }
2349 
2350 /*
2351  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2352  * ABI was defined to be 'struct iovec' which is different on 32bit
2353  * and 64bit.  Fortunately we can determine which structure the server
2354  * used from the size of the reply.
2355  */
2356 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2357 				     size_t transferred, unsigned count,
2358 				     bool is_compat)
2359 {
2360 #ifdef CONFIG_COMPAT
2361 	if (count * sizeof(struct compat_iovec) == transferred) {
2362 		struct compat_iovec *ciov = src;
2363 		unsigned i;
2364 
2365 		/*
2366 		 * With this interface a 32bit server cannot support
2367 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2368 		 * requests
2369 		 */
2370 		if (!is_compat)
2371 			return -EINVAL;
2372 
2373 		for (i = 0; i < count; i++) {
2374 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2375 			dst[i].iov_len = ciov[i].iov_len;
2376 		}
2377 		return 0;
2378 	}
2379 #endif
2380 
2381 	if (count * sizeof(struct iovec) != transferred)
2382 		return -EIO;
2383 
2384 	memcpy(dst, src, transferred);
2385 	return 0;
2386 }
2387 
2388 /* Make sure iov_length() won't overflow */
2389 static int fuse_verify_ioctl_iov(struct iovec *iov, size_t count)
2390 {
2391 	size_t n;
2392 	u32 max = FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT;
2393 
2394 	for (n = 0; n < count; n++, iov++) {
2395 		if (iov->iov_len > (size_t) max)
2396 			return -ENOMEM;
2397 		max -= iov->iov_len;
2398 	}
2399 	return 0;
2400 }
2401 
2402 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2403 				 void *src, size_t transferred, unsigned count,
2404 				 bool is_compat)
2405 {
2406 	unsigned i;
2407 	struct fuse_ioctl_iovec *fiov = src;
2408 
2409 	if (fc->minor < 16) {
2410 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2411 						 count, is_compat);
2412 	}
2413 
2414 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2415 		return -EIO;
2416 
2417 	for (i = 0; i < count; i++) {
2418 		/* Did the server supply an inappropriate value? */
2419 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2420 		    fiov[i].len != (unsigned long) fiov[i].len)
2421 			return -EIO;
2422 
2423 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2424 		dst[i].iov_len = (size_t) fiov[i].len;
2425 
2426 #ifdef CONFIG_COMPAT
2427 		if (is_compat &&
2428 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2429 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2430 			return -EIO;
2431 #endif
2432 	}
2433 
2434 	return 0;
2435 }
2436 
2437 
2438 /*
2439  * For ioctls, there is no generic way to determine how much memory
2440  * needs to be read and/or written.  Furthermore, ioctls are allowed
2441  * to dereference the passed pointer, so the parameter requires deep
2442  * copying but FUSE has no idea whatsoever about what to copy in or
2443  * out.
2444  *
2445  * This is solved by allowing FUSE server to retry ioctl with
2446  * necessary in/out iovecs.  Let's assume the ioctl implementation
2447  * needs to read in the following structure.
2448  *
2449  * struct a {
2450  *	char	*buf;
2451  *	size_t	buflen;
2452  * }
2453  *
2454  * On the first callout to FUSE server, inarg->in_size and
2455  * inarg->out_size will be NULL; then, the server completes the ioctl
2456  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2457  * the actual iov array to
2458  *
2459  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2460  *
2461  * which tells FUSE to copy in the requested area and retry the ioctl.
2462  * On the second round, the server has access to the structure and
2463  * from that it can tell what to look for next, so on the invocation,
2464  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2465  *
2466  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2467  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2468  *
2469  * FUSE will copy both struct a and the pointed buffer from the
2470  * process doing the ioctl and retry ioctl with both struct a and the
2471  * buffer.
2472  *
2473  * This time, FUSE server has everything it needs and completes ioctl
2474  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2475  *
2476  * Copying data out works the same way.
2477  *
2478  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2479  * automatically initializes in and out iovs by decoding @cmd with
2480  * _IOC_* macros and the server is not allowed to request RETRY.  This
2481  * limits ioctl data transfers to well-formed ioctls and is the forced
2482  * behavior for all FUSE servers.
2483  */
2484 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2485 		   unsigned int flags)
2486 {
2487 	struct fuse_file *ff = file->private_data;
2488 	struct fuse_conn *fc = ff->fc;
2489 	struct fuse_ioctl_in inarg = {
2490 		.fh = ff->fh,
2491 		.cmd = cmd,
2492 		.arg = arg,
2493 		.flags = flags
2494 	};
2495 	struct fuse_ioctl_out outarg;
2496 	struct fuse_req *req = NULL;
2497 	struct page **pages = NULL;
2498 	struct iovec *iov_page = NULL;
2499 	struct iovec *in_iov = NULL, *out_iov = NULL;
2500 	unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages;
2501 	size_t in_size, out_size, transferred, c;
2502 	int err, i;
2503 	struct iov_iter ii;
2504 
2505 #if BITS_PER_LONG == 32
2506 	inarg.flags |= FUSE_IOCTL_32BIT;
2507 #else
2508 	if (flags & FUSE_IOCTL_COMPAT)
2509 		inarg.flags |= FUSE_IOCTL_32BIT;
2510 #endif
2511 
2512 	/* assume all the iovs returned by client always fits in a page */
2513 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2514 
2515 	err = -ENOMEM;
2516 	pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, sizeof(pages[0]), GFP_KERNEL);
2517 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2518 	if (!pages || !iov_page)
2519 		goto out;
2520 
2521 	/*
2522 	 * If restricted, initialize IO parameters as encoded in @cmd.
2523 	 * RETRY from server is not allowed.
2524 	 */
2525 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2526 		struct iovec *iov = iov_page;
2527 
2528 		iov->iov_base = (void __user *)arg;
2529 		iov->iov_len = _IOC_SIZE(cmd);
2530 
2531 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2532 			in_iov = iov;
2533 			in_iovs = 1;
2534 		}
2535 
2536 		if (_IOC_DIR(cmd) & _IOC_READ) {
2537 			out_iov = iov;
2538 			out_iovs = 1;
2539 		}
2540 	}
2541 
2542  retry:
2543 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2544 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2545 
2546 	/*
2547 	 * Out data can be used either for actual out data or iovs,
2548 	 * make sure there always is at least one page.
2549 	 */
2550 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2551 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2552 
2553 	/* make sure there are enough buffer pages and init request with them */
2554 	err = -ENOMEM;
2555 	if (max_pages > FUSE_MAX_PAGES_PER_REQ)
2556 		goto out;
2557 	while (num_pages < max_pages) {
2558 		pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2559 		if (!pages[num_pages])
2560 			goto out;
2561 		num_pages++;
2562 	}
2563 
2564 	req = fuse_get_req(fc, num_pages);
2565 	if (IS_ERR(req)) {
2566 		err = PTR_ERR(req);
2567 		req = NULL;
2568 		goto out;
2569 	}
2570 	memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages);
2571 	req->num_pages = num_pages;
2572 	fuse_page_descs_length_init(req, 0, req->num_pages);
2573 
2574 	/* okay, let's send it to the client */
2575 	req->in.h.opcode = FUSE_IOCTL;
2576 	req->in.h.nodeid = ff->nodeid;
2577 	req->in.numargs = 1;
2578 	req->in.args[0].size = sizeof(inarg);
2579 	req->in.args[0].value = &inarg;
2580 	if (in_size) {
2581 		req->in.numargs++;
2582 		req->in.args[1].size = in_size;
2583 		req->in.argpages = 1;
2584 
2585 		err = -EFAULT;
2586 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2587 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) {
2588 			c = copy_page_from_iter(pages[i], 0, PAGE_SIZE, &ii);
2589 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2590 				goto out;
2591 		}
2592 	}
2593 
2594 	req->out.numargs = 2;
2595 	req->out.args[0].size = sizeof(outarg);
2596 	req->out.args[0].value = &outarg;
2597 	req->out.args[1].size = out_size;
2598 	req->out.argpages = 1;
2599 	req->out.argvar = 1;
2600 
2601 	fuse_request_send(fc, req);
2602 	err = req->out.h.error;
2603 	transferred = req->out.args[1].size;
2604 	fuse_put_request(fc, req);
2605 	req = NULL;
2606 	if (err)
2607 		goto out;
2608 
2609 	/* did it ask for retry? */
2610 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2611 		void *vaddr;
2612 
2613 		/* no retry if in restricted mode */
2614 		err = -EIO;
2615 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2616 			goto out;
2617 
2618 		in_iovs = outarg.in_iovs;
2619 		out_iovs = outarg.out_iovs;
2620 
2621 		/*
2622 		 * Make sure things are in boundary, separate checks
2623 		 * are to protect against overflow.
2624 		 */
2625 		err = -ENOMEM;
2626 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2627 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2628 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2629 			goto out;
2630 
2631 		vaddr = kmap_atomic(pages[0]);
2632 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2633 					    transferred, in_iovs + out_iovs,
2634 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2635 		kunmap_atomic(vaddr);
2636 		if (err)
2637 			goto out;
2638 
2639 		in_iov = iov_page;
2640 		out_iov = in_iov + in_iovs;
2641 
2642 		err = fuse_verify_ioctl_iov(in_iov, in_iovs);
2643 		if (err)
2644 			goto out;
2645 
2646 		err = fuse_verify_ioctl_iov(out_iov, out_iovs);
2647 		if (err)
2648 			goto out;
2649 
2650 		goto retry;
2651 	}
2652 
2653 	err = -EIO;
2654 	if (transferred > inarg.out_size)
2655 		goto out;
2656 
2657 	err = -EFAULT;
2658 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2659 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) {
2660 		c = copy_page_to_iter(pages[i], 0, PAGE_SIZE, &ii);
2661 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2662 			goto out;
2663 	}
2664 	err = 0;
2665  out:
2666 	if (req)
2667 		fuse_put_request(fc, req);
2668 	free_page((unsigned long) iov_page);
2669 	while (num_pages)
2670 		__free_page(pages[--num_pages]);
2671 	kfree(pages);
2672 
2673 	return err ? err : outarg.result;
2674 }
2675 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2676 
2677 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2678 		       unsigned long arg, unsigned int flags)
2679 {
2680 	struct inode *inode = file_inode(file);
2681 	struct fuse_conn *fc = get_fuse_conn(inode);
2682 
2683 	if (!fuse_allow_current_process(fc))
2684 		return -EACCES;
2685 
2686 	if (is_bad_inode(inode))
2687 		return -EIO;
2688 
2689 	return fuse_do_ioctl(file, cmd, arg, flags);
2690 }
2691 
2692 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2693 			    unsigned long arg)
2694 {
2695 	return fuse_ioctl_common(file, cmd, arg, 0);
2696 }
2697 
2698 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2699 				   unsigned long arg)
2700 {
2701 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2702 }
2703 
2704 /*
2705  * All files which have been polled are linked to RB tree
2706  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2707  * find the matching one.
2708  */
2709 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2710 					      struct rb_node **parent_out)
2711 {
2712 	struct rb_node **link = &fc->polled_files.rb_node;
2713 	struct rb_node *last = NULL;
2714 
2715 	while (*link) {
2716 		struct fuse_file *ff;
2717 
2718 		last = *link;
2719 		ff = rb_entry(last, struct fuse_file, polled_node);
2720 
2721 		if (kh < ff->kh)
2722 			link = &last->rb_left;
2723 		else if (kh > ff->kh)
2724 			link = &last->rb_right;
2725 		else
2726 			return link;
2727 	}
2728 
2729 	if (parent_out)
2730 		*parent_out = last;
2731 	return link;
2732 }
2733 
2734 /*
2735  * The file is about to be polled.  Make sure it's on the polled_files
2736  * RB tree.  Note that files once added to the polled_files tree are
2737  * not removed before the file is released.  This is because a file
2738  * polled once is likely to be polled again.
2739  */
2740 static void fuse_register_polled_file(struct fuse_conn *fc,
2741 				      struct fuse_file *ff)
2742 {
2743 	spin_lock(&fc->lock);
2744 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2745 		struct rb_node **link, *uninitialized_var(parent);
2746 
2747 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2748 		BUG_ON(*link);
2749 		rb_link_node(&ff->polled_node, parent, link);
2750 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2751 	}
2752 	spin_unlock(&fc->lock);
2753 }
2754 
2755 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2756 {
2757 	struct fuse_file *ff = file->private_data;
2758 	struct fuse_conn *fc = ff->fc;
2759 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2760 	struct fuse_poll_out outarg;
2761 	FUSE_ARGS(args);
2762 	int err;
2763 
2764 	if (fc->no_poll)
2765 		return DEFAULT_POLLMASK;
2766 
2767 	poll_wait(file, &ff->poll_wait, wait);
2768 	inarg.events = mangle_poll(poll_requested_events(wait));
2769 
2770 	/*
2771 	 * Ask for notification iff there's someone waiting for it.
2772 	 * The client may ignore the flag and always notify.
2773 	 */
2774 	if (waitqueue_active(&ff->poll_wait)) {
2775 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2776 		fuse_register_polled_file(fc, ff);
2777 	}
2778 
2779 	args.in.h.opcode = FUSE_POLL;
2780 	args.in.h.nodeid = ff->nodeid;
2781 	args.in.numargs = 1;
2782 	args.in.args[0].size = sizeof(inarg);
2783 	args.in.args[0].value = &inarg;
2784 	args.out.numargs = 1;
2785 	args.out.args[0].size = sizeof(outarg);
2786 	args.out.args[0].value = &outarg;
2787 	err = fuse_simple_request(fc, &args);
2788 
2789 	if (!err)
2790 		return demangle_poll(outarg.revents);
2791 	if (err == -ENOSYS) {
2792 		fc->no_poll = 1;
2793 		return DEFAULT_POLLMASK;
2794 	}
2795 	return EPOLLERR;
2796 }
2797 EXPORT_SYMBOL_GPL(fuse_file_poll);
2798 
2799 /*
2800  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2801  * wakes up the poll waiters.
2802  */
2803 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2804 			    struct fuse_notify_poll_wakeup_out *outarg)
2805 {
2806 	u64 kh = outarg->kh;
2807 	struct rb_node **link;
2808 
2809 	spin_lock(&fc->lock);
2810 
2811 	link = fuse_find_polled_node(fc, kh, NULL);
2812 	if (*link) {
2813 		struct fuse_file *ff;
2814 
2815 		ff = rb_entry(*link, struct fuse_file, polled_node);
2816 		wake_up_interruptible_sync(&ff->poll_wait);
2817 	}
2818 
2819 	spin_unlock(&fc->lock);
2820 	return 0;
2821 }
2822 
2823 static void fuse_do_truncate(struct file *file)
2824 {
2825 	struct inode *inode = file->f_mapping->host;
2826 	struct iattr attr;
2827 
2828 	attr.ia_valid = ATTR_SIZE;
2829 	attr.ia_size = i_size_read(inode);
2830 
2831 	attr.ia_file = file;
2832 	attr.ia_valid |= ATTR_FILE;
2833 
2834 	fuse_do_setattr(file_dentry(file), &attr, file);
2835 }
2836 
2837 static inline loff_t fuse_round_up(loff_t off)
2838 {
2839 	return round_up(off, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT);
2840 }
2841 
2842 static ssize_t
2843 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2844 {
2845 	DECLARE_COMPLETION_ONSTACK(wait);
2846 	ssize_t ret = 0;
2847 	struct file *file = iocb->ki_filp;
2848 	struct fuse_file *ff = file->private_data;
2849 	bool async_dio = ff->fc->async_dio;
2850 	loff_t pos = 0;
2851 	struct inode *inode;
2852 	loff_t i_size;
2853 	size_t count = iov_iter_count(iter);
2854 	loff_t offset = iocb->ki_pos;
2855 	struct fuse_io_priv *io;
2856 
2857 	pos = offset;
2858 	inode = file->f_mapping->host;
2859 	i_size = i_size_read(inode);
2860 
2861 	if ((iov_iter_rw(iter) == READ) && (offset > i_size))
2862 		return 0;
2863 
2864 	/* optimization for short read */
2865 	if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
2866 		if (offset >= i_size)
2867 			return 0;
2868 		iov_iter_truncate(iter, fuse_round_up(i_size - offset));
2869 		count = iov_iter_count(iter);
2870 	}
2871 
2872 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2873 	if (!io)
2874 		return -ENOMEM;
2875 	spin_lock_init(&io->lock);
2876 	kref_init(&io->refcnt);
2877 	io->reqs = 1;
2878 	io->bytes = -1;
2879 	io->size = 0;
2880 	io->offset = offset;
2881 	io->write = (iov_iter_rw(iter) == WRITE);
2882 	io->err = 0;
2883 	/*
2884 	 * By default, we want to optimize all I/Os with async request
2885 	 * submission to the client filesystem if supported.
2886 	 */
2887 	io->async = async_dio;
2888 	io->iocb = iocb;
2889 	io->blocking = is_sync_kiocb(iocb);
2890 
2891 	/*
2892 	 * We cannot asynchronously extend the size of a file.
2893 	 * In such case the aio will behave exactly like sync io.
2894 	 */
2895 	if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
2896 		io->blocking = true;
2897 
2898 	if (io->async && io->blocking) {
2899 		/*
2900 		 * Additional reference to keep io around after
2901 		 * calling fuse_aio_complete()
2902 		 */
2903 		kref_get(&io->refcnt);
2904 		io->done = &wait;
2905 	}
2906 
2907 	if (iov_iter_rw(iter) == WRITE) {
2908 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
2909 		fuse_invalidate_attr(inode);
2910 	} else {
2911 		ret = __fuse_direct_read(io, iter, &pos);
2912 	}
2913 
2914 	if (io->async) {
2915 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2916 
2917 		/* we have a non-extending, async request, so return */
2918 		if (!io->blocking)
2919 			return -EIOCBQUEUED;
2920 
2921 		wait_for_completion(&wait);
2922 		ret = fuse_get_res_by_io(io);
2923 	}
2924 
2925 	kref_put(&io->refcnt, fuse_io_release);
2926 
2927 	if (iov_iter_rw(iter) == WRITE) {
2928 		if (ret > 0)
2929 			fuse_write_update_size(inode, pos);
2930 		else if (ret < 0 && offset + count > i_size)
2931 			fuse_do_truncate(file);
2932 	}
2933 
2934 	return ret;
2935 }
2936 
2937 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
2938 				loff_t length)
2939 {
2940 	struct fuse_file *ff = file->private_data;
2941 	struct inode *inode = file_inode(file);
2942 	struct fuse_inode *fi = get_fuse_inode(inode);
2943 	struct fuse_conn *fc = ff->fc;
2944 	FUSE_ARGS(args);
2945 	struct fuse_fallocate_in inarg = {
2946 		.fh = ff->fh,
2947 		.offset = offset,
2948 		.length = length,
2949 		.mode = mode
2950 	};
2951 	int err;
2952 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
2953 			   (mode & FALLOC_FL_PUNCH_HOLE);
2954 
2955 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2956 		return -EOPNOTSUPP;
2957 
2958 	if (fc->no_fallocate)
2959 		return -EOPNOTSUPP;
2960 
2961 	if (lock_inode) {
2962 		inode_lock(inode);
2963 		if (mode & FALLOC_FL_PUNCH_HOLE) {
2964 			loff_t endbyte = offset + length - 1;
2965 			err = filemap_write_and_wait_range(inode->i_mapping,
2966 							   offset, endbyte);
2967 			if (err)
2968 				goto out;
2969 
2970 			fuse_sync_writes(inode);
2971 		}
2972 	}
2973 
2974 	if (!(mode & FALLOC_FL_KEEP_SIZE))
2975 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
2976 
2977 	args.in.h.opcode = FUSE_FALLOCATE;
2978 	args.in.h.nodeid = ff->nodeid;
2979 	args.in.numargs = 1;
2980 	args.in.args[0].size = sizeof(inarg);
2981 	args.in.args[0].value = &inarg;
2982 	err = fuse_simple_request(fc, &args);
2983 	if (err == -ENOSYS) {
2984 		fc->no_fallocate = 1;
2985 		err = -EOPNOTSUPP;
2986 	}
2987 	if (err)
2988 		goto out;
2989 
2990 	/* we could have extended the file */
2991 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
2992 		bool changed = fuse_write_update_size(inode, offset + length);
2993 
2994 		if (changed && fc->writeback_cache)
2995 			file_update_time(file);
2996 	}
2997 
2998 	if (mode & FALLOC_FL_PUNCH_HOLE)
2999 		truncate_pagecache_range(inode, offset, offset + length - 1);
3000 
3001 	fuse_invalidate_attr(inode);
3002 
3003 out:
3004 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3005 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3006 
3007 	if (lock_inode)
3008 		inode_unlock(inode);
3009 
3010 	return err;
3011 }
3012 
3013 static const struct file_operations fuse_file_operations = {
3014 	.llseek		= fuse_file_llseek,
3015 	.read_iter	= fuse_file_read_iter,
3016 	.write_iter	= fuse_file_write_iter,
3017 	.mmap		= fuse_file_mmap,
3018 	.open		= fuse_open,
3019 	.flush		= fuse_flush,
3020 	.release	= fuse_release,
3021 	.fsync		= fuse_fsync,
3022 	.lock		= fuse_file_lock,
3023 	.flock		= fuse_file_flock,
3024 	.splice_read	= generic_file_splice_read,
3025 	.unlocked_ioctl	= fuse_file_ioctl,
3026 	.compat_ioctl	= fuse_file_compat_ioctl,
3027 	.poll		= fuse_file_poll,
3028 	.fallocate	= fuse_file_fallocate,
3029 };
3030 
3031 static const struct file_operations fuse_direct_io_file_operations = {
3032 	.llseek		= fuse_file_llseek,
3033 	.read_iter	= fuse_direct_read_iter,
3034 	.write_iter	= fuse_direct_write_iter,
3035 	.mmap		= fuse_direct_mmap,
3036 	.open		= fuse_open,
3037 	.flush		= fuse_flush,
3038 	.release	= fuse_release,
3039 	.fsync		= fuse_fsync,
3040 	.lock		= fuse_file_lock,
3041 	.flock		= fuse_file_flock,
3042 	.unlocked_ioctl	= fuse_file_ioctl,
3043 	.compat_ioctl	= fuse_file_compat_ioctl,
3044 	.poll		= fuse_file_poll,
3045 	.fallocate	= fuse_file_fallocate,
3046 	/* no splice_read */
3047 };
3048 
3049 static const struct address_space_operations fuse_file_aops  = {
3050 	.readpage	= fuse_readpage,
3051 	.writepage	= fuse_writepage,
3052 	.writepages	= fuse_writepages,
3053 	.launder_page	= fuse_launder_page,
3054 	.readpages	= fuse_readpages,
3055 	.set_page_dirty	= __set_page_dirty_nobuffers,
3056 	.bmap		= fuse_bmap,
3057 	.direct_IO	= fuse_direct_IO,
3058 	.write_begin	= fuse_write_begin,
3059 	.write_end	= fuse_write_end,
3060 };
3061 
3062 void fuse_init_file_inode(struct inode *inode)
3063 {
3064 	inode->i_fop = &fuse_file_operations;
3065 	inode->i_data.a_ops = &fuse_file_aops;
3066 }
3067