1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 124 list_move(&inode->i_io_list, head); 125 126 /* dirty_time doesn't count as dirty_io until expiration */ 127 if (head != &wb->b_dirty_time) 128 return wb_io_lists_populated(wb); 129 130 wb_io_lists_depopulated(wb); 131 return false; 132 } 133 134 /** 135 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 136 * @inode: inode to be removed 137 * @wb: bdi_writeback @inode is being removed from 138 * 139 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 140 * clear %WB_has_dirty_io if all are empty afterwards. 141 */ 142 static void inode_io_list_del_locked(struct inode *inode, 143 struct bdi_writeback *wb) 144 { 145 assert_spin_locked(&wb->list_lock); 146 assert_spin_locked(&inode->i_lock); 147 148 inode->i_state &= ~I_SYNC_QUEUED; 149 list_del_init(&inode->i_io_list); 150 wb_io_lists_depopulated(wb); 151 } 152 153 static void wb_wakeup(struct bdi_writeback *wb) 154 { 155 spin_lock_bh(&wb->work_lock); 156 if (test_bit(WB_registered, &wb->state)) 157 mod_delayed_work(bdi_wq, &wb->dwork, 0); 158 spin_unlock_bh(&wb->work_lock); 159 } 160 161 static void finish_writeback_work(struct bdi_writeback *wb, 162 struct wb_writeback_work *work) 163 { 164 struct wb_completion *done = work->done; 165 166 if (work->auto_free) 167 kfree(work); 168 if (done) { 169 wait_queue_head_t *waitq = done->waitq; 170 171 /* @done can't be accessed after the following dec */ 172 if (atomic_dec_and_test(&done->cnt)) 173 wake_up_all(waitq); 174 } 175 } 176 177 static void wb_queue_work(struct bdi_writeback *wb, 178 struct wb_writeback_work *work) 179 { 180 trace_writeback_queue(wb, work); 181 182 if (work->done) 183 atomic_inc(&work->done->cnt); 184 185 spin_lock_bh(&wb->work_lock); 186 187 if (test_bit(WB_registered, &wb->state)) { 188 list_add_tail(&work->list, &wb->work_list); 189 mod_delayed_work(bdi_wq, &wb->dwork, 0); 190 } else 191 finish_writeback_work(wb, work); 192 193 spin_unlock_bh(&wb->work_lock); 194 } 195 196 /** 197 * wb_wait_for_completion - wait for completion of bdi_writeback_works 198 * @done: target wb_completion 199 * 200 * Wait for one or more work items issued to @bdi with their ->done field 201 * set to @done, which should have been initialized with 202 * DEFINE_WB_COMPLETION(). This function returns after all such work items 203 * are completed. Work items which are waited upon aren't freed 204 * automatically on completion. 205 */ 206 void wb_wait_for_completion(struct wb_completion *done) 207 { 208 atomic_dec(&done->cnt); /* put down the initial count */ 209 wait_event(*done->waitq, !atomic_read(&done->cnt)); 210 } 211 212 #ifdef CONFIG_CGROUP_WRITEBACK 213 214 /* 215 * Parameters for foreign inode detection, see wbc_detach_inode() to see 216 * how they're used. 217 * 218 * These paramters are inherently heuristical as the detection target 219 * itself is fuzzy. All we want to do is detaching an inode from the 220 * current owner if it's being written to by some other cgroups too much. 221 * 222 * The current cgroup writeback is built on the assumption that multiple 223 * cgroups writing to the same inode concurrently is very rare and a mode 224 * of operation which isn't well supported. As such, the goal is not 225 * taking too long when a different cgroup takes over an inode while 226 * avoiding too aggressive flip-flops from occasional foreign writes. 227 * 228 * We record, very roughly, 2s worth of IO time history and if more than 229 * half of that is foreign, trigger the switch. The recording is quantized 230 * to 16 slots. To avoid tiny writes from swinging the decision too much, 231 * writes smaller than 1/8 of avg size are ignored. 232 */ 233 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 234 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 235 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 236 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 237 238 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 239 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 240 /* each slot's duration is 2s / 16 */ 241 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 242 /* if foreign slots >= 8, switch */ 243 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 244 /* one round can affect upto 5 slots */ 245 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 246 247 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 248 static struct workqueue_struct *isw_wq; 249 250 void __inode_attach_wb(struct inode *inode, struct page *page) 251 { 252 struct backing_dev_info *bdi = inode_to_bdi(inode); 253 struct bdi_writeback *wb = NULL; 254 255 if (inode_cgwb_enabled(inode)) { 256 struct cgroup_subsys_state *memcg_css; 257 258 if (page) { 259 memcg_css = mem_cgroup_css_from_page(page); 260 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 261 } else { 262 /* must pin memcg_css, see wb_get_create() */ 263 memcg_css = task_get_css(current, memory_cgrp_id); 264 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 265 css_put(memcg_css); 266 } 267 } 268 269 if (!wb) 270 wb = &bdi->wb; 271 272 /* 273 * There may be multiple instances of this function racing to 274 * update the same inode. Use cmpxchg() to tell the winner. 275 */ 276 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 277 wb_put(wb); 278 } 279 EXPORT_SYMBOL_GPL(__inode_attach_wb); 280 281 /** 282 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 283 * @inode: inode of interest with i_lock held 284 * 285 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 286 * held on entry and is released on return. The returned wb is guaranteed 287 * to stay @inode's associated wb until its list_lock is released. 288 */ 289 static struct bdi_writeback * 290 locked_inode_to_wb_and_lock_list(struct inode *inode) 291 __releases(&inode->i_lock) 292 __acquires(&wb->list_lock) 293 { 294 while (true) { 295 struct bdi_writeback *wb = inode_to_wb(inode); 296 297 /* 298 * inode_to_wb() association is protected by both 299 * @inode->i_lock and @wb->list_lock but list_lock nests 300 * outside i_lock. Drop i_lock and verify that the 301 * association hasn't changed after acquiring list_lock. 302 */ 303 wb_get(wb); 304 spin_unlock(&inode->i_lock); 305 spin_lock(&wb->list_lock); 306 307 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 308 if (likely(wb == inode->i_wb)) { 309 wb_put(wb); /* @inode already has ref */ 310 return wb; 311 } 312 313 spin_unlock(&wb->list_lock); 314 wb_put(wb); 315 cpu_relax(); 316 spin_lock(&inode->i_lock); 317 } 318 } 319 320 /** 321 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 322 * @inode: inode of interest 323 * 324 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 325 * on entry. 326 */ 327 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 328 __acquires(&wb->list_lock) 329 { 330 spin_lock(&inode->i_lock); 331 return locked_inode_to_wb_and_lock_list(inode); 332 } 333 334 struct inode_switch_wbs_context { 335 struct inode *inode; 336 struct bdi_writeback *new_wb; 337 338 struct rcu_head rcu_head; 339 struct work_struct work; 340 }; 341 342 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 343 { 344 down_write(&bdi->wb_switch_rwsem); 345 } 346 347 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 348 { 349 up_write(&bdi->wb_switch_rwsem); 350 } 351 352 static void inode_switch_wbs_work_fn(struct work_struct *work) 353 { 354 struct inode_switch_wbs_context *isw = 355 container_of(work, struct inode_switch_wbs_context, work); 356 struct inode *inode = isw->inode; 357 struct backing_dev_info *bdi = inode_to_bdi(inode); 358 struct address_space *mapping = inode->i_mapping; 359 struct bdi_writeback *old_wb = inode->i_wb; 360 struct bdi_writeback *new_wb = isw->new_wb; 361 XA_STATE(xas, &mapping->i_pages, 0); 362 struct page *page; 363 bool switched = false; 364 365 /* 366 * If @inode switches cgwb membership while sync_inodes_sb() is 367 * being issued, sync_inodes_sb() might miss it. Synchronize. 368 */ 369 down_read(&bdi->wb_switch_rwsem); 370 371 /* 372 * By the time control reaches here, RCU grace period has passed 373 * since I_WB_SWITCH assertion and all wb stat update transactions 374 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 375 * synchronizing against the i_pages lock. 376 * 377 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 378 * gives us exclusion against all wb related operations on @inode 379 * including IO list manipulations and stat updates. 380 */ 381 if (old_wb < new_wb) { 382 spin_lock(&old_wb->list_lock); 383 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 384 } else { 385 spin_lock(&new_wb->list_lock); 386 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 387 } 388 spin_lock(&inode->i_lock); 389 xa_lock_irq(&mapping->i_pages); 390 391 /* 392 * Once I_FREEING is visible under i_lock, the eviction path owns 393 * the inode and we shouldn't modify ->i_io_list. 394 */ 395 if (unlikely(inode->i_state & I_FREEING)) 396 goto skip_switch; 397 398 trace_inode_switch_wbs(inode, old_wb, new_wb); 399 400 /* 401 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 402 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 403 * pages actually under writeback. 404 */ 405 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 406 if (PageDirty(page)) { 407 dec_wb_stat(old_wb, WB_RECLAIMABLE); 408 inc_wb_stat(new_wb, WB_RECLAIMABLE); 409 } 410 } 411 412 xas_set(&xas, 0); 413 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 414 WARN_ON_ONCE(!PageWriteback(page)); 415 dec_wb_stat(old_wb, WB_WRITEBACK); 416 inc_wb_stat(new_wb, WB_WRITEBACK); 417 } 418 419 wb_get(new_wb); 420 421 /* 422 * Transfer to @new_wb's IO list if necessary. The specific list 423 * @inode was on is ignored and the inode is put on ->b_dirty which 424 * is always correct including from ->b_dirty_time. The transfer 425 * preserves @inode->dirtied_when ordering. 426 */ 427 if (!list_empty(&inode->i_io_list)) { 428 struct inode *pos; 429 430 inode_io_list_del_locked(inode, old_wb); 431 inode->i_wb = new_wb; 432 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 433 if (time_after_eq(inode->dirtied_when, 434 pos->dirtied_when)) 435 break; 436 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 437 } else { 438 inode->i_wb = new_wb; 439 } 440 441 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 442 inode->i_wb_frn_winner = 0; 443 inode->i_wb_frn_avg_time = 0; 444 inode->i_wb_frn_history = 0; 445 switched = true; 446 skip_switch: 447 /* 448 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 449 * ensures that the new wb is visible if they see !I_WB_SWITCH. 450 */ 451 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 452 453 xa_unlock_irq(&mapping->i_pages); 454 spin_unlock(&inode->i_lock); 455 spin_unlock(&new_wb->list_lock); 456 spin_unlock(&old_wb->list_lock); 457 458 up_read(&bdi->wb_switch_rwsem); 459 460 if (switched) { 461 wb_wakeup(new_wb); 462 wb_put(old_wb); 463 } 464 wb_put(new_wb); 465 466 iput(inode); 467 kfree(isw); 468 469 atomic_dec(&isw_nr_in_flight); 470 } 471 472 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 473 { 474 struct inode_switch_wbs_context *isw = container_of(rcu_head, 475 struct inode_switch_wbs_context, rcu_head); 476 477 /* needs to grab bh-unsafe locks, bounce to work item */ 478 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 479 queue_work(isw_wq, &isw->work); 480 } 481 482 /** 483 * inode_switch_wbs - change the wb association of an inode 484 * @inode: target inode 485 * @new_wb_id: ID of the new wb 486 * 487 * Switch @inode's wb association to the wb identified by @new_wb_id. The 488 * switching is performed asynchronously and may fail silently. 489 */ 490 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 491 { 492 struct backing_dev_info *bdi = inode_to_bdi(inode); 493 struct cgroup_subsys_state *memcg_css; 494 struct inode_switch_wbs_context *isw; 495 496 /* noop if seems to be already in progress */ 497 if (inode->i_state & I_WB_SWITCH) 498 return; 499 500 /* avoid queueing a new switch if too many are already in flight */ 501 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 502 return; 503 504 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 505 if (!isw) 506 return; 507 508 /* find and pin the new wb */ 509 rcu_read_lock(); 510 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 511 if (memcg_css) 512 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 513 rcu_read_unlock(); 514 if (!isw->new_wb) 515 goto out_free; 516 517 /* while holding I_WB_SWITCH, no one else can update the association */ 518 spin_lock(&inode->i_lock); 519 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 520 inode->i_state & (I_WB_SWITCH | I_FREEING) || 521 inode_to_wb(inode) == isw->new_wb) { 522 spin_unlock(&inode->i_lock); 523 goto out_free; 524 } 525 inode->i_state |= I_WB_SWITCH; 526 __iget(inode); 527 spin_unlock(&inode->i_lock); 528 529 isw->inode = inode; 530 531 /* 532 * In addition to synchronizing among switchers, I_WB_SWITCH tells 533 * the RCU protected stat update paths to grab the i_page 534 * lock so that stat transfer can synchronize against them. 535 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 536 */ 537 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 538 539 atomic_inc(&isw_nr_in_flight); 540 return; 541 542 out_free: 543 if (isw->new_wb) 544 wb_put(isw->new_wb); 545 kfree(isw); 546 } 547 548 /** 549 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 550 * @wbc: writeback_control of interest 551 * @inode: target inode 552 * 553 * @inode is locked and about to be written back under the control of @wbc. 554 * Record @inode's writeback context into @wbc and unlock the i_lock. On 555 * writeback completion, wbc_detach_inode() should be called. This is used 556 * to track the cgroup writeback context. 557 */ 558 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 559 struct inode *inode) 560 { 561 if (!inode_cgwb_enabled(inode)) { 562 spin_unlock(&inode->i_lock); 563 return; 564 } 565 566 wbc->wb = inode_to_wb(inode); 567 wbc->inode = inode; 568 569 wbc->wb_id = wbc->wb->memcg_css->id; 570 wbc->wb_lcand_id = inode->i_wb_frn_winner; 571 wbc->wb_tcand_id = 0; 572 wbc->wb_bytes = 0; 573 wbc->wb_lcand_bytes = 0; 574 wbc->wb_tcand_bytes = 0; 575 576 wb_get(wbc->wb); 577 spin_unlock(&inode->i_lock); 578 579 /* 580 * A dying wb indicates that either the blkcg associated with the 581 * memcg changed or the associated memcg is dying. In the first 582 * case, a replacement wb should already be available and we should 583 * refresh the wb immediately. In the second case, trying to 584 * refresh will keep failing. 585 */ 586 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 587 inode_switch_wbs(inode, wbc->wb_id); 588 } 589 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 590 591 /** 592 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 593 * @wbc: writeback_control of the just finished writeback 594 * 595 * To be called after a writeback attempt of an inode finishes and undoes 596 * wbc_attach_and_unlock_inode(). Can be called under any context. 597 * 598 * As concurrent write sharing of an inode is expected to be very rare and 599 * memcg only tracks page ownership on first-use basis severely confining 600 * the usefulness of such sharing, cgroup writeback tracks ownership 601 * per-inode. While the support for concurrent write sharing of an inode 602 * is deemed unnecessary, an inode being written to by different cgroups at 603 * different points in time is a lot more common, and, more importantly, 604 * charging only by first-use can too readily lead to grossly incorrect 605 * behaviors (single foreign page can lead to gigabytes of writeback to be 606 * incorrectly attributed). 607 * 608 * To resolve this issue, cgroup writeback detects the majority dirtier of 609 * an inode and transfers the ownership to it. To avoid unnnecessary 610 * oscillation, the detection mechanism keeps track of history and gives 611 * out the switch verdict only if the foreign usage pattern is stable over 612 * a certain amount of time and/or writeback attempts. 613 * 614 * On each writeback attempt, @wbc tries to detect the majority writer 615 * using Boyer-Moore majority vote algorithm. In addition to the byte 616 * count from the majority voting, it also counts the bytes written for the 617 * current wb and the last round's winner wb (max of last round's current 618 * wb, the winner from two rounds ago, and the last round's majority 619 * candidate). Keeping track of the historical winner helps the algorithm 620 * to semi-reliably detect the most active writer even when it's not the 621 * absolute majority. 622 * 623 * Once the winner of the round is determined, whether the winner is 624 * foreign or not and how much IO time the round consumed is recorded in 625 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 626 * over a certain threshold, the switch verdict is given. 627 */ 628 void wbc_detach_inode(struct writeback_control *wbc) 629 { 630 struct bdi_writeback *wb = wbc->wb; 631 struct inode *inode = wbc->inode; 632 unsigned long avg_time, max_bytes, max_time; 633 u16 history; 634 int max_id; 635 636 if (!wb) 637 return; 638 639 history = inode->i_wb_frn_history; 640 avg_time = inode->i_wb_frn_avg_time; 641 642 /* pick the winner of this round */ 643 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 644 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 645 max_id = wbc->wb_id; 646 max_bytes = wbc->wb_bytes; 647 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 648 max_id = wbc->wb_lcand_id; 649 max_bytes = wbc->wb_lcand_bytes; 650 } else { 651 max_id = wbc->wb_tcand_id; 652 max_bytes = wbc->wb_tcand_bytes; 653 } 654 655 /* 656 * Calculate the amount of IO time the winner consumed and fold it 657 * into the running average kept per inode. If the consumed IO 658 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 659 * deciding whether to switch or not. This is to prevent one-off 660 * small dirtiers from skewing the verdict. 661 */ 662 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 663 wb->avg_write_bandwidth); 664 if (avg_time) 665 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 666 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 667 else 668 avg_time = max_time; /* immediate catch up on first run */ 669 670 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 671 int slots; 672 673 /* 674 * The switch verdict is reached if foreign wb's consume 675 * more than a certain proportion of IO time in a 676 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 677 * history mask where each bit represents one sixteenth of 678 * the period. Determine the number of slots to shift into 679 * history from @max_time. 680 */ 681 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 682 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 683 history <<= slots; 684 if (wbc->wb_id != max_id) 685 history |= (1U << slots) - 1; 686 687 if (history) 688 trace_inode_foreign_history(inode, wbc, history); 689 690 /* 691 * Switch if the current wb isn't the consistent winner. 692 * If there are multiple closely competing dirtiers, the 693 * inode may switch across them repeatedly over time, which 694 * is okay. The main goal is avoiding keeping an inode on 695 * the wrong wb for an extended period of time. 696 */ 697 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 698 inode_switch_wbs(inode, max_id); 699 } 700 701 /* 702 * Multiple instances of this function may race to update the 703 * following fields but we don't mind occassional inaccuracies. 704 */ 705 inode->i_wb_frn_winner = max_id; 706 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 707 inode->i_wb_frn_history = history; 708 709 wb_put(wbc->wb); 710 wbc->wb = NULL; 711 } 712 EXPORT_SYMBOL_GPL(wbc_detach_inode); 713 714 /** 715 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 716 * @wbc: writeback_control of the writeback in progress 717 * @page: page being written out 718 * @bytes: number of bytes being written out 719 * 720 * @bytes from @page are about to written out during the writeback 721 * controlled by @wbc. Keep the book for foreign inode detection. See 722 * wbc_detach_inode(). 723 */ 724 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 725 size_t bytes) 726 { 727 struct cgroup_subsys_state *css; 728 int id; 729 730 /* 731 * pageout() path doesn't attach @wbc to the inode being written 732 * out. This is intentional as we don't want the function to block 733 * behind a slow cgroup. Ultimately, we want pageout() to kick off 734 * regular writeback instead of writing things out itself. 735 */ 736 if (!wbc->wb || wbc->no_cgroup_owner) 737 return; 738 739 css = mem_cgroup_css_from_page(page); 740 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 741 if (!(css->flags & CSS_ONLINE)) 742 return; 743 744 id = css->id; 745 746 if (id == wbc->wb_id) { 747 wbc->wb_bytes += bytes; 748 return; 749 } 750 751 if (id == wbc->wb_lcand_id) 752 wbc->wb_lcand_bytes += bytes; 753 754 /* Boyer-Moore majority vote algorithm */ 755 if (!wbc->wb_tcand_bytes) 756 wbc->wb_tcand_id = id; 757 if (id == wbc->wb_tcand_id) 758 wbc->wb_tcand_bytes += bytes; 759 else 760 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 761 } 762 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 763 764 /** 765 * inode_congested - test whether an inode is congested 766 * @inode: inode to test for congestion (may be NULL) 767 * @cong_bits: mask of WB_[a]sync_congested bits to test 768 * 769 * Tests whether @inode is congested. @cong_bits is the mask of congestion 770 * bits to test and the return value is the mask of set bits. 771 * 772 * If cgroup writeback is enabled for @inode, the congestion state is 773 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 774 * associated with @inode is congested; otherwise, the root wb's congestion 775 * state is used. 776 * 777 * @inode is allowed to be NULL as this function is often called on 778 * mapping->host which is NULL for the swapper space. 779 */ 780 int inode_congested(struct inode *inode, int cong_bits) 781 { 782 /* 783 * Once set, ->i_wb never becomes NULL while the inode is alive. 784 * Start transaction iff ->i_wb is visible. 785 */ 786 if (inode && inode_to_wb_is_valid(inode)) { 787 struct bdi_writeback *wb; 788 struct wb_lock_cookie lock_cookie = {}; 789 bool congested; 790 791 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 792 congested = wb_congested(wb, cong_bits); 793 unlocked_inode_to_wb_end(inode, &lock_cookie); 794 return congested; 795 } 796 797 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 798 } 799 EXPORT_SYMBOL_GPL(inode_congested); 800 801 /** 802 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 803 * @wb: target bdi_writeback to split @nr_pages to 804 * @nr_pages: number of pages to write for the whole bdi 805 * 806 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 807 * relation to the total write bandwidth of all wb's w/ dirty inodes on 808 * @wb->bdi. 809 */ 810 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 811 { 812 unsigned long this_bw = wb->avg_write_bandwidth; 813 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 814 815 if (nr_pages == LONG_MAX) 816 return LONG_MAX; 817 818 /* 819 * This may be called on clean wb's and proportional distribution 820 * may not make sense, just use the original @nr_pages in those 821 * cases. In general, we wanna err on the side of writing more. 822 */ 823 if (!tot_bw || this_bw >= tot_bw) 824 return nr_pages; 825 else 826 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 827 } 828 829 /** 830 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 831 * @bdi: target backing_dev_info 832 * @base_work: wb_writeback_work to issue 833 * @skip_if_busy: skip wb's which already have writeback in progress 834 * 835 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 836 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 837 * distributed to the busy wbs according to each wb's proportion in the 838 * total active write bandwidth of @bdi. 839 */ 840 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 841 struct wb_writeback_work *base_work, 842 bool skip_if_busy) 843 { 844 struct bdi_writeback *last_wb = NULL; 845 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 846 struct bdi_writeback, bdi_node); 847 848 might_sleep(); 849 restart: 850 rcu_read_lock(); 851 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 852 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 853 struct wb_writeback_work fallback_work; 854 struct wb_writeback_work *work; 855 long nr_pages; 856 857 if (last_wb) { 858 wb_put(last_wb); 859 last_wb = NULL; 860 } 861 862 /* SYNC_ALL writes out I_DIRTY_TIME too */ 863 if (!wb_has_dirty_io(wb) && 864 (base_work->sync_mode == WB_SYNC_NONE || 865 list_empty(&wb->b_dirty_time))) 866 continue; 867 if (skip_if_busy && writeback_in_progress(wb)) 868 continue; 869 870 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 871 872 work = kmalloc(sizeof(*work), GFP_ATOMIC); 873 if (work) { 874 *work = *base_work; 875 work->nr_pages = nr_pages; 876 work->auto_free = 1; 877 wb_queue_work(wb, work); 878 continue; 879 } 880 881 /* alloc failed, execute synchronously using on-stack fallback */ 882 work = &fallback_work; 883 *work = *base_work; 884 work->nr_pages = nr_pages; 885 work->auto_free = 0; 886 work->done = &fallback_work_done; 887 888 wb_queue_work(wb, work); 889 890 /* 891 * Pin @wb so that it stays on @bdi->wb_list. This allows 892 * continuing iteration from @wb after dropping and 893 * regrabbing rcu read lock. 894 */ 895 wb_get(wb); 896 last_wb = wb; 897 898 rcu_read_unlock(); 899 wb_wait_for_completion(&fallback_work_done); 900 goto restart; 901 } 902 rcu_read_unlock(); 903 904 if (last_wb) 905 wb_put(last_wb); 906 } 907 908 /** 909 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 910 * @bdi_id: target bdi id 911 * @memcg_id: target memcg css id 912 * @nr: number of pages to write, 0 for best-effort dirty flushing 913 * @reason: reason why some writeback work initiated 914 * @done: target wb_completion 915 * 916 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 917 * with the specified parameters. 918 */ 919 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr, 920 enum wb_reason reason, struct wb_completion *done) 921 { 922 struct backing_dev_info *bdi; 923 struct cgroup_subsys_state *memcg_css; 924 struct bdi_writeback *wb; 925 struct wb_writeback_work *work; 926 int ret; 927 928 /* lookup bdi and memcg */ 929 bdi = bdi_get_by_id(bdi_id); 930 if (!bdi) 931 return -ENOENT; 932 933 rcu_read_lock(); 934 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 935 if (memcg_css && !css_tryget(memcg_css)) 936 memcg_css = NULL; 937 rcu_read_unlock(); 938 if (!memcg_css) { 939 ret = -ENOENT; 940 goto out_bdi_put; 941 } 942 943 /* 944 * And find the associated wb. If the wb isn't there already 945 * there's nothing to flush, don't create one. 946 */ 947 wb = wb_get_lookup(bdi, memcg_css); 948 if (!wb) { 949 ret = -ENOENT; 950 goto out_css_put; 951 } 952 953 /* 954 * If @nr is zero, the caller is attempting to write out most of 955 * the currently dirty pages. Let's take the current dirty page 956 * count and inflate it by 25% which should be large enough to 957 * flush out most dirty pages while avoiding getting livelocked by 958 * concurrent dirtiers. 959 */ 960 if (!nr) { 961 unsigned long filepages, headroom, dirty, writeback; 962 963 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty, 964 &writeback); 965 nr = dirty * 10 / 8; 966 } 967 968 /* issue the writeback work */ 969 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 970 if (work) { 971 work->nr_pages = nr; 972 work->sync_mode = WB_SYNC_NONE; 973 work->range_cyclic = 1; 974 work->reason = reason; 975 work->done = done; 976 work->auto_free = 1; 977 wb_queue_work(wb, work); 978 ret = 0; 979 } else { 980 ret = -ENOMEM; 981 } 982 983 wb_put(wb); 984 out_css_put: 985 css_put(memcg_css); 986 out_bdi_put: 987 bdi_put(bdi); 988 return ret; 989 } 990 991 /** 992 * cgroup_writeback_umount - flush inode wb switches for umount 993 * 994 * This function is called when a super_block is about to be destroyed and 995 * flushes in-flight inode wb switches. An inode wb switch goes through 996 * RCU and then workqueue, so the two need to be flushed in order to ensure 997 * that all previously scheduled switches are finished. As wb switches are 998 * rare occurrences and synchronize_rcu() can take a while, perform 999 * flushing iff wb switches are in flight. 1000 */ 1001 void cgroup_writeback_umount(void) 1002 { 1003 if (atomic_read(&isw_nr_in_flight)) { 1004 /* 1005 * Use rcu_barrier() to wait for all pending callbacks to 1006 * ensure that all in-flight wb switches are in the workqueue. 1007 */ 1008 rcu_barrier(); 1009 flush_workqueue(isw_wq); 1010 } 1011 } 1012 1013 static int __init cgroup_writeback_init(void) 1014 { 1015 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1016 if (!isw_wq) 1017 return -ENOMEM; 1018 return 0; 1019 } 1020 fs_initcall(cgroup_writeback_init); 1021 1022 #else /* CONFIG_CGROUP_WRITEBACK */ 1023 1024 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1025 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1026 1027 static struct bdi_writeback * 1028 locked_inode_to_wb_and_lock_list(struct inode *inode) 1029 __releases(&inode->i_lock) 1030 __acquires(&wb->list_lock) 1031 { 1032 struct bdi_writeback *wb = inode_to_wb(inode); 1033 1034 spin_unlock(&inode->i_lock); 1035 spin_lock(&wb->list_lock); 1036 return wb; 1037 } 1038 1039 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1040 __acquires(&wb->list_lock) 1041 { 1042 struct bdi_writeback *wb = inode_to_wb(inode); 1043 1044 spin_lock(&wb->list_lock); 1045 return wb; 1046 } 1047 1048 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1049 { 1050 return nr_pages; 1051 } 1052 1053 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1054 struct wb_writeback_work *base_work, 1055 bool skip_if_busy) 1056 { 1057 might_sleep(); 1058 1059 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1060 base_work->auto_free = 0; 1061 wb_queue_work(&bdi->wb, base_work); 1062 } 1063 } 1064 1065 #endif /* CONFIG_CGROUP_WRITEBACK */ 1066 1067 /* 1068 * Add in the number of potentially dirty inodes, because each inode 1069 * write can dirty pagecache in the underlying blockdev. 1070 */ 1071 static unsigned long get_nr_dirty_pages(void) 1072 { 1073 return global_node_page_state(NR_FILE_DIRTY) + 1074 get_nr_dirty_inodes(); 1075 } 1076 1077 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1078 { 1079 if (!wb_has_dirty_io(wb)) 1080 return; 1081 1082 /* 1083 * All callers of this function want to start writeback of all 1084 * dirty pages. Places like vmscan can call this at a very 1085 * high frequency, causing pointless allocations of tons of 1086 * work items and keeping the flusher threads busy retrieving 1087 * that work. Ensure that we only allow one of them pending and 1088 * inflight at the time. 1089 */ 1090 if (test_bit(WB_start_all, &wb->state) || 1091 test_and_set_bit(WB_start_all, &wb->state)) 1092 return; 1093 1094 wb->start_all_reason = reason; 1095 wb_wakeup(wb); 1096 } 1097 1098 /** 1099 * wb_start_background_writeback - start background writeback 1100 * @wb: bdi_writback to write from 1101 * 1102 * Description: 1103 * This makes sure WB_SYNC_NONE background writeback happens. When 1104 * this function returns, it is only guaranteed that for given wb 1105 * some IO is happening if we are over background dirty threshold. 1106 * Caller need not hold sb s_umount semaphore. 1107 */ 1108 void wb_start_background_writeback(struct bdi_writeback *wb) 1109 { 1110 /* 1111 * We just wake up the flusher thread. It will perform background 1112 * writeback as soon as there is no other work to do. 1113 */ 1114 trace_writeback_wake_background(wb); 1115 wb_wakeup(wb); 1116 } 1117 1118 /* 1119 * Remove the inode from the writeback list it is on. 1120 */ 1121 void inode_io_list_del(struct inode *inode) 1122 { 1123 struct bdi_writeback *wb; 1124 1125 wb = inode_to_wb_and_lock_list(inode); 1126 spin_lock(&inode->i_lock); 1127 inode_io_list_del_locked(inode, wb); 1128 spin_unlock(&inode->i_lock); 1129 spin_unlock(&wb->list_lock); 1130 } 1131 EXPORT_SYMBOL(inode_io_list_del); 1132 1133 /* 1134 * mark an inode as under writeback on the sb 1135 */ 1136 void sb_mark_inode_writeback(struct inode *inode) 1137 { 1138 struct super_block *sb = inode->i_sb; 1139 unsigned long flags; 1140 1141 if (list_empty(&inode->i_wb_list)) { 1142 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1143 if (list_empty(&inode->i_wb_list)) { 1144 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1145 trace_sb_mark_inode_writeback(inode); 1146 } 1147 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1148 } 1149 } 1150 1151 /* 1152 * clear an inode as under writeback on the sb 1153 */ 1154 void sb_clear_inode_writeback(struct inode *inode) 1155 { 1156 struct super_block *sb = inode->i_sb; 1157 unsigned long flags; 1158 1159 if (!list_empty(&inode->i_wb_list)) { 1160 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1161 if (!list_empty(&inode->i_wb_list)) { 1162 list_del_init(&inode->i_wb_list); 1163 trace_sb_clear_inode_writeback(inode); 1164 } 1165 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1166 } 1167 } 1168 1169 /* 1170 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1171 * furthest end of its superblock's dirty-inode list. 1172 * 1173 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1174 * already the most-recently-dirtied inode on the b_dirty list. If that is 1175 * the case then the inode must have been redirtied while it was being written 1176 * out and we don't reset its dirtied_when. 1177 */ 1178 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1179 { 1180 assert_spin_locked(&inode->i_lock); 1181 1182 if (!list_empty(&wb->b_dirty)) { 1183 struct inode *tail; 1184 1185 tail = wb_inode(wb->b_dirty.next); 1186 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1187 inode->dirtied_when = jiffies; 1188 } 1189 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1190 inode->i_state &= ~I_SYNC_QUEUED; 1191 } 1192 1193 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1194 { 1195 spin_lock(&inode->i_lock); 1196 redirty_tail_locked(inode, wb); 1197 spin_unlock(&inode->i_lock); 1198 } 1199 1200 /* 1201 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1202 */ 1203 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1204 { 1205 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1206 } 1207 1208 static void inode_sync_complete(struct inode *inode) 1209 { 1210 inode->i_state &= ~I_SYNC; 1211 /* If inode is clean an unused, put it into LRU now... */ 1212 inode_add_lru(inode); 1213 /* Waiters must see I_SYNC cleared before being woken up */ 1214 smp_mb(); 1215 wake_up_bit(&inode->i_state, __I_SYNC); 1216 } 1217 1218 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1219 { 1220 bool ret = time_after(inode->dirtied_when, t); 1221 #ifndef CONFIG_64BIT 1222 /* 1223 * For inodes being constantly redirtied, dirtied_when can get stuck. 1224 * It _appears_ to be in the future, but is actually in distant past. 1225 * This test is necessary to prevent such wrapped-around relative times 1226 * from permanently stopping the whole bdi writeback. 1227 */ 1228 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1229 #endif 1230 return ret; 1231 } 1232 1233 #define EXPIRE_DIRTY_ATIME 0x0001 1234 1235 /* 1236 * Move expired (dirtied before dirtied_before) dirty inodes from 1237 * @delaying_queue to @dispatch_queue. 1238 */ 1239 static int move_expired_inodes(struct list_head *delaying_queue, 1240 struct list_head *dispatch_queue, 1241 int flags, unsigned long dirtied_before) 1242 { 1243 LIST_HEAD(tmp); 1244 struct list_head *pos, *node; 1245 struct super_block *sb = NULL; 1246 struct inode *inode; 1247 int do_sb_sort = 0; 1248 int moved = 0; 1249 1250 while (!list_empty(delaying_queue)) { 1251 inode = wb_inode(delaying_queue->prev); 1252 if (inode_dirtied_after(inode, dirtied_before)) 1253 break; 1254 list_move(&inode->i_io_list, &tmp); 1255 moved++; 1256 spin_lock(&inode->i_lock); 1257 if (flags & EXPIRE_DIRTY_ATIME) 1258 inode->i_state |= I_DIRTY_TIME_EXPIRED; 1259 inode->i_state |= I_SYNC_QUEUED; 1260 spin_unlock(&inode->i_lock); 1261 if (sb_is_blkdev_sb(inode->i_sb)) 1262 continue; 1263 if (sb && sb != inode->i_sb) 1264 do_sb_sort = 1; 1265 sb = inode->i_sb; 1266 } 1267 1268 /* just one sb in list, splice to dispatch_queue and we're done */ 1269 if (!do_sb_sort) { 1270 list_splice(&tmp, dispatch_queue); 1271 goto out; 1272 } 1273 1274 /* Move inodes from one superblock together */ 1275 while (!list_empty(&tmp)) { 1276 sb = wb_inode(tmp.prev)->i_sb; 1277 list_for_each_prev_safe(pos, node, &tmp) { 1278 inode = wb_inode(pos); 1279 if (inode->i_sb == sb) 1280 list_move(&inode->i_io_list, dispatch_queue); 1281 } 1282 } 1283 out: 1284 return moved; 1285 } 1286 1287 /* 1288 * Queue all expired dirty inodes for io, eldest first. 1289 * Before 1290 * newly dirtied b_dirty b_io b_more_io 1291 * =============> gf edc BA 1292 * After 1293 * newly dirtied b_dirty b_io b_more_io 1294 * =============> g fBAedc 1295 * | 1296 * +--> dequeue for IO 1297 */ 1298 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1299 unsigned long dirtied_before) 1300 { 1301 int moved; 1302 unsigned long time_expire_jif = dirtied_before; 1303 1304 assert_spin_locked(&wb->list_lock); 1305 list_splice_init(&wb->b_more_io, &wb->b_io); 1306 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, dirtied_before); 1307 if (!work->for_sync) 1308 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1309 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1310 EXPIRE_DIRTY_ATIME, time_expire_jif); 1311 if (moved) 1312 wb_io_lists_populated(wb); 1313 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1314 } 1315 1316 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1317 { 1318 int ret; 1319 1320 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1321 trace_writeback_write_inode_start(inode, wbc); 1322 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1323 trace_writeback_write_inode(inode, wbc); 1324 return ret; 1325 } 1326 return 0; 1327 } 1328 1329 /* 1330 * Wait for writeback on an inode to complete. Called with i_lock held. 1331 * Caller must make sure inode cannot go away when we drop i_lock. 1332 */ 1333 static void __inode_wait_for_writeback(struct inode *inode) 1334 __releases(inode->i_lock) 1335 __acquires(inode->i_lock) 1336 { 1337 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1338 wait_queue_head_t *wqh; 1339 1340 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1341 while (inode->i_state & I_SYNC) { 1342 spin_unlock(&inode->i_lock); 1343 __wait_on_bit(wqh, &wq, bit_wait, 1344 TASK_UNINTERRUPTIBLE); 1345 spin_lock(&inode->i_lock); 1346 } 1347 } 1348 1349 /* 1350 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1351 */ 1352 void inode_wait_for_writeback(struct inode *inode) 1353 { 1354 spin_lock(&inode->i_lock); 1355 __inode_wait_for_writeback(inode); 1356 spin_unlock(&inode->i_lock); 1357 } 1358 1359 /* 1360 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1361 * held and drops it. It is aimed for callers not holding any inode reference 1362 * so once i_lock is dropped, inode can go away. 1363 */ 1364 static void inode_sleep_on_writeback(struct inode *inode) 1365 __releases(inode->i_lock) 1366 { 1367 DEFINE_WAIT(wait); 1368 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1369 int sleep; 1370 1371 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1372 sleep = inode->i_state & I_SYNC; 1373 spin_unlock(&inode->i_lock); 1374 if (sleep) 1375 schedule(); 1376 finish_wait(wqh, &wait); 1377 } 1378 1379 /* 1380 * Find proper writeback list for the inode depending on its current state and 1381 * possibly also change of its state while we were doing writeback. Here we 1382 * handle things such as livelock prevention or fairness of writeback among 1383 * inodes. This function can be called only by flusher thread - noone else 1384 * processes all inodes in writeback lists and requeueing inodes behind flusher 1385 * thread's back can have unexpected consequences. 1386 */ 1387 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1388 struct writeback_control *wbc) 1389 { 1390 if (inode->i_state & I_FREEING) 1391 return; 1392 1393 /* 1394 * Sync livelock prevention. Each inode is tagged and synced in one 1395 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1396 * the dirty time to prevent enqueue and sync it again. 1397 */ 1398 if ((inode->i_state & I_DIRTY) && 1399 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1400 inode->dirtied_when = jiffies; 1401 1402 if (wbc->pages_skipped) { 1403 /* 1404 * writeback is not making progress due to locked 1405 * buffers. Skip this inode for now. 1406 */ 1407 redirty_tail_locked(inode, wb); 1408 return; 1409 } 1410 1411 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1412 /* 1413 * We didn't write back all the pages. nfs_writepages() 1414 * sometimes bales out without doing anything. 1415 */ 1416 if (wbc->nr_to_write <= 0) { 1417 /* Slice used up. Queue for next turn. */ 1418 requeue_io(inode, wb); 1419 } else { 1420 /* 1421 * Writeback blocked by something other than 1422 * congestion. Delay the inode for some time to 1423 * avoid spinning on the CPU (100% iowait) 1424 * retrying writeback of the dirty page/inode 1425 * that cannot be performed immediately. 1426 */ 1427 redirty_tail_locked(inode, wb); 1428 } 1429 } else if (inode->i_state & I_DIRTY) { 1430 /* 1431 * Filesystems can dirty the inode during writeback operations, 1432 * such as delayed allocation during submission or metadata 1433 * updates after data IO completion. 1434 */ 1435 redirty_tail_locked(inode, wb); 1436 } else if (inode->i_state & I_DIRTY_TIME) { 1437 inode->dirtied_when = jiffies; 1438 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1439 inode->i_state &= ~I_SYNC_QUEUED; 1440 } else { 1441 /* The inode is clean. Remove from writeback lists. */ 1442 inode_io_list_del_locked(inode, wb); 1443 } 1444 } 1445 1446 /* 1447 * Write out an inode and its dirty pages. Do not update the writeback list 1448 * linkage. That is left to the caller. The caller is also responsible for 1449 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1450 */ 1451 static int 1452 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1453 { 1454 struct address_space *mapping = inode->i_mapping; 1455 long nr_to_write = wbc->nr_to_write; 1456 unsigned dirty; 1457 int ret; 1458 1459 WARN_ON(!(inode->i_state & I_SYNC)); 1460 1461 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1462 1463 ret = do_writepages(mapping, wbc); 1464 1465 /* 1466 * Make sure to wait on the data before writing out the metadata. 1467 * This is important for filesystems that modify metadata on data 1468 * I/O completion. We don't do it for sync(2) writeback because it has a 1469 * separate, external IO completion path and ->sync_fs for guaranteeing 1470 * inode metadata is written back correctly. 1471 */ 1472 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1473 int err = filemap_fdatawait(mapping); 1474 if (ret == 0) 1475 ret = err; 1476 } 1477 1478 /* 1479 * Some filesystems may redirty the inode during the writeback 1480 * due to delalloc, clear dirty metadata flags right before 1481 * write_inode() 1482 */ 1483 spin_lock(&inode->i_lock); 1484 1485 dirty = inode->i_state & I_DIRTY; 1486 if (inode->i_state & I_DIRTY_TIME) { 1487 if ((dirty & I_DIRTY_INODE) || 1488 wbc->sync_mode == WB_SYNC_ALL || 1489 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1490 unlikely(time_after(jiffies, 1491 (inode->dirtied_time_when + 1492 dirtytime_expire_interval * HZ)))) { 1493 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1494 trace_writeback_lazytime(inode); 1495 } 1496 } else 1497 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1498 inode->i_state &= ~dirty; 1499 1500 /* 1501 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1502 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1503 * either they see the I_DIRTY bits cleared or we see the dirtied 1504 * inode. 1505 * 1506 * I_DIRTY_PAGES is always cleared together above even if @mapping 1507 * still has dirty pages. The flag is reinstated after smp_mb() if 1508 * necessary. This guarantees that either __mark_inode_dirty() 1509 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1510 */ 1511 smp_mb(); 1512 1513 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1514 inode->i_state |= I_DIRTY_PAGES; 1515 1516 spin_unlock(&inode->i_lock); 1517 1518 if (dirty & I_DIRTY_TIME) 1519 mark_inode_dirty_sync(inode); 1520 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1521 if (dirty & ~I_DIRTY_PAGES) { 1522 int err = write_inode(inode, wbc); 1523 if (ret == 0) 1524 ret = err; 1525 } 1526 trace_writeback_single_inode(inode, wbc, nr_to_write); 1527 return ret; 1528 } 1529 1530 /* 1531 * Write out an inode's dirty pages. Either the caller has an active reference 1532 * on the inode or the inode has I_WILL_FREE set. 1533 * 1534 * This function is designed to be called for writing back one inode which 1535 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1536 * and does more profound writeback list handling in writeback_sb_inodes(). 1537 */ 1538 static int writeback_single_inode(struct inode *inode, 1539 struct writeback_control *wbc) 1540 { 1541 struct bdi_writeback *wb; 1542 int ret = 0; 1543 1544 spin_lock(&inode->i_lock); 1545 if (!atomic_read(&inode->i_count)) 1546 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1547 else 1548 WARN_ON(inode->i_state & I_WILL_FREE); 1549 1550 if (inode->i_state & I_SYNC) { 1551 if (wbc->sync_mode != WB_SYNC_ALL) 1552 goto out; 1553 /* 1554 * It's a data-integrity sync. We must wait. Since callers hold 1555 * inode reference or inode has I_WILL_FREE set, it cannot go 1556 * away under us. 1557 */ 1558 __inode_wait_for_writeback(inode); 1559 } 1560 WARN_ON(inode->i_state & I_SYNC); 1561 /* 1562 * Skip inode if it is clean and we have no outstanding writeback in 1563 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1564 * function since flusher thread may be doing for example sync in 1565 * parallel and if we move the inode, it could get skipped. So here we 1566 * make sure inode is on some writeback list and leave it there unless 1567 * we have completely cleaned the inode. 1568 */ 1569 if (!(inode->i_state & I_DIRTY_ALL) && 1570 (wbc->sync_mode != WB_SYNC_ALL || 1571 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1572 goto out; 1573 inode->i_state |= I_SYNC; 1574 wbc_attach_and_unlock_inode(wbc, inode); 1575 1576 ret = __writeback_single_inode(inode, wbc); 1577 1578 wbc_detach_inode(wbc); 1579 1580 wb = inode_to_wb_and_lock_list(inode); 1581 spin_lock(&inode->i_lock); 1582 /* 1583 * If inode is clean, remove it from writeback lists. Otherwise don't 1584 * touch it. See comment above for explanation. 1585 */ 1586 if (!(inode->i_state & I_DIRTY_ALL)) 1587 inode_io_list_del_locked(inode, wb); 1588 spin_unlock(&wb->list_lock); 1589 inode_sync_complete(inode); 1590 out: 1591 spin_unlock(&inode->i_lock); 1592 return ret; 1593 } 1594 1595 static long writeback_chunk_size(struct bdi_writeback *wb, 1596 struct wb_writeback_work *work) 1597 { 1598 long pages; 1599 1600 /* 1601 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1602 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1603 * here avoids calling into writeback_inodes_wb() more than once. 1604 * 1605 * The intended call sequence for WB_SYNC_ALL writeback is: 1606 * 1607 * wb_writeback() 1608 * writeback_sb_inodes() <== called only once 1609 * write_cache_pages() <== called once for each inode 1610 * (quickly) tag currently dirty pages 1611 * (maybe slowly) sync all tagged pages 1612 */ 1613 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1614 pages = LONG_MAX; 1615 else { 1616 pages = min(wb->avg_write_bandwidth / 2, 1617 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1618 pages = min(pages, work->nr_pages); 1619 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1620 MIN_WRITEBACK_PAGES); 1621 } 1622 1623 return pages; 1624 } 1625 1626 /* 1627 * Write a portion of b_io inodes which belong to @sb. 1628 * 1629 * Return the number of pages and/or inodes written. 1630 * 1631 * NOTE! This is called with wb->list_lock held, and will 1632 * unlock and relock that for each inode it ends up doing 1633 * IO for. 1634 */ 1635 static long writeback_sb_inodes(struct super_block *sb, 1636 struct bdi_writeback *wb, 1637 struct wb_writeback_work *work) 1638 { 1639 struct writeback_control wbc = { 1640 .sync_mode = work->sync_mode, 1641 .tagged_writepages = work->tagged_writepages, 1642 .for_kupdate = work->for_kupdate, 1643 .for_background = work->for_background, 1644 .for_sync = work->for_sync, 1645 .range_cyclic = work->range_cyclic, 1646 .range_start = 0, 1647 .range_end = LLONG_MAX, 1648 }; 1649 unsigned long start_time = jiffies; 1650 long write_chunk; 1651 long wrote = 0; /* count both pages and inodes */ 1652 1653 while (!list_empty(&wb->b_io)) { 1654 struct inode *inode = wb_inode(wb->b_io.prev); 1655 struct bdi_writeback *tmp_wb; 1656 1657 if (inode->i_sb != sb) { 1658 if (work->sb) { 1659 /* 1660 * We only want to write back data for this 1661 * superblock, move all inodes not belonging 1662 * to it back onto the dirty list. 1663 */ 1664 redirty_tail(inode, wb); 1665 continue; 1666 } 1667 1668 /* 1669 * The inode belongs to a different superblock. 1670 * Bounce back to the caller to unpin this and 1671 * pin the next superblock. 1672 */ 1673 break; 1674 } 1675 1676 /* 1677 * Don't bother with new inodes or inodes being freed, first 1678 * kind does not need periodic writeout yet, and for the latter 1679 * kind writeout is handled by the freer. 1680 */ 1681 spin_lock(&inode->i_lock); 1682 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1683 redirty_tail_locked(inode, wb); 1684 spin_unlock(&inode->i_lock); 1685 continue; 1686 } 1687 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1688 /* 1689 * If this inode is locked for writeback and we are not 1690 * doing writeback-for-data-integrity, move it to 1691 * b_more_io so that writeback can proceed with the 1692 * other inodes on s_io. 1693 * 1694 * We'll have another go at writing back this inode 1695 * when we completed a full scan of b_io. 1696 */ 1697 spin_unlock(&inode->i_lock); 1698 requeue_io(inode, wb); 1699 trace_writeback_sb_inodes_requeue(inode); 1700 continue; 1701 } 1702 spin_unlock(&wb->list_lock); 1703 1704 /* 1705 * We already requeued the inode if it had I_SYNC set and we 1706 * are doing WB_SYNC_NONE writeback. So this catches only the 1707 * WB_SYNC_ALL case. 1708 */ 1709 if (inode->i_state & I_SYNC) { 1710 /* Wait for I_SYNC. This function drops i_lock... */ 1711 inode_sleep_on_writeback(inode); 1712 /* Inode may be gone, start again */ 1713 spin_lock(&wb->list_lock); 1714 continue; 1715 } 1716 inode->i_state |= I_SYNC; 1717 wbc_attach_and_unlock_inode(&wbc, inode); 1718 1719 write_chunk = writeback_chunk_size(wb, work); 1720 wbc.nr_to_write = write_chunk; 1721 wbc.pages_skipped = 0; 1722 1723 /* 1724 * We use I_SYNC to pin the inode in memory. While it is set 1725 * evict_inode() will wait so the inode cannot be freed. 1726 */ 1727 __writeback_single_inode(inode, &wbc); 1728 1729 wbc_detach_inode(&wbc); 1730 work->nr_pages -= write_chunk - wbc.nr_to_write; 1731 wrote += write_chunk - wbc.nr_to_write; 1732 1733 if (need_resched()) { 1734 /* 1735 * We're trying to balance between building up a nice 1736 * long list of IOs to improve our merge rate, and 1737 * getting those IOs out quickly for anyone throttling 1738 * in balance_dirty_pages(). cond_resched() doesn't 1739 * unplug, so get our IOs out the door before we 1740 * give up the CPU. 1741 */ 1742 blk_flush_plug(current); 1743 cond_resched(); 1744 } 1745 1746 /* 1747 * Requeue @inode if still dirty. Be careful as @inode may 1748 * have been switched to another wb in the meantime. 1749 */ 1750 tmp_wb = inode_to_wb_and_lock_list(inode); 1751 spin_lock(&inode->i_lock); 1752 if (!(inode->i_state & I_DIRTY_ALL)) 1753 wrote++; 1754 requeue_inode(inode, tmp_wb, &wbc); 1755 inode_sync_complete(inode); 1756 spin_unlock(&inode->i_lock); 1757 1758 if (unlikely(tmp_wb != wb)) { 1759 spin_unlock(&tmp_wb->list_lock); 1760 spin_lock(&wb->list_lock); 1761 } 1762 1763 /* 1764 * bail out to wb_writeback() often enough to check 1765 * background threshold and other termination conditions. 1766 */ 1767 if (wrote) { 1768 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1769 break; 1770 if (work->nr_pages <= 0) 1771 break; 1772 } 1773 } 1774 return wrote; 1775 } 1776 1777 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1778 struct wb_writeback_work *work) 1779 { 1780 unsigned long start_time = jiffies; 1781 long wrote = 0; 1782 1783 while (!list_empty(&wb->b_io)) { 1784 struct inode *inode = wb_inode(wb->b_io.prev); 1785 struct super_block *sb = inode->i_sb; 1786 1787 if (!trylock_super(sb)) { 1788 /* 1789 * trylock_super() may fail consistently due to 1790 * s_umount being grabbed by someone else. Don't use 1791 * requeue_io() to avoid busy retrying the inode/sb. 1792 */ 1793 redirty_tail(inode, wb); 1794 continue; 1795 } 1796 wrote += writeback_sb_inodes(sb, wb, work); 1797 up_read(&sb->s_umount); 1798 1799 /* refer to the same tests at the end of writeback_sb_inodes */ 1800 if (wrote) { 1801 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1802 break; 1803 if (work->nr_pages <= 0) 1804 break; 1805 } 1806 } 1807 /* Leave any unwritten inodes on b_io */ 1808 return wrote; 1809 } 1810 1811 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1812 enum wb_reason reason) 1813 { 1814 struct wb_writeback_work work = { 1815 .nr_pages = nr_pages, 1816 .sync_mode = WB_SYNC_NONE, 1817 .range_cyclic = 1, 1818 .reason = reason, 1819 }; 1820 struct blk_plug plug; 1821 1822 blk_start_plug(&plug); 1823 spin_lock(&wb->list_lock); 1824 if (list_empty(&wb->b_io)) 1825 queue_io(wb, &work, jiffies); 1826 __writeback_inodes_wb(wb, &work); 1827 spin_unlock(&wb->list_lock); 1828 blk_finish_plug(&plug); 1829 1830 return nr_pages - work.nr_pages; 1831 } 1832 1833 /* 1834 * Explicit flushing or periodic writeback of "old" data. 1835 * 1836 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1837 * dirtying-time in the inode's address_space. So this periodic writeback code 1838 * just walks the superblock inode list, writing back any inodes which are 1839 * older than a specific point in time. 1840 * 1841 * Try to run once per dirty_writeback_interval. But if a writeback event 1842 * takes longer than a dirty_writeback_interval interval, then leave a 1843 * one-second gap. 1844 * 1845 * dirtied_before takes precedence over nr_to_write. So we'll only write back 1846 * all dirty pages if they are all attached to "old" mappings. 1847 */ 1848 static long wb_writeback(struct bdi_writeback *wb, 1849 struct wb_writeback_work *work) 1850 { 1851 unsigned long wb_start = jiffies; 1852 long nr_pages = work->nr_pages; 1853 unsigned long dirtied_before = jiffies; 1854 struct inode *inode; 1855 long progress; 1856 struct blk_plug plug; 1857 1858 blk_start_plug(&plug); 1859 spin_lock(&wb->list_lock); 1860 for (;;) { 1861 /* 1862 * Stop writeback when nr_pages has been consumed 1863 */ 1864 if (work->nr_pages <= 0) 1865 break; 1866 1867 /* 1868 * Background writeout and kupdate-style writeback may 1869 * run forever. Stop them if there is other work to do 1870 * so that e.g. sync can proceed. They'll be restarted 1871 * after the other works are all done. 1872 */ 1873 if ((work->for_background || work->for_kupdate) && 1874 !list_empty(&wb->work_list)) 1875 break; 1876 1877 /* 1878 * For background writeout, stop when we are below the 1879 * background dirty threshold 1880 */ 1881 if (work->for_background && !wb_over_bg_thresh(wb)) 1882 break; 1883 1884 /* 1885 * Kupdate and background works are special and we want to 1886 * include all inodes that need writing. Livelock avoidance is 1887 * handled by these works yielding to any other work so we are 1888 * safe. 1889 */ 1890 if (work->for_kupdate) { 1891 dirtied_before = jiffies - 1892 msecs_to_jiffies(dirty_expire_interval * 10); 1893 } else if (work->for_background) 1894 dirtied_before = jiffies; 1895 1896 trace_writeback_start(wb, work); 1897 if (list_empty(&wb->b_io)) 1898 queue_io(wb, work, dirtied_before); 1899 if (work->sb) 1900 progress = writeback_sb_inodes(work->sb, wb, work); 1901 else 1902 progress = __writeback_inodes_wb(wb, work); 1903 trace_writeback_written(wb, work); 1904 1905 wb_update_bandwidth(wb, wb_start); 1906 1907 /* 1908 * Did we write something? Try for more 1909 * 1910 * Dirty inodes are moved to b_io for writeback in batches. 1911 * The completion of the current batch does not necessarily 1912 * mean the overall work is done. So we keep looping as long 1913 * as made some progress on cleaning pages or inodes. 1914 */ 1915 if (progress) 1916 continue; 1917 /* 1918 * No more inodes for IO, bail 1919 */ 1920 if (list_empty(&wb->b_more_io)) 1921 break; 1922 /* 1923 * Nothing written. Wait for some inode to 1924 * become available for writeback. Otherwise 1925 * we'll just busyloop. 1926 */ 1927 trace_writeback_wait(wb, work); 1928 inode = wb_inode(wb->b_more_io.prev); 1929 spin_lock(&inode->i_lock); 1930 spin_unlock(&wb->list_lock); 1931 /* This function drops i_lock... */ 1932 inode_sleep_on_writeback(inode); 1933 spin_lock(&wb->list_lock); 1934 } 1935 spin_unlock(&wb->list_lock); 1936 blk_finish_plug(&plug); 1937 1938 return nr_pages - work->nr_pages; 1939 } 1940 1941 /* 1942 * Return the next wb_writeback_work struct that hasn't been processed yet. 1943 */ 1944 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1945 { 1946 struct wb_writeback_work *work = NULL; 1947 1948 spin_lock_bh(&wb->work_lock); 1949 if (!list_empty(&wb->work_list)) { 1950 work = list_entry(wb->work_list.next, 1951 struct wb_writeback_work, list); 1952 list_del_init(&work->list); 1953 } 1954 spin_unlock_bh(&wb->work_lock); 1955 return work; 1956 } 1957 1958 static long wb_check_background_flush(struct bdi_writeback *wb) 1959 { 1960 if (wb_over_bg_thresh(wb)) { 1961 1962 struct wb_writeback_work work = { 1963 .nr_pages = LONG_MAX, 1964 .sync_mode = WB_SYNC_NONE, 1965 .for_background = 1, 1966 .range_cyclic = 1, 1967 .reason = WB_REASON_BACKGROUND, 1968 }; 1969 1970 return wb_writeback(wb, &work); 1971 } 1972 1973 return 0; 1974 } 1975 1976 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1977 { 1978 unsigned long expired; 1979 long nr_pages; 1980 1981 /* 1982 * When set to zero, disable periodic writeback 1983 */ 1984 if (!dirty_writeback_interval) 1985 return 0; 1986 1987 expired = wb->last_old_flush + 1988 msecs_to_jiffies(dirty_writeback_interval * 10); 1989 if (time_before(jiffies, expired)) 1990 return 0; 1991 1992 wb->last_old_flush = jiffies; 1993 nr_pages = get_nr_dirty_pages(); 1994 1995 if (nr_pages) { 1996 struct wb_writeback_work work = { 1997 .nr_pages = nr_pages, 1998 .sync_mode = WB_SYNC_NONE, 1999 .for_kupdate = 1, 2000 .range_cyclic = 1, 2001 .reason = WB_REASON_PERIODIC, 2002 }; 2003 2004 return wb_writeback(wb, &work); 2005 } 2006 2007 return 0; 2008 } 2009 2010 static long wb_check_start_all(struct bdi_writeback *wb) 2011 { 2012 long nr_pages; 2013 2014 if (!test_bit(WB_start_all, &wb->state)) 2015 return 0; 2016 2017 nr_pages = get_nr_dirty_pages(); 2018 if (nr_pages) { 2019 struct wb_writeback_work work = { 2020 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2021 .sync_mode = WB_SYNC_NONE, 2022 .range_cyclic = 1, 2023 .reason = wb->start_all_reason, 2024 }; 2025 2026 nr_pages = wb_writeback(wb, &work); 2027 } 2028 2029 clear_bit(WB_start_all, &wb->state); 2030 return nr_pages; 2031 } 2032 2033 2034 /* 2035 * Retrieve work items and do the writeback they describe 2036 */ 2037 static long wb_do_writeback(struct bdi_writeback *wb) 2038 { 2039 struct wb_writeback_work *work; 2040 long wrote = 0; 2041 2042 set_bit(WB_writeback_running, &wb->state); 2043 while ((work = get_next_work_item(wb)) != NULL) { 2044 trace_writeback_exec(wb, work); 2045 wrote += wb_writeback(wb, work); 2046 finish_writeback_work(wb, work); 2047 } 2048 2049 /* 2050 * Check for a flush-everything request 2051 */ 2052 wrote += wb_check_start_all(wb); 2053 2054 /* 2055 * Check for periodic writeback, kupdated() style 2056 */ 2057 wrote += wb_check_old_data_flush(wb); 2058 wrote += wb_check_background_flush(wb); 2059 clear_bit(WB_writeback_running, &wb->state); 2060 2061 return wrote; 2062 } 2063 2064 /* 2065 * Handle writeback of dirty data for the device backed by this bdi. Also 2066 * reschedules periodically and does kupdated style flushing. 2067 */ 2068 void wb_workfn(struct work_struct *work) 2069 { 2070 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2071 struct bdi_writeback, dwork); 2072 long pages_written; 2073 2074 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2075 current->flags |= PF_SWAPWRITE; 2076 2077 if (likely(!current_is_workqueue_rescuer() || 2078 !test_bit(WB_registered, &wb->state))) { 2079 /* 2080 * The normal path. Keep writing back @wb until its 2081 * work_list is empty. Note that this path is also taken 2082 * if @wb is shutting down even when we're running off the 2083 * rescuer as work_list needs to be drained. 2084 */ 2085 do { 2086 pages_written = wb_do_writeback(wb); 2087 trace_writeback_pages_written(pages_written); 2088 } while (!list_empty(&wb->work_list)); 2089 } else { 2090 /* 2091 * bdi_wq can't get enough workers and we're running off 2092 * the emergency worker. Don't hog it. Hopefully, 1024 is 2093 * enough for efficient IO. 2094 */ 2095 pages_written = writeback_inodes_wb(wb, 1024, 2096 WB_REASON_FORKER_THREAD); 2097 trace_writeback_pages_written(pages_written); 2098 } 2099 2100 if (!list_empty(&wb->work_list)) 2101 wb_wakeup(wb); 2102 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2103 wb_wakeup_delayed(wb); 2104 2105 current->flags &= ~PF_SWAPWRITE; 2106 } 2107 2108 /* 2109 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2110 * write back the whole world. 2111 */ 2112 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2113 enum wb_reason reason) 2114 { 2115 struct bdi_writeback *wb; 2116 2117 if (!bdi_has_dirty_io(bdi)) 2118 return; 2119 2120 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2121 wb_start_writeback(wb, reason); 2122 } 2123 2124 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2125 enum wb_reason reason) 2126 { 2127 rcu_read_lock(); 2128 __wakeup_flusher_threads_bdi(bdi, reason); 2129 rcu_read_unlock(); 2130 } 2131 2132 /* 2133 * Wakeup the flusher threads to start writeback of all currently dirty pages 2134 */ 2135 void wakeup_flusher_threads(enum wb_reason reason) 2136 { 2137 struct backing_dev_info *bdi; 2138 2139 /* 2140 * If we are expecting writeback progress we must submit plugged IO. 2141 */ 2142 if (blk_needs_flush_plug(current)) 2143 blk_schedule_flush_plug(current); 2144 2145 rcu_read_lock(); 2146 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2147 __wakeup_flusher_threads_bdi(bdi, reason); 2148 rcu_read_unlock(); 2149 } 2150 2151 /* 2152 * Wake up bdi's periodically to make sure dirtytime inodes gets 2153 * written back periodically. We deliberately do *not* check the 2154 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2155 * kernel to be constantly waking up once there are any dirtytime 2156 * inodes on the system. So instead we define a separate delayed work 2157 * function which gets called much more rarely. (By default, only 2158 * once every 12 hours.) 2159 * 2160 * If there is any other write activity going on in the file system, 2161 * this function won't be necessary. But if the only thing that has 2162 * happened on the file system is a dirtytime inode caused by an atime 2163 * update, we need this infrastructure below to make sure that inode 2164 * eventually gets pushed out to disk. 2165 */ 2166 static void wakeup_dirtytime_writeback(struct work_struct *w); 2167 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2168 2169 static void wakeup_dirtytime_writeback(struct work_struct *w) 2170 { 2171 struct backing_dev_info *bdi; 2172 2173 rcu_read_lock(); 2174 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2175 struct bdi_writeback *wb; 2176 2177 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2178 if (!list_empty(&wb->b_dirty_time)) 2179 wb_wakeup(wb); 2180 } 2181 rcu_read_unlock(); 2182 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2183 } 2184 2185 static int __init start_dirtytime_writeback(void) 2186 { 2187 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2188 return 0; 2189 } 2190 __initcall(start_dirtytime_writeback); 2191 2192 int dirtytime_interval_handler(struct ctl_table *table, int write, 2193 void __user *buffer, size_t *lenp, loff_t *ppos) 2194 { 2195 int ret; 2196 2197 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2198 if (ret == 0 && write) 2199 mod_delayed_work(system_wq, &dirtytime_work, 0); 2200 return ret; 2201 } 2202 2203 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 2204 { 2205 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 2206 struct dentry *dentry; 2207 const char *name = "?"; 2208 2209 dentry = d_find_alias(inode); 2210 if (dentry) { 2211 spin_lock(&dentry->d_lock); 2212 name = (const char *) dentry->d_name.name; 2213 } 2214 printk(KERN_DEBUG 2215 "%s(%d): dirtied inode %lu (%s) on %s\n", 2216 current->comm, task_pid_nr(current), inode->i_ino, 2217 name, inode->i_sb->s_id); 2218 if (dentry) { 2219 spin_unlock(&dentry->d_lock); 2220 dput(dentry); 2221 } 2222 } 2223 } 2224 2225 /** 2226 * __mark_inode_dirty - internal function 2227 * 2228 * @inode: inode to mark 2229 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 2230 * 2231 * Mark an inode as dirty. Callers should use mark_inode_dirty or 2232 * mark_inode_dirty_sync. 2233 * 2234 * Put the inode on the super block's dirty list. 2235 * 2236 * CAREFUL! We mark it dirty unconditionally, but move it onto the 2237 * dirty list only if it is hashed or if it refers to a blockdev. 2238 * If it was not hashed, it will never be added to the dirty list 2239 * even if it is later hashed, as it will have been marked dirty already. 2240 * 2241 * In short, make sure you hash any inodes _before_ you start marking 2242 * them dirty. 2243 * 2244 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2245 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2246 * the kernel-internal blockdev inode represents the dirtying time of the 2247 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2248 * page->mapping->host, so the page-dirtying time is recorded in the internal 2249 * blockdev inode. 2250 */ 2251 void __mark_inode_dirty(struct inode *inode, int flags) 2252 { 2253 struct super_block *sb = inode->i_sb; 2254 int dirtytime; 2255 2256 trace_writeback_mark_inode_dirty(inode, flags); 2257 2258 /* 2259 * Don't do this for I_DIRTY_PAGES - that doesn't actually 2260 * dirty the inode itself 2261 */ 2262 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) { 2263 trace_writeback_dirty_inode_start(inode, flags); 2264 2265 if (sb->s_op->dirty_inode) 2266 sb->s_op->dirty_inode(inode, flags); 2267 2268 trace_writeback_dirty_inode(inode, flags); 2269 } 2270 if (flags & I_DIRTY_INODE) 2271 flags &= ~I_DIRTY_TIME; 2272 dirtytime = flags & I_DIRTY_TIME; 2273 2274 /* 2275 * Paired with smp_mb() in __writeback_single_inode() for the 2276 * following lockless i_state test. See there for details. 2277 */ 2278 smp_mb(); 2279 2280 if (((inode->i_state & flags) == flags) || 2281 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2282 return; 2283 2284 if (unlikely(block_dump)) 2285 block_dump___mark_inode_dirty(inode); 2286 2287 spin_lock(&inode->i_lock); 2288 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2289 goto out_unlock_inode; 2290 if ((inode->i_state & flags) != flags) { 2291 const int was_dirty = inode->i_state & I_DIRTY; 2292 2293 inode_attach_wb(inode, NULL); 2294 2295 if (flags & I_DIRTY_INODE) 2296 inode->i_state &= ~I_DIRTY_TIME; 2297 inode->i_state |= flags; 2298 2299 /* 2300 * If the inode is queued for writeback by flush worker, just 2301 * update its dirty state. Once the flush worker is done with 2302 * the inode it will place it on the appropriate superblock 2303 * list, based upon its state. 2304 */ 2305 if (inode->i_state & I_SYNC_QUEUED) 2306 goto out_unlock_inode; 2307 2308 /* 2309 * Only add valid (hashed) inodes to the superblock's 2310 * dirty list. Add blockdev inodes as well. 2311 */ 2312 if (!S_ISBLK(inode->i_mode)) { 2313 if (inode_unhashed(inode)) 2314 goto out_unlock_inode; 2315 } 2316 if (inode->i_state & I_FREEING) 2317 goto out_unlock_inode; 2318 2319 /* 2320 * If the inode was already on b_dirty/b_io/b_more_io, don't 2321 * reposition it (that would break b_dirty time-ordering). 2322 */ 2323 if (!was_dirty) { 2324 struct bdi_writeback *wb; 2325 struct list_head *dirty_list; 2326 bool wakeup_bdi = false; 2327 2328 wb = locked_inode_to_wb_and_lock_list(inode); 2329 2330 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2331 !test_bit(WB_registered, &wb->state), 2332 "bdi-%s not registered\n", bdi_dev_name(wb->bdi)); 2333 2334 inode->dirtied_when = jiffies; 2335 if (dirtytime) 2336 inode->dirtied_time_when = jiffies; 2337 2338 if (inode->i_state & I_DIRTY) 2339 dirty_list = &wb->b_dirty; 2340 else 2341 dirty_list = &wb->b_dirty_time; 2342 2343 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2344 dirty_list); 2345 2346 spin_unlock(&wb->list_lock); 2347 trace_writeback_dirty_inode_enqueue(inode); 2348 2349 /* 2350 * If this is the first dirty inode for this bdi, 2351 * we have to wake-up the corresponding bdi thread 2352 * to make sure background write-back happens 2353 * later. 2354 */ 2355 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2356 wb_wakeup_delayed(wb); 2357 return; 2358 } 2359 } 2360 out_unlock_inode: 2361 spin_unlock(&inode->i_lock); 2362 } 2363 EXPORT_SYMBOL(__mark_inode_dirty); 2364 2365 /* 2366 * The @s_sync_lock is used to serialise concurrent sync operations 2367 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2368 * Concurrent callers will block on the s_sync_lock rather than doing contending 2369 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2370 * has been issued up to the time this function is enter is guaranteed to be 2371 * completed by the time we have gained the lock and waited for all IO that is 2372 * in progress regardless of the order callers are granted the lock. 2373 */ 2374 static void wait_sb_inodes(struct super_block *sb) 2375 { 2376 LIST_HEAD(sync_list); 2377 2378 /* 2379 * We need to be protected against the filesystem going from 2380 * r/o to r/w or vice versa. 2381 */ 2382 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2383 2384 mutex_lock(&sb->s_sync_lock); 2385 2386 /* 2387 * Splice the writeback list onto a temporary list to avoid waiting on 2388 * inodes that have started writeback after this point. 2389 * 2390 * Use rcu_read_lock() to keep the inodes around until we have a 2391 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2392 * the local list because inodes can be dropped from either by writeback 2393 * completion. 2394 */ 2395 rcu_read_lock(); 2396 spin_lock_irq(&sb->s_inode_wblist_lock); 2397 list_splice_init(&sb->s_inodes_wb, &sync_list); 2398 2399 /* 2400 * Data integrity sync. Must wait for all pages under writeback, because 2401 * there may have been pages dirtied before our sync call, but which had 2402 * writeout started before we write it out. In which case, the inode 2403 * may not be on the dirty list, but we still have to wait for that 2404 * writeout. 2405 */ 2406 while (!list_empty(&sync_list)) { 2407 struct inode *inode = list_first_entry(&sync_list, struct inode, 2408 i_wb_list); 2409 struct address_space *mapping = inode->i_mapping; 2410 2411 /* 2412 * Move each inode back to the wb list before we drop the lock 2413 * to preserve consistency between i_wb_list and the mapping 2414 * writeback tag. Writeback completion is responsible to remove 2415 * the inode from either list once the writeback tag is cleared. 2416 */ 2417 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2418 2419 /* 2420 * The mapping can appear untagged while still on-list since we 2421 * do not have the mapping lock. Skip it here, wb completion 2422 * will remove it. 2423 */ 2424 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2425 continue; 2426 2427 spin_unlock_irq(&sb->s_inode_wblist_lock); 2428 2429 spin_lock(&inode->i_lock); 2430 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2431 spin_unlock(&inode->i_lock); 2432 2433 spin_lock_irq(&sb->s_inode_wblist_lock); 2434 continue; 2435 } 2436 __iget(inode); 2437 spin_unlock(&inode->i_lock); 2438 rcu_read_unlock(); 2439 2440 /* 2441 * We keep the error status of individual mapping so that 2442 * applications can catch the writeback error using fsync(2). 2443 * See filemap_fdatawait_keep_errors() for details. 2444 */ 2445 filemap_fdatawait_keep_errors(mapping); 2446 2447 cond_resched(); 2448 2449 iput(inode); 2450 2451 rcu_read_lock(); 2452 spin_lock_irq(&sb->s_inode_wblist_lock); 2453 } 2454 spin_unlock_irq(&sb->s_inode_wblist_lock); 2455 rcu_read_unlock(); 2456 mutex_unlock(&sb->s_sync_lock); 2457 } 2458 2459 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2460 enum wb_reason reason, bool skip_if_busy) 2461 { 2462 struct backing_dev_info *bdi = sb->s_bdi; 2463 DEFINE_WB_COMPLETION(done, bdi); 2464 struct wb_writeback_work work = { 2465 .sb = sb, 2466 .sync_mode = WB_SYNC_NONE, 2467 .tagged_writepages = 1, 2468 .done = &done, 2469 .nr_pages = nr, 2470 .reason = reason, 2471 }; 2472 2473 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2474 return; 2475 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2476 2477 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2478 wb_wait_for_completion(&done); 2479 } 2480 2481 /** 2482 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2483 * @sb: the superblock 2484 * @nr: the number of pages to write 2485 * @reason: reason why some writeback work initiated 2486 * 2487 * Start writeback on some inodes on this super_block. No guarantees are made 2488 * on how many (if any) will be written, and this function does not wait 2489 * for IO completion of submitted IO. 2490 */ 2491 void writeback_inodes_sb_nr(struct super_block *sb, 2492 unsigned long nr, 2493 enum wb_reason reason) 2494 { 2495 __writeback_inodes_sb_nr(sb, nr, reason, false); 2496 } 2497 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2498 2499 /** 2500 * writeback_inodes_sb - writeback dirty inodes from given super_block 2501 * @sb: the superblock 2502 * @reason: reason why some writeback work was initiated 2503 * 2504 * Start writeback on some inodes on this super_block. No guarantees are made 2505 * on how many (if any) will be written, and this function does not wait 2506 * for IO completion of submitted IO. 2507 */ 2508 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2509 { 2510 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2511 } 2512 EXPORT_SYMBOL(writeback_inodes_sb); 2513 2514 /** 2515 * try_to_writeback_inodes_sb - try to start writeback if none underway 2516 * @sb: the superblock 2517 * @reason: reason why some writeback work was initiated 2518 * 2519 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2520 */ 2521 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2522 { 2523 if (!down_read_trylock(&sb->s_umount)) 2524 return; 2525 2526 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2527 up_read(&sb->s_umount); 2528 } 2529 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2530 2531 /** 2532 * sync_inodes_sb - sync sb inode pages 2533 * @sb: the superblock 2534 * 2535 * This function writes and waits on any dirty inode belonging to this 2536 * super_block. 2537 */ 2538 void sync_inodes_sb(struct super_block *sb) 2539 { 2540 struct backing_dev_info *bdi = sb->s_bdi; 2541 DEFINE_WB_COMPLETION(done, bdi); 2542 struct wb_writeback_work work = { 2543 .sb = sb, 2544 .sync_mode = WB_SYNC_ALL, 2545 .nr_pages = LONG_MAX, 2546 .range_cyclic = 0, 2547 .done = &done, 2548 .reason = WB_REASON_SYNC, 2549 .for_sync = 1, 2550 }; 2551 2552 /* 2553 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2554 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2555 * bdi_has_dirty() need to be written out too. 2556 */ 2557 if (bdi == &noop_backing_dev_info) 2558 return; 2559 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2560 2561 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2562 bdi_down_write_wb_switch_rwsem(bdi); 2563 bdi_split_work_to_wbs(bdi, &work, false); 2564 wb_wait_for_completion(&done); 2565 bdi_up_write_wb_switch_rwsem(bdi); 2566 2567 wait_sb_inodes(sb); 2568 } 2569 EXPORT_SYMBOL(sync_inodes_sb); 2570 2571 /** 2572 * write_inode_now - write an inode to disk 2573 * @inode: inode to write to disk 2574 * @sync: whether the write should be synchronous or not 2575 * 2576 * This function commits an inode to disk immediately if it is dirty. This is 2577 * primarily needed by knfsd. 2578 * 2579 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2580 */ 2581 int write_inode_now(struct inode *inode, int sync) 2582 { 2583 struct writeback_control wbc = { 2584 .nr_to_write = LONG_MAX, 2585 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2586 .range_start = 0, 2587 .range_end = LLONG_MAX, 2588 }; 2589 2590 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2591 wbc.nr_to_write = 0; 2592 2593 might_sleep(); 2594 return writeback_single_inode(inode, &wbc); 2595 } 2596 EXPORT_SYMBOL(write_inode_now); 2597 2598 /** 2599 * sync_inode - write an inode and its pages to disk. 2600 * @inode: the inode to sync 2601 * @wbc: controls the writeback mode 2602 * 2603 * sync_inode() will write an inode and its pages to disk. It will also 2604 * correctly update the inode on its superblock's dirty inode lists and will 2605 * update inode->i_state. 2606 * 2607 * The caller must have a ref on the inode. 2608 */ 2609 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2610 { 2611 return writeback_single_inode(inode, wbc); 2612 } 2613 EXPORT_SYMBOL(sync_inode); 2614 2615 /** 2616 * sync_inode_metadata - write an inode to disk 2617 * @inode: the inode to sync 2618 * @wait: wait for I/O to complete. 2619 * 2620 * Write an inode to disk and adjust its dirty state after completion. 2621 * 2622 * Note: only writes the actual inode, no associated data or other metadata. 2623 */ 2624 int sync_inode_metadata(struct inode *inode, int wait) 2625 { 2626 struct writeback_control wbc = { 2627 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2628 .nr_to_write = 0, /* metadata-only */ 2629 }; 2630 2631 return sync_inode(inode, &wbc); 2632 } 2633 EXPORT_SYMBOL(sync_inode_metadata); 2634