1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/falloc.h> 19 #include <linux/uio.h> 20 #include <linux/fs.h> 21 22 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, 23 unsigned int open_flags, int opcode, 24 struct fuse_open_out *outargp) 25 { 26 struct fuse_open_in inarg; 27 FUSE_ARGS(args); 28 29 memset(&inarg, 0, sizeof(inarg)); 30 inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 31 if (!fm->fc->atomic_o_trunc) 32 inarg.flags &= ~O_TRUNC; 33 34 if (fm->fc->handle_killpriv_v2 && 35 (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) { 36 inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID; 37 } 38 39 args.opcode = opcode; 40 args.nodeid = nodeid; 41 args.in_numargs = 1; 42 args.in_args[0].size = sizeof(inarg); 43 args.in_args[0].value = &inarg; 44 args.out_numargs = 1; 45 args.out_args[0].size = sizeof(*outargp); 46 args.out_args[0].value = outargp; 47 48 return fuse_simple_request(fm, &args); 49 } 50 51 struct fuse_release_args { 52 struct fuse_args args; 53 struct fuse_release_in inarg; 54 struct inode *inode; 55 }; 56 57 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm) 58 { 59 struct fuse_file *ff; 60 61 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 62 if (unlikely(!ff)) 63 return NULL; 64 65 ff->fm = fm; 66 ff->release_args = kzalloc(sizeof(*ff->release_args), 67 GFP_KERNEL_ACCOUNT); 68 if (!ff->release_args) { 69 kfree(ff); 70 return NULL; 71 } 72 73 INIT_LIST_HEAD(&ff->write_entry); 74 mutex_init(&ff->readdir.lock); 75 refcount_set(&ff->count, 1); 76 RB_CLEAR_NODE(&ff->polled_node); 77 init_waitqueue_head(&ff->poll_wait); 78 79 ff->kh = atomic64_inc_return(&fm->fc->khctr); 80 81 return ff; 82 } 83 84 void fuse_file_free(struct fuse_file *ff) 85 { 86 kfree(ff->release_args); 87 mutex_destroy(&ff->readdir.lock); 88 kfree(ff); 89 } 90 91 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 92 { 93 refcount_inc(&ff->count); 94 return ff; 95 } 96 97 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args, 98 int error) 99 { 100 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 101 102 iput(ra->inode); 103 kfree(ra); 104 } 105 106 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir) 107 { 108 if (refcount_dec_and_test(&ff->count)) { 109 struct fuse_args *args = &ff->release_args->args; 110 111 if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) { 112 /* Do nothing when client does not implement 'open' */ 113 fuse_release_end(ff->fm, args, 0); 114 } else if (sync) { 115 fuse_simple_request(ff->fm, args); 116 fuse_release_end(ff->fm, args, 0); 117 } else { 118 args->end = fuse_release_end; 119 if (fuse_simple_background(ff->fm, args, 120 GFP_KERNEL | __GFP_NOFAIL)) 121 fuse_release_end(ff->fm, args, -ENOTCONN); 122 } 123 kfree(ff); 124 } 125 } 126 127 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid, 128 unsigned int open_flags, bool isdir) 129 { 130 struct fuse_conn *fc = fm->fc; 131 struct fuse_file *ff; 132 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 133 134 ff = fuse_file_alloc(fm); 135 if (!ff) 136 return ERR_PTR(-ENOMEM); 137 138 ff->fh = 0; 139 /* Default for no-open */ 140 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 141 if (isdir ? !fc->no_opendir : !fc->no_open) { 142 struct fuse_open_out outarg; 143 int err; 144 145 err = fuse_send_open(fm, nodeid, open_flags, opcode, &outarg); 146 if (!err) { 147 ff->fh = outarg.fh; 148 ff->open_flags = outarg.open_flags; 149 150 } else if (err != -ENOSYS) { 151 fuse_file_free(ff); 152 return ERR_PTR(err); 153 } else { 154 if (isdir) 155 fc->no_opendir = 1; 156 else 157 fc->no_open = 1; 158 } 159 } 160 161 if (isdir) 162 ff->open_flags &= ~FOPEN_DIRECT_IO; 163 164 ff->nodeid = nodeid; 165 166 return ff; 167 } 168 169 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file, 170 bool isdir) 171 { 172 struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir); 173 174 if (!IS_ERR(ff)) 175 file->private_data = ff; 176 177 return PTR_ERR_OR_ZERO(ff); 178 } 179 EXPORT_SYMBOL_GPL(fuse_do_open); 180 181 static void fuse_link_write_file(struct file *file) 182 { 183 struct inode *inode = file_inode(file); 184 struct fuse_inode *fi = get_fuse_inode(inode); 185 struct fuse_file *ff = file->private_data; 186 /* 187 * file may be written through mmap, so chain it onto the 188 * inodes's write_file list 189 */ 190 spin_lock(&fi->lock); 191 if (list_empty(&ff->write_entry)) 192 list_add(&ff->write_entry, &fi->write_files); 193 spin_unlock(&fi->lock); 194 } 195 196 void fuse_finish_open(struct inode *inode, struct file *file) 197 { 198 struct fuse_file *ff = file->private_data; 199 struct fuse_conn *fc = get_fuse_conn(inode); 200 201 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 202 invalidate_inode_pages2(inode->i_mapping); 203 if (ff->open_flags & FOPEN_STREAM) 204 stream_open(inode, file); 205 else if (ff->open_flags & FOPEN_NONSEEKABLE) 206 nonseekable_open(inode, file); 207 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 208 struct fuse_inode *fi = get_fuse_inode(inode); 209 210 spin_lock(&fi->lock); 211 fi->attr_version = atomic64_inc_return(&fc->attr_version); 212 i_size_write(inode, 0); 213 spin_unlock(&fi->lock); 214 fuse_invalidate_attr(inode); 215 if (fc->writeback_cache) 216 file_update_time(file); 217 } 218 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 219 fuse_link_write_file(file); 220 } 221 222 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 223 { 224 struct fuse_mount *fm = get_fuse_mount(inode); 225 struct fuse_conn *fc = fm->fc; 226 int err; 227 bool is_wb_truncate = (file->f_flags & O_TRUNC) && 228 fc->atomic_o_trunc && 229 fc->writeback_cache; 230 bool dax_truncate = (file->f_flags & O_TRUNC) && 231 fc->atomic_o_trunc && FUSE_IS_DAX(inode); 232 233 if (fuse_is_bad(inode)) 234 return -EIO; 235 236 err = generic_file_open(inode, file); 237 if (err) 238 return err; 239 240 if (is_wb_truncate || dax_truncate) { 241 inode_lock(inode); 242 fuse_set_nowrite(inode); 243 } 244 245 if (dax_truncate) { 246 down_write(&get_fuse_inode(inode)->i_mmap_sem); 247 err = fuse_dax_break_layouts(inode, 0, 0); 248 if (err) 249 goto out; 250 } 251 252 err = fuse_do_open(fm, get_node_id(inode), file, isdir); 253 if (!err) 254 fuse_finish_open(inode, file); 255 256 out: 257 if (dax_truncate) 258 up_write(&get_fuse_inode(inode)->i_mmap_sem); 259 260 if (is_wb_truncate | dax_truncate) { 261 fuse_release_nowrite(inode); 262 inode_unlock(inode); 263 } 264 265 return err; 266 } 267 268 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 269 unsigned int flags, int opcode) 270 { 271 struct fuse_conn *fc = ff->fm->fc; 272 struct fuse_release_args *ra = ff->release_args; 273 274 /* Inode is NULL on error path of fuse_create_open() */ 275 if (likely(fi)) { 276 spin_lock(&fi->lock); 277 list_del(&ff->write_entry); 278 spin_unlock(&fi->lock); 279 } 280 spin_lock(&fc->lock); 281 if (!RB_EMPTY_NODE(&ff->polled_node)) 282 rb_erase(&ff->polled_node, &fc->polled_files); 283 spin_unlock(&fc->lock); 284 285 wake_up_interruptible_all(&ff->poll_wait); 286 287 ra->inarg.fh = ff->fh; 288 ra->inarg.flags = flags; 289 ra->args.in_numargs = 1; 290 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 291 ra->args.in_args[0].value = &ra->inarg; 292 ra->args.opcode = opcode; 293 ra->args.nodeid = ff->nodeid; 294 ra->args.force = true; 295 ra->args.nocreds = true; 296 } 297 298 void fuse_file_release(struct inode *inode, struct fuse_file *ff, 299 unsigned int open_flags, fl_owner_t id, bool isdir) 300 { 301 struct fuse_inode *fi = get_fuse_inode(inode); 302 struct fuse_release_args *ra = ff->release_args; 303 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 304 305 fuse_prepare_release(fi, ff, open_flags, opcode); 306 307 if (ff->flock) { 308 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 309 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id); 310 } 311 /* Hold inode until release is finished */ 312 ra->inode = igrab(inode); 313 314 /* 315 * Normally this will send the RELEASE request, however if 316 * some asynchronous READ or WRITE requests are outstanding, 317 * the sending will be delayed. 318 * 319 * Make the release synchronous if this is a fuseblk mount, 320 * synchronous RELEASE is allowed (and desirable) in this case 321 * because the server can be trusted not to screw up. 322 */ 323 fuse_file_put(ff, ff->fm->fc->destroy, isdir); 324 } 325 326 void fuse_release_common(struct file *file, bool isdir) 327 { 328 fuse_file_release(file_inode(file), file->private_data, file->f_flags, 329 (fl_owner_t) file, isdir); 330 } 331 332 static int fuse_open(struct inode *inode, struct file *file) 333 { 334 return fuse_open_common(inode, file, false); 335 } 336 337 static int fuse_release(struct inode *inode, struct file *file) 338 { 339 struct fuse_conn *fc = get_fuse_conn(inode); 340 341 /* see fuse_vma_close() for !writeback_cache case */ 342 if (fc->writeback_cache) 343 write_inode_now(inode, 1); 344 345 fuse_release_common(file, false); 346 347 /* return value is ignored by VFS */ 348 return 0; 349 } 350 351 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, 352 unsigned int flags) 353 { 354 WARN_ON(refcount_read(&ff->count) > 1); 355 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE); 356 /* 357 * iput(NULL) is a no-op and since the refcount is 1 and everything's 358 * synchronous, we are fine with not doing igrab() here" 359 */ 360 fuse_file_put(ff, true, false); 361 } 362 EXPORT_SYMBOL_GPL(fuse_sync_release); 363 364 /* 365 * Scramble the ID space with XTEA, so that the value of the files_struct 366 * pointer is not exposed to userspace. 367 */ 368 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 369 { 370 u32 *k = fc->scramble_key; 371 u64 v = (unsigned long) id; 372 u32 v0 = v; 373 u32 v1 = v >> 32; 374 u32 sum = 0; 375 int i; 376 377 for (i = 0; i < 32; i++) { 378 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 379 sum += 0x9E3779B9; 380 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 381 } 382 383 return (u64) v0 + ((u64) v1 << 32); 384 } 385 386 struct fuse_writepage_args { 387 struct fuse_io_args ia; 388 struct rb_node writepages_entry; 389 struct list_head queue_entry; 390 struct fuse_writepage_args *next; 391 struct inode *inode; 392 }; 393 394 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi, 395 pgoff_t idx_from, pgoff_t idx_to) 396 { 397 struct rb_node *n; 398 399 n = fi->writepages.rb_node; 400 401 while (n) { 402 struct fuse_writepage_args *wpa; 403 pgoff_t curr_index; 404 405 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry); 406 WARN_ON(get_fuse_inode(wpa->inode) != fi); 407 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT; 408 if (idx_from >= curr_index + wpa->ia.ap.num_pages) 409 n = n->rb_right; 410 else if (idx_to < curr_index) 411 n = n->rb_left; 412 else 413 return wpa; 414 } 415 return NULL; 416 } 417 418 /* 419 * Check if any page in a range is under writeback 420 * 421 * This is currently done by walking the list of writepage requests 422 * for the inode, which can be pretty inefficient. 423 */ 424 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 425 pgoff_t idx_to) 426 { 427 struct fuse_inode *fi = get_fuse_inode(inode); 428 bool found; 429 430 spin_lock(&fi->lock); 431 found = fuse_find_writeback(fi, idx_from, idx_to); 432 spin_unlock(&fi->lock); 433 434 return found; 435 } 436 437 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 438 { 439 return fuse_range_is_writeback(inode, index, index); 440 } 441 442 /* 443 * Wait for page writeback to be completed. 444 * 445 * Since fuse doesn't rely on the VM writeback tracking, this has to 446 * use some other means. 447 */ 448 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 449 { 450 struct fuse_inode *fi = get_fuse_inode(inode); 451 452 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 453 } 454 455 /* 456 * Wait for all pending writepages on the inode to finish. 457 * 458 * This is currently done by blocking further writes with FUSE_NOWRITE 459 * and waiting for all sent writes to complete. 460 * 461 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 462 * could conflict with truncation. 463 */ 464 static void fuse_sync_writes(struct inode *inode) 465 { 466 fuse_set_nowrite(inode); 467 fuse_release_nowrite(inode); 468 } 469 470 static int fuse_flush(struct file *file, fl_owner_t id) 471 { 472 struct inode *inode = file_inode(file); 473 struct fuse_mount *fm = get_fuse_mount(inode); 474 struct fuse_file *ff = file->private_data; 475 struct fuse_flush_in inarg; 476 FUSE_ARGS(args); 477 int err; 478 479 if (fuse_is_bad(inode)) 480 return -EIO; 481 482 err = write_inode_now(inode, 1); 483 if (err) 484 return err; 485 486 inode_lock(inode); 487 fuse_sync_writes(inode); 488 inode_unlock(inode); 489 490 err = filemap_check_errors(file->f_mapping); 491 if (err) 492 return err; 493 494 err = 0; 495 if (fm->fc->no_flush) 496 goto inval_attr_out; 497 498 memset(&inarg, 0, sizeof(inarg)); 499 inarg.fh = ff->fh; 500 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id); 501 args.opcode = FUSE_FLUSH; 502 args.nodeid = get_node_id(inode); 503 args.in_numargs = 1; 504 args.in_args[0].size = sizeof(inarg); 505 args.in_args[0].value = &inarg; 506 args.force = true; 507 508 err = fuse_simple_request(fm, &args); 509 if (err == -ENOSYS) { 510 fm->fc->no_flush = 1; 511 err = 0; 512 } 513 514 inval_attr_out: 515 /* 516 * In memory i_blocks is not maintained by fuse, if writeback cache is 517 * enabled, i_blocks from cached attr may not be accurate. 518 */ 519 if (!err && fm->fc->writeback_cache) 520 fuse_invalidate_attr(inode); 521 return err; 522 } 523 524 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 525 int datasync, int opcode) 526 { 527 struct inode *inode = file->f_mapping->host; 528 struct fuse_mount *fm = get_fuse_mount(inode); 529 struct fuse_file *ff = file->private_data; 530 FUSE_ARGS(args); 531 struct fuse_fsync_in inarg; 532 533 memset(&inarg, 0, sizeof(inarg)); 534 inarg.fh = ff->fh; 535 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 536 args.opcode = opcode; 537 args.nodeid = get_node_id(inode); 538 args.in_numargs = 1; 539 args.in_args[0].size = sizeof(inarg); 540 args.in_args[0].value = &inarg; 541 return fuse_simple_request(fm, &args); 542 } 543 544 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 545 int datasync) 546 { 547 struct inode *inode = file->f_mapping->host; 548 struct fuse_conn *fc = get_fuse_conn(inode); 549 int err; 550 551 if (fuse_is_bad(inode)) 552 return -EIO; 553 554 inode_lock(inode); 555 556 /* 557 * Start writeback against all dirty pages of the inode, then 558 * wait for all outstanding writes, before sending the FSYNC 559 * request. 560 */ 561 err = file_write_and_wait_range(file, start, end); 562 if (err) 563 goto out; 564 565 fuse_sync_writes(inode); 566 567 /* 568 * Due to implementation of fuse writeback 569 * file_write_and_wait_range() does not catch errors. 570 * We have to do this directly after fuse_sync_writes() 571 */ 572 err = file_check_and_advance_wb_err(file); 573 if (err) 574 goto out; 575 576 err = sync_inode_metadata(inode, 1); 577 if (err) 578 goto out; 579 580 if (fc->no_fsync) 581 goto out; 582 583 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 584 if (err == -ENOSYS) { 585 fc->no_fsync = 1; 586 err = 0; 587 } 588 out: 589 inode_unlock(inode); 590 591 return err; 592 } 593 594 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 595 size_t count, int opcode) 596 { 597 struct fuse_file *ff = file->private_data; 598 struct fuse_args *args = &ia->ap.args; 599 600 ia->read.in.fh = ff->fh; 601 ia->read.in.offset = pos; 602 ia->read.in.size = count; 603 ia->read.in.flags = file->f_flags; 604 args->opcode = opcode; 605 args->nodeid = ff->nodeid; 606 args->in_numargs = 1; 607 args->in_args[0].size = sizeof(ia->read.in); 608 args->in_args[0].value = &ia->read.in; 609 args->out_argvar = true; 610 args->out_numargs = 1; 611 args->out_args[0].size = count; 612 } 613 614 static void fuse_release_user_pages(struct fuse_args_pages *ap, 615 bool should_dirty) 616 { 617 unsigned int i; 618 619 for (i = 0; i < ap->num_pages; i++) { 620 if (should_dirty) 621 set_page_dirty_lock(ap->pages[i]); 622 put_page(ap->pages[i]); 623 } 624 } 625 626 static void fuse_io_release(struct kref *kref) 627 { 628 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 629 } 630 631 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 632 { 633 if (io->err) 634 return io->err; 635 636 if (io->bytes >= 0 && io->write) 637 return -EIO; 638 639 return io->bytes < 0 ? io->size : io->bytes; 640 } 641 642 /** 643 * In case of short read, the caller sets 'pos' to the position of 644 * actual end of fuse request in IO request. Otherwise, if bytes_requested 645 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 646 * 647 * An example: 648 * User requested DIO read of 64K. It was splitted into two 32K fuse requests, 649 * both submitted asynchronously. The first of them was ACKed by userspace as 650 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 651 * second request was ACKed as short, e.g. only 1K was read, resulting in 652 * pos == 33K. 653 * 654 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 655 * will be equal to the length of the longest contiguous fragment of 656 * transferred data starting from the beginning of IO request. 657 */ 658 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 659 { 660 int left; 661 662 spin_lock(&io->lock); 663 if (err) 664 io->err = io->err ? : err; 665 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 666 io->bytes = pos; 667 668 left = --io->reqs; 669 if (!left && io->blocking) 670 complete(io->done); 671 spin_unlock(&io->lock); 672 673 if (!left && !io->blocking) { 674 ssize_t res = fuse_get_res_by_io(io); 675 676 if (res >= 0) { 677 struct inode *inode = file_inode(io->iocb->ki_filp); 678 struct fuse_conn *fc = get_fuse_conn(inode); 679 struct fuse_inode *fi = get_fuse_inode(inode); 680 681 spin_lock(&fi->lock); 682 fi->attr_version = atomic64_inc_return(&fc->attr_version); 683 spin_unlock(&fi->lock); 684 } 685 686 io->iocb->ki_complete(io->iocb, res, 0); 687 } 688 689 kref_put(&io->refcnt, fuse_io_release); 690 } 691 692 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 693 unsigned int npages) 694 { 695 struct fuse_io_args *ia; 696 697 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 698 if (ia) { 699 ia->io = io; 700 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL, 701 &ia->ap.descs); 702 if (!ia->ap.pages) { 703 kfree(ia); 704 ia = NULL; 705 } 706 } 707 return ia; 708 } 709 710 static void fuse_io_free(struct fuse_io_args *ia) 711 { 712 kfree(ia->ap.pages); 713 kfree(ia); 714 } 715 716 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args, 717 int err) 718 { 719 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 720 struct fuse_io_priv *io = ia->io; 721 ssize_t pos = -1; 722 723 fuse_release_user_pages(&ia->ap, io->should_dirty); 724 725 if (err) { 726 /* Nothing */ 727 } else if (io->write) { 728 if (ia->write.out.size > ia->write.in.size) { 729 err = -EIO; 730 } else if (ia->write.in.size != ia->write.out.size) { 731 pos = ia->write.in.offset - io->offset + 732 ia->write.out.size; 733 } 734 } else { 735 u32 outsize = args->out_args[0].size; 736 737 if (ia->read.in.size != outsize) 738 pos = ia->read.in.offset - io->offset + outsize; 739 } 740 741 fuse_aio_complete(io, err, pos); 742 fuse_io_free(ia); 743 } 744 745 static ssize_t fuse_async_req_send(struct fuse_mount *fm, 746 struct fuse_io_args *ia, size_t num_bytes) 747 { 748 ssize_t err; 749 struct fuse_io_priv *io = ia->io; 750 751 spin_lock(&io->lock); 752 kref_get(&io->refcnt); 753 io->size += num_bytes; 754 io->reqs++; 755 spin_unlock(&io->lock); 756 757 ia->ap.args.end = fuse_aio_complete_req; 758 ia->ap.args.may_block = io->should_dirty; 759 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL); 760 if (err) 761 fuse_aio_complete_req(fm, &ia->ap.args, err); 762 763 return num_bytes; 764 } 765 766 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 767 fl_owner_t owner) 768 { 769 struct file *file = ia->io->iocb->ki_filp; 770 struct fuse_file *ff = file->private_data; 771 struct fuse_mount *fm = ff->fm; 772 773 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 774 if (owner != NULL) { 775 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 776 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner); 777 } 778 779 if (ia->io->async) 780 return fuse_async_req_send(fm, ia, count); 781 782 return fuse_simple_request(fm, &ia->ap.args); 783 } 784 785 static void fuse_read_update_size(struct inode *inode, loff_t size, 786 u64 attr_ver) 787 { 788 struct fuse_conn *fc = get_fuse_conn(inode); 789 struct fuse_inode *fi = get_fuse_inode(inode); 790 791 spin_lock(&fi->lock); 792 if (attr_ver == fi->attr_version && size < inode->i_size && 793 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 794 fi->attr_version = atomic64_inc_return(&fc->attr_version); 795 i_size_write(inode, size); 796 } 797 spin_unlock(&fi->lock); 798 } 799 800 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 801 struct fuse_args_pages *ap) 802 { 803 struct fuse_conn *fc = get_fuse_conn(inode); 804 805 if (fc->writeback_cache) { 806 /* 807 * A hole in a file. Some data after the hole are in page cache, 808 * but have not reached the client fs yet. So, the hole is not 809 * present there. 810 */ 811 int i; 812 int start_idx = num_read >> PAGE_SHIFT; 813 size_t off = num_read & (PAGE_SIZE - 1); 814 815 for (i = start_idx; i < ap->num_pages; i++) { 816 zero_user_segment(ap->pages[i], off, PAGE_SIZE); 817 off = 0; 818 } 819 } else { 820 loff_t pos = page_offset(ap->pages[0]) + num_read; 821 fuse_read_update_size(inode, pos, attr_ver); 822 } 823 } 824 825 static int fuse_do_readpage(struct file *file, struct page *page) 826 { 827 struct inode *inode = page->mapping->host; 828 struct fuse_mount *fm = get_fuse_mount(inode); 829 loff_t pos = page_offset(page); 830 struct fuse_page_desc desc = { .length = PAGE_SIZE }; 831 struct fuse_io_args ia = { 832 .ap.args.page_zeroing = true, 833 .ap.args.out_pages = true, 834 .ap.num_pages = 1, 835 .ap.pages = &page, 836 .ap.descs = &desc, 837 }; 838 ssize_t res; 839 u64 attr_ver; 840 841 /* 842 * Page writeback can extend beyond the lifetime of the 843 * page-cache page, so make sure we read a properly synced 844 * page. 845 */ 846 fuse_wait_on_page_writeback(inode, page->index); 847 848 attr_ver = fuse_get_attr_version(fm->fc); 849 850 /* Don't overflow end offset */ 851 if (pos + (desc.length - 1) == LLONG_MAX) 852 desc.length--; 853 854 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 855 res = fuse_simple_request(fm, &ia.ap.args); 856 if (res < 0) 857 return res; 858 /* 859 * Short read means EOF. If file size is larger, truncate it 860 */ 861 if (res < desc.length) 862 fuse_short_read(inode, attr_ver, res, &ia.ap); 863 864 SetPageUptodate(page); 865 866 return 0; 867 } 868 869 static int fuse_readpage(struct file *file, struct page *page) 870 { 871 struct inode *inode = page->mapping->host; 872 int err; 873 874 err = -EIO; 875 if (fuse_is_bad(inode)) 876 goto out; 877 878 err = fuse_do_readpage(file, page); 879 fuse_invalidate_atime(inode); 880 out: 881 unlock_page(page); 882 return err; 883 } 884 885 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args, 886 int err) 887 { 888 int i; 889 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 890 struct fuse_args_pages *ap = &ia->ap; 891 size_t count = ia->read.in.size; 892 size_t num_read = args->out_args[0].size; 893 struct address_space *mapping = NULL; 894 895 for (i = 0; mapping == NULL && i < ap->num_pages; i++) 896 mapping = ap->pages[i]->mapping; 897 898 if (mapping) { 899 struct inode *inode = mapping->host; 900 901 /* 902 * Short read means EOF. If file size is larger, truncate it 903 */ 904 if (!err && num_read < count) 905 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 906 907 fuse_invalidate_atime(inode); 908 } 909 910 for (i = 0; i < ap->num_pages; i++) { 911 struct page *page = ap->pages[i]; 912 913 if (!err) 914 SetPageUptodate(page); 915 else 916 SetPageError(page); 917 unlock_page(page); 918 put_page(page); 919 } 920 if (ia->ff) 921 fuse_file_put(ia->ff, false, false); 922 923 fuse_io_free(ia); 924 } 925 926 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file) 927 { 928 struct fuse_file *ff = file->private_data; 929 struct fuse_mount *fm = ff->fm; 930 struct fuse_args_pages *ap = &ia->ap; 931 loff_t pos = page_offset(ap->pages[0]); 932 size_t count = ap->num_pages << PAGE_SHIFT; 933 ssize_t res; 934 int err; 935 936 ap->args.out_pages = true; 937 ap->args.page_zeroing = true; 938 ap->args.page_replace = true; 939 940 /* Don't overflow end offset */ 941 if (pos + (count - 1) == LLONG_MAX) { 942 count--; 943 ap->descs[ap->num_pages - 1].length--; 944 } 945 WARN_ON((loff_t) (pos + count) < 0); 946 947 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 948 ia->read.attr_ver = fuse_get_attr_version(fm->fc); 949 if (fm->fc->async_read) { 950 ia->ff = fuse_file_get(ff); 951 ap->args.end = fuse_readpages_end; 952 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL); 953 if (!err) 954 return; 955 } else { 956 res = fuse_simple_request(fm, &ap->args); 957 err = res < 0 ? res : 0; 958 } 959 fuse_readpages_end(fm, &ap->args, err); 960 } 961 962 static void fuse_readahead(struct readahead_control *rac) 963 { 964 struct inode *inode = rac->mapping->host; 965 struct fuse_conn *fc = get_fuse_conn(inode); 966 unsigned int i, max_pages, nr_pages = 0; 967 968 if (fuse_is_bad(inode)) 969 return; 970 971 max_pages = min_t(unsigned int, fc->max_pages, 972 fc->max_read / PAGE_SIZE); 973 974 for (;;) { 975 struct fuse_io_args *ia; 976 struct fuse_args_pages *ap; 977 978 nr_pages = readahead_count(rac) - nr_pages; 979 if (nr_pages > max_pages) 980 nr_pages = max_pages; 981 if (nr_pages == 0) 982 break; 983 ia = fuse_io_alloc(NULL, nr_pages); 984 if (!ia) 985 return; 986 ap = &ia->ap; 987 nr_pages = __readahead_batch(rac, ap->pages, nr_pages); 988 for (i = 0; i < nr_pages; i++) { 989 fuse_wait_on_page_writeback(inode, 990 readahead_index(rac) + i); 991 ap->descs[i].length = PAGE_SIZE; 992 } 993 ap->num_pages = nr_pages; 994 fuse_send_readpages(ia, rac->file); 995 } 996 } 997 998 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 999 { 1000 struct inode *inode = iocb->ki_filp->f_mapping->host; 1001 struct fuse_conn *fc = get_fuse_conn(inode); 1002 1003 /* 1004 * In auto invalidate mode, always update attributes on read. 1005 * Otherwise, only update if we attempt to read past EOF (to ensure 1006 * i_size is up to date). 1007 */ 1008 if (fc->auto_inval_data || 1009 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 1010 int err; 1011 err = fuse_update_attributes(inode, iocb->ki_filp); 1012 if (err) 1013 return err; 1014 } 1015 1016 return generic_file_read_iter(iocb, to); 1017 } 1018 1019 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 1020 loff_t pos, size_t count) 1021 { 1022 struct fuse_args *args = &ia->ap.args; 1023 1024 ia->write.in.fh = ff->fh; 1025 ia->write.in.offset = pos; 1026 ia->write.in.size = count; 1027 args->opcode = FUSE_WRITE; 1028 args->nodeid = ff->nodeid; 1029 args->in_numargs = 2; 1030 if (ff->fm->fc->minor < 9) 1031 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 1032 else 1033 args->in_args[0].size = sizeof(ia->write.in); 1034 args->in_args[0].value = &ia->write.in; 1035 args->in_args[1].size = count; 1036 args->out_numargs = 1; 1037 args->out_args[0].size = sizeof(ia->write.out); 1038 args->out_args[0].value = &ia->write.out; 1039 } 1040 1041 static unsigned int fuse_write_flags(struct kiocb *iocb) 1042 { 1043 unsigned int flags = iocb->ki_filp->f_flags; 1044 1045 if (iocb->ki_flags & IOCB_DSYNC) 1046 flags |= O_DSYNC; 1047 if (iocb->ki_flags & IOCB_SYNC) 1048 flags |= O_SYNC; 1049 1050 return flags; 1051 } 1052 1053 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1054 size_t count, fl_owner_t owner) 1055 { 1056 struct kiocb *iocb = ia->io->iocb; 1057 struct file *file = iocb->ki_filp; 1058 struct fuse_file *ff = file->private_data; 1059 struct fuse_mount *fm = ff->fm; 1060 struct fuse_write_in *inarg = &ia->write.in; 1061 ssize_t err; 1062 1063 fuse_write_args_fill(ia, ff, pos, count); 1064 inarg->flags = fuse_write_flags(iocb); 1065 if (owner != NULL) { 1066 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1067 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner); 1068 } 1069 1070 if (ia->io->async) 1071 return fuse_async_req_send(fm, ia, count); 1072 1073 err = fuse_simple_request(fm, &ia->ap.args); 1074 if (!err && ia->write.out.size > count) 1075 err = -EIO; 1076 1077 return err ?: ia->write.out.size; 1078 } 1079 1080 bool fuse_write_update_size(struct inode *inode, loff_t pos) 1081 { 1082 struct fuse_conn *fc = get_fuse_conn(inode); 1083 struct fuse_inode *fi = get_fuse_inode(inode); 1084 bool ret = false; 1085 1086 spin_lock(&fi->lock); 1087 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1088 if (pos > inode->i_size) { 1089 i_size_write(inode, pos); 1090 ret = true; 1091 } 1092 spin_unlock(&fi->lock); 1093 1094 return ret; 1095 } 1096 1097 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1098 struct kiocb *iocb, struct inode *inode, 1099 loff_t pos, size_t count) 1100 { 1101 struct fuse_args_pages *ap = &ia->ap; 1102 struct file *file = iocb->ki_filp; 1103 struct fuse_file *ff = file->private_data; 1104 struct fuse_mount *fm = ff->fm; 1105 unsigned int offset, i; 1106 int err; 1107 1108 for (i = 0; i < ap->num_pages; i++) 1109 fuse_wait_on_page_writeback(inode, ap->pages[i]->index); 1110 1111 fuse_write_args_fill(ia, ff, pos, count); 1112 ia->write.in.flags = fuse_write_flags(iocb); 1113 if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID)) 1114 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1115 1116 err = fuse_simple_request(fm, &ap->args); 1117 if (!err && ia->write.out.size > count) 1118 err = -EIO; 1119 1120 offset = ap->descs[0].offset; 1121 count = ia->write.out.size; 1122 for (i = 0; i < ap->num_pages; i++) { 1123 struct page *page = ap->pages[i]; 1124 1125 if (!err && !offset && count >= PAGE_SIZE) 1126 SetPageUptodate(page); 1127 1128 if (count > PAGE_SIZE - offset) 1129 count -= PAGE_SIZE - offset; 1130 else 1131 count = 0; 1132 offset = 0; 1133 1134 unlock_page(page); 1135 put_page(page); 1136 } 1137 1138 return err; 1139 } 1140 1141 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap, 1142 struct address_space *mapping, 1143 struct iov_iter *ii, loff_t pos, 1144 unsigned int max_pages) 1145 { 1146 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1147 unsigned offset = pos & (PAGE_SIZE - 1); 1148 size_t count = 0; 1149 int err; 1150 1151 ap->args.in_pages = true; 1152 ap->descs[0].offset = offset; 1153 1154 do { 1155 size_t tmp; 1156 struct page *page; 1157 pgoff_t index = pos >> PAGE_SHIFT; 1158 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1159 iov_iter_count(ii)); 1160 1161 bytes = min_t(size_t, bytes, fc->max_write - count); 1162 1163 again: 1164 err = -EFAULT; 1165 if (iov_iter_fault_in_readable(ii, bytes)) 1166 break; 1167 1168 err = -ENOMEM; 1169 page = grab_cache_page_write_begin(mapping, index, 0); 1170 if (!page) 1171 break; 1172 1173 if (mapping_writably_mapped(mapping)) 1174 flush_dcache_page(page); 1175 1176 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes); 1177 flush_dcache_page(page); 1178 1179 iov_iter_advance(ii, tmp); 1180 if (!tmp) { 1181 unlock_page(page); 1182 put_page(page); 1183 bytes = min(bytes, iov_iter_single_seg_count(ii)); 1184 goto again; 1185 } 1186 1187 err = 0; 1188 ap->pages[ap->num_pages] = page; 1189 ap->descs[ap->num_pages].length = tmp; 1190 ap->num_pages++; 1191 1192 count += tmp; 1193 pos += tmp; 1194 offset += tmp; 1195 if (offset == PAGE_SIZE) 1196 offset = 0; 1197 1198 if (!fc->big_writes) 1199 break; 1200 } while (iov_iter_count(ii) && count < fc->max_write && 1201 ap->num_pages < max_pages && offset == 0); 1202 1203 return count > 0 ? count : err; 1204 } 1205 1206 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1207 unsigned int max_pages) 1208 { 1209 return min_t(unsigned int, 1210 ((pos + len - 1) >> PAGE_SHIFT) - 1211 (pos >> PAGE_SHIFT) + 1, 1212 max_pages); 1213 } 1214 1215 static ssize_t fuse_perform_write(struct kiocb *iocb, 1216 struct address_space *mapping, 1217 struct iov_iter *ii, loff_t pos) 1218 { 1219 struct inode *inode = mapping->host; 1220 struct fuse_conn *fc = get_fuse_conn(inode); 1221 struct fuse_inode *fi = get_fuse_inode(inode); 1222 int err = 0; 1223 ssize_t res = 0; 1224 1225 if (inode->i_size < pos + iov_iter_count(ii)) 1226 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1227 1228 do { 1229 ssize_t count; 1230 struct fuse_io_args ia = {}; 1231 struct fuse_args_pages *ap = &ia.ap; 1232 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1233 fc->max_pages); 1234 1235 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1236 if (!ap->pages) { 1237 err = -ENOMEM; 1238 break; 1239 } 1240 1241 count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages); 1242 if (count <= 0) { 1243 err = count; 1244 } else { 1245 err = fuse_send_write_pages(&ia, iocb, inode, 1246 pos, count); 1247 if (!err) { 1248 size_t num_written = ia.write.out.size; 1249 1250 res += num_written; 1251 pos += num_written; 1252 1253 /* break out of the loop on short write */ 1254 if (num_written != count) 1255 err = -EIO; 1256 } 1257 } 1258 kfree(ap->pages); 1259 } while (!err && iov_iter_count(ii)); 1260 1261 if (res > 0) 1262 fuse_write_update_size(inode, pos); 1263 1264 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1265 fuse_invalidate_attr(inode); 1266 1267 return res > 0 ? res : err; 1268 } 1269 1270 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1271 { 1272 struct file *file = iocb->ki_filp; 1273 struct address_space *mapping = file->f_mapping; 1274 ssize_t written = 0; 1275 ssize_t written_buffered = 0; 1276 struct inode *inode = mapping->host; 1277 ssize_t err; 1278 struct fuse_conn *fc = get_fuse_conn(inode); 1279 loff_t endbyte = 0; 1280 1281 if (fc->writeback_cache) { 1282 /* Update size (EOF optimization) and mode (SUID clearing) */ 1283 err = fuse_update_attributes(mapping->host, file); 1284 if (err) 1285 return err; 1286 1287 if (fc->handle_killpriv_v2 && 1288 should_remove_suid(file_dentry(file))) { 1289 goto writethrough; 1290 } 1291 1292 return generic_file_write_iter(iocb, from); 1293 } 1294 1295 writethrough: 1296 inode_lock(inode); 1297 1298 /* We can write back this queue in page reclaim */ 1299 current->backing_dev_info = inode_to_bdi(inode); 1300 1301 err = generic_write_checks(iocb, from); 1302 if (err <= 0) 1303 goto out; 1304 1305 err = file_remove_privs(file); 1306 if (err) 1307 goto out; 1308 1309 err = file_update_time(file); 1310 if (err) 1311 goto out; 1312 1313 if (iocb->ki_flags & IOCB_DIRECT) { 1314 loff_t pos = iocb->ki_pos; 1315 written = generic_file_direct_write(iocb, from); 1316 if (written < 0 || !iov_iter_count(from)) 1317 goto out; 1318 1319 pos += written; 1320 1321 written_buffered = fuse_perform_write(iocb, mapping, from, pos); 1322 if (written_buffered < 0) { 1323 err = written_buffered; 1324 goto out; 1325 } 1326 endbyte = pos + written_buffered - 1; 1327 1328 err = filemap_write_and_wait_range(file->f_mapping, pos, 1329 endbyte); 1330 if (err) 1331 goto out; 1332 1333 invalidate_mapping_pages(file->f_mapping, 1334 pos >> PAGE_SHIFT, 1335 endbyte >> PAGE_SHIFT); 1336 1337 written += written_buffered; 1338 iocb->ki_pos = pos + written_buffered; 1339 } else { 1340 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos); 1341 if (written >= 0) 1342 iocb->ki_pos += written; 1343 } 1344 out: 1345 current->backing_dev_info = NULL; 1346 inode_unlock(inode); 1347 if (written > 0) 1348 written = generic_write_sync(iocb, written); 1349 1350 return written ? written : err; 1351 } 1352 1353 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1354 { 1355 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1356 } 1357 1358 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1359 size_t max_size) 1360 { 1361 return min(iov_iter_single_seg_count(ii), max_size); 1362 } 1363 1364 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1365 size_t *nbytesp, int write, 1366 unsigned int max_pages) 1367 { 1368 size_t nbytes = 0; /* # bytes already packed in req */ 1369 ssize_t ret = 0; 1370 1371 /* Special case for kernel I/O: can copy directly into the buffer */ 1372 if (iov_iter_is_kvec(ii)) { 1373 unsigned long user_addr = fuse_get_user_addr(ii); 1374 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1375 1376 if (write) 1377 ap->args.in_args[1].value = (void *) user_addr; 1378 else 1379 ap->args.out_args[0].value = (void *) user_addr; 1380 1381 iov_iter_advance(ii, frag_size); 1382 *nbytesp = frag_size; 1383 return 0; 1384 } 1385 1386 while (nbytes < *nbytesp && ap->num_pages < max_pages) { 1387 unsigned npages; 1388 size_t start; 1389 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages], 1390 *nbytesp - nbytes, 1391 max_pages - ap->num_pages, 1392 &start); 1393 if (ret < 0) 1394 break; 1395 1396 iov_iter_advance(ii, ret); 1397 nbytes += ret; 1398 1399 ret += start; 1400 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 1401 1402 ap->descs[ap->num_pages].offset = start; 1403 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages); 1404 1405 ap->num_pages += npages; 1406 ap->descs[ap->num_pages - 1].length -= 1407 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1408 } 1409 1410 if (write) 1411 ap->args.in_pages = true; 1412 else 1413 ap->args.out_pages = true; 1414 1415 *nbytesp = nbytes; 1416 1417 return ret < 0 ? ret : 0; 1418 } 1419 1420 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1421 loff_t *ppos, int flags) 1422 { 1423 int write = flags & FUSE_DIO_WRITE; 1424 int cuse = flags & FUSE_DIO_CUSE; 1425 struct file *file = io->iocb->ki_filp; 1426 struct inode *inode = file->f_mapping->host; 1427 struct fuse_file *ff = file->private_data; 1428 struct fuse_conn *fc = ff->fm->fc; 1429 size_t nmax = write ? fc->max_write : fc->max_read; 1430 loff_t pos = *ppos; 1431 size_t count = iov_iter_count(iter); 1432 pgoff_t idx_from = pos >> PAGE_SHIFT; 1433 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1434 ssize_t res = 0; 1435 int err = 0; 1436 struct fuse_io_args *ia; 1437 unsigned int max_pages; 1438 1439 max_pages = iov_iter_npages(iter, fc->max_pages); 1440 ia = fuse_io_alloc(io, max_pages); 1441 if (!ia) 1442 return -ENOMEM; 1443 1444 ia->io = io; 1445 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1446 if (!write) 1447 inode_lock(inode); 1448 fuse_sync_writes(inode); 1449 if (!write) 1450 inode_unlock(inode); 1451 } 1452 1453 io->should_dirty = !write && iter_is_iovec(iter); 1454 while (count) { 1455 ssize_t nres; 1456 fl_owner_t owner = current->files; 1457 size_t nbytes = min(count, nmax); 1458 1459 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1460 max_pages); 1461 if (err && !nbytes) 1462 break; 1463 1464 if (write) { 1465 if (!capable(CAP_FSETID)) 1466 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1467 1468 nres = fuse_send_write(ia, pos, nbytes, owner); 1469 } else { 1470 nres = fuse_send_read(ia, pos, nbytes, owner); 1471 } 1472 1473 if (!io->async || nres < 0) { 1474 fuse_release_user_pages(&ia->ap, io->should_dirty); 1475 fuse_io_free(ia); 1476 } 1477 ia = NULL; 1478 if (nres < 0) { 1479 iov_iter_revert(iter, nbytes); 1480 err = nres; 1481 break; 1482 } 1483 WARN_ON(nres > nbytes); 1484 1485 count -= nres; 1486 res += nres; 1487 pos += nres; 1488 if (nres != nbytes) { 1489 iov_iter_revert(iter, nbytes - nres); 1490 break; 1491 } 1492 if (count) { 1493 max_pages = iov_iter_npages(iter, fc->max_pages); 1494 ia = fuse_io_alloc(io, max_pages); 1495 if (!ia) 1496 break; 1497 } 1498 } 1499 if (ia) 1500 fuse_io_free(ia); 1501 if (res > 0) 1502 *ppos = pos; 1503 1504 return res > 0 ? res : err; 1505 } 1506 EXPORT_SYMBOL_GPL(fuse_direct_io); 1507 1508 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1509 struct iov_iter *iter, 1510 loff_t *ppos) 1511 { 1512 ssize_t res; 1513 struct inode *inode = file_inode(io->iocb->ki_filp); 1514 1515 res = fuse_direct_io(io, iter, ppos, 0); 1516 1517 fuse_invalidate_atime(inode); 1518 1519 return res; 1520 } 1521 1522 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1523 1524 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1525 { 1526 ssize_t res; 1527 1528 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1529 res = fuse_direct_IO(iocb, to); 1530 } else { 1531 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1532 1533 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1534 } 1535 1536 return res; 1537 } 1538 1539 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1540 { 1541 struct inode *inode = file_inode(iocb->ki_filp); 1542 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1543 ssize_t res; 1544 1545 /* Don't allow parallel writes to the same file */ 1546 inode_lock(inode); 1547 res = generic_write_checks(iocb, from); 1548 if (res > 0) { 1549 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1550 res = fuse_direct_IO(iocb, from); 1551 } else { 1552 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1553 FUSE_DIO_WRITE); 1554 } 1555 } 1556 fuse_invalidate_attr(inode); 1557 if (res > 0) 1558 fuse_write_update_size(inode, iocb->ki_pos); 1559 inode_unlock(inode); 1560 1561 return res; 1562 } 1563 1564 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1565 { 1566 struct file *file = iocb->ki_filp; 1567 struct fuse_file *ff = file->private_data; 1568 struct inode *inode = file_inode(file); 1569 1570 if (fuse_is_bad(inode)) 1571 return -EIO; 1572 1573 if (FUSE_IS_DAX(inode)) 1574 return fuse_dax_read_iter(iocb, to); 1575 1576 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1577 return fuse_cache_read_iter(iocb, to); 1578 else 1579 return fuse_direct_read_iter(iocb, to); 1580 } 1581 1582 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1583 { 1584 struct file *file = iocb->ki_filp; 1585 struct fuse_file *ff = file->private_data; 1586 struct inode *inode = file_inode(file); 1587 1588 if (fuse_is_bad(inode)) 1589 return -EIO; 1590 1591 if (FUSE_IS_DAX(inode)) 1592 return fuse_dax_write_iter(iocb, from); 1593 1594 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1595 return fuse_cache_write_iter(iocb, from); 1596 else 1597 return fuse_direct_write_iter(iocb, from); 1598 } 1599 1600 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1601 { 1602 struct fuse_args_pages *ap = &wpa->ia.ap; 1603 int i; 1604 1605 for (i = 0; i < ap->num_pages; i++) 1606 __free_page(ap->pages[i]); 1607 1608 if (wpa->ia.ff) 1609 fuse_file_put(wpa->ia.ff, false, false); 1610 1611 kfree(ap->pages); 1612 kfree(wpa); 1613 } 1614 1615 static void fuse_writepage_finish(struct fuse_mount *fm, 1616 struct fuse_writepage_args *wpa) 1617 { 1618 struct fuse_args_pages *ap = &wpa->ia.ap; 1619 struct inode *inode = wpa->inode; 1620 struct fuse_inode *fi = get_fuse_inode(inode); 1621 struct backing_dev_info *bdi = inode_to_bdi(inode); 1622 int i; 1623 1624 for (i = 0; i < ap->num_pages; i++) { 1625 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1626 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP); 1627 wb_writeout_inc(&bdi->wb); 1628 } 1629 wake_up(&fi->page_waitq); 1630 } 1631 1632 /* Called under fi->lock, may release and reacquire it */ 1633 static void fuse_send_writepage(struct fuse_mount *fm, 1634 struct fuse_writepage_args *wpa, loff_t size) 1635 __releases(fi->lock) 1636 __acquires(fi->lock) 1637 { 1638 struct fuse_writepage_args *aux, *next; 1639 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1640 struct fuse_write_in *inarg = &wpa->ia.write.in; 1641 struct fuse_args *args = &wpa->ia.ap.args; 1642 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE; 1643 int err; 1644 1645 fi->writectr++; 1646 if (inarg->offset + data_size <= size) { 1647 inarg->size = data_size; 1648 } else if (inarg->offset < size) { 1649 inarg->size = size - inarg->offset; 1650 } else { 1651 /* Got truncated off completely */ 1652 goto out_free; 1653 } 1654 1655 args->in_args[1].size = inarg->size; 1656 args->force = true; 1657 args->nocreds = true; 1658 1659 err = fuse_simple_background(fm, args, GFP_ATOMIC); 1660 if (err == -ENOMEM) { 1661 spin_unlock(&fi->lock); 1662 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL); 1663 spin_lock(&fi->lock); 1664 } 1665 1666 /* Fails on broken connection only */ 1667 if (unlikely(err)) 1668 goto out_free; 1669 1670 return; 1671 1672 out_free: 1673 fi->writectr--; 1674 rb_erase(&wpa->writepages_entry, &fi->writepages); 1675 fuse_writepage_finish(fm, wpa); 1676 spin_unlock(&fi->lock); 1677 1678 /* After fuse_writepage_finish() aux request list is private */ 1679 for (aux = wpa->next; aux; aux = next) { 1680 next = aux->next; 1681 aux->next = NULL; 1682 fuse_writepage_free(aux); 1683 } 1684 1685 fuse_writepage_free(wpa); 1686 spin_lock(&fi->lock); 1687 } 1688 1689 /* 1690 * If fi->writectr is positive (no truncate or fsync going on) send 1691 * all queued writepage requests. 1692 * 1693 * Called with fi->lock 1694 */ 1695 void fuse_flush_writepages(struct inode *inode) 1696 __releases(fi->lock) 1697 __acquires(fi->lock) 1698 { 1699 struct fuse_mount *fm = get_fuse_mount(inode); 1700 struct fuse_inode *fi = get_fuse_inode(inode); 1701 loff_t crop = i_size_read(inode); 1702 struct fuse_writepage_args *wpa; 1703 1704 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1705 wpa = list_entry(fi->queued_writes.next, 1706 struct fuse_writepage_args, queue_entry); 1707 list_del_init(&wpa->queue_entry); 1708 fuse_send_writepage(fm, wpa, crop); 1709 } 1710 } 1711 1712 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root, 1713 struct fuse_writepage_args *wpa) 1714 { 1715 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT; 1716 pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1; 1717 struct rb_node **p = &root->rb_node; 1718 struct rb_node *parent = NULL; 1719 1720 WARN_ON(!wpa->ia.ap.num_pages); 1721 while (*p) { 1722 struct fuse_writepage_args *curr; 1723 pgoff_t curr_index; 1724 1725 parent = *p; 1726 curr = rb_entry(parent, struct fuse_writepage_args, 1727 writepages_entry); 1728 WARN_ON(curr->inode != wpa->inode); 1729 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT; 1730 1731 if (idx_from >= curr_index + curr->ia.ap.num_pages) 1732 p = &(*p)->rb_right; 1733 else if (idx_to < curr_index) 1734 p = &(*p)->rb_left; 1735 else 1736 return curr; 1737 } 1738 1739 rb_link_node(&wpa->writepages_entry, parent, p); 1740 rb_insert_color(&wpa->writepages_entry, root); 1741 return NULL; 1742 } 1743 1744 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa) 1745 { 1746 WARN_ON(fuse_insert_writeback(root, wpa)); 1747 } 1748 1749 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args, 1750 int error) 1751 { 1752 struct fuse_writepage_args *wpa = 1753 container_of(args, typeof(*wpa), ia.ap.args); 1754 struct inode *inode = wpa->inode; 1755 struct fuse_inode *fi = get_fuse_inode(inode); 1756 1757 mapping_set_error(inode->i_mapping, error); 1758 spin_lock(&fi->lock); 1759 rb_erase(&wpa->writepages_entry, &fi->writepages); 1760 while (wpa->next) { 1761 struct fuse_mount *fm = get_fuse_mount(inode); 1762 struct fuse_write_in *inarg = &wpa->ia.write.in; 1763 struct fuse_writepage_args *next = wpa->next; 1764 1765 wpa->next = next->next; 1766 next->next = NULL; 1767 next->ia.ff = fuse_file_get(wpa->ia.ff); 1768 tree_insert(&fi->writepages, next); 1769 1770 /* 1771 * Skip fuse_flush_writepages() to make it easy to crop requests 1772 * based on primary request size. 1773 * 1774 * 1st case (trivial): there are no concurrent activities using 1775 * fuse_set/release_nowrite. Then we're on safe side because 1776 * fuse_flush_writepages() would call fuse_send_writepage() 1777 * anyway. 1778 * 1779 * 2nd case: someone called fuse_set_nowrite and it is waiting 1780 * now for completion of all in-flight requests. This happens 1781 * rarely and no more than once per page, so this should be 1782 * okay. 1783 * 1784 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1785 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1786 * that fuse_set_nowrite returned implies that all in-flight 1787 * requests were completed along with all of their secondary 1788 * requests. Further primary requests are blocked by negative 1789 * writectr. Hence there cannot be any in-flight requests and 1790 * no invocations of fuse_writepage_end() while we're in 1791 * fuse_set_nowrite..fuse_release_nowrite section. 1792 */ 1793 fuse_send_writepage(fm, next, inarg->offset + inarg->size); 1794 } 1795 fi->writectr--; 1796 fuse_writepage_finish(fm, wpa); 1797 spin_unlock(&fi->lock); 1798 fuse_writepage_free(wpa); 1799 } 1800 1801 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc, 1802 struct fuse_inode *fi) 1803 { 1804 struct fuse_file *ff = NULL; 1805 1806 spin_lock(&fi->lock); 1807 if (!list_empty(&fi->write_files)) { 1808 ff = list_entry(fi->write_files.next, struct fuse_file, 1809 write_entry); 1810 fuse_file_get(ff); 1811 } 1812 spin_unlock(&fi->lock); 1813 1814 return ff; 1815 } 1816 1817 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc, 1818 struct fuse_inode *fi) 1819 { 1820 struct fuse_file *ff = __fuse_write_file_get(fc, fi); 1821 WARN_ON(!ff); 1822 return ff; 1823 } 1824 1825 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1826 { 1827 struct fuse_conn *fc = get_fuse_conn(inode); 1828 struct fuse_inode *fi = get_fuse_inode(inode); 1829 struct fuse_file *ff; 1830 int err; 1831 1832 ff = __fuse_write_file_get(fc, fi); 1833 err = fuse_flush_times(inode, ff); 1834 if (ff) 1835 fuse_file_put(ff, false, false); 1836 1837 return err; 1838 } 1839 1840 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 1841 { 1842 struct fuse_writepage_args *wpa; 1843 struct fuse_args_pages *ap; 1844 1845 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 1846 if (wpa) { 1847 ap = &wpa->ia.ap; 1848 ap->num_pages = 0; 1849 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs); 1850 if (!ap->pages) { 1851 kfree(wpa); 1852 wpa = NULL; 1853 } 1854 } 1855 return wpa; 1856 1857 } 1858 1859 static int fuse_writepage_locked(struct page *page) 1860 { 1861 struct address_space *mapping = page->mapping; 1862 struct inode *inode = mapping->host; 1863 struct fuse_conn *fc = get_fuse_conn(inode); 1864 struct fuse_inode *fi = get_fuse_inode(inode); 1865 struct fuse_writepage_args *wpa; 1866 struct fuse_args_pages *ap; 1867 struct page *tmp_page; 1868 int error = -ENOMEM; 1869 1870 set_page_writeback(page); 1871 1872 wpa = fuse_writepage_args_alloc(); 1873 if (!wpa) 1874 goto err; 1875 ap = &wpa->ia.ap; 1876 1877 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1878 if (!tmp_page) 1879 goto err_free; 1880 1881 error = -EIO; 1882 wpa->ia.ff = fuse_write_file_get(fc, fi); 1883 if (!wpa->ia.ff) 1884 goto err_nofile; 1885 1886 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0); 1887 1888 copy_highpage(tmp_page, page); 1889 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 1890 wpa->next = NULL; 1891 ap->args.in_pages = true; 1892 ap->num_pages = 1; 1893 ap->pages[0] = tmp_page; 1894 ap->descs[0].offset = 0; 1895 ap->descs[0].length = PAGE_SIZE; 1896 ap->args.end = fuse_writepage_end; 1897 wpa->inode = inode; 1898 1899 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1900 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1901 1902 spin_lock(&fi->lock); 1903 tree_insert(&fi->writepages, wpa); 1904 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1905 fuse_flush_writepages(inode); 1906 spin_unlock(&fi->lock); 1907 1908 end_page_writeback(page); 1909 1910 return 0; 1911 1912 err_nofile: 1913 __free_page(tmp_page); 1914 err_free: 1915 kfree(wpa); 1916 err: 1917 mapping_set_error(page->mapping, error); 1918 end_page_writeback(page); 1919 return error; 1920 } 1921 1922 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1923 { 1924 int err; 1925 1926 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1927 /* 1928 * ->writepages() should be called for sync() and friends. We 1929 * should only get here on direct reclaim and then we are 1930 * allowed to skip a page which is already in flight 1931 */ 1932 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1933 1934 redirty_page_for_writepage(wbc, page); 1935 unlock_page(page); 1936 return 0; 1937 } 1938 1939 err = fuse_writepage_locked(page); 1940 unlock_page(page); 1941 1942 return err; 1943 } 1944 1945 struct fuse_fill_wb_data { 1946 struct fuse_writepage_args *wpa; 1947 struct fuse_file *ff; 1948 struct inode *inode; 1949 struct page **orig_pages; 1950 unsigned int max_pages; 1951 }; 1952 1953 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data) 1954 { 1955 struct fuse_args_pages *ap = &data->wpa->ia.ap; 1956 struct fuse_conn *fc = get_fuse_conn(data->inode); 1957 struct page **pages; 1958 struct fuse_page_desc *descs; 1959 unsigned int npages = min_t(unsigned int, 1960 max_t(unsigned int, data->max_pages * 2, 1961 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 1962 fc->max_pages); 1963 WARN_ON(npages <= data->max_pages); 1964 1965 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs); 1966 if (!pages) 1967 return false; 1968 1969 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages); 1970 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages); 1971 kfree(ap->pages); 1972 ap->pages = pages; 1973 ap->descs = descs; 1974 data->max_pages = npages; 1975 1976 return true; 1977 } 1978 1979 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 1980 { 1981 struct fuse_writepage_args *wpa = data->wpa; 1982 struct inode *inode = data->inode; 1983 struct fuse_inode *fi = get_fuse_inode(inode); 1984 int num_pages = wpa->ia.ap.num_pages; 1985 int i; 1986 1987 wpa->ia.ff = fuse_file_get(data->ff); 1988 spin_lock(&fi->lock); 1989 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1990 fuse_flush_writepages(inode); 1991 spin_unlock(&fi->lock); 1992 1993 for (i = 0; i < num_pages; i++) 1994 end_page_writeback(data->orig_pages[i]); 1995 } 1996 1997 /* 1998 * Check under fi->lock if the page is under writeback, and insert it onto the 1999 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's 2000 * one already added for a page at this offset. If there's none, then insert 2001 * this new request onto the auxiliary list, otherwise reuse the existing one by 2002 * swapping the new temp page with the old one. 2003 */ 2004 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa, 2005 struct page *page) 2006 { 2007 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode); 2008 struct fuse_writepage_args *tmp; 2009 struct fuse_writepage_args *old_wpa; 2010 struct fuse_args_pages *new_ap = &new_wpa->ia.ap; 2011 2012 WARN_ON(new_ap->num_pages != 0); 2013 new_ap->num_pages = 1; 2014 2015 spin_lock(&fi->lock); 2016 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa); 2017 if (!old_wpa) { 2018 spin_unlock(&fi->lock); 2019 return true; 2020 } 2021 2022 for (tmp = old_wpa->next; tmp; tmp = tmp->next) { 2023 pgoff_t curr_index; 2024 2025 WARN_ON(tmp->inode != new_wpa->inode); 2026 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT; 2027 if (curr_index == page->index) { 2028 WARN_ON(tmp->ia.ap.num_pages != 1); 2029 swap(tmp->ia.ap.pages[0], new_ap->pages[0]); 2030 break; 2031 } 2032 } 2033 2034 if (!tmp) { 2035 new_wpa->next = old_wpa->next; 2036 old_wpa->next = new_wpa; 2037 } 2038 2039 spin_unlock(&fi->lock); 2040 2041 if (tmp) { 2042 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode); 2043 2044 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 2045 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP); 2046 wb_writeout_inc(&bdi->wb); 2047 fuse_writepage_free(new_wpa); 2048 } 2049 2050 return false; 2051 } 2052 2053 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page, 2054 struct fuse_args_pages *ap, 2055 struct fuse_fill_wb_data *data) 2056 { 2057 WARN_ON(!ap->num_pages); 2058 2059 /* 2060 * Being under writeback is unlikely but possible. For example direct 2061 * read to an mmaped fuse file will set the page dirty twice; once when 2062 * the pages are faulted with get_user_pages(), and then after the read 2063 * completed. 2064 */ 2065 if (fuse_page_is_writeback(data->inode, page->index)) 2066 return true; 2067 2068 /* Reached max pages */ 2069 if (ap->num_pages == fc->max_pages) 2070 return true; 2071 2072 /* Reached max write bytes */ 2073 if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write) 2074 return true; 2075 2076 /* Discontinuity */ 2077 if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index) 2078 return true; 2079 2080 /* Need to grow the pages array? If so, did the expansion fail? */ 2081 if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data)) 2082 return true; 2083 2084 return false; 2085 } 2086 2087 static int fuse_writepages_fill(struct page *page, 2088 struct writeback_control *wbc, void *_data) 2089 { 2090 struct fuse_fill_wb_data *data = _data; 2091 struct fuse_writepage_args *wpa = data->wpa; 2092 struct fuse_args_pages *ap = &wpa->ia.ap; 2093 struct inode *inode = data->inode; 2094 struct fuse_inode *fi = get_fuse_inode(inode); 2095 struct fuse_conn *fc = get_fuse_conn(inode); 2096 struct page *tmp_page; 2097 int err; 2098 2099 if (!data->ff) { 2100 err = -EIO; 2101 data->ff = fuse_write_file_get(fc, fi); 2102 if (!data->ff) 2103 goto out_unlock; 2104 } 2105 2106 if (wpa && fuse_writepage_need_send(fc, page, ap, data)) { 2107 fuse_writepages_send(data); 2108 data->wpa = NULL; 2109 } 2110 2111 err = -ENOMEM; 2112 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2113 if (!tmp_page) 2114 goto out_unlock; 2115 2116 /* 2117 * The page must not be redirtied until the writeout is completed 2118 * (i.e. userspace has sent a reply to the write request). Otherwise 2119 * there could be more than one temporary page instance for each real 2120 * page. 2121 * 2122 * This is ensured by holding the page lock in page_mkwrite() while 2123 * checking fuse_page_is_writeback(). We already hold the page lock 2124 * since clear_page_dirty_for_io() and keep it held until we add the 2125 * request to the fi->writepages list and increment ap->num_pages. 2126 * After this fuse_page_is_writeback() will indicate that the page is 2127 * under writeback, so we can release the page lock. 2128 */ 2129 if (data->wpa == NULL) { 2130 err = -ENOMEM; 2131 wpa = fuse_writepage_args_alloc(); 2132 if (!wpa) { 2133 __free_page(tmp_page); 2134 goto out_unlock; 2135 } 2136 data->max_pages = 1; 2137 2138 ap = &wpa->ia.ap; 2139 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0); 2140 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2141 wpa->next = NULL; 2142 ap->args.in_pages = true; 2143 ap->args.end = fuse_writepage_end; 2144 ap->num_pages = 0; 2145 wpa->inode = inode; 2146 } 2147 set_page_writeback(page); 2148 2149 copy_highpage(tmp_page, page); 2150 ap->pages[ap->num_pages] = tmp_page; 2151 ap->descs[ap->num_pages].offset = 0; 2152 ap->descs[ap->num_pages].length = PAGE_SIZE; 2153 data->orig_pages[ap->num_pages] = page; 2154 2155 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2156 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 2157 2158 err = 0; 2159 if (data->wpa) { 2160 /* 2161 * Protected by fi->lock against concurrent access by 2162 * fuse_page_is_writeback(). 2163 */ 2164 spin_lock(&fi->lock); 2165 ap->num_pages++; 2166 spin_unlock(&fi->lock); 2167 } else if (fuse_writepage_add(wpa, page)) { 2168 data->wpa = wpa; 2169 } else { 2170 end_page_writeback(page); 2171 } 2172 out_unlock: 2173 unlock_page(page); 2174 2175 return err; 2176 } 2177 2178 static int fuse_writepages(struct address_space *mapping, 2179 struct writeback_control *wbc) 2180 { 2181 struct inode *inode = mapping->host; 2182 struct fuse_conn *fc = get_fuse_conn(inode); 2183 struct fuse_fill_wb_data data; 2184 int err; 2185 2186 err = -EIO; 2187 if (fuse_is_bad(inode)) 2188 goto out; 2189 2190 data.inode = inode; 2191 data.wpa = NULL; 2192 data.ff = NULL; 2193 2194 err = -ENOMEM; 2195 data.orig_pages = kcalloc(fc->max_pages, 2196 sizeof(struct page *), 2197 GFP_NOFS); 2198 if (!data.orig_pages) 2199 goto out; 2200 2201 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 2202 if (data.wpa) { 2203 WARN_ON(!data.wpa->ia.ap.num_pages); 2204 fuse_writepages_send(&data); 2205 } 2206 if (data.ff) 2207 fuse_file_put(data.ff, false, false); 2208 2209 kfree(data.orig_pages); 2210 out: 2211 return err; 2212 } 2213 2214 /* 2215 * It's worthy to make sure that space is reserved on disk for the write, 2216 * but how to implement it without killing performance need more thinking. 2217 */ 2218 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2219 loff_t pos, unsigned len, unsigned flags, 2220 struct page **pagep, void **fsdata) 2221 { 2222 pgoff_t index = pos >> PAGE_SHIFT; 2223 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2224 struct page *page; 2225 loff_t fsize; 2226 int err = -ENOMEM; 2227 2228 WARN_ON(!fc->writeback_cache); 2229 2230 page = grab_cache_page_write_begin(mapping, index, flags); 2231 if (!page) 2232 goto error; 2233 2234 fuse_wait_on_page_writeback(mapping->host, page->index); 2235 2236 if (PageUptodate(page) || len == PAGE_SIZE) 2237 goto success; 2238 /* 2239 * Check if the start this page comes after the end of file, in which 2240 * case the readpage can be optimized away. 2241 */ 2242 fsize = i_size_read(mapping->host); 2243 if (fsize <= (pos & PAGE_MASK)) { 2244 size_t off = pos & ~PAGE_MASK; 2245 if (off) 2246 zero_user_segment(page, 0, off); 2247 goto success; 2248 } 2249 err = fuse_do_readpage(file, page); 2250 if (err) 2251 goto cleanup; 2252 success: 2253 *pagep = page; 2254 return 0; 2255 2256 cleanup: 2257 unlock_page(page); 2258 put_page(page); 2259 error: 2260 return err; 2261 } 2262 2263 static int fuse_write_end(struct file *file, struct address_space *mapping, 2264 loff_t pos, unsigned len, unsigned copied, 2265 struct page *page, void *fsdata) 2266 { 2267 struct inode *inode = page->mapping->host; 2268 2269 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2270 if (!copied) 2271 goto unlock; 2272 2273 if (!PageUptodate(page)) { 2274 /* Zero any unwritten bytes at the end of the page */ 2275 size_t endoff = (pos + copied) & ~PAGE_MASK; 2276 if (endoff) 2277 zero_user_segment(page, endoff, PAGE_SIZE); 2278 SetPageUptodate(page); 2279 } 2280 2281 fuse_write_update_size(inode, pos + copied); 2282 set_page_dirty(page); 2283 2284 unlock: 2285 unlock_page(page); 2286 put_page(page); 2287 2288 return copied; 2289 } 2290 2291 static int fuse_launder_page(struct page *page) 2292 { 2293 int err = 0; 2294 if (clear_page_dirty_for_io(page)) { 2295 struct inode *inode = page->mapping->host; 2296 2297 /* Serialize with pending writeback for the same page */ 2298 fuse_wait_on_page_writeback(inode, page->index); 2299 err = fuse_writepage_locked(page); 2300 if (!err) 2301 fuse_wait_on_page_writeback(inode, page->index); 2302 } 2303 return err; 2304 } 2305 2306 /* 2307 * Write back dirty pages now, because there may not be any suitable 2308 * open files later 2309 */ 2310 static void fuse_vma_close(struct vm_area_struct *vma) 2311 { 2312 filemap_write_and_wait(vma->vm_file->f_mapping); 2313 } 2314 2315 /* 2316 * Wait for writeback against this page to complete before allowing it 2317 * to be marked dirty again, and hence written back again, possibly 2318 * before the previous writepage completed. 2319 * 2320 * Block here, instead of in ->writepage(), so that the userspace fs 2321 * can only block processes actually operating on the filesystem. 2322 * 2323 * Otherwise unprivileged userspace fs would be able to block 2324 * unrelated: 2325 * 2326 * - page migration 2327 * - sync(2) 2328 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2329 */ 2330 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2331 { 2332 struct page *page = vmf->page; 2333 struct inode *inode = file_inode(vmf->vma->vm_file); 2334 2335 file_update_time(vmf->vma->vm_file); 2336 lock_page(page); 2337 if (page->mapping != inode->i_mapping) { 2338 unlock_page(page); 2339 return VM_FAULT_NOPAGE; 2340 } 2341 2342 fuse_wait_on_page_writeback(inode, page->index); 2343 return VM_FAULT_LOCKED; 2344 } 2345 2346 static const struct vm_operations_struct fuse_file_vm_ops = { 2347 .close = fuse_vma_close, 2348 .fault = filemap_fault, 2349 .map_pages = filemap_map_pages, 2350 .page_mkwrite = fuse_page_mkwrite, 2351 }; 2352 2353 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2354 { 2355 struct fuse_file *ff = file->private_data; 2356 2357 /* DAX mmap is superior to direct_io mmap */ 2358 if (FUSE_IS_DAX(file_inode(file))) 2359 return fuse_dax_mmap(file, vma); 2360 2361 if (ff->open_flags & FOPEN_DIRECT_IO) { 2362 /* Can't provide the coherency needed for MAP_SHARED */ 2363 if (vma->vm_flags & VM_MAYSHARE) 2364 return -ENODEV; 2365 2366 invalidate_inode_pages2(file->f_mapping); 2367 2368 return generic_file_mmap(file, vma); 2369 } 2370 2371 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2372 fuse_link_write_file(file); 2373 2374 file_accessed(file); 2375 vma->vm_ops = &fuse_file_vm_ops; 2376 return 0; 2377 } 2378 2379 static int convert_fuse_file_lock(struct fuse_conn *fc, 2380 const struct fuse_file_lock *ffl, 2381 struct file_lock *fl) 2382 { 2383 switch (ffl->type) { 2384 case F_UNLCK: 2385 break; 2386 2387 case F_RDLCK: 2388 case F_WRLCK: 2389 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2390 ffl->end < ffl->start) 2391 return -EIO; 2392 2393 fl->fl_start = ffl->start; 2394 fl->fl_end = ffl->end; 2395 2396 /* 2397 * Convert pid into init's pid namespace. The locks API will 2398 * translate it into the caller's pid namespace. 2399 */ 2400 rcu_read_lock(); 2401 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2402 rcu_read_unlock(); 2403 break; 2404 2405 default: 2406 return -EIO; 2407 } 2408 fl->fl_type = ffl->type; 2409 return 0; 2410 } 2411 2412 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2413 const struct file_lock *fl, int opcode, pid_t pid, 2414 int flock, struct fuse_lk_in *inarg) 2415 { 2416 struct inode *inode = file_inode(file); 2417 struct fuse_conn *fc = get_fuse_conn(inode); 2418 struct fuse_file *ff = file->private_data; 2419 2420 memset(inarg, 0, sizeof(*inarg)); 2421 inarg->fh = ff->fh; 2422 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2423 inarg->lk.start = fl->fl_start; 2424 inarg->lk.end = fl->fl_end; 2425 inarg->lk.type = fl->fl_type; 2426 inarg->lk.pid = pid; 2427 if (flock) 2428 inarg->lk_flags |= FUSE_LK_FLOCK; 2429 args->opcode = opcode; 2430 args->nodeid = get_node_id(inode); 2431 args->in_numargs = 1; 2432 args->in_args[0].size = sizeof(*inarg); 2433 args->in_args[0].value = inarg; 2434 } 2435 2436 static int fuse_getlk(struct file *file, struct file_lock *fl) 2437 { 2438 struct inode *inode = file_inode(file); 2439 struct fuse_mount *fm = get_fuse_mount(inode); 2440 FUSE_ARGS(args); 2441 struct fuse_lk_in inarg; 2442 struct fuse_lk_out outarg; 2443 int err; 2444 2445 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2446 args.out_numargs = 1; 2447 args.out_args[0].size = sizeof(outarg); 2448 args.out_args[0].value = &outarg; 2449 err = fuse_simple_request(fm, &args); 2450 if (!err) 2451 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl); 2452 2453 return err; 2454 } 2455 2456 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2457 { 2458 struct inode *inode = file_inode(file); 2459 struct fuse_mount *fm = get_fuse_mount(inode); 2460 FUSE_ARGS(args); 2461 struct fuse_lk_in inarg; 2462 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2463 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL; 2464 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns); 2465 int err; 2466 2467 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2468 /* NLM needs asynchronous locks, which we don't support yet */ 2469 return -ENOLCK; 2470 } 2471 2472 /* Unlock on close is handled by the flush method */ 2473 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX) 2474 return 0; 2475 2476 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2477 err = fuse_simple_request(fm, &args); 2478 2479 /* locking is restartable */ 2480 if (err == -EINTR) 2481 err = -ERESTARTSYS; 2482 2483 return err; 2484 } 2485 2486 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2487 { 2488 struct inode *inode = file_inode(file); 2489 struct fuse_conn *fc = get_fuse_conn(inode); 2490 int err; 2491 2492 if (cmd == F_CANCELLK) { 2493 err = 0; 2494 } else if (cmd == F_GETLK) { 2495 if (fc->no_lock) { 2496 posix_test_lock(file, fl); 2497 err = 0; 2498 } else 2499 err = fuse_getlk(file, fl); 2500 } else { 2501 if (fc->no_lock) 2502 err = posix_lock_file(file, fl, NULL); 2503 else 2504 err = fuse_setlk(file, fl, 0); 2505 } 2506 return err; 2507 } 2508 2509 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2510 { 2511 struct inode *inode = file_inode(file); 2512 struct fuse_conn *fc = get_fuse_conn(inode); 2513 int err; 2514 2515 if (fc->no_flock) { 2516 err = locks_lock_file_wait(file, fl); 2517 } else { 2518 struct fuse_file *ff = file->private_data; 2519 2520 /* emulate flock with POSIX locks */ 2521 ff->flock = true; 2522 err = fuse_setlk(file, fl, 1); 2523 } 2524 2525 return err; 2526 } 2527 2528 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2529 { 2530 struct inode *inode = mapping->host; 2531 struct fuse_mount *fm = get_fuse_mount(inode); 2532 FUSE_ARGS(args); 2533 struct fuse_bmap_in inarg; 2534 struct fuse_bmap_out outarg; 2535 int err; 2536 2537 if (!inode->i_sb->s_bdev || fm->fc->no_bmap) 2538 return 0; 2539 2540 memset(&inarg, 0, sizeof(inarg)); 2541 inarg.block = block; 2542 inarg.blocksize = inode->i_sb->s_blocksize; 2543 args.opcode = FUSE_BMAP; 2544 args.nodeid = get_node_id(inode); 2545 args.in_numargs = 1; 2546 args.in_args[0].size = sizeof(inarg); 2547 args.in_args[0].value = &inarg; 2548 args.out_numargs = 1; 2549 args.out_args[0].size = sizeof(outarg); 2550 args.out_args[0].value = &outarg; 2551 err = fuse_simple_request(fm, &args); 2552 if (err == -ENOSYS) 2553 fm->fc->no_bmap = 1; 2554 2555 return err ? 0 : outarg.block; 2556 } 2557 2558 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2559 { 2560 struct inode *inode = file->f_mapping->host; 2561 struct fuse_mount *fm = get_fuse_mount(inode); 2562 struct fuse_file *ff = file->private_data; 2563 FUSE_ARGS(args); 2564 struct fuse_lseek_in inarg = { 2565 .fh = ff->fh, 2566 .offset = offset, 2567 .whence = whence 2568 }; 2569 struct fuse_lseek_out outarg; 2570 int err; 2571 2572 if (fm->fc->no_lseek) 2573 goto fallback; 2574 2575 args.opcode = FUSE_LSEEK; 2576 args.nodeid = ff->nodeid; 2577 args.in_numargs = 1; 2578 args.in_args[0].size = sizeof(inarg); 2579 args.in_args[0].value = &inarg; 2580 args.out_numargs = 1; 2581 args.out_args[0].size = sizeof(outarg); 2582 args.out_args[0].value = &outarg; 2583 err = fuse_simple_request(fm, &args); 2584 if (err) { 2585 if (err == -ENOSYS) { 2586 fm->fc->no_lseek = 1; 2587 goto fallback; 2588 } 2589 return err; 2590 } 2591 2592 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2593 2594 fallback: 2595 err = fuse_update_attributes(inode, file); 2596 if (!err) 2597 return generic_file_llseek(file, offset, whence); 2598 else 2599 return err; 2600 } 2601 2602 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2603 { 2604 loff_t retval; 2605 struct inode *inode = file_inode(file); 2606 2607 switch (whence) { 2608 case SEEK_SET: 2609 case SEEK_CUR: 2610 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2611 retval = generic_file_llseek(file, offset, whence); 2612 break; 2613 case SEEK_END: 2614 inode_lock(inode); 2615 retval = fuse_update_attributes(inode, file); 2616 if (!retval) 2617 retval = generic_file_llseek(file, offset, whence); 2618 inode_unlock(inode); 2619 break; 2620 case SEEK_HOLE: 2621 case SEEK_DATA: 2622 inode_lock(inode); 2623 retval = fuse_lseek(file, offset, whence); 2624 inode_unlock(inode); 2625 break; 2626 default: 2627 retval = -EINVAL; 2628 } 2629 2630 return retval; 2631 } 2632 2633 /* 2634 * All files which have been polled are linked to RB tree 2635 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2636 * find the matching one. 2637 */ 2638 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2639 struct rb_node **parent_out) 2640 { 2641 struct rb_node **link = &fc->polled_files.rb_node; 2642 struct rb_node *last = NULL; 2643 2644 while (*link) { 2645 struct fuse_file *ff; 2646 2647 last = *link; 2648 ff = rb_entry(last, struct fuse_file, polled_node); 2649 2650 if (kh < ff->kh) 2651 link = &last->rb_left; 2652 else if (kh > ff->kh) 2653 link = &last->rb_right; 2654 else 2655 return link; 2656 } 2657 2658 if (parent_out) 2659 *parent_out = last; 2660 return link; 2661 } 2662 2663 /* 2664 * The file is about to be polled. Make sure it's on the polled_files 2665 * RB tree. Note that files once added to the polled_files tree are 2666 * not removed before the file is released. This is because a file 2667 * polled once is likely to be polled again. 2668 */ 2669 static void fuse_register_polled_file(struct fuse_conn *fc, 2670 struct fuse_file *ff) 2671 { 2672 spin_lock(&fc->lock); 2673 if (RB_EMPTY_NODE(&ff->polled_node)) { 2674 struct rb_node **link, *parent; 2675 2676 link = fuse_find_polled_node(fc, ff->kh, &parent); 2677 BUG_ON(*link); 2678 rb_link_node(&ff->polled_node, parent, link); 2679 rb_insert_color(&ff->polled_node, &fc->polled_files); 2680 } 2681 spin_unlock(&fc->lock); 2682 } 2683 2684 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2685 { 2686 struct fuse_file *ff = file->private_data; 2687 struct fuse_mount *fm = ff->fm; 2688 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2689 struct fuse_poll_out outarg; 2690 FUSE_ARGS(args); 2691 int err; 2692 2693 if (fm->fc->no_poll) 2694 return DEFAULT_POLLMASK; 2695 2696 poll_wait(file, &ff->poll_wait, wait); 2697 inarg.events = mangle_poll(poll_requested_events(wait)); 2698 2699 /* 2700 * Ask for notification iff there's someone waiting for it. 2701 * The client may ignore the flag and always notify. 2702 */ 2703 if (waitqueue_active(&ff->poll_wait)) { 2704 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2705 fuse_register_polled_file(fm->fc, ff); 2706 } 2707 2708 args.opcode = FUSE_POLL; 2709 args.nodeid = ff->nodeid; 2710 args.in_numargs = 1; 2711 args.in_args[0].size = sizeof(inarg); 2712 args.in_args[0].value = &inarg; 2713 args.out_numargs = 1; 2714 args.out_args[0].size = sizeof(outarg); 2715 args.out_args[0].value = &outarg; 2716 err = fuse_simple_request(fm, &args); 2717 2718 if (!err) 2719 return demangle_poll(outarg.revents); 2720 if (err == -ENOSYS) { 2721 fm->fc->no_poll = 1; 2722 return DEFAULT_POLLMASK; 2723 } 2724 return EPOLLERR; 2725 } 2726 EXPORT_SYMBOL_GPL(fuse_file_poll); 2727 2728 /* 2729 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2730 * wakes up the poll waiters. 2731 */ 2732 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2733 struct fuse_notify_poll_wakeup_out *outarg) 2734 { 2735 u64 kh = outarg->kh; 2736 struct rb_node **link; 2737 2738 spin_lock(&fc->lock); 2739 2740 link = fuse_find_polled_node(fc, kh, NULL); 2741 if (*link) { 2742 struct fuse_file *ff; 2743 2744 ff = rb_entry(*link, struct fuse_file, polled_node); 2745 wake_up_interruptible_sync(&ff->poll_wait); 2746 } 2747 2748 spin_unlock(&fc->lock); 2749 return 0; 2750 } 2751 2752 static void fuse_do_truncate(struct file *file) 2753 { 2754 struct inode *inode = file->f_mapping->host; 2755 struct iattr attr; 2756 2757 attr.ia_valid = ATTR_SIZE; 2758 attr.ia_size = i_size_read(inode); 2759 2760 attr.ia_file = file; 2761 attr.ia_valid |= ATTR_FILE; 2762 2763 fuse_do_setattr(file_dentry(file), &attr, file); 2764 } 2765 2766 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 2767 { 2768 return round_up(off, fc->max_pages << PAGE_SHIFT); 2769 } 2770 2771 static ssize_t 2772 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2773 { 2774 DECLARE_COMPLETION_ONSTACK(wait); 2775 ssize_t ret = 0; 2776 struct file *file = iocb->ki_filp; 2777 struct fuse_file *ff = file->private_data; 2778 loff_t pos = 0; 2779 struct inode *inode; 2780 loff_t i_size; 2781 size_t count = iov_iter_count(iter), shortened = 0; 2782 loff_t offset = iocb->ki_pos; 2783 struct fuse_io_priv *io; 2784 2785 pos = offset; 2786 inode = file->f_mapping->host; 2787 i_size = i_size_read(inode); 2788 2789 if ((iov_iter_rw(iter) == READ) && (offset >= i_size)) 2790 return 0; 2791 2792 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 2793 if (!io) 2794 return -ENOMEM; 2795 spin_lock_init(&io->lock); 2796 kref_init(&io->refcnt); 2797 io->reqs = 1; 2798 io->bytes = -1; 2799 io->size = 0; 2800 io->offset = offset; 2801 io->write = (iov_iter_rw(iter) == WRITE); 2802 io->err = 0; 2803 /* 2804 * By default, we want to optimize all I/Os with async request 2805 * submission to the client filesystem if supported. 2806 */ 2807 io->async = ff->fm->fc->async_dio; 2808 io->iocb = iocb; 2809 io->blocking = is_sync_kiocb(iocb); 2810 2811 /* optimization for short read */ 2812 if (io->async && !io->write && offset + count > i_size) { 2813 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset)); 2814 shortened = count - iov_iter_count(iter); 2815 count -= shortened; 2816 } 2817 2818 /* 2819 * We cannot asynchronously extend the size of a file. 2820 * In such case the aio will behave exactly like sync io. 2821 */ 2822 if ((offset + count > i_size) && io->write) 2823 io->blocking = true; 2824 2825 if (io->async && io->blocking) { 2826 /* 2827 * Additional reference to keep io around after 2828 * calling fuse_aio_complete() 2829 */ 2830 kref_get(&io->refcnt); 2831 io->done = &wait; 2832 } 2833 2834 if (iov_iter_rw(iter) == WRITE) { 2835 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 2836 fuse_invalidate_attr(inode); 2837 } else { 2838 ret = __fuse_direct_read(io, iter, &pos); 2839 } 2840 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened); 2841 2842 if (io->async) { 2843 bool blocking = io->blocking; 2844 2845 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 2846 2847 /* we have a non-extending, async request, so return */ 2848 if (!blocking) 2849 return -EIOCBQUEUED; 2850 2851 wait_for_completion(&wait); 2852 ret = fuse_get_res_by_io(io); 2853 } 2854 2855 kref_put(&io->refcnt, fuse_io_release); 2856 2857 if (iov_iter_rw(iter) == WRITE) { 2858 if (ret > 0) 2859 fuse_write_update_size(inode, pos); 2860 else if (ret < 0 && offset + count > i_size) 2861 fuse_do_truncate(file); 2862 } 2863 2864 return ret; 2865 } 2866 2867 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 2868 { 2869 int err = filemap_write_and_wait_range(inode->i_mapping, start, end); 2870 2871 if (!err) 2872 fuse_sync_writes(inode); 2873 2874 return err; 2875 } 2876 2877 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 2878 loff_t length) 2879 { 2880 struct fuse_file *ff = file->private_data; 2881 struct inode *inode = file_inode(file); 2882 struct fuse_inode *fi = get_fuse_inode(inode); 2883 struct fuse_mount *fm = ff->fm; 2884 FUSE_ARGS(args); 2885 struct fuse_fallocate_in inarg = { 2886 .fh = ff->fh, 2887 .offset = offset, 2888 .length = length, 2889 .mode = mode 2890 }; 2891 int err; 2892 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 2893 (mode & FALLOC_FL_PUNCH_HOLE); 2894 2895 bool block_faults = FUSE_IS_DAX(inode) && lock_inode; 2896 2897 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2898 return -EOPNOTSUPP; 2899 2900 if (fm->fc->no_fallocate) 2901 return -EOPNOTSUPP; 2902 2903 if (lock_inode) { 2904 inode_lock(inode); 2905 if (block_faults) { 2906 down_write(&fi->i_mmap_sem); 2907 err = fuse_dax_break_layouts(inode, 0, 0); 2908 if (err) 2909 goto out; 2910 } 2911 2912 if (mode & FALLOC_FL_PUNCH_HOLE) { 2913 loff_t endbyte = offset + length - 1; 2914 2915 err = fuse_writeback_range(inode, offset, endbyte); 2916 if (err) 2917 goto out; 2918 } 2919 } 2920 2921 if (!(mode & FALLOC_FL_KEEP_SIZE) && 2922 offset + length > i_size_read(inode)) { 2923 err = inode_newsize_ok(inode, offset + length); 2924 if (err) 2925 goto out; 2926 } 2927 2928 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2929 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2930 2931 args.opcode = FUSE_FALLOCATE; 2932 args.nodeid = ff->nodeid; 2933 args.in_numargs = 1; 2934 args.in_args[0].size = sizeof(inarg); 2935 args.in_args[0].value = &inarg; 2936 err = fuse_simple_request(fm, &args); 2937 if (err == -ENOSYS) { 2938 fm->fc->no_fallocate = 1; 2939 err = -EOPNOTSUPP; 2940 } 2941 if (err) 2942 goto out; 2943 2944 /* we could have extended the file */ 2945 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 2946 bool changed = fuse_write_update_size(inode, offset + length); 2947 2948 if (changed && fm->fc->writeback_cache) 2949 file_update_time(file); 2950 } 2951 2952 if (mode & FALLOC_FL_PUNCH_HOLE) 2953 truncate_pagecache_range(inode, offset, offset + length - 1); 2954 2955 fuse_invalidate_attr(inode); 2956 2957 out: 2958 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2959 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2960 2961 if (block_faults) 2962 up_write(&fi->i_mmap_sem); 2963 2964 if (lock_inode) 2965 inode_unlock(inode); 2966 2967 return err; 2968 } 2969 2970 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 2971 struct file *file_out, loff_t pos_out, 2972 size_t len, unsigned int flags) 2973 { 2974 struct fuse_file *ff_in = file_in->private_data; 2975 struct fuse_file *ff_out = file_out->private_data; 2976 struct inode *inode_in = file_inode(file_in); 2977 struct inode *inode_out = file_inode(file_out); 2978 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 2979 struct fuse_mount *fm = ff_in->fm; 2980 struct fuse_conn *fc = fm->fc; 2981 FUSE_ARGS(args); 2982 struct fuse_copy_file_range_in inarg = { 2983 .fh_in = ff_in->fh, 2984 .off_in = pos_in, 2985 .nodeid_out = ff_out->nodeid, 2986 .fh_out = ff_out->fh, 2987 .off_out = pos_out, 2988 .len = len, 2989 .flags = flags 2990 }; 2991 struct fuse_write_out outarg; 2992 ssize_t err; 2993 /* mark unstable when write-back is not used, and file_out gets 2994 * extended */ 2995 bool is_unstable = (!fc->writeback_cache) && 2996 ((pos_out + len) > inode_out->i_size); 2997 2998 if (fc->no_copy_file_range) 2999 return -EOPNOTSUPP; 3000 3001 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3002 return -EXDEV; 3003 3004 inode_lock(inode_in); 3005 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1); 3006 inode_unlock(inode_in); 3007 if (err) 3008 return err; 3009 3010 inode_lock(inode_out); 3011 3012 err = file_modified(file_out); 3013 if (err) 3014 goto out; 3015 3016 /* 3017 * Write out dirty pages in the destination file before sending the COPY 3018 * request to userspace. After the request is completed, truncate off 3019 * pages (including partial ones) from the cache that have been copied, 3020 * since these contain stale data at that point. 3021 * 3022 * This should be mostly correct, but if the COPY writes to partial 3023 * pages (at the start or end) and the parts not covered by the COPY are 3024 * written through a memory map after calling fuse_writeback_range(), 3025 * then these partial page modifications will be lost on truncation. 3026 * 3027 * It is unlikely that someone would rely on such mixed style 3028 * modifications. Yet this does give less guarantees than if the 3029 * copying was performed with write(2). 3030 * 3031 * To fix this a i_mmap_sem style lock could be used to prevent new 3032 * faults while the copy is ongoing. 3033 */ 3034 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1); 3035 if (err) 3036 goto out; 3037 3038 if (is_unstable) 3039 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3040 3041 args.opcode = FUSE_COPY_FILE_RANGE; 3042 args.nodeid = ff_in->nodeid; 3043 args.in_numargs = 1; 3044 args.in_args[0].size = sizeof(inarg); 3045 args.in_args[0].value = &inarg; 3046 args.out_numargs = 1; 3047 args.out_args[0].size = sizeof(outarg); 3048 args.out_args[0].value = &outarg; 3049 err = fuse_simple_request(fm, &args); 3050 if (err == -ENOSYS) { 3051 fc->no_copy_file_range = 1; 3052 err = -EOPNOTSUPP; 3053 } 3054 if (err) 3055 goto out; 3056 3057 truncate_inode_pages_range(inode_out->i_mapping, 3058 ALIGN_DOWN(pos_out, PAGE_SIZE), 3059 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1); 3060 3061 if (fc->writeback_cache) { 3062 fuse_write_update_size(inode_out, pos_out + outarg.size); 3063 file_update_time(file_out); 3064 } 3065 3066 fuse_invalidate_attr(inode_out); 3067 3068 err = outarg.size; 3069 out: 3070 if (is_unstable) 3071 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3072 3073 inode_unlock(inode_out); 3074 file_accessed(file_in); 3075 3076 return err; 3077 } 3078 3079 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3080 struct file *dst_file, loff_t dst_off, 3081 size_t len, unsigned int flags) 3082 { 3083 ssize_t ret; 3084 3085 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3086 len, flags); 3087 3088 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3089 ret = generic_copy_file_range(src_file, src_off, dst_file, 3090 dst_off, len, flags); 3091 return ret; 3092 } 3093 3094 static const struct file_operations fuse_file_operations = { 3095 .llseek = fuse_file_llseek, 3096 .read_iter = fuse_file_read_iter, 3097 .write_iter = fuse_file_write_iter, 3098 .mmap = fuse_file_mmap, 3099 .open = fuse_open, 3100 .flush = fuse_flush, 3101 .release = fuse_release, 3102 .fsync = fuse_fsync, 3103 .lock = fuse_file_lock, 3104 .get_unmapped_area = thp_get_unmapped_area, 3105 .flock = fuse_file_flock, 3106 .splice_read = generic_file_splice_read, 3107 .splice_write = iter_file_splice_write, 3108 .unlocked_ioctl = fuse_file_ioctl, 3109 .compat_ioctl = fuse_file_compat_ioctl, 3110 .poll = fuse_file_poll, 3111 .fallocate = fuse_file_fallocate, 3112 .copy_file_range = fuse_copy_file_range, 3113 }; 3114 3115 static const struct address_space_operations fuse_file_aops = { 3116 .readpage = fuse_readpage, 3117 .readahead = fuse_readahead, 3118 .writepage = fuse_writepage, 3119 .writepages = fuse_writepages, 3120 .launder_page = fuse_launder_page, 3121 .set_page_dirty = __set_page_dirty_nobuffers, 3122 .bmap = fuse_bmap, 3123 .direct_IO = fuse_direct_IO, 3124 .write_begin = fuse_write_begin, 3125 .write_end = fuse_write_end, 3126 }; 3127 3128 void fuse_init_file_inode(struct inode *inode) 3129 { 3130 struct fuse_inode *fi = get_fuse_inode(inode); 3131 3132 inode->i_fop = &fuse_file_operations; 3133 inode->i_data.a_ops = &fuse_file_aops; 3134 3135 INIT_LIST_HEAD(&fi->write_files); 3136 INIT_LIST_HEAD(&fi->queued_writes); 3137 fi->writectr = 0; 3138 init_waitqueue_head(&fi->page_waitq); 3139 fi->writepages = RB_ROOT; 3140 3141 if (IS_ENABLED(CONFIG_FUSE_DAX)) 3142 fuse_dax_inode_init(inode); 3143 } 3144